Commit f9114a54 authored by Vinod Koul's avatar Vinod Koul

Merge branch 'topic/xilinx' into for-linus

parents 0f5c85f4 ba16db36
...@@ -3,18 +3,44 @@ It can be configured to have one channel or two channels. If configured ...@@ -3,18 +3,44 @@ It can be configured to have one channel or two channels. If configured
as two channels, one is to transmit to the video device and another is as two channels, one is to transmit to the video device and another is
to receive from the video device. to receive from the video device.
Xilinx AXI DMA engine, it does transfers between memory and AXI4 stream
target devices. It can be configured to have one channel or two channels.
If configured as two channels, one is to transmit to the device and another
is to receive from the device.
Xilinx AXI CDMA engine, it does transfers between memory-mapped source
address and a memory-mapped destination address.
Required properties: Required properties:
- compatible: Should be "xlnx,axi-vdma-1.00.a" - compatible: Should be "xlnx,axi-vdma-1.00.a" or "xlnx,axi-dma-1.00.a" or
"xlnx,axi-cdma-1.00.a""
- #dma-cells: Should be <1>, see "dmas" property below - #dma-cells: Should be <1>, see "dmas" property below
- reg: Should contain VDMA registers location and length. - reg: Should contain VDMA registers location and length.
- xlnx,num-fstores: Should be the number of framebuffers as configured in h/w. - xlnx,addrwidth: Should be the vdma addressing size in bits(ex: 32 bits).
- dma-ranges: Should be as the following <dma_addr cpu_addr max_len>.
- dma-channel child node: Should have at least one channel and can have up to - dma-channel child node: Should have at least one channel and can have up to
two channels per device. This node specifies the properties of each two channels per device. This node specifies the properties of each
DMA channel (see child node properties below). DMA channel (see child node properties below).
- clocks: Input clock specifier. Refer to common clock bindings.
- clock-names: List of input clocks
For VDMA:
Required elements: "s_axi_lite_aclk"
Optional elements: "m_axi_mm2s_aclk" "m_axi_s2mm_aclk",
"m_axis_mm2s_aclk", "s_axis_s2mm_aclk"
For CDMA:
Required elements: "s_axi_lite_aclk", "m_axi_aclk"
FOR AXIDMA:
Required elements: "s_axi_lite_aclk"
Optional elements: "m_axi_mm2s_aclk", "m_axi_s2mm_aclk",
"m_axi_sg_aclk"
Required properties for VDMA:
- xlnx,num-fstores: Should be the number of framebuffers as configured in h/w.
Optional properties: Optional properties:
- xlnx,include-sg: Tells configured for Scatter-mode in - xlnx,include-sg: Tells configured for Scatter-mode in
the hardware. the hardware.
Optional properties for VDMA:
- xlnx,flush-fsync: Tells which channel to Flush on Frame sync. - xlnx,flush-fsync: Tells which channel to Flush on Frame sync.
It takes following values: It takes following values:
{1}, flush both channels {1}, flush both channels
...@@ -31,6 +57,7 @@ Required child node properties: ...@@ -31,6 +57,7 @@ Required child node properties:
Optional child node properties: Optional child node properties:
- xlnx,include-dre: Tells hardware is configured for Data - xlnx,include-dre: Tells hardware is configured for Data
Realignment Engine. Realignment Engine.
Optional child node properties for VDMA:
- xlnx,genlock-mode: Tells Genlock synchronization is - xlnx,genlock-mode: Tells Genlock synchronization is
enabled/disabled in hardware. enabled/disabled in hardware.
...@@ -41,8 +68,13 @@ axi_vdma_0: axivdma@40030000 { ...@@ -41,8 +68,13 @@ axi_vdma_0: axivdma@40030000 {
compatible = "xlnx,axi-vdma-1.00.a"; compatible = "xlnx,axi-vdma-1.00.a";
#dma_cells = <1>; #dma_cells = <1>;
reg = < 0x40030000 0x10000 >; reg = < 0x40030000 0x10000 >;
dma-ranges = <0x00000000 0x00000000 0x40000000>;
xlnx,num-fstores = <0x8>; xlnx,num-fstores = <0x8>;
xlnx,flush-fsync = <0x1>; xlnx,flush-fsync = <0x1>;
xlnx,addrwidth = <0x20>;
clocks = <&clk 0>, <&clk 1>, <&clk 2>, <&clk 3>, <&clk 4>;
clock-names = "s_axi_lite_aclk", "m_axi_mm2s_aclk", "m_axi_s2mm_aclk",
"m_axis_mm2s_aclk", "s_axis_s2mm_aclk";
dma-channel@40030000 { dma-channel@40030000 {
compatible = "xlnx,axi-vdma-mm2s-channel"; compatible = "xlnx,axi-vdma-mm2s-channel";
interrupts = < 0 54 4 >; interrupts = < 0 54 4 >;
......
...@@ -521,7 +521,7 @@ config XGENE_DMA ...@@ -521,7 +521,7 @@ config XGENE_DMA
config XILINX_VDMA config XILINX_VDMA
tristate "Xilinx AXI VDMA Engine" tristate "Xilinx AXI VDMA Engine"
depends on (ARCH_ZYNQ || MICROBLAZE) depends on (ARCH_ZYNQ || MICROBLAZE || ARM64)
select DMA_ENGINE select DMA_ENGINE
help help
Enable support for Xilinx AXI VDMA Soft IP. Enable support for Xilinx AXI VDMA Soft IP.
......
...@@ -16,6 +16,15 @@ ...@@ -16,6 +16,15 @@
* video device (S2MM). Initialization, status, interrupt and management * video device (S2MM). Initialization, status, interrupt and management
* registers are accessed through an AXI4-Lite slave interface. * registers are accessed through an AXI4-Lite slave interface.
* *
* The AXI Direct Memory Access (AXI DMA) core is a soft Xilinx IP core that
* provides high-bandwidth one dimensional direct memory access between memory
* and AXI4-Stream target peripherals. It supports one receive and one
* transmit channel, both of them optional at synthesis time.
*
* The AXI CDMA, is a soft IP, which provides high-bandwidth Direct Memory
* Access (DMA) between a memory-mapped source address and a memory-mapped
* destination address.
*
* This program is free software: you can redistribute it and/or modify * This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by * it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or * the Free Software Foundation, either version 2 of the License, or
...@@ -35,116 +44,138 @@ ...@@ -35,116 +44,138 @@
#include <linux/of_platform.h> #include <linux/of_platform.h>
#include <linux/of_irq.h> #include <linux/of_irq.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/clk.h>
#include "../dmaengine.h" #include "../dmaengine.h"
/* Register/Descriptor Offsets */ /* Register/Descriptor Offsets */
#define XILINX_VDMA_MM2S_CTRL_OFFSET 0x0000 #define XILINX_DMA_MM2S_CTRL_OFFSET 0x0000
#define XILINX_VDMA_S2MM_CTRL_OFFSET 0x0030 #define XILINX_DMA_S2MM_CTRL_OFFSET 0x0030
#define XILINX_VDMA_MM2S_DESC_OFFSET 0x0050 #define XILINX_VDMA_MM2S_DESC_OFFSET 0x0050
#define XILINX_VDMA_S2MM_DESC_OFFSET 0x00a0 #define XILINX_VDMA_S2MM_DESC_OFFSET 0x00a0
/* Control Registers */ /* Control Registers */
#define XILINX_VDMA_REG_DMACR 0x0000 #define XILINX_DMA_REG_DMACR 0x0000
#define XILINX_VDMA_DMACR_DELAY_MAX 0xff #define XILINX_DMA_DMACR_DELAY_MAX 0xff
#define XILINX_VDMA_DMACR_DELAY_SHIFT 24 #define XILINX_DMA_DMACR_DELAY_SHIFT 24
#define XILINX_VDMA_DMACR_FRAME_COUNT_MAX 0xff #define XILINX_DMA_DMACR_FRAME_COUNT_MAX 0xff
#define XILINX_VDMA_DMACR_FRAME_COUNT_SHIFT 16 #define XILINX_DMA_DMACR_FRAME_COUNT_SHIFT 16
#define XILINX_VDMA_DMACR_ERR_IRQ BIT(14) #define XILINX_DMA_DMACR_ERR_IRQ BIT(14)
#define XILINX_VDMA_DMACR_DLY_CNT_IRQ BIT(13) #define XILINX_DMA_DMACR_DLY_CNT_IRQ BIT(13)
#define XILINX_VDMA_DMACR_FRM_CNT_IRQ BIT(12) #define XILINX_DMA_DMACR_FRM_CNT_IRQ BIT(12)
#define XILINX_VDMA_DMACR_MASTER_SHIFT 8 #define XILINX_DMA_DMACR_MASTER_SHIFT 8
#define XILINX_VDMA_DMACR_FSYNCSRC_SHIFT 5 #define XILINX_DMA_DMACR_FSYNCSRC_SHIFT 5
#define XILINX_VDMA_DMACR_FRAMECNT_EN BIT(4) #define XILINX_DMA_DMACR_FRAMECNT_EN BIT(4)
#define XILINX_VDMA_DMACR_GENLOCK_EN BIT(3) #define XILINX_DMA_DMACR_GENLOCK_EN BIT(3)
#define XILINX_VDMA_DMACR_RESET BIT(2) #define XILINX_DMA_DMACR_RESET BIT(2)
#define XILINX_VDMA_DMACR_CIRC_EN BIT(1) #define XILINX_DMA_DMACR_CIRC_EN BIT(1)
#define XILINX_VDMA_DMACR_RUNSTOP BIT(0) #define XILINX_DMA_DMACR_RUNSTOP BIT(0)
#define XILINX_VDMA_DMACR_FSYNCSRC_MASK GENMASK(6, 5) #define XILINX_DMA_DMACR_FSYNCSRC_MASK GENMASK(6, 5)
#define XILINX_VDMA_REG_DMASR 0x0004 #define XILINX_DMA_REG_DMASR 0x0004
#define XILINX_VDMA_DMASR_EOL_LATE_ERR BIT(15) #define XILINX_DMA_DMASR_EOL_LATE_ERR BIT(15)
#define XILINX_VDMA_DMASR_ERR_IRQ BIT(14) #define XILINX_DMA_DMASR_ERR_IRQ BIT(14)
#define XILINX_VDMA_DMASR_DLY_CNT_IRQ BIT(13) #define XILINX_DMA_DMASR_DLY_CNT_IRQ BIT(13)
#define XILINX_VDMA_DMASR_FRM_CNT_IRQ BIT(12) #define XILINX_DMA_DMASR_FRM_CNT_IRQ BIT(12)
#define XILINX_VDMA_DMASR_SOF_LATE_ERR BIT(11) #define XILINX_DMA_DMASR_SOF_LATE_ERR BIT(11)
#define XILINX_VDMA_DMASR_SG_DEC_ERR BIT(10) #define XILINX_DMA_DMASR_SG_DEC_ERR BIT(10)
#define XILINX_VDMA_DMASR_SG_SLV_ERR BIT(9) #define XILINX_DMA_DMASR_SG_SLV_ERR BIT(9)
#define XILINX_VDMA_DMASR_EOF_EARLY_ERR BIT(8) #define XILINX_DMA_DMASR_EOF_EARLY_ERR BIT(8)
#define XILINX_VDMA_DMASR_SOF_EARLY_ERR BIT(7) #define XILINX_DMA_DMASR_SOF_EARLY_ERR BIT(7)
#define XILINX_VDMA_DMASR_DMA_DEC_ERR BIT(6) #define XILINX_DMA_DMASR_DMA_DEC_ERR BIT(6)
#define XILINX_VDMA_DMASR_DMA_SLAVE_ERR BIT(5) #define XILINX_DMA_DMASR_DMA_SLAVE_ERR BIT(5)
#define XILINX_VDMA_DMASR_DMA_INT_ERR BIT(4) #define XILINX_DMA_DMASR_DMA_INT_ERR BIT(4)
#define XILINX_VDMA_DMASR_IDLE BIT(1) #define XILINX_DMA_DMASR_IDLE BIT(1)
#define XILINX_VDMA_DMASR_HALTED BIT(0) #define XILINX_DMA_DMASR_HALTED BIT(0)
#define XILINX_VDMA_DMASR_DELAY_MASK GENMASK(31, 24) #define XILINX_DMA_DMASR_DELAY_MASK GENMASK(31, 24)
#define XILINX_VDMA_DMASR_FRAME_COUNT_MASK GENMASK(23, 16) #define XILINX_DMA_DMASR_FRAME_COUNT_MASK GENMASK(23, 16)
#define XILINX_VDMA_REG_CURDESC 0x0008 #define XILINX_DMA_REG_CURDESC 0x0008
#define XILINX_VDMA_REG_TAILDESC 0x0010 #define XILINX_DMA_REG_TAILDESC 0x0010
#define XILINX_VDMA_REG_REG_INDEX 0x0014 #define XILINX_DMA_REG_REG_INDEX 0x0014
#define XILINX_VDMA_REG_FRMSTORE 0x0018 #define XILINX_DMA_REG_FRMSTORE 0x0018
#define XILINX_VDMA_REG_THRESHOLD 0x001c #define XILINX_DMA_REG_THRESHOLD 0x001c
#define XILINX_VDMA_REG_FRMPTR_STS 0x0024 #define XILINX_DMA_REG_FRMPTR_STS 0x0024
#define XILINX_VDMA_REG_PARK_PTR 0x0028 #define XILINX_DMA_REG_PARK_PTR 0x0028
#define XILINX_VDMA_PARK_PTR_WR_REF_SHIFT 8 #define XILINX_DMA_PARK_PTR_WR_REF_SHIFT 8
#define XILINX_VDMA_PARK_PTR_RD_REF_SHIFT 0 #define XILINX_DMA_PARK_PTR_RD_REF_SHIFT 0
#define XILINX_VDMA_REG_VDMA_VERSION 0x002c #define XILINX_DMA_REG_VDMA_VERSION 0x002c
/* Register Direct Mode Registers */ /* Register Direct Mode Registers */
#define XILINX_VDMA_REG_VSIZE 0x0000 #define XILINX_DMA_REG_VSIZE 0x0000
#define XILINX_VDMA_REG_HSIZE 0x0004 #define XILINX_DMA_REG_HSIZE 0x0004
#define XILINX_VDMA_REG_FRMDLY_STRIDE 0x0008 #define XILINX_DMA_REG_FRMDLY_STRIDE 0x0008
#define XILINX_VDMA_FRMDLY_STRIDE_FRMDLY_SHIFT 24 #define XILINX_DMA_FRMDLY_STRIDE_FRMDLY_SHIFT 24
#define XILINX_VDMA_FRMDLY_STRIDE_STRIDE_SHIFT 0 #define XILINX_DMA_FRMDLY_STRIDE_STRIDE_SHIFT 0
#define XILINX_VDMA_REG_START_ADDRESS(n) (0x000c + 4 * (n)) #define XILINX_VDMA_REG_START_ADDRESS(n) (0x000c + 4 * (n))
#define XILINX_VDMA_REG_START_ADDRESS_64(n) (0x000c + 8 * (n))
/* HW specific definitions */ /* HW specific definitions */
#define XILINX_VDMA_MAX_CHANS_PER_DEVICE 0x2 #define XILINX_DMA_MAX_CHANS_PER_DEVICE 0x2
#define XILINX_VDMA_DMAXR_ALL_IRQ_MASK \ #define XILINX_DMA_DMAXR_ALL_IRQ_MASK \
(XILINX_VDMA_DMASR_FRM_CNT_IRQ | \ (XILINX_DMA_DMASR_FRM_CNT_IRQ | \
XILINX_VDMA_DMASR_DLY_CNT_IRQ | \ XILINX_DMA_DMASR_DLY_CNT_IRQ | \
XILINX_VDMA_DMASR_ERR_IRQ) XILINX_DMA_DMASR_ERR_IRQ)
#define XILINX_VDMA_DMASR_ALL_ERR_MASK \ #define XILINX_DMA_DMASR_ALL_ERR_MASK \
(XILINX_VDMA_DMASR_EOL_LATE_ERR | \ (XILINX_DMA_DMASR_EOL_LATE_ERR | \
XILINX_VDMA_DMASR_SOF_LATE_ERR | \ XILINX_DMA_DMASR_SOF_LATE_ERR | \
XILINX_VDMA_DMASR_SG_DEC_ERR | \ XILINX_DMA_DMASR_SG_DEC_ERR | \
XILINX_VDMA_DMASR_SG_SLV_ERR | \ XILINX_DMA_DMASR_SG_SLV_ERR | \
XILINX_VDMA_DMASR_EOF_EARLY_ERR | \ XILINX_DMA_DMASR_EOF_EARLY_ERR | \
XILINX_VDMA_DMASR_SOF_EARLY_ERR | \ XILINX_DMA_DMASR_SOF_EARLY_ERR | \
XILINX_VDMA_DMASR_DMA_DEC_ERR | \ XILINX_DMA_DMASR_DMA_DEC_ERR | \
XILINX_VDMA_DMASR_DMA_SLAVE_ERR | \ XILINX_DMA_DMASR_DMA_SLAVE_ERR | \
XILINX_VDMA_DMASR_DMA_INT_ERR) XILINX_DMA_DMASR_DMA_INT_ERR)
/* /*
* Recoverable errors are DMA Internal error, SOF Early, EOF Early * Recoverable errors are DMA Internal error, SOF Early, EOF Early
* and SOF Late. They are only recoverable when C_FLUSH_ON_FSYNC * and SOF Late. They are only recoverable when C_FLUSH_ON_FSYNC
* is enabled in the h/w system. * is enabled in the h/w system.
*/ */
#define XILINX_VDMA_DMASR_ERR_RECOVER_MASK \ #define XILINX_DMA_DMASR_ERR_RECOVER_MASK \
(XILINX_VDMA_DMASR_SOF_LATE_ERR | \ (XILINX_DMA_DMASR_SOF_LATE_ERR | \
XILINX_VDMA_DMASR_EOF_EARLY_ERR | \ XILINX_DMA_DMASR_EOF_EARLY_ERR | \
XILINX_VDMA_DMASR_SOF_EARLY_ERR | \ XILINX_DMA_DMASR_SOF_EARLY_ERR | \
XILINX_VDMA_DMASR_DMA_INT_ERR) XILINX_DMA_DMASR_DMA_INT_ERR)
/* Axi VDMA Flush on Fsync bits */ /* Axi VDMA Flush on Fsync bits */
#define XILINX_VDMA_FLUSH_S2MM 3 #define XILINX_DMA_FLUSH_S2MM 3
#define XILINX_VDMA_FLUSH_MM2S 2 #define XILINX_DMA_FLUSH_MM2S 2
#define XILINX_VDMA_FLUSH_BOTH 1 #define XILINX_DMA_FLUSH_BOTH 1
/* Delay loop counter to prevent hardware failure */ /* Delay loop counter to prevent hardware failure */
#define XILINX_VDMA_LOOP_COUNT 1000000 #define XILINX_DMA_LOOP_COUNT 1000000
/* AXI DMA Specific Registers/Offsets */
#define XILINX_DMA_REG_SRCDSTADDR 0x18
#define XILINX_DMA_REG_BTT 0x28
/* AXI DMA Specific Masks/Bit fields */
#define XILINX_DMA_MAX_TRANS_LEN GENMASK(22, 0)
#define XILINX_DMA_CR_COALESCE_MAX GENMASK(23, 16)
#define XILINX_DMA_CR_COALESCE_SHIFT 16
#define XILINX_DMA_BD_SOP BIT(27)
#define XILINX_DMA_BD_EOP BIT(26)
#define XILINX_DMA_COALESCE_MAX 255
#define XILINX_DMA_NUM_APP_WORDS 5
/* AXI CDMA Specific Registers/Offsets */
#define XILINX_CDMA_REG_SRCADDR 0x18
#define XILINX_CDMA_REG_DSTADDR 0x20
/* AXI CDMA Specific Masks */
#define XILINX_CDMA_CR_SGMODE BIT(3)
/** /**
* struct xilinx_vdma_desc_hw - Hardware Descriptor * struct xilinx_vdma_desc_hw - Hardware Descriptor
* @next_desc: Next Descriptor Pointer @0x00 * @next_desc: Next Descriptor Pointer @0x00
* @pad1: Reserved @0x04 * @pad1: Reserved @0x04
* @buf_addr: Buffer address @0x08 * @buf_addr: Buffer address @0x08
* @pad2: Reserved @0x0C * @buf_addr_msb: MSB of Buffer address @0x0C
* @vsize: Vertical Size @0x10 * @vsize: Vertical Size @0x10
* @hsize: Horizontal Size @0x14 * @hsize: Horizontal Size @0x14
* @stride: Number of bytes between the first * @stride: Number of bytes between the first
...@@ -154,12 +185,58 @@ struct xilinx_vdma_desc_hw { ...@@ -154,12 +185,58 @@ struct xilinx_vdma_desc_hw {
u32 next_desc; u32 next_desc;
u32 pad1; u32 pad1;
u32 buf_addr; u32 buf_addr;
u32 pad2; u32 buf_addr_msb;
u32 vsize; u32 vsize;
u32 hsize; u32 hsize;
u32 stride; u32 stride;
} __aligned(64); } __aligned(64);
/**
* struct xilinx_axidma_desc_hw - Hardware Descriptor for AXI DMA
* @next_desc: Next Descriptor Pointer @0x00
* @pad1: Reserved @0x04
* @buf_addr: Buffer address @0x08
* @pad2: Reserved @0x0C
* @pad3: Reserved @0x10
* @pad4: Reserved @0x14
* @control: Control field @0x18
* @status: Status field @0x1C
* @app: APP Fields @0x20 - 0x30
*/
struct xilinx_axidma_desc_hw {
u32 next_desc;
u32 pad1;
u32 buf_addr;
u32 pad2;
u32 pad3;
u32 pad4;
u32 control;
u32 status;
u32 app[XILINX_DMA_NUM_APP_WORDS];
} __aligned(64);
/**
* struct xilinx_cdma_desc_hw - Hardware Descriptor
* @next_desc: Next Descriptor Pointer @0x00
* @pad1: Reserved @0x04
* @src_addr: Source address @0x08
* @pad2: Reserved @0x0C
* @dest_addr: Destination address @0x10
* @pad3: Reserved @0x14
* @control: Control field @0x18
* @status: Status field @0x1C
*/
struct xilinx_cdma_desc_hw {
u32 next_desc;
u32 pad1;
u32 src_addr;
u32 pad2;
u32 dest_addr;
u32 pad3;
u32 control;
u32 status;
} __aligned(64);
/** /**
* struct xilinx_vdma_tx_segment - Descriptor segment * struct xilinx_vdma_tx_segment - Descriptor segment
* @hw: Hardware descriptor * @hw: Hardware descriptor
...@@ -173,19 +250,43 @@ struct xilinx_vdma_tx_segment { ...@@ -173,19 +250,43 @@ struct xilinx_vdma_tx_segment {
} __aligned(64); } __aligned(64);
/** /**
* struct xilinx_vdma_tx_descriptor - Per Transaction structure * struct xilinx_axidma_tx_segment - Descriptor segment
* @hw: Hardware descriptor
* @node: Node in the descriptor segments list
* @phys: Physical address of segment
*/
struct xilinx_axidma_tx_segment {
struct xilinx_axidma_desc_hw hw;
struct list_head node;
dma_addr_t phys;
} __aligned(64);
/**
* struct xilinx_cdma_tx_segment - Descriptor segment
* @hw: Hardware descriptor
* @node: Node in the descriptor segments list
* @phys: Physical address of segment
*/
struct xilinx_cdma_tx_segment {
struct xilinx_cdma_desc_hw hw;
struct list_head node;
dma_addr_t phys;
} __aligned(64);
/**
* struct xilinx_dma_tx_descriptor - Per Transaction structure
* @async_tx: Async transaction descriptor * @async_tx: Async transaction descriptor
* @segments: TX segments list * @segments: TX segments list
* @node: Node in the channel descriptors list * @node: Node in the channel descriptors list
*/ */
struct xilinx_vdma_tx_descriptor { struct xilinx_dma_tx_descriptor {
struct dma_async_tx_descriptor async_tx; struct dma_async_tx_descriptor async_tx;
struct list_head segments; struct list_head segments;
struct list_head node; struct list_head node;
}; };
/** /**
* struct xilinx_vdma_chan - Driver specific VDMA channel structure * struct xilinx_dma_chan - Driver specific DMA channel structure
* @xdev: Driver specific device structure * @xdev: Driver specific device structure
* @ctrl_offset: Control registers offset * @ctrl_offset: Control registers offset
* @desc_offset: TX descriptor registers offset * @desc_offset: TX descriptor registers offset
...@@ -207,9 +308,14 @@ struct xilinx_vdma_tx_descriptor { ...@@ -207,9 +308,14 @@ struct xilinx_vdma_tx_descriptor {
* @config: Device configuration info * @config: Device configuration info
* @flush_on_fsync: Flush on Frame sync * @flush_on_fsync: Flush on Frame sync
* @desc_pendingcount: Descriptor pending count * @desc_pendingcount: Descriptor pending count
* @ext_addr: Indicates 64 bit addressing is supported by dma channel
* @desc_submitcount: Descriptor h/w submitted count
* @residue: Residue for AXI DMA
* @seg_v: Statically allocated segments base
* @start_transfer: Differentiate b/w DMA IP's transfer
*/ */
struct xilinx_vdma_chan { struct xilinx_dma_chan {
struct xilinx_vdma_device *xdev; struct xilinx_dma_device *xdev;
u32 ctrl_offset; u32 ctrl_offset;
u32 desc_offset; u32 desc_offset;
spinlock_t lock; spinlock_t lock;
...@@ -230,73 +336,122 @@ struct xilinx_vdma_chan { ...@@ -230,73 +336,122 @@ struct xilinx_vdma_chan {
struct xilinx_vdma_config config; struct xilinx_vdma_config config;
bool flush_on_fsync; bool flush_on_fsync;
u32 desc_pendingcount; u32 desc_pendingcount;
bool ext_addr;
u32 desc_submitcount;
u32 residue;
struct xilinx_axidma_tx_segment *seg_v;
void (*start_transfer)(struct xilinx_dma_chan *chan);
};
struct xilinx_dma_config {
enum xdma_ip_type dmatype;
int (*clk_init)(struct platform_device *pdev, struct clk **axi_clk,
struct clk **tx_clk, struct clk **txs_clk,
struct clk **rx_clk, struct clk **rxs_clk);
}; };
/** /**
* struct xilinx_vdma_device - VDMA device structure * struct xilinx_dma_device - DMA device structure
* @regs: I/O mapped base address * @regs: I/O mapped base address
* @dev: Device Structure * @dev: Device Structure
* @common: DMA device structure * @common: DMA device structure
* @chan: Driver specific VDMA channel * @chan: Driver specific DMA channel
* @has_sg: Specifies whether Scatter-Gather is present or not * @has_sg: Specifies whether Scatter-Gather is present or not
* @flush_on_fsync: Flush on frame sync * @flush_on_fsync: Flush on frame sync
* @ext_addr: Indicates 64 bit addressing is supported by dma device
* @pdev: Platform device structure pointer
* @dma_config: DMA config structure
* @axi_clk: DMA Axi4-lite interace clock
* @tx_clk: DMA mm2s clock
* @txs_clk: DMA mm2s stream clock
* @rx_clk: DMA s2mm clock
* @rxs_clk: DMA s2mm stream clock
*/ */
struct xilinx_vdma_device { struct xilinx_dma_device {
void __iomem *regs; void __iomem *regs;
struct device *dev; struct device *dev;
struct dma_device common; struct dma_device common;
struct xilinx_vdma_chan *chan[XILINX_VDMA_MAX_CHANS_PER_DEVICE]; struct xilinx_dma_chan *chan[XILINX_DMA_MAX_CHANS_PER_DEVICE];
bool has_sg; bool has_sg;
u32 flush_on_fsync; u32 flush_on_fsync;
bool ext_addr;
struct platform_device *pdev;
const struct xilinx_dma_config *dma_config;
struct clk *axi_clk;
struct clk *tx_clk;
struct clk *txs_clk;
struct clk *rx_clk;
struct clk *rxs_clk;
}; };
/* Macros */ /* Macros */
#define to_xilinx_chan(chan) \ #define to_xilinx_chan(chan) \
container_of(chan, struct xilinx_vdma_chan, common) container_of(chan, struct xilinx_dma_chan, common)
#define to_vdma_tx_descriptor(tx) \ #define to_dma_tx_descriptor(tx) \
container_of(tx, struct xilinx_vdma_tx_descriptor, async_tx) container_of(tx, struct xilinx_dma_tx_descriptor, async_tx)
#define xilinx_vdma_poll_timeout(chan, reg, val, cond, delay_us, timeout_us) \ #define xilinx_dma_poll_timeout(chan, reg, val, cond, delay_us, timeout_us) \
readl_poll_timeout(chan->xdev->regs + chan->ctrl_offset + reg, val, \ readl_poll_timeout(chan->xdev->regs + chan->ctrl_offset + reg, val, \
cond, delay_us, timeout_us) cond, delay_us, timeout_us)
/* IO accessors */ /* IO accessors */
static inline u32 vdma_read(struct xilinx_vdma_chan *chan, u32 reg) static inline u32 dma_read(struct xilinx_dma_chan *chan, u32 reg)
{ {
return ioread32(chan->xdev->regs + reg); return ioread32(chan->xdev->regs + reg);
} }
static inline void vdma_write(struct xilinx_vdma_chan *chan, u32 reg, u32 value) static inline void dma_write(struct xilinx_dma_chan *chan, u32 reg, u32 value)
{ {
iowrite32(value, chan->xdev->regs + reg); iowrite32(value, chan->xdev->regs + reg);
} }
static inline void vdma_desc_write(struct xilinx_vdma_chan *chan, u32 reg, static inline void vdma_desc_write(struct xilinx_dma_chan *chan, u32 reg,
u32 value) u32 value)
{ {
vdma_write(chan, chan->desc_offset + reg, value); dma_write(chan, chan->desc_offset + reg, value);
} }
static inline u32 vdma_ctrl_read(struct xilinx_vdma_chan *chan, u32 reg) static inline u32 dma_ctrl_read(struct xilinx_dma_chan *chan, u32 reg)
{ {
return vdma_read(chan, chan->ctrl_offset + reg); return dma_read(chan, chan->ctrl_offset + reg);
} }
static inline void vdma_ctrl_write(struct xilinx_vdma_chan *chan, u32 reg, static inline void dma_ctrl_write(struct xilinx_dma_chan *chan, u32 reg,
u32 value) u32 value)
{ {
vdma_write(chan, chan->ctrl_offset + reg, value); dma_write(chan, chan->ctrl_offset + reg, value);
} }
static inline void vdma_ctrl_clr(struct xilinx_vdma_chan *chan, u32 reg, static inline void dma_ctrl_clr(struct xilinx_dma_chan *chan, u32 reg,
u32 clr) u32 clr)
{ {
vdma_ctrl_write(chan, reg, vdma_ctrl_read(chan, reg) & ~clr); dma_ctrl_write(chan, reg, dma_ctrl_read(chan, reg) & ~clr);
} }
static inline void vdma_ctrl_set(struct xilinx_vdma_chan *chan, u32 reg, static inline void dma_ctrl_set(struct xilinx_dma_chan *chan, u32 reg,
u32 set) u32 set)
{ {
vdma_ctrl_write(chan, reg, vdma_ctrl_read(chan, reg) | set); dma_ctrl_write(chan, reg, dma_ctrl_read(chan, reg) | set);
}
/**
* vdma_desc_write_64 - 64-bit descriptor write
* @chan: Driver specific VDMA channel
* @reg: Register to write
* @value_lsb: lower address of the descriptor.
* @value_msb: upper address of the descriptor.
*
* Since vdma driver is trying to write to a register offset which is not a
* multiple of 64 bits(ex : 0x5c), we are writing as two separate 32 bits
* instead of a single 64 bit register write.
*/
static inline void vdma_desc_write_64(struct xilinx_dma_chan *chan, u32 reg,
u32 value_lsb, u32 value_msb)
{
/* Write the lsb 32 bits*/
writel(value_lsb, chan->xdev->regs + chan->desc_offset + reg);
/* Write the msb 32 bits */
writel(value_msb, chan->xdev->regs + chan->desc_offset + reg + 4);
} }
/* ----------------------------------------------------------------------------- /* -----------------------------------------------------------------------------
...@@ -305,16 +460,59 @@ static inline void vdma_ctrl_set(struct xilinx_vdma_chan *chan, u32 reg, ...@@ -305,16 +460,59 @@ static inline void vdma_ctrl_set(struct xilinx_vdma_chan *chan, u32 reg,
/** /**
* xilinx_vdma_alloc_tx_segment - Allocate transaction segment * xilinx_vdma_alloc_tx_segment - Allocate transaction segment
* @chan: Driver specific VDMA channel * @chan: Driver specific DMA channel
* *
* Return: The allocated segment on success and NULL on failure. * Return: The allocated segment on success and NULL on failure.
*/ */
static struct xilinx_vdma_tx_segment * static struct xilinx_vdma_tx_segment *
xilinx_vdma_alloc_tx_segment(struct xilinx_vdma_chan *chan) xilinx_vdma_alloc_tx_segment(struct xilinx_dma_chan *chan)
{ {
struct xilinx_vdma_tx_segment *segment; struct xilinx_vdma_tx_segment *segment;
dma_addr_t phys; dma_addr_t phys;
segment = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &phys);
if (!segment)
return NULL;
segment->phys = phys;
return segment;
}
/**
* xilinx_cdma_alloc_tx_segment - Allocate transaction segment
* @chan: Driver specific DMA channel
*
* Return: The allocated segment on success and NULL on failure.
*/
static struct xilinx_cdma_tx_segment *
xilinx_cdma_alloc_tx_segment(struct xilinx_dma_chan *chan)
{
struct xilinx_cdma_tx_segment *segment;
dma_addr_t phys;
segment = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &phys);
if (!segment)
return NULL;
memset(segment, 0, sizeof(*segment));
segment->phys = phys;
return segment;
}
/**
* xilinx_axidma_alloc_tx_segment - Allocate transaction segment
* @chan: Driver specific DMA channel
*
* Return: The allocated segment on success and NULL on failure.
*/
static struct xilinx_axidma_tx_segment *
xilinx_axidma_alloc_tx_segment(struct xilinx_dma_chan *chan)
{
struct xilinx_axidma_tx_segment *segment;
dma_addr_t phys;
segment = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &phys); segment = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &phys);
if (!segment) if (!segment)
return NULL; return NULL;
...@@ -325,27 +523,49 @@ xilinx_vdma_alloc_tx_segment(struct xilinx_vdma_chan *chan) ...@@ -325,27 +523,49 @@ xilinx_vdma_alloc_tx_segment(struct xilinx_vdma_chan *chan)
return segment; return segment;
} }
/**
* xilinx_dma_free_tx_segment - Free transaction segment
* @chan: Driver specific DMA channel
* @segment: DMA transaction segment
*/
static void xilinx_dma_free_tx_segment(struct xilinx_dma_chan *chan,
struct xilinx_axidma_tx_segment *segment)
{
dma_pool_free(chan->desc_pool, segment, segment->phys);
}
/**
* xilinx_cdma_free_tx_segment - Free transaction segment
* @chan: Driver specific DMA channel
* @segment: DMA transaction segment
*/
static void xilinx_cdma_free_tx_segment(struct xilinx_dma_chan *chan,
struct xilinx_cdma_tx_segment *segment)
{
dma_pool_free(chan->desc_pool, segment, segment->phys);
}
/** /**
* xilinx_vdma_free_tx_segment - Free transaction segment * xilinx_vdma_free_tx_segment - Free transaction segment
* @chan: Driver specific VDMA channel * @chan: Driver specific DMA channel
* @segment: VDMA transaction segment * @segment: DMA transaction segment
*/ */
static void xilinx_vdma_free_tx_segment(struct xilinx_vdma_chan *chan, static void xilinx_vdma_free_tx_segment(struct xilinx_dma_chan *chan,
struct xilinx_vdma_tx_segment *segment) struct xilinx_vdma_tx_segment *segment)
{ {
dma_pool_free(chan->desc_pool, segment, segment->phys); dma_pool_free(chan->desc_pool, segment, segment->phys);
} }
/** /**
* xilinx_vdma_tx_descriptor - Allocate transaction descriptor * xilinx_dma_tx_descriptor - Allocate transaction descriptor
* @chan: Driver specific VDMA channel * @chan: Driver specific DMA channel
* *
* Return: The allocated descriptor on success and NULL on failure. * Return: The allocated descriptor on success and NULL on failure.
*/ */
static struct xilinx_vdma_tx_descriptor * static struct xilinx_dma_tx_descriptor *
xilinx_vdma_alloc_tx_descriptor(struct xilinx_vdma_chan *chan) xilinx_dma_alloc_tx_descriptor(struct xilinx_dma_chan *chan)
{ {
struct xilinx_vdma_tx_descriptor *desc; struct xilinx_dma_tx_descriptor *desc;
desc = kzalloc(sizeof(*desc), GFP_KERNEL); desc = kzalloc(sizeof(*desc), GFP_KERNEL);
if (!desc) if (!desc)
...@@ -357,22 +577,38 @@ xilinx_vdma_alloc_tx_descriptor(struct xilinx_vdma_chan *chan) ...@@ -357,22 +577,38 @@ xilinx_vdma_alloc_tx_descriptor(struct xilinx_vdma_chan *chan)
} }
/** /**
* xilinx_vdma_free_tx_descriptor - Free transaction descriptor * xilinx_dma_free_tx_descriptor - Free transaction descriptor
* @chan: Driver specific VDMA channel * @chan: Driver specific DMA channel
* @desc: VDMA transaction descriptor * @desc: DMA transaction descriptor
*/ */
static void static void
xilinx_vdma_free_tx_descriptor(struct xilinx_vdma_chan *chan, xilinx_dma_free_tx_descriptor(struct xilinx_dma_chan *chan,
struct xilinx_vdma_tx_descriptor *desc) struct xilinx_dma_tx_descriptor *desc)
{ {
struct xilinx_vdma_tx_segment *segment, *next; struct xilinx_vdma_tx_segment *segment, *next;
struct xilinx_cdma_tx_segment *cdma_segment, *cdma_next;
struct xilinx_axidma_tx_segment *axidma_segment, *axidma_next;
if (!desc) if (!desc)
return; return;
list_for_each_entry_safe(segment, next, &desc->segments, node) { if (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
list_del(&segment->node); list_for_each_entry_safe(segment, next, &desc->segments, node) {
xilinx_vdma_free_tx_segment(chan, segment); list_del(&segment->node);
xilinx_vdma_free_tx_segment(chan, segment);
}
} else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
list_for_each_entry_safe(cdma_segment, cdma_next,
&desc->segments, node) {
list_del(&cdma_segment->node);
xilinx_cdma_free_tx_segment(chan, cdma_segment);
}
} else {
list_for_each_entry_safe(axidma_segment, axidma_next,
&desc->segments, node) {
list_del(&axidma_segment->node);
xilinx_dma_free_tx_segment(chan, axidma_segment);
}
} }
kfree(desc); kfree(desc);
...@@ -381,60 +617,62 @@ xilinx_vdma_free_tx_descriptor(struct xilinx_vdma_chan *chan, ...@@ -381,60 +617,62 @@ xilinx_vdma_free_tx_descriptor(struct xilinx_vdma_chan *chan,
/* Required functions */ /* Required functions */
/** /**
* xilinx_vdma_free_desc_list - Free descriptors list * xilinx_dma_free_desc_list - Free descriptors list
* @chan: Driver specific VDMA channel * @chan: Driver specific DMA channel
* @list: List to parse and delete the descriptor * @list: List to parse and delete the descriptor
*/ */
static void xilinx_vdma_free_desc_list(struct xilinx_vdma_chan *chan, static void xilinx_dma_free_desc_list(struct xilinx_dma_chan *chan,
struct list_head *list) struct list_head *list)
{ {
struct xilinx_vdma_tx_descriptor *desc, *next; struct xilinx_dma_tx_descriptor *desc, *next;
list_for_each_entry_safe(desc, next, list, node) { list_for_each_entry_safe(desc, next, list, node) {
list_del(&desc->node); list_del(&desc->node);
xilinx_vdma_free_tx_descriptor(chan, desc); xilinx_dma_free_tx_descriptor(chan, desc);
} }
} }
/** /**
* xilinx_vdma_free_descriptors - Free channel descriptors * xilinx_dma_free_descriptors - Free channel descriptors
* @chan: Driver specific VDMA channel * @chan: Driver specific DMA channel
*/ */
static void xilinx_vdma_free_descriptors(struct xilinx_vdma_chan *chan) static void xilinx_dma_free_descriptors(struct xilinx_dma_chan *chan)
{ {
unsigned long flags; unsigned long flags;
spin_lock_irqsave(&chan->lock, flags); spin_lock_irqsave(&chan->lock, flags);
xilinx_vdma_free_desc_list(chan, &chan->pending_list); xilinx_dma_free_desc_list(chan, &chan->pending_list);
xilinx_vdma_free_desc_list(chan, &chan->done_list); xilinx_dma_free_desc_list(chan, &chan->done_list);
xilinx_vdma_free_desc_list(chan, &chan->active_list); xilinx_dma_free_desc_list(chan, &chan->active_list);
spin_unlock_irqrestore(&chan->lock, flags); spin_unlock_irqrestore(&chan->lock, flags);
} }
/** /**
* xilinx_vdma_free_chan_resources - Free channel resources * xilinx_dma_free_chan_resources - Free channel resources
* @dchan: DMA channel * @dchan: DMA channel
*/ */
static void xilinx_vdma_free_chan_resources(struct dma_chan *dchan) static void xilinx_dma_free_chan_resources(struct dma_chan *dchan)
{ {
struct xilinx_vdma_chan *chan = to_xilinx_chan(dchan); struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
dev_dbg(chan->dev, "Free all channel resources.\n"); dev_dbg(chan->dev, "Free all channel resources.\n");
xilinx_vdma_free_descriptors(chan); xilinx_dma_free_descriptors(chan);
if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA)
xilinx_dma_free_tx_segment(chan, chan->seg_v);
dma_pool_destroy(chan->desc_pool); dma_pool_destroy(chan->desc_pool);
chan->desc_pool = NULL; chan->desc_pool = NULL;
} }
/** /**
* xilinx_vdma_chan_desc_cleanup - Clean channel descriptors * xilinx_dma_chan_desc_cleanup - Clean channel descriptors
* @chan: Driver specific VDMA channel * @chan: Driver specific DMA channel
*/ */
static void xilinx_vdma_chan_desc_cleanup(struct xilinx_vdma_chan *chan) static void xilinx_dma_chan_desc_cleanup(struct xilinx_dma_chan *chan)
{ {
struct xilinx_vdma_tx_descriptor *desc, *next; struct xilinx_dma_tx_descriptor *desc, *next;
unsigned long flags; unsigned long flags;
spin_lock_irqsave(&chan->lock, flags); spin_lock_irqsave(&chan->lock, flags);
...@@ -457,32 +695,32 @@ static void xilinx_vdma_chan_desc_cleanup(struct xilinx_vdma_chan *chan) ...@@ -457,32 +695,32 @@ static void xilinx_vdma_chan_desc_cleanup(struct xilinx_vdma_chan *chan)
/* Run any dependencies, then free the descriptor */ /* Run any dependencies, then free the descriptor */
dma_run_dependencies(&desc->async_tx); dma_run_dependencies(&desc->async_tx);
xilinx_vdma_free_tx_descriptor(chan, desc); xilinx_dma_free_tx_descriptor(chan, desc);
} }
spin_unlock_irqrestore(&chan->lock, flags); spin_unlock_irqrestore(&chan->lock, flags);
} }
/** /**
* xilinx_vdma_do_tasklet - Schedule completion tasklet * xilinx_dma_do_tasklet - Schedule completion tasklet
* @data: Pointer to the Xilinx VDMA channel structure * @data: Pointer to the Xilinx DMA channel structure
*/ */
static void xilinx_vdma_do_tasklet(unsigned long data) static void xilinx_dma_do_tasklet(unsigned long data)
{ {
struct xilinx_vdma_chan *chan = (struct xilinx_vdma_chan *)data; struct xilinx_dma_chan *chan = (struct xilinx_dma_chan *)data;
xilinx_vdma_chan_desc_cleanup(chan); xilinx_dma_chan_desc_cleanup(chan);
} }
/** /**
* xilinx_vdma_alloc_chan_resources - Allocate channel resources * xilinx_dma_alloc_chan_resources - Allocate channel resources
* @dchan: DMA channel * @dchan: DMA channel
* *
* Return: '0' on success and failure value on error * Return: '0' on success and failure value on error
*/ */
static int xilinx_vdma_alloc_chan_resources(struct dma_chan *dchan) static int xilinx_dma_alloc_chan_resources(struct dma_chan *dchan)
{ {
struct xilinx_vdma_chan *chan = to_xilinx_chan(dchan); struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
/* Has this channel already been allocated? */ /* Has this channel already been allocated? */
if (chan->desc_pool) if (chan->desc_pool)
...@@ -492,10 +730,26 @@ static int xilinx_vdma_alloc_chan_resources(struct dma_chan *dchan) ...@@ -492,10 +730,26 @@ static int xilinx_vdma_alloc_chan_resources(struct dma_chan *dchan)
* We need the descriptor to be aligned to 64bytes * We need the descriptor to be aligned to 64bytes
* for meeting Xilinx VDMA specification requirement. * for meeting Xilinx VDMA specification requirement.
*/ */
chan->desc_pool = dma_pool_create("xilinx_vdma_desc_pool", if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
chan->dev, chan->desc_pool = dma_pool_create("xilinx_dma_desc_pool",
sizeof(struct xilinx_vdma_tx_segment), chan->dev,
__alignof__(struct xilinx_vdma_tx_segment), 0); sizeof(struct xilinx_axidma_tx_segment),
__alignof__(struct xilinx_axidma_tx_segment),
0);
} else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
chan->desc_pool = dma_pool_create("xilinx_cdma_desc_pool",
chan->dev,
sizeof(struct xilinx_cdma_tx_segment),
__alignof__(struct xilinx_cdma_tx_segment),
0);
} else {
chan->desc_pool = dma_pool_create("xilinx_vdma_desc_pool",
chan->dev,
sizeof(struct xilinx_vdma_tx_segment),
__alignof__(struct xilinx_vdma_tx_segment),
0);
}
if (!chan->desc_pool) { if (!chan->desc_pool) {
dev_err(chan->dev, dev_err(chan->dev,
"unable to allocate channel %d descriptor pool\n", "unable to allocate channel %d descriptor pool\n",
...@@ -503,110 +757,160 @@ static int xilinx_vdma_alloc_chan_resources(struct dma_chan *dchan) ...@@ -503,110 +757,160 @@ static int xilinx_vdma_alloc_chan_resources(struct dma_chan *dchan)
return -ENOMEM; return -ENOMEM;
} }
if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA)
/*
* For AXI DMA case after submitting a pending_list, keep
* an extra segment allocated so that the "next descriptor"
* pointer on the tail descriptor always points to a
* valid descriptor, even when paused after reaching taildesc.
* This way, it is possible to issue additional
* transfers without halting and restarting the channel.
*/
chan->seg_v = xilinx_axidma_alloc_tx_segment(chan);
dma_cookie_init(dchan); dma_cookie_init(dchan);
if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
/* For AXI DMA resetting once channel will reset the
* other channel as well so enable the interrupts here.
*/
dma_ctrl_set(chan, XILINX_DMA_REG_DMACR,
XILINX_DMA_DMAXR_ALL_IRQ_MASK);
}
if ((chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) && chan->has_sg)
dma_ctrl_set(chan, XILINX_DMA_REG_DMACR,
XILINX_CDMA_CR_SGMODE);
return 0; return 0;
} }
/** /**
* xilinx_vdma_tx_status - Get VDMA transaction status * xilinx_dma_tx_status - Get DMA transaction status
* @dchan: DMA channel * @dchan: DMA channel
* @cookie: Transaction identifier * @cookie: Transaction identifier
* @txstate: Transaction state * @txstate: Transaction state
* *
* Return: DMA transaction status * Return: DMA transaction status
*/ */
static enum dma_status xilinx_vdma_tx_status(struct dma_chan *dchan, static enum dma_status xilinx_dma_tx_status(struct dma_chan *dchan,
dma_cookie_t cookie, dma_cookie_t cookie,
struct dma_tx_state *txstate) struct dma_tx_state *txstate)
{ {
return dma_cookie_status(dchan, cookie, txstate); struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
struct xilinx_dma_tx_descriptor *desc;
struct xilinx_axidma_tx_segment *segment;
struct xilinx_axidma_desc_hw *hw;
enum dma_status ret;
unsigned long flags;
u32 residue = 0;
ret = dma_cookie_status(dchan, cookie, txstate);
if (ret == DMA_COMPLETE || !txstate)
return ret;
if (chan->xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
spin_lock_irqsave(&chan->lock, flags);
desc = list_last_entry(&chan->active_list,
struct xilinx_dma_tx_descriptor, node);
if (chan->has_sg) {
list_for_each_entry(segment, &desc->segments, node) {
hw = &segment->hw;
residue += (hw->control - hw->status) &
XILINX_DMA_MAX_TRANS_LEN;
}
}
spin_unlock_irqrestore(&chan->lock, flags);
chan->residue = residue;
dma_set_residue(txstate, chan->residue);
}
return ret;
} }
/** /**
* xilinx_vdma_is_running - Check if VDMA channel is running * xilinx_dma_is_running - Check if DMA channel is running
* @chan: Driver specific VDMA channel * @chan: Driver specific DMA channel
* *
* Return: '1' if running, '0' if not. * Return: '1' if running, '0' if not.
*/ */
static bool xilinx_vdma_is_running(struct xilinx_vdma_chan *chan) static bool xilinx_dma_is_running(struct xilinx_dma_chan *chan)
{ {
return !(vdma_ctrl_read(chan, XILINX_VDMA_REG_DMASR) & return !(dma_ctrl_read(chan, XILINX_DMA_REG_DMASR) &
XILINX_VDMA_DMASR_HALTED) && XILINX_DMA_DMASR_HALTED) &&
(vdma_ctrl_read(chan, XILINX_VDMA_REG_DMACR) & (dma_ctrl_read(chan, XILINX_DMA_REG_DMACR) &
XILINX_VDMA_DMACR_RUNSTOP); XILINX_DMA_DMACR_RUNSTOP);
} }
/** /**
* xilinx_vdma_is_idle - Check if VDMA channel is idle * xilinx_dma_is_idle - Check if DMA channel is idle
* @chan: Driver specific VDMA channel * @chan: Driver specific DMA channel
* *
* Return: '1' if idle, '0' if not. * Return: '1' if idle, '0' if not.
*/ */
static bool xilinx_vdma_is_idle(struct xilinx_vdma_chan *chan) static bool xilinx_dma_is_idle(struct xilinx_dma_chan *chan)
{ {
return vdma_ctrl_read(chan, XILINX_VDMA_REG_DMASR) & return dma_ctrl_read(chan, XILINX_DMA_REG_DMASR) &
XILINX_VDMA_DMASR_IDLE; XILINX_DMA_DMASR_IDLE;
} }
/** /**
* xilinx_vdma_halt - Halt VDMA channel * xilinx_dma_halt - Halt DMA channel
* @chan: Driver specific VDMA channel * @chan: Driver specific DMA channel
*/ */
static void xilinx_vdma_halt(struct xilinx_vdma_chan *chan) static void xilinx_dma_halt(struct xilinx_dma_chan *chan)
{ {
int err; int err;
u32 val; u32 val;
vdma_ctrl_clr(chan, XILINX_VDMA_REG_DMACR, XILINX_VDMA_DMACR_RUNSTOP); dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RUNSTOP);
/* Wait for the hardware to halt */ /* Wait for the hardware to halt */
err = xilinx_vdma_poll_timeout(chan, XILINX_VDMA_REG_DMASR, val, err = xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val,
(val & XILINX_VDMA_DMASR_HALTED), 0, (val & XILINX_DMA_DMASR_HALTED), 0,
XILINX_VDMA_LOOP_COUNT); XILINX_DMA_LOOP_COUNT);
if (err) { if (err) {
dev_err(chan->dev, "Cannot stop channel %p: %x\n", dev_err(chan->dev, "Cannot stop channel %p: %x\n",
chan, vdma_ctrl_read(chan, XILINX_VDMA_REG_DMASR)); chan, dma_ctrl_read(chan, XILINX_DMA_REG_DMASR));
chan->err = true; chan->err = true;
} }
return;
} }
/** /**
* xilinx_vdma_start - Start VDMA channel * xilinx_dma_start - Start DMA channel
* @chan: Driver specific VDMA channel * @chan: Driver specific DMA channel
*/ */
static void xilinx_vdma_start(struct xilinx_vdma_chan *chan) static void xilinx_dma_start(struct xilinx_dma_chan *chan)
{ {
int err; int err;
u32 val; u32 val;
vdma_ctrl_set(chan, XILINX_VDMA_REG_DMACR, XILINX_VDMA_DMACR_RUNSTOP); dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RUNSTOP);
/* Wait for the hardware to start */ /* Wait for the hardware to start */
err = xilinx_vdma_poll_timeout(chan, XILINX_VDMA_REG_DMASR, val, err = xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMASR, val,
!(val & XILINX_VDMA_DMASR_HALTED), 0, !(val & XILINX_DMA_DMASR_HALTED), 0,
XILINX_VDMA_LOOP_COUNT); XILINX_DMA_LOOP_COUNT);
if (err) { if (err) {
dev_err(chan->dev, "Cannot start channel %p: %x\n", dev_err(chan->dev, "Cannot start channel %p: %x\n",
chan, vdma_ctrl_read(chan, XILINX_VDMA_REG_DMASR)); chan, dma_ctrl_read(chan, XILINX_DMA_REG_DMASR));
chan->err = true; chan->err = true;
} }
return;
} }
/** /**
* xilinx_vdma_start_transfer - Starts VDMA transfer * xilinx_vdma_start_transfer - Starts VDMA transfer
* @chan: Driver specific channel struct pointer * @chan: Driver specific channel struct pointer
*/ */
static void xilinx_vdma_start_transfer(struct xilinx_vdma_chan *chan) static void xilinx_vdma_start_transfer(struct xilinx_dma_chan *chan)
{ {
struct xilinx_vdma_config *config = &chan->config; struct xilinx_vdma_config *config = &chan->config;
struct xilinx_vdma_tx_descriptor *desc, *tail_desc; struct xilinx_dma_tx_descriptor *desc, *tail_desc;
u32 reg; u32 reg;
struct xilinx_vdma_tx_segment *tail_segment; struct xilinx_vdma_tx_segment *tail_segment;
...@@ -618,16 +922,16 @@ static void xilinx_vdma_start_transfer(struct xilinx_vdma_chan *chan) ...@@ -618,16 +922,16 @@ static void xilinx_vdma_start_transfer(struct xilinx_vdma_chan *chan)
return; return;
desc = list_first_entry(&chan->pending_list, desc = list_first_entry(&chan->pending_list,
struct xilinx_vdma_tx_descriptor, node); struct xilinx_dma_tx_descriptor, node);
tail_desc = list_last_entry(&chan->pending_list, tail_desc = list_last_entry(&chan->pending_list,
struct xilinx_vdma_tx_descriptor, node); struct xilinx_dma_tx_descriptor, node);
tail_segment = list_last_entry(&tail_desc->segments, tail_segment = list_last_entry(&tail_desc->segments,
struct xilinx_vdma_tx_segment, node); struct xilinx_vdma_tx_segment, node);
/* If it is SG mode and hardware is busy, cannot submit */ /* If it is SG mode and hardware is busy, cannot submit */
if (chan->has_sg && xilinx_vdma_is_running(chan) && if (chan->has_sg && xilinx_dma_is_running(chan) &&
!xilinx_vdma_is_idle(chan)) { !xilinx_dma_is_idle(chan)) {
dev_dbg(chan->dev, "DMA controller still busy\n"); dev_dbg(chan->dev, "DMA controller still busy\n");
return; return;
} }
...@@ -637,19 +941,19 @@ static void xilinx_vdma_start_transfer(struct xilinx_vdma_chan *chan) ...@@ -637,19 +941,19 @@ static void xilinx_vdma_start_transfer(struct xilinx_vdma_chan *chan)
* done, start new transfers * done, start new transfers
*/ */
if (chan->has_sg) if (chan->has_sg)
vdma_ctrl_write(chan, XILINX_VDMA_REG_CURDESC, dma_ctrl_write(chan, XILINX_DMA_REG_CURDESC,
desc->async_tx.phys); desc->async_tx.phys);
/* Configure the hardware using info in the config structure */ /* Configure the hardware using info in the config structure */
reg = vdma_ctrl_read(chan, XILINX_VDMA_REG_DMACR); reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
if (config->frm_cnt_en) if (config->frm_cnt_en)
reg |= XILINX_VDMA_DMACR_FRAMECNT_EN; reg |= XILINX_DMA_DMACR_FRAMECNT_EN;
else else
reg &= ~XILINX_VDMA_DMACR_FRAMECNT_EN; reg &= ~XILINX_DMA_DMACR_FRAMECNT_EN;
/* Configure channel to allow number frame buffers */ /* Configure channel to allow number frame buffers */
vdma_ctrl_write(chan, XILINX_VDMA_REG_FRMSTORE, dma_ctrl_write(chan, XILINX_DMA_REG_FRMSTORE,
chan->desc_pendingcount); chan->desc_pendingcount);
/* /*
...@@ -657,45 +961,53 @@ static void xilinx_vdma_start_transfer(struct xilinx_vdma_chan *chan) ...@@ -657,45 +961,53 @@ static void xilinx_vdma_start_transfer(struct xilinx_vdma_chan *chan)
* In direct register mode, if not parking, enable circular mode * In direct register mode, if not parking, enable circular mode
*/ */
if (chan->has_sg || !config->park) if (chan->has_sg || !config->park)
reg |= XILINX_VDMA_DMACR_CIRC_EN; reg |= XILINX_DMA_DMACR_CIRC_EN;
if (config->park) if (config->park)
reg &= ~XILINX_VDMA_DMACR_CIRC_EN; reg &= ~XILINX_DMA_DMACR_CIRC_EN;
vdma_ctrl_write(chan, XILINX_VDMA_REG_DMACR, reg); dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg);
if (config->park && (config->park_frm >= 0) && if (config->park && (config->park_frm >= 0) &&
(config->park_frm < chan->num_frms)) { (config->park_frm < chan->num_frms)) {
if (chan->direction == DMA_MEM_TO_DEV) if (chan->direction == DMA_MEM_TO_DEV)
vdma_write(chan, XILINX_VDMA_REG_PARK_PTR, dma_write(chan, XILINX_DMA_REG_PARK_PTR,
config->park_frm << config->park_frm <<
XILINX_VDMA_PARK_PTR_RD_REF_SHIFT); XILINX_DMA_PARK_PTR_RD_REF_SHIFT);
else else
vdma_write(chan, XILINX_VDMA_REG_PARK_PTR, dma_write(chan, XILINX_DMA_REG_PARK_PTR,
config->park_frm << config->park_frm <<
XILINX_VDMA_PARK_PTR_WR_REF_SHIFT); XILINX_DMA_PARK_PTR_WR_REF_SHIFT);
} }
/* Start the hardware */ /* Start the hardware */
xilinx_vdma_start(chan); xilinx_dma_start(chan);
if (chan->err) if (chan->err)
return; return;
/* Start the transfer */ /* Start the transfer */
if (chan->has_sg) { if (chan->has_sg) {
vdma_ctrl_write(chan, XILINX_VDMA_REG_TAILDESC, dma_ctrl_write(chan, XILINX_DMA_REG_TAILDESC,
tail_segment->phys); tail_segment->phys);
} else { } else {
struct xilinx_vdma_tx_segment *segment, *last = NULL; struct xilinx_vdma_tx_segment *segment, *last = NULL;
int i = 0; int i = 0;
list_for_each_entry(desc, &chan->pending_list, node) { if (chan->desc_submitcount < chan->num_frms)
segment = list_first_entry(&desc->segments, i = chan->desc_submitcount;
struct xilinx_vdma_tx_segment, node);
vdma_desc_write(chan, list_for_each_entry(segment, &desc->segments, node) {
if (chan->ext_addr)
vdma_desc_write_64(chan,
XILINX_VDMA_REG_START_ADDRESS_64(i++),
segment->hw.buf_addr,
segment->hw.buf_addr_msb);
else
vdma_desc_write(chan,
XILINX_VDMA_REG_START_ADDRESS(i++), XILINX_VDMA_REG_START_ADDRESS(i++),
segment->hw.buf_addr); segment->hw.buf_addr);
last = segment; last = segment;
} }
...@@ -703,10 +1015,164 @@ static void xilinx_vdma_start_transfer(struct xilinx_vdma_chan *chan) ...@@ -703,10 +1015,164 @@ static void xilinx_vdma_start_transfer(struct xilinx_vdma_chan *chan)
return; return;
/* HW expects these parameters to be same for one transaction */ /* HW expects these parameters to be same for one transaction */
vdma_desc_write(chan, XILINX_VDMA_REG_HSIZE, last->hw.hsize); vdma_desc_write(chan, XILINX_DMA_REG_HSIZE, last->hw.hsize);
vdma_desc_write(chan, XILINX_VDMA_REG_FRMDLY_STRIDE, vdma_desc_write(chan, XILINX_DMA_REG_FRMDLY_STRIDE,
last->hw.stride); last->hw.stride);
vdma_desc_write(chan, XILINX_VDMA_REG_VSIZE, last->hw.vsize); vdma_desc_write(chan, XILINX_DMA_REG_VSIZE, last->hw.vsize);
}
if (!chan->has_sg) {
list_del(&desc->node);
list_add_tail(&desc->node, &chan->active_list);
chan->desc_submitcount++;
chan->desc_pendingcount--;
if (chan->desc_submitcount == chan->num_frms)
chan->desc_submitcount = 0;
} else {
list_splice_tail_init(&chan->pending_list, &chan->active_list);
chan->desc_pendingcount = 0;
}
}
/**
* xilinx_cdma_start_transfer - Starts cdma transfer
* @chan: Driver specific channel struct pointer
*/
static void xilinx_cdma_start_transfer(struct xilinx_dma_chan *chan)
{
struct xilinx_dma_tx_descriptor *head_desc, *tail_desc;
struct xilinx_cdma_tx_segment *tail_segment;
u32 ctrl_reg = dma_read(chan, XILINX_DMA_REG_DMACR);
if (chan->err)
return;
if (list_empty(&chan->pending_list))
return;
head_desc = list_first_entry(&chan->pending_list,
struct xilinx_dma_tx_descriptor, node);
tail_desc = list_last_entry(&chan->pending_list,
struct xilinx_dma_tx_descriptor, node);
tail_segment = list_last_entry(&tail_desc->segments,
struct xilinx_cdma_tx_segment, node);
if (chan->desc_pendingcount <= XILINX_DMA_COALESCE_MAX) {
ctrl_reg &= ~XILINX_DMA_CR_COALESCE_MAX;
ctrl_reg |= chan->desc_pendingcount <<
XILINX_DMA_CR_COALESCE_SHIFT;
dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, ctrl_reg);
}
if (chan->has_sg) {
dma_ctrl_write(chan, XILINX_DMA_REG_CURDESC,
head_desc->async_tx.phys);
/* Update tail ptr register which will start the transfer */
dma_ctrl_write(chan, XILINX_DMA_REG_TAILDESC,
tail_segment->phys);
} else {
/* In simple mode */
struct xilinx_cdma_tx_segment *segment;
struct xilinx_cdma_desc_hw *hw;
segment = list_first_entry(&head_desc->segments,
struct xilinx_cdma_tx_segment,
node);
hw = &segment->hw;
dma_ctrl_write(chan, XILINX_CDMA_REG_SRCADDR, hw->src_addr);
dma_ctrl_write(chan, XILINX_CDMA_REG_DSTADDR, hw->dest_addr);
/* Start the transfer */
dma_ctrl_write(chan, XILINX_DMA_REG_BTT,
hw->control & XILINX_DMA_MAX_TRANS_LEN);
}
list_splice_tail_init(&chan->pending_list, &chan->active_list);
chan->desc_pendingcount = 0;
}
/**
* xilinx_dma_start_transfer - Starts DMA transfer
* @chan: Driver specific channel struct pointer
*/
static void xilinx_dma_start_transfer(struct xilinx_dma_chan *chan)
{
struct xilinx_dma_tx_descriptor *head_desc, *tail_desc;
struct xilinx_axidma_tx_segment *tail_segment, *old_head, *new_head;
u32 reg;
if (chan->err)
return;
if (list_empty(&chan->pending_list))
return;
/* If it is SG mode and hardware is busy, cannot submit */
if (chan->has_sg && xilinx_dma_is_running(chan) &&
!xilinx_dma_is_idle(chan)) {
dev_dbg(chan->dev, "DMA controller still busy\n");
return;
}
head_desc = list_first_entry(&chan->pending_list,
struct xilinx_dma_tx_descriptor, node);
tail_desc = list_last_entry(&chan->pending_list,
struct xilinx_dma_tx_descriptor, node);
tail_segment = list_last_entry(&tail_desc->segments,
struct xilinx_axidma_tx_segment, node);
old_head = list_first_entry(&head_desc->segments,
struct xilinx_axidma_tx_segment, node);
new_head = chan->seg_v;
/* Copy Buffer Descriptor fields. */
new_head->hw = old_head->hw;
/* Swap and save new reserve */
list_replace_init(&old_head->node, &new_head->node);
chan->seg_v = old_head;
tail_segment->hw.next_desc = chan->seg_v->phys;
head_desc->async_tx.phys = new_head->phys;
reg = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
if (chan->desc_pendingcount <= XILINX_DMA_COALESCE_MAX) {
reg &= ~XILINX_DMA_CR_COALESCE_MAX;
reg |= chan->desc_pendingcount <<
XILINX_DMA_CR_COALESCE_SHIFT;
dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, reg);
}
if (chan->has_sg)
dma_ctrl_write(chan, XILINX_DMA_REG_CURDESC,
head_desc->async_tx.phys);
xilinx_dma_start(chan);
if (chan->err)
return;
/* Start the transfer */
if (chan->has_sg) {
dma_ctrl_write(chan, XILINX_DMA_REG_TAILDESC,
tail_segment->phys);
} else {
struct xilinx_axidma_tx_segment *segment;
struct xilinx_axidma_desc_hw *hw;
segment = list_first_entry(&head_desc->segments,
struct xilinx_axidma_tx_segment,
node);
hw = &segment->hw;
dma_ctrl_write(chan, XILINX_DMA_REG_SRCDSTADDR, hw->buf_addr);
/* Start the transfer */
dma_ctrl_write(chan, XILINX_DMA_REG_BTT,
hw->control & XILINX_DMA_MAX_TRANS_LEN);
} }
list_splice_tail_init(&chan->pending_list, &chan->active_list); list_splice_tail_init(&chan->pending_list, &chan->active_list);
...@@ -714,28 +1180,28 @@ static void xilinx_vdma_start_transfer(struct xilinx_vdma_chan *chan) ...@@ -714,28 +1180,28 @@ static void xilinx_vdma_start_transfer(struct xilinx_vdma_chan *chan)
} }
/** /**
* xilinx_vdma_issue_pending - Issue pending transactions * xilinx_dma_issue_pending - Issue pending transactions
* @dchan: DMA channel * @dchan: DMA channel
*/ */
static void xilinx_vdma_issue_pending(struct dma_chan *dchan) static void xilinx_dma_issue_pending(struct dma_chan *dchan)
{ {
struct xilinx_vdma_chan *chan = to_xilinx_chan(dchan); struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
unsigned long flags; unsigned long flags;
spin_lock_irqsave(&chan->lock, flags); spin_lock_irqsave(&chan->lock, flags);
xilinx_vdma_start_transfer(chan); chan->start_transfer(chan);
spin_unlock_irqrestore(&chan->lock, flags); spin_unlock_irqrestore(&chan->lock, flags);
} }
/** /**
* xilinx_vdma_complete_descriptor - Mark the active descriptor as complete * xilinx_dma_complete_descriptor - Mark the active descriptor as complete
* @chan : xilinx DMA channel * @chan : xilinx DMA channel
* *
* CONTEXT: hardirq * CONTEXT: hardirq
*/ */
static void xilinx_vdma_complete_descriptor(struct xilinx_vdma_chan *chan) static void xilinx_dma_complete_descriptor(struct xilinx_dma_chan *chan)
{ {
struct xilinx_vdma_tx_descriptor *desc, *next; struct xilinx_dma_tx_descriptor *desc, *next;
/* This function was invoked with lock held */ /* This function was invoked with lock held */
if (list_empty(&chan->active_list)) if (list_empty(&chan->active_list))
...@@ -749,27 +1215,27 @@ static void xilinx_vdma_complete_descriptor(struct xilinx_vdma_chan *chan) ...@@ -749,27 +1215,27 @@ static void xilinx_vdma_complete_descriptor(struct xilinx_vdma_chan *chan)
} }
/** /**
* xilinx_vdma_reset - Reset VDMA channel * xilinx_dma_reset - Reset DMA channel
* @chan: Driver specific VDMA channel * @chan: Driver specific DMA channel
* *
* Return: '0' on success and failure value on error * Return: '0' on success and failure value on error
*/ */
static int xilinx_vdma_reset(struct xilinx_vdma_chan *chan) static int xilinx_dma_reset(struct xilinx_dma_chan *chan)
{ {
int err; int err;
u32 tmp; u32 tmp;
vdma_ctrl_set(chan, XILINX_VDMA_REG_DMACR, XILINX_VDMA_DMACR_RESET); dma_ctrl_set(chan, XILINX_DMA_REG_DMACR, XILINX_DMA_DMACR_RESET);
/* Wait for the hardware to finish reset */ /* Wait for the hardware to finish reset */
err = xilinx_vdma_poll_timeout(chan, XILINX_VDMA_REG_DMACR, tmp, err = xilinx_dma_poll_timeout(chan, XILINX_DMA_REG_DMACR, tmp,
!(tmp & XILINX_VDMA_DMACR_RESET), 0, !(tmp & XILINX_DMA_DMACR_RESET), 0,
XILINX_VDMA_LOOP_COUNT); XILINX_DMA_LOOP_COUNT);
if (err) { if (err) {
dev_err(chan->dev, "reset timeout, cr %x, sr %x\n", dev_err(chan->dev, "reset timeout, cr %x, sr %x\n",
vdma_ctrl_read(chan, XILINX_VDMA_REG_DMACR), dma_ctrl_read(chan, XILINX_DMA_REG_DMACR),
vdma_ctrl_read(chan, XILINX_VDMA_REG_DMASR)); dma_ctrl_read(chan, XILINX_DMA_REG_DMASR));
return -ETIMEDOUT; return -ETIMEDOUT;
} }
...@@ -779,48 +1245,48 @@ static int xilinx_vdma_reset(struct xilinx_vdma_chan *chan) ...@@ -779,48 +1245,48 @@ static int xilinx_vdma_reset(struct xilinx_vdma_chan *chan)
} }
/** /**
* xilinx_vdma_chan_reset - Reset VDMA channel and enable interrupts * xilinx_dma_chan_reset - Reset DMA channel and enable interrupts
* @chan: Driver specific VDMA channel * @chan: Driver specific DMA channel
* *
* Return: '0' on success and failure value on error * Return: '0' on success and failure value on error
*/ */
static int xilinx_vdma_chan_reset(struct xilinx_vdma_chan *chan) static int xilinx_dma_chan_reset(struct xilinx_dma_chan *chan)
{ {
int err; int err;
/* Reset VDMA */ /* Reset VDMA */
err = xilinx_vdma_reset(chan); err = xilinx_dma_reset(chan);
if (err) if (err)
return err; return err;
/* Enable interrupts */ /* Enable interrupts */
vdma_ctrl_set(chan, XILINX_VDMA_REG_DMACR, dma_ctrl_set(chan, XILINX_DMA_REG_DMACR,
XILINX_VDMA_DMAXR_ALL_IRQ_MASK); XILINX_DMA_DMAXR_ALL_IRQ_MASK);
return 0; return 0;
} }
/** /**
* xilinx_vdma_irq_handler - VDMA Interrupt handler * xilinx_dma_irq_handler - DMA Interrupt handler
* @irq: IRQ number * @irq: IRQ number
* @data: Pointer to the Xilinx VDMA channel structure * @data: Pointer to the Xilinx DMA channel structure
* *
* Return: IRQ_HANDLED/IRQ_NONE * Return: IRQ_HANDLED/IRQ_NONE
*/ */
static irqreturn_t xilinx_vdma_irq_handler(int irq, void *data) static irqreturn_t xilinx_dma_irq_handler(int irq, void *data)
{ {
struct xilinx_vdma_chan *chan = data; struct xilinx_dma_chan *chan = data;
u32 status; u32 status;
/* Read the status and ack the interrupts. */ /* Read the status and ack the interrupts. */
status = vdma_ctrl_read(chan, XILINX_VDMA_REG_DMASR); status = dma_ctrl_read(chan, XILINX_DMA_REG_DMASR);
if (!(status & XILINX_VDMA_DMAXR_ALL_IRQ_MASK)) if (!(status & XILINX_DMA_DMAXR_ALL_IRQ_MASK))
return IRQ_NONE; return IRQ_NONE;
vdma_ctrl_write(chan, XILINX_VDMA_REG_DMASR, dma_ctrl_write(chan, XILINX_DMA_REG_DMASR,
status & XILINX_VDMA_DMAXR_ALL_IRQ_MASK); status & XILINX_DMA_DMAXR_ALL_IRQ_MASK);
if (status & XILINX_VDMA_DMASR_ERR_IRQ) { if (status & XILINX_DMA_DMASR_ERR_IRQ) {
/* /*
* An error occurred. If C_FLUSH_ON_FSYNC is enabled and the * An error occurred. If C_FLUSH_ON_FSYNC is enabled and the
* error is recoverable, ignore it. Otherwise flag the error. * error is recoverable, ignore it. Otherwise flag the error.
...@@ -828,22 +1294,23 @@ static irqreturn_t xilinx_vdma_irq_handler(int irq, void *data) ...@@ -828,22 +1294,23 @@ static irqreturn_t xilinx_vdma_irq_handler(int irq, void *data)
* Only recoverable errors can be cleared in the DMASR register, * Only recoverable errors can be cleared in the DMASR register,
* make sure not to write to other error bits to 1. * make sure not to write to other error bits to 1.
*/ */
u32 errors = status & XILINX_VDMA_DMASR_ALL_ERR_MASK; u32 errors = status & XILINX_DMA_DMASR_ALL_ERR_MASK;
vdma_ctrl_write(chan, XILINX_VDMA_REG_DMASR,
errors & XILINX_VDMA_DMASR_ERR_RECOVER_MASK); dma_ctrl_write(chan, XILINX_DMA_REG_DMASR,
errors & XILINX_DMA_DMASR_ERR_RECOVER_MASK);
if (!chan->flush_on_fsync || if (!chan->flush_on_fsync ||
(errors & ~XILINX_VDMA_DMASR_ERR_RECOVER_MASK)) { (errors & ~XILINX_DMA_DMASR_ERR_RECOVER_MASK)) {
dev_err(chan->dev, dev_err(chan->dev,
"Channel %p has errors %x, cdr %x tdr %x\n", "Channel %p has errors %x, cdr %x tdr %x\n",
chan, errors, chan, errors,
vdma_ctrl_read(chan, XILINX_VDMA_REG_CURDESC), dma_ctrl_read(chan, XILINX_DMA_REG_CURDESC),
vdma_ctrl_read(chan, XILINX_VDMA_REG_TAILDESC)); dma_ctrl_read(chan, XILINX_DMA_REG_TAILDESC));
chan->err = true; chan->err = true;
} }
} }
if (status & XILINX_VDMA_DMASR_DLY_CNT_IRQ) { if (status & XILINX_DMA_DMASR_DLY_CNT_IRQ) {
/* /*
* Device takes too long to do the transfer when user requires * Device takes too long to do the transfer when user requires
* responsiveness. * responsiveness.
...@@ -851,10 +1318,10 @@ static irqreturn_t xilinx_vdma_irq_handler(int irq, void *data) ...@@ -851,10 +1318,10 @@ static irqreturn_t xilinx_vdma_irq_handler(int irq, void *data)
dev_dbg(chan->dev, "Inter-packet latency too long\n"); dev_dbg(chan->dev, "Inter-packet latency too long\n");
} }
if (status & XILINX_VDMA_DMASR_FRM_CNT_IRQ) { if (status & XILINX_DMA_DMASR_FRM_CNT_IRQ) {
spin_lock(&chan->lock); spin_lock(&chan->lock);
xilinx_vdma_complete_descriptor(chan); xilinx_dma_complete_descriptor(chan);
xilinx_vdma_start_transfer(chan); chan->start_transfer(chan);
spin_unlock(&chan->lock); spin_unlock(&chan->lock);
} }
...@@ -867,11 +1334,13 @@ static irqreturn_t xilinx_vdma_irq_handler(int irq, void *data) ...@@ -867,11 +1334,13 @@ static irqreturn_t xilinx_vdma_irq_handler(int irq, void *data)
* @chan: Driver specific dma channel * @chan: Driver specific dma channel
* @desc: dma transaction descriptor * @desc: dma transaction descriptor
*/ */
static void append_desc_queue(struct xilinx_vdma_chan *chan, static void append_desc_queue(struct xilinx_dma_chan *chan,
struct xilinx_vdma_tx_descriptor *desc) struct xilinx_dma_tx_descriptor *desc)
{ {
struct xilinx_vdma_tx_segment *tail_segment; struct xilinx_vdma_tx_segment *tail_segment;
struct xilinx_vdma_tx_descriptor *tail_desc; struct xilinx_dma_tx_descriptor *tail_desc;
struct xilinx_axidma_tx_segment *axidma_tail_segment;
struct xilinx_cdma_tx_segment *cdma_tail_segment;
if (list_empty(&chan->pending_list)) if (list_empty(&chan->pending_list))
goto append; goto append;
...@@ -881,10 +1350,23 @@ static void append_desc_queue(struct xilinx_vdma_chan *chan, ...@@ -881,10 +1350,23 @@ static void append_desc_queue(struct xilinx_vdma_chan *chan,
* that already exists in memory. * that already exists in memory.
*/ */
tail_desc = list_last_entry(&chan->pending_list, tail_desc = list_last_entry(&chan->pending_list,
struct xilinx_vdma_tx_descriptor, node); struct xilinx_dma_tx_descriptor, node);
tail_segment = list_last_entry(&tail_desc->segments, if (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
struct xilinx_vdma_tx_segment, node); tail_segment = list_last_entry(&tail_desc->segments,
tail_segment->hw.next_desc = (u32)desc->async_tx.phys; struct xilinx_vdma_tx_segment,
node);
tail_segment->hw.next_desc = (u32)desc->async_tx.phys;
} else if (chan->xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
cdma_tail_segment = list_last_entry(&tail_desc->segments,
struct xilinx_cdma_tx_segment,
node);
cdma_tail_segment->hw.next_desc = (u32)desc->async_tx.phys;
} else {
axidma_tail_segment = list_last_entry(&tail_desc->segments,
struct xilinx_axidma_tx_segment,
node);
axidma_tail_segment->hw.next_desc = (u32)desc->async_tx.phys;
}
/* /*
* Add the software descriptor and all children to the list * Add the software descriptor and all children to the list
...@@ -894,22 +1376,23 @@ static void append_desc_queue(struct xilinx_vdma_chan *chan, ...@@ -894,22 +1376,23 @@ static void append_desc_queue(struct xilinx_vdma_chan *chan,
list_add_tail(&desc->node, &chan->pending_list); list_add_tail(&desc->node, &chan->pending_list);
chan->desc_pendingcount++; chan->desc_pendingcount++;
if (unlikely(chan->desc_pendingcount > chan->num_frms)) { if (chan->has_sg && (chan->xdev->dma_config->dmatype == XDMA_TYPE_VDMA)
&& unlikely(chan->desc_pendingcount > chan->num_frms)) {
dev_dbg(chan->dev, "desc pendingcount is too high\n"); dev_dbg(chan->dev, "desc pendingcount is too high\n");
chan->desc_pendingcount = chan->num_frms; chan->desc_pendingcount = chan->num_frms;
} }
} }
/** /**
* xilinx_vdma_tx_submit - Submit DMA transaction * xilinx_dma_tx_submit - Submit DMA transaction
* @tx: Async transaction descriptor * @tx: Async transaction descriptor
* *
* Return: cookie value on success and failure value on error * Return: cookie value on success and failure value on error
*/ */
static dma_cookie_t xilinx_vdma_tx_submit(struct dma_async_tx_descriptor *tx) static dma_cookie_t xilinx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
{ {
struct xilinx_vdma_tx_descriptor *desc = to_vdma_tx_descriptor(tx); struct xilinx_dma_tx_descriptor *desc = to_dma_tx_descriptor(tx);
struct xilinx_vdma_chan *chan = to_xilinx_chan(tx->chan); struct xilinx_dma_chan *chan = to_xilinx_chan(tx->chan);
dma_cookie_t cookie; dma_cookie_t cookie;
unsigned long flags; unsigned long flags;
int err; int err;
...@@ -919,7 +1402,7 @@ static dma_cookie_t xilinx_vdma_tx_submit(struct dma_async_tx_descriptor *tx) ...@@ -919,7 +1402,7 @@ static dma_cookie_t xilinx_vdma_tx_submit(struct dma_async_tx_descriptor *tx)
* If reset fails, need to hard reset the system. * If reset fails, need to hard reset the system.
* Channel is no longer functional * Channel is no longer functional
*/ */
err = xilinx_vdma_chan_reset(chan); err = xilinx_dma_chan_reset(chan);
if (err < 0) if (err < 0)
return err; return err;
} }
...@@ -950,8 +1433,8 @@ xilinx_vdma_dma_prep_interleaved(struct dma_chan *dchan, ...@@ -950,8 +1433,8 @@ xilinx_vdma_dma_prep_interleaved(struct dma_chan *dchan,
struct dma_interleaved_template *xt, struct dma_interleaved_template *xt,
unsigned long flags) unsigned long flags)
{ {
struct xilinx_vdma_chan *chan = to_xilinx_chan(dchan); struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
struct xilinx_vdma_tx_descriptor *desc; struct xilinx_dma_tx_descriptor *desc;
struct xilinx_vdma_tx_segment *segment, *prev = NULL; struct xilinx_vdma_tx_segment *segment, *prev = NULL;
struct xilinx_vdma_desc_hw *hw; struct xilinx_vdma_desc_hw *hw;
...@@ -965,12 +1448,12 @@ xilinx_vdma_dma_prep_interleaved(struct dma_chan *dchan, ...@@ -965,12 +1448,12 @@ xilinx_vdma_dma_prep_interleaved(struct dma_chan *dchan,
return NULL; return NULL;
/* Allocate a transaction descriptor. */ /* Allocate a transaction descriptor. */
desc = xilinx_vdma_alloc_tx_descriptor(chan); desc = xilinx_dma_alloc_tx_descriptor(chan);
if (!desc) if (!desc)
return NULL; return NULL;
dma_async_tx_descriptor_init(&desc->async_tx, &chan->common); dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
desc->async_tx.tx_submit = xilinx_vdma_tx_submit; desc->async_tx.tx_submit = xilinx_dma_tx_submit;
async_tx_ack(&desc->async_tx); async_tx_ack(&desc->async_tx);
/* Allocate the link descriptor from DMA pool */ /* Allocate the link descriptor from DMA pool */
...@@ -983,14 +1466,25 @@ xilinx_vdma_dma_prep_interleaved(struct dma_chan *dchan, ...@@ -983,14 +1466,25 @@ xilinx_vdma_dma_prep_interleaved(struct dma_chan *dchan,
hw->vsize = xt->numf; hw->vsize = xt->numf;
hw->hsize = xt->sgl[0].size; hw->hsize = xt->sgl[0].size;
hw->stride = (xt->sgl[0].icg + xt->sgl[0].size) << hw->stride = (xt->sgl[0].icg + xt->sgl[0].size) <<
XILINX_VDMA_FRMDLY_STRIDE_STRIDE_SHIFT; XILINX_DMA_FRMDLY_STRIDE_STRIDE_SHIFT;
hw->stride |= chan->config.frm_dly << hw->stride |= chan->config.frm_dly <<
XILINX_VDMA_FRMDLY_STRIDE_FRMDLY_SHIFT; XILINX_DMA_FRMDLY_STRIDE_FRMDLY_SHIFT;
if (xt->dir != DMA_MEM_TO_DEV) if (xt->dir != DMA_MEM_TO_DEV) {
hw->buf_addr = xt->dst_start; if (chan->ext_addr) {
else hw->buf_addr = lower_32_bits(xt->dst_start);
hw->buf_addr = xt->src_start; hw->buf_addr_msb = upper_32_bits(xt->dst_start);
} else {
hw->buf_addr = xt->dst_start;
}
} else {
if (chan->ext_addr) {
hw->buf_addr = lower_32_bits(xt->src_start);
hw->buf_addr_msb = upper_32_bits(xt->src_start);
} else {
hw->buf_addr = xt->src_start;
}
}
/* Insert the segment into the descriptor segments list. */ /* Insert the segment into the descriptor segments list. */
list_add_tail(&segment->node, &desc->segments); list_add_tail(&segment->node, &desc->segments);
...@@ -1005,29 +1499,194 @@ xilinx_vdma_dma_prep_interleaved(struct dma_chan *dchan, ...@@ -1005,29 +1499,194 @@ xilinx_vdma_dma_prep_interleaved(struct dma_chan *dchan,
return &desc->async_tx; return &desc->async_tx;
error: error:
xilinx_vdma_free_tx_descriptor(chan, desc); xilinx_dma_free_tx_descriptor(chan, desc);
return NULL;
}
/**
* xilinx_cdma_prep_memcpy - prepare descriptors for a memcpy transaction
* @dchan: DMA channel
* @dma_dst: destination address
* @dma_src: source address
* @len: transfer length
* @flags: transfer ack flags
*
* Return: Async transaction descriptor on success and NULL on failure
*/
static struct dma_async_tx_descriptor *
xilinx_cdma_prep_memcpy(struct dma_chan *dchan, dma_addr_t dma_dst,
dma_addr_t dma_src, size_t len, unsigned long flags)
{
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
struct xilinx_dma_tx_descriptor *desc;
struct xilinx_cdma_tx_segment *segment, *prev;
struct xilinx_cdma_desc_hw *hw;
if (!len || len > XILINX_DMA_MAX_TRANS_LEN)
return NULL;
desc = xilinx_dma_alloc_tx_descriptor(chan);
if (!desc)
return NULL;
dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
desc->async_tx.tx_submit = xilinx_dma_tx_submit;
/* Allocate the link descriptor from DMA pool */
segment = xilinx_cdma_alloc_tx_segment(chan);
if (!segment)
goto error;
hw = &segment->hw;
hw->control = len;
hw->src_addr = dma_src;
hw->dest_addr = dma_dst;
/* Fill the previous next descriptor with current */
prev = list_last_entry(&desc->segments,
struct xilinx_cdma_tx_segment, node);
prev->hw.next_desc = segment->phys;
/* Insert the segment into the descriptor segments list. */
list_add_tail(&segment->node, &desc->segments);
prev = segment;
/* Link the last hardware descriptor with the first. */
segment = list_first_entry(&desc->segments,
struct xilinx_cdma_tx_segment, node);
desc->async_tx.phys = segment->phys;
prev->hw.next_desc = segment->phys;
return &desc->async_tx;
error:
xilinx_dma_free_tx_descriptor(chan, desc);
return NULL;
}
/**
* xilinx_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
* @dchan: DMA channel
* @sgl: scatterlist to transfer to/from
* @sg_len: number of entries in @scatterlist
* @direction: DMA direction
* @flags: transfer ack flags
* @context: APP words of the descriptor
*
* Return: Async transaction descriptor on success and NULL on failure
*/
static struct dma_async_tx_descriptor *xilinx_dma_prep_slave_sg(
struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
enum dma_transfer_direction direction, unsigned long flags,
void *context)
{
struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
struct xilinx_dma_tx_descriptor *desc;
struct xilinx_axidma_tx_segment *segment = NULL, *prev = NULL;
u32 *app_w = (u32 *)context;
struct scatterlist *sg;
size_t copy;
size_t sg_used;
unsigned int i;
if (!is_slave_direction(direction))
return NULL;
/* Allocate a transaction descriptor. */
desc = xilinx_dma_alloc_tx_descriptor(chan);
if (!desc)
return NULL;
dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
desc->async_tx.tx_submit = xilinx_dma_tx_submit;
/* Build transactions using information in the scatter gather list */
for_each_sg(sgl, sg, sg_len, i) {
sg_used = 0;
/* Loop until the entire scatterlist entry is used */
while (sg_used < sg_dma_len(sg)) {
struct xilinx_axidma_desc_hw *hw;
/* Get a free segment */
segment = xilinx_axidma_alloc_tx_segment(chan);
if (!segment)
goto error;
/*
* Calculate the maximum number of bytes to transfer,
* making sure it is less than the hw limit
*/
copy = min_t(size_t, sg_dma_len(sg) - sg_used,
XILINX_DMA_MAX_TRANS_LEN);
hw = &segment->hw;
/* Fill in the descriptor */
hw->buf_addr = sg_dma_address(sg) + sg_used;
hw->control = copy;
if (chan->direction == DMA_MEM_TO_DEV) {
if (app_w)
memcpy(hw->app, app_w, sizeof(u32) *
XILINX_DMA_NUM_APP_WORDS);
}
if (prev)
prev->hw.next_desc = segment->phys;
prev = segment;
sg_used += copy;
/*
* Insert the segment into the descriptor segments
* list.
*/
list_add_tail(&segment->node, &desc->segments);
}
}
segment = list_first_entry(&desc->segments,
struct xilinx_axidma_tx_segment, node);
desc->async_tx.phys = segment->phys;
prev->hw.next_desc = segment->phys;
/* For the last DMA_MEM_TO_DEV transfer, set EOP */
if (chan->direction == DMA_MEM_TO_DEV) {
segment->hw.control |= XILINX_DMA_BD_SOP;
segment = list_last_entry(&desc->segments,
struct xilinx_axidma_tx_segment,
node);
segment->hw.control |= XILINX_DMA_BD_EOP;
}
return &desc->async_tx;
error:
xilinx_dma_free_tx_descriptor(chan, desc);
return NULL; return NULL;
} }
/** /**
* xilinx_vdma_terminate_all - Halt the channel and free descriptors * xilinx_dma_terminate_all - Halt the channel and free descriptors
* @chan: Driver specific VDMA Channel pointer * @chan: Driver specific DMA Channel pointer
*/ */
static int xilinx_vdma_terminate_all(struct dma_chan *dchan) static int xilinx_dma_terminate_all(struct dma_chan *dchan)
{ {
struct xilinx_vdma_chan *chan = to_xilinx_chan(dchan); struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
/* Halt the DMA engine */ /* Halt the DMA engine */
xilinx_vdma_halt(chan); xilinx_dma_halt(chan);
/* Remove and free all of the descriptors in the lists */ /* Remove and free all of the descriptors in the lists */
xilinx_vdma_free_descriptors(chan); xilinx_dma_free_descriptors(chan);
return 0; return 0;
} }
/** /**
* xilinx_vdma_channel_set_config - Configure VDMA channel * xilinx_dma_channel_set_config - Configure VDMA channel
* Run-time configuration for Axi VDMA, supports: * Run-time configuration for Axi VDMA, supports:
* . halt the channel * . halt the channel
* . configure interrupt coalescing and inter-packet delay threshold * . configure interrupt coalescing and inter-packet delay threshold
...@@ -1042,13 +1701,13 @@ static int xilinx_vdma_terminate_all(struct dma_chan *dchan) ...@@ -1042,13 +1701,13 @@ static int xilinx_vdma_terminate_all(struct dma_chan *dchan)
int xilinx_vdma_channel_set_config(struct dma_chan *dchan, int xilinx_vdma_channel_set_config(struct dma_chan *dchan,
struct xilinx_vdma_config *cfg) struct xilinx_vdma_config *cfg)
{ {
struct xilinx_vdma_chan *chan = to_xilinx_chan(dchan); struct xilinx_dma_chan *chan = to_xilinx_chan(dchan);
u32 dmacr; u32 dmacr;
if (cfg->reset) if (cfg->reset)
return xilinx_vdma_chan_reset(chan); return xilinx_dma_chan_reset(chan);
dmacr = vdma_ctrl_read(chan, XILINX_VDMA_REG_DMACR); dmacr = dma_ctrl_read(chan, XILINX_DMA_REG_DMACR);
chan->config.frm_dly = cfg->frm_dly; chan->config.frm_dly = cfg->frm_dly;
chan->config.park = cfg->park; chan->config.park = cfg->park;
...@@ -1058,8 +1717,8 @@ int xilinx_vdma_channel_set_config(struct dma_chan *dchan, ...@@ -1058,8 +1717,8 @@ int xilinx_vdma_channel_set_config(struct dma_chan *dchan,
chan->config.master = cfg->master; chan->config.master = cfg->master;
if (cfg->gen_lock && chan->genlock) { if (cfg->gen_lock && chan->genlock) {
dmacr |= XILINX_VDMA_DMACR_GENLOCK_EN; dmacr |= XILINX_DMA_DMACR_GENLOCK_EN;
dmacr |= cfg->master << XILINX_VDMA_DMACR_MASTER_SHIFT; dmacr |= cfg->master << XILINX_DMA_DMACR_MASTER_SHIFT;
} }
chan->config.frm_cnt_en = cfg->frm_cnt_en; chan->config.frm_cnt_en = cfg->frm_cnt_en;
...@@ -1071,21 +1730,21 @@ int xilinx_vdma_channel_set_config(struct dma_chan *dchan, ...@@ -1071,21 +1730,21 @@ int xilinx_vdma_channel_set_config(struct dma_chan *dchan,
chan->config.coalesc = cfg->coalesc; chan->config.coalesc = cfg->coalesc;
chan->config.delay = cfg->delay; chan->config.delay = cfg->delay;
if (cfg->coalesc <= XILINX_VDMA_DMACR_FRAME_COUNT_MAX) { if (cfg->coalesc <= XILINX_DMA_DMACR_FRAME_COUNT_MAX) {
dmacr |= cfg->coalesc << XILINX_VDMA_DMACR_FRAME_COUNT_SHIFT; dmacr |= cfg->coalesc << XILINX_DMA_DMACR_FRAME_COUNT_SHIFT;
chan->config.coalesc = cfg->coalesc; chan->config.coalesc = cfg->coalesc;
} }
if (cfg->delay <= XILINX_VDMA_DMACR_DELAY_MAX) { if (cfg->delay <= XILINX_DMA_DMACR_DELAY_MAX) {
dmacr |= cfg->delay << XILINX_VDMA_DMACR_DELAY_SHIFT; dmacr |= cfg->delay << XILINX_DMA_DMACR_DELAY_SHIFT;
chan->config.delay = cfg->delay; chan->config.delay = cfg->delay;
} }
/* FSync Source selection */ /* FSync Source selection */
dmacr &= ~XILINX_VDMA_DMACR_FSYNCSRC_MASK; dmacr &= ~XILINX_DMA_DMACR_FSYNCSRC_MASK;
dmacr |= cfg->ext_fsync << XILINX_VDMA_DMACR_FSYNCSRC_SHIFT; dmacr |= cfg->ext_fsync << XILINX_DMA_DMACR_FSYNCSRC_SHIFT;
vdma_ctrl_write(chan, XILINX_VDMA_REG_DMACR, dmacr); dma_ctrl_write(chan, XILINX_DMA_REG_DMACR, dmacr);
return 0; return 0;
} }
...@@ -1096,14 +1755,14 @@ EXPORT_SYMBOL(xilinx_vdma_channel_set_config); ...@@ -1096,14 +1755,14 @@ EXPORT_SYMBOL(xilinx_vdma_channel_set_config);
*/ */
/** /**
* xilinx_vdma_chan_remove - Per Channel remove function * xilinx_dma_chan_remove - Per Channel remove function
* @chan: Driver specific VDMA channel * @chan: Driver specific DMA channel
*/ */
static void xilinx_vdma_chan_remove(struct xilinx_vdma_chan *chan) static void xilinx_dma_chan_remove(struct xilinx_dma_chan *chan)
{ {
/* Disable all interrupts */ /* Disable all interrupts */
vdma_ctrl_clr(chan, XILINX_VDMA_REG_DMACR, dma_ctrl_clr(chan, XILINX_DMA_REG_DMACR,
XILINX_VDMA_DMAXR_ALL_IRQ_MASK); XILINX_DMA_DMAXR_ALL_IRQ_MASK);
if (chan->irq > 0) if (chan->irq > 0)
free_irq(chan->irq, chan); free_irq(chan->irq, chan);
...@@ -1113,8 +1772,197 @@ static void xilinx_vdma_chan_remove(struct xilinx_vdma_chan *chan) ...@@ -1113,8 +1772,197 @@ static void xilinx_vdma_chan_remove(struct xilinx_vdma_chan *chan)
list_del(&chan->common.device_node); list_del(&chan->common.device_node);
} }
static int axidma_clk_init(struct platform_device *pdev, struct clk **axi_clk,
struct clk **tx_clk, struct clk **rx_clk,
struct clk **sg_clk, struct clk **tmp_clk)
{
int err;
*tmp_clk = NULL;
*axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk");
if (IS_ERR(*axi_clk)) {
err = PTR_ERR(*axi_clk);
dev_err(&pdev->dev, "failed to get axi_aclk (%u)\n", err);
return err;
}
*tx_clk = devm_clk_get(&pdev->dev, "m_axi_mm2s_aclk");
if (IS_ERR(*tx_clk))
*tx_clk = NULL;
*rx_clk = devm_clk_get(&pdev->dev, "m_axi_s2mm_aclk");
if (IS_ERR(*rx_clk))
*rx_clk = NULL;
*sg_clk = devm_clk_get(&pdev->dev, "m_axi_sg_aclk");
if (IS_ERR(*sg_clk))
*sg_clk = NULL;
err = clk_prepare_enable(*axi_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable axi_clk (%u)\n", err);
return err;
}
err = clk_prepare_enable(*tx_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable tx_clk (%u)\n", err);
goto err_disable_axiclk;
}
err = clk_prepare_enable(*rx_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable rx_clk (%u)\n", err);
goto err_disable_txclk;
}
err = clk_prepare_enable(*sg_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable sg_clk (%u)\n", err);
goto err_disable_rxclk;
}
return 0;
err_disable_rxclk:
clk_disable_unprepare(*rx_clk);
err_disable_txclk:
clk_disable_unprepare(*tx_clk);
err_disable_axiclk:
clk_disable_unprepare(*axi_clk);
return err;
}
static int axicdma_clk_init(struct platform_device *pdev, struct clk **axi_clk,
struct clk **dev_clk, struct clk **tmp_clk,
struct clk **tmp1_clk, struct clk **tmp2_clk)
{
int err;
*tmp_clk = NULL;
*tmp1_clk = NULL;
*tmp2_clk = NULL;
*axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk");
if (IS_ERR(*axi_clk)) {
err = PTR_ERR(*axi_clk);
dev_err(&pdev->dev, "failed to get axi_clk (%u)\n", err);
return err;
}
*dev_clk = devm_clk_get(&pdev->dev, "m_axi_aclk");
if (IS_ERR(*dev_clk)) {
err = PTR_ERR(*dev_clk);
dev_err(&pdev->dev, "failed to get dev_clk (%u)\n", err);
return err;
}
err = clk_prepare_enable(*axi_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable axi_clk (%u)\n", err);
return err;
}
err = clk_prepare_enable(*dev_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable dev_clk (%u)\n", err);
goto err_disable_axiclk;
}
return 0;
err_disable_axiclk:
clk_disable_unprepare(*axi_clk);
return err;
}
static int axivdma_clk_init(struct platform_device *pdev, struct clk **axi_clk,
struct clk **tx_clk, struct clk **txs_clk,
struct clk **rx_clk, struct clk **rxs_clk)
{
int err;
*axi_clk = devm_clk_get(&pdev->dev, "s_axi_lite_aclk");
if (IS_ERR(*axi_clk)) {
err = PTR_ERR(*axi_clk);
dev_err(&pdev->dev, "failed to get axi_aclk (%u)\n", err);
return err;
}
*tx_clk = devm_clk_get(&pdev->dev, "m_axi_mm2s_aclk");
if (IS_ERR(*tx_clk))
*tx_clk = NULL;
*txs_clk = devm_clk_get(&pdev->dev, "m_axis_mm2s_aclk");
if (IS_ERR(*txs_clk))
*txs_clk = NULL;
*rx_clk = devm_clk_get(&pdev->dev, "m_axi_s2mm_aclk");
if (IS_ERR(*rx_clk))
*rx_clk = NULL;
*rxs_clk = devm_clk_get(&pdev->dev, "s_axis_s2mm_aclk");
if (IS_ERR(*rxs_clk))
*rxs_clk = NULL;
err = clk_prepare_enable(*axi_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable axi_clk (%u)\n", err);
return err;
}
err = clk_prepare_enable(*tx_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable tx_clk (%u)\n", err);
goto err_disable_axiclk;
}
err = clk_prepare_enable(*txs_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable txs_clk (%u)\n", err);
goto err_disable_txclk;
}
err = clk_prepare_enable(*rx_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable rx_clk (%u)\n", err);
goto err_disable_txsclk;
}
err = clk_prepare_enable(*rxs_clk);
if (err) {
dev_err(&pdev->dev, "failed to enable rxs_clk (%u)\n", err);
goto err_disable_rxclk;
}
return 0;
err_disable_rxclk:
clk_disable_unprepare(*rx_clk);
err_disable_txsclk:
clk_disable_unprepare(*txs_clk);
err_disable_txclk:
clk_disable_unprepare(*tx_clk);
err_disable_axiclk:
clk_disable_unprepare(*axi_clk);
return err;
}
static void xdma_disable_allclks(struct xilinx_dma_device *xdev)
{
clk_disable_unprepare(xdev->rxs_clk);
clk_disable_unprepare(xdev->rx_clk);
clk_disable_unprepare(xdev->txs_clk);
clk_disable_unprepare(xdev->tx_clk);
clk_disable_unprepare(xdev->axi_clk);
}
/** /**
* xilinx_vdma_chan_probe - Per Channel Probing * xilinx_dma_chan_probe - Per Channel Probing
* It get channel features from the device tree entry and * It get channel features from the device tree entry and
* initialize special channel handling routines * initialize special channel handling routines
* *
...@@ -1123,10 +1971,10 @@ static void xilinx_vdma_chan_remove(struct xilinx_vdma_chan *chan) ...@@ -1123,10 +1971,10 @@ static void xilinx_vdma_chan_remove(struct xilinx_vdma_chan *chan)
* *
* Return: '0' on success and failure value on error * Return: '0' on success and failure value on error
*/ */
static int xilinx_vdma_chan_probe(struct xilinx_vdma_device *xdev, static int xilinx_dma_chan_probe(struct xilinx_dma_device *xdev,
struct device_node *node) struct device_node *node)
{ {
struct xilinx_vdma_chan *chan; struct xilinx_dma_chan *chan;
bool has_dre = false; bool has_dre = false;
u32 value, width; u32 value, width;
int err; int err;
...@@ -1140,6 +1988,7 @@ static int xilinx_vdma_chan_probe(struct xilinx_vdma_device *xdev, ...@@ -1140,6 +1988,7 @@ static int xilinx_vdma_chan_probe(struct xilinx_vdma_device *xdev,
chan->xdev = xdev; chan->xdev = xdev;
chan->has_sg = xdev->has_sg; chan->has_sg = xdev->has_sg;
chan->desc_pendingcount = 0x0; chan->desc_pendingcount = 0x0;
chan->ext_addr = xdev->ext_addr;
spin_lock_init(&chan->lock); spin_lock_init(&chan->lock);
INIT_LIST_HEAD(&chan->pending_list); INIT_LIST_HEAD(&chan->pending_list);
...@@ -1169,23 +2018,27 @@ static int xilinx_vdma_chan_probe(struct xilinx_vdma_device *xdev, ...@@ -1169,23 +2018,27 @@ static int xilinx_vdma_chan_probe(struct xilinx_vdma_device *xdev,
chan->direction = DMA_MEM_TO_DEV; chan->direction = DMA_MEM_TO_DEV;
chan->id = 0; chan->id = 0;
chan->ctrl_offset = XILINX_VDMA_MM2S_CTRL_OFFSET; chan->ctrl_offset = XILINX_DMA_MM2S_CTRL_OFFSET;
chan->desc_offset = XILINX_VDMA_MM2S_DESC_OFFSET; if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
chan->desc_offset = XILINX_VDMA_MM2S_DESC_OFFSET;
if (xdev->flush_on_fsync == XILINX_VDMA_FLUSH_BOTH || if (xdev->flush_on_fsync == XILINX_DMA_FLUSH_BOTH ||
xdev->flush_on_fsync == XILINX_VDMA_FLUSH_MM2S) xdev->flush_on_fsync == XILINX_DMA_FLUSH_MM2S)
chan->flush_on_fsync = true; chan->flush_on_fsync = true;
}
} else if (of_device_is_compatible(node, } else if (of_device_is_compatible(node,
"xlnx,axi-vdma-s2mm-channel")) { "xlnx,axi-vdma-s2mm-channel")) {
chan->direction = DMA_DEV_TO_MEM; chan->direction = DMA_DEV_TO_MEM;
chan->id = 1; chan->id = 1;
chan->ctrl_offset = XILINX_VDMA_S2MM_CTRL_OFFSET; chan->ctrl_offset = XILINX_DMA_S2MM_CTRL_OFFSET;
chan->desc_offset = XILINX_VDMA_S2MM_DESC_OFFSET; if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
chan->desc_offset = XILINX_VDMA_S2MM_DESC_OFFSET;
if (xdev->flush_on_fsync == XILINX_VDMA_FLUSH_BOTH || if (xdev->flush_on_fsync == XILINX_DMA_FLUSH_BOTH ||
xdev->flush_on_fsync == XILINX_VDMA_FLUSH_S2MM) xdev->flush_on_fsync == XILINX_DMA_FLUSH_S2MM)
chan->flush_on_fsync = true; chan->flush_on_fsync = true;
}
} else { } else {
dev_err(xdev->dev, "Invalid channel compatible node\n"); dev_err(xdev->dev, "Invalid channel compatible node\n");
return -EINVAL; return -EINVAL;
...@@ -1193,15 +2046,22 @@ static int xilinx_vdma_chan_probe(struct xilinx_vdma_device *xdev, ...@@ -1193,15 +2046,22 @@ static int xilinx_vdma_chan_probe(struct xilinx_vdma_device *xdev,
/* Request the interrupt */ /* Request the interrupt */
chan->irq = irq_of_parse_and_map(node, 0); chan->irq = irq_of_parse_and_map(node, 0);
err = request_irq(chan->irq, xilinx_vdma_irq_handler, IRQF_SHARED, err = request_irq(chan->irq, xilinx_dma_irq_handler, IRQF_SHARED,
"xilinx-vdma-controller", chan); "xilinx-dma-controller", chan);
if (err) { if (err) {
dev_err(xdev->dev, "unable to request IRQ %d\n", chan->irq); dev_err(xdev->dev, "unable to request IRQ %d\n", chan->irq);
return err; return err;
} }
if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA)
chan->start_transfer = xilinx_dma_start_transfer;
else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA)
chan->start_transfer = xilinx_cdma_start_transfer;
else
chan->start_transfer = xilinx_vdma_start_transfer;
/* Initialize the tasklet */ /* Initialize the tasklet */
tasklet_init(&chan->tasklet, xilinx_vdma_do_tasklet, tasklet_init(&chan->tasklet, xilinx_dma_do_tasklet,
(unsigned long)chan); (unsigned long)chan);
/* /*
...@@ -1214,7 +2074,7 @@ static int xilinx_vdma_chan_probe(struct xilinx_vdma_device *xdev, ...@@ -1214,7 +2074,7 @@ static int xilinx_vdma_chan_probe(struct xilinx_vdma_device *xdev,
xdev->chan[chan->id] = chan; xdev->chan[chan->id] = chan;
/* Reset the channel */ /* Reset the channel */
err = xilinx_vdma_chan_reset(chan); err = xilinx_dma_chan_reset(chan);
if (err < 0) { if (err < 0) {
dev_err(xdev->dev, "Reset channel failed\n"); dev_err(xdev->dev, "Reset channel failed\n");
return err; return err;
...@@ -1233,28 +2093,54 @@ static int xilinx_vdma_chan_probe(struct xilinx_vdma_device *xdev, ...@@ -1233,28 +2093,54 @@ static int xilinx_vdma_chan_probe(struct xilinx_vdma_device *xdev,
static struct dma_chan *of_dma_xilinx_xlate(struct of_phandle_args *dma_spec, static struct dma_chan *of_dma_xilinx_xlate(struct of_phandle_args *dma_spec,
struct of_dma *ofdma) struct of_dma *ofdma)
{ {
struct xilinx_vdma_device *xdev = ofdma->of_dma_data; struct xilinx_dma_device *xdev = ofdma->of_dma_data;
int chan_id = dma_spec->args[0]; int chan_id = dma_spec->args[0];
if (chan_id >= XILINX_VDMA_MAX_CHANS_PER_DEVICE) if (chan_id >= XILINX_DMA_MAX_CHANS_PER_DEVICE)
return NULL; return NULL;
return dma_get_slave_channel(&xdev->chan[chan_id]->common); return dma_get_slave_channel(&xdev->chan[chan_id]->common);
} }
static const struct xilinx_dma_config axidma_config = {
.dmatype = XDMA_TYPE_AXIDMA,
.clk_init = axidma_clk_init,
};
static const struct xilinx_dma_config axicdma_config = {
.dmatype = XDMA_TYPE_CDMA,
.clk_init = axicdma_clk_init,
};
static const struct xilinx_dma_config axivdma_config = {
.dmatype = XDMA_TYPE_VDMA,
.clk_init = axivdma_clk_init,
};
static const struct of_device_id xilinx_dma_of_ids[] = {
{ .compatible = "xlnx,axi-dma-1.00.a", .data = &axidma_config },
{ .compatible = "xlnx,axi-cdma-1.00.a", .data = &axicdma_config },
{ .compatible = "xlnx,axi-vdma-1.00.a", .data = &axivdma_config },
{}
};
MODULE_DEVICE_TABLE(of, xilinx_dma_of_ids);
/** /**
* xilinx_vdma_probe - Driver probe function * xilinx_dma_probe - Driver probe function
* @pdev: Pointer to the platform_device structure * @pdev: Pointer to the platform_device structure
* *
* Return: '0' on success and failure value on error * Return: '0' on success and failure value on error
*/ */
static int xilinx_vdma_probe(struct platform_device *pdev) static int xilinx_dma_probe(struct platform_device *pdev)
{ {
int (*clk_init)(struct platform_device *, struct clk **, struct clk **,
struct clk **, struct clk **, struct clk **)
= axivdma_clk_init;
struct device_node *node = pdev->dev.of_node; struct device_node *node = pdev->dev.of_node;
struct xilinx_vdma_device *xdev; struct xilinx_dma_device *xdev;
struct device_node *child; struct device_node *child, *np = pdev->dev.of_node;
struct resource *io; struct resource *io;
u32 num_frames; u32 num_frames, addr_width;
int i, err; int i, err;
/* Allocate and initialize the DMA engine structure */ /* Allocate and initialize the DMA engine structure */
...@@ -1263,6 +2149,20 @@ static int xilinx_vdma_probe(struct platform_device *pdev) ...@@ -1263,6 +2149,20 @@ static int xilinx_vdma_probe(struct platform_device *pdev)
return -ENOMEM; return -ENOMEM;
xdev->dev = &pdev->dev; xdev->dev = &pdev->dev;
if (np) {
const struct of_device_id *match;
match = of_match_node(xilinx_dma_of_ids, np);
if (match && match->data) {
xdev->dma_config = match->data;
clk_init = xdev->dma_config->clk_init;
}
}
err = clk_init(pdev, &xdev->axi_clk, &xdev->tx_clk, &xdev->txs_clk,
&xdev->rx_clk, &xdev->rxs_clk);
if (err)
return err;
/* Request and map I/O memory */ /* Request and map I/O memory */
io = platform_get_resource(pdev, IORESOURCE_MEM, 0); io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
...@@ -1273,46 +2173,77 @@ static int xilinx_vdma_probe(struct platform_device *pdev) ...@@ -1273,46 +2173,77 @@ static int xilinx_vdma_probe(struct platform_device *pdev)
/* Retrieve the DMA engine properties from the device tree */ /* Retrieve the DMA engine properties from the device tree */
xdev->has_sg = of_property_read_bool(node, "xlnx,include-sg"); xdev->has_sg = of_property_read_bool(node, "xlnx,include-sg");
err = of_property_read_u32(node, "xlnx,num-fstores", &num_frames); if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
if (err < 0) { err = of_property_read_u32(node, "xlnx,num-fstores",
dev_err(xdev->dev, "missing xlnx,num-fstores property\n"); &num_frames);
return err; if (err < 0) {
dev_err(xdev->dev,
"missing xlnx,num-fstores property\n");
return err;
}
err = of_property_read_u32(node, "xlnx,flush-fsync",
&xdev->flush_on_fsync);
if (err < 0)
dev_warn(xdev->dev,
"missing xlnx,flush-fsync property\n");
} }
err = of_property_read_u32(node, "xlnx,flush-fsync", err = of_property_read_u32(node, "xlnx,addrwidth", &addr_width);
&xdev->flush_on_fsync);
if (err < 0) if (err < 0)
dev_warn(xdev->dev, "missing xlnx,flush-fsync property\n"); dev_warn(xdev->dev, "missing xlnx,addrwidth property\n");
if (addr_width > 32)
xdev->ext_addr = true;
else
xdev->ext_addr = false;
/* Set the dma mask bits */
dma_set_mask(xdev->dev, DMA_BIT_MASK(addr_width));
/* Initialize the DMA engine */ /* Initialize the DMA engine */
xdev->common.dev = &pdev->dev; xdev->common.dev = &pdev->dev;
INIT_LIST_HEAD(&xdev->common.channels); INIT_LIST_HEAD(&xdev->common.channels);
dma_cap_set(DMA_SLAVE, xdev->common.cap_mask); if (!(xdev->dma_config->dmatype == XDMA_TYPE_CDMA)) {
dma_cap_set(DMA_PRIVATE, xdev->common.cap_mask); dma_cap_set(DMA_SLAVE, xdev->common.cap_mask);
dma_cap_set(DMA_PRIVATE, xdev->common.cap_mask);
}
xdev->common.device_alloc_chan_resources = xdev->common.device_alloc_chan_resources =
xilinx_vdma_alloc_chan_resources; xilinx_dma_alloc_chan_resources;
xdev->common.device_free_chan_resources = xdev->common.device_free_chan_resources =
xilinx_vdma_free_chan_resources; xilinx_dma_free_chan_resources;
xdev->common.device_prep_interleaved_dma = xdev->common.device_terminate_all = xilinx_dma_terminate_all;
xdev->common.device_tx_status = xilinx_dma_tx_status;
xdev->common.device_issue_pending = xilinx_dma_issue_pending;
if (xdev->dma_config->dmatype == XDMA_TYPE_AXIDMA) {
xdev->common.device_prep_slave_sg = xilinx_dma_prep_slave_sg;
/* Residue calculation is supported by only AXI DMA */
xdev->common.residue_granularity =
DMA_RESIDUE_GRANULARITY_SEGMENT;
} else if (xdev->dma_config->dmatype == XDMA_TYPE_CDMA) {
dma_cap_set(DMA_MEMCPY, xdev->common.cap_mask);
xdev->common.device_prep_dma_memcpy = xilinx_cdma_prep_memcpy;
} else {
xdev->common.device_prep_interleaved_dma =
xilinx_vdma_dma_prep_interleaved; xilinx_vdma_dma_prep_interleaved;
xdev->common.device_terminate_all = xilinx_vdma_terminate_all; }
xdev->common.device_tx_status = xilinx_vdma_tx_status;
xdev->common.device_issue_pending = xilinx_vdma_issue_pending;
platform_set_drvdata(pdev, xdev); platform_set_drvdata(pdev, xdev);
/* Initialize the channels */ /* Initialize the channels */
for_each_child_of_node(node, child) { for_each_child_of_node(node, child) {
err = xilinx_vdma_chan_probe(xdev, child); err = xilinx_dma_chan_probe(xdev, child);
if (err < 0) if (err < 0)
goto error; goto disable_clks;
} }
for (i = 0; i < XILINX_VDMA_MAX_CHANS_PER_DEVICE; i++) if (xdev->dma_config->dmatype == XDMA_TYPE_VDMA) {
if (xdev->chan[i]) for (i = 0; i < XILINX_DMA_MAX_CHANS_PER_DEVICE; i++)
xdev->chan[i]->num_frms = num_frames; if (xdev->chan[i])
xdev->chan[i]->num_frms = num_frames;
}
/* Register the DMA engine with the core */ /* Register the DMA engine with the core */
dma_async_device_register(&xdev->common); dma_async_device_register(&xdev->common);
...@@ -1329,49 +2260,47 @@ static int xilinx_vdma_probe(struct platform_device *pdev) ...@@ -1329,49 +2260,47 @@ static int xilinx_vdma_probe(struct platform_device *pdev)
return 0; return 0;
disable_clks:
xdma_disable_allclks(xdev);
error: error:
for (i = 0; i < XILINX_VDMA_MAX_CHANS_PER_DEVICE; i++) for (i = 0; i < XILINX_DMA_MAX_CHANS_PER_DEVICE; i++)
if (xdev->chan[i]) if (xdev->chan[i])
xilinx_vdma_chan_remove(xdev->chan[i]); xilinx_dma_chan_remove(xdev->chan[i]);
return err; return err;
} }
/** /**
* xilinx_vdma_remove - Driver remove function * xilinx_dma_remove - Driver remove function
* @pdev: Pointer to the platform_device structure * @pdev: Pointer to the platform_device structure
* *
* Return: Always '0' * Return: Always '0'
*/ */
static int xilinx_vdma_remove(struct platform_device *pdev) static int xilinx_dma_remove(struct platform_device *pdev)
{ {
struct xilinx_vdma_device *xdev = platform_get_drvdata(pdev); struct xilinx_dma_device *xdev = platform_get_drvdata(pdev);
int i; int i;
of_dma_controller_free(pdev->dev.of_node); of_dma_controller_free(pdev->dev.of_node);
dma_async_device_unregister(&xdev->common); dma_async_device_unregister(&xdev->common);
for (i = 0; i < XILINX_VDMA_MAX_CHANS_PER_DEVICE; i++) for (i = 0; i < XILINX_DMA_MAX_CHANS_PER_DEVICE; i++)
if (xdev->chan[i]) if (xdev->chan[i])
xilinx_vdma_chan_remove(xdev->chan[i]); xilinx_dma_chan_remove(xdev->chan[i]);
xdma_disable_allclks(xdev);
return 0; return 0;
} }
static const struct of_device_id xilinx_vdma_of_ids[] = {
{ .compatible = "xlnx,axi-vdma-1.00.a",},
{}
};
MODULE_DEVICE_TABLE(of, xilinx_vdma_of_ids);
static struct platform_driver xilinx_vdma_driver = { static struct platform_driver xilinx_vdma_driver = {
.driver = { .driver = {
.name = "xilinx-vdma", .name = "xilinx-vdma",
.of_match_table = xilinx_vdma_of_ids, .of_match_table = xilinx_dma_of_ids,
}, },
.probe = xilinx_vdma_probe, .probe = xilinx_dma_probe,
.remove = xilinx_vdma_remove, .remove = xilinx_dma_remove,
}; };
module_platform_driver(xilinx_vdma_driver); module_platform_driver(xilinx_vdma_driver);
......
...@@ -41,6 +41,20 @@ struct xilinx_vdma_config { ...@@ -41,6 +41,20 @@ struct xilinx_vdma_config {
int ext_fsync; int ext_fsync;
}; };
/**
* enum xdma_ip_type: DMA IP type.
*
* XDMA_TYPE_AXIDMA: Axi dma ip.
* XDMA_TYPE_CDMA: Axi cdma ip.
* XDMA_TYPE_VDMA: Axi vdma ip.
*
*/
enum xdma_ip_type {
XDMA_TYPE_AXIDMA = 0,
XDMA_TYPE_CDMA,
XDMA_TYPE_VDMA,
};
int xilinx_vdma_channel_set_config(struct dma_chan *dchan, int xilinx_vdma_channel_set_config(struct dma_chan *dchan,
struct xilinx_vdma_config *cfg); struct xilinx_vdma_config *cfg);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment