Commit f5b81678 authored by Thomas Gleixner's avatar Thomas Gleixner

Merge branch 'clockevents/4.13' of...

Merge branch 'clockevents/4.13' of https://git.linaro.org/people/daniel.lezcano/linux into timers/core

Pull clockevents updates from Daniel Lezcano:

 - Made the tcb_clksrc endianess agnostic as the AVR32 support is gone
   (Alexandre Belloni)

 - Unmap io region on failure at init time in the fsl_ftm_timer (Arvind Yadav)

 - Fix a bad return value for the mips-gic-timer at init time (Christophe
   Jaillet)

 - Fix invalid iomap check and switch the sun4i timer to use the common timer
   init routine (Daniel Lezcano)
parents 9902747e 8c3ecd60
...@@ -108,6 +108,7 @@ config SUN4I_TIMER ...@@ -108,6 +108,7 @@ config SUN4I_TIMER
depends on GENERIC_CLOCKEVENTS depends on GENERIC_CLOCKEVENTS
depends on HAS_IOMEM depends on HAS_IOMEM
select CLKSRC_MMIO select CLKSRC_MMIO
select TIMER_OF
help help
Enables support for the Sun4i timer. Enables support for the Sun4i timer.
......
...@@ -329,13 +329,13 @@ static int __init ftm_timer_init(struct device_node *np) ...@@ -329,13 +329,13 @@ static int __init ftm_timer_init(struct device_node *np)
priv->clkevt_base = of_iomap(np, 0); priv->clkevt_base = of_iomap(np, 0);
if (!priv->clkevt_base) { if (!priv->clkevt_base) {
pr_err("ftm: unable to map event timer registers\n"); pr_err("ftm: unable to map event timer registers\n");
goto err; goto err_clkevt;
} }
priv->clksrc_base = of_iomap(np, 1); priv->clksrc_base = of_iomap(np, 1);
if (!priv->clksrc_base) { if (!priv->clksrc_base) {
pr_err("ftm: unable to map source timer registers\n"); pr_err("ftm: unable to map source timer registers\n");
goto err; goto err_clksrc;
} }
ret = -EINVAL; ret = -EINVAL;
...@@ -366,6 +366,10 @@ static int __init ftm_timer_init(struct device_node *np) ...@@ -366,6 +366,10 @@ static int __init ftm_timer_init(struct device_node *np)
return 0; return 0;
err: err:
iounmap(priv->clksrc_base);
err_clksrc:
iounmap(priv->clkevt_base);
err_clkevt:
kfree(priv); kfree(priv);
return ret; return ret;
} }
......
...@@ -167,10 +167,11 @@ static int __init gic_clocksource_of_init(struct device_node *node) ...@@ -167,10 +167,11 @@ static int __init gic_clocksource_of_init(struct device_node *node)
clk = of_clk_get(node, 0); clk = of_clk_get(node, 0);
if (!IS_ERR(clk)) { if (!IS_ERR(clk)) {
if (clk_prepare_enable(clk) < 0) { ret = clk_prepare_enable(clk);
if (ret < 0) {
pr_err("GIC failed to enable clock\n"); pr_err("GIC failed to enable clock\n");
clk_put(clk); clk_put(clk);
return PTR_ERR(clk); return ret;
} }
gic_frequency = clk_get_rate(clk); gic_frequency = clk_get_rate(clk);
......
...@@ -24,6 +24,8 @@ ...@@ -24,6 +24,8 @@
#include <linux/of_address.h> #include <linux/of_address.h>
#include <linux/of_irq.h> #include <linux/of_irq.h>
#include "timer-of.h"
#define TIMER_IRQ_EN_REG 0x00 #define TIMER_IRQ_EN_REG 0x00
#define TIMER_IRQ_EN(val) BIT(val) #define TIMER_IRQ_EN(val) BIT(val)
#define TIMER_IRQ_ST_REG 0x04 #define TIMER_IRQ_ST_REG 0x04
...@@ -39,38 +41,37 @@ ...@@ -39,38 +41,37 @@
#define TIMER_SYNC_TICKS 3 #define TIMER_SYNC_TICKS 3
static void __iomem *timer_base;
static u32 ticks_per_jiffy;
/* /*
* When we disable a timer, we need to wait at least for 2 cycles of * When we disable a timer, we need to wait at least for 2 cycles of
* the timer source clock. We will use for that the clocksource timer * the timer source clock. We will use for that the clocksource timer
* that is already setup and runs at the same frequency than the other * that is already setup and runs at the same frequency than the other
* timers, and we never will be disabled. * timers, and we never will be disabled.
*/ */
static void sun4i_clkevt_sync(void) static void sun4i_clkevt_sync(void __iomem *base)
{ {
u32 old = readl(timer_base + TIMER_CNTVAL_REG(1)); u32 old = readl(base + TIMER_CNTVAL_REG(1));
while ((old - readl(timer_base + TIMER_CNTVAL_REG(1))) < TIMER_SYNC_TICKS) while ((old - readl(base + TIMER_CNTVAL_REG(1))) < TIMER_SYNC_TICKS)
cpu_relax(); cpu_relax();
} }
static void sun4i_clkevt_time_stop(u8 timer) static void sun4i_clkevt_time_stop(void __iomem *base, u8 timer)
{ {
u32 val = readl(timer_base + TIMER_CTL_REG(timer)); u32 val = readl(base + TIMER_CTL_REG(timer));
writel(val & ~TIMER_CTL_ENABLE, timer_base + TIMER_CTL_REG(timer)); writel(val & ~TIMER_CTL_ENABLE, base + TIMER_CTL_REG(timer));
sun4i_clkevt_sync(); sun4i_clkevt_sync(base);
} }
static void sun4i_clkevt_time_setup(u8 timer, unsigned long delay) static void sun4i_clkevt_time_setup(void __iomem *base, u8 timer,
unsigned long delay)
{ {
writel(delay, timer_base + TIMER_INTVAL_REG(timer)); writel(delay, base + TIMER_INTVAL_REG(timer));
} }
static void sun4i_clkevt_time_start(u8 timer, bool periodic) static void sun4i_clkevt_time_start(void __iomem *base, u8 timer,
bool periodic)
{ {
u32 val = readl(timer_base + TIMER_CTL_REG(timer)); u32 val = readl(base + TIMER_CTL_REG(timer));
if (periodic) if (periodic)
val &= ~TIMER_CTL_ONESHOT; val &= ~TIMER_CTL_ONESHOT;
...@@ -78,115 +79,106 @@ static void sun4i_clkevt_time_start(u8 timer, bool periodic) ...@@ -78,115 +79,106 @@ static void sun4i_clkevt_time_start(u8 timer, bool periodic)
val |= TIMER_CTL_ONESHOT; val |= TIMER_CTL_ONESHOT;
writel(val | TIMER_CTL_ENABLE | TIMER_CTL_RELOAD, writel(val | TIMER_CTL_ENABLE | TIMER_CTL_RELOAD,
timer_base + TIMER_CTL_REG(timer)); base + TIMER_CTL_REG(timer));
} }
static int sun4i_clkevt_shutdown(struct clock_event_device *evt) static int sun4i_clkevt_shutdown(struct clock_event_device *evt)
{ {
sun4i_clkevt_time_stop(0); struct timer_of *to = to_timer_of(evt);
sun4i_clkevt_time_stop(timer_of_base(to), 0);
return 0; return 0;
} }
static int sun4i_clkevt_set_oneshot(struct clock_event_device *evt) static int sun4i_clkevt_set_oneshot(struct clock_event_device *evt)
{ {
sun4i_clkevt_time_stop(0); struct timer_of *to = to_timer_of(evt);
sun4i_clkevt_time_start(0, false);
sun4i_clkevt_time_stop(timer_of_base(to), 0);
sun4i_clkevt_time_start(timer_of_base(to), 0, false);
return 0; return 0;
} }
static int sun4i_clkevt_set_periodic(struct clock_event_device *evt) static int sun4i_clkevt_set_periodic(struct clock_event_device *evt)
{ {
sun4i_clkevt_time_stop(0); struct timer_of *to = to_timer_of(evt);
sun4i_clkevt_time_setup(0, ticks_per_jiffy);
sun4i_clkevt_time_start(0, true); sun4i_clkevt_time_stop(timer_of_base(to), 0);
sun4i_clkevt_time_setup(timer_of_base(to), 0, timer_of_period(to));
sun4i_clkevt_time_start(timer_of_base(to), 0, true);
return 0; return 0;
} }
static int sun4i_clkevt_next_event(unsigned long evt, static int sun4i_clkevt_next_event(unsigned long evt,
struct clock_event_device *unused) struct clock_event_device *clkevt)
{ {
sun4i_clkevt_time_stop(0); struct timer_of *to = to_timer_of(clkevt);
sun4i_clkevt_time_setup(0, evt - TIMER_SYNC_TICKS);
sun4i_clkevt_time_start(0, false); sun4i_clkevt_time_stop(timer_of_base(to), 0);
sun4i_clkevt_time_setup(timer_of_base(to), 0, evt - TIMER_SYNC_TICKS);
sun4i_clkevt_time_start(timer_of_base(to), 0, false);
return 0; return 0;
} }
static struct clock_event_device sun4i_clockevent = { static void sun4i_timer_clear_interrupt(void __iomem *base)
.name = "sun4i_tick",
.rating = 350,
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
.set_state_shutdown = sun4i_clkevt_shutdown,
.set_state_periodic = sun4i_clkevt_set_periodic,
.set_state_oneshot = sun4i_clkevt_set_oneshot,
.tick_resume = sun4i_clkevt_shutdown,
.set_next_event = sun4i_clkevt_next_event,
};
static void sun4i_timer_clear_interrupt(void)
{ {
writel(TIMER_IRQ_EN(0), timer_base + TIMER_IRQ_ST_REG); writel(TIMER_IRQ_EN(0), base + TIMER_IRQ_ST_REG);
} }
static irqreturn_t sun4i_timer_interrupt(int irq, void *dev_id) static irqreturn_t sun4i_timer_interrupt(int irq, void *dev_id)
{ {
struct clock_event_device *evt = (struct clock_event_device *)dev_id; struct clock_event_device *evt = (struct clock_event_device *)dev_id;
struct timer_of *to = to_timer_of(evt);
sun4i_timer_clear_interrupt(); sun4i_timer_clear_interrupt(timer_of_base(to));
evt->event_handler(evt); evt->event_handler(evt);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
static struct irqaction sun4i_timer_irq = { static struct timer_of to = {
.name = "sun4i_timer0", .flags = TIMER_OF_IRQ | TIMER_OF_CLOCK | TIMER_OF_BASE,
.flags = IRQF_TIMER | IRQF_IRQPOLL,
.clkevt = {
.name = "sun4i_tick",
.rating = 350,
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
.set_state_shutdown = sun4i_clkevt_shutdown,
.set_state_periodic = sun4i_clkevt_set_periodic,
.set_state_oneshot = sun4i_clkevt_set_oneshot,
.tick_resume = sun4i_clkevt_shutdown,
.set_next_event = sun4i_clkevt_next_event,
.cpumask = cpu_possible_mask,
},
.of_irq = {
.handler = sun4i_timer_interrupt, .handler = sun4i_timer_interrupt,
.dev_id = &sun4i_clockevent, .flags = IRQF_TIMER | IRQF_IRQPOLL,
},
}; };
static u64 notrace sun4i_timer_sched_read(void) static u64 notrace sun4i_timer_sched_read(void)
{ {
return ~readl(timer_base + TIMER_CNTVAL_REG(1)); return ~readl(timer_of_base(&to) + TIMER_CNTVAL_REG(1));
} }
static int __init sun4i_timer_init(struct device_node *node) static int __init sun4i_timer_init(struct device_node *node)
{ {
unsigned long rate = 0; int ret;
struct clk *clk;
int ret, irq;
u32 val; u32 val;
timer_base = of_iomap(node, 0); ret = timer_of_init(node, &to);
if (!timer_base) { if (ret)
pr_crit("Can't map registers\n");
return -ENXIO;
}
irq = irq_of_parse_and_map(node, 0);
if (irq <= 0) {
pr_crit("Can't parse IRQ\n");
return -EINVAL;
}
clk = of_clk_get(node, 0);
if (IS_ERR(clk)) {
pr_crit("Can't get timer clock\n");
return PTR_ERR(clk);
}
ret = clk_prepare_enable(clk);
if (ret) {
pr_err("Failed to prepare clock\n");
return ret; return ret;
}
rate = clk_get_rate(clk);
writel(~0, timer_base + TIMER_INTVAL_REG(1)); writel(~0, timer_of_base(&to) + TIMER_INTVAL_REG(1));
writel(TIMER_CTL_ENABLE | TIMER_CTL_RELOAD | writel(TIMER_CTL_ENABLE | TIMER_CTL_RELOAD |
TIMER_CTL_CLK_SRC(TIMER_CTL_CLK_SRC_OSC24M), TIMER_CTL_CLK_SRC(TIMER_CTL_CLK_SRC_OSC24M),
timer_base + TIMER_CTL_REG(1)); timer_of_base(&to) + TIMER_CTL_REG(1));
/* /*
* sched_clock_register does not have priorities, and on sun6i and * sched_clock_register does not have priorities, and on sun6i and
...@@ -195,41 +187,32 @@ static int __init sun4i_timer_init(struct device_node *node) ...@@ -195,41 +187,32 @@ static int __init sun4i_timer_init(struct device_node *node)
if (of_machine_is_compatible("allwinner,sun4i-a10") || if (of_machine_is_compatible("allwinner,sun4i-a10") ||
of_machine_is_compatible("allwinner,sun5i-a13") || of_machine_is_compatible("allwinner,sun5i-a13") ||
of_machine_is_compatible("allwinner,sun5i-a10s")) of_machine_is_compatible("allwinner,sun5i-a10s"))
sched_clock_register(sun4i_timer_sched_read, 32, rate); sched_clock_register(sun4i_timer_sched_read, 32,
timer_of_rate(&to));
ret = clocksource_mmio_init(timer_base + TIMER_CNTVAL_REG(1), node->name, ret = clocksource_mmio_init(timer_of_base(&to) + TIMER_CNTVAL_REG(1),
rate, 350, 32, clocksource_mmio_readl_down); node->name, timer_of_rate(&to), 350, 32,
clocksource_mmio_readl_down);
if (ret) { if (ret) {
pr_err("Failed to register clocksource\n"); pr_err("Failed to register clocksource\n");
return ret; return ret;
} }
ticks_per_jiffy = DIV_ROUND_UP(rate, HZ);
writel(TIMER_CTL_CLK_SRC(TIMER_CTL_CLK_SRC_OSC24M), writel(TIMER_CTL_CLK_SRC(TIMER_CTL_CLK_SRC_OSC24M),
timer_base + TIMER_CTL_REG(0)); timer_of_base(&to) + TIMER_CTL_REG(0));
/* Make sure timer is stopped before playing with interrupts */ /* Make sure timer is stopped before playing with interrupts */
sun4i_clkevt_time_stop(0); sun4i_clkevt_time_stop(timer_of_base(&to), 0);
/* clear timer0 interrupt */ /* clear timer0 interrupt */
sun4i_timer_clear_interrupt(); sun4i_timer_clear_interrupt(timer_of_base(&to));
sun4i_clockevent.cpumask = cpu_possible_mask; clockevents_config_and_register(&to.clkevt, timer_of_rate(&to),
sun4i_clockevent.irq = irq;
clockevents_config_and_register(&sun4i_clockevent, rate,
TIMER_SYNC_TICKS, 0xffffffff); TIMER_SYNC_TICKS, 0xffffffff);
ret = setup_irq(irq, &sun4i_timer_irq);
if (ret) {
pr_err("failed to setup irq %d\n", irq);
return ret;
}
/* Enable timer0 interrupt */ /* Enable timer0 interrupt */
val = readl(timer_base + TIMER_IRQ_EN_REG); val = readl(timer_of_base(&to) + TIMER_IRQ_EN_REG);
writel(val | TIMER_IRQ_EN(0), timer_base + TIMER_IRQ_EN_REG); writel(val | TIMER_IRQ_EN(0), timer_of_base(&to) + TIMER_IRQ_EN_REG);
return ret; return ret;
} }
......
...@@ -57,9 +57,9 @@ static u64 tc_get_cycles(struct clocksource *cs) ...@@ -57,9 +57,9 @@ static u64 tc_get_cycles(struct clocksource *cs)
raw_local_irq_save(flags); raw_local_irq_save(flags);
do { do {
upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)); upper = readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV));
lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV)); lower = readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
} while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV))); } while (upper != readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV)));
raw_local_irq_restore(flags); raw_local_irq_restore(flags);
return (upper << 16) | lower; return (upper << 16) | lower;
...@@ -67,7 +67,7 @@ static u64 tc_get_cycles(struct clocksource *cs) ...@@ -67,7 +67,7 @@ static u64 tc_get_cycles(struct clocksource *cs)
static u64 tc_get_cycles32(struct clocksource *cs) static u64 tc_get_cycles32(struct clocksource *cs)
{ {
return __raw_readl(tcaddr + ATMEL_TC_REG(0, CV)); return readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
} }
void tc_clksrc_suspend(struct clocksource *cs) void tc_clksrc_suspend(struct clocksource *cs)
...@@ -147,8 +147,8 @@ static int tc_shutdown(struct clock_event_device *d) ...@@ -147,8 +147,8 @@ static int tc_shutdown(struct clock_event_device *d)
struct tc_clkevt_device *tcd = to_tc_clkevt(d); struct tc_clkevt_device *tcd = to_tc_clkevt(d);
void __iomem *regs = tcd->regs; void __iomem *regs = tcd->regs;
__raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR)); writel(0xff, regs + ATMEL_TC_REG(2, IDR));
__raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR)); writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
if (!clockevent_state_detached(d)) if (!clockevent_state_detached(d))
clk_disable(tcd->clk); clk_disable(tcd->clk);
...@@ -166,9 +166,9 @@ static int tc_set_oneshot(struct clock_event_device *d) ...@@ -166,9 +166,9 @@ static int tc_set_oneshot(struct clock_event_device *d)
clk_enable(tcd->clk); clk_enable(tcd->clk);
/* slow clock, count up to RC, then irq and stop */ /* slow clock, count up to RC, then irq and stop */
__raw_writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE | writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE |
ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR)); ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR));
__raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER)); writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
/* set_next_event() configures and starts the timer */ /* set_next_event() configures and starts the timer */
return 0; return 0;
...@@ -188,25 +188,25 @@ static int tc_set_periodic(struct clock_event_device *d) ...@@ -188,25 +188,25 @@ static int tc_set_periodic(struct clock_event_device *d)
clk_enable(tcd->clk); clk_enable(tcd->clk);
/* slow clock, count up to RC, then irq and restart */ /* slow clock, count up to RC, then irq and restart */
__raw_writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO, writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
regs + ATMEL_TC_REG(2, CMR)); regs + ATMEL_TC_REG(2, CMR));
__raw_writel((32768 + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC)); writel((32768 + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
/* Enable clock and interrupts on RC compare */ /* Enable clock and interrupts on RC compare */
__raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER)); writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
/* go go gadget! */ /* go go gadget! */
__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs + writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs +
ATMEL_TC_REG(2, CCR)); ATMEL_TC_REG(2, CCR));
return 0; return 0;
} }
static int tc_next_event(unsigned long delta, struct clock_event_device *d) static int tc_next_event(unsigned long delta, struct clock_event_device *d)
{ {
__raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC)); writel_relaxed(delta, tcaddr + ATMEL_TC_REG(2, RC));
/* go go gadget! */ /* go go gadget! */
__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, writel_relaxed(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
tcaddr + ATMEL_TC_REG(2, CCR)); tcaddr + ATMEL_TC_REG(2, CCR));
return 0; return 0;
} }
...@@ -230,7 +230,7 @@ static irqreturn_t ch2_irq(int irq, void *handle) ...@@ -230,7 +230,7 @@ static irqreturn_t ch2_irq(int irq, void *handle)
struct tc_clkevt_device *dev = handle; struct tc_clkevt_device *dev = handle;
unsigned int sr; unsigned int sr;
sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR)); sr = readl_relaxed(dev->regs + ATMEL_TC_REG(2, SR));
if (sr & ATMEL_TC_CPCS) { if (sr & ATMEL_TC_CPCS) {
dev->clkevt.event_handler(&dev->clkevt); dev->clkevt.event_handler(&dev->clkevt);
return IRQ_HANDLED; return IRQ_HANDLED;
...@@ -290,43 +290,43 @@ static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx) ...@@ -290,43 +290,43 @@ static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx) static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
{ {
/* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */ /* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */
__raw_writel(mck_divisor_idx /* likely divide-by-8 */ writel(mck_divisor_idx /* likely divide-by-8 */
| ATMEL_TC_WAVE | ATMEL_TC_WAVE
| ATMEL_TC_WAVESEL_UP /* free-run */ | ATMEL_TC_WAVESEL_UP /* free-run */
| ATMEL_TC_ACPA_SET /* TIOA0 rises at 0 */ | ATMEL_TC_ACPA_SET /* TIOA0 rises at 0 */
| ATMEL_TC_ACPC_CLEAR, /* (duty cycle 50%) */ | ATMEL_TC_ACPC_CLEAR, /* (duty cycle 50%) */
tcaddr + ATMEL_TC_REG(0, CMR)); tcaddr + ATMEL_TC_REG(0, CMR));
__raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA)); writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
__raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC)); writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
__raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */ writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR)); writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
/* channel 1: waveform mode, input TIOA0 */ /* channel 1: waveform mode, input TIOA0 */
__raw_writel(ATMEL_TC_XC1 /* input: TIOA0 */ writel(ATMEL_TC_XC1 /* input: TIOA0 */
| ATMEL_TC_WAVE | ATMEL_TC_WAVE
| ATMEL_TC_WAVESEL_UP, /* free-run */ | ATMEL_TC_WAVESEL_UP, /* free-run */
tcaddr + ATMEL_TC_REG(1, CMR)); tcaddr + ATMEL_TC_REG(1, CMR));
__raw_writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR)); /* no irqs */ writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR)); /* no irqs */
__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR)); writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
/* chain channel 0 to channel 1*/ /* chain channel 0 to channel 1*/
__raw_writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR); writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
/* then reset all the timers */ /* then reset all the timers */
__raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR); writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
} }
static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx) static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
{ {
/* channel 0: waveform mode, input mclk/8 */ /* channel 0: waveform mode, input mclk/8 */
__raw_writel(mck_divisor_idx /* likely divide-by-8 */ writel(mck_divisor_idx /* likely divide-by-8 */
| ATMEL_TC_WAVE | ATMEL_TC_WAVE
| ATMEL_TC_WAVESEL_UP, /* free-run */ | ATMEL_TC_WAVESEL_UP, /* free-run */
tcaddr + ATMEL_TC_REG(0, CMR)); tcaddr + ATMEL_TC_REG(0, CMR));
__raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */ writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */
__raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR)); writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
/* then reset all the timers */ /* then reset all the timers */
__raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR); writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
} }
static int __init tcb_clksrc_init(void) static int __init tcb_clksrc_init(void)
......
...@@ -120,7 +120,7 @@ static __init int timer_base_init(struct device_node *np, ...@@ -120,7 +120,7 @@ static __init int timer_base_init(struct device_node *np,
const char *name = of_base->name ? of_base->name : np->full_name; const char *name = of_base->name ? of_base->name : np->full_name;
of_base->base = of_io_request_and_map(np, of_base->index, name); of_base->base = of_io_request_and_map(np, of_base->index, name);
if (of_base->base) { if (!of_base->base) {
pr_err("Failed to iomap (%s)\n", name); pr_err("Failed to iomap (%s)\n", name);
return -ENXIO; return -ENXIO;
} }
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment