Commit f7e6bd33 authored by Alexei Starovoitov's avatar Alexei Starovoitov

Merge branch 'bpf-support-new-insns-from-cpu-v4'

Yonghong Song says:

====================
bpf: Support new insns from cpu v4

In previous discussion ([1]), it is agreed that we should introduce
cpu version 4 (llvm flag -mcpu=v4) which contains some instructions
which can simplify code, make code easier to understand, fix the
existing problem, or simply for feature completeness. More specifically,
the following new insns are proposed:
  . sign extended load
  . sign extended mov
  . bswap
  . signed div/mod
  . ja with 32-bit offset

This patch set added kernel support for insns proposed in [1] except
BPF_ST which already has full kernel support. Beside the above proposed
insns, LLVM will generate BPF_ST insn as well under -mcpu=v4.
The llvm patch ([2]) has been merged into llvm-project 'main' branch.

The patchset implements interpreter, jit and verifier support for these new
insns.

For this patch set, I tested cpu v2/v3/v4 and the selftests are all passed.
I also tested selftests introduced in this patch set with additional changes
beside normal jit testing (bpf_jit_enable = 1 and bpf_jit_harden = 0)
  - bpf_jit_enable = 0
  - bpf_jit_enable = 1 and bpf_jit_harden = 1
and both testing passed.

  [1] https://lore.kernel.org/bpf/4bfe98be-5333-1c7e-2f6d-42486c8ec039@meta.com/
  [2] https://reviews.llvm.org/D144829

Changelogs:
  v4 -> v5:
   . for v4, patch 8/17 missed in mailing list and patchwork, so resend.
   . rebase on top of master
  v3 -> v4:
   . some minor asm syntax adjustment based on llvm change.
   . add clang version and target arch guard for new tests
     so they can still compile with old llvm compilers.
   . some changes to the bpf doc.
  v2 -> v3:
   . add missed disasm change from v2.
   . handle signed load of ctx fields properly.
   . fix some interpreter sdiv/smod error when bpf_jit_enable = 0.
   . fix some verifier range bounding errors.
   . add more C tests.
  RFCv1 -> v2:
   . add more verifier supports for signed extend load and mov insns.
   . rename some insn names to be more consistent with intel practice.
   . add cpuv4 test runner for test progs.
   . add more unit and C tests.
   . add documentation.
====================

Link: https://lore.kernel.org/r/20230728011143.3710005-1-yonghong.song@linux.devSigned-off-by: default avatarAlexei Starovoitov <ast@kernel.org>
parents 10d78a66 245d4c40
......@@ -140,11 +140,6 @@ A: Because if we picked one-to-one relationship to x64 it would have made
it more complicated to support on arm64 and other archs. Also it
needs div-by-zero runtime check.
Q: Why there is no BPF_SDIV for signed divide operation?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A: Because it would be rarely used. llvm errors in such case and
prints a suggestion to use unsigned divide instead.
Q: Why BPF has implicit prologue and epilogue?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A: Because architectures like sparc have register windows and in general
......
......@@ -154,24 +154,27 @@ otherwise identical operations.
The 'code' field encodes the operation as below, where 'src' and 'dst' refer
to the values of the source and destination registers, respectively.
======== ===== ==========================================================
code value description
======== ===== ==========================================================
BPF_ADD 0x00 dst += src
BPF_SUB 0x10 dst -= src
BPF_MUL 0x20 dst \*= src
BPF_DIV 0x30 dst = (src != 0) ? (dst / src) : 0
BPF_OR 0x40 dst \|= src
BPF_AND 0x50 dst &= src
BPF_LSH 0x60 dst <<= (src & mask)
BPF_RSH 0x70 dst >>= (src & mask)
BPF_NEG 0x80 dst = -dst
BPF_MOD 0x90 dst = (src != 0) ? (dst % src) : dst
BPF_XOR 0xa0 dst ^= src
BPF_MOV 0xb0 dst = src
BPF_ARSH 0xc0 sign extending dst >>= (src & mask)
BPF_END 0xd0 byte swap operations (see `Byte swap instructions`_ below)
======== ===== ==========================================================
======== ===== ======= ==========================================================
code value offset description
======== ===== ======= ==========================================================
BPF_ADD 0x00 0 dst += src
BPF_SUB 0x10 0 dst -= src
BPF_MUL 0x20 0 dst \*= src
BPF_DIV 0x30 0 dst = (src != 0) ? (dst / src) : 0
BPF_SDIV 0x30 1 dst = (src != 0) ? (dst s/ src) : 0
BPF_OR 0x40 0 dst \|= src
BPF_AND 0x50 0 dst &= src
BPF_LSH 0x60 0 dst <<= (src & mask)
BPF_RSH 0x70 0 dst >>= (src & mask)
BPF_NEG 0x80 0 dst = -dst
BPF_MOD 0x90 0 dst = (src != 0) ? (dst % src) : dst
BPF_SMOD 0x90 1 dst = (src != 0) ? (dst s% src) : dst
BPF_XOR 0xa0 0 dst ^= src
BPF_MOV 0xb0 0 dst = src
BPF_MOVSX 0xb0 8/16/32 dst = (s8,s16,s32)src
BPF_ARSH 0xc0 0 sign extending dst >>= (src & mask)
BPF_END 0xd0 0 byte swap operations (see `Byte swap instructions`_ below)
======== ===== ============ ==========================================================
Underflow and overflow are allowed during arithmetic operations, meaning
the 64-bit or 32-bit value will wrap. If eBPF program execution would
......@@ -198,11 +201,20 @@ where '(u32)' indicates that the upper 32 bits are zeroed.
dst = dst ^ imm32
Also note that the division and modulo operations are unsigned. Thus, for
``BPF_ALU``, 'imm' is first interpreted as an unsigned 32-bit value, whereas
for ``BPF_ALU64``, 'imm' is first sign extended to 64 bits and the result
interpreted as an unsigned 64-bit value. There are no instructions for
signed division or modulo.
Note that most instructions have instruction offset of 0. But three instructions
(BPF_SDIV, BPF_SMOD, BPF_MOVSX) have non-zero offset.
The devision and modulo operations support both unsigned and signed flavors.
For unsigned operation (BPF_DIV and BPF_MOD), for ``BPF_ALU``, 'imm' is first
interpreted as an unsigned 32-bit value, whereas for ``BPF_ALU64``, 'imm' is
first sign extended to 64 bits and the result interpreted as an unsigned 64-bit
value. For signed operation (BPF_SDIV and BPF_SMOD), for ``BPF_ALU``, 'imm' is
interpreted as a signed value. For ``BPF_ALU64``, the 'imm' is sign extended
from 32 to 64 and interpreted as a signed 64-bit value.
Instruction BPF_MOVSX does move operation with sign extension.
``BPF_ALU | MOVSX`` sign extendes 8-bit and 16-bit into 32-bit and upper 32-bit are zeroed.
``BPF_ALU64 | MOVSX`` sign extends 8-bit, 16-bit and 32-bit into 64-bit.
Shift operations use a mask of 0x3F (63) for 64-bit operations and 0x1F (31)
for 32-bit operations.
......@@ -210,21 +222,23 @@ for 32-bit operations.
Byte swap instructions
~~~~~~~~~~~~~~~~~~~~~~
The byte swap instructions use an instruction class of ``BPF_ALU`` and a 4-bit
'code' field of ``BPF_END``.
The byte swap instructions use instruction classes of ``BPF_ALU`` and ``BPF_ALU64``
and a 4-bit 'code' field of ``BPF_END``.
The byte swap instructions operate on the destination register
only and do not use a separate source register or immediate value.
The 1-bit source operand field in the opcode is used to select what byte
order the operation convert from or to:
For ``BPF_ALU``, the 1-bit source operand field in the opcode is used to select what byte
order the operation convert from or to. For ``BPF_ALU64``, the 1-bit source operand
field in the opcode is not used and must be 0.
========= ===== =================================================
source value description
========= ===== =================================================
BPF_TO_LE 0x00 convert between host byte order and little endian
BPF_TO_BE 0x08 convert between host byte order and big endian
========= ===== =================================================
========= ========= ===== =================================================
class source value description
========= ========= ===== =================================================
BPF_ALU BPF_TO_LE 0x00 convert between host byte order and little endian
BPF_ALU BPF_TO_BE 0x08 convert between host byte order and big endian
BPF_ALU64 BPF_TO_LE 0x00 do byte swap unconditionally
========= ========= ===== =================================================
The 'imm' field encodes the width of the swap operations. The following widths
are supported: 16, 32 and 64.
......@@ -239,6 +253,12 @@ Examples:
dst = htobe64(dst)
``BPF_ALU64 | BPF_TO_LE | BPF_END`` with imm = 16/32/64 means::
dst = bswap16 dst
dst = bswap32 dst
dst = bswap64 dst
Jump instructions
-----------------
......@@ -249,7 +269,8 @@ The 'code' field encodes the operation as below:
======== ===== === =========================================== =========================================
code value src description notes
======== ===== === =========================================== =========================================
BPF_JA 0x0 0x0 PC += offset BPF_JMP only
BPF_JA 0x0 0x0 PC += offset BPF_JMP class
BPF_JA 0x0 0x0 PC += imm BPF_JMP32 class
BPF_JEQ 0x1 any PC += offset if dst == src
BPF_JGT 0x2 any PC += offset if dst > src unsigned
BPF_JGE 0x3 any PC += offset if dst >= src unsigned
......@@ -278,6 +299,16 @@ Example:
where 's>=' indicates a signed '>=' comparison.
``BPF_JA | BPF_K | BPF_JMP32`` (0x06) means::
gotol +imm
where 'imm' means the branch offset comes from insn 'imm' field.
Note there are two flavors of BPF_JA instrions. BPF_JMP class permits 16-bit jump offset while
BPF_JMP32 permits 32-bit jump offset. A >16bit conditional jmp can be converted to a <16bit
conditional jmp plus a 32-bit unconditional jump.
Helper functions
~~~~~~~~~~~~~~~~
......@@ -320,6 +351,7 @@ The mode modifier is one of:
BPF_ABS 0x20 legacy BPF packet access (absolute) `Legacy BPF Packet access instructions`_
BPF_IND 0x40 legacy BPF packet access (indirect) `Legacy BPF Packet access instructions`_
BPF_MEM 0x60 regular load and store operations `Regular load and store operations`_
BPF_MEMSX 0x80 sign-extension load operations `Sign-extension load operations`_
BPF_ATOMIC 0xc0 atomic operations `Atomic operations`_
============= ===== ==================================== =============
......@@ -350,9 +382,20 @@ instructions that transfer data between a register and memory.
``BPF_MEM | <size> | BPF_LDX`` means::
dst = *(size *) (src + offset)
dst = *(unsigned size *) (src + offset)
Where size is one of: ``BPF_B``, ``BPF_H``, ``BPF_W``, or ``BPF_DW`` and
'unsigned size' is one of u8, u16, u32 and u64.
The ``BPF_MEMSX`` mode modifier is used to encode sign-extension load
instructions that transfer data between a register and memory.
``BPF_MEMSX | <size> | BPF_LDX`` means::
dst = *(signed size *) (src + offset)
Where size is one of: ``BPF_B``, ``BPF_H``, ``BPF_W``, or ``BPF_DW``.
Where size is one of: ``BPF_B``, ``BPF_H`` or ``BPF_W``, and
'signed size' is one of s8, s16 and s32.
Atomic operations
-----------------
......
......@@ -701,6 +701,38 @@ static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg)
*pprog = prog;
}
static void emit_movsx_reg(u8 **pprog, int num_bits, bool is64, u32 dst_reg,
u32 src_reg)
{
u8 *prog = *pprog;
if (is64) {
/* movs[b,w,l]q dst, src */
if (num_bits == 8)
EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbe,
add_2reg(0xC0, src_reg, dst_reg));
else if (num_bits == 16)
EMIT4(add_2mod(0x48, src_reg, dst_reg), 0x0f, 0xbf,
add_2reg(0xC0, src_reg, dst_reg));
else if (num_bits == 32)
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x63,
add_2reg(0xC0, src_reg, dst_reg));
} else {
/* movs[b,w]l dst, src */
if (num_bits == 8) {
EMIT4(add_2mod(0x40, src_reg, dst_reg), 0x0f, 0xbe,
add_2reg(0xC0, src_reg, dst_reg));
} else if (num_bits == 16) {
if (is_ereg(dst_reg) || is_ereg(src_reg))
EMIT1(add_2mod(0x40, src_reg, dst_reg));
EMIT3(add_2mod(0x0f, src_reg, dst_reg), 0xbf,
add_2reg(0xC0, src_reg, dst_reg));
}
}
*pprog = prog;
}
/* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */
static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off)
{
......@@ -779,6 +811,29 @@ static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
*pprog = prog;
}
/* LDSX: dst_reg = *(s8*)(src_reg + off) */
static void emit_ldsx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
{
u8 *prog = *pprog;
switch (size) {
case BPF_B:
/* Emit 'movsx rax, byte ptr [rax + off]' */
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBE);
break;
case BPF_H:
/* Emit 'movsx rax, word ptr [rax + off]' */
EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xBF);
break;
case BPF_W:
/* Emit 'movsx rax, dword ptr [rax+0x14]' */
EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x63);
break;
}
emit_insn_suffix(&prog, src_reg, dst_reg, off);
*pprog = prog;
}
/* STX: *(u8*)(dst_reg + off) = src_reg */
static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off)
{
......@@ -1028,9 +1083,14 @@ static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image
case BPF_ALU64 | BPF_MOV | BPF_X:
case BPF_ALU | BPF_MOV | BPF_X:
emit_mov_reg(&prog,
BPF_CLASS(insn->code) == BPF_ALU64,
dst_reg, src_reg);
if (insn->off == 0)
emit_mov_reg(&prog,
BPF_CLASS(insn->code) == BPF_ALU64,
dst_reg, src_reg);
else
emit_movsx_reg(&prog, insn->off,
BPF_CLASS(insn->code) == BPF_ALU64,
dst_reg, src_reg);
break;
/* neg dst */
......@@ -1134,15 +1194,26 @@ static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image
/* mov rax, dst_reg */
emit_mov_reg(&prog, is64, BPF_REG_0, dst_reg);
/*
* xor edx, edx
* equivalent to 'xor rdx, rdx', but one byte less
*/
EMIT2(0x31, 0xd2);
if (insn->off == 0) {
/*
* xor edx, edx
* equivalent to 'xor rdx, rdx', but one byte less
*/
EMIT2(0x31, 0xd2);
/* div src_reg */
maybe_emit_1mod(&prog, src_reg, is64);
EMIT2(0xF7, add_1reg(0xF0, src_reg));
/* div src_reg */
maybe_emit_1mod(&prog, src_reg, is64);
EMIT2(0xF7, add_1reg(0xF0, src_reg));
} else {
if (BPF_CLASS(insn->code) == BPF_ALU)
EMIT1(0x99); /* cdq */
else
EMIT2(0x48, 0x99); /* cqo */
/* idiv src_reg */
maybe_emit_1mod(&prog, src_reg, is64);
EMIT2(0xF7, add_1reg(0xF8, src_reg));
}
if (BPF_OP(insn->code) == BPF_MOD &&
dst_reg != BPF_REG_3)
......@@ -1262,6 +1333,7 @@ static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, u8 *rw_image
break;
case BPF_ALU | BPF_END | BPF_FROM_BE:
case BPF_ALU64 | BPF_END | BPF_FROM_LE:
switch (imm32) {
case 16:
/* Emit 'ror %ax, 8' to swap lower 2 bytes */
......@@ -1370,9 +1442,17 @@ st: if (is_imm8(insn->off))
case BPF_LDX | BPF_PROBE_MEM | BPF_W:
case BPF_LDX | BPF_MEM | BPF_DW:
case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
/* LDXS: dst_reg = *(s8*)(src_reg + off) */
case BPF_LDX | BPF_MEMSX | BPF_B:
case BPF_LDX | BPF_MEMSX | BPF_H:
case BPF_LDX | BPF_MEMSX | BPF_W:
case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
insn_off = insn->off;
if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
/* Conservatively check that src_reg + insn->off is a kernel address:
* src_reg + insn->off >= TASK_SIZE_MAX + PAGE_SIZE
* src_reg is used as scratch for src_reg += insn->off and restored
......@@ -1415,8 +1495,13 @@ st: if (is_imm8(insn->off))
start_of_ldx = prog;
end_of_jmp[-1] = start_of_ldx - end_of_jmp;
}
emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
if (BPF_MODE(insn->code) == BPF_PROBE_MEM) {
if (BPF_MODE(insn->code) == BPF_PROBE_MEMSX ||
BPF_MODE(insn->code) == BPF_MEMSX)
emit_ldsx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
else
emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn_off);
if (BPF_MODE(insn->code) == BPF_PROBE_MEM ||
BPF_MODE(insn->code) == BPF_PROBE_MEMSX) {
struct exception_table_entry *ex;
u8 *_insn = image + proglen + (start_of_ldx - temp);
s64 delta;
......@@ -1730,16 +1815,24 @@ st: if (is_imm8(insn->off))
break;
case BPF_JMP | BPF_JA:
if (insn->off == -1)
/* -1 jmp instructions will always jump
* backwards two bytes. Explicitly handling
* this case avoids wasting too many passes
* when there are long sequences of replaced
* dead code.
*/
jmp_offset = -2;
else
jmp_offset = addrs[i + insn->off] - addrs[i];
case BPF_JMP32 | BPF_JA:
if (BPF_CLASS(insn->code) == BPF_JMP) {
if (insn->off == -1)
/* -1 jmp instructions will always jump
* backwards two bytes. Explicitly handling
* this case avoids wasting too many passes
* when there are long sequences of replaced
* dead code.
*/
jmp_offset = -2;
else
jmp_offset = addrs[i + insn->off] - addrs[i];
} else {
if (insn->imm == -1)
jmp_offset = -2;
else
jmp_offset = addrs[i + insn->imm] - addrs[i];
}
if (!jmp_offset) {
/*
......
......@@ -69,6 +69,9 @@ struct ctl_table_header;
/* unused opcode to mark special load instruction. Same as BPF_ABS */
#define BPF_PROBE_MEM 0x20
/* unused opcode to mark special ldsx instruction. Same as BPF_IND */
#define BPF_PROBE_MEMSX 0x40
/* unused opcode to mark call to interpreter with arguments */
#define BPF_CALL_ARGS 0xe0
......@@ -90,22 +93,28 @@ struct ctl_table_header;
/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
#define BPF_ALU64_REG(OP, DST, SRC) \
#define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF) \
((struct bpf_insn) { \
.code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \
.dst_reg = DST, \
.src_reg = SRC, \
.off = 0, \
.off = OFF, \
.imm = 0 })
#define BPF_ALU32_REG(OP, DST, SRC) \
#define BPF_ALU64_REG(OP, DST, SRC) \
BPF_ALU64_REG_OFF(OP, DST, SRC, 0)
#define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF) \
((struct bpf_insn) { \
.code = BPF_ALU | BPF_OP(OP) | BPF_X, \
.dst_reg = DST, \
.src_reg = SRC, \
.off = 0, \
.off = OFF, \
.imm = 0 })
#define BPF_ALU32_REG(OP, DST, SRC) \
BPF_ALU32_REG_OFF(OP, DST, SRC, 0)
/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
#define BPF_ALU64_IMM(OP, DST, IMM) \
......
......@@ -19,6 +19,7 @@
/* ld/ldx fields */
#define BPF_DW 0x18 /* double word (64-bit) */
#define BPF_MEMSX 0x80 /* load with sign extension */
#define BPF_ATOMIC 0xc0 /* atomic memory ops - op type in immediate */
#define BPF_XADD 0xc0 /* exclusive add - legacy name */
......
......@@ -61,6 +61,7 @@
#define AX regs[BPF_REG_AX]
#define ARG1 regs[BPF_REG_ARG1]
#define CTX regs[BPF_REG_CTX]
#define OFF insn->off
#define IMM insn->imm
struct bpf_mem_alloc bpf_global_ma;
......@@ -372,7 +373,12 @@ static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
{
const s32 off_min = S16_MIN, off_max = S16_MAX;
s32 delta = end_new - end_old;
s32 off = insn->off;
s32 off;
if (insn->code == (BPF_JMP32 | BPF_JA))
off = insn->imm;
else
off = insn->off;
if (curr < pos && curr + off + 1 >= end_old)
off += delta;
......@@ -380,8 +386,12 @@ static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
off -= delta;
if (off < off_min || off > off_max)
return -ERANGE;
if (!probe_pass)
insn->off = off;
if (!probe_pass) {
if (insn->code == (BPF_JMP32 | BPF_JA))
insn->imm = off;
else
insn->off = off;
}
return 0;
}
......@@ -1271,7 +1281,7 @@ static int bpf_jit_blind_insn(const struct bpf_insn *from,
case BPF_ALU | BPF_MOD | BPF_K:
*to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
*to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
*to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
*to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
break;
case BPF_ALU64 | BPF_ADD | BPF_K:
......@@ -1285,7 +1295,7 @@ static int bpf_jit_blind_insn(const struct bpf_insn *from,
case BPF_ALU64 | BPF_MOD | BPF_K:
*to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
*to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
*to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
*to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
break;
case BPF_JMP | BPF_JEQ | BPF_K:
......@@ -1523,6 +1533,7 @@ EXPORT_SYMBOL_GPL(__bpf_call_base);
INSN_3(ALU64, DIV, X), \
INSN_3(ALU64, MOD, X), \
INSN_2(ALU64, NEG), \
INSN_3(ALU64, END, TO_LE), \
/* Immediate based. */ \
INSN_3(ALU64, ADD, K), \
INSN_3(ALU64, SUB, K), \
......@@ -1591,6 +1602,7 @@ EXPORT_SYMBOL_GPL(__bpf_call_base);
INSN_3(JMP, JSLE, K), \
INSN_3(JMP, JSET, K), \
INSN_2(JMP, JA), \
INSN_2(JMP32, JA), \
/* Store instructions. */ \
/* Register based. */ \
INSN_3(STX, MEM, B), \
......@@ -1610,6 +1622,9 @@ EXPORT_SYMBOL_GPL(__bpf_call_base);
INSN_3(LDX, MEM, H), \
INSN_3(LDX, MEM, W), \
INSN_3(LDX, MEM, DW), \
INSN_3(LDX, MEMSX, B), \
INSN_3(LDX, MEMSX, H), \
INSN_3(LDX, MEMSX, W), \
/* Immediate based. */ \
INSN_3(LD, IMM, DW)
......@@ -1666,6 +1681,9 @@ static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
[BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
[BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
[BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
[BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
[BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
[BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
};
#undef BPF_INSN_3_LBL
#undef BPF_INSN_2_LBL
......@@ -1733,13 +1751,36 @@ static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
DST = -DST;
CONT;
ALU_MOV_X:
DST = (u32) SRC;
switch (OFF) {
case 0:
DST = (u32) SRC;
break;
case 8:
DST = (u32)(s8) SRC;
break;
case 16:
DST = (u32)(s16) SRC;
break;
}
CONT;
ALU_MOV_K:
DST = (u32) IMM;
CONT;
ALU64_MOV_X:
DST = SRC;
switch (OFF) {
case 0:
DST = SRC;
break;
case 8:
DST = (s8) SRC;
break;
case 16:
DST = (s16) SRC;
break;
case 32:
DST = (s32) SRC;
break;
}
CONT;
ALU64_MOV_K:
DST = IMM;
......@@ -1761,36 +1802,114 @@ static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
(*(s64 *) &DST) >>= IMM;
CONT;
ALU64_MOD_X:
div64_u64_rem(DST, SRC, &AX);
DST = AX;
switch (OFF) {
case 0:
div64_u64_rem(DST, SRC, &AX);
DST = AX;
break;
case 1:
AX = div64_s64(DST, SRC);
DST = DST - AX * SRC;
break;
}
CONT;
ALU_MOD_X:
AX = (u32) DST;
DST = do_div(AX, (u32) SRC);
switch (OFF) {
case 0:
AX = (u32) DST;
DST = do_div(AX, (u32) SRC);
break;
case 1:
AX = abs((s32)DST);
AX = do_div(AX, abs((s32)SRC));
if ((s32)DST < 0)
DST = (u32)-AX;
else
DST = (u32)AX;
break;
}
CONT;
ALU64_MOD_K:
div64_u64_rem(DST, IMM, &AX);
DST = AX;
switch (OFF) {
case 0:
div64_u64_rem(DST, IMM, &AX);
DST = AX;
break;
case 1:
AX = div64_s64(DST, IMM);
DST = DST - AX * IMM;
break;
}
CONT;
ALU_MOD_K:
AX = (u32) DST;
DST = do_div(AX, (u32) IMM);
switch (OFF) {
case 0:
AX = (u32) DST;
DST = do_div(AX, (u32) IMM);
break;
case 1:
AX = abs((s32)DST);
AX = do_div(AX, abs((s32)IMM));
if ((s32)DST < 0)
DST = (u32)-AX;
else
DST = (u32)AX;
break;
}
CONT;
ALU64_DIV_X:
DST = div64_u64(DST, SRC);
switch (OFF) {
case 0:
DST = div64_u64(DST, SRC);
break;
case 1:
DST = div64_s64(DST, SRC);
break;
}
CONT;
ALU_DIV_X:
AX = (u32) DST;
do_div(AX, (u32) SRC);
DST = (u32) AX;
switch (OFF) {
case 0:
AX = (u32) DST;
do_div(AX, (u32) SRC);
DST = (u32) AX;
break;
case 1:
AX = abs((s32)DST);
do_div(AX, abs((s32)SRC));
if ((s32)DST < 0 == (s32)SRC < 0)
DST = (u32)AX;
else
DST = (u32)-AX;
break;
}
CONT;
ALU64_DIV_K:
DST = div64_u64(DST, IMM);
switch (OFF) {
case 0:
DST = div64_u64(DST, IMM);
break;
case 1:
DST = div64_s64(DST, IMM);
break;
}
CONT;
ALU_DIV_K:
AX = (u32) DST;
do_div(AX, (u32) IMM);
DST = (u32) AX;
switch (OFF) {
case 0:
AX = (u32) DST;
do_div(AX, (u32) IMM);
DST = (u32) AX;
break;
case 1:
AX = abs((s32)DST);
do_div(AX, abs((s32)IMM));
if ((s32)DST < 0 == (s32)IMM < 0)
DST = (u32)AX;
else
DST = (u32)-AX;
break;
}
CONT;
ALU_END_TO_BE:
switch (IMM) {
......@@ -1818,6 +1937,19 @@ static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
break;
}
CONT;
ALU64_END_TO_LE:
switch (IMM) {
case 16:
DST = (__force u16) __swab16(DST);
break;
case 32:
DST = (__force u32) __swab32(DST);
break;
case 64:
DST = (__force u64) __swab64(DST);
break;
}
CONT;
/* CALL */
JMP_CALL:
......@@ -1867,6 +1999,9 @@ static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
JMP_JA:
insn += insn->off;
CONT;
JMP32_JA:
insn += insn->imm;
CONT;
JMP_EXIT:
return BPF_R0;
/* JMP */
......@@ -1942,6 +2077,21 @@ static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
LDST(DW, u64)
#undef LDST
#define LDSX(SIZEOP, SIZE) \
LDX_MEMSX_##SIZEOP: \
DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
CONT; \
LDX_PROBE_MEMSX_##SIZEOP: \
bpf_probe_read_kernel(&DST, sizeof(SIZE), \
(const void *)(long) (SRC + insn->off)); \
DST = *((SIZE *)&DST); \
CONT;
LDSX(B, s8)
LDSX(H, s16)
LDSX(W, s32)
#undef LDSX
#define ATOMIC_ALU_OP(BOP, KOP) \
case BOP: \
if (BPF_SIZE(insn->code) == BPF_W) \
......
......@@ -87,6 +87,17 @@ const char *const bpf_alu_string[16] = {
[BPF_END >> 4] = "endian",
};
const char *const bpf_alu_sign_string[16] = {
[BPF_DIV >> 4] = "s/=",
[BPF_MOD >> 4] = "s%=",
};
const char *const bpf_movsx_string[4] = {
[0] = "(s8)",
[1] = "(s16)",
[3] = "(s32)",
};
static const char *const bpf_atomic_alu_string[16] = {
[BPF_ADD >> 4] = "add",
[BPF_AND >> 4] = "and",
......@@ -101,6 +112,12 @@ static const char *const bpf_ldst_string[] = {
[BPF_DW >> 3] = "u64",
};
static const char *const bpf_ldsx_string[] = {
[BPF_W >> 3] = "s32",
[BPF_H >> 3] = "s16",
[BPF_B >> 3] = "s8",
};
static const char *const bpf_jmp_string[16] = {
[BPF_JA >> 4] = "jmp",
[BPF_JEQ >> 4] = "==",
......@@ -128,6 +145,26 @@ static void print_bpf_end_insn(bpf_insn_print_t verbose,
insn->imm, insn->dst_reg);
}
static void print_bpf_bswap_insn(bpf_insn_print_t verbose,
void *private_data,
const struct bpf_insn *insn)
{
verbose(private_data, "(%02x) r%d = bswap%d r%d\n",
insn->code, insn->dst_reg,
insn->imm, insn->dst_reg);
}
static bool is_sdiv_smod(const struct bpf_insn *insn)
{
return (BPF_OP(insn->code) == BPF_DIV || BPF_OP(insn->code) == BPF_MOD) &&
insn->off == 1;
}
static bool is_movsx(const struct bpf_insn *insn)
{
return BPF_OP(insn->code) == BPF_MOV && insn->off != 0;
}
void print_bpf_insn(const struct bpf_insn_cbs *cbs,
const struct bpf_insn *insn,
bool allow_ptr_leaks)
......@@ -138,7 +175,7 @@ void print_bpf_insn(const struct bpf_insn_cbs *cbs,
if (class == BPF_ALU || class == BPF_ALU64) {
if (BPF_OP(insn->code) == BPF_END) {
if (class == BPF_ALU64)
verbose(cbs->private_data, "BUG_alu64_%02x\n", insn->code);
print_bpf_bswap_insn(verbose, cbs->private_data, insn);
else
print_bpf_end_insn(verbose, cbs->private_data, insn);
} else if (BPF_OP(insn->code) == BPF_NEG) {
......@@ -147,17 +184,20 @@ void print_bpf_insn(const struct bpf_insn_cbs *cbs,
insn->dst_reg, class == BPF_ALU ? 'w' : 'r',
insn->dst_reg);
} else if (BPF_SRC(insn->code) == BPF_X) {
verbose(cbs->private_data, "(%02x) %c%d %s %c%d\n",
verbose(cbs->private_data, "(%02x) %c%d %s %s%c%d\n",
insn->code, class == BPF_ALU ? 'w' : 'r',
insn->dst_reg,
bpf_alu_string[BPF_OP(insn->code) >> 4],
is_sdiv_smod(insn) ? bpf_alu_sign_string[BPF_OP(insn->code) >> 4]
: bpf_alu_string[BPF_OP(insn->code) >> 4],
is_movsx(insn) ? bpf_movsx_string[(insn->off >> 3) - 1] : "",
class == BPF_ALU ? 'w' : 'r',
insn->src_reg);
} else {
verbose(cbs->private_data, "(%02x) %c%d %s %d\n",
insn->code, class == BPF_ALU ? 'w' : 'r',
insn->dst_reg,
bpf_alu_string[BPF_OP(insn->code) >> 4],
is_sdiv_smod(insn) ? bpf_alu_sign_string[BPF_OP(insn->code) >> 4]
: bpf_alu_string[BPF_OP(insn->code) >> 4],
insn->imm);
}
} else if (class == BPF_STX) {
......@@ -218,13 +258,15 @@ void print_bpf_insn(const struct bpf_insn_cbs *cbs,
verbose(cbs->private_data, "BUG_st_%02x\n", insn->code);
}
} else if (class == BPF_LDX) {
if (BPF_MODE(insn->code) != BPF_MEM) {
if (BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) {
verbose(cbs->private_data, "BUG_ldx_%02x\n", insn->code);
return;
}
verbose(cbs->private_data, "(%02x) r%d = *(%s *)(r%d %+d)\n",
insn->code, insn->dst_reg,
bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
BPF_MODE(insn->code) == BPF_MEM ?
bpf_ldst_string[BPF_SIZE(insn->code) >> 3] :
bpf_ldsx_string[BPF_SIZE(insn->code) >> 3],
insn->src_reg, insn->off);
} else if (class == BPF_LD) {
if (BPF_MODE(insn->code) == BPF_ABS) {
......@@ -279,6 +321,9 @@ void print_bpf_insn(const struct bpf_insn_cbs *cbs,
} else if (insn->code == (BPF_JMP | BPF_JA)) {
verbose(cbs->private_data, "(%02x) goto pc%+d\n",
insn->code, insn->off);
} else if (insn->code == (BPF_JMP32 | BPF_JA)) {
verbose(cbs->private_data, "(%02x) gotol pc%+d\n",
insn->code, insn->imm);
} else if (insn->code == (BPF_JMP | BPF_EXIT)) {
verbose(cbs->private_data, "(%02x) exit\n", insn->code);
} else if (BPF_SRC(insn->code) == BPF_X) {
......
......@@ -2855,7 +2855,10 @@ static int check_subprogs(struct bpf_verifier_env *env)
goto next;
if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
goto next;
off = i + insn[i].off + 1;
if (code == (BPF_JMP32 | BPF_JA))
off = i + insn[i].imm + 1;
else
off = i + insn[i].off + 1;
if (off < subprog_start || off >= subprog_end) {
verbose(env, "jump out of range from insn %d to %d\n", i, off);
return -EINVAL;
......@@ -2867,6 +2870,7 @@ static int check_subprogs(struct bpf_verifier_env *env)
* or unconditional jump back
*/
if (code != (BPF_JMP | BPF_EXIT) &&
code != (BPF_JMP32 | BPF_JA) &&
code != (BPF_JMP | BPF_JA)) {
verbose(env, "last insn is not an exit or jmp\n");
return -EINVAL;
......@@ -3012,8 +3016,10 @@ static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
}
}
if (class == BPF_ALU64 && op == BPF_END && (insn->imm == 16 || insn->imm == 32))
return false;
if (class == BPF_ALU64 || class == BPF_JMP ||
/* BPF_END always use BPF_ALU class. */
(class == BPF_ALU && op == BPF_END && insn->imm == 64))
return true;
......@@ -3421,7 +3427,7 @@ static int backtrack_insn(struct bpf_verifier_env *env, int idx, int subseq_idx,
return 0;
if (opcode == BPF_MOV) {
if (BPF_SRC(insn->code) == BPF_X) {
/* dreg = sreg
/* dreg = sreg or dreg = (s8, s16, s32)sreg
* dreg needs precision after this insn
* sreg needs precision before this insn
*/
......@@ -5827,6 +5833,147 @@ static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
__reg_combine_64_into_32(reg);
}
static void set_sext64_default_val(struct bpf_reg_state *reg, int size)
{
if (size == 1) {
reg->smin_value = reg->s32_min_value = S8_MIN;
reg->smax_value = reg->s32_max_value = S8_MAX;
} else if (size == 2) {
reg->smin_value = reg->s32_min_value = S16_MIN;
reg->smax_value = reg->s32_max_value = S16_MAX;
} else {
/* size == 4 */
reg->smin_value = reg->s32_min_value = S32_MIN;
reg->smax_value = reg->s32_max_value = S32_MAX;
}
reg->umin_value = reg->u32_min_value = 0;
reg->umax_value = U64_MAX;
reg->u32_max_value = U32_MAX;
reg->var_off = tnum_unknown;
}
static void coerce_reg_to_size_sx(struct bpf_reg_state *reg, int size)
{
s64 init_s64_max, init_s64_min, s64_max, s64_min, u64_cval;
u64 top_smax_value, top_smin_value;
u64 num_bits = size * 8;
if (tnum_is_const(reg->var_off)) {
u64_cval = reg->var_off.value;
if (size == 1)
reg->var_off = tnum_const((s8)u64_cval);
else if (size == 2)
reg->var_off = tnum_const((s16)u64_cval);
else
/* size == 4 */
reg->var_off = tnum_const((s32)u64_cval);
u64_cval = reg->var_off.value;
reg->smax_value = reg->smin_value = u64_cval;
reg->umax_value = reg->umin_value = u64_cval;
reg->s32_max_value = reg->s32_min_value = u64_cval;
reg->u32_max_value = reg->u32_min_value = u64_cval;
return;
}
top_smax_value = ((u64)reg->smax_value >> num_bits) << num_bits;
top_smin_value = ((u64)reg->smin_value >> num_bits) << num_bits;
if (top_smax_value != top_smin_value)
goto out;
/* find the s64_min and s64_min after sign extension */
if (size == 1) {
init_s64_max = (s8)reg->smax_value;
init_s64_min = (s8)reg->smin_value;
} else if (size == 2) {
init_s64_max = (s16)reg->smax_value;
init_s64_min = (s16)reg->smin_value;
} else {
init_s64_max = (s32)reg->smax_value;
init_s64_min = (s32)reg->smin_value;
}
s64_max = max(init_s64_max, init_s64_min);
s64_min = min(init_s64_max, init_s64_min);
/* both of s64_max/s64_min positive or negative */
if (s64_max >= 0 == s64_min >= 0) {
reg->smin_value = reg->s32_min_value = s64_min;
reg->smax_value = reg->s32_max_value = s64_max;
reg->umin_value = reg->u32_min_value = s64_min;
reg->umax_value = reg->u32_max_value = s64_max;
reg->var_off = tnum_range(s64_min, s64_max);
return;
}
out:
set_sext64_default_val(reg, size);
}
static void set_sext32_default_val(struct bpf_reg_state *reg, int size)
{
if (size == 1) {
reg->s32_min_value = S8_MIN;
reg->s32_max_value = S8_MAX;
} else {
/* size == 2 */
reg->s32_min_value = S16_MIN;
reg->s32_max_value = S16_MAX;
}
reg->u32_min_value = 0;
reg->u32_max_value = U32_MAX;
}
static void coerce_subreg_to_size_sx(struct bpf_reg_state *reg, int size)
{
s32 init_s32_max, init_s32_min, s32_max, s32_min, u32_val;
u32 top_smax_value, top_smin_value;
u32 num_bits = size * 8;
if (tnum_is_const(reg->var_off)) {
u32_val = reg->var_off.value;
if (size == 1)
reg->var_off = tnum_const((s8)u32_val);
else
reg->var_off = tnum_const((s16)u32_val);
u32_val = reg->var_off.value;
reg->s32_min_value = reg->s32_max_value = u32_val;
reg->u32_min_value = reg->u32_max_value = u32_val;
return;
}
top_smax_value = ((u32)reg->s32_max_value >> num_bits) << num_bits;
top_smin_value = ((u32)reg->s32_min_value >> num_bits) << num_bits;
if (top_smax_value != top_smin_value)
goto out;
/* find the s32_min and s32_min after sign extension */
if (size == 1) {
init_s32_max = (s8)reg->s32_max_value;
init_s32_min = (s8)reg->s32_min_value;
} else {
/* size == 2 */
init_s32_max = (s16)reg->s32_max_value;
init_s32_min = (s16)reg->s32_min_value;
}
s32_max = max(init_s32_max, init_s32_min);
s32_min = min(init_s32_max, init_s32_min);
if (s32_min >= 0 == s32_max >= 0) {
reg->s32_min_value = s32_min;
reg->s32_max_value = s32_max;
reg->u32_min_value = (u32)s32_min;
reg->u32_max_value = (u32)s32_max;
return;
}
out:
set_sext32_default_val(reg, size);
}
static bool bpf_map_is_rdonly(const struct bpf_map *map)
{
/* A map is considered read-only if the following condition are true:
......@@ -5847,7 +5994,8 @@ static bool bpf_map_is_rdonly(const struct bpf_map *map)
!bpf_map_write_active(map);
}
static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val,
bool is_ldsx)
{
void *ptr;
u64 addr;
......@@ -5860,13 +6008,13 @@ static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
switch (size) {
case sizeof(u8):
*val = (u64)*(u8 *)ptr;
*val = is_ldsx ? (s64)*(s8 *)ptr : (u64)*(u8 *)ptr;
break;
case sizeof(u16):
*val = (u64)*(u16 *)ptr;
*val = is_ldsx ? (s64)*(s16 *)ptr : (u64)*(u16 *)ptr;
break;
case sizeof(u32):
*val = (u64)*(u32 *)ptr;
*val = is_ldsx ? (s64)*(s32 *)ptr : (u64)*(u32 *)ptr;
break;
case sizeof(u64):
*val = *(u64 *)ptr;
......@@ -6285,7 +6433,7 @@ static int check_stack_access_within_bounds(
*/
static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
int off, int bpf_size, enum bpf_access_type t,
int value_regno, bool strict_alignment_once)
int value_regno, bool strict_alignment_once, bool is_ldsx)
{
struct bpf_reg_state *regs = cur_regs(env);
struct bpf_reg_state *reg = regs + regno;
......@@ -6346,7 +6494,7 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
u64 val = 0;
err = bpf_map_direct_read(map, map_off, size,
&val);
&val, is_ldsx);
if (err)
return err;
......@@ -6516,8 +6664,11 @@ static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regn
if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
regs[value_regno].type == SCALAR_VALUE) {
/* b/h/w load zero-extends, mark upper bits as known 0 */
coerce_reg_to_size(&regs[value_regno], size);
if (!is_ldsx)
/* b/h/w load zero-extends, mark upper bits as known 0 */
coerce_reg_to_size(&regs[value_regno], size);
else
coerce_reg_to_size_sx(&regs[value_regno], size);
}
return err;
}
......@@ -6609,17 +6760,17 @@ static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_i
* case to simulate the register fill.
*/
err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
BPF_SIZE(insn->code), BPF_READ, -1, true);
BPF_SIZE(insn->code), BPF_READ, -1, true, false);
if (!err && load_reg >= 0)
err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
BPF_SIZE(insn->code), BPF_READ, load_reg,
true);
true, false);
if (err)
return err;
/* Check whether we can write into the same memory. */
err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
BPF_SIZE(insn->code), BPF_WRITE, -1, true);
BPF_SIZE(insn->code), BPF_WRITE, -1, true, false);
if (err)
return err;
......@@ -6865,7 +7016,7 @@ static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
return zero_size_allowed ? 0 : -EACCES;
return check_mem_access(env, env->insn_idx, regno, offset, BPF_B,
atype, -1, false);
atype, -1, false, false);
}
fallthrough;
......@@ -7237,7 +7388,7 @@ static int process_dynptr_func(struct bpf_verifier_env *env, int regno, int insn
/* we write BPF_DW bits (8 bytes) at a time */
for (i = 0; i < BPF_DYNPTR_SIZE; i += 8) {
err = check_mem_access(env, insn_idx, regno,
i, BPF_DW, BPF_WRITE, -1, false);
i, BPF_DW, BPF_WRITE, -1, false, false);
if (err)
return err;
}
......@@ -7330,7 +7481,7 @@ static int process_iter_arg(struct bpf_verifier_env *env, int regno, int insn_id
for (i = 0; i < nr_slots * 8; i += BPF_REG_SIZE) {
err = check_mem_access(env, insn_idx, regno,
i, BPF_DW, BPF_WRITE, -1, false);
i, BPF_DW, BPF_WRITE, -1, false, false);
if (err)
return err;
}
......@@ -9474,7 +9625,7 @@ static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn
*/
for (i = 0; i < meta.access_size; i++) {
err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
BPF_WRITE, -1, false);
BPF_WRITE, -1, false, false);
if (err)
return err;
}
......@@ -12931,7 +13082,8 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
} else {
if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
(insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
BPF_CLASS(insn->code) == BPF_ALU64) {
(BPF_CLASS(insn->code) == BPF_ALU64 &&
BPF_SRC(insn->code) != BPF_TO_LE)) {
verbose(env, "BPF_END uses reserved fields\n");
return -EINVAL;
}
......@@ -12956,11 +13108,24 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
} else if (opcode == BPF_MOV) {
if (BPF_SRC(insn->code) == BPF_X) {
if (insn->imm != 0 || insn->off != 0) {
if (insn->imm != 0) {
verbose(env, "BPF_MOV uses reserved fields\n");
return -EINVAL;
}
if (BPF_CLASS(insn->code) == BPF_ALU) {
if (insn->off != 0 && insn->off != 8 && insn->off != 16) {
verbose(env, "BPF_MOV uses reserved fields\n");
return -EINVAL;
}
} else {
if (insn->off != 0 && insn->off != 8 && insn->off != 16 &&
insn->off != 32) {
verbose(env, "BPF_MOV uses reserved fields\n");
return -EINVAL;
}
}
/* check src operand */
err = check_reg_arg(env, insn->src_reg, SRC_OP);
if (err)
......@@ -12984,18 +13149,33 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
!tnum_is_const(src_reg->var_off);
if (BPF_CLASS(insn->code) == BPF_ALU64) {
/* case: R1 = R2
* copy register state to dest reg
*/
if (need_id)
/* Assign src and dst registers the same ID
* that will be used by find_equal_scalars()
* to propagate min/max range.
if (insn->off == 0) {
/* case: R1 = R2
* copy register state to dest reg
*/
src_reg->id = ++env->id_gen;
copy_register_state(dst_reg, src_reg);
dst_reg->live |= REG_LIVE_WRITTEN;
dst_reg->subreg_def = DEF_NOT_SUBREG;
if (need_id)
/* Assign src and dst registers the same ID
* that will be used by find_equal_scalars()
* to propagate min/max range.
*/
src_reg->id = ++env->id_gen;
copy_register_state(dst_reg, src_reg);
dst_reg->live |= REG_LIVE_WRITTEN;
dst_reg->subreg_def = DEF_NOT_SUBREG;
} else {
/* case: R1 = (s8, s16 s32)R2 */
bool no_sext;
no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
if (no_sext && need_id)
src_reg->id = ++env->id_gen;
copy_register_state(dst_reg, src_reg);
if (!no_sext)
dst_reg->id = 0;
coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
dst_reg->live |= REG_LIVE_WRITTEN;
dst_reg->subreg_def = DEF_NOT_SUBREG;
}
} else {
/* R1 = (u32) R2 */
if (is_pointer_value(env, insn->src_reg)) {
......@@ -13004,19 +13184,33 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
insn->src_reg);
return -EACCES;
} else if (src_reg->type == SCALAR_VALUE) {
bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
if (is_src_reg_u32 && need_id)
src_reg->id = ++env->id_gen;
copy_register_state(dst_reg, src_reg);
/* Make sure ID is cleared if src_reg is not in u32 range otherwise
* dst_reg min/max could be incorrectly
* propagated into src_reg by find_equal_scalars()
*/
if (!is_src_reg_u32)
dst_reg->id = 0;
dst_reg->live |= REG_LIVE_WRITTEN;
dst_reg->subreg_def = env->insn_idx + 1;
if (insn->off == 0) {
bool is_src_reg_u32 = src_reg->umax_value <= U32_MAX;
if (is_src_reg_u32 && need_id)
src_reg->id = ++env->id_gen;
copy_register_state(dst_reg, src_reg);
/* Make sure ID is cleared if src_reg is not in u32
* range otherwise dst_reg min/max could be incorrectly
* propagated into src_reg by find_equal_scalars()
*/
if (!is_src_reg_u32)
dst_reg->id = 0;
dst_reg->live |= REG_LIVE_WRITTEN;
dst_reg->subreg_def = env->insn_idx + 1;
} else {
/* case: W1 = (s8, s16)W2 */
bool no_sext = src_reg->umax_value < (1ULL << (insn->off - 1));
if (no_sext && need_id)
src_reg->id = ++env->id_gen;
copy_register_state(dst_reg, src_reg);
if (!no_sext)
dst_reg->id = 0;
dst_reg->live |= REG_LIVE_WRITTEN;
dst_reg->subreg_def = env->insn_idx + 1;
coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
}
} else {
mark_reg_unknown(env, regs,
insn->dst_reg);
......@@ -13047,7 +13241,8 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
} else { /* all other ALU ops: and, sub, xor, add, ... */
if (BPF_SRC(insn->code) == BPF_X) {
if (insn->imm != 0 || insn->off != 0) {
if (insn->imm != 0 || insn->off > 1 ||
(insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
verbose(env, "BPF_ALU uses reserved fields\n");
return -EINVAL;
}
......@@ -13056,7 +13251,8 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
if (err)
return err;
} else {
if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
if (insn->src_reg != BPF_REG_0 || insn->off > 1 ||
(insn->off == 1 && opcode != BPF_MOD && opcode != BPF_DIV)) {
verbose(env, "BPF_ALU uses reserved fields\n");
return -EINVAL;
}
......@@ -14600,7 +14796,7 @@ static int visit_func_call_insn(int t, struct bpf_insn *insns,
static int visit_insn(int t, struct bpf_verifier_env *env)
{
struct bpf_insn *insns = env->prog->insnsi, *insn = &insns[t];
int ret;
int ret, off;
if (bpf_pseudo_func(insn))
return visit_func_call_insn(t, insns, env, true);
......@@ -14648,14 +14844,19 @@ static int visit_insn(int t, struct bpf_verifier_env *env)
if (BPF_SRC(insn->code) != BPF_K)
return -EINVAL;
if (BPF_CLASS(insn->code) == BPF_JMP)
off = insn->off;
else
off = insn->imm;
/* unconditional jump with single edge */
ret = push_insn(t, t + insn->off + 1, FALLTHROUGH, env,
ret = push_insn(t, t + off + 1, FALLTHROUGH, env,
true);
if (ret)
return ret;
mark_prune_point(env, t + insn->off + 1);
mark_jmp_point(env, t + insn->off + 1);
mark_prune_point(env, t + off + 1);
mark_jmp_point(env, t + off + 1);
return ret;
......@@ -16202,7 +16403,7 @@ static int save_aux_ptr_type(struct bpf_verifier_env *env, enum bpf_reg_type typ
* Have to support a use case when one path through
* the program yields TRUSTED pointer while another
* is UNTRUSTED. Fallback to UNTRUSTED to generate
* BPF_PROBE_MEM.
* BPF_PROBE_MEM/BPF_PROBE_MEMSX.
*/
*prev_type = PTR_TO_BTF_ID | PTR_UNTRUSTED;
} else {
......@@ -16343,7 +16544,8 @@ static int do_check(struct bpf_verifier_env *env)
*/
err = check_mem_access(env, env->insn_idx, insn->src_reg,
insn->off, BPF_SIZE(insn->code),
BPF_READ, insn->dst_reg, false);
BPF_READ, insn->dst_reg, false,
BPF_MODE(insn->code) == BPF_MEMSX);
if (err)
return err;
......@@ -16380,7 +16582,7 @@ static int do_check(struct bpf_verifier_env *env)
/* check that memory (dst_reg + off) is writeable */
err = check_mem_access(env, env->insn_idx, insn->dst_reg,
insn->off, BPF_SIZE(insn->code),
BPF_WRITE, insn->src_reg, false);
BPF_WRITE, insn->src_reg, false, false);
if (err)
return err;
......@@ -16405,7 +16607,7 @@ static int do_check(struct bpf_verifier_env *env)
/* check that memory (dst_reg + off) is writeable */
err = check_mem_access(env, env->insn_idx, insn->dst_reg,
insn->off, BPF_SIZE(insn->code),
BPF_WRITE, -1, false);
BPF_WRITE, -1, false, false);
if (err)
return err;
......@@ -16450,15 +16652,18 @@ static int do_check(struct bpf_verifier_env *env)
mark_reg_scratched(env, BPF_REG_0);
} else if (opcode == BPF_JA) {
if (BPF_SRC(insn->code) != BPF_K ||
insn->imm != 0 ||
insn->src_reg != BPF_REG_0 ||
insn->dst_reg != BPF_REG_0 ||
class == BPF_JMP32) {
(class == BPF_JMP && insn->imm != 0) ||
(class == BPF_JMP32 && insn->off != 0)) {
verbose(env, "BPF_JA uses reserved fields\n");
return -EINVAL;
}
env->insn_idx += insn->off + 1;
if (class == BPF_JMP)
env->insn_idx += insn->off + 1;
else
env->insn_idx += insn->imm + 1;
continue;
} else if (opcode == BPF_EXIT) {
......@@ -16833,7 +17038,8 @@ static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
for (i = 0; i < insn_cnt; i++, insn++) {
if (BPF_CLASS(insn->code) == BPF_LDX &&
(BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
((BPF_MODE(insn->code) != BPF_MEM && BPF_MODE(insn->code) != BPF_MEMSX) ||
insn->imm != 0)) {
verbose(env, "BPF_LDX uses reserved fields\n");
return -EINVAL;
}
......@@ -17304,13 +17510,13 @@ static bool insn_is_cond_jump(u8 code)
{
u8 op;
op = BPF_OP(code);
if (BPF_CLASS(code) == BPF_JMP32)
return true;
return op != BPF_JA;
if (BPF_CLASS(code) != BPF_JMP)
return false;
op = BPF_OP(code);
return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
}
......@@ -17527,11 +17733,15 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env)
for (i = 0; i < insn_cnt; i++, insn++) {
bpf_convert_ctx_access_t convert_ctx_access;
u8 mode;
if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
insn->code == (BPF_LDX | BPF_MEM | BPF_DW)) {
insn->code == (BPF_LDX | BPF_MEM | BPF_DW) ||
insn->code == (BPF_LDX | BPF_MEMSX | BPF_B) ||
insn->code == (BPF_LDX | BPF_MEMSX | BPF_H) ||
insn->code == (BPF_LDX | BPF_MEMSX | BPF_W)) {
type = BPF_READ;
} else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
......@@ -17590,8 +17800,12 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env)
*/
case PTR_TO_BTF_ID | MEM_ALLOC | PTR_UNTRUSTED:
if (type == BPF_READ) {
insn->code = BPF_LDX | BPF_PROBE_MEM |
BPF_SIZE((insn)->code);
if (BPF_MODE(insn->code) == BPF_MEM)
insn->code = BPF_LDX | BPF_PROBE_MEM |
BPF_SIZE((insn)->code);
else
insn->code = BPF_LDX | BPF_PROBE_MEMSX |
BPF_SIZE((insn)->code);
env->prog->aux->num_exentries++;
}
continue;
......@@ -17601,6 +17815,7 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env)
ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
size = BPF_LDST_BYTES(insn);
mode = BPF_MODE(insn->code);
/* If the read access is a narrower load of the field,
* convert to a 4/8-byte load, to minimum program type specific
......@@ -17660,6 +17875,10 @@ static int convert_ctx_accesses(struct bpf_verifier_env *env)
(1ULL << size * 8) - 1);
}
}
if (mode == BPF_MEMSX)
insn_buf[cnt++] = BPF_RAW_INSN(BPF_ALU64 | BPF_MOV | BPF_X,
insn->dst_reg, insn->dst_reg,
size * 8, 0);
new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
if (!new_prog)
......@@ -17779,7 +17998,8 @@ static int jit_subprogs(struct bpf_verifier_env *env)
insn = func[i]->insnsi;
for (j = 0; j < func[i]->len; j++, insn++) {
if (BPF_CLASS(insn->code) == BPF_LDX &&
BPF_MODE(insn->code) == BPF_PROBE_MEM)
(BPF_MODE(insn->code) == BPF_PROBE_MEM ||
BPF_MODE(insn->code) == BPF_PROBE_MEMSX))
num_exentries++;
}
func[i]->aux->num_exentries = num_exentries;
......
......@@ -19,6 +19,7 @@
/* ld/ldx fields */
#define BPF_DW 0x18 /* double word (64-bit) */
#define BPF_MEMSX 0x80 /* load with sign extension */
#define BPF_ATOMIC 0xc0 /* atomic memory ops - op type in immediate */
#define BPF_XADD 0xc0 /* exclusive add - legacy name */
......
......@@ -13,6 +13,7 @@ test_dev_cgroup
/test_progs
/test_progs-no_alu32
/test_progs-bpf_gcc
/test_progs-cpuv4
test_verifier_log
feature
test_sock
......@@ -36,6 +37,7 @@ test_cpp
*.lskel.h
/no_alu32
/bpf_gcc
/cpuv4
/host-tools
/tools
/runqslower
......
......@@ -33,9 +33,13 @@ CFLAGS += -g -O0 -rdynamic -Wall -Werror $(GENFLAGS) $(SAN_CFLAGS) \
LDFLAGS += $(SAN_LDFLAGS)
LDLIBS += -lelf -lz -lrt -lpthread
# Silence some warnings when compiled with clang
ifneq ($(LLVM),)
# Silence some warnings when compiled with clang
CFLAGS += -Wno-unused-command-line-argument
# Check whether cpu=v4 is supported or not by clang
ifneq ($(shell $(CLANG) --target=bpf -mcpu=help 2>&1 | grep 'v4'),)
CLANG_CPUV4 := 1
endif
endif
# Order correspond to 'make run_tests' order
......@@ -51,6 +55,10 @@ ifneq ($(BPF_GCC),)
TEST_GEN_PROGS += test_progs-bpf_gcc
endif
ifneq ($(CLANG_CPUV4),)
TEST_GEN_PROGS += test_progs-cpuv4
endif
TEST_GEN_FILES = test_lwt_ip_encap.bpf.o test_tc_edt.bpf.o
TEST_FILES = xsk_prereqs.sh $(wildcard progs/btf_dump_test_case_*.c)
......@@ -383,6 +391,11 @@ define CLANG_NOALU32_BPF_BUILD_RULE
$(call msg,CLNG-BPF,$(TRUNNER_BINARY),$2)
$(Q)$(CLANG) $3 -O2 --target=bpf -c $1 -mcpu=v2 -o $2
endef
# Similar to CLANG_BPF_BUILD_RULE, but with cpu-v4
define CLANG_CPUV4_BPF_BUILD_RULE
$(call msg,CLNG-BPF,$(TRUNNER_BINARY),$2)
$(Q)$(CLANG) $3 -O2 --target=bpf -c $1 -mcpu=v4 -o $2
endef
# Build BPF object using GCC
define GCC_BPF_BUILD_RULE
$(call msg,GCC-BPF,$(TRUNNER_BINARY),$2)
......@@ -425,7 +438,7 @@ LINKED_BPF_SRCS := $(patsubst %.bpf.o,%.c,$(foreach skel,$(LINKED_SKELS),$($(ske
# $eval()) and pass control to DEFINE_TEST_RUNNER_RULES.
# Parameters:
# $1 - test runner base binary name (e.g., test_progs)
# $2 - test runner extra "flavor" (e.g., no_alu32, gcc-bpf, etc)
# $2 - test runner extra "flavor" (e.g., no_alu32, cpuv4, gcc-bpf, etc)
define DEFINE_TEST_RUNNER
TRUNNER_OUTPUT := $(OUTPUT)$(if $2,/)$2
......@@ -453,7 +466,7 @@ endef
# Using TRUNNER_XXX variables, provided by callers of DEFINE_TEST_RUNNER and
# set up by DEFINE_TEST_RUNNER itself, create test runner build rules with:
# $1 - test runner base binary name (e.g., test_progs)
# $2 - test runner extra "flavor" (e.g., no_alu32, gcc-bpf, etc)
# $2 - test runner extra "flavor" (e.g., no_alu32, cpuv4, gcc-bpf, etc)
define DEFINE_TEST_RUNNER_RULES
ifeq ($($(TRUNNER_OUTPUT)-dir),)
......@@ -584,6 +597,13 @@ TRUNNER_BPF_BUILD_RULE := CLANG_NOALU32_BPF_BUILD_RULE
TRUNNER_BPF_CFLAGS := $(BPF_CFLAGS) $(CLANG_CFLAGS)
$(eval $(call DEFINE_TEST_RUNNER,test_progs,no_alu32))
# Define test_progs-cpuv4 test runner.
ifneq ($(CLANG_CPUV4),)
TRUNNER_BPF_BUILD_RULE := CLANG_CPUV4_BPF_BUILD_RULE
TRUNNER_BPF_CFLAGS := $(BPF_CFLAGS) $(CLANG_CFLAGS)
$(eval $(call DEFINE_TEST_RUNNER,test_progs,cpuv4))
endif
# Define test_progs BPF-GCC-flavored test runner.
ifneq ($(BPF_GCC),)
TRUNNER_BPF_BUILD_RULE := GCC_BPF_BUILD_RULE
......@@ -681,7 +701,7 @@ EXTRA_CLEAN := $(TEST_CUSTOM_PROGS) $(SCRATCH_DIR) $(HOST_SCRATCH_DIR) \
prog_tests/tests.h map_tests/tests.h verifier/tests.h \
feature bpftool \
$(addprefix $(OUTPUT)/,*.o *.skel.h *.lskel.h *.subskel.h \
no_alu32 bpf_gcc bpf_testmod.ko \
no_alu32 cpuv4 bpf_gcc bpf_testmod.ko \
liburandom_read.so)
.PHONY: docs docs-clean
......
......@@ -98,6 +98,12 @@ bpf_testmod_test_struct_arg_8(u64 a, void *b, short c, int d, void *e,
return bpf_testmod_test_struct_arg_result;
}
noinline int
bpf_testmod_test_arg_ptr_to_struct(struct bpf_testmod_struct_arg_1 *a) {
bpf_testmod_test_struct_arg_result = a->a;
return bpf_testmod_test_struct_arg_result;
}
__bpf_kfunc void
bpf_testmod_test_mod_kfunc(int i)
{
......@@ -240,7 +246,7 @@ bpf_testmod_test_read(struct file *file, struct kobject *kobj,
.off = off,
.len = len,
};
struct bpf_testmod_struct_arg_1 struct_arg1 = {10};
struct bpf_testmod_struct_arg_1 struct_arg1 = {10}, struct_arg1_2 = {-1};
struct bpf_testmod_struct_arg_2 struct_arg2 = {2, 3};
struct bpf_testmod_struct_arg_3 *struct_arg3;
struct bpf_testmod_struct_arg_4 struct_arg4 = {21, 22};
......@@ -259,6 +265,7 @@ bpf_testmod_test_read(struct file *file, struct kobject *kobj,
(void)bpf_testmod_test_struct_arg_8(16, (void *)17, 18, 19,
(void *)20, struct_arg4, 23);
(void)bpf_testmod_test_arg_ptr_to_struct(&struct_arg1_2);
struct_arg3 = kmalloc((sizeof(struct bpf_testmod_struct_arg_3) +
sizeof(int)), GFP_KERNEL);
......
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2023 Meta Platforms, Inc. and affiliates.*/
#include <test_progs.h>
#include <network_helpers.h>
#include "test_ldsx_insn.skel.h"
static void test_map_val_and_probed_memory(void)
{
struct test_ldsx_insn *skel;
int err;
skel = test_ldsx_insn__open();
if (!ASSERT_OK_PTR(skel, "test_ldsx_insn__open"))
return;
if (skel->rodata->skip) {
test__skip();
goto out;
}
bpf_program__set_autoload(skel->progs.rdonly_map_prog, true);
bpf_program__set_autoload(skel->progs.map_val_prog, true);
bpf_program__set_autoload(skel->progs.test_ptr_struct_arg, true);
err = test_ldsx_insn__load(skel);
if (!ASSERT_OK(err, "test_ldsx_insn__load"))
goto out;
err = test_ldsx_insn__attach(skel);
if (!ASSERT_OK(err, "test_ldsx_insn__attach"))
goto out;
ASSERT_OK(trigger_module_test_read(256), "trigger_read");
ASSERT_EQ(skel->bss->done1, 1, "done1");
ASSERT_EQ(skel->bss->ret1, 1, "ret1");
ASSERT_EQ(skel->bss->done2, 1, "done2");
ASSERT_EQ(skel->bss->ret2, 1, "ret2");
ASSERT_EQ(skel->bss->int_member, -1, "int_member");
out:
test_ldsx_insn__destroy(skel);
}
static void test_ctx_member_sign_ext(void)
{
struct test_ldsx_insn *skel;
int err, fd, cgroup_fd;
char buf[16] = {0};
socklen_t optlen;
cgroup_fd = test__join_cgroup("/ldsx_test");
if (!ASSERT_GE(cgroup_fd, 0, "join_cgroup /ldsx_test"))
return;
skel = test_ldsx_insn__open();
if (!ASSERT_OK_PTR(skel, "test_ldsx_insn__open"))
goto close_cgroup_fd;
if (skel->rodata->skip) {
test__skip();
goto destroy_skel;
}
bpf_program__set_autoload(skel->progs._getsockopt, true);
err = test_ldsx_insn__load(skel);
if (!ASSERT_OK(err, "test_ldsx_insn__load"))
goto destroy_skel;
skel->links._getsockopt =
bpf_program__attach_cgroup(skel->progs._getsockopt, cgroup_fd);
if (!ASSERT_OK_PTR(skel->links._getsockopt, "getsockopt_link"))
goto destroy_skel;
fd = socket(AF_INET, SOCK_STREAM, 0);
if (!ASSERT_GE(fd, 0, "socket"))
goto destroy_skel;
optlen = sizeof(buf);
(void)getsockopt(fd, SOL_IP, IP_TTL, buf, &optlen);
ASSERT_EQ(skel->bss->set_optlen, -1, "optlen");
ASSERT_EQ(skel->bss->set_retval, -1, "retval");
close(fd);
destroy_skel:
test_ldsx_insn__destroy(skel);
close_cgroup_fd:
close(cgroup_fd);
}
static void test_ctx_member_narrow_sign_ext(void)
{
struct test_ldsx_insn *skel;
struct __sk_buff skb = {};
LIBBPF_OPTS(bpf_test_run_opts, topts,
.data_in = &pkt_v4,
.data_size_in = sizeof(pkt_v4),
.ctx_in = &skb,
.ctx_size_in = sizeof(skb),
);
int err, prog_fd;
skel = test_ldsx_insn__open();
if (!ASSERT_OK_PTR(skel, "test_ldsx_insn__open"))
return;
if (skel->rodata->skip) {
test__skip();
goto out;
}
bpf_program__set_autoload(skel->progs._tc, true);
err = test_ldsx_insn__load(skel);
if (!ASSERT_OK(err, "test_ldsx_insn__load"))
goto out;
prog_fd = bpf_program__fd(skel->progs._tc);
err = bpf_prog_test_run_opts(prog_fd, &topts);
ASSERT_OK(err, "test_run");
ASSERT_EQ(skel->bss->set_mark, -2, "set_mark");
out:
test_ldsx_insn__destroy(skel);
}
void test_ldsx_insn(void)
{
if (test__start_subtest("map_val and probed_memory"))
test_map_val_and_probed_memory();
if (test__start_subtest("ctx_member_sign_ext"))
test_ctx_member_sign_ext();
if (test__start_subtest("ctx_member_narrow_sign_ext"))
test_ctx_member_narrow_sign_ext();
}
......@@ -11,6 +11,7 @@
#include "verifier_bounds_deduction_non_const.skel.h"
#include "verifier_bounds_mix_sign_unsign.skel.h"
#include "verifier_bpf_get_stack.skel.h"
#include "verifier_bswap.skel.h"
#include "verifier_btf_ctx_access.skel.h"
#include "verifier_cfg.skel.h"
#include "verifier_cgroup_inv_retcode.skel.h"
......@@ -24,6 +25,7 @@
#include "verifier_direct_stack_access_wraparound.skel.h"
#include "verifier_div0.skel.h"
#include "verifier_div_overflow.skel.h"
#include "verifier_gotol.skel.h"
#include "verifier_helper_access_var_len.skel.h"
#include "verifier_helper_packet_access.skel.h"
#include "verifier_helper_restricted.skel.h"
......@@ -31,6 +33,7 @@
#include "verifier_int_ptr.skel.h"
#include "verifier_jeq_infer_not_null.skel.h"
#include "verifier_ld_ind.skel.h"
#include "verifier_ldsx.skel.h"
#include "verifier_leak_ptr.skel.h"
#include "verifier_loops1.skel.h"
#include "verifier_lwt.skel.h"
......@@ -40,6 +43,7 @@
#include "verifier_map_ret_val.skel.h"
#include "verifier_masking.skel.h"
#include "verifier_meta_access.skel.h"
#include "verifier_movsx.skel.h"
#include "verifier_netfilter_ctx.skel.h"
#include "verifier_netfilter_retcode.skel.h"
#include "verifier_prevent_map_lookup.skel.h"
......@@ -51,6 +55,7 @@
#include "verifier_ringbuf.skel.h"
#include "verifier_runtime_jit.skel.h"
#include "verifier_scalar_ids.skel.h"
#include "verifier_sdiv.skel.h"
#include "verifier_search_pruning.skel.h"
#include "verifier_sock.skel.h"
#include "verifier_spill_fill.skel.h"
......@@ -113,6 +118,7 @@ void test_verifier_bounds_deduction(void) { RUN(verifier_bounds_deduction);
void test_verifier_bounds_deduction_non_const(void) { RUN(verifier_bounds_deduction_non_const); }
void test_verifier_bounds_mix_sign_unsign(void) { RUN(verifier_bounds_mix_sign_unsign); }
void test_verifier_bpf_get_stack(void) { RUN(verifier_bpf_get_stack); }
void test_verifier_bswap(void) { RUN(verifier_bswap); }
void test_verifier_btf_ctx_access(void) { RUN(verifier_btf_ctx_access); }
void test_verifier_cfg(void) { RUN(verifier_cfg); }
void test_verifier_cgroup_inv_retcode(void) { RUN(verifier_cgroup_inv_retcode); }
......@@ -126,6 +132,7 @@ void test_verifier_direct_packet_access(void) { RUN(verifier_direct_packet_acces
void test_verifier_direct_stack_access_wraparound(void) { RUN(verifier_direct_stack_access_wraparound); }
void test_verifier_div0(void) { RUN(verifier_div0); }
void test_verifier_div_overflow(void) { RUN(verifier_div_overflow); }
void test_verifier_gotol(void) { RUN(verifier_gotol); }
void test_verifier_helper_access_var_len(void) { RUN(verifier_helper_access_var_len); }
void test_verifier_helper_packet_access(void) { RUN(verifier_helper_packet_access); }
void test_verifier_helper_restricted(void) { RUN(verifier_helper_restricted); }
......@@ -133,6 +140,7 @@ void test_verifier_helper_value_access(void) { RUN(verifier_helper_value_access
void test_verifier_int_ptr(void) { RUN(verifier_int_ptr); }
void test_verifier_jeq_infer_not_null(void) { RUN(verifier_jeq_infer_not_null); }
void test_verifier_ld_ind(void) { RUN(verifier_ld_ind); }
void test_verifier_ldsx(void) { RUN(verifier_ldsx); }
void test_verifier_leak_ptr(void) { RUN(verifier_leak_ptr); }
void test_verifier_loops1(void) { RUN(verifier_loops1); }
void test_verifier_lwt(void) { RUN(verifier_lwt); }
......@@ -142,6 +150,7 @@ void test_verifier_map_ptr_mixing(void) { RUN(verifier_map_ptr_mixing); }
void test_verifier_map_ret_val(void) { RUN(verifier_map_ret_val); }
void test_verifier_masking(void) { RUN(verifier_masking); }
void test_verifier_meta_access(void) { RUN(verifier_meta_access); }
void test_verifier_movsx(void) { RUN(verifier_movsx); }
void test_verifier_netfilter_ctx(void) { RUN(verifier_netfilter_ctx); }
void test_verifier_netfilter_retcode(void) { RUN(verifier_netfilter_retcode); }
void test_verifier_prevent_map_lookup(void) { RUN(verifier_prevent_map_lookup); }
......@@ -153,6 +162,7 @@ void test_verifier_regalloc(void) { RUN(verifier_regalloc); }
void test_verifier_ringbuf(void) { RUN(verifier_ringbuf); }
void test_verifier_runtime_jit(void) { RUN(verifier_runtime_jit); }
void test_verifier_scalar_ids(void) { RUN(verifier_scalar_ids); }
void test_verifier_sdiv(void) { RUN(verifier_sdiv); }
void test_verifier_search_pruning(void) { RUN(verifier_search_pruning); }
void test_verifier_sock(void) { RUN(verifier_sock); }
void test_verifier_spill_fill(void) { RUN(verifier_spill_fill); }
......
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2023 Meta Platforms, Inc. and affiliates. */
#include "vmlinux.h"
#include <bpf/bpf_helpers.h>
#include <bpf/bpf_tracing.h>
#if defined(__TARGET_ARCH_x86) && __clang_major__ >= 18
const volatile int skip = 0;
#else
const volatile int skip = 1;
#endif
volatile const short val1 = -1;
volatile const int val2 = -1;
short val3 = -1;
int val4 = -1;
int done1, done2, ret1, ret2;
SEC("?raw_tp/sys_enter")
int rdonly_map_prog(const void *ctx)
{
if (done1)
return 0;
done1 = 1;
/* val1/val2 readonly map */
if (val1 == val2)
ret1 = 1;
return 0;
}
SEC("?raw_tp/sys_enter")
int map_val_prog(const void *ctx)
{
if (done2)
return 0;
done2 = 1;
/* val1/val2 regular read/write map */
if (val3 == val4)
ret2 = 1;
return 0;
}
struct bpf_testmod_struct_arg_1 {
int a;
};
long long int_member;
SEC("?fentry/bpf_testmod_test_arg_ptr_to_struct")
int BPF_PROG2(test_ptr_struct_arg, struct bpf_testmod_struct_arg_1 *, p)
{
/* probed memory access */
int_member = p->a;
return 0;
}
long long set_optlen, set_retval;
SEC("?cgroup/getsockopt")
int _getsockopt(volatile struct bpf_sockopt *ctx)
{
int old_optlen, old_retval;
old_optlen = ctx->optlen;
old_retval = ctx->retval;
ctx->optlen = -1;
ctx->retval = -1;
/* sign extension for ctx member */
set_optlen = ctx->optlen;
set_retval = ctx->retval;
ctx->optlen = old_optlen;
ctx->retval = old_retval;
return 0;
}
long long set_mark;
SEC("?tc")
int _tc(volatile struct __sk_buff *skb)
{
long long tmp_mark;
int old_mark;
old_mark = skb->mark;
skb->mark = 0xf6fe;
/* narrowed sign extension for ctx member */
#if __clang_major__ >= 18
/* force narrow one-byte signed load. Otherwise, compiler may
* generate a 32-bit unsigned load followed by an s8 movsx.
*/
asm volatile ("r1 = *(s8 *)(%[ctx] + %[off_mark])\n\t"
"%[tmp_mark] = r1"
: [tmp_mark]"=r"(tmp_mark)
: [ctx]"r"(skb),
[off_mark]"i"(offsetof(struct __sk_buff, mark))
: "r1");
#else
tmp_mark = (char)skb->mark;
#endif
set_mark = tmp_mark;
skb->mark = old_mark;
return 0;
}
char _license[] SEC("license") = "GPL";
// SPDX-License-Identifier: GPL-2.0
#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>
#include "bpf_misc.h"
#if defined(__TARGET_ARCH_x86) && __clang_major__ >= 18
SEC("socket")
__description("BSWAP, 16")
__success __success_unpriv __retval(0x23ff)
__naked void bswap_16(void)
{
asm volatile (" \
r0 = 0xff23; \
r0 = bswap16 r0; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("BSWAP, 32")
__success __success_unpriv __retval(0x23ff0000)
__naked void bswap_32(void)
{
asm volatile (" \
r0 = 0xff23; \
r0 = bswap32 r0; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("BSWAP, 64")
__success __success_unpriv __retval(0x34ff12ff)
__naked void bswap_64(void)
{
asm volatile (" \
r0 = %[u64_val] ll; \
r0 = bswap64 r0; \
exit; \
" :
: [u64_val]"i"(0xff12ff34ff56ff78ull)
: __clobber_all);
}
#else
SEC("socket")
__description("cpuv4 is not supported by compiler or jit, use a dummy test")
__success
int dummy_test(void)
{
return 0;
}
#endif
char _license[] SEC("license") = "GPL";
// SPDX-License-Identifier: GPL-2.0
#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>
#include "bpf_misc.h"
#if defined(__TARGET_ARCH_x86) && __clang_major__ >= 18
SEC("socket")
__description("gotol, small_imm")
__success __success_unpriv __retval(1)
__naked void gotol_small_imm(void)
{
asm volatile (" \
call %[bpf_ktime_get_ns]; \
if r0 == 0 goto l0_%=; \
gotol l1_%=; \
l2_%=: \
gotol l3_%=; \
l1_%=: \
r0 = 1; \
gotol l2_%=; \
l0_%=: \
r0 = 2; \
l3_%=: \
exit; \
" :
: __imm(bpf_ktime_get_ns)
: __clobber_all);
}
#else
SEC("socket")
__description("cpuv4 is not supported by compiler or jit, use a dummy test")
__success
int dummy_test(void)
{
return 0;
}
#endif
char _license[] SEC("license") = "GPL";
// SPDX-License-Identifier: GPL-2.0
#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>
#include "bpf_misc.h"
#if defined(__TARGET_ARCH_x86) && __clang_major__ >= 18
SEC("socket")
__description("LDSX, S8")
__success __success_unpriv __retval(-2)
__naked void ldsx_s8(void)
{
asm volatile (" \
r1 = 0x3fe; \
*(u64 *)(r10 - 8) = r1; \
r0 = *(s8 *)(r10 - 8); \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("LDSX, S16")
__success __success_unpriv __retval(-2)
__naked void ldsx_s16(void)
{
asm volatile (" \
r1 = 0x3fffe; \
*(u64 *)(r10 - 8) = r1; \
r0 = *(s16 *)(r10 - 8); \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("LDSX, S32")
__success __success_unpriv __retval(-1)
__naked void ldsx_s32(void)
{
asm volatile (" \
r1 = 0xfffffffe; \
*(u64 *)(r10 - 8) = r1; \
r0 = *(s32 *)(r10 - 8); \
r0 >>= 1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("LDSX, S8 range checking, privileged")
__log_level(2) __success __retval(1)
__msg("R1_w=scalar(smin=-128,smax=127)")
__naked void ldsx_s8_range_priv(void)
{
asm volatile (" \
call %[bpf_get_prandom_u32]; \
*(u64 *)(r10 - 8) = r0; \
r1 = *(s8 *)(r10 - 8); \
/* r1 with s8 range */ \
if r1 s> 0x7f goto l0_%=; \
if r1 s< -0x80 goto l0_%=; \
r0 = 1; \
l1_%=: \
exit; \
l0_%=: \
r0 = 2; \
goto l1_%=; \
" :
: __imm(bpf_get_prandom_u32)
: __clobber_all);
}
SEC("socket")
__description("LDSX, S16 range checking")
__success __success_unpriv __retval(1)
__naked void ldsx_s16_range(void)
{
asm volatile (" \
call %[bpf_get_prandom_u32]; \
*(u64 *)(r10 - 8) = r0; \
r1 = *(s16 *)(r10 - 8); \
/* r1 with s16 range */ \
if r1 s> 0x7fff goto l0_%=; \
if r1 s< -0x8000 goto l0_%=; \
r0 = 1; \
l1_%=: \
exit; \
l0_%=: \
r0 = 2; \
goto l1_%=; \
" :
: __imm(bpf_get_prandom_u32)
: __clobber_all);
}
SEC("socket")
__description("LDSX, S32 range checking")
__success __success_unpriv __retval(1)
__naked void ldsx_s32_range(void)
{
asm volatile (" \
call %[bpf_get_prandom_u32]; \
*(u64 *)(r10 - 8) = r0; \
r1 = *(s32 *)(r10 - 8); \
/* r1 with s16 range */ \
if r1 s> 0x7fffFFFF goto l0_%=; \
if r1 s< -0x80000000 goto l0_%=; \
r0 = 1; \
l1_%=: \
exit; \
l0_%=: \
r0 = 2; \
goto l1_%=; \
" :
: __imm(bpf_get_prandom_u32)
: __clobber_all);
}
#else
SEC("socket")
__description("cpuv4 is not supported by compiler or jit, use a dummy test")
__success
int dummy_test(void)
{
return 0;
}
#endif
char _license[] SEC("license") = "GPL";
// SPDX-License-Identifier: GPL-2.0
#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>
#include "bpf_misc.h"
#if defined(__TARGET_ARCH_x86) && __clang_major__ >= 18
SEC("socket")
__description("MOV32SX, S8")
__success __success_unpriv __retval(0x23)
__naked void mov32sx_s8(void)
{
asm volatile (" \
w0 = 0xff23; \
w0 = (s8)w0; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("MOV32SX, S16")
__success __success_unpriv __retval(0xFFFFff23)
__naked void mov32sx_s16(void)
{
asm volatile (" \
w0 = 0xff23; \
w0 = (s16)w0; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("MOV64SX, S8")
__success __success_unpriv __retval(-2)
__naked void mov64sx_s8(void)
{
asm volatile (" \
r0 = 0x1fe; \
r0 = (s8)r0; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("MOV64SX, S16")
__success __success_unpriv __retval(0xf23)
__naked void mov64sx_s16(void)
{
asm volatile (" \
r0 = 0xf0f23; \
r0 = (s16)r0; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("MOV64SX, S32")
__success __success_unpriv __retval(-1)
__naked void mov64sx_s32(void)
{
asm volatile (" \
r0 = 0xfffffffe; \
r0 = (s32)r0; \
r0 >>= 1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("MOV32SX, S8, range_check")
__success __success_unpriv __retval(1)
__naked void mov32sx_s8_range(void)
{
asm volatile (" \
call %[bpf_get_prandom_u32]; \
w1 = (s8)w0; \
/* w1 with s8 range */ \
if w1 s> 0x7f goto l0_%=; \
if w1 s< -0x80 goto l0_%=; \
r0 = 1; \
l1_%=: \
exit; \
l0_%=: \
r0 = 2; \
goto l1_%=; \
" :
: __imm(bpf_get_prandom_u32)
: __clobber_all);
}
SEC("socket")
__description("MOV32SX, S16, range_check")
__success __success_unpriv __retval(1)
__naked void mov32sx_s16_range(void)
{
asm volatile (" \
call %[bpf_get_prandom_u32]; \
w1 = (s16)w0; \
/* w1 with s16 range */ \
if w1 s> 0x7fff goto l0_%=; \
if w1 s< -0x80ff goto l0_%=; \
r0 = 1; \
l1_%=: \
exit; \
l0_%=: \
r0 = 2; \
goto l1_%=; \
" :
: __imm(bpf_get_prandom_u32)
: __clobber_all);
}
SEC("socket")
__description("MOV32SX, S16, range_check 2")
__success __success_unpriv __retval(1)
__naked void mov32sx_s16_range_2(void)
{
asm volatile (" \
r1 = 65535; \
w2 = (s16)w1; \
r2 >>= 1; \
if r2 != 0x7fffFFFF goto l0_%=; \
r0 = 1; \
l1_%=: \
exit; \
l0_%=: \
r0 = 0; \
goto l1_%=; \
" :
: __imm(bpf_get_prandom_u32)
: __clobber_all);
}
SEC("socket")
__description("MOV64SX, S8, range_check")
__success __success_unpriv __retval(1)
__naked void mov64sx_s8_range(void)
{
asm volatile (" \
call %[bpf_get_prandom_u32]; \
r1 = (s8)r0; \
/* r1 with s8 range */ \
if r1 s> 0x7f goto l0_%=; \
if r1 s< -0x80 goto l0_%=; \
r0 = 1; \
l1_%=: \
exit; \
l0_%=: \
r0 = 2; \
goto l1_%=; \
" :
: __imm(bpf_get_prandom_u32)
: __clobber_all);
}
SEC("socket")
__description("MOV64SX, S16, range_check")
__success __success_unpriv __retval(1)
__naked void mov64sx_s16_range(void)
{
asm volatile (" \
call %[bpf_get_prandom_u32]; \
r1 = (s16)r0; \
/* r1 with s16 range */ \
if r1 s> 0x7fff goto l0_%=; \
if r1 s< -0x8000 goto l0_%=; \
r0 = 1; \
l1_%=: \
exit; \
l0_%=: \
r0 = 2; \
goto l1_%=; \
" :
: __imm(bpf_get_prandom_u32)
: __clobber_all);
}
SEC("socket")
__description("MOV64SX, S32, range_check")
__success __success_unpriv __retval(1)
__naked void mov64sx_s32_range(void)
{
asm volatile (" \
call %[bpf_get_prandom_u32]; \
r1 = (s32)r0; \
/* r1 with s32 range */ \
if r1 s> 0x7fffffff goto l0_%=; \
if r1 s< -0x80000000 goto l0_%=; \
r0 = 1; \
l1_%=: \
exit; \
l0_%=: \
r0 = 2; \
goto l1_%=; \
" :
: __imm(bpf_get_prandom_u32)
: __clobber_all);
}
#else
SEC("socket")
__description("cpuv4 is not supported by compiler or jit, use a dummy test")
__success
int dummy_test(void)
{
return 0;
}
#endif
char _license[] SEC("license") = "GPL";
// SPDX-License-Identifier: GPL-2.0
#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>
#include "bpf_misc.h"
#if defined(__TARGET_ARCH_x86) && __clang_major__ >= 18
SEC("socket")
__description("SDIV32, non-zero imm divisor, check 1")
__success __success_unpriv __retval(-20)
__naked void sdiv32_non_zero_imm_1(void)
{
asm volatile (" \
w0 = -41; \
w0 s/= 2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV32, non-zero imm divisor, check 2")
__success __success_unpriv __retval(-20)
__naked void sdiv32_non_zero_imm_2(void)
{
asm volatile (" \
w0 = 41; \
w0 s/= -2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV32, non-zero imm divisor, check 3")
__success __success_unpriv __retval(20)
__naked void sdiv32_non_zero_imm_3(void)
{
asm volatile (" \
w0 = -41; \
w0 s/= -2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV32, non-zero imm divisor, check 4")
__success __success_unpriv __retval(-21)
__naked void sdiv32_non_zero_imm_4(void)
{
asm volatile (" \
w0 = -42; \
w0 s/= 2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV32, non-zero imm divisor, check 5")
__success __success_unpriv __retval(-21)
__naked void sdiv32_non_zero_imm_5(void)
{
asm volatile (" \
w0 = 42; \
w0 s/= -2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV32, non-zero imm divisor, check 6")
__success __success_unpriv __retval(21)
__naked void sdiv32_non_zero_imm_6(void)
{
asm volatile (" \
w0 = -42; \
w0 s/= -2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV32, non-zero imm divisor, check 7")
__success __success_unpriv __retval(21)
__naked void sdiv32_non_zero_imm_7(void)
{
asm volatile (" \
w0 = 42; \
w0 s/= 2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV32, non-zero imm divisor, check 8")
__success __success_unpriv __retval(20)
__naked void sdiv32_non_zero_imm_8(void)
{
asm volatile (" \
w0 = 41; \
w0 s/= 2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV32, non-zero reg divisor, check 1")
__success __success_unpriv __retval(-20)
__naked void sdiv32_non_zero_reg_1(void)
{
asm volatile (" \
w0 = -41; \
w1 = 2; \
w0 s/= w1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV32, non-zero reg divisor, check 2")
__success __success_unpriv __retval(-20)
__naked void sdiv32_non_zero_reg_2(void)
{
asm volatile (" \
w0 = 41; \
w1 = -2; \
w0 s/= w1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV32, non-zero reg divisor, check 3")
__success __success_unpriv __retval(20)
__naked void sdiv32_non_zero_reg_3(void)
{
asm volatile (" \
w0 = -41; \
w1 = -2; \
w0 s/= w1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV32, non-zero reg divisor, check 4")
__success __success_unpriv __retval(-21)
__naked void sdiv32_non_zero_reg_4(void)
{
asm volatile (" \
w0 = -42; \
w1 = 2; \
w0 s/= w1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV32, non-zero reg divisor, check 5")
__success __success_unpriv __retval(-21)
__naked void sdiv32_non_zero_reg_5(void)
{
asm volatile (" \
w0 = 42; \
w1 = -2; \
w0 s/= w1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV32, non-zero reg divisor, check 6")
__success __success_unpriv __retval(21)
__naked void sdiv32_non_zero_reg_6(void)
{
asm volatile (" \
w0 = -42; \
w1 = -2; \
w0 s/= w1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV32, non-zero reg divisor, check 7")
__success __success_unpriv __retval(21)
__naked void sdiv32_non_zero_reg_7(void)
{
asm volatile (" \
w0 = 42; \
w1 = 2; \
w0 s/= w1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV32, non-zero reg divisor, check 8")
__success __success_unpriv __retval(20)
__naked void sdiv32_non_zero_reg_8(void)
{
asm volatile (" \
w0 = 41; \
w1 = 2; \
w0 s/= w1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV64, non-zero imm divisor, check 1")
__success __success_unpriv __retval(-20)
__naked void sdiv64_non_zero_imm_1(void)
{
asm volatile (" \
r0 = -41; \
r0 s/= 2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV64, non-zero imm divisor, check 2")
__success __success_unpriv __retval(-20)
__naked void sdiv64_non_zero_imm_2(void)
{
asm volatile (" \
r0 = 41; \
r0 s/= -2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV64, non-zero imm divisor, check 3")
__success __success_unpriv __retval(20)
__naked void sdiv64_non_zero_imm_3(void)
{
asm volatile (" \
r0 = -41; \
r0 s/= -2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV64, non-zero imm divisor, check 4")
__success __success_unpriv __retval(-21)
__naked void sdiv64_non_zero_imm_4(void)
{
asm volatile (" \
r0 = -42; \
r0 s/= 2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV64, non-zero imm divisor, check 5")
__success __success_unpriv __retval(-21)
__naked void sdiv64_non_zero_imm_5(void)
{
asm volatile (" \
r0 = 42; \
r0 s/= -2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV64, non-zero imm divisor, check 6")
__success __success_unpriv __retval(21)
__naked void sdiv64_non_zero_imm_6(void)
{
asm volatile (" \
r0 = -42; \
r0 s/= -2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV64, non-zero reg divisor, check 1")
__success __success_unpriv __retval(-20)
__naked void sdiv64_non_zero_reg_1(void)
{
asm volatile (" \
r0 = -41; \
r1 = 2; \
r0 s/= r1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV64, non-zero reg divisor, check 2")
__success __success_unpriv __retval(-20)
__naked void sdiv64_non_zero_reg_2(void)
{
asm volatile (" \
r0 = 41; \
r1 = -2; \
r0 s/= r1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV64, non-zero reg divisor, check 3")
__success __success_unpriv __retval(20)
__naked void sdiv64_non_zero_reg_3(void)
{
asm volatile (" \
r0 = -41; \
r1 = -2; \
r0 s/= r1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV64, non-zero reg divisor, check 4")
__success __success_unpriv __retval(-21)
__naked void sdiv64_non_zero_reg_4(void)
{
asm volatile (" \
r0 = -42; \
r1 = 2; \
r0 s/= r1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV64, non-zero reg divisor, check 5")
__success __success_unpriv __retval(-21)
__naked void sdiv64_non_zero_reg_5(void)
{
asm volatile (" \
r0 = 42; \
r1 = -2; \
r0 s/= r1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV64, non-zero reg divisor, check 6")
__success __success_unpriv __retval(21)
__naked void sdiv64_non_zero_reg_6(void)
{
asm volatile (" \
r0 = -42; \
r1 = -2; \
r0 s/= r1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD32, non-zero imm divisor, check 1")
__success __success_unpriv __retval(-1)
__naked void smod32_non_zero_imm_1(void)
{
asm volatile (" \
w0 = -41; \
w0 s%%= 2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD32, non-zero imm divisor, check 2")
__success __success_unpriv __retval(1)
__naked void smod32_non_zero_imm_2(void)
{
asm volatile (" \
w0 = 41; \
w0 s%%= -2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD32, non-zero imm divisor, check 3")
__success __success_unpriv __retval(-1)
__naked void smod32_non_zero_imm_3(void)
{
asm volatile (" \
w0 = -41; \
w0 s%%= -2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD32, non-zero imm divisor, check 4")
__success __success_unpriv __retval(0)
__naked void smod32_non_zero_imm_4(void)
{
asm volatile (" \
w0 = -42; \
w0 s%%= 2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD32, non-zero imm divisor, check 5")
__success __success_unpriv __retval(0)
__naked void smod32_non_zero_imm_5(void)
{
asm volatile (" \
w0 = 42; \
w0 s%%= -2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD32, non-zero imm divisor, check 6")
__success __success_unpriv __retval(0)
__naked void smod32_non_zero_imm_6(void)
{
asm volatile (" \
w0 = -42; \
w0 s%%= -2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD32, non-zero reg divisor, check 1")
__success __success_unpriv __retval(-1)
__naked void smod32_non_zero_reg_1(void)
{
asm volatile (" \
w0 = -41; \
w1 = 2; \
w0 s%%= w1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD32, non-zero reg divisor, check 2")
__success __success_unpriv __retval(1)
__naked void smod32_non_zero_reg_2(void)
{
asm volatile (" \
w0 = 41; \
w1 = -2; \
w0 s%%= w1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD32, non-zero reg divisor, check 3")
__success __success_unpriv __retval(-1)
__naked void smod32_non_zero_reg_3(void)
{
asm volatile (" \
w0 = -41; \
w1 = -2; \
w0 s%%= w1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD32, non-zero reg divisor, check 4")
__success __success_unpriv __retval(0)
__naked void smod32_non_zero_reg_4(void)
{
asm volatile (" \
w0 = -42; \
w1 = 2; \
w0 s%%= w1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD32, non-zero reg divisor, check 5")
__success __success_unpriv __retval(0)
__naked void smod32_non_zero_reg_5(void)
{
asm volatile (" \
w0 = 42; \
w1 = -2; \
w0 s%%= w1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD32, non-zero reg divisor, check 6")
__success __success_unpriv __retval(0)
__naked void smod32_non_zero_reg_6(void)
{
asm volatile (" \
w0 = -42; \
w1 = -2; \
w0 s%%= w1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD64, non-zero imm divisor, check 1")
__success __success_unpriv __retval(-1)
__naked void smod64_non_zero_imm_1(void)
{
asm volatile (" \
r0 = -41; \
r0 s%%= 2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD64, non-zero imm divisor, check 2")
__success __success_unpriv __retval(1)
__naked void smod64_non_zero_imm_2(void)
{
asm volatile (" \
r0 = 41; \
r0 s%%= -2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD64, non-zero imm divisor, check 3")
__success __success_unpriv __retval(-1)
__naked void smod64_non_zero_imm_3(void)
{
asm volatile (" \
r0 = -41; \
r0 s%%= -2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD64, non-zero imm divisor, check 4")
__success __success_unpriv __retval(0)
__naked void smod64_non_zero_imm_4(void)
{
asm volatile (" \
r0 = -42; \
r0 s%%= 2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD64, non-zero imm divisor, check 5")
__success __success_unpriv __retval(-0)
__naked void smod64_non_zero_imm_5(void)
{
asm volatile (" \
r0 = 42; \
r0 s%%= -2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD64, non-zero imm divisor, check 6")
__success __success_unpriv __retval(0)
__naked void smod64_non_zero_imm_6(void)
{
asm volatile (" \
r0 = -42; \
r0 s%%= -2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD64, non-zero imm divisor, check 7")
__success __success_unpriv __retval(0)
__naked void smod64_non_zero_imm_7(void)
{
asm volatile (" \
r0 = 42; \
r0 s%%= 2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD64, non-zero imm divisor, check 8")
__success __success_unpriv __retval(1)
__naked void smod64_non_zero_imm_8(void)
{
asm volatile (" \
r0 = 41; \
r0 s%%= 2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD64, non-zero reg divisor, check 1")
__success __success_unpriv __retval(-1)
__naked void smod64_non_zero_reg_1(void)
{
asm volatile (" \
r0 = -41; \
r1 = 2; \
r0 s%%= r1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD64, non-zero reg divisor, check 2")
__success __success_unpriv __retval(1)
__naked void smod64_non_zero_reg_2(void)
{
asm volatile (" \
r0 = 41; \
r1 = -2; \
r0 s%%= r1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD64, non-zero reg divisor, check 3")
__success __success_unpriv __retval(-1)
__naked void smod64_non_zero_reg_3(void)
{
asm volatile (" \
r0 = -41; \
r1 = -2; \
r0 s%%= r1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD64, non-zero reg divisor, check 4")
__success __success_unpriv __retval(0)
__naked void smod64_non_zero_reg_4(void)
{
asm volatile (" \
r0 = -42; \
r1 = 2; \
r0 s%%= r1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD64, non-zero reg divisor, check 5")
__success __success_unpriv __retval(0)
__naked void smod64_non_zero_reg_5(void)
{
asm volatile (" \
r0 = 42; \
r1 = -2; \
r0 s%%= r1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD64, non-zero reg divisor, check 6")
__success __success_unpriv __retval(0)
__naked void smod64_non_zero_reg_6(void)
{
asm volatile (" \
r0 = -42; \
r1 = -2; \
r0 s%%= r1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD64, non-zero reg divisor, check 7")
__success __success_unpriv __retval(0)
__naked void smod64_non_zero_reg_7(void)
{
asm volatile (" \
r0 = 42; \
r1 = 2; \
r0 s%%= r1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD64, non-zero reg divisor, check 8")
__success __success_unpriv __retval(1)
__naked void smod64_non_zero_reg_8(void)
{
asm volatile (" \
r0 = 41; \
r1 = 2; \
r0 s%%= r1; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV32, zero divisor")
__success __success_unpriv __retval(0)
__naked void sdiv32_zero_divisor(void)
{
asm volatile (" \
w0 = 42; \
w1 = 0; \
w2 = -1; \
w2 s/= w1; \
w0 = w2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SDIV64, zero divisor")
__success __success_unpriv __retval(0)
__naked void sdiv64_zero_divisor(void)
{
asm volatile (" \
r0 = 42; \
r1 = 0; \
r2 = -1; \
r2 s/= r1; \
r0 = r2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD32, zero divisor")
__success __success_unpriv __retval(-1)
__naked void smod32_zero_divisor(void)
{
asm volatile (" \
w0 = 42; \
w1 = 0; \
w2 = -1; \
w2 s%%= w1; \
w0 = w2; \
exit; \
" ::: __clobber_all);
}
SEC("socket")
__description("SMOD64, zero divisor")
__success __success_unpriv __retval(-1)
__naked void smod64_zero_divisor(void)
{
asm volatile (" \
r0 = 42; \
r1 = 0; \
r2 = -1; \
r2 s%%= r1; \
r0 = r2; \
exit; \
" ::: __clobber_all);
}
#else
SEC("socket")
__description("cpuv4 is not supported by compiler or jit, use a dummy test")
__success
int dummy_test(void)
{
return 0;
}
#endif
char _license[] SEC("license") = "GPL";
......@@ -176,11 +176,11 @@
.retval = 1,
},
{
"invalid 64-bit BPF_END",
"invalid 64-bit BPF_END with BPF_TO_BE",
.insns = {
BPF_MOV32_IMM(BPF_REG_0, 0),
{
.code = BPF_ALU64 | BPF_END | BPF_TO_LE,
.code = BPF_ALU64 | BPF_END | BPF_TO_BE,
.dst_reg = BPF_REG_0,
.src_reg = 0,
.off = 0,
......@@ -188,7 +188,7 @@
},
BPF_EXIT_INSN(),
},
.errstr = "unknown opcode d7",
.errstr = "unknown opcode df",
.result = REJECT,
},
{
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment