Commit f1387d77 authored by Paul E. McKenney's avatar Paul E. McKenney

doc: Synchronous RCU grace periods are now legal throughout boot

This commit updates the "Early Boot" section of the RCU requirements
to describe how synchronous RCU grace periods are now legal throughout
the boot process.
Signed-off-by: default avatarPaul E. McKenney <paulmck@linux.vnet.ibm.com>
parent 4495c08e
......@@ -2154,7 +2154,8 @@ as will <tt>rcu_assign_pointer()</tt>.
<p>
Although <tt>call_rcu()</tt> may be invoked at any
time during boot, callbacks are not guaranteed to be invoked until after
the scheduler is fully up and running.
all of RCU's kthreads have been spawned, which occurs at
<tt>early_initcall()</tt> time.
This delay in callback invocation is due to the fact that RCU does not
invoke callbacks until it is fully initialized, and this full initialization
cannot occur until after the scheduler has initialized itself to the
......@@ -2167,8 +2168,10 @@ on what operations those callbacks could invoke.
Perhaps surprisingly, <tt>synchronize_rcu()</tt>,
<a href="#Bottom-Half Flavor"><tt>synchronize_rcu_bh()</tt></a>
(<a href="#Bottom-Half Flavor">discussed below</a>),
and
<a href="#Sched Flavor"><tt>synchronize_sched()</tt></a>
<a href="#Sched Flavor"><tt>synchronize_sched()</tt></a>,
<tt>synchronize_rcu_expedited()</tt>,
<tt>synchronize_rcu_bh_expedited()</tt>, and
<tt>synchronize_sched_expedited()</tt>
will all operate normally
during very early boot, the reason being that there is only one CPU
and preemption is disabled.
......@@ -2178,45 +2181,55 @@ state and thus a grace period, so the early-boot implementation can
be a no-op.
<p>
Both <tt>synchronize_rcu_bh()</tt> and <tt>synchronize_sched()</tt>
continue to operate normally through the remainder of boot, courtesy
of the fact that preemption is disabled across their RCU read-side
critical sections and also courtesy of the fact that there is still
only one CPU.
However, once the scheduler starts initializing, preemption is enabled.
There is still only a single CPU, but the fact that preemption is enabled
means that the no-op implementation of <tt>synchronize_rcu()</tt> no
longer works in <tt>CONFIG_PREEMPT=y</tt> kernels.
Therefore, as soon as the scheduler starts initializing, the early-boot
fastpath is disabled.
This means that <tt>synchronize_rcu()</tt> switches to its runtime
mode of operation where it posts callbacks, which in turn means that
any call to <tt>synchronize_rcu()</tt> will block until the corresponding
callback is invoked.
Unfortunately, the callback cannot be invoked until RCU's runtime
grace-period machinery is up and running, which cannot happen until
the scheduler has initialized itself sufficiently to allow RCU's
kthreads to be spawned.
Therefore, invoking <tt>synchronize_rcu()</tt> during scheduler
initialization can result in deadlock.
However, once the scheduler has spawned its first kthread, this early
boot trick fails for <tt>synchronize_rcu()</tt> (as well as for
<tt>synchronize_rcu_expedited()</tt>) in <tt>CONFIG_PREEMPT=y</tt>
kernels.
The reason is that an RCU read-side critical section might be preempted,
which means that a subsequent <tt>synchronize_rcu()</tt> really does have
to wait for something, as opposed to simply returning immediately.
Unfortunately, <tt>synchronize_rcu()</tt> can't do this until all of
its kthreads are spawned, which doesn't happen until some time during
<tt>early_initcalls()</tt> time.
But this is no excuse: RCU is nevertheless required to correctly handle
synchronous grace periods during this time period, which it currently does.
Once all of its kthreads are up and running, RCU starts running
normally.
<table>
<tr><th>&nbsp;</th></tr>
<tr><th align="left">Quick Quiz:</th></tr>
<tr><td>
So what happens with <tt>synchronize_rcu()</tt> during
scheduler initialization for <tt>CONFIG_PREEMPT=n</tt>
kernels?
How can RCU possibly handle grace periods before all of its
kthreads have been spawned???
</td></tr>
<tr><th align="left">Answer:</th></tr>
<tr><td bgcolor="#ffffff"><font color="ffffff">
In <tt>CONFIG_PREEMPT=n</tt> kernel, <tt>synchronize_rcu()</tt>
maps directly to <tt>synchronize_sched()</tt>.
Therefore, <tt>synchronize_rcu()</tt> works normally throughout
boot in <tt>CONFIG_PREEMPT=n</tt> kernels.
However, your code must also work in <tt>CONFIG_PREEMPT=y</tt> kernels,
so it is still necessary to avoid invoking <tt>synchronize_rcu()</tt>
during scheduler initialization.
Very carefully!
<p>During the &ldquo;dead zone&rdquo; between the time that the
scheduler spawns the first task and the time that all of RCU's
kthreads have been spawned, all synchronous grace periods are
handled by the expedited grace-period mechanism.
At runtime, this expedited mechanism relies on workqueues, but
during the dead zone the requesting task itself drives the
desired expedited grace period.
Because dead-zone execution takes place within task context,
everything works.
Once the dead zone ends, expedited grace periods go back to
using workqueues, as is required to avoid problems that would
otherwise occur when a user task received a POSIX signal while
driving an expedited grace period.
<p>And yes, this does mean that it is unhelpful to send POSIX
signals to random tasks between the time that the scheduler
spawns its first kthread and the time that RCU's kthreads
have all been spawned.
If there ever turns out to be a good reason for sending POSIX
signals during that time, appropriate adjustments will be made.
(If it turns out that POSIX signals are sent during this time for
no good reason, other adjustments will be made, appropriate
or otherwise.)
</font></td></tr>
<tr><td>&nbsp;</td></tr>
</table>
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment