Commit f88fc122 authored by Boris Brezillon's avatar Boris Brezillon

mtd: nand: Cleanup/rework the atmel_nand driver

This is a complete rewrite of the driver whose main purpose is to
support the new DT representation where the NAND controller node is now
really visible in the DT and appears under the EBI bus. With this new
representation, we can add other devices under the EBI bus without
risking pinmuxing conflicts (the NAND controller is under the EBI
bus logic and as such, share some of its pins with other devices
connected on this bus).

Even though the goal of this rework was not necessarily to add new
features, the new driver has been designed with this in mind. With a
clearer separation between the different blocks and different IP
revisions, adding new functionalities should be easier (we already
have plans to support SMC timing configuration so that we no longer
have to rely on the configuration done by the bootloader/bootstrap).

Also note that we no longer have a custom ->cmdfunc() implementation,
which means we can now benefit from new features added in the core
implementation for free (support for new NAND operations for example).

The last thing that we gain with this rework is support for multi-chips
and multi-dies chips, thanks to the clean NAND controller <-> NAND
devices representation.

During this transition we also dropped support for AVR32 SoCs which
should soon disappear from mainline (removal of the AVR32 arch is
planned for 4.12).

This new driver has been tested on several platforms (at91sam9261,
at91sam9g45, at91sam9x5, sama5d3 and sama5d4) to make sure it did not
introduce regressions, and it's worth mentioning that old bindings are
still supported (which partly explain the positive diffstat).
Signed-off-by: default avatarBoris Brezillon <boris.brezillon@free-electrons.com>
Acked-by: default avatarNicolas Ferre <nicolas.ferre@microchip.com>
parent ef980cf8
......@@ -2244,7 +2244,7 @@ M: Wenyou Yang <wenyou.yang@atmel.com>
M: Josh Wu <rainyfeeling@outlook.com>
L: linux-mtd@lists.infradead.org
S: Supported
F: drivers/mtd/nand/atmel_nand*
F: drivers/mtd/nand/atmel/*
ATMEL SDMMC DRIVER
M: Ludovic Desroches <ludovic.desroches@microchip.com>
......
......@@ -306,11 +306,11 @@ config MTD_NAND_CS553X
If you say "m", the module will be called cs553x_nand.
config MTD_NAND_ATMEL
tristate "Support for NAND Flash / SmartMedia on AT91 and AVR32"
depends on ARCH_AT91 || AVR32
tristate "Support for NAND Flash / SmartMedia on AT91"
depends on ARCH_AT91
help
Enables support for NAND Flash / Smart Media Card interface
on Atmel AT91 and AVR32 processors.
on Atmel AT91 processors.
config MTD_NAND_PXA3xx
tristate "NAND support on PXA3xx and Armada 370/XP"
......
......@@ -24,7 +24,7 @@ obj-$(CONFIG_MTD_NAND_SHARPSL) += sharpsl.o
obj-$(CONFIG_MTD_NAND_NANDSIM) += nandsim.o
obj-$(CONFIG_MTD_NAND_CS553X) += cs553x_nand.o
obj-$(CONFIG_MTD_NAND_NDFC) += ndfc.o
obj-$(CONFIG_MTD_NAND_ATMEL) += atmel_nand.o
obj-$(CONFIG_MTD_NAND_ATMEL) += atmel/
obj-$(CONFIG_MTD_NAND_GPIO) += gpio.o
omap2_nand-objs := omap2.o
obj-$(CONFIG_MTD_NAND_OMAP2) += omap2_nand.o
......
obj-$(CONFIG_MTD_NAND_ATMEL) += atmel-nand-controller.o atmel-pmecc.o
atmel-nand-controller-objs := nand-controller.o
atmel-pmecc-objs := pmecc.o
/*
* Copyright 2017 ATMEL
* Copyright 2017 Free Electrons
*
* Author: Boris Brezillon <boris.brezillon@free-electrons.com>
*
* Derived from the atmel_nand.c driver which contained the following
* copyrights:
*
* Copyright 2003 Rick Bronson
*
* Derived from drivers/mtd/nand/autcpu12.c
* Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
*
* Derived from drivers/mtd/spia.c
* Copyright 2000 Steven J. Hill (sjhill@cotw.com)
*
*
* Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
* Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
*
* Derived from Das U-Boot source code
* (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
* Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
*
* Add Programmable Multibit ECC support for various AT91 SoC
* Copyright 2012 ATMEL, Hong Xu
*
* Add Nand Flash Controller support for SAMA5 SoC
* Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* A few words about the naming convention in this file. This convention
* applies to structure and function names.
*
* Prefixes:
*
* - atmel_nand_: all generic structures/functions
* - atmel_smc_nand_: all structures/functions specific to the SMC interface
* (at91sam9 and avr32 SoCs)
* - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
* (sama5 SoCs and later)
* - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
* that is available in the HSMC block
* - <soc>_nand_: all SoC specific structures/functions
*/
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/genalloc.h>
#include <linux/gpio.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/mfd/syscon.h>
#include <linux/mfd/syscon/atmel-matrix.h>
#include <linux/module.h>
#include <linux/mtd/nand.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/iopoll.h>
#include <linux/platform_device.h>
#include <linux/platform_data/atmel.h>
#include <linux/regmap.h>
#include "pmecc.h"
#define ATMEL_HSMC_NFC_CFG 0x0
#define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24)
#define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24)
#define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20))
#define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16)
#define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13)
#define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12)
#define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9)
#define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8)
#define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0)
#define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1)
#define ATMEL_HSMC_NFC_CTRL 0x4
#define ATMEL_HSMC_NFC_CTRL_EN BIT(0)
#define ATMEL_HSMC_NFC_CTRL_DIS BIT(1)
#define ATMEL_HSMC_NFC_SR 0x8
#define ATMEL_HSMC_NFC_IER 0xc
#define ATMEL_HSMC_NFC_IDR 0x10
#define ATMEL_HSMC_NFC_IMR 0x14
#define ATMEL_HSMC_NFC_SR_ENABLED BIT(1)
#define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4)
#define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5)
#define ATMEL_HSMC_NFC_SR_BUSY BIT(8)
#define ATMEL_HSMC_NFC_SR_WR BIT(11)
#define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12)
#define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16)
#define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17)
#define ATMEL_HSMC_NFC_SR_DTOE BIT(20)
#define ATMEL_HSMC_NFC_SR_UNDEF BIT(21)
#define ATMEL_HSMC_NFC_SR_AWB BIT(22)
#define ATMEL_HSMC_NFC_SR_NFCASE BIT(23)
#define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \
ATMEL_HSMC_NFC_SR_UNDEF | \
ATMEL_HSMC_NFC_SR_AWB | \
ATMEL_HSMC_NFC_SR_NFCASE)
#define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24)
#define ATMEL_HSMC_NFC_ADDR 0x18
#define ATMEL_HSMC_NFC_BANK 0x1c
#define ATMEL_NFC_MAX_RB_ID 7
#define ATMEL_NFC_SRAM_SIZE 0x2400
#define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2))
#define ATMEL_NFC_VCMD2 BIT(18)
#define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19)
#define ATMEL_NFC_CSID(cs) ((cs) << 22)
#define ATMEL_NFC_DATAEN BIT(25)
#define ATMEL_NFC_NFCWR BIT(26)
#define ATMEL_NFC_MAX_ADDR_CYCLES 5
#define ATMEL_NAND_ALE_OFFSET BIT(21)
#define ATMEL_NAND_CLE_OFFSET BIT(22)
#define DEFAULT_TIMEOUT_MS 1000
#define MIN_DMA_LEN 128
enum atmel_nand_rb_type {
ATMEL_NAND_NO_RB,
ATMEL_NAND_NATIVE_RB,
ATMEL_NAND_GPIO_RB,
};
struct atmel_nand_rb {
enum atmel_nand_rb_type type;
union {
struct gpio_desc *gpio;
int id;
};
};
struct atmel_nand_cs {
int id;
struct atmel_nand_rb rb;
struct gpio_desc *csgpio;
struct {
void __iomem *virt;
dma_addr_t dma;
} io;
};
struct atmel_nand {
struct list_head node;
struct device *dev;
struct nand_chip base;
struct atmel_nand_cs *activecs;
struct atmel_pmecc_user *pmecc;
struct gpio_desc *cdgpio;
int numcs;
struct atmel_nand_cs cs[];
};
static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
{
return container_of(chip, struct atmel_nand, base);
}
enum atmel_nfc_data_xfer {
ATMEL_NFC_NO_DATA,
ATMEL_NFC_READ_DATA,
ATMEL_NFC_WRITE_DATA,
};
struct atmel_nfc_op {
u8 cs;
u8 ncmds;
u8 cmds[2];
u8 naddrs;
u8 addrs[5];
enum atmel_nfc_data_xfer data;
u32 wait;
u32 errors;
};
struct atmel_nand_controller;
struct atmel_nand_controller_caps;
struct atmel_nand_controller_ops {
int (*probe)(struct platform_device *pdev,
const struct atmel_nand_controller_caps *caps);
int (*remove)(struct atmel_nand_controller *nc);
void (*nand_init)(struct atmel_nand_controller *nc,
struct atmel_nand *nand);
int (*ecc_init)(struct atmel_nand *nand);
};
struct atmel_nand_controller_caps {
bool has_dma;
bool legacy_of_bindings;
u32 ale_offs;
u32 cle_offs;
const struct atmel_nand_controller_ops *ops;
};
struct atmel_nand_controller {
struct nand_hw_control base;
const struct atmel_nand_controller_caps *caps;
struct device *dev;
struct regmap *smc;
struct dma_chan *dmac;
struct atmel_pmecc *pmecc;
struct list_head chips;
struct clk *mck;
};
static inline struct atmel_nand_controller *
to_nand_controller(struct nand_hw_control *ctl)
{
return container_of(ctl, struct atmel_nand_controller, base);
}
struct atmel_smc_nand_controller {
struct atmel_nand_controller base;
struct regmap *matrix;
unsigned int ebi_csa_offs;
};
static inline struct atmel_smc_nand_controller *
to_smc_nand_controller(struct nand_hw_control *ctl)
{
return container_of(to_nand_controller(ctl),
struct atmel_smc_nand_controller, base);
}
struct atmel_hsmc_nand_controller {
struct atmel_nand_controller base;
struct {
struct gen_pool *pool;
void __iomem *virt;
dma_addr_t dma;
} sram;
struct regmap *io;
struct atmel_nfc_op op;
struct completion complete;
int irq;
/* Only used when instantiating from legacy DT bindings. */
struct clk *clk;
};
static inline struct atmel_hsmc_nand_controller *
to_hsmc_nand_controller(struct nand_hw_control *ctl)
{
return container_of(to_nand_controller(ctl),
struct atmel_hsmc_nand_controller, base);
}
static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
{
op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
op->wait ^= status & op->wait;
return !op->wait || op->errors;
}
static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
{
struct atmel_hsmc_nand_controller *nc = data;
u32 sr, rcvd;
bool done;
regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);
rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
done = atmel_nfc_op_done(&nc->op, sr);
if (rcvd)
regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);
if (done)
complete(&nc->complete);
return rcvd ? IRQ_HANDLED : IRQ_NONE;
}
static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
unsigned int timeout_ms)
{
int ret;
if (!timeout_ms)
timeout_ms = DEFAULT_TIMEOUT_MS;
if (poll) {
u32 status;
ret = regmap_read_poll_timeout(nc->base.smc,
ATMEL_HSMC_NFC_SR, status,
atmel_nfc_op_done(&nc->op,
status),
0, timeout_ms * 1000);
} else {
init_completion(&nc->complete);
regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
ret = wait_for_completion_timeout(&nc->complete,
msecs_to_jiffies(timeout_ms));
if (!ret)
ret = -ETIMEDOUT;
else
ret = 0;
regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
}
if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
ret = -ETIMEDOUT;
}
if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
dev_err(nc->base.dev, "Access to an undefined area\n");
ret = -EIO;
}
if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
dev_err(nc->base.dev, "Access while busy\n");
ret = -EIO;
}
if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
dev_err(nc->base.dev, "Wrong access size\n");
ret = -EIO;
}
return ret;
}
static void atmel_nand_dma_transfer_finished(void *data)
{
struct completion *finished = data;
complete(finished);
}
static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
void *buf, dma_addr_t dev_dma, size_t len,
enum dma_data_direction dir)
{
DECLARE_COMPLETION_ONSTACK(finished);
dma_addr_t src_dma, dst_dma, buf_dma;
struct dma_async_tx_descriptor *tx;
dma_cookie_t cookie;
buf_dma = dma_map_single(nc->dev, buf, len, dir);
if (dma_mapping_error(nc->dev, dev_dma)) {
dev_err(nc->dev,
"Failed to prepare a buffer for DMA access\n");
goto err;
}
if (dir == DMA_FROM_DEVICE) {
src_dma = dev_dma;
dst_dma = buf_dma;
} else {
src_dma = buf_dma;
dst_dma = dev_dma;
}
tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
if (!tx) {
dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
goto err_unmap;
}
tx->callback = atmel_nand_dma_transfer_finished;
tx->callback_param = &finished;
cookie = dmaengine_submit(tx);
if (dma_submit_error(cookie)) {
dev_err(nc->dev, "Failed to do DMA tx_submit\n");
goto err_unmap;
}
dma_async_issue_pending(nc->dmac);
wait_for_completion(&finished);
return 0;
err_unmap:
dma_unmap_single(nc->dev, buf_dma, len, dir);
err:
dev_dbg(nc->dev, "Fall back to CPU I/O\n");
return -EIO;
}
static u8 atmel_nand_read_byte(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand *nand = to_atmel_nand(chip);
return ioread8(nand->activecs->io.virt);
}
static u16 atmel_nand_read_word(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand *nand = to_atmel_nand(chip);
return ioread16(nand->activecs->io.virt);
}
static void atmel_nand_write_byte(struct mtd_info *mtd, u8 byte)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand *nand = to_atmel_nand(chip);
if (chip->options & NAND_BUSWIDTH_16)
iowrite16(byte | (byte << 8), nand->activecs->io.virt);
else
iowrite8(byte, nand->activecs->io.virt);
}
static void atmel_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand *nand = to_atmel_nand(chip);
struct atmel_nand_controller *nc;
nc = to_nand_controller(chip->controller);
/*
* If the controller supports DMA, the buffer address is DMA-able and
* len is long enough to make DMA transfers profitable, let's trigger
* a DMA transfer. If it fails, fallback to PIO mode.
*/
if (nc->dmac && virt_addr_valid(buf) &&
len >= MIN_DMA_LEN &&
!atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
DMA_FROM_DEVICE))
return;
if (chip->options & NAND_BUSWIDTH_16)
ioread16_rep(nand->activecs->io.virt, buf, len / 2);
else
ioread8_rep(nand->activecs->io.virt, buf, len);
}
static void atmel_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand *nand = to_atmel_nand(chip);
struct atmel_nand_controller *nc;
nc = to_nand_controller(chip->controller);
/*
* If the controller supports DMA, the buffer address is DMA-able and
* len is long enough to make DMA transfers profitable, let's trigger
* a DMA transfer. If it fails, fallback to PIO mode.
*/
if (nc->dmac && virt_addr_valid(buf) &&
len >= MIN_DMA_LEN &&
!atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
len, DMA_TO_DEVICE))
return;
if (chip->options & NAND_BUSWIDTH_16)
iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
else
iowrite8_rep(nand->activecs->io.virt, buf, len);
}
static int atmel_nand_dev_ready(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand *nand = to_atmel_nand(chip);
return gpiod_get_value(nand->activecs->rb.gpio);
}
static void atmel_nand_select_chip(struct mtd_info *mtd, int cs)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand *nand = to_atmel_nand(chip);
if (cs < 0 || cs >= nand->numcs) {
nand->activecs = NULL;
chip->dev_ready = NULL;
return;
}
nand->activecs = &nand->cs[cs];
if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB)
chip->dev_ready = atmel_nand_dev_ready;
}
static int atmel_hsmc_nand_dev_ready(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand *nand = to_atmel_nand(chip);
struct atmel_hsmc_nand_controller *nc;
u32 status;
nc = to_hsmc_nand_controller(chip->controller);
regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status);
return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
}
static void atmel_hsmc_nand_select_chip(struct mtd_info *mtd, int cs)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand *nand = to_atmel_nand(chip);
struct atmel_hsmc_nand_controller *nc;
nc = to_hsmc_nand_controller(chip->controller);
atmel_nand_select_chip(mtd, cs);
if (!nand->activecs) {
regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
ATMEL_HSMC_NFC_CTRL_DIS);
return;
}
if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB)
chip->dev_ready = atmel_hsmc_nand_dev_ready;
regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
ATMEL_HSMC_NFC_CFG_RSPARE |
ATMEL_HSMC_NFC_CFG_WSPARE,
ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
ATMEL_HSMC_NFC_CFG_RSPARE);
regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
ATMEL_HSMC_NFC_CTRL_EN);
}
static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
{
u8 *addrs = nc->op.addrs;
unsigned int op = 0;
u32 addr, val;
int i, ret;
nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;
for (i = 0; i < nc->op.ncmds; i++)
op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);
if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);
op |= ATMEL_NFC_CSID(nc->op.cs) |
ATMEL_NFC_ACYCLE(nc->op.naddrs);
if (nc->op.ncmds > 1)
op |= ATMEL_NFC_VCMD2;
addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
(addrs[3] << 24);
if (nc->op.data != ATMEL_NFC_NO_DATA) {
op |= ATMEL_NFC_DATAEN;
nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;
if (nc->op.data == ATMEL_NFC_WRITE_DATA)
op |= ATMEL_NFC_NFCWR;
}
/* Clear all flags. */
regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);
/* Send the command. */
regmap_write(nc->io, op, addr);
ret = atmel_nfc_wait(nc, poll, 0);
if (ret)
dev_err(nc->base.dev,
"Failed to send NAND command (err = %d)!",
ret);
/* Reset the op state. */
memset(&nc->op, 0, sizeof(nc->op));
return ret;
}
static void atmel_hsmc_nand_cmd_ctrl(struct mtd_info *mtd, int dat,
unsigned int ctrl)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand *nand = to_atmel_nand(chip);
struct atmel_hsmc_nand_controller *nc;
nc = to_hsmc_nand_controller(chip->controller);
if (ctrl & NAND_ALE) {
if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
return;
nc->op.addrs[nc->op.naddrs++] = dat;
} else if (ctrl & NAND_CLE) {
if (nc->op.ncmds > 1)
return;
nc->op.cmds[nc->op.ncmds++] = dat;
}
if (dat == NAND_CMD_NONE) {
nc->op.cs = nand->activecs->id;
atmel_nfc_exec_op(nc, true);
}
}
static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd,
unsigned int ctrl)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand *nand = to_atmel_nand(chip);
struct atmel_nand_controller *nc;
nc = to_nand_controller(chip->controller);
if ((ctrl & NAND_CTRL_CHANGE) && nand->activecs->csgpio) {
if (ctrl & NAND_NCE)
gpiod_set_value(nand->activecs->csgpio, 0);
else
gpiod_set_value(nand->activecs->csgpio, 1);
}
if (ctrl & NAND_ALE)
writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs);
else if (ctrl & NAND_CLE)
writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs);
}
static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
bool oob_required)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct atmel_hsmc_nand_controller *nc;
int ret = -EIO;
nc = to_hsmc_nand_controller(chip->controller);
if (nc->base.dmac)
ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
nc->sram.dma, mtd->writesize,
DMA_TO_DEVICE);
/* Falling back to CPU copy. */
if (ret)
memcpy_toio(nc->sram.virt, buf, mtd->writesize);
if (oob_required)
memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
mtd->oobsize);
}
static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
bool oob_required)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct atmel_hsmc_nand_controller *nc;
int ret = -EIO;
nc = to_hsmc_nand_controller(chip->controller);
if (nc->base.dmac)
ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
mtd->writesize, DMA_FROM_DEVICE);
/* Falling back to CPU copy. */
if (ret)
memcpy_fromio(buf, nc->sram.virt, mtd->writesize);
if (oob_required)
memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
mtd->oobsize);
}
static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct atmel_hsmc_nand_controller *nc;
nc = to_hsmc_nand_controller(chip->controller);
if (column >= 0) {
nc->op.addrs[nc->op.naddrs++] = column;
/*
* 2 address cycles for the column offset on large page NANDs.
*/
if (mtd->writesize > 512)
nc->op.addrs[nc->op.naddrs++] = column >> 8;
}
if (page >= 0) {
nc->op.addrs[nc->op.naddrs++] = page;
nc->op.addrs[nc->op.naddrs++] = page >> 8;
if ((mtd->writesize > 512 && chip->chipsize > SZ_128M) ||
(mtd->writesize <= 512 && chip->chipsize > SZ_32M))
nc->op.addrs[nc->op.naddrs++] = page >> 16;
}
}
static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
{
struct atmel_nand *nand = to_atmel_nand(chip);
struct atmel_nand_controller *nc;
int ret;
nc = to_nand_controller(chip->controller);
if (raw)
return 0;
ret = atmel_pmecc_enable(nand->pmecc, op);
if (ret)
dev_err(nc->dev,
"Failed to enable ECC engine (err = %d)\n", ret);
return ret;
}
static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
{
struct atmel_nand *nand = to_atmel_nand(chip);
if (!raw)
atmel_pmecc_disable(nand->pmecc);
}
static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
{
struct atmel_nand *nand = to_atmel_nand(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
struct atmel_nand_controller *nc;
struct mtd_oob_region oobregion;
void *eccbuf;
int ret, i;
nc = to_nand_controller(chip->controller);
if (raw)
return 0;
ret = atmel_pmecc_wait_rdy(nand->pmecc);
if (ret) {
dev_err(nc->dev,
"Failed to transfer NAND page data (err = %d)\n",
ret);
return ret;
}
mtd_ooblayout_ecc(mtd, 0, &oobregion);
eccbuf = chip->oob_poi + oobregion.offset;
for (i = 0; i < chip->ecc.steps; i++) {
atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
eccbuf);
eccbuf += chip->ecc.bytes;
}
return 0;
}
static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
bool raw)
{
struct atmel_nand *nand = to_atmel_nand(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
struct atmel_nand_controller *nc;
struct mtd_oob_region oobregion;
int ret, i, max_bitflips = 0;
void *databuf, *eccbuf;
nc = to_nand_controller(chip->controller);
if (raw)
return 0;
ret = atmel_pmecc_wait_rdy(nand->pmecc);
if (ret) {
dev_err(nc->dev,
"Failed to read NAND page data (err = %d)\n",
ret);
return ret;
}
mtd_ooblayout_ecc(mtd, 0, &oobregion);
eccbuf = chip->oob_poi + oobregion.offset;
databuf = buf;
for (i = 0; i < chip->ecc.steps; i++) {
ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
eccbuf);
if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
ret = nand_check_erased_ecc_chunk(databuf,
chip->ecc.size,
eccbuf,
chip->ecc.bytes,
NULL, 0,
chip->ecc.strength);
if (ret >= 0)
max_bitflips = max(ret, max_bitflips);
else
mtd->ecc_stats.failed++;
databuf += chip->ecc.size;
eccbuf += chip->ecc.bytes;
}
return max_bitflips;
}
static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
bool oob_required, int page, bool raw)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct atmel_nand *nand = to_atmel_nand(chip);
int ret;
ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
if (ret)
return ret;
atmel_nand_write_buf(mtd, buf, mtd->writesize);
ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
if (ret) {
atmel_pmecc_disable(nand->pmecc);
return ret;
}
atmel_nand_pmecc_disable(chip, raw);
atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
return 0;
}
static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
struct nand_chip *chip, const u8 *buf,
int oob_required, int page)
{
return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
}
static int atmel_nand_pmecc_write_page_raw(struct mtd_info *mtd,
struct nand_chip *chip,
const u8 *buf, int oob_required,
int page)
{
return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
}
static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
bool oob_required, int page, bool raw)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
if (ret)
return ret;
atmel_nand_read_buf(mtd, buf, mtd->writesize);
atmel_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize);
ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
atmel_nand_pmecc_disable(chip, raw);
return ret;
}
static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
}
static int atmel_nand_pmecc_read_page_raw(struct mtd_info *mtd,
struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
}
static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
const u8 *buf, bool oob_required,
int page, bool raw)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct atmel_nand *nand = to_atmel_nand(chip);
struct atmel_hsmc_nand_controller *nc;
int ret;
nc = to_hsmc_nand_controller(chip->controller);
atmel_nfc_copy_to_sram(chip, buf, false);
nc->op.cmds[0] = NAND_CMD_SEQIN;
nc->op.ncmds = 1;
atmel_nfc_set_op_addr(chip, page, 0x0);
nc->op.cs = nand->activecs->id;
nc->op.data = ATMEL_NFC_WRITE_DATA;
ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
if (ret)
return ret;
ret = atmel_nfc_exec_op(nc, false);
if (ret) {
atmel_nand_pmecc_disable(chip, raw);
dev_err(nc->base.dev,
"Failed to transfer NAND page data (err = %d)\n",
ret);
return ret;
}
ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
atmel_nand_pmecc_disable(chip, raw);
if (ret)
return ret;
atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize);
nc->op.cmds[0] = NAND_CMD_PAGEPROG;
nc->op.ncmds = 1;
nc->op.cs = nand->activecs->id;
ret = atmel_nfc_exec_op(nc, false);
if (ret)
dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n",
ret);
return ret;
}
static int atmel_hsmc_nand_pmecc_write_page(struct mtd_info *mtd,
struct nand_chip *chip,
const u8 *buf, int oob_required,
int page)
{
return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
false);
}
static int atmel_hsmc_nand_pmecc_write_page_raw(struct mtd_info *mtd,
struct nand_chip *chip,
const u8 *buf,
int oob_required, int page)
{
return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
true);
}
static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
bool oob_required, int page,
bool raw)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct atmel_nand *nand = to_atmel_nand(chip);
struct atmel_hsmc_nand_controller *nc;
int ret;
nc = to_hsmc_nand_controller(chip->controller);
/*
* Optimized read page accessors only work when the NAND R/B pin is
* connected to a native SoC R/B pin. If that's not the case, fallback
* to the non-optimized one.
*/
if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) {
chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
raw);
}
nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;
if (mtd->writesize > 512)
nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;
atmel_nfc_set_op_addr(chip, page, 0x0);
nc->op.cs = nand->activecs->id;
nc->op.data = ATMEL_NFC_READ_DATA;
ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
if (ret)
return ret;
ret = atmel_nfc_exec_op(nc, false);
if (ret) {
atmel_nand_pmecc_disable(chip, raw);
dev_err(nc->base.dev,
"Failed to load NAND page data (err = %d)\n",
ret);
return ret;
}
atmel_nfc_copy_from_sram(chip, buf, true);
ret = atmel_nand_pmecc_correct_data(chip, buf, raw);
atmel_nand_pmecc_disable(chip, raw);
return ret;
}
static int atmel_hsmc_nand_pmecc_read_page(struct mtd_info *mtd,
struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
false);
}
static int atmel_hsmc_nand_pmecc_read_page_raw(struct mtd_info *mtd,
struct nand_chip *chip,
u8 *buf, int oob_required,
int page)
{
return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
true);
}
static int atmel_nand_pmecc_init(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct atmel_nand *nand = to_atmel_nand(chip);
struct atmel_nand_controller *nc;
struct atmel_pmecc_user_req req;
nc = to_nand_controller(chip->controller);
if (!nc->pmecc) {
dev_err(nc->dev, "HW ECC not supported\n");
return -ENOTSUPP;
}
if (nc->caps->legacy_of_bindings) {
u32 val;
if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
&val))
chip->ecc.strength = val;
if (!of_property_read_u32(nc->dev->of_node,
"atmel,pmecc-sector-size",
&val))
chip->ecc.size = val;
}
if (chip->ecc.options & NAND_ECC_MAXIMIZE)
req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
else if (chip->ecc.strength)
req.ecc.strength = chip->ecc.strength;
else if (chip->ecc_strength_ds)
req.ecc.strength = chip->ecc_strength_ds;
else
req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
if (chip->ecc.size)
req.ecc.sectorsize = chip->ecc.size;
else if (chip->ecc_step_ds)
req.ecc.sectorsize = chip->ecc_step_ds;
else
req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;
req.pagesize = mtd->writesize;
req.oobsize = mtd->oobsize;
if (mtd->writesize <= 512) {
req.ecc.bytes = 4;
req.ecc.ooboffset = 0;
} else {
req.ecc.bytes = mtd->oobsize - 2;
req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
}
nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
if (IS_ERR(nand->pmecc))
return PTR_ERR(nand->pmecc);
chip->ecc.algo = NAND_ECC_BCH;
chip->ecc.size = req.ecc.sectorsize;
chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
chip->ecc.strength = req.ecc.strength;
chip->options |= NAND_NO_SUBPAGE_WRITE;
mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
return 0;
}
static int atmel_nand_ecc_init(struct atmel_nand *nand)
{
struct nand_chip *chip = &nand->base;
struct atmel_nand_controller *nc;
int ret;
nc = to_nand_controller(chip->controller);
switch (chip->ecc.mode) {
case NAND_ECC_NONE:
case NAND_ECC_SOFT:
/*
* Nothing to do, the core will initialize everything for us.
*/
break;
case NAND_ECC_HW:
ret = atmel_nand_pmecc_init(chip);
if (ret)
return ret;
chip->ecc.read_page = atmel_nand_pmecc_read_page;
chip->ecc.write_page = atmel_nand_pmecc_write_page;
chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
break;
default:
/* Other modes are not supported. */
dev_err(nc->dev, "Unsupported ECC mode: %d\n",
chip->ecc.mode);
return -ENOTSUPP;
}
return 0;
}
static int atmel_hsmc_nand_ecc_init(struct atmel_nand *nand)
{
struct nand_chip *chip = &nand->base;
int ret;
ret = atmel_nand_ecc_init(nand);
if (ret)
return ret;
if (chip->ecc.mode != NAND_ECC_HW)
return 0;
/* Adjust the ECC operations for the HSMC IP. */
chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;
chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
return 0;
}
static void atmel_nand_init(struct atmel_nand_controller *nc,
struct atmel_nand *nand)
{
struct nand_chip *chip = &nand->base;
struct mtd_info *mtd = nand_to_mtd(chip);
mtd->dev.parent = nc->dev;
nand->base.controller = &nc->base;
chip->cmd_ctrl = atmel_nand_cmd_ctrl;
chip->read_byte = atmel_nand_read_byte;
chip->read_word = atmel_nand_read_word;
chip->write_byte = atmel_nand_write_byte;
chip->read_buf = atmel_nand_read_buf;
chip->write_buf = atmel_nand_write_buf;
chip->select_chip = atmel_nand_select_chip;
/* Some NANDs require a longer delay than the default one (20us). */
chip->chip_delay = 40;
/*
* Use a bounce buffer when the buffer passed by the MTD user is not
* suitable for DMA.
*/
if (nc->dmac)
chip->options |= NAND_USE_BOUNCE_BUFFER;
/* Default to HW ECC if pmecc is available. */
if (nc->pmecc)
chip->ecc.mode = NAND_ECC_HW;
}
static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
struct atmel_nand *nand)
{
struct nand_chip *chip = &nand->base;
struct atmel_smc_nand_controller *smc_nc;
int i;
atmel_nand_init(nc, nand);
smc_nc = to_smc_nand_controller(chip->controller);
if (!smc_nc->matrix)
return;
/* Attach the CS to the NAND Flash logic. */
for (i = 0; i < nand->numcs; i++)
regmap_update_bits(smc_nc->matrix, smc_nc->ebi_csa_offs,
BIT(nand->cs[i].id), BIT(nand->cs[i].id));
}
static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc,
struct atmel_nand *nand)
{
struct nand_chip *chip = &nand->base;
atmel_nand_init(nc, nand);
/* Overload some methods for the HSMC controller. */
chip->cmd_ctrl = atmel_hsmc_nand_cmd_ctrl;
chip->select_chip = atmel_hsmc_nand_select_chip;
}
static int atmel_nand_detect(struct atmel_nand *nand)
{
struct nand_chip *chip = &nand->base;
struct mtd_info *mtd = nand_to_mtd(chip);
struct atmel_nand_controller *nc;
int ret;
nc = to_nand_controller(chip->controller);
ret = nand_scan_ident(mtd, nand->numcs, NULL);
if (ret)
dev_err(nc->dev, "nand_scan_ident() failed: %d\n", ret);
return ret;
}
static int atmel_nand_unregister(struct atmel_nand *nand)
{
struct nand_chip *chip = &nand->base;
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
ret = mtd_device_unregister(mtd);
if (ret)
return ret;
nand_cleanup(chip);
list_del(&nand->node);
return 0;
}
static int atmel_nand_register(struct atmel_nand *nand)
{
struct nand_chip *chip = &nand->base;
struct mtd_info *mtd = nand_to_mtd(chip);
struct atmel_nand_controller *nc;
int ret;
nc = to_nand_controller(chip->controller);
if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
/*
* We keep the MTD name unchanged to avoid breaking platforms
* where the MTD cmdline parser is used and the bootloader
* has not been updated to use the new naming scheme.
*/
mtd->name = "atmel_nand";
} else if (!mtd->name) {
/*
* If the new bindings are used and the bootloader has not been
* updated to pass a new mtdparts parameter on the cmdline, you
* should define the following property in your nand node:
*
* label = "atmel_nand";
*
* This way, mtd->name will be set by the core when
* nand_set_flash_node() is called.
*/
mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
"%s:nand.%d", dev_name(nc->dev),
nand->cs[0].id);
if (!mtd->name) {
dev_err(nc->dev, "Failed to allocate mtd->name\n");
return -ENOMEM;
}
}
ret = nand_scan_tail(mtd);
if (ret) {
dev_err(nc->dev, "nand_scan_tail() failed: %d\n", ret);
return ret;
}
ret = mtd_device_register(mtd, NULL, 0);
if (ret) {
dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
nand_cleanup(chip);
return ret;
}
list_add_tail(&nand->node, &nc->chips);
return 0;
}
static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
struct device_node *np,
int reg_cells)
{
struct atmel_nand *nand;
struct gpio_desc *gpio;
int numcs, ret, i;
numcs = of_property_count_elems_of_size(np, "reg",
reg_cells * sizeof(u32));
if (numcs < 1) {
dev_err(nc->dev, "Missing or invalid reg property\n");
return ERR_PTR(-EINVAL);
}
nand = devm_kzalloc(nc->dev,
sizeof(*nand) + (numcs * sizeof(*nand->cs)),
GFP_KERNEL);
if (!nand) {
dev_err(nc->dev, "Failed to allocate NAND object\n");
return ERR_PTR(-ENOMEM);
}
nand->numcs = numcs;
gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "det", 0,
&np->fwnode, GPIOD_IN,
"nand-det");
if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
dev_err(nc->dev,
"Failed to get detect gpio (err = %ld)\n",
PTR_ERR(gpio));
return ERR_CAST(gpio);
}
if (!IS_ERR(gpio))
nand->cdgpio = gpio;
for (i = 0; i < numcs; i++) {
struct resource res;
u32 val;
ret = of_address_to_resource(np, 0, &res);
if (ret) {
dev_err(nc->dev, "Invalid reg property (err = %d)\n",
ret);
return ERR_PTR(ret);
}
ret = of_property_read_u32_index(np, "reg", i * reg_cells,
&val);
if (ret) {
dev_err(nc->dev, "Invalid reg property (err = %d)\n",
ret);
return ERR_PTR(ret);
}
nand->cs[i].id = val;
nand->cs[i].io.dma = res.start;
nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
if (IS_ERR(nand->cs[i].io.virt))
return ERR_CAST(nand->cs[i].io.virt);
if (!of_property_read_u32(np, "atmel,rb", &val)) {
if (val > ATMEL_NFC_MAX_RB_ID)
return ERR_PTR(-EINVAL);
nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
nand->cs[i].rb.id = val;
} else {
gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev,
"rb", i, &np->fwnode,
GPIOD_IN, "nand-rb");
if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
dev_err(nc->dev,
"Failed to get R/B gpio (err = %ld)\n",
PTR_ERR(gpio));
return ERR_CAST(gpio);
}
if (!IS_ERR(gpio)) {
nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
nand->cs[i].rb.gpio = gpio;
}
}
gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "cs",
i, &np->fwnode,
GPIOD_OUT_HIGH,
"nand-cs");
if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
dev_err(nc->dev,
"Failed to get CS gpio (err = %ld)\n",
PTR_ERR(gpio));
return ERR_CAST(gpio);
}
if (!IS_ERR(gpio))
nand->cs[i].csgpio = gpio;
}
nand_set_flash_node(&nand->base, np);
return nand;
}
static int
atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
struct atmel_nand *nand)
{
int ret;
/* No card inserted, skip this NAND. */
if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
dev_info(nc->dev, "No SmartMedia card inserted.\n");
return 0;
}
nc->caps->ops->nand_init(nc, nand);
ret = atmel_nand_detect(nand);
if (ret)
return ret;
ret = nc->caps->ops->ecc_init(nand);
if (ret)
return ret;
return atmel_nand_register(nand);
}
static int
atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
{
struct atmel_nand *nand, *tmp;
int ret;
list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
ret = atmel_nand_unregister(nand);
if (ret)
return ret;
}
return 0;
}
static int
atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
{
struct device *dev = nc->dev;
struct platform_device *pdev = to_platform_device(dev);
struct atmel_nand *nand;
struct gpio_desc *gpio;
struct resource *res;
/*
* Legacy bindings only allow connecting a single NAND with a unique CS
* line to the controller.
*/
nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
GFP_KERNEL);
if (!nand)
return -ENOMEM;
nand->numcs = 1;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
nand->cs[0].io.virt = devm_ioremap_resource(dev, res);
if (IS_ERR(nand->cs[0].io.virt))
return PTR_ERR(nand->cs[0].io.virt);
nand->cs[0].io.dma = res->start;
/*
* The old driver was hardcoding the CS id to 3 for all sama5
* controllers. Since this id is only meaningful for the sama5
* controller we can safely assign this id to 3 no matter the
* controller.
* If one wants to connect a NAND to a different CS line, he will
* have to use the new bindings.
*/
nand->cs[0].id = 3;
/* R/B GPIO. */
gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN);
if (IS_ERR(gpio)) {
dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
PTR_ERR(gpio));
return PTR_ERR(gpio);
}
if (gpio) {
nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
nand->cs[0].rb.gpio = gpio;
}
/* CS GPIO. */
gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
if (IS_ERR(gpio)) {
dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
PTR_ERR(gpio));
return PTR_ERR(gpio);
}
nand->cs[0].csgpio = gpio;
/* Card detect GPIO. */
gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
if (IS_ERR(gpio)) {
dev_err(dev,
"Failed to get detect gpio (err = %ld)\n",
PTR_ERR(gpio));
return PTR_ERR(gpio);
}
nand->cdgpio = gpio;
nand_set_flash_node(&nand->base, nc->dev->of_node);
return atmel_nand_controller_add_nand(nc, nand);
}
static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
{
struct device_node *np, *nand_np;
struct device *dev = nc->dev;
int ret, reg_cells;
u32 val;
/* We do not retrieve the SMC syscon when parsing old DTs. */
if (nc->caps->legacy_of_bindings)
return atmel_nand_controller_legacy_add_nands(nc);
np = dev->of_node;
ret = of_property_read_u32(np, "#address-cells", &val);
if (ret) {
dev_err(dev, "missing #address-cells property\n");
return ret;
}
reg_cells = val;
ret = of_property_read_u32(np, "#size-cells", &val);
if (ret) {
dev_err(dev, "missing #address-cells property\n");
return ret;
}
reg_cells += val;
for_each_child_of_node(np, nand_np) {
struct atmel_nand *nand;
nand = atmel_nand_create(nc, nand_np, reg_cells);
if (IS_ERR(nand)) {
ret = PTR_ERR(nand);
goto err;
}
ret = atmel_nand_controller_add_nand(nc, nand);
if (ret)
goto err;
}
return 0;
err:
atmel_nand_controller_remove_nands(nc);
return ret;
}
static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
{
if (nc->dmac)
dma_release_channel(nc->dmac);
clk_put(nc->mck);
}
static const struct of_device_id atmel_matrix_of_ids[] = {
{
.compatible = "atmel,at91sam9260-matrix",
.data = (void *)AT91SAM9260_MATRIX_EBICSA,
},
{
.compatible = "atmel,at91sam9261-matrix",
.data = (void *)AT91SAM9261_MATRIX_EBICSA,
},
{
.compatible = "atmel,at91sam9263-matrix",
.data = (void *)AT91SAM9263_MATRIX_EBI0CSA,
},
{
.compatible = "atmel,at91sam9rl-matrix",
.data = (void *)AT91SAM9RL_MATRIX_EBICSA,
},
{
.compatible = "atmel,at91sam9g45-matrix",
.data = (void *)AT91SAM9G45_MATRIX_EBICSA,
},
{
.compatible = "atmel,at91sam9n12-matrix",
.data = (void *)AT91SAM9N12_MATRIX_EBICSA,
},
{
.compatible = "atmel,at91sam9x5-matrix",
.data = (void *)AT91SAM9X5_MATRIX_EBICSA,
},
};
static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
struct platform_device *pdev,
const struct atmel_nand_controller_caps *caps)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
int ret;
nand_hw_control_init(&nc->base);
INIT_LIST_HEAD(&nc->chips);
nc->dev = dev;
nc->caps = caps;
platform_set_drvdata(pdev, nc);
nc->pmecc = devm_atmel_pmecc_get(dev);
if (IS_ERR(nc->pmecc)) {
ret = PTR_ERR(nc->pmecc);
if (ret != -EPROBE_DEFER)
dev_err(dev, "Could not get PMECC object (err = %d)\n",
ret);
return ret;
}
if (nc->caps->has_dma) {
dma_cap_mask_t mask;
dma_cap_zero(mask);
dma_cap_set(DMA_MEMCPY, mask);
nc->dmac = dma_request_channel(mask, NULL, NULL);
if (!nc->dmac)
dev_err(nc->dev, "Failed to request DMA channel\n");
}
/* We do not retrieve the SMC syscon when parsing old DTs. */
if (nc->caps->legacy_of_bindings)
return 0;
np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
if (!np) {
dev_err(dev, "Missing or invalid atmel,smc property\n");
return -EINVAL;
}
nc->smc = syscon_node_to_regmap(np);
of_node_put(np);
if (IS_ERR(nc->smc)) {
ret = IS_ERR(nc->smc);
dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
return ret;
}
return 0;
}
static int
atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
{
struct device *dev = nc->base.dev;
const struct of_device_id *match;
struct device_node *np;
int ret;
/* We do not retrieve the matrix syscon when parsing old DTs. */
if (nc->base.caps->legacy_of_bindings)
return 0;
np = of_parse_phandle(dev->parent->of_node, "atmel,matrix", 0);
if (!np)
return 0;
match = of_match_node(atmel_matrix_of_ids, np);
if (!match) {
of_node_put(np);
return 0;
}
nc->matrix = syscon_node_to_regmap(np);
of_node_put(np);
if (IS_ERR(nc->matrix)) {
ret = IS_ERR(nc->matrix);
dev_err(dev, "Could not get Matrix regmap (err = %d)\n", ret);
return ret;
}
nc->ebi_csa_offs = (unsigned int)match->data;
/*
* The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
* add 4 to ->ebi_csa_offs.
*/
if (of_device_is_compatible(dev->parent->of_node,
"atmel,at91sam9263-ebi1"))
nc->ebi_csa_offs += 4;
return 0;
}
static int
atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
{
struct regmap_config regmap_conf = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
};
struct device *dev = nc->base.dev;
struct device_node *nand_np, *nfc_np;
void __iomem *iomem;
struct resource res;
int ret;
nand_np = dev->of_node;
nfc_np = of_find_compatible_node(dev->of_node, NULL,
"atmel,sama5d3-nfc");
nc->clk = of_clk_get(nfc_np, 0);
if (IS_ERR(nc->clk)) {
ret = PTR_ERR(nc->clk);
dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
ret);
goto out;
}
ret = clk_prepare_enable(nc->clk);
if (ret) {
dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
ret);
goto out;
}
nc->irq = of_irq_get(nand_np, 0);
if (nc->irq < 0) {
ret = nc->irq;
if (ret != -EPROBE_DEFER)
dev_err(dev, "Failed to get IRQ number (err = %d)\n",
ret);
goto out;
}
ret = of_address_to_resource(nfc_np, 0, &res);
if (ret) {
dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
ret);
goto out;
}
iomem = devm_ioremap_resource(dev, &res);
if (IS_ERR(iomem)) {
ret = PTR_ERR(iomem);
goto out;
}
regmap_conf.name = "nfc-io";
regmap_conf.max_register = resource_size(&res) - 4;
nc->io = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
if (IS_ERR(nc->io)) {
ret = PTR_ERR(nc->io);
dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
ret);
goto out;
}
ret = of_address_to_resource(nfc_np, 1, &res);
if (ret) {
dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
ret);
goto out;
}
iomem = devm_ioremap_resource(dev, &res);
if (IS_ERR(iomem)) {
ret = PTR_ERR(iomem);
goto out;
}
regmap_conf.name = "smc";
regmap_conf.max_register = resource_size(&res) - 4;
nc->base.smc = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
if (IS_ERR(nc->base.smc)) {
ret = PTR_ERR(nc->base.smc);
dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
ret);
goto out;
}
ret = of_address_to_resource(nfc_np, 2, &res);
if (ret) {
dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
ret);
goto out;
}
nc->sram.virt = devm_ioremap_resource(dev, &res);
if (IS_ERR(nc->sram.virt)) {
ret = PTR_ERR(nc->sram.virt);
goto out;
}
nc->sram.dma = res.start;
out:
of_node_put(nfc_np);
return ret;
}
static int
atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
{
struct device *dev = nc->base.dev;
struct device_node *np;
int ret;
np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
if (!np) {
dev_err(dev, "Missing or invalid atmel,smc property\n");
return -EINVAL;
}
nc->irq = of_irq_get(np, 0);
of_node_put(np);
if (nc->irq < 0) {
if (nc->irq != -EPROBE_DEFER)
dev_err(dev, "Failed to get IRQ number (err = %d)\n",
nc->irq);
return nc->irq;
}
np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
if (!np) {
dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
return -EINVAL;
}
nc->io = syscon_node_to_regmap(np);
of_node_put(np);
if (IS_ERR(nc->io)) {
ret = PTR_ERR(nc->io);
dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
return ret;
}
nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
"atmel,nfc-sram", 0);
if (!nc->sram.pool) {
dev_err(nc->base.dev, "Missing SRAM\n");
return -ENOMEM;
}
nc->sram.virt = gen_pool_dma_alloc(nc->sram.pool,
ATMEL_NFC_SRAM_SIZE,
&nc->sram.dma);
if (!nc->sram.virt) {
dev_err(nc->base.dev,
"Could not allocate memory from the NFC SRAM pool\n");
return -ENOMEM;
}
return 0;
}
static int
atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
{
struct atmel_hsmc_nand_controller *hsmc_nc;
int ret;
ret = atmel_nand_controller_remove_nands(nc);
if (ret)
return ret;
hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
if (hsmc_nc->sram.pool)
gen_pool_free(hsmc_nc->sram.pool,
(unsigned long)hsmc_nc->sram.virt,
ATMEL_NFC_SRAM_SIZE);
if (hsmc_nc->clk) {
clk_disable_unprepare(hsmc_nc->clk);
clk_put(hsmc_nc->clk);
}
atmel_nand_controller_cleanup(nc);
return 0;
}
static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
const struct atmel_nand_controller_caps *caps)
{
struct device *dev = &pdev->dev;
struct atmel_hsmc_nand_controller *nc;
int ret;
nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
if (!nc)
return -ENOMEM;
ret = atmel_nand_controller_init(&nc->base, pdev, caps);
if (ret)
return ret;
if (caps->legacy_of_bindings)
ret = atmel_hsmc_nand_controller_legacy_init(nc);
else
ret = atmel_hsmc_nand_controller_init(nc);
if (ret)
return ret;
/* Make sure all irqs are masked before registering our IRQ handler. */
regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
IRQF_SHARED, "nfc", nc);
if (ret) {
dev_err(dev,
"Could not get register NFC interrupt handler (err = %d)\n",
ret);
goto err;
}
/* Initial NFC configuration. */
regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
ATMEL_HSMC_NFC_CFG_DTO_MAX);
ret = atmel_nand_controller_add_nands(&nc->base);
if (ret)
goto err;
return 0;
err:
atmel_hsmc_nand_controller_remove(&nc->base);
return ret;
}
static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
.probe = atmel_hsmc_nand_controller_probe,
.remove = atmel_hsmc_nand_controller_remove,
.ecc_init = atmel_hsmc_nand_ecc_init,
.nand_init = atmel_hsmc_nand_init,
};
static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
.has_dma = true,
.ale_offs = BIT(21),
.cle_offs = BIT(22),
.ops = &atmel_hsmc_nc_ops,
};
/* Only used to parse old bindings. */
static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
.has_dma = true,
.ale_offs = BIT(21),
.cle_offs = BIT(22),
.ops = &atmel_hsmc_nc_ops,
.legacy_of_bindings = true,
};
static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
const struct atmel_nand_controller_caps *caps)
{
struct device *dev = &pdev->dev;
struct atmel_smc_nand_controller *nc;
int ret;
nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
if (!nc)
return -ENOMEM;
ret = atmel_nand_controller_init(&nc->base, pdev, caps);
if (ret)
return ret;
ret = atmel_smc_nand_controller_init(nc);
if (ret)
return ret;
return atmel_nand_controller_add_nands(&nc->base);
}
static int
atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
{
int ret;
ret = atmel_nand_controller_remove_nands(nc);
if (ret)
return ret;
atmel_nand_controller_cleanup(nc);
return 0;
}
static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
.probe = atmel_smc_nand_controller_probe,
.remove = atmel_smc_nand_controller_remove,
.ecc_init = atmel_nand_ecc_init,
.nand_init = atmel_smc_nand_init,
};
static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
.ale_offs = BIT(21),
.cle_offs = BIT(22),
.ops = &atmel_smc_nc_ops,
};
static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
.ale_offs = BIT(22),
.cle_offs = BIT(21),
.ops = &atmel_smc_nc_ops,
};
static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
.has_dma = true,
.ale_offs = BIT(21),
.cle_offs = BIT(22),
.ops = &atmel_smc_nc_ops,
};
/* Only used to parse old bindings. */
static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
.ale_offs = BIT(21),
.cle_offs = BIT(22),
.ops = &atmel_smc_nc_ops,
.legacy_of_bindings = true,
};
static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
.ale_offs = BIT(22),
.cle_offs = BIT(21),
.ops = &atmel_smc_nc_ops,
.legacy_of_bindings = true,
};
static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
.has_dma = true,
.ale_offs = BIT(21),
.cle_offs = BIT(22),
.ops = &atmel_smc_nc_ops,
.legacy_of_bindings = true,
};
static const struct of_device_id atmel_nand_controller_of_ids[] = {
{
.compatible = "atmel,at91rm9200-nand-controller",
.data = &atmel_rm9200_nc_caps,
},
{
.compatible = "atmel,at91sam9260-nand-controller",
.data = &atmel_rm9200_nc_caps,
},
{
.compatible = "atmel,at91sam9261-nand-controller",
.data = &atmel_sam9261_nc_caps,
},
{
.compatible = "atmel,at91sam9g45-nand-controller",
.data = &atmel_sam9g45_nc_caps,
},
{
.compatible = "atmel,sama5d3-nand-controller",
.data = &atmel_sama5_nc_caps,
},
/* Support for old/deprecated bindings: */
{
.compatible = "atmel,at91rm9200-nand",
.data = &atmel_rm9200_nand_caps,
},
{
.compatible = "atmel,sama5d4-nand",
.data = &atmel_rm9200_nand_caps,
},
{
.compatible = "atmel,sama5d2-nand",
.data = &atmel_rm9200_nand_caps,
},
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);
static int atmel_nand_controller_probe(struct platform_device *pdev)
{
const struct atmel_nand_controller_caps *caps;
if (pdev->id_entry)
caps = (void *)pdev->id_entry->driver_data;
else
caps = of_device_get_match_data(&pdev->dev);
if (!caps) {
dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
return -EINVAL;
}
if (caps->legacy_of_bindings) {
u32 ale_offs = 21;
/*
* If we are parsing legacy DT props and the DT contains a
* valid NFC node, forward the request to the sama5 logic.
*/
if (of_find_compatible_node(pdev->dev.of_node, NULL,
"atmel,sama5d3-nfc"))
caps = &atmel_sama5_nand_caps;
/*
* Even if the compatible says we are dealing with an
* at91rm9200 controller, the atmel,nand-has-dma specify that
* this controller supports DMA, which means we are in fact
* dealing with an at91sam9g45+ controller.
*/
if (!caps->has_dma &&
of_property_read_bool(pdev->dev.of_node,
"atmel,nand-has-dma"))
caps = &atmel_sam9g45_nand_caps;
/*
* All SoCs except the at91sam9261 are assigning ALE to A21 and
* CLE to A22. If atmel,nand-addr-offset != 21 this means we're
* actually dealing with an at91sam9261 controller.
*/
of_property_read_u32(pdev->dev.of_node,
"atmel,nand-addr-offset", &ale_offs);
if (ale_offs != 21)
caps = &atmel_sam9261_nand_caps;
}
return caps->ops->probe(pdev, caps);
}
static int atmel_nand_controller_remove(struct platform_device *pdev)
{
struct atmel_nand_controller *nc = platform_get_drvdata(pdev);
return nc->caps->ops->remove(nc);
}
static struct platform_driver atmel_nand_controller_driver = {
.driver = {
.name = "atmel-nand-controller",
.of_match_table = of_match_ptr(atmel_nand_controller_of_ids),
},
.probe = atmel_nand_controller_probe,
.remove = atmel_nand_controller_remove,
};
module_platform_driver(atmel_nand_controller_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
MODULE_ALIAS("platform:atmel-nand-controller");
/*
* Copyright 2017 ATMEL
* Copyright 2017 Free Electrons
*
* Author: Boris Brezillon <boris.brezillon@free-electrons.com>
*
* Derived from the atmel_nand.c driver which contained the following
* copyrights:
*
* Copyright 2003 Rick Bronson
*
* Derived from drivers/mtd/nand/autcpu12.c
* Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
*
* Derived from drivers/mtd/spia.c
* Copyright 2000 Steven J. Hill (sjhill@cotw.com)
*
* Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
* Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
*
* Derived from Das U-Boot source code
* (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
* Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
*
* Add Programmable Multibit ECC support for various AT91 SoC
* Copyright 2012 ATMEL, Hong Xu
*
* Add Nand Flash Controller support for SAMA5 SoC
* Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* The PMECC is an hardware assisted BCH engine, which means part of the
* ECC algorithm is left to the software. The hardware/software repartition
* is explained in the "PMECC Controller Functional Description" chapter in
* Atmel datasheets, and some of the functions in this file are directly
* implementing the algorithms described in the "Software Implementation"
* sub-section.
*
* TODO: it seems that the software BCH implementation in lib/bch.c is already
* providing some of the logic we are implementing here. It would be smart
* to expose the needed lib/bch.c helpers/functions and re-use them here.
*/
#include <linux/genalloc.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/mtd/nand.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include "pmecc.h"
/* Galois field dimension */
#define PMECC_GF_DIMENSION_13 13
#define PMECC_GF_DIMENSION_14 14
/* Primitive Polynomial used by PMECC */
#define PMECC_GF_13_PRIMITIVE_POLY 0x201b
#define PMECC_GF_14_PRIMITIVE_POLY 0x4443
#define PMECC_LOOKUP_TABLE_SIZE_512 0x2000
#define PMECC_LOOKUP_TABLE_SIZE_1024 0x4000
/* Time out value for reading PMECC status register */
#define PMECC_MAX_TIMEOUT_MS 100
/* PMECC Register Definitions */
#define ATMEL_PMECC_CFG 0x0
#define PMECC_CFG_BCH_STRENGTH(x) (x)
#define PMECC_CFG_BCH_STRENGTH_MASK GENMASK(2, 0)
#define PMECC_CFG_SECTOR512 (0 << 4)
#define PMECC_CFG_SECTOR1024 (1 << 4)
#define PMECC_CFG_NSECTORS(x) ((fls(x) - 1) << 8)
#define PMECC_CFG_READ_OP (0 << 12)
#define PMECC_CFG_WRITE_OP (1 << 12)
#define PMECC_CFG_SPARE_ENABLE BIT(16)
#define PMECC_CFG_AUTO_ENABLE BIT(20)
#define ATMEL_PMECC_SAREA 0x4
#define ATMEL_PMECC_SADDR 0x8
#define ATMEL_PMECC_EADDR 0xc
#define ATMEL_PMECC_CLK 0x10
#define PMECC_CLK_133MHZ (2 << 0)
#define ATMEL_PMECC_CTRL 0x14
#define PMECC_CTRL_RST BIT(0)
#define PMECC_CTRL_DATA BIT(1)
#define PMECC_CTRL_USER BIT(2)
#define PMECC_CTRL_ENABLE BIT(4)
#define PMECC_CTRL_DISABLE BIT(5)
#define ATMEL_PMECC_SR 0x18
#define PMECC_SR_BUSY BIT(0)
#define PMECC_SR_ENABLE BIT(4)
#define ATMEL_PMECC_IER 0x1c
#define ATMEL_PMECC_IDR 0x20
#define ATMEL_PMECC_IMR 0x24
#define ATMEL_PMECC_ISR 0x28
#define PMECC_ERROR_INT BIT(0)
#define ATMEL_PMECC_ECC(sector, n) \
((((sector) + 1) * 0x40) + (n))
#define ATMEL_PMECC_REM(sector, n) \
((((sector) + 1) * 0x40) + ((n) * 4) + 0x200)
/* PMERRLOC Register Definitions */
#define ATMEL_PMERRLOC_ELCFG 0x0
#define PMERRLOC_ELCFG_SECTOR_512 (0 << 0)
#define PMERRLOC_ELCFG_SECTOR_1024 (1 << 0)
#define PMERRLOC_ELCFG_NUM_ERRORS(n) ((n) << 16)
#define ATMEL_PMERRLOC_ELPRIM 0x4
#define ATMEL_PMERRLOC_ELEN 0x8
#define ATMEL_PMERRLOC_ELDIS 0xc
#define PMERRLOC_DISABLE BIT(0)
#define ATMEL_PMERRLOC_ELSR 0x10
#define PMERRLOC_ELSR_BUSY BIT(0)
#define ATMEL_PMERRLOC_ELIER 0x14
#define ATMEL_PMERRLOC_ELIDR 0x18
#define ATMEL_PMERRLOC_ELIMR 0x1c
#define ATMEL_PMERRLOC_ELISR 0x20
#define PMERRLOC_ERR_NUM_MASK GENMASK(12, 8)
#define PMERRLOC_CALC_DONE BIT(0)
#define ATMEL_PMERRLOC_SIGMA(x) (((x) * 0x4) + 0x28)
#define ATMEL_PMERRLOC_EL(offs, x) (((x) * 0x4) + (offs))
struct atmel_pmecc_gf_tables {
u16 *alpha_to;
u16 *index_of;
};
struct atmel_pmecc_caps {
const int *strengths;
int nstrengths;
int el_offset;
bool correct_erased_chunks;
};
struct atmel_pmecc {
struct device *dev;
const struct atmel_pmecc_caps *caps;
struct {
void __iomem *base;
void __iomem *errloc;
} regs;
struct mutex lock;
};
struct atmel_pmecc_user_conf_cache {
u32 cfg;
u32 sarea;
u32 saddr;
u32 eaddr;
};
struct atmel_pmecc_user {
struct atmel_pmecc_user_conf_cache cache;
struct atmel_pmecc *pmecc;
const struct atmel_pmecc_gf_tables *gf_tables;
int eccbytes;
s16 *partial_syn;
s16 *si;
s16 *lmu;
s16 *smu;
s32 *mu;
s32 *dmu;
s32 *delta;
u32 isr;
};
static DEFINE_MUTEX(pmecc_gf_tables_lock);
static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_512;
static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_1024;
static inline int deg(unsigned int poly)
{
/* polynomial degree is the most-significant bit index */
return fls(poly) - 1;
}
static int atmel_pmecc_build_gf_tables(int mm, unsigned int poly,
struct atmel_pmecc_gf_tables *gf_tables)
{
unsigned int i, x = 1;
const unsigned int k = BIT(deg(poly));
unsigned int nn = BIT(mm) - 1;
/* primitive polynomial must be of degree m */
if (k != (1u << mm))
return -EINVAL;
for (i = 0; i < nn; i++) {
gf_tables->alpha_to[i] = x;
gf_tables->index_of[x] = i;
if (i && (x == 1))
/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
return -EINVAL;
x <<= 1;
if (x & k)
x ^= poly;
}
gf_tables->alpha_to[nn] = 1;
gf_tables->index_of[0] = 0;
return 0;
}
static const struct atmel_pmecc_gf_tables *
atmel_pmecc_create_gf_tables(const struct atmel_pmecc_user_req *req)
{
struct atmel_pmecc_gf_tables *gf_tables;
unsigned int poly, degree, table_size;
int ret;
if (req->ecc.sectorsize == 512) {
degree = PMECC_GF_DIMENSION_13;
poly = PMECC_GF_13_PRIMITIVE_POLY;
table_size = PMECC_LOOKUP_TABLE_SIZE_512;
} else {
degree = PMECC_GF_DIMENSION_14;
poly = PMECC_GF_14_PRIMITIVE_POLY;
table_size = PMECC_LOOKUP_TABLE_SIZE_1024;
}
gf_tables = kzalloc(sizeof(*gf_tables) +
(2 * table_size * sizeof(u16)),
GFP_KERNEL);
if (!gf_tables)
return ERR_PTR(-ENOMEM);
gf_tables->alpha_to = (void *)(gf_tables + 1);
gf_tables->index_of = gf_tables->alpha_to + table_size;
ret = atmel_pmecc_build_gf_tables(degree, poly, gf_tables);
if (ret) {
kfree(gf_tables);
return ERR_PTR(ret);
}
return gf_tables;
}
static const struct atmel_pmecc_gf_tables *
atmel_pmecc_get_gf_tables(const struct atmel_pmecc_user_req *req)
{
const struct atmel_pmecc_gf_tables **gf_tables, *ret;
mutex_lock(&pmecc_gf_tables_lock);
if (req->ecc.sectorsize == 512)
gf_tables = &pmecc_gf_tables_512;
else
gf_tables = &pmecc_gf_tables_1024;
ret = *gf_tables;
if (!ret) {
ret = atmel_pmecc_create_gf_tables(req);
if (!IS_ERR(ret))
*gf_tables = ret;
}
mutex_unlock(&pmecc_gf_tables_lock);
return ret;
}
static int atmel_pmecc_prepare_user_req(struct atmel_pmecc *pmecc,
struct atmel_pmecc_user_req *req)
{
int i, max_eccbytes, eccbytes = 0, eccstrength = 0;
if (req->pagesize <= 0 || req->oobsize <= 0 || req->ecc.bytes <= 0)
return -EINVAL;
if (req->ecc.ooboffset >= 0 &&
req->ecc.ooboffset + req->ecc.bytes > req->oobsize)
return -EINVAL;
if (req->ecc.sectorsize == ATMEL_PMECC_SECTOR_SIZE_AUTO) {
if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH)
return -EINVAL;
if (req->pagesize > 512)
req->ecc.sectorsize = 1024;
else
req->ecc.sectorsize = 512;
}
if (req->ecc.sectorsize != 512 && req->ecc.sectorsize != 1024)
return -EINVAL;
if (req->pagesize % req->ecc.sectorsize)
return -EINVAL;
req->ecc.nsectors = req->pagesize / req->ecc.sectorsize;
max_eccbytes = req->ecc.bytes;
for (i = 0; i < pmecc->caps->nstrengths; i++) {
int nbytes, strength = pmecc->caps->strengths[i];
if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH &&
strength < req->ecc.strength)
continue;
nbytes = DIV_ROUND_UP(strength * fls(8 * req->ecc.sectorsize),
8);
nbytes *= req->ecc.nsectors;
if (nbytes > max_eccbytes)
break;
eccstrength = strength;
eccbytes = nbytes;
if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH)
break;
}
if (!eccstrength)
return -EINVAL;
req->ecc.bytes = eccbytes;
req->ecc.strength = eccstrength;
if (req->ecc.ooboffset < 0)
req->ecc.ooboffset = req->oobsize - eccbytes;
return 0;
}
struct atmel_pmecc_user *
atmel_pmecc_create_user(struct atmel_pmecc *pmecc,
struct atmel_pmecc_user_req *req)
{
struct atmel_pmecc_user *user;
const struct atmel_pmecc_gf_tables *gf_tables;
int strength, size, ret;
ret = atmel_pmecc_prepare_user_req(pmecc, req);
if (ret)
return ERR_PTR(ret);
size = sizeof(*user);
size = ALIGN(size, sizeof(u16));
/* Reserve space for partial_syn, si and smu */
size += ((2 * req->ecc.strength) + 1) * sizeof(u16) *
(2 + req->ecc.strength + 2);
/* Reserve space for lmu. */
size += (req->ecc.strength + 1) * sizeof(u16);
/* Reserve space for mu, dmu and delta. */
size = ALIGN(size, sizeof(s32));
size += (req->ecc.strength + 1) * sizeof(s32);
user = kzalloc(size, GFP_KERNEL);
if (!user)
return ERR_PTR(-ENOMEM);
user->pmecc = pmecc;
user->partial_syn = (s16 *)PTR_ALIGN(user + 1, sizeof(u16));
user->si = user->partial_syn + ((2 * req->ecc.strength) + 1);
user->lmu = user->si + ((2 * req->ecc.strength) + 1);
user->smu = user->lmu + (req->ecc.strength + 1);
user->mu = (s32 *)PTR_ALIGN(user->smu +
(((2 * req->ecc.strength) + 1) *
(req->ecc.strength + 2)),
sizeof(s32));
user->dmu = user->mu + req->ecc.strength + 1;
user->delta = user->dmu + req->ecc.strength + 1;
gf_tables = atmel_pmecc_get_gf_tables(req);
if (IS_ERR(gf_tables)) {
kfree(user);
return ERR_CAST(gf_tables);
}
user->gf_tables = gf_tables;
user->eccbytes = req->ecc.bytes / req->ecc.nsectors;
for (strength = 0; strength < pmecc->caps->nstrengths; strength++) {
if (pmecc->caps->strengths[strength] == req->ecc.strength)
break;
}
user->cache.cfg = PMECC_CFG_BCH_STRENGTH(strength) |
PMECC_CFG_NSECTORS(req->ecc.nsectors);
if (req->ecc.sectorsize == 1024)
user->cache.cfg |= PMECC_CFG_SECTOR1024;
user->cache.sarea = req->oobsize - 1;
user->cache.saddr = req->ecc.ooboffset;
user->cache.eaddr = req->ecc.ooboffset + req->ecc.bytes - 1;
return user;
}
EXPORT_SYMBOL_GPL(atmel_pmecc_create_user);
void atmel_pmecc_destroy_user(struct atmel_pmecc_user *user)
{
kfree(user);
}
EXPORT_SYMBOL_GPL(atmel_pmecc_destroy_user);
static int get_strength(struct atmel_pmecc_user *user)
{
const int *strengths = user->pmecc->caps->strengths;
return strengths[user->cache.cfg & PMECC_CFG_BCH_STRENGTH_MASK];
}
static int get_sectorsize(struct atmel_pmecc_user *user)
{
return user->cache.cfg & PMECC_LOOKUP_TABLE_SIZE_1024 ? 1024 : 512;
}
static void atmel_pmecc_gen_syndrome(struct atmel_pmecc_user *user, int sector)
{
int strength = get_strength(user);
u32 value;
int i;
/* Fill odd syndromes */
for (i = 0; i < strength; i++) {
value = readl_relaxed(user->pmecc->regs.base +
ATMEL_PMECC_REM(sector, i / 2));
if (i & 1)
value >>= 16;
user->partial_syn[(2 * i) + 1] = value;
}
}
static void atmel_pmecc_substitute(struct atmel_pmecc_user *user)
{
int degree = get_sectorsize(user) == 512 ? 13 : 14;
int cw_len = BIT(degree) - 1;
int strength = get_strength(user);
s16 *alpha_to = user->gf_tables->alpha_to;
s16 *index_of = user->gf_tables->index_of;
s16 *partial_syn = user->partial_syn;
s16 *si;
int i, j;
/*
* si[] is a table that holds the current syndrome value,
* an element of that table belongs to the field
*/
si = user->si;
memset(&si[1], 0, sizeof(s16) * ((2 * strength) - 1));
/* Computation 2t syndromes based on S(x) */
/* Odd syndromes */
for (i = 1; i < 2 * strength; i += 2) {
for (j = 0; j < degree; j++) {
if (partial_syn[i] & BIT(j))
si[i] = alpha_to[i * j] ^ si[i];
}
}
/* Even syndrome = (Odd syndrome) ** 2 */
for (i = 2, j = 1; j <= strength; i = ++j << 1) {
if (si[j] == 0) {
si[i] = 0;
} else {
s16 tmp;
tmp = index_of[si[j]];
tmp = (tmp * 2) % cw_len;
si[i] = alpha_to[tmp];
}
}
}
static void atmel_pmecc_get_sigma(struct atmel_pmecc_user *user)
{
s16 *lmu = user->lmu;
s16 *si = user->si;
s32 *mu = user->mu;
s32 *dmu = user->dmu;
s32 *delta = user->delta;
int degree = get_sectorsize(user) == 512 ? 13 : 14;
int cw_len = BIT(degree) - 1;
int strength = get_strength(user);
int num = 2 * strength + 1;
s16 *index_of = user->gf_tables->index_of;
s16 *alpha_to = user->gf_tables->alpha_to;
int i, j, k;
u32 dmu_0_count, tmp;
s16 *smu = user->smu;
/* index of largest delta */
int ro;
int largest;
int diff;
dmu_0_count = 0;
/* First Row */
/* Mu */
mu[0] = -1;
memset(smu, 0, sizeof(s16) * num);
smu[0] = 1;
/* discrepancy set to 1 */
dmu[0] = 1;
/* polynom order set to 0 */
lmu[0] = 0;
delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
/* Second Row */
/* Mu */
mu[1] = 0;
/* Sigma(x) set to 1 */
memset(&smu[num], 0, sizeof(s16) * num);
smu[num] = 1;
/* discrepancy set to S1 */
dmu[1] = si[1];
/* polynom order set to 0 */
lmu[1] = 0;
delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
/* Init the Sigma(x) last row */
memset(&smu[(strength + 1) * num], 0, sizeof(s16) * num);
for (i = 1; i <= strength; i++) {
mu[i + 1] = i << 1;
/* Begin Computing Sigma (Mu+1) and L(mu) */
/* check if discrepancy is set to 0 */
if (dmu[i] == 0) {
dmu_0_count++;
tmp = ((strength - (lmu[i] >> 1) - 1) / 2);
if ((strength - (lmu[i] >> 1) - 1) & 0x1)
tmp += 2;
else
tmp += 1;
if (dmu_0_count == tmp) {
for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
smu[(strength + 1) * num + j] =
smu[i * num + j];
lmu[strength + 1] = lmu[i];
return;
}
/* copy polynom */
for (j = 0; j <= lmu[i] >> 1; j++)
smu[(i + 1) * num + j] = smu[i * num + j];
/* copy previous polynom order to the next */
lmu[i + 1] = lmu[i];
} else {
ro = 0;
largest = -1;
/* find largest delta with dmu != 0 */
for (j = 0; j < i; j++) {
if ((dmu[j]) && (delta[j] > largest)) {
largest = delta[j];
ro = j;
}
}
/* compute difference */
diff = (mu[i] - mu[ro]);
/* Compute degree of the new smu polynomial */
if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
lmu[i + 1] = lmu[i];
else
lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
/* Init smu[i+1] with 0 */
for (k = 0; k < num; k++)
smu[(i + 1) * num + k] = 0;
/* Compute smu[i+1] */
for (k = 0; k <= lmu[ro] >> 1; k++) {
s16 a, b, c;
if (!(smu[ro * num + k] && dmu[i]))
continue;
a = index_of[dmu[i]];
b = index_of[dmu[ro]];
c = index_of[smu[ro * num + k]];
tmp = a + (cw_len - b) + c;
a = alpha_to[tmp % cw_len];
smu[(i + 1) * num + (k + diff)] = a;
}
for (k = 0; k <= lmu[i] >> 1; k++)
smu[(i + 1) * num + k] ^= smu[i * num + k];
}
/* End Computing Sigma (Mu+1) and L(mu) */
/* In either case compute delta */
delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
/* Do not compute discrepancy for the last iteration */
if (i >= strength)
continue;
for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
tmp = 2 * (i - 1);
if (k == 0) {
dmu[i + 1] = si[tmp + 3];
} else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
s16 a, b, c;
a = index_of[smu[(i + 1) * num + k]];
b = si[2 * (i - 1) + 3 - k];
c = index_of[b];
tmp = a + c;
tmp %= cw_len;
dmu[i + 1] = alpha_to[tmp] ^ dmu[i + 1];
}
}
}
}
static int atmel_pmecc_err_location(struct atmel_pmecc_user *user)
{
int sector_size = get_sectorsize(user);
int degree = sector_size == 512 ? 13 : 14;
struct atmel_pmecc *pmecc = user->pmecc;
int strength = get_strength(user);
int ret, roots_nbr, i, err_nbr = 0;
int num = (2 * strength) + 1;
s16 *smu = user->smu;
u32 val;
writel(PMERRLOC_DISABLE, pmecc->regs.errloc + ATMEL_PMERRLOC_ELDIS);
for (i = 0; i <= user->lmu[strength + 1] >> 1; i++) {
writel_relaxed(smu[(strength + 1) * num + i],
pmecc->regs.errloc + ATMEL_PMERRLOC_SIGMA(i));
err_nbr++;
}
val = (err_nbr - 1) << 16;
if (sector_size == 1024)
val |= 1;
writel(val, pmecc->regs.errloc + ATMEL_PMERRLOC_ELCFG);
writel((sector_size * 8) + (degree * strength),
pmecc->regs.errloc + ATMEL_PMERRLOC_ELEN);
ret = readl_relaxed_poll_timeout(pmecc->regs.errloc +
ATMEL_PMERRLOC_ELISR,
val, val & PMERRLOC_CALC_DONE, 0,
PMECC_MAX_TIMEOUT_MS * 1000);
if (ret) {
dev_err(pmecc->dev,
"PMECC: Timeout to calculate error location.\n");
return ret;
}
roots_nbr = (val & PMERRLOC_ERR_NUM_MASK) >> 8;
/* Number of roots == degree of smu hence <= cap */
if (roots_nbr == user->lmu[strength + 1] >> 1)
return err_nbr - 1;
/*
* Number of roots does not match the degree of smu
* unable to correct error.
*/
return -EBADMSG;
}
int atmel_pmecc_correct_sector(struct atmel_pmecc_user *user, int sector,
void *data, void *ecc)
{
struct atmel_pmecc *pmecc = user->pmecc;
int sectorsize = get_sectorsize(user);
int eccbytes = user->eccbytes;
int i, nerrors;
if (!(user->isr & BIT(sector)))
return 0;
atmel_pmecc_gen_syndrome(user, sector);
atmel_pmecc_substitute(user);
atmel_pmecc_get_sigma(user);
nerrors = atmel_pmecc_err_location(user);
if (nerrors < 0)
return nerrors;
for (i = 0; i < nerrors; i++) {
const char *area;
int byte, bit;
u32 errpos;
u8 *ptr;
errpos = readl_relaxed(pmecc->regs.errloc +
ATMEL_PMERRLOC_EL(pmecc->caps->el_offset, i));
errpos--;
byte = errpos / 8;
bit = errpos % 8;
if (byte < sectorsize) {
ptr = data + byte;
area = "data";
} else if (byte < sectorsize + eccbytes) {
ptr = ecc + byte - sectorsize;
area = "ECC";
} else {
dev_dbg(pmecc->dev,
"Invalid errpos value (%d, max is %d)\n",
errpos, (sectorsize + eccbytes) * 8);
return -EINVAL;
}
dev_dbg(pmecc->dev,
"Bit flip in %s area, byte %d: 0x%02x -> 0x%02x\n",
area, byte, *ptr, (unsigned int)(*ptr ^ BIT(bit)));
*ptr ^= BIT(bit);
}
return nerrors;
}
EXPORT_SYMBOL_GPL(atmel_pmecc_correct_sector);
bool atmel_pmecc_correct_erased_chunks(struct atmel_pmecc_user *user)
{
return user->pmecc->caps->correct_erased_chunks;
}
EXPORT_SYMBOL_GPL(atmel_pmecc_correct_erased_chunks);
void atmel_pmecc_get_generated_eccbytes(struct atmel_pmecc_user *user,
int sector, void *ecc)
{
struct atmel_pmecc *pmecc = user->pmecc;
u8 *ptr = ecc;
int i;
for (i = 0; i < user->eccbytes; i++)
ptr[i] = readb_relaxed(pmecc->regs.base +
ATMEL_PMECC_ECC(sector, i));
}
EXPORT_SYMBOL_GPL(atmel_pmecc_get_generated_eccbytes);
int atmel_pmecc_enable(struct atmel_pmecc_user *user, int op)
{
struct atmel_pmecc *pmecc = user->pmecc;
u32 cfg;
if (op != NAND_ECC_READ && op != NAND_ECC_WRITE) {
dev_err(pmecc->dev, "Bad ECC operation!");
return -EINVAL;
}
mutex_lock(&user->pmecc->lock);
cfg = user->cache.cfg;
if (op == NAND_ECC_WRITE)
cfg |= PMECC_CFG_WRITE_OP;
else
cfg |= PMECC_CFG_AUTO_ENABLE;
writel(cfg, pmecc->regs.base + ATMEL_PMECC_CFG);
writel(user->cache.sarea, pmecc->regs.base + ATMEL_PMECC_SAREA);
writel(user->cache.saddr, pmecc->regs.base + ATMEL_PMECC_SADDR);
writel(user->cache.eaddr, pmecc->regs.base + ATMEL_PMECC_EADDR);
writel(PMECC_CTRL_ENABLE, pmecc->regs.base + ATMEL_PMECC_CTRL);
writel(PMECC_CTRL_DATA, pmecc->regs.base + ATMEL_PMECC_CTRL);
return 0;
}
EXPORT_SYMBOL_GPL(atmel_pmecc_enable);
void atmel_pmecc_disable(struct atmel_pmecc_user *user)
{
struct atmel_pmecc *pmecc = user->pmecc;
writel(PMECC_CTRL_RST, pmecc->regs.base + ATMEL_PMECC_CTRL);
writel(PMECC_CTRL_DISABLE, pmecc->regs.base + ATMEL_PMECC_CTRL);
mutex_unlock(&user->pmecc->lock);
}
EXPORT_SYMBOL_GPL(atmel_pmecc_disable);
int atmel_pmecc_wait_rdy(struct atmel_pmecc_user *user)
{
struct atmel_pmecc *pmecc = user->pmecc;
u32 status;
int ret;
ret = readl_relaxed_poll_timeout(pmecc->regs.base +
ATMEL_PMECC_SR,
status, !(status & PMECC_SR_BUSY), 0,
PMECC_MAX_TIMEOUT_MS * 1000);
if (ret) {
dev_err(pmecc->dev,
"Timeout while waiting for PMECC ready.\n");
return ret;
}
user->isr = readl_relaxed(pmecc->regs.base + ATMEL_PMECC_ISR);
return 0;
}
EXPORT_SYMBOL_GPL(atmel_pmecc_wait_rdy);
static struct atmel_pmecc *atmel_pmecc_create(struct platform_device *pdev,
const struct atmel_pmecc_caps *caps,
int pmecc_res_idx, int errloc_res_idx)
{
struct device *dev = &pdev->dev;
struct atmel_pmecc *pmecc;
struct resource *res;
pmecc = devm_kzalloc(dev, sizeof(*pmecc), GFP_KERNEL);
if (!pmecc)
return ERR_PTR(-ENOMEM);
pmecc->caps = caps;
pmecc->dev = dev;
mutex_init(&pmecc->lock);
res = platform_get_resource(pdev, IORESOURCE_MEM, pmecc_res_idx);
pmecc->regs.base = devm_ioremap_resource(dev, res);
if (IS_ERR(pmecc->regs.base))
return ERR_CAST(pmecc->regs.base);
res = platform_get_resource(pdev, IORESOURCE_MEM, errloc_res_idx);
pmecc->regs.errloc = devm_ioremap_resource(dev, res);
if (IS_ERR(pmecc->regs.errloc))
return ERR_CAST(pmecc->regs.errloc);
/* Disable all interrupts before registering the PMECC handler. */
writel(0xffffffff, pmecc->regs.base + ATMEL_PMECC_IDR);
/* Reset the ECC engine */
writel(PMECC_CTRL_RST, pmecc->regs.base + ATMEL_PMECC_CTRL);
writel(PMECC_CTRL_DISABLE, pmecc->regs.base + ATMEL_PMECC_CTRL);
return pmecc;
}
static void devm_atmel_pmecc_put(struct device *dev, void *res)
{
struct atmel_pmecc **pmecc = res;
put_device((*pmecc)->dev);
}
static struct atmel_pmecc *atmel_pmecc_get_by_node(struct device *userdev,
struct device_node *np)
{
struct platform_device *pdev;
struct atmel_pmecc *pmecc, **ptr;
pdev = of_find_device_by_node(np);
if (!pdev || !platform_get_drvdata(pdev))
return ERR_PTR(-EPROBE_DEFER);
ptr = devres_alloc(devm_atmel_pmecc_put, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
get_device(&pdev->dev);
pmecc = platform_get_drvdata(pdev);
*ptr = pmecc;
devres_add(userdev, ptr);
return pmecc;
}
static const int atmel_pmecc_strengths[] = { 2, 4, 8, 12, 24, 32 };
static struct atmel_pmecc_caps at91sam9g45_caps = {
.strengths = atmel_pmecc_strengths,
.nstrengths = 5,
.el_offset = 0x8c,
};
static struct atmel_pmecc_caps sama5d4_caps = {
.strengths = atmel_pmecc_strengths,
.nstrengths = 5,
.el_offset = 0x8c,
.correct_erased_chunks = true,
};
static struct atmel_pmecc_caps sama5d2_caps = {
.strengths = atmel_pmecc_strengths,
.nstrengths = 6,
.el_offset = 0xac,
.correct_erased_chunks = true,
};
static const struct of_device_id atmel_pmecc_legacy_match[] = {
{ .compatible = "atmel,sama5d4-nand", &sama5d4_caps },
{ .compatible = "atmel,sama5d2-nand", &sama5d2_caps },
{ /* sentinel */ }
};
struct atmel_pmecc *devm_atmel_pmecc_get(struct device *userdev)
{
struct atmel_pmecc *pmecc;
struct device_node *np;
if (!userdev)
return ERR_PTR(-EINVAL);
if (!userdev->of_node)
return NULL;
np = of_parse_phandle(userdev->of_node, "ecc-engine", 0);
if (np) {
pmecc = atmel_pmecc_get_by_node(userdev, np);
of_node_put(np);
} else {
/*
* Support old DT bindings: in this case the PMECC iomem
* resources are directly defined in the user pdev at position
* 1 and 2. Extract all relevant information from there.
*/
struct platform_device *pdev = to_platform_device(userdev);
const struct atmel_pmecc_caps *caps;
/* No PMECC engine available. */
if (!of_property_read_bool(userdev->of_node,
"atmel,has-pmecc"))
return NULL;
caps = &at91sam9g45_caps;
/*
* Try to find the NFC subnode and extract the associated caps
* from there.
*/
np = of_find_compatible_node(userdev->of_node, NULL,
"atmel,sama5d3-nfc");
if (np) {
const struct of_device_id *match;
match = of_match_node(atmel_pmecc_legacy_match, np);
if (match && match->data)
caps = match->data;
of_node_put(np);
}
pmecc = atmel_pmecc_create(pdev, caps, 1, 2);
}
return pmecc;
}
EXPORT_SYMBOL(devm_atmel_pmecc_get);
static const struct of_device_id atmel_pmecc_match[] = {
{ .compatible = "atmel,at91sam9g45-pmecc", &at91sam9g45_caps },
{ .compatible = "atmel,sama5d4-pmecc", &sama5d4_caps },
{ .compatible = "atmel,sama5d2-pmecc", &sama5d2_caps },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, atmel_pmecc_match);
static int atmel_pmecc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
const struct atmel_pmecc_caps *caps;
struct atmel_pmecc *pmecc;
caps = of_device_get_match_data(&pdev->dev);
if (!caps) {
dev_err(dev, "Invalid caps\n");
return -EINVAL;
}
pmecc = atmel_pmecc_create(pdev, caps, 0, 1);
if (IS_ERR(pmecc))
return PTR_ERR(pmecc);
platform_set_drvdata(pdev, pmecc);
return 0;
}
static struct platform_driver atmel_pmecc_driver = {
.driver = {
.name = "atmel-pmecc",
.of_match_table = of_match_ptr(atmel_pmecc_match),
},
.probe = atmel_pmecc_probe,
};
module_platform_driver(atmel_pmecc_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
MODULE_DESCRIPTION("PMECC engine driver");
MODULE_ALIAS("platform:atmel_pmecc");
/*
* © Copyright 2016 ATMEL
* © Copyright 2016 Free Electrons
*
* Author: Boris Brezillon <boris.brezillon@free-electrons.com>
*
* Derived from the atmel_nand.c driver which contained the following
* copyrights:
*
* Copyright © 2003 Rick Bronson
*
* Derived from drivers/mtd/nand/autcpu12.c
* Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
*
* Derived from drivers/mtd/spia.c
* Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
*
*
* Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
* Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
*
* Derived from Das U-Boot source code
* (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
* © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
*
* Add Programmable Multibit ECC support for various AT91 SoC
* © Copyright 2012 ATMEL, Hong Xu
*
* Add Nand Flash Controller support for SAMA5 SoC
* © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#ifndef ATMEL_PMECC_H
#define ATMEL_PMECC_H
#define ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH 0
#define ATMEL_PMECC_SECTOR_SIZE_AUTO 0
#define ATMEL_PMECC_OOBOFFSET_AUTO -1
struct atmel_pmecc_user_req {
int pagesize;
int oobsize;
struct {
int strength;
int bytes;
int sectorsize;
int nsectors;
int ooboffset;
} ecc;
};
struct atmel_pmecc *devm_atmel_pmecc_get(struct device *dev);
struct atmel_pmecc_user *
atmel_pmecc_create_user(struct atmel_pmecc *pmecc,
struct atmel_pmecc_user_req *req);
void atmel_pmecc_destroy_user(struct atmel_pmecc_user *user);
int atmel_pmecc_enable(struct atmel_pmecc_user *user, int op);
void atmel_pmecc_disable(struct atmel_pmecc_user *user);
int atmel_pmecc_wait_rdy(struct atmel_pmecc_user *user);
int atmel_pmecc_correct_sector(struct atmel_pmecc_user *user, int sector,
void *data, void *ecc);
bool atmel_pmecc_correct_erased_chunks(struct atmel_pmecc_user *user);
void atmel_pmecc_get_generated_eccbytes(struct atmel_pmecc_user *user,
int sector, void *ecc);
#endif /* ATMEL_PMECC_H */
/*
* Copyright © 2003 Rick Bronson
*
* Derived from drivers/mtd/nand/autcpu12.c
* Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
*
* Derived from drivers/mtd/spia.c
* Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
*
*
* Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
* Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
*
* Derived from Das U-Boot source code
* (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
* © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
*
* Add Programmable Multibit ECC support for various AT91 SoC
* © Copyright 2012 ATMEL, Hong Xu
*
* Add Nand Flash Controller support for SAMA5 SoC
* © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/platform_data/atmel.h>
static int use_dma = 1;
module_param(use_dma, int, 0);
static int on_flash_bbt = 0;
module_param(on_flash_bbt, int, 0);
/* Register access macros */
#define ecc_readl(add, reg) \
__raw_readl(add + ATMEL_ECC_##reg)
#define ecc_writel(add, reg, value) \
__raw_writel((value), add + ATMEL_ECC_##reg)
#include "atmel_nand_ecc.h" /* Hardware ECC registers */
#include "atmel_nand_nfc.h" /* Nand Flash Controller definition */
struct atmel_nand_caps {
bool pmecc_correct_erase_page;
uint8_t pmecc_max_correction;
};
/*
* oob layout for large page size
* bad block info is on bytes 0 and 1
* the bytes have to be consecutives to avoid
* several NAND_CMD_RNDOUT during read
*
* oob layout for small page size
* bad block info is on bytes 4 and 5
* the bytes have to be consecutives to avoid
* several NAND_CMD_RNDOUT during read
*/
static int atmel_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
if (section)
return -ERANGE;
oobregion->length = 4;
oobregion->offset = 0;
return 0;
}
static int atmel_ooblayout_free_sp(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
if (section)
return -ERANGE;
oobregion->offset = 6;
oobregion->length = mtd->oobsize - oobregion->offset;
return 0;
}
static const struct mtd_ooblayout_ops atmel_ooblayout_sp_ops = {
.ecc = atmel_ooblayout_ecc_sp,
.free = atmel_ooblayout_free_sp,
};
struct atmel_nfc {
void __iomem *base_cmd_regs;
void __iomem *hsmc_regs;
void *sram_bank0;
dma_addr_t sram_bank0_phys;
bool use_nfc_sram;
bool write_by_sram;
struct clk *clk;
bool is_initialized;
struct completion comp_ready;
struct completion comp_cmd_done;
struct completion comp_xfer_done;
/* Point to the sram bank which include readed data via NFC */
void *data_in_sram;
bool will_write_sram;
};
static struct atmel_nfc nand_nfc;
struct atmel_nand_host {
struct nand_chip nand_chip;
void __iomem *io_base;
dma_addr_t io_phys;
struct atmel_nand_data board;
struct device *dev;
void __iomem *ecc;
struct completion comp;
struct dma_chan *dma_chan;
struct atmel_nfc *nfc;
const struct atmel_nand_caps *caps;
bool has_pmecc;
u8 pmecc_corr_cap;
u16 pmecc_sector_size;
bool has_no_lookup_table;
u32 pmecc_lookup_table_offset;
u32 pmecc_lookup_table_offset_512;
u32 pmecc_lookup_table_offset_1024;
int pmecc_degree; /* Degree of remainders */
int pmecc_cw_len; /* Length of codeword */
void __iomem *pmerrloc_base;
void __iomem *pmerrloc_el_base;
void __iomem *pmecc_rom_base;
/* lookup table for alpha_to and index_of */
void __iomem *pmecc_alpha_to;
void __iomem *pmecc_index_of;
/* data for pmecc computation */
int16_t *pmecc_partial_syn;
int16_t *pmecc_si;
int16_t *pmecc_smu; /* Sigma table */
int16_t *pmecc_lmu; /* polynomal order */
int *pmecc_mu;
int *pmecc_dmu;
int *pmecc_delta;
};
/*
* Enable NAND.
*/
static void atmel_nand_enable(struct atmel_nand_host *host)
{
if (gpio_is_valid(host->board.enable_pin))
gpio_set_value(host->board.enable_pin, 0);
}
/*
* Disable NAND.
*/
static void atmel_nand_disable(struct atmel_nand_host *host)
{
if (gpio_is_valid(host->board.enable_pin))
gpio_set_value(host->board.enable_pin, 1);
}
/*
* Hardware specific access to control-lines
*/
static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
if (ctrl & NAND_CTRL_CHANGE) {
if (ctrl & NAND_NCE)
atmel_nand_enable(host);
else
atmel_nand_disable(host);
}
if (cmd == NAND_CMD_NONE)
return;
if (ctrl & NAND_CLE)
writeb(cmd, host->io_base + (1 << host->board.cle));
else
writeb(cmd, host->io_base + (1 << host->board.ale));
}
/*
* Read the Device Ready pin.
*/
static int atmel_nand_device_ready(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
return gpio_get_value(host->board.rdy_pin) ^
!!host->board.rdy_pin_active_low;
}
/* Set up for hardware ready pin and enable pin. */
static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand_host *host = nand_get_controller_data(chip);
int res = 0;
if (gpio_is_valid(host->board.rdy_pin)) {
res = devm_gpio_request(host->dev,
host->board.rdy_pin, "nand_rdy");
if (res < 0) {
dev_err(host->dev,
"can't request rdy gpio %d\n",
host->board.rdy_pin);
return res;
}
res = gpio_direction_input(host->board.rdy_pin);
if (res < 0) {
dev_err(host->dev,
"can't request input direction rdy gpio %d\n",
host->board.rdy_pin);
return res;
}
chip->dev_ready = atmel_nand_device_ready;
}
if (gpio_is_valid(host->board.enable_pin)) {
res = devm_gpio_request(host->dev,
host->board.enable_pin, "nand_enable");
if (res < 0) {
dev_err(host->dev,
"can't request enable gpio %d\n",
host->board.enable_pin);
return res;
}
res = gpio_direction_output(host->board.enable_pin, 1);
if (res < 0) {
dev_err(host->dev,
"can't request output direction enable gpio %d\n",
host->board.enable_pin);
return res;
}
}
return res;
}
/*
* Minimal-overhead PIO for data access.
*/
static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
memcpy(buf, host->nfc->data_in_sram, len);
host->nfc->data_in_sram += len;
} else {
__raw_readsb(nand_chip->IO_ADDR_R, buf, len);
}
}
static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
memcpy(buf, host->nfc->data_in_sram, len);
host->nfc->data_in_sram += len;
} else {
__raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
}
}
static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
__raw_writesb(nand_chip->IO_ADDR_W, buf, len);
}
static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
__raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
}
static void dma_complete_func(void *completion)
{
complete(completion);
}
static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank)
{
/* NFC only has two banks. Must be 0 or 1 */
if (bank > 1)
return -EINVAL;
if (bank) {
struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
/* Only for a 2k-page or lower flash, NFC can handle 2 banks */
if (mtd->writesize > 2048)
return -EINVAL;
nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1);
} else {
nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0);
}
return 0;
}
static uint nfc_get_sram_off(struct atmel_nand_host *host)
{
if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
return NFC_SRAM_BANK1_OFFSET;
else
return 0;
}
static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host)
{
if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET;
else
return host->nfc->sram_bank0_phys;
}
static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
int is_read)
{
struct dma_device *dma_dev;
enum dma_ctrl_flags flags;
dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
struct dma_async_tx_descriptor *tx = NULL;
dma_cookie_t cookie;
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand_host *host = nand_get_controller_data(chip);
void *p = buf;
int err = -EIO;
enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
struct atmel_nfc *nfc = host->nfc;
if (buf >= high_memory)
goto err_buf;
dma_dev = host->dma_chan->device;
flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
if (dma_mapping_error(dma_dev->dev, phys_addr)) {
dev_err(host->dev, "Failed to dma_map_single\n");
goto err_buf;
}
if (is_read) {
if (nfc && nfc->data_in_sram)
dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram
- (nfc->sram_bank0 + nfc_get_sram_off(host)));
else
dma_src_addr = host->io_phys;
dma_dst_addr = phys_addr;
} else {
dma_src_addr = phys_addr;
if (nfc && nfc->write_by_sram)
dma_dst_addr = nfc_sram_phys(host);
else
dma_dst_addr = host->io_phys;
}
tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
dma_src_addr, len, flags);
if (!tx) {
dev_err(host->dev, "Failed to prepare DMA memcpy\n");
goto err_dma;
}
init_completion(&host->comp);
tx->callback = dma_complete_func;
tx->callback_param = &host->comp;
cookie = tx->tx_submit(tx);
if (dma_submit_error(cookie)) {
dev_err(host->dev, "Failed to do DMA tx_submit\n");
goto err_dma;
}
dma_async_issue_pending(host->dma_chan);
wait_for_completion(&host->comp);
if (is_read && nfc && nfc->data_in_sram)
/* After read data from SRAM, need to increase the position */
nfc->data_in_sram += len;
err = 0;
err_dma:
dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
err_buf:
if (err != 0)
dev_dbg(host->dev, "Fall back to CPU I/O\n");
return err;
}
static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (use_dma && len > mtd->oobsize)
/* only use DMA for bigger than oob size: better performances */
if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
return;
if (chip->options & NAND_BUSWIDTH_16)
atmel_read_buf16(mtd, buf, len);
else
atmel_read_buf8(mtd, buf, len);
}
static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (use_dma && len > mtd->oobsize)
/* only use DMA for bigger than oob size: better performances */
if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
return;
if (chip->options & NAND_BUSWIDTH_16)
atmel_write_buf16(mtd, buf, len);
else
atmel_write_buf8(mtd, buf, len);
}
/*
* Return number of ecc bytes per sector according to sector size and
* correction capability
*
* Following table shows what at91 PMECC supported:
* Correction Capability Sector_512_bytes Sector_1024_bytes
* ===================== ================ =================
* 2-bits 4-bytes 4-bytes
* 4-bits 7-bytes 7-bytes
* 8-bits 13-bytes 14-bytes
* 12-bits 20-bytes 21-bytes
* 24-bits 39-bytes 42-bytes
* 32-bits 52-bytes 56-bytes
*/
static int pmecc_get_ecc_bytes(int cap, int sector_size)
{
int m = 12 + sector_size / 512;
return (m * cap + 7) / 8;
}
static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
{
int table_size;
table_size = host->pmecc_sector_size == 512 ?
PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
table_size * sizeof(int16_t);
}
static int pmecc_data_alloc(struct atmel_nand_host *host)
{
const int cap = host->pmecc_corr_cap;
int size;
size = (2 * cap + 1) * sizeof(int16_t);
host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL);
host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL);
host->pmecc_lmu = devm_kzalloc(host->dev,
(cap + 1) * sizeof(int16_t), GFP_KERNEL);
host->pmecc_smu = devm_kzalloc(host->dev,
(cap + 2) * size, GFP_KERNEL);
size = (cap + 1) * sizeof(int);
host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL);
host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL);
host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL);
if (!host->pmecc_partial_syn ||
!host->pmecc_si ||
!host->pmecc_lmu ||
!host->pmecc_smu ||
!host->pmecc_mu ||
!host->pmecc_dmu ||
!host->pmecc_delta)
return -ENOMEM;
return 0;
}
static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
int i;
uint32_t value;
/* Fill odd syndromes */
for (i = 0; i < host->pmecc_corr_cap; i++) {
value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
if (i & 1)
value >>= 16;
value &= 0xffff;
host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
}
}
static void pmecc_substitute(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
int16_t __iomem *alpha_to = host->pmecc_alpha_to;
int16_t __iomem *index_of = host->pmecc_index_of;
int16_t *partial_syn = host->pmecc_partial_syn;
const int cap = host->pmecc_corr_cap;
int16_t *si;
int i, j;
/* si[] is a table that holds the current syndrome value,
* an element of that table belongs to the field
*/
si = host->pmecc_si;
memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
/* Computation 2t syndromes based on S(x) */
/* Odd syndromes */
for (i = 1; i < 2 * cap; i += 2) {
for (j = 0; j < host->pmecc_degree; j++) {
if (partial_syn[i] & ((unsigned short)0x1 << j))
si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
}
}
/* Even syndrome = (Odd syndrome) ** 2 */
for (i = 2, j = 1; j <= cap; i = ++j << 1) {
if (si[j] == 0) {
si[i] = 0;
} else {
int16_t tmp;
tmp = readw_relaxed(index_of + si[j]);
tmp = (tmp * 2) % host->pmecc_cw_len;
si[i] = readw_relaxed(alpha_to + tmp);
}
}
return;
}
static void pmecc_get_sigma(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
int16_t *lmu = host->pmecc_lmu;
int16_t *si = host->pmecc_si;
int *mu = host->pmecc_mu;
int *dmu = host->pmecc_dmu; /* Discrepancy */
int *delta = host->pmecc_delta; /* Delta order */
int cw_len = host->pmecc_cw_len;
const int16_t cap = host->pmecc_corr_cap;
const int num = 2 * cap + 1;
int16_t __iomem *index_of = host->pmecc_index_of;
int16_t __iomem *alpha_to = host->pmecc_alpha_to;
int i, j, k;
uint32_t dmu_0_count, tmp;
int16_t *smu = host->pmecc_smu;
/* index of largest delta */
int ro;
int largest;
int diff;
dmu_0_count = 0;
/* First Row */
/* Mu */
mu[0] = -1;
memset(smu, 0, sizeof(int16_t) * num);
smu[0] = 1;
/* discrepancy set to 1 */
dmu[0] = 1;
/* polynom order set to 0 */
lmu[0] = 0;
delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
/* Second Row */
/* Mu */
mu[1] = 0;
/* Sigma(x) set to 1 */
memset(&smu[num], 0, sizeof(int16_t) * num);
smu[num] = 1;
/* discrepancy set to S1 */
dmu[1] = si[1];
/* polynom order set to 0 */
lmu[1] = 0;
delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
/* Init the Sigma(x) last row */
memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
for (i = 1; i <= cap; i++) {
mu[i + 1] = i << 1;
/* Begin Computing Sigma (Mu+1) and L(mu) */
/* check if discrepancy is set to 0 */
if (dmu[i] == 0) {
dmu_0_count++;
tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
if ((cap - (lmu[i] >> 1) - 1) & 0x1)
tmp += 2;
else
tmp += 1;
if (dmu_0_count == tmp) {
for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
smu[(cap + 1) * num + j] =
smu[i * num + j];
lmu[cap + 1] = lmu[i];
return;
}
/* copy polynom */
for (j = 0; j <= lmu[i] >> 1; j++)
smu[(i + 1) * num + j] = smu[i * num + j];
/* copy previous polynom order to the next */
lmu[i + 1] = lmu[i];
} else {
ro = 0;
largest = -1;
/* find largest delta with dmu != 0 */
for (j = 0; j < i; j++) {
if ((dmu[j]) && (delta[j] > largest)) {
largest = delta[j];
ro = j;
}
}
/* compute difference */
diff = (mu[i] - mu[ro]);
/* Compute degree of the new smu polynomial */
if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
lmu[i + 1] = lmu[i];
else
lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
/* Init smu[i+1] with 0 */
for (k = 0; k < num; k++)
smu[(i + 1) * num + k] = 0;
/* Compute smu[i+1] */
for (k = 0; k <= lmu[ro] >> 1; k++) {
int16_t a, b, c;
if (!(smu[ro * num + k] && dmu[i]))
continue;
a = readw_relaxed(index_of + dmu[i]);
b = readw_relaxed(index_of + dmu[ro]);
c = readw_relaxed(index_of + smu[ro * num + k]);
tmp = a + (cw_len - b) + c;
a = readw_relaxed(alpha_to + tmp % cw_len);
smu[(i + 1) * num + (k + diff)] = a;
}
for (k = 0; k <= lmu[i] >> 1; k++)
smu[(i + 1) * num + k] ^= smu[i * num + k];
}
/* End Computing Sigma (Mu+1) and L(mu) */
/* In either case compute delta */
delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
/* Do not compute discrepancy for the last iteration */
if (i >= cap)
continue;
for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
tmp = 2 * (i - 1);
if (k == 0) {
dmu[i + 1] = si[tmp + 3];
} else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
int16_t a, b, c;
a = readw_relaxed(index_of +
smu[(i + 1) * num + k]);
b = si[2 * (i - 1) + 3 - k];
c = readw_relaxed(index_of + b);
tmp = a + c;
tmp %= cw_len;
dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
dmu[i + 1];
}
}
}
return;
}
static int pmecc_err_location(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
unsigned long end_time;
const int cap = host->pmecc_corr_cap;
const int num = 2 * cap + 1;
int sector_size = host->pmecc_sector_size;
int err_nbr = 0; /* number of error */
int roots_nbr; /* number of roots */
int i;
uint32_t val;
int16_t *smu = host->pmecc_smu;
pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
smu[(cap + 1) * num + i]);
err_nbr++;
}
val = (err_nbr - 1) << 16;
if (sector_size == 1024)
val |= 1;
pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
pmerrloc_writel(host->pmerrloc_base, ELEN,
sector_size * 8 + host->pmecc_degree * cap);
end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
& PMERRLOC_CALC_DONE)) {
if (unlikely(time_after(jiffies, end_time))) {
dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
return -1;
}
cpu_relax();
}
roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
& PMERRLOC_ERR_NUM_MASK) >> 8;
/* Number of roots == degree of smu hence <= cap */
if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
return err_nbr - 1;
/* Number of roots does not match the degree of smu
* unable to correct error */
return -1;
}
static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
int sector_num, int extra_bytes, int err_nbr)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
int i = 0;
int byte_pos, bit_pos, sector_size, pos;
uint32_t tmp;
uint8_t err_byte;
sector_size = host->pmecc_sector_size;
while (err_nbr) {
tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_el_base, i) - 1;
byte_pos = tmp / 8;
bit_pos = tmp % 8;
if (byte_pos >= (sector_size + extra_bytes))
BUG(); /* should never happen */
if (byte_pos < sector_size) {
err_byte = *(buf + byte_pos);
*(buf + byte_pos) ^= (1 << bit_pos);
pos = sector_num * host->pmecc_sector_size + byte_pos;
dev_dbg(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
pos, bit_pos, err_byte, *(buf + byte_pos));
} else {
struct mtd_oob_region oobregion;
/* Bit flip in OOB area */
tmp = sector_num * nand_chip->ecc.bytes
+ (byte_pos - sector_size);
err_byte = ecc[tmp];
ecc[tmp] ^= (1 << bit_pos);
mtd_ooblayout_ecc(mtd, 0, &oobregion);
pos = tmp + oobregion.offset;
dev_dbg(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
pos, bit_pos, err_byte, ecc[tmp]);
}
i++;
err_nbr--;
}
return;
}
static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
u8 *ecc)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
int i, err_nbr;
uint8_t *buf_pos;
int max_bitflips = 0;
for (i = 0; i < nand_chip->ecc.steps; i++) {
err_nbr = 0;
if (pmecc_stat & 0x1) {
buf_pos = buf + i * host->pmecc_sector_size;
pmecc_gen_syndrome(mtd, i);
pmecc_substitute(mtd);
pmecc_get_sigma(mtd);
err_nbr = pmecc_err_location(mtd);
if (err_nbr >= 0) {
pmecc_correct_data(mtd, buf_pos, ecc, i,
nand_chip->ecc.bytes,
err_nbr);
} else if (!host->caps->pmecc_correct_erase_page) {
u8 *ecc_pos = ecc + (i * nand_chip->ecc.bytes);
/* Try to detect erased pages */
err_nbr = nand_check_erased_ecc_chunk(buf_pos,
host->pmecc_sector_size,
ecc_pos,
nand_chip->ecc.bytes,
NULL, 0,
nand_chip->ecc.strength);
}
if (err_nbr < 0) {
dev_err(host->dev, "PMECC: Too many errors\n");
mtd->ecc_stats.failed++;
return -EIO;
}
mtd->ecc_stats.corrected += err_nbr;
max_bitflips = max_t(int, max_bitflips, err_nbr);
}
pmecc_stat >>= 1;
}
return max_bitflips;
}
static void pmecc_enable(struct atmel_nand_host *host, int ecc_op)
{
u32 val;
if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) {
dev_err(host->dev, "atmel_nand: wrong pmecc operation type!");
return;
}
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
val = pmecc_readl_relaxed(host->ecc, CFG);
if (ecc_op == NAND_ECC_READ)
pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP)
| PMECC_CFG_AUTO_ENABLE);
else
pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP)
& ~PMECC_CFG_AUTO_ENABLE);
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
}
static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
{
struct atmel_nand_host *host = nand_get_controller_data(chip);
int eccsize = chip->ecc.size * chip->ecc.steps;
uint8_t *oob = chip->oob_poi;
uint32_t stat;
unsigned long end_time;
int bitflips = 0;
if (!host->nfc || !host->nfc->use_nfc_sram)
pmecc_enable(host, NAND_ECC_READ);
chip->read_buf(mtd, buf, eccsize);
chip->read_buf(mtd, oob, mtd->oobsize);
end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
if (unlikely(time_after(jiffies, end_time))) {
dev_err(host->dev, "PMECC: Timeout to get error status.\n");
return -EIO;
}
cpu_relax();
}
stat = pmecc_readl_relaxed(host->ecc, ISR);
if (stat != 0) {
struct mtd_oob_region oobregion;
mtd_ooblayout_ecc(mtd, 0, &oobregion);
bitflips = pmecc_correction(mtd, stat, buf,
&oob[oobregion.offset]);
if (bitflips < 0)
/* uncorrectable errors */
return 0;
}
return bitflips;
}
static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
struct nand_chip *chip, const uint8_t *buf, int oob_required,
int page)
{
struct atmel_nand_host *host = nand_get_controller_data(chip);
struct mtd_oob_region oobregion = { };
int i, j, section = 0;
unsigned long end_time;
if (!host->nfc || !host->nfc->write_by_sram) {
pmecc_enable(host, NAND_ECC_WRITE);
chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
}
end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
if (unlikely(time_after(jiffies, end_time))) {
dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
return -EIO;
}
cpu_relax();
}
for (i = 0; i < chip->ecc.steps; i++) {
for (j = 0; j < chip->ecc.bytes; j++) {
if (!oobregion.length)
mtd_ooblayout_ecc(mtd, section, &oobregion);
chip->oob_poi[oobregion.offset] =
pmecc_readb_ecc_relaxed(host->ecc, i, j);
oobregion.length--;
oobregion.offset++;
section++;
}
}
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
return 0;
}
static void atmel_pmecc_core_init(struct mtd_info *mtd)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
int eccbytes = mtd_ooblayout_count_eccbytes(mtd);
uint32_t val = 0;
struct mtd_oob_region oobregion;
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
switch (host->pmecc_corr_cap) {
case 2:
val = PMECC_CFG_BCH_ERR2;
break;
case 4:
val = PMECC_CFG_BCH_ERR4;
break;
case 8:
val = PMECC_CFG_BCH_ERR8;
break;
case 12:
val = PMECC_CFG_BCH_ERR12;
break;
case 24:
val = PMECC_CFG_BCH_ERR24;
break;
case 32:
val = PMECC_CFG_BCH_ERR32;
break;
}
if (host->pmecc_sector_size == 512)
val |= PMECC_CFG_SECTOR512;
else if (host->pmecc_sector_size == 1024)
val |= PMECC_CFG_SECTOR1024;
switch (nand_chip->ecc.steps) {
case 1:
val |= PMECC_CFG_PAGE_1SECTOR;
break;
case 2:
val |= PMECC_CFG_PAGE_2SECTORS;
break;
case 4:
val |= PMECC_CFG_PAGE_4SECTORS;
break;
case 8:
val |= PMECC_CFG_PAGE_8SECTORS;
break;
}
val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
| PMECC_CFG_AUTO_DISABLE);
pmecc_writel(host->ecc, CFG, val);
pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
mtd_ooblayout_ecc(mtd, 0, &oobregion);
pmecc_writel(host->ecc, SADDR, oobregion.offset);
pmecc_writel(host->ecc, EADDR,
oobregion.offset + eccbytes - 1);
/* See datasheet about PMECC Clock Control Register */
pmecc_writel(host->ecc, CLK, 2);
pmecc_writel(host->ecc, IDR, 0xff);
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
}
/*
* Get minimum ecc requirements from NAND.
* If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
* will set them according to minimum ecc requirement. Otherwise, use the
* value in DTS file.
* return 0 if success. otherwise return error code.
*/
static int pmecc_choose_ecc(struct atmel_nand_host *host,
int *cap, int *sector_size)
{
/* Get minimum ECC requirements */
if (host->nand_chip.ecc_strength_ds) {
*cap = host->nand_chip.ecc_strength_ds;
*sector_size = host->nand_chip.ecc_step_ds;
dev_info(host->dev, "minimum ECC: %d bits in %d bytes\n",
*cap, *sector_size);
} else {
*cap = 2;
*sector_size = 512;
dev_info(host->dev, "can't detect min. ECC, assume 2 bits in 512 bytes\n");
}
/* If device tree doesn't specify, use NAND's minimum ECC parameters */
if (host->pmecc_corr_cap == 0) {
if (*cap > host->caps->pmecc_max_correction)
return -EINVAL;
/* use the most fitable ecc bits (the near bigger one ) */
if (*cap <= 2)
host->pmecc_corr_cap = 2;
else if (*cap <= 4)
host->pmecc_corr_cap = 4;
else if (*cap <= 8)
host->pmecc_corr_cap = 8;
else if (*cap <= 12)
host->pmecc_corr_cap = 12;
else if (*cap <= 24)
host->pmecc_corr_cap = 24;
else if (*cap <= 32)
host->pmecc_corr_cap = 32;
else
return -EINVAL;
}
if (host->pmecc_sector_size == 0) {
/* use the most fitable sector size (the near smaller one ) */
if (*sector_size >= 1024)
host->pmecc_sector_size = 1024;
else if (*sector_size >= 512)
host->pmecc_sector_size = 512;
else
return -EINVAL;
}
return 0;
}
static inline int deg(unsigned int poly)
{
/* polynomial degree is the most-significant bit index */
return fls(poly) - 1;
}
static int build_gf_tables(int mm, unsigned int poly,
int16_t *index_of, int16_t *alpha_to)
{
unsigned int i, x = 1;
const unsigned int k = 1 << deg(poly);
unsigned int nn = (1 << mm) - 1;
/* primitive polynomial must be of degree m */
if (k != (1u << mm))
return -EINVAL;
for (i = 0; i < nn; i++) {
alpha_to[i] = x;
index_of[x] = i;
if (i && (x == 1))
/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
return -EINVAL;
x <<= 1;
if (x & k)
x ^= poly;
}
alpha_to[nn] = 1;
index_of[0] = 0;
return 0;
}
static uint16_t *create_lookup_table(struct device *dev, int sector_size)
{
int degree = (sector_size == 512) ?
PMECC_GF_DIMENSION_13 :
PMECC_GF_DIMENSION_14;
unsigned int poly = (sector_size == 512) ?
PMECC_GF_13_PRIMITIVE_POLY :
PMECC_GF_14_PRIMITIVE_POLY;
int table_size = (sector_size == 512) ?
PMECC_LOOKUP_TABLE_SIZE_512 :
PMECC_LOOKUP_TABLE_SIZE_1024;
int16_t *addr = devm_kzalloc(dev, 2 * table_size * sizeof(uint16_t),
GFP_KERNEL);
if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
return NULL;
return addr;
}
static int atmel_pmecc_nand_init_params(struct platform_device *pdev,
struct atmel_nand_host *host)
{
struct nand_chip *nand_chip = &host->nand_chip;
struct mtd_info *mtd = nand_to_mtd(nand_chip);
struct resource *regs, *regs_pmerr, *regs_rom;
uint16_t *galois_table;
int cap, sector_size, err_no;
err_no = pmecc_choose_ecc(host, &cap, &sector_size);
if (err_no) {
dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
return err_no;
}
if (cap > host->pmecc_corr_cap ||
sector_size != host->pmecc_sector_size)
dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
cap = host->pmecc_corr_cap;
sector_size = host->pmecc_sector_size;
host->pmecc_lookup_table_offset = (sector_size == 512) ?
host->pmecc_lookup_table_offset_512 :
host->pmecc_lookup_table_offset_1024;
dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
cap, sector_size);
regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!regs) {
dev_warn(host->dev,
"Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
nand_chip->ecc.mode = NAND_ECC_SOFT;
nand_chip->ecc.algo = NAND_ECC_HAMMING;
return 0;
}
host->ecc = devm_ioremap_resource(&pdev->dev, regs);
if (IS_ERR(host->ecc)) {
err_no = PTR_ERR(host->ecc);
goto err;
}
regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr);
if (IS_ERR(host->pmerrloc_base)) {
err_no = PTR_ERR(host->pmerrloc_base);
goto err;
}
host->pmerrloc_el_base = host->pmerrloc_base + ATMEL_PMERRLOC_SIGMAx +
(host->caps->pmecc_max_correction + 1) * 4;
if (!host->has_no_lookup_table) {
regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev,
regs_rom);
if (IS_ERR(host->pmecc_rom_base)) {
dev_err(host->dev, "Can not get I/O resource for ROM, will build a lookup table in runtime!\n");
host->has_no_lookup_table = true;
}
}
if (host->has_no_lookup_table) {
/* Build the look-up table in runtime */
galois_table = create_lookup_table(host->dev, sector_size);
if (!galois_table) {
dev_err(host->dev, "Failed to build a lookup table in runtime!\n");
err_no = -EINVAL;
goto err;
}
host->pmecc_rom_base = (void __iomem *)galois_table;
host->pmecc_lookup_table_offset = 0;
}
nand_chip->ecc.size = sector_size;
/* set ECC page size and oob layout */
switch (mtd->writesize) {
case 512:
case 1024:
case 2048:
case 4096:
case 8192:
if (sector_size > mtd->writesize) {
dev_err(host->dev, "pmecc sector size is bigger than the page size!\n");
err_no = -EINVAL;
goto err;
}
host->pmecc_degree = (sector_size == 512) ?
PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
host->pmecc_alpha_to = pmecc_get_alpha_to(host);
host->pmecc_index_of = host->pmecc_rom_base +
host->pmecc_lookup_table_offset;
nand_chip->ecc.strength = cap;
nand_chip->ecc.bytes = pmecc_get_ecc_bytes(cap, sector_size);
nand_chip->ecc.steps = mtd->writesize / sector_size;
nand_chip->ecc.total = nand_chip->ecc.bytes *
nand_chip->ecc.steps;
if (nand_chip->ecc.total >
mtd->oobsize - PMECC_OOB_RESERVED_BYTES) {
dev_err(host->dev, "No room for ECC bytes\n");
err_no = -EINVAL;
goto err;
}
mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
break;
default:
dev_warn(host->dev,
"Unsupported page size for PMECC, use Software ECC\n");
/* page size not handled by HW ECC */
/* switching back to soft ECC */
nand_chip->ecc.mode = NAND_ECC_SOFT;
nand_chip->ecc.algo = NAND_ECC_HAMMING;
return 0;
}
/* Allocate data for PMECC computation */
err_no = pmecc_data_alloc(host);
if (err_no) {
dev_err(host->dev,
"Cannot allocate memory for PMECC computation!\n");
goto err;
}
nand_chip->options |= NAND_NO_SUBPAGE_WRITE;
nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
atmel_pmecc_core_init(mtd);
return 0;
err:
return err_no;
}
/*
* Calculate HW ECC
*
* function called after a write
*
* mtd: MTD block structure
* dat: raw data (unused)
* ecc_code: buffer for ECC
*/
static int atmel_nand_calculate(struct mtd_info *mtd,
const u_char *dat, unsigned char *ecc_code)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
unsigned int ecc_value;
/* get the first 2 ECC bytes */
ecc_value = ecc_readl(host->ecc, PR);
ecc_code[0] = ecc_value & 0xFF;
ecc_code[1] = (ecc_value >> 8) & 0xFF;
/* get the last 2 ECC bytes */
ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
ecc_code[2] = ecc_value & 0xFF;
ecc_code[3] = (ecc_value >> 8) & 0xFF;
return 0;
}
/*
* HW ECC read page function
*
* mtd: mtd info structure
* chip: nand chip info structure
* buf: buffer to store read data
* oob_required: caller expects OOB data read to chip->oob_poi
*/
static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int oob_required, int page)
{
int eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
uint8_t *p = buf;
uint8_t *oob = chip->oob_poi;
uint8_t *ecc_pos;
int stat;
unsigned int max_bitflips = 0;
struct mtd_oob_region oobregion = {};
/*
* Errata: ALE is incorrectly wired up to the ECC controller
* on the AP7000, so it will include the address cycles in the
* ECC calculation.
*
* Workaround: Reset the parity registers before reading the
* actual data.
*/
struct atmel_nand_host *host = nand_get_controller_data(chip);
if (host->board.need_reset_workaround)
ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
/* read the page */
chip->read_buf(mtd, p, eccsize);
/* move to ECC position if needed */
mtd_ooblayout_ecc(mtd, 0, &oobregion);
if (oobregion.offset != 0) {
/*
* This only works on large pages because the ECC controller
* waits for NAND_CMD_RNDOUTSTART after the NAND_CMD_RNDOUT.
* Anyway, for small pages, the first ECC byte is at offset
* 0 in the OOB area.
*/
chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
mtd->writesize + oobregion.offset, -1);
}
/* the ECC controller needs to read the ECC just after the data */
ecc_pos = oob + oobregion.offset;
chip->read_buf(mtd, ecc_pos, eccbytes);
/* check if there's an error */
stat = chip->ecc.correct(mtd, p, oob, NULL);
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
/* get back to oob start (end of page) */
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
/* read the oob */
chip->read_buf(mtd, oob, mtd->oobsize);
return max_bitflips;
}
/*
* HW ECC Correction
*
* function called after a read
*
* mtd: MTD block structure
* dat: raw data read from the chip
* read_ecc: ECC from the chip (unused)
* isnull: unused
*
* Detect and correct a 1 bit error for a page
*/
static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *isnull)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
unsigned int ecc_status;
unsigned int ecc_word, ecc_bit;
/* get the status from the Status Register */
ecc_status = ecc_readl(host->ecc, SR);
/* if there's no error */
if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
return 0;
/* get error bit offset (4 bits) */
ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
/* get word address (12 bits) */
ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
ecc_word >>= 4;
/* if there are multiple errors */
if (ecc_status & ATMEL_ECC_MULERR) {
/* check if it is a freshly erased block
* (filled with 0xff) */
if ((ecc_bit == ATMEL_ECC_BITADDR)
&& (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
/* the block has just been erased, return OK */
return 0;
}
/* it doesn't seems to be a freshly
* erased block.
* We can't correct so many errors */
dev_dbg(host->dev, "atmel_nand : multiple errors detected."
" Unable to correct.\n");
return -EBADMSG;
}
/* if there's a single bit error : we can correct it */
if (ecc_status & ATMEL_ECC_ECCERR) {
/* there's nothing much to do here.
* the bit error is on the ECC itself.
*/
dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
" Nothing to correct\n");
return 0;
}
dev_dbg(host->dev, "atmel_nand : one bit error on data."
" (word offset in the page :"
" 0x%x bit offset : 0x%x)\n",
ecc_word, ecc_bit);
/* correct the error */
if (nand_chip->options & NAND_BUSWIDTH_16) {
/* 16 bits words */
((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
} else {
/* 8 bits words */
dat[ecc_word] ^= (1 << ecc_bit);
}
dev_dbg(host->dev, "atmel_nand : error corrected\n");
return 1;
}
/*
* Enable HW ECC : unused on most chips
*/
static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
if (host->board.need_reset_workaround)
ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
}
static int atmel_of_init_ecc(struct atmel_nand_host *host,
struct device_node *np)
{
u32 offset[2];
u32 val;
host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
/* Not using PMECC */
if (!(host->nand_chip.ecc.mode == NAND_ECC_HW) || !host->has_pmecc)
return 0;
/* use PMECC, get correction capability, sector size and lookup
* table offset.
* If correction bits and sector size are not specified, then find
* them from NAND ONFI parameters.
*/
if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
if (val > host->caps->pmecc_max_correction) {
dev_err(host->dev,
"Required ECC strength too high: %u max %u\n",
val, host->caps->pmecc_max_correction);
return -EINVAL;
}
if ((val != 2) && (val != 4) && (val != 8) &&
(val != 12) && (val != 24) && (val != 32)) {
dev_err(host->dev,
"Required ECC strength not supported: %u\n",
val);
return -EINVAL;
}
host->pmecc_corr_cap = (u8)val;
}
if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
if ((val != 512) && (val != 1024)) {
dev_err(host->dev,
"Required ECC sector size not supported: %u\n",
val);
return -EINVAL;
}
host->pmecc_sector_size = (u16)val;
}
if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
offset, 2) != 0) {
dev_err(host->dev, "Cannot get PMECC lookup table offset, will build a lookup table in runtime.\n");
host->has_no_lookup_table = true;
/* Will build a lookup table and initialize the offset later */
return 0;
}
if (!offset[0] && !offset[1]) {
dev_err(host->dev, "Invalid PMECC lookup table offset\n");
return -EINVAL;
}
host->pmecc_lookup_table_offset_512 = offset[0];
host->pmecc_lookup_table_offset_1024 = offset[1];
return 0;
}
static int atmel_of_init_port(struct atmel_nand_host *host,
struct device_node *np)
{
u32 val;
struct atmel_nand_data *board = &host->board;
enum of_gpio_flags flags = 0;
host->caps = (struct atmel_nand_caps *)
of_device_get_match_data(host->dev);
if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
if (val >= 32) {
dev_err(host->dev, "invalid addr-offset %u\n", val);
return -EINVAL;
}
board->ale = val;
}
if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
if (val >= 32) {
dev_err(host->dev, "invalid cmd-offset %u\n", val);
return -EINVAL;
}
board->cle = val;
}
board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma");
board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
board->enable_pin = of_get_gpio(np, 1);
board->det_pin = of_get_gpio(np, 2);
/* load the nfc driver if there is */
of_platform_populate(np, NULL, NULL, host->dev);
/*
* Initialize ECC mode to NAND_ECC_SOFT so that we have a correct value
* even if the nand-ecc-mode property is not defined.
*/
host->nand_chip.ecc.mode = NAND_ECC_SOFT;
host->nand_chip.ecc.algo = NAND_ECC_HAMMING;
return 0;
}
static int atmel_hw_nand_init_params(struct platform_device *pdev,
struct atmel_nand_host *host)
{
struct nand_chip *nand_chip = &host->nand_chip;
struct mtd_info *mtd = nand_to_mtd(nand_chip);
struct resource *regs;
regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!regs) {
dev_err(host->dev,
"Can't get I/O resource regs, use software ECC\n");
nand_chip->ecc.mode = NAND_ECC_SOFT;
nand_chip->ecc.algo = NAND_ECC_HAMMING;
return 0;
}
host->ecc = devm_ioremap_resource(&pdev->dev, regs);
if (IS_ERR(host->ecc))
return PTR_ERR(host->ecc);
/* ECC is calculated for the whole page (1 step) */
nand_chip->ecc.size = mtd->writesize;
/* set ECC page size and oob layout */
switch (mtd->writesize) {
case 512:
mtd_set_ooblayout(mtd, &atmel_ooblayout_sp_ops);
ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
break;
case 1024:
mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
break;
case 2048:
mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
break;
case 4096:
mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
break;
default:
/* page size not handled by HW ECC */
/* switching back to soft ECC */
nand_chip->ecc.mode = NAND_ECC_SOFT;
nand_chip->ecc.algo = NAND_ECC_HAMMING;
return 0;
}
/* set up for HW ECC */
nand_chip->ecc.calculate = atmel_nand_calculate;
nand_chip->ecc.correct = atmel_nand_correct;
nand_chip->ecc.hwctl = atmel_nand_hwctl;
nand_chip->ecc.read_page = atmel_nand_read_page;
nand_chip->ecc.bytes = 4;
nand_chip->ecc.strength = 1;
return 0;
}
static inline u32 nfc_read_status(struct atmel_nand_host *host)
{
u32 err_flags = NFC_SR_DTOE | NFC_SR_UNDEF | NFC_SR_AWB | NFC_SR_ASE;
u32 nfc_status = nfc_readl(host->nfc->hsmc_regs, SR);
if (unlikely(nfc_status & err_flags)) {
if (nfc_status & NFC_SR_DTOE)
dev_err(host->dev, "NFC: Waiting Nand R/B Timeout Error\n");
else if (nfc_status & NFC_SR_UNDEF)
dev_err(host->dev, "NFC: Access Undefined Area Error\n");
else if (nfc_status & NFC_SR_AWB)
dev_err(host->dev, "NFC: Access memory While NFC is busy\n");
else if (nfc_status & NFC_SR_ASE)
dev_err(host->dev, "NFC: Access memory Size Error\n");
}
return nfc_status;
}
/* SMC interrupt service routine */
static irqreturn_t hsmc_interrupt(int irq, void *dev_id)
{
struct atmel_nand_host *host = dev_id;
u32 status, mask, pending;
irqreturn_t ret = IRQ_NONE;
status = nfc_read_status(host);
mask = nfc_readl(host->nfc->hsmc_regs, IMR);
pending = status & mask;
if (pending & NFC_SR_XFR_DONE) {
complete(&host->nfc->comp_xfer_done);
nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE);
ret = IRQ_HANDLED;
}
if (pending & NFC_SR_RB_EDGE) {
complete(&host->nfc->comp_ready);
nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE);
ret = IRQ_HANDLED;
}
if (pending & NFC_SR_CMD_DONE) {
complete(&host->nfc->comp_cmd_done);
nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE);
ret = IRQ_HANDLED;
}
return ret;
}
/* NFC(Nand Flash Controller) related functions */
static void nfc_prepare_interrupt(struct atmel_nand_host *host, u32 flag)
{
if (flag & NFC_SR_XFR_DONE)
init_completion(&host->nfc->comp_xfer_done);
if (flag & NFC_SR_RB_EDGE)
init_completion(&host->nfc->comp_ready);
if (flag & NFC_SR_CMD_DONE)
init_completion(&host->nfc->comp_cmd_done);
/* Enable interrupt that need to wait for */
nfc_writel(host->nfc->hsmc_regs, IER, flag);
}
static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag)
{
int i, index = 0;
struct completion *comp[3]; /* Support 3 interrupt completion */
if (flag & NFC_SR_XFR_DONE)
comp[index++] = &host->nfc->comp_xfer_done;
if (flag & NFC_SR_RB_EDGE)
comp[index++] = &host->nfc->comp_ready;
if (flag & NFC_SR_CMD_DONE)
comp[index++] = &host->nfc->comp_cmd_done;
if (index == 0) {
dev_err(host->dev, "Unknown interrupt flag: 0x%08x\n", flag);
return -EINVAL;
}
for (i = 0; i < index; i++) {
if (wait_for_completion_timeout(comp[i],
msecs_to_jiffies(NFC_TIME_OUT_MS)))
continue; /* wait for next completion */
else
goto err_timeout;
}
return 0;
err_timeout:
dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag);
/* Disable the interrupt as it is not handled by interrupt handler */
nfc_writel(host->nfc->hsmc_regs, IDR, flag);
return -ETIMEDOUT;
}
static int nfc_send_command(struct atmel_nand_host *host,
unsigned int cmd, unsigned int addr, unsigned char cycle0)
{
unsigned long timeout;
u32 flag = NFC_SR_CMD_DONE;
flag |= cmd & NFCADDR_CMD_DATAEN ? NFC_SR_XFR_DONE : 0;
dev_dbg(host->dev,
"nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n",
cmd, addr, cycle0);
timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
while (nfc_readl(host->nfc->hsmc_regs, SR) & NFC_SR_BUSY) {
if (time_after(jiffies, timeout)) {
dev_err(host->dev,
"Time out to wait for NFC ready!\n");
return -ETIMEDOUT;
}
}
nfc_prepare_interrupt(host, flag);
nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0);
nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs);
return nfc_wait_interrupt(host, flag);
}
static int nfc_device_ready(struct mtd_info *mtd)
{
u32 status, mask;
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
status = nfc_read_status(host);
mask = nfc_readl(host->nfc->hsmc_regs, IMR);
/* The mask should be 0. If not we may lost interrupts */
if (unlikely(mask & status))
dev_err(host->dev, "Lost the interrupt flags: 0x%08x\n",
mask & status);
return status & NFC_SR_RB_EDGE;
}
static void nfc_select_chip(struct mtd_info *mtd, int chip)
{
struct nand_chip *nand_chip = mtd_to_nand(mtd);
struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
if (chip == -1)
nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE);
else
nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE);
}
static int nfc_make_addr(struct mtd_info *mtd, int command, int column,
int page_addr, unsigned int *addr1234, unsigned int *cycle0)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int acycle = 0;
unsigned char addr_bytes[8];
int index = 0, bit_shift;
BUG_ON(addr1234 == NULL || cycle0 == NULL);
*cycle0 = 0;
*addr1234 = 0;
if (column != -1) {
if (chip->options & NAND_BUSWIDTH_16 &&
!nand_opcode_8bits(command))
column >>= 1;
addr_bytes[acycle++] = column & 0xff;
if (mtd->writesize > 512)
addr_bytes[acycle++] = (column >> 8) & 0xff;
}
if (page_addr != -1) {
addr_bytes[acycle++] = page_addr & 0xff;
addr_bytes[acycle++] = (page_addr >> 8) & 0xff;
if (chip->chipsize > (128 << 20))
addr_bytes[acycle++] = (page_addr >> 16) & 0xff;
}
if (acycle > 4)
*cycle0 = addr_bytes[index++];
for (bit_shift = 0; index < acycle; bit_shift += 8)
*addr1234 += addr_bytes[index++] << bit_shift;
/* return acycle in cmd register */
return acycle << NFCADDR_CMD_ACYCLE_BIT_POS;
}
static void nfc_nand_command(struct mtd_info *mtd, unsigned int command,
int column, int page_addr)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand_host *host = nand_get_controller_data(chip);
unsigned long timeout;
unsigned int nfc_addr_cmd = 0;
unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
/* Set default settings: no cmd2, no addr cycle. read from nand */
unsigned int cmd2 = 0;
unsigned int vcmd2 = 0;
int acycle = NFCADDR_CMD_ACYCLE_NONE;
int csid = NFCADDR_CMD_CSID_3;
int dataen = NFCADDR_CMD_DATADIS;
int nfcwr = NFCADDR_CMD_NFCRD;
unsigned int addr1234 = 0;
unsigned int cycle0 = 0;
bool do_addr = true;
host->nfc->data_in_sram = NULL;
dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n",
__func__, command, column, page_addr);
switch (command) {
case NAND_CMD_RESET:
nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr;
nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
udelay(chip->chip_delay);
nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) {
if (time_after(jiffies, timeout)) {
dev_err(host->dev,
"Time out to wait status ready!\n");
break;
}
}
return;
case NAND_CMD_STATUS:
do_addr = false;
break;
case NAND_CMD_PARAM:
case NAND_CMD_READID:
do_addr = false;
acycle = NFCADDR_CMD_ACYCLE_1;
if (column != -1)
addr1234 = column;
break;
case NAND_CMD_RNDOUT:
cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS;
vcmd2 = NFCADDR_CMD_VCMD2;
break;
case NAND_CMD_READ0:
case NAND_CMD_READOOB:
if (command == NAND_CMD_READOOB) {
column += mtd->writesize;
command = NAND_CMD_READ0; /* only READ0 is valid */
cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
}
if (host->nfc->use_nfc_sram) {
/* Enable Data transfer to sram */
dataen = NFCADDR_CMD_DATAEN;
/* Need enable PMECC now, since NFC will transfer
* data in bus after sending nfc read command.
*/
if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
pmecc_enable(host, NAND_ECC_READ);
}
cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS;
vcmd2 = NFCADDR_CMD_VCMD2;
break;
/* For prgramming command, the cmd need set to write enable */
case NAND_CMD_PAGEPROG:
case NAND_CMD_SEQIN:
case NAND_CMD_RNDIN:
nfcwr = NFCADDR_CMD_NFCWR;
if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN)
dataen = NFCADDR_CMD_DATAEN;
break;
default:
break;
}
if (do_addr)
acycle = nfc_make_addr(mtd, command, column, page_addr,
&addr1234, &cycle0);
nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr;
nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
/*
* Program and erase have their own busy handlers status, sequential
* in, and deplete1 need no delay.
*/
switch (command) {
case NAND_CMD_CACHEDPROG:
case NAND_CMD_PAGEPROG:
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
case NAND_CMD_RNDIN:
case NAND_CMD_STATUS:
case NAND_CMD_RNDOUT:
case NAND_CMD_SEQIN:
case NAND_CMD_READID:
return;
case NAND_CMD_READ0:
if (dataen == NFCADDR_CMD_DATAEN) {
host->nfc->data_in_sram = host->nfc->sram_bank0 +
nfc_get_sram_off(host);
return;
}
/* fall through */
default:
nfc_prepare_interrupt(host, NFC_SR_RB_EDGE);
nfc_wait_interrupt(host, NFC_SR_RB_EDGE);
}
}
static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip,
uint32_t offset, int data_len, const uint8_t *buf,
int oob_required, int page, int cached, int raw)
{
int cfg, len;
int status = 0;
struct atmel_nand_host *host = nand_get_controller_data(chip);
void *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host);
/* Subpage write is not supported */
if (offset || (data_len < mtd->writesize))
return -EINVAL;
len = mtd->writesize;
/* Copy page data to sram that will write to nand via NFC */
if (use_dma) {
if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0)
/* Fall back to use cpu copy */
memcpy(sram, buf, len);
} else {
memcpy(sram, buf, len);
}
cfg = nfc_readl(host->nfc->hsmc_regs, CFG);
if (unlikely(raw) && oob_required) {
memcpy(sram + len, chip->oob_poi, mtd->oobsize);
len += mtd->oobsize;
nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE);
} else {
nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE);
}
if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
/*
* When use NFC sram, need set up PMECC before send
* NAND_CMD_SEQIN command. Since when the nand command
* is sent, nfc will do transfer from sram and nand.
*/
pmecc_enable(host, NAND_ECC_WRITE);
host->nfc->will_write_sram = true;
chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
host->nfc->will_write_sram = false;
if (likely(!raw))
/* Need to write ecc into oob */
status = chip->ecc.write_page(mtd, chip, buf, oob_required,
page);
if (status < 0)
return status;
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
if ((status & NAND_STATUS_FAIL) && (chip->errstat))
status = chip->errstat(mtd, chip, FL_WRITING, status, page);
if (status & NAND_STATUS_FAIL)
return -EIO;
return 0;
}
static int nfc_sram_init(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct atmel_nand_host *host = nand_get_controller_data(chip);
int res = 0;
/* Initialize the NFC CFG register */
unsigned int cfg_nfc = 0;
/* set page size and oob layout */
switch (mtd->writesize) {
case 512:
cfg_nfc = NFC_CFG_PAGESIZE_512;
break;
case 1024:
cfg_nfc = NFC_CFG_PAGESIZE_1024;
break;
case 2048:
cfg_nfc = NFC_CFG_PAGESIZE_2048;
break;
case 4096:
cfg_nfc = NFC_CFG_PAGESIZE_4096;
break;
case 8192:
cfg_nfc = NFC_CFG_PAGESIZE_8192;
break;
default:
dev_err(host->dev, "Unsupported page size for NFC.\n");
res = -ENXIO;
return res;
}
/* oob bytes size = (NFCSPARESIZE + 1) * 4
* Max support spare size is 512 bytes. */
cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS
& NFC_CFG_NFC_SPARESIZE);
/* default set a max timeout */
cfg_nfc |= NFC_CFG_RSPARE |
NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL;
nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc);
host->nfc->will_write_sram = false;
nfc_set_sram_bank(host, 0);
/* Use Write page with NFC SRAM only for PMECC or ECC NONE. */
if (host->nfc->write_by_sram) {
if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) ||
chip->ecc.mode == NAND_ECC_NONE)
chip->write_page = nfc_sram_write_page;
else
host->nfc->write_by_sram = false;
}
dev_info(host->dev, "Using NFC Sram read %s\n",
host->nfc->write_by_sram ? "and write" : "");
return 0;
}
static struct platform_driver atmel_nand_nfc_driver;
/*
* Probe for the NAND device.
*/
static int atmel_nand_probe(struct platform_device *pdev)
{
struct atmel_nand_host *host;
struct mtd_info *mtd;
struct nand_chip *nand_chip;
struct resource *mem;
int res, irq;
/* Allocate memory for the device structure (and zero it) */
host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
if (!host)
return -ENOMEM;
res = platform_driver_register(&atmel_nand_nfc_driver);
if (res)
dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n");
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
host->io_base = devm_ioremap_resource(&pdev->dev, mem);
if (IS_ERR(host->io_base)) {
res = PTR_ERR(host->io_base);
goto err_nand_ioremap;
}
host->io_phys = (dma_addr_t)mem->start;
nand_chip = &host->nand_chip;
mtd = nand_to_mtd(nand_chip);
host->dev = &pdev->dev;
if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
nand_set_flash_node(nand_chip, pdev->dev.of_node);
/* Only when CONFIG_OF is enabled of_node can be parsed */
res = atmel_of_init_port(host, pdev->dev.of_node);
if (res)
goto err_nand_ioremap;
} else {
memcpy(&host->board, dev_get_platdata(&pdev->dev),
sizeof(struct atmel_nand_data));
nand_chip->ecc.mode = host->board.ecc_mode;
/*
* When using software ECC every supported avr32 board means
* Hamming algorithm. If that ever changes we'll need to add
* ecc_algo field to the struct atmel_nand_data.
*/
if (nand_chip->ecc.mode == NAND_ECC_SOFT)
nand_chip->ecc.algo = NAND_ECC_HAMMING;
/* 16-bit bus width */
if (host->board.bus_width_16)
nand_chip->options |= NAND_BUSWIDTH_16;
}
/* link the private data structures */
nand_set_controller_data(nand_chip, host);
mtd->dev.parent = &pdev->dev;
/* Set address of NAND IO lines */
nand_chip->IO_ADDR_R = host->io_base;
nand_chip->IO_ADDR_W = host->io_base;
if (nand_nfc.is_initialized) {
/* NFC driver is probed and initialized */
host->nfc = &nand_nfc;
nand_chip->select_chip = nfc_select_chip;
nand_chip->dev_ready = nfc_device_ready;
nand_chip->cmdfunc = nfc_nand_command;
/* Initialize the interrupt for NFC */
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(host->dev, "Cannot get HSMC irq!\n");
res = irq;
goto err_nand_ioremap;
}
res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt,
0, "hsmc", host);
if (res) {
dev_err(&pdev->dev, "Unable to request HSMC irq %d\n",
irq);
goto err_nand_ioremap;
}
} else {
res = atmel_nand_set_enable_ready_pins(mtd);
if (res)
goto err_nand_ioremap;
nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
}
nand_chip->chip_delay = 40; /* 40us command delay time */
nand_chip->read_buf = atmel_read_buf;
nand_chip->write_buf = atmel_write_buf;
platform_set_drvdata(pdev, host);
atmel_nand_enable(host);
if (gpio_is_valid(host->board.det_pin)) {
res = devm_gpio_request(&pdev->dev,
host->board.det_pin, "nand_det");
if (res < 0) {
dev_err(&pdev->dev,
"can't request det gpio %d\n",
host->board.det_pin);
goto err_no_card;
}
res = gpio_direction_input(host->board.det_pin);
if (res < 0) {
dev_err(&pdev->dev,
"can't request input direction det gpio %d\n",
host->board.det_pin);
goto err_no_card;
}
if (gpio_get_value(host->board.det_pin)) {
dev_info(&pdev->dev, "No SmartMedia card inserted.\n");
res = -ENXIO;
goto err_no_card;
}
}
if (!host->board.has_dma)
use_dma = 0;
if (use_dma) {
dma_cap_mask_t mask;
dma_cap_zero(mask);
dma_cap_set(DMA_MEMCPY, mask);
host->dma_chan = dma_request_channel(mask, NULL, NULL);
if (!host->dma_chan) {
dev_err(host->dev, "Failed to request DMA channel\n");
use_dma = 0;
}
}
if (use_dma)
dev_info(host->dev, "Using %s for DMA transfers.\n",
dma_chan_name(host->dma_chan));
else
dev_info(host->dev, "No DMA support for NAND access.\n");
/* first scan to find the device and get the page size */
res = nand_scan_ident(mtd, 1, NULL);
if (res)
goto err_scan_ident;
if (host->board.on_flash_bbt || on_flash_bbt)
nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
if (nand_chip->bbt_options & NAND_BBT_USE_FLASH)
dev_info(&pdev->dev, "Use On Flash BBT\n");
if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
res = atmel_of_init_ecc(host, pdev->dev.of_node);
if (res)
goto err_hw_ecc;
}
if (nand_chip->ecc.mode == NAND_ECC_HW) {
if (host->has_pmecc)
res = atmel_pmecc_nand_init_params(pdev, host);
else
res = atmel_hw_nand_init_params(pdev, host);
if (res != 0)
goto err_hw_ecc;
}
/* initialize the nfc configuration register */
if (host->nfc && host->nfc->use_nfc_sram) {
res = nfc_sram_init(mtd);
if (res) {
host->nfc->use_nfc_sram = false;
dev_err(host->dev, "Disable use nfc sram for data transfer.\n");
}
}
/* second phase scan */
res = nand_scan_tail(mtd);
if (res)
goto err_scan_tail;
mtd->name = "atmel_nand";
res = mtd_device_register(mtd, host->board.parts,
host->board.num_parts);
if (!res)
return res;
err_scan_tail:
if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW)
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
err_hw_ecc:
err_scan_ident:
err_no_card:
atmel_nand_disable(host);
if (host->dma_chan)
dma_release_channel(host->dma_chan);
err_nand_ioremap:
return res;
}
/*
* Remove a NAND device.
*/
static int atmel_nand_remove(struct platform_device *pdev)
{
struct atmel_nand_host *host = platform_get_drvdata(pdev);
struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
nand_release(mtd);
atmel_nand_disable(host);
if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
pmerrloc_writel(host->pmerrloc_base, ELDIS,
PMERRLOC_DISABLE);
}
if (host->dma_chan)
dma_release_channel(host->dma_chan);
platform_driver_unregister(&atmel_nand_nfc_driver);
return 0;
}
/*
* AT91RM9200 does not have PMECC or PMECC Errloc peripherals for
* BCH ECC. Combined with the "atmel,has-pmecc", it is used to describe
* devices from the SAM9 family that have those.
*/
static const struct atmel_nand_caps at91rm9200_caps = {
.pmecc_correct_erase_page = false,
.pmecc_max_correction = 24,
};
static const struct atmel_nand_caps sama5d4_caps = {
.pmecc_correct_erase_page = true,
.pmecc_max_correction = 24,
};
/*
* The PMECC Errloc controller starting in SAMA5D2 is not compatible,
* as the increased correction strength requires more registers.
*/
static const struct atmel_nand_caps sama5d2_caps = {
.pmecc_correct_erase_page = true,
.pmecc_max_correction = 32,
};
static const struct of_device_id atmel_nand_dt_ids[] = {
{ .compatible = "atmel,at91rm9200-nand", .data = &at91rm9200_caps },
{ .compatible = "atmel,sama5d4-nand", .data = &sama5d4_caps },
{ .compatible = "atmel,sama5d2-nand", .data = &sama5d2_caps },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
static int atmel_nand_nfc_probe(struct platform_device *pdev)
{
struct atmel_nfc *nfc = &nand_nfc;
struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram;
int ret;
nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs);
if (IS_ERR(nfc->base_cmd_regs))
return PTR_ERR(nfc->base_cmd_regs);
nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs);
if (IS_ERR(nfc->hsmc_regs))
return PTR_ERR(nfc->hsmc_regs);
nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2);
if (nfc_sram) {
nfc->sram_bank0 = (void * __force)
devm_ioremap_resource(&pdev->dev, nfc_sram);
if (IS_ERR(nfc->sram_bank0)) {
dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n",
PTR_ERR(nfc->sram_bank0));
} else {
nfc->use_nfc_sram = true;
nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start;
if (pdev->dev.of_node)
nfc->write_by_sram = of_property_read_bool(
pdev->dev.of_node,
"atmel,write-by-sram");
}
}
nfc_writel(nfc->hsmc_regs, IDR, 0xffffffff);
nfc_readl(nfc->hsmc_regs, SR); /* clear the NFC_SR */
nfc->clk = devm_clk_get(&pdev->dev, NULL);
if (!IS_ERR(nfc->clk)) {
ret = clk_prepare_enable(nfc->clk);
if (ret)
return ret;
} else {
dev_warn(&pdev->dev, "NFC clock missing, update your Device Tree");
}
nfc->is_initialized = true;
dev_info(&pdev->dev, "NFC is probed.\n");
return 0;
}
static int atmel_nand_nfc_remove(struct platform_device *pdev)
{
struct atmel_nfc *nfc = &nand_nfc;
if (!IS_ERR(nfc->clk))
clk_disable_unprepare(nfc->clk);
return 0;
}
static const struct of_device_id atmel_nand_nfc_match[] = {
{ .compatible = "atmel,sama5d3-nfc" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, atmel_nand_nfc_match);
static struct platform_driver atmel_nand_nfc_driver = {
.driver = {
.name = "atmel_nand_nfc",
.of_match_table = of_match_ptr(atmel_nand_nfc_match),
},
.probe = atmel_nand_nfc_probe,
.remove = atmel_nand_nfc_remove,
};
static struct platform_driver atmel_nand_driver = {
.probe = atmel_nand_probe,
.remove = atmel_nand_remove,
.driver = {
.name = "atmel_nand",
.of_match_table = of_match_ptr(atmel_nand_dt_ids),
},
};
module_platform_driver(atmel_nand_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Rick Bronson");
MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
MODULE_ALIAS("platform:atmel_nand");
/*
* Error Corrected Code Controller (ECC) - System peripherals regsters.
* Based on AT91SAM9260 datasheet revision B.
*
* Copyright (C) 2007 Andrew Victor
* Copyright (C) 2007 - 2012 Atmel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#ifndef ATMEL_NAND_ECC_H
#define ATMEL_NAND_ECC_H
#define ATMEL_ECC_CR 0x00 /* Control register */
#define ATMEL_ECC_RST (1 << 0) /* Reset parity */
#define ATMEL_ECC_MR 0x04 /* Mode register */
#define ATMEL_ECC_PAGESIZE (3 << 0) /* Page Size */
#define ATMEL_ECC_PAGESIZE_528 (0)
#define ATMEL_ECC_PAGESIZE_1056 (1)
#define ATMEL_ECC_PAGESIZE_2112 (2)
#define ATMEL_ECC_PAGESIZE_4224 (3)
#define ATMEL_ECC_SR 0x08 /* Status register */
#define ATMEL_ECC_RECERR (1 << 0) /* Recoverable Error */
#define ATMEL_ECC_ECCERR (1 << 1) /* ECC Single Bit Error */
#define ATMEL_ECC_MULERR (1 << 2) /* Multiple Errors */
#define ATMEL_ECC_PR 0x0c /* Parity register */
#define ATMEL_ECC_BITADDR (0xf << 0) /* Bit Error Address */
#define ATMEL_ECC_WORDADDR (0xfff << 4) /* Word Error Address */
#define ATMEL_ECC_NPR 0x10 /* NParity register */
#define ATMEL_ECC_NPARITY (0xffff << 0) /* NParity */
/* PMECC Register Definitions */
#define ATMEL_PMECC_CFG 0x000 /* Configuration Register */
#define PMECC_CFG_BCH_ERR2 (0 << 0)
#define PMECC_CFG_BCH_ERR4 (1 << 0)
#define PMECC_CFG_BCH_ERR8 (2 << 0)
#define PMECC_CFG_BCH_ERR12 (3 << 0)
#define PMECC_CFG_BCH_ERR24 (4 << 0)
#define PMECC_CFG_BCH_ERR32 (5 << 0)
#define PMECC_CFG_SECTOR512 (0 << 4)
#define PMECC_CFG_SECTOR1024 (1 << 4)
#define PMECC_CFG_PAGE_1SECTOR (0 << 8)
#define PMECC_CFG_PAGE_2SECTORS (1 << 8)
#define PMECC_CFG_PAGE_4SECTORS (2 << 8)
#define PMECC_CFG_PAGE_8SECTORS (3 << 8)
#define PMECC_CFG_READ_OP (0 << 12)
#define PMECC_CFG_WRITE_OP (1 << 12)
#define PMECC_CFG_SPARE_ENABLE (1 << 16)
#define PMECC_CFG_SPARE_DISABLE (0 << 16)
#define PMECC_CFG_AUTO_ENABLE (1 << 20)
#define PMECC_CFG_AUTO_DISABLE (0 << 20)
#define ATMEL_PMECC_SAREA 0x004 /* Spare area size */
#define ATMEL_PMECC_SADDR 0x008 /* PMECC starting address */
#define ATMEL_PMECC_EADDR 0x00c /* PMECC ending address */
#define ATMEL_PMECC_CLK 0x010 /* PMECC clock control */
#define PMECC_CLK_133MHZ (2 << 0)
#define ATMEL_PMECC_CTRL 0x014 /* PMECC control register */
#define PMECC_CTRL_RST (1 << 0)
#define PMECC_CTRL_DATA (1 << 1)
#define PMECC_CTRL_USER (1 << 2)
#define PMECC_CTRL_ENABLE (1 << 4)
#define PMECC_CTRL_DISABLE (1 << 5)
#define ATMEL_PMECC_SR 0x018 /* PMECC status register */
#define PMECC_SR_BUSY (1 << 0)
#define PMECC_SR_ENABLE (1 << 4)
#define ATMEL_PMECC_IER 0x01c /* PMECC interrupt enable */
#define PMECC_IER_ENABLE (1 << 0)
#define ATMEL_PMECC_IDR 0x020 /* PMECC interrupt disable */
#define PMECC_IER_DISABLE (1 << 0)
#define ATMEL_PMECC_IMR 0x024 /* PMECC interrupt mask */
#define PMECC_IER_MASK (1 << 0)
#define ATMEL_PMECC_ISR 0x028 /* PMECC interrupt status */
#define ATMEL_PMECC_ECCx 0x040 /* PMECC ECC x */
#define ATMEL_PMECC_REMx 0x240 /* PMECC REM x */
/* PMERRLOC Register Definitions */
#define ATMEL_PMERRLOC_ELCFG 0x000 /* Error location config */
#define PMERRLOC_ELCFG_SECTOR_512 (0 << 0)
#define PMERRLOC_ELCFG_SECTOR_1024 (1 << 0)
#define PMERRLOC_ELCFG_NUM_ERRORS(n) ((n) << 16)
#define ATMEL_PMERRLOC_ELPRIM 0x004 /* Error location primitive */
#define ATMEL_PMERRLOC_ELEN 0x008 /* Error location enable */
#define ATMEL_PMERRLOC_ELDIS 0x00c /* Error location disable */
#define PMERRLOC_DISABLE (1 << 0)
#define ATMEL_PMERRLOC_ELSR 0x010 /* Error location status */
#define PMERRLOC_ELSR_BUSY (1 << 0)
#define ATMEL_PMERRLOC_ELIER 0x014 /* Error location int enable */
#define ATMEL_PMERRLOC_ELIDR 0x018 /* Error location int disable */
#define ATMEL_PMERRLOC_ELIMR 0x01c /* Error location int mask */
#define ATMEL_PMERRLOC_ELISR 0x020 /* Error location int status */
#define PMERRLOC_ERR_NUM_MASK (0x1f << 8)
#define PMERRLOC_CALC_DONE (1 << 0)
#define ATMEL_PMERRLOC_SIGMAx 0x028 /* Error location SIGMA x */
/*
* The ATMEL_PMERRLOC_ELx register location depends from the number of
* bits corrected by the PMECC controller. Do not use it.
*/
/* Register access macros for PMECC */
#define pmecc_readl_relaxed(addr, reg) \
readl_relaxed((addr) + ATMEL_PMECC_##reg)
#define pmecc_writel(addr, reg, value) \
writel((value), (addr) + ATMEL_PMECC_##reg)
#define pmecc_readb_ecc_relaxed(addr, sector, n) \
readb_relaxed((addr) + ATMEL_PMECC_ECCx + ((sector) * 0x40) + (n))
#define pmecc_readl_rem_relaxed(addr, sector, n) \
readl_relaxed((addr) + ATMEL_PMECC_REMx + ((sector) * 0x40) + ((n) * 4))
#define pmerrloc_readl_relaxed(addr, reg) \
readl_relaxed((addr) + ATMEL_PMERRLOC_##reg)
#define pmerrloc_writel(addr, reg, value) \
writel((value), (addr) + ATMEL_PMERRLOC_##reg)
#define pmerrloc_writel_sigma_relaxed(addr, n, value) \
writel_relaxed((value), (addr) + ATMEL_PMERRLOC_SIGMAx + ((n) * 4))
#define pmerrloc_readl_sigma_relaxed(addr, n) \
readl_relaxed((addr) + ATMEL_PMERRLOC_SIGMAx + ((n) * 4))
#define pmerrloc_readl_el_relaxed(addr, n) \
readl_relaxed((addr) + ((n) * 4))
/* Galois field dimension */
#define PMECC_GF_DIMENSION_13 13
#define PMECC_GF_DIMENSION_14 14
/* Primitive Polynomial used by PMECC */
#define PMECC_GF_13_PRIMITIVE_POLY 0x201b
#define PMECC_GF_14_PRIMITIVE_POLY 0x4443
#define PMECC_LOOKUP_TABLE_SIZE_512 0x2000
#define PMECC_LOOKUP_TABLE_SIZE_1024 0x4000
/* Time out value for reading PMECC status register */
#define PMECC_MAX_TIMEOUT_MS 100
/* Reserved bytes in oob area */
#define PMECC_OOB_RESERVED_BYTES 2
#endif
/*
* Atmel Nand Flash Controller (NFC) - System peripherals regsters.
* Based on SAMA5D3 datasheet.
*
* © Copyright 2013 Atmel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#ifndef ATMEL_NAND_NFC_H
#define ATMEL_NAND_NFC_H
/*
* HSMC NFC registers
*/
#define ATMEL_HSMC_NFC_CFG 0x00 /* NFC Configuration Register */
#define NFC_CFG_PAGESIZE (7 << 0)
#define NFC_CFG_PAGESIZE_512 (0 << 0)
#define NFC_CFG_PAGESIZE_1024 (1 << 0)
#define NFC_CFG_PAGESIZE_2048 (2 << 0)
#define NFC_CFG_PAGESIZE_4096 (3 << 0)
#define NFC_CFG_PAGESIZE_8192 (4 << 0)
#define NFC_CFG_WSPARE (1 << 8)
#define NFC_CFG_RSPARE (1 << 9)
#define NFC_CFG_NFC_DTOCYC (0xf << 16)
#define NFC_CFG_NFC_DTOMUL (0x7 << 20)
#define NFC_CFG_NFC_SPARESIZE (0x7f << 24)
#define NFC_CFG_NFC_SPARESIZE_BIT_POS 24
#define ATMEL_HSMC_NFC_CTRL 0x04 /* NFC Control Register */
#define NFC_CTRL_ENABLE (1 << 0)
#define NFC_CTRL_DISABLE (1 << 1)
#define ATMEL_HSMC_NFC_SR 0x08 /* NFC Status Register */
#define NFC_SR_BUSY (1 << 8)
#define NFC_SR_XFR_DONE (1 << 16)
#define NFC_SR_CMD_DONE (1 << 17)
#define NFC_SR_DTOE (1 << 20)
#define NFC_SR_UNDEF (1 << 21)
#define NFC_SR_AWB (1 << 22)
#define NFC_SR_ASE (1 << 23)
#define NFC_SR_RB_EDGE (1 << 24)
#define ATMEL_HSMC_NFC_IER 0x0c
#define ATMEL_HSMC_NFC_IDR 0x10
#define ATMEL_HSMC_NFC_IMR 0x14
#define ATMEL_HSMC_NFC_CYCLE0 0x18 /* NFC Address Cycle Zero */
#define ATMEL_HSMC_NFC_ADDR_CYCLE0 (0xff)
#define ATMEL_HSMC_NFC_BANK 0x1c /* NFC Bank Register */
#define ATMEL_HSMC_NFC_BANK0 (0 << 0)
#define ATMEL_HSMC_NFC_BANK1 (1 << 0)
#define nfc_writel(addr, reg, value) \
writel((value), (addr) + ATMEL_HSMC_NFC_##reg)
#define nfc_readl(addr, reg) \
readl_relaxed((addr) + ATMEL_HSMC_NFC_##reg)
/*
* NFC Address Command definitions
*/
#define NFCADDR_CMD_CMD1 (0xff << 2) /* Command for Cycle 1 */
#define NFCADDR_CMD_CMD1_BIT_POS 2
#define NFCADDR_CMD_CMD2 (0xff << 10) /* Command for Cycle 2 */
#define NFCADDR_CMD_CMD2_BIT_POS 10
#define NFCADDR_CMD_VCMD2 (0x1 << 18) /* Valid Cycle 2 Command */
#define NFCADDR_CMD_ACYCLE (0x7 << 19) /* Number of Address required */
#define NFCADDR_CMD_ACYCLE_NONE (0x0 << 19)
#define NFCADDR_CMD_ACYCLE_1 (0x1 << 19)
#define NFCADDR_CMD_ACYCLE_2 (0x2 << 19)
#define NFCADDR_CMD_ACYCLE_3 (0x3 << 19)
#define NFCADDR_CMD_ACYCLE_4 (0x4 << 19)
#define NFCADDR_CMD_ACYCLE_5 (0x5 << 19)
#define NFCADDR_CMD_ACYCLE_BIT_POS 19
#define NFCADDR_CMD_CSID (0x7 << 22) /* Chip Select Identifier */
#define NFCADDR_CMD_CSID_0 (0x0 << 22)
#define NFCADDR_CMD_CSID_1 (0x1 << 22)
#define NFCADDR_CMD_CSID_2 (0x2 << 22)
#define NFCADDR_CMD_CSID_3 (0x3 << 22)
#define NFCADDR_CMD_CSID_4 (0x4 << 22)
#define NFCADDR_CMD_CSID_5 (0x5 << 22)
#define NFCADDR_CMD_CSID_6 (0x6 << 22)
#define NFCADDR_CMD_CSID_7 (0x7 << 22)
#define NFCADDR_CMD_DATAEN (0x1 << 25) /* Data Transfer Enable */
#define NFCADDR_CMD_DATADIS (0x0 << 25) /* Data Transfer Disable */
#define NFCADDR_CMD_NFCRD (0x0 << 26) /* NFC Read Enable */
#define NFCADDR_CMD_NFCWR (0x1 << 26) /* NFC Write Enable */
#define NFCADDR_CMD_NFCBUSY (0x1 << 27) /* NFC Busy */
#define nfc_cmd_addr1234_writel(cmd, addr1234, nfc_base) \
writel((addr1234), (cmd) + nfc_base)
#define nfc_cmd_readl(bitstatus, nfc_base) \
readl_relaxed((bitstatus) + nfc_base)
#define NFC_TIME_OUT_MS 100
#define NFC_SRAM_BANK1_OFFSET 0x1200
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment