Commit fd10be25 authored by Suraj Jitindar Singh's avatar Suraj Jitindar Singh Committed by Michael Ellerman

KVM: PPC: Book3S HV: Handle page fault for a nested guest

Consider a normal (L1) guest running under the main hypervisor (L0),
and then a nested guest (L2) running under the L1 guest which is acting
as a nested hypervisor. L0 has page tables to map the address space for
L1 providing the translation from L1 real address -> L0 real address;

	L1
	|
	| (L1 -> L0)
	|
	----> L0

There are also page tables in L1 used to map the address space for L2
providing the translation from L2 real address -> L1 read address. Since
the hardware can only walk a single level of page table, we need to
maintain in L0 a "shadow_pgtable" for L2 which provides the translation
from L2 real address -> L0 real address. Which looks like;

	L2				L2
	|				|
	| (L2 -> L1)			|
	|				|
	----> L1			| (L2 -> L0)
	      |				|
	      | (L1 -> L0)		|
	      |				|
	      ----> L0			--------> L0

When a page fault occurs while running a nested (L2) guest we need to
insert a pte into this "shadow_pgtable" for the L2 -> L0 mapping. To
do this we need to:

1. Walk the pgtable in L1 memory to find the L2 -> L1 mapping, and
   provide a page fault to L1 if this mapping doesn't exist.
2. Use our L1 -> L0 pgtable to convert this L1 address to an L0 address,
   or try to insert a pte for that mapping if it doesn't exist.
3. Now we have a L2 -> L0 mapping, insert this into our shadow_pgtable

Once this mapping exists we can take rc faults when hardware is unable
to automatically set the reference and change bits in the pte. On these
we need to:

1. Check the rc bits on the L2 -> L1 pte match, and otherwise reflect
   the fault down to L1.
2. Set the rc bits in the L1 -> L0 pte which corresponds to the same
   host page.
3. Set the rc bits in the L2 -> L0 pte.

As we reuse a large number of functions in book3s_64_mmu_radix.c for
this we also needed to refactor a number of these functions to take
an lpid parameter so that the correct lpid is used for tlb invalidations.
The functionality however has remained the same.
Reviewed-by: default avatarDavid Gibson <david@gibson.dropbear.id.au>
Signed-off-by: default avatarSuraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: default avatarPaul Mackerras <paulus@ozlabs.org>
Signed-off-by: default avatarMichael Ellerman <mpe@ellerman.id.au>
parent 4bad7779
...@@ -53,6 +53,7 @@ extern void radix__flush_tlb_lpid_page(unsigned int lpid, ...@@ -53,6 +53,7 @@ extern void radix__flush_tlb_lpid_page(unsigned int lpid,
unsigned long addr, unsigned long addr,
unsigned long page_size); unsigned long page_size);
extern void radix__flush_pwc_lpid(unsigned int lpid); extern void radix__flush_pwc_lpid(unsigned int lpid);
extern void radix__flush_tlb_lpid(unsigned int lpid);
extern void radix__local_flush_tlb_lpid(unsigned int lpid); extern void radix__local_flush_tlb_lpid(unsigned int lpid);
extern void radix__local_flush_tlb_lpid_guest(unsigned int lpid); extern void radix__local_flush_tlb_lpid_guest(unsigned int lpid);
......
...@@ -188,17 +188,34 @@ extern int kvmppc_book3s_hcall_implemented(struct kvm *kvm, unsigned long hc); ...@@ -188,17 +188,34 @@ extern int kvmppc_book3s_hcall_implemented(struct kvm *kvm, unsigned long hc);
extern int kvmppc_book3s_radix_page_fault(struct kvm_run *run, extern int kvmppc_book3s_radix_page_fault(struct kvm_run *run,
struct kvm_vcpu *vcpu, struct kvm_vcpu *vcpu,
unsigned long ea, unsigned long dsisr); unsigned long ea, unsigned long dsisr);
extern int kvmppc_mmu_walk_radix_tree(struct kvm_vcpu *vcpu, gva_t eaddr,
struct kvmppc_pte *gpte, u64 root,
u64 *pte_ret_p);
extern int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr, extern int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr,
struct kvmppc_pte *gpte, u64 table, struct kvmppc_pte *gpte, u64 table,
int table_index, u64 *pte_ret_p); int table_index, u64 *pte_ret_p);
extern int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, extern int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
struct kvmppc_pte *gpte, bool data, bool iswrite); struct kvmppc_pte *gpte, bool data, bool iswrite);
extern bool kvmppc_hv_handle_set_rc(struct kvm *kvm, pgd_t *pgtable,
bool writing, unsigned long gpa,
unsigned int lpid);
extern int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu,
unsigned long gpa,
struct kvm_memory_slot *memslot,
bool writing, bool kvm_ro,
pte_t *inserted_pte, unsigned int *levelp);
extern int kvmppc_init_vm_radix(struct kvm *kvm); extern int kvmppc_init_vm_radix(struct kvm *kvm);
extern void kvmppc_free_radix(struct kvm *kvm); extern void kvmppc_free_radix(struct kvm *kvm);
extern void kvmppc_free_pgtable_radix(struct kvm *kvm, pgd_t *pgd,
unsigned int lpid);
extern int kvmppc_radix_init(void); extern int kvmppc_radix_init(void);
extern void kvmppc_radix_exit(void); extern void kvmppc_radix_exit(void);
extern int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, extern int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
unsigned long gfn); unsigned long gfn);
extern void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte,
unsigned long gpa, unsigned int shift,
struct kvm_memory_slot *memslot,
unsigned int lpid);
extern int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, extern int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
unsigned long gfn); unsigned long gfn);
extern int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, extern int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
......
...@@ -549,6 +549,10 @@ static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu) ...@@ -549,6 +549,10 @@ static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu)
} }
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
extern int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
unsigned long gpa, unsigned int level,
unsigned long mmu_seq, unsigned int lpid);
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */ #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
#endif /* __ASM_KVM_BOOK3S_64_H__ */ #endif /* __ASM_KVM_BOOK3S_64_H__ */
...@@ -367,7 +367,9 @@ struct kvmppc_pte { ...@@ -367,7 +367,9 @@ struct kvmppc_pte {
bool may_write : 1; bool may_write : 1;
bool may_execute : 1; bool may_execute : 1;
unsigned long wimg; unsigned long wimg;
unsigned long rc;
u8 page_size; /* MMU_PAGE_xxx */ u8 page_size; /* MMU_PAGE_xxx */
u8 page_shift;
}; };
struct kvmppc_mmu { struct kvmppc_mmu {
......
...@@ -29,43 +29,16 @@ ...@@ -29,43 +29,16 @@
*/ */
static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 }; static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 };
/* int kvmppc_mmu_walk_radix_tree(struct kvm_vcpu *vcpu, gva_t eaddr,
* Used to walk a partition or process table radix tree in guest memory struct kvmppc_pte *gpte, u64 root,
* Note: We exploit the fact that a partition table and a process u64 *pte_ret_p)
* table have the same layout, a partition-scoped page table and a
* process-scoped page table have the same layout, and the 2nd
* doubleword of a partition table entry has the same layout as
* the PTCR register.
*/
int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr,
struct kvmppc_pte *gpte, u64 table,
int table_index, u64 *pte_ret_p)
{ {
struct kvm *kvm = vcpu->kvm; struct kvm *kvm = vcpu->kvm;
int ret, level, ps; int ret, level, ps;
unsigned long ptbl, root; unsigned long rts, bits, offset, index;
unsigned long rts, bits, offset;
unsigned long size, index;
struct prtb_entry entry;
u64 pte, base, gpa; u64 pte, base, gpa;
__be64 rpte; __be64 rpte;
if ((table & PRTS_MASK) > 24)
return -EINVAL;
size = 1ul << ((table & PRTS_MASK) + 12);
/* Is the table big enough to contain this entry? */
if ((table_index * sizeof(entry)) >= size)
return -EINVAL;
/* Read the table to find the root of the radix tree */
ptbl = (table & PRTB_MASK) + (table_index * sizeof(entry));
ret = kvm_read_guest(kvm, ptbl, &entry, sizeof(entry));
if (ret)
return ret;
/* Root is stored in the first double word */
root = be64_to_cpu(entry.prtb0);
rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) | rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) |
((root & RTS2_MASK) >> RTS2_SHIFT); ((root & RTS2_MASK) >> RTS2_SHIFT);
bits = root & RPDS_MASK; bits = root & RPDS_MASK;
...@@ -79,6 +52,7 @@ int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr, ...@@ -79,6 +52,7 @@ int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr,
/* Walk each level of the radix tree */ /* Walk each level of the radix tree */
for (level = 3; level >= 0; --level) { for (level = 3; level >= 0; --level) {
u64 addr;
/* Check a valid size */ /* Check a valid size */
if (level && bits != p9_supported_radix_bits[level]) if (level && bits != p9_supported_radix_bits[level])
return -EINVAL; return -EINVAL;
...@@ -90,10 +64,13 @@ int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr, ...@@ -90,10 +64,13 @@ int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr,
if (base & ((1UL << (bits + 3)) - 1)) if (base & ((1UL << (bits + 3)) - 1))
return -EINVAL; return -EINVAL;
/* Read the entry from guest memory */ /* Read the entry from guest memory */
ret = kvm_read_guest(kvm, base + (index * sizeof(rpte)), addr = base + (index * sizeof(rpte));
&rpte, sizeof(rpte)); ret = kvm_read_guest(kvm, addr, &rpte, sizeof(rpte));
if (ret) if (ret) {
if (pte_ret_p)
*pte_ret_p = addr;
return ret; return ret;
}
pte = __be64_to_cpu(rpte); pte = __be64_to_cpu(rpte);
if (!(pte & _PAGE_PRESENT)) if (!(pte & _PAGE_PRESENT))
return -ENOENT; return -ENOENT;
...@@ -119,6 +96,7 @@ int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr, ...@@ -119,6 +96,7 @@ int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr,
if (offset == mmu_psize_defs[ps].shift) if (offset == mmu_psize_defs[ps].shift)
break; break;
gpte->page_size = ps; gpte->page_size = ps;
gpte->page_shift = offset;
gpte->eaddr = eaddr; gpte->eaddr = eaddr;
gpte->raddr = gpa; gpte->raddr = gpa;
...@@ -128,12 +106,51 @@ int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr, ...@@ -128,12 +106,51 @@ int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr,
gpte->may_write = !!(pte & _PAGE_WRITE); gpte->may_write = !!(pte & _PAGE_WRITE);
gpte->may_execute = !!(pte & _PAGE_EXEC); gpte->may_execute = !!(pte & _PAGE_EXEC);
gpte->rc = pte & (_PAGE_ACCESSED | _PAGE_DIRTY);
if (pte_ret_p) if (pte_ret_p)
*pte_ret_p = pte; *pte_ret_p = pte;
return 0; return 0;
} }
/*
* Used to walk a partition or process table radix tree in guest memory
* Note: We exploit the fact that a partition table and a process
* table have the same layout, a partition-scoped page table and a
* process-scoped page table have the same layout, and the 2nd
* doubleword of a partition table entry has the same layout as
* the PTCR register.
*/
int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr,
struct kvmppc_pte *gpte, u64 table,
int table_index, u64 *pte_ret_p)
{
struct kvm *kvm = vcpu->kvm;
int ret;
unsigned long size, ptbl, root;
struct prtb_entry entry;
if ((table & PRTS_MASK) > 24)
return -EINVAL;
size = 1ul << ((table & PRTS_MASK) + 12);
/* Is the table big enough to contain this entry? */
if ((table_index * sizeof(entry)) >= size)
return -EINVAL;
/* Read the table to find the root of the radix tree */
ptbl = (table & PRTB_MASK) + (table_index * sizeof(entry));
ret = kvm_read_guest(kvm, ptbl, &entry, sizeof(entry));
if (ret)
return ret;
/* Root is stored in the first double word */
root = be64_to_cpu(entry.prtb0);
return kvmppc_mmu_walk_radix_tree(vcpu, eaddr, gpte, root, pte_ret_p);
}
int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
struct kvmppc_pte *gpte, bool data, bool iswrite) struct kvmppc_pte *gpte, bool data, bool iswrite)
{ {
...@@ -181,7 +198,7 @@ int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, ...@@ -181,7 +198,7 @@ int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
} }
static void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr, static void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
unsigned int pshift) unsigned int pshift, unsigned int lpid)
{ {
unsigned long psize = PAGE_SIZE; unsigned long psize = PAGE_SIZE;
...@@ -189,12 +206,12 @@ static void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr, ...@@ -189,12 +206,12 @@ static void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
psize = 1UL << pshift; psize = 1UL << pshift;
addr &= ~(psize - 1); addr &= ~(psize - 1);
radix__flush_tlb_lpid_page(kvm->arch.lpid, addr, psize); radix__flush_tlb_lpid_page(lpid, addr, psize);
} }
static void kvmppc_radix_flush_pwc(struct kvm *kvm) static void kvmppc_radix_flush_pwc(struct kvm *kvm, unsigned int lpid)
{ {
radix__flush_pwc_lpid(kvm->arch.lpid); radix__flush_pwc_lpid(lpid);
} }
static unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep, static unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep,
...@@ -239,16 +256,17 @@ static void kvmppc_pmd_free(pmd_t *pmdp) ...@@ -239,16 +256,17 @@ static void kvmppc_pmd_free(pmd_t *pmdp)
kmem_cache_free(kvm_pmd_cache, pmdp); kmem_cache_free(kvm_pmd_cache, pmdp);
} }
static void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte,
unsigned long gpa, unsigned int shift, unsigned long gpa, unsigned int shift,
struct kvm_memory_slot *memslot) struct kvm_memory_slot *memslot,
unsigned int lpid)
{ {
unsigned long old; unsigned long old;
old = kvmppc_radix_update_pte(kvm, pte, ~0UL, 0, gpa, shift); old = kvmppc_radix_update_pte(kvm, pte, ~0UL, 0, gpa, shift);
kvmppc_radix_tlbie_page(kvm, gpa, shift); kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
if (old & _PAGE_DIRTY) { if ((old & _PAGE_DIRTY) && (lpid == kvm->arch.lpid)) {
unsigned long gfn = gpa >> PAGE_SHIFT; unsigned long gfn = gpa >> PAGE_SHIFT;
unsigned long page_size = PAGE_SIZE; unsigned long page_size = PAGE_SIZE;
...@@ -271,7 +289,8 @@ static void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, ...@@ -271,7 +289,8 @@ static void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte,
* and emit a warning if encountered, but there may already be data * and emit a warning if encountered, but there may already be data
* corruption due to the unexpected mappings. * corruption due to the unexpected mappings.
*/ */
static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full) static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full,
unsigned int lpid)
{ {
if (full) { if (full) {
memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE); memset(pte, 0, sizeof(long) << PTE_INDEX_SIZE);
...@@ -285,14 +304,15 @@ static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full) ...@@ -285,14 +304,15 @@ static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full)
WARN_ON_ONCE(1); WARN_ON_ONCE(1);
kvmppc_unmap_pte(kvm, p, kvmppc_unmap_pte(kvm, p,
pte_pfn(*p) << PAGE_SHIFT, pte_pfn(*p) << PAGE_SHIFT,
PAGE_SHIFT, NULL); PAGE_SHIFT, NULL, lpid);
} }
} }
kvmppc_pte_free(pte); kvmppc_pte_free(pte);
} }
static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full) static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full,
unsigned int lpid)
{ {
unsigned long im; unsigned long im;
pmd_t *p = pmd; pmd_t *p = pmd;
...@@ -307,20 +327,21 @@ static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full) ...@@ -307,20 +327,21 @@ static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full)
WARN_ON_ONCE(1); WARN_ON_ONCE(1);
kvmppc_unmap_pte(kvm, (pte_t *)p, kvmppc_unmap_pte(kvm, (pte_t *)p,
pte_pfn(*(pte_t *)p) << PAGE_SHIFT, pte_pfn(*(pte_t *)p) << PAGE_SHIFT,
PMD_SHIFT, NULL); PMD_SHIFT, NULL, lpid);
} }
} else { } else {
pte_t *pte; pte_t *pte;
pte = pte_offset_map(p, 0); pte = pte_offset_map(p, 0);
kvmppc_unmap_free_pte(kvm, pte, full); kvmppc_unmap_free_pte(kvm, pte, full, lpid);
pmd_clear(p); pmd_clear(p);
} }
} }
kvmppc_pmd_free(pmd); kvmppc_pmd_free(pmd);
} }
static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud) static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud,
unsigned int lpid)
{ {
unsigned long iu; unsigned long iu;
pud_t *p = pud; pud_t *p = pud;
...@@ -334,36 +355,40 @@ static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud) ...@@ -334,36 +355,40 @@ static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud)
pmd_t *pmd; pmd_t *pmd;
pmd = pmd_offset(p, 0); pmd = pmd_offset(p, 0);
kvmppc_unmap_free_pmd(kvm, pmd, true); kvmppc_unmap_free_pmd(kvm, pmd, true, lpid);
pud_clear(p); pud_clear(p);
} }
} }
pud_free(kvm->mm, pud); pud_free(kvm->mm, pud);
} }
void kvmppc_free_radix(struct kvm *kvm) void kvmppc_free_pgtable_radix(struct kvm *kvm, pgd_t *pgd, unsigned int lpid)
{ {
unsigned long ig; unsigned long ig;
pgd_t *pgd;
if (!kvm->arch.pgtable)
return;
pgd = kvm->arch.pgtable;
for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) { for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) {
pud_t *pud; pud_t *pud;
if (!pgd_present(*pgd)) if (!pgd_present(*pgd))
continue; continue;
pud = pud_offset(pgd, 0); pud = pud_offset(pgd, 0);
kvmppc_unmap_free_pud(kvm, pud); kvmppc_unmap_free_pud(kvm, pud, lpid);
pgd_clear(pgd); pgd_clear(pgd);
} }
}
void kvmppc_free_radix(struct kvm *kvm)
{
if (kvm->arch.pgtable) {
kvmppc_free_pgtable_radix(kvm, kvm->arch.pgtable,
kvm->arch.lpid);
pgd_free(kvm->mm, kvm->arch.pgtable); pgd_free(kvm->mm, kvm->arch.pgtable);
kvm->arch.pgtable = NULL; kvm->arch.pgtable = NULL;
}
} }
static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd, static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd,
unsigned long gpa) unsigned long gpa, unsigned int lpid)
{ {
pte_t *pte = pte_offset_kernel(pmd, 0); pte_t *pte = pte_offset_kernel(pmd, 0);
...@@ -373,13 +398,13 @@ static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd, ...@@ -373,13 +398,13 @@ static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd,
* flushing the PWC again. * flushing the PWC again.
*/ */
pmd_clear(pmd); pmd_clear(pmd);
kvmppc_radix_flush_pwc(kvm); kvmppc_radix_flush_pwc(kvm, lpid);
kvmppc_unmap_free_pte(kvm, pte, false); kvmppc_unmap_free_pte(kvm, pte, false, lpid);
} }
static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud, static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud,
unsigned long gpa) unsigned long gpa, unsigned int lpid)
{ {
pmd_t *pmd = pmd_offset(pud, 0); pmd_t *pmd = pmd_offset(pud, 0);
...@@ -389,9 +414,9 @@ static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud, ...@@ -389,9 +414,9 @@ static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud,
* so can be freed without flushing the PWC again. * so can be freed without flushing the PWC again.
*/ */
pud_clear(pud); pud_clear(pud);
kvmppc_radix_flush_pwc(kvm); kvmppc_radix_flush_pwc(kvm, lpid);
kvmppc_unmap_free_pmd(kvm, pmd, false); kvmppc_unmap_free_pmd(kvm, pmd, false, lpid);
} }
/* /*
...@@ -403,9 +428,9 @@ static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud, ...@@ -403,9 +428,9 @@ static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud,
*/ */
#define PTE_BITS_MUST_MATCH (~(_PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)) #define PTE_BITS_MUST_MATCH (~(_PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED))
static int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte, int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
unsigned long gpa, unsigned int level, unsigned long gpa, unsigned int level,
unsigned long mmu_seq) unsigned long mmu_seq, unsigned int lpid)
{ {
pgd_t *pgd; pgd_t *pgd;
pud_t *pud, *new_pud = NULL; pud_t *pud, *new_pud = NULL;
...@@ -471,7 +496,8 @@ static int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte, ...@@ -471,7 +496,8 @@ static int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
goto out_unlock; goto out_unlock;
} }
/* Valid 1GB page here already, remove it */ /* Valid 1GB page here already, remove it */
kvmppc_unmap_pte(kvm, (pte_t *)pud, hgpa, PUD_SHIFT, NULL); kvmppc_unmap_pte(kvm, (pte_t *)pud, hgpa, PUD_SHIFT, NULL,
lpid);
} }
if (level == 2) { if (level == 2) {
if (!pud_none(*pud)) { if (!pud_none(*pud)) {
...@@ -480,7 +506,7 @@ static int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte, ...@@ -480,7 +506,7 @@ static int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
* install a large page, so remove and free the page * install a large page, so remove and free the page
* table page. * table page.
*/ */
kvmppc_unmap_free_pud_entry_table(kvm, pud, gpa); kvmppc_unmap_free_pud_entry_table(kvm, pud, gpa, lpid);
} }
kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte); kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte);
ret = 0; ret = 0;
...@@ -520,7 +546,8 @@ static int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte, ...@@ -520,7 +546,8 @@ static int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
goto out_unlock; goto out_unlock;
} }
/* Valid 2MB page here already, remove it */ /* Valid 2MB page here already, remove it */
kvmppc_unmap_pte(kvm, pmdp_ptep(pmd), lgpa, PMD_SHIFT, NULL); kvmppc_unmap_pte(kvm, pmdp_ptep(pmd), lgpa, PMD_SHIFT, NULL,
lpid);
} }
if (level == 1) { if (level == 1) {
if (!pmd_none(*pmd)) { if (!pmd_none(*pmd)) {
...@@ -529,7 +556,7 @@ static int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte, ...@@ -529,7 +556,7 @@ static int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
* install a large page, so remove and free the page * install a large page, so remove and free the page
* table page. * table page.
*/ */
kvmppc_unmap_free_pmd_entry_table(kvm, pmd, gpa); kvmppc_unmap_free_pmd_entry_table(kvm, pmd, gpa, lpid);
} }
kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte); kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte);
ret = 0; ret = 0;
...@@ -569,8 +596,8 @@ static int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte, ...@@ -569,8 +596,8 @@ static int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
return ret; return ret;
} }
static bool kvmppc_hv_handle_set_rc(struct kvm *kvm, pgd_t *pgtable, bool kvmppc_hv_handle_set_rc(struct kvm *kvm, pgd_t *pgtable, bool writing,
bool writing, unsigned long gpa) unsigned long gpa, unsigned int lpid)
{ {
unsigned long pgflags; unsigned long pgflags;
unsigned int shift; unsigned int shift;
...@@ -597,7 +624,7 @@ static bool kvmppc_hv_handle_set_rc(struct kvm *kvm, pgd_t *pgtable, ...@@ -597,7 +624,7 @@ static bool kvmppc_hv_handle_set_rc(struct kvm *kvm, pgd_t *pgtable,
return false; return false;
} }
static int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu, int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu,
unsigned long gpa, unsigned long gpa,
struct kvm_memory_slot *memslot, struct kvm_memory_slot *memslot,
bool writing, bool kvm_ro, bool writing, bool kvm_ro,
...@@ -683,7 +710,7 @@ static int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu, ...@@ -683,7 +710,7 @@ static int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu,
/* Allocate space in the tree and write the PTE */ /* Allocate space in the tree and write the PTE */
ret = kvmppc_create_pte(kvm, kvm->arch.pgtable, pte, gpa, level, ret = kvmppc_create_pte(kvm, kvm->arch.pgtable, pte, gpa, level,
mmu_seq); mmu_seq, kvm->arch.lpid);
if (inserted_pte) if (inserted_pte)
*inserted_pte = pte; *inserted_pte = pte;
if (levelp) if (levelp)
...@@ -758,7 +785,7 @@ int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu, ...@@ -758,7 +785,7 @@ int kvmppc_book3s_radix_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
if (dsisr & DSISR_SET_RC) { if (dsisr & DSISR_SET_RC) {
spin_lock(&kvm->mmu_lock); spin_lock(&kvm->mmu_lock);
if (kvmppc_hv_handle_set_rc(kvm, kvm->arch.pgtable, if (kvmppc_hv_handle_set_rc(kvm, kvm->arch.pgtable,
writing, gpa)) writing, gpa, kvm->arch.lpid))
dsisr &= ~DSISR_SET_RC; dsisr &= ~DSISR_SET_RC;
spin_unlock(&kvm->mmu_lock); spin_unlock(&kvm->mmu_lock);
...@@ -786,7 +813,8 @@ int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, ...@@ -786,7 +813,8 @@ int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift); ptep = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
if (ptep && pte_present(*ptep)) if (ptep && pte_present(*ptep))
kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot); kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot,
kvm->arch.lpid);
return 0; return 0;
} }
...@@ -841,7 +869,7 @@ static int kvm_radix_test_clear_dirty(struct kvm *kvm, ...@@ -841,7 +869,7 @@ static int kvm_radix_test_clear_dirty(struct kvm *kvm,
ret = 1 << (shift - PAGE_SHIFT); ret = 1 << (shift - PAGE_SHIFT);
kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0, kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0,
gpa, shift); gpa, shift);
kvmppc_radix_tlbie_page(kvm, gpa, shift); kvmppc_radix_tlbie_page(kvm, gpa, shift, kvm->arch.lpid);
} }
return ret; return ret;
} }
......
...@@ -12,9 +12,12 @@ ...@@ -12,9 +12,12 @@
#include <linux/kvm_host.h> #include <linux/kvm_host.h>
#include <asm/kvm_ppc.h> #include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu.h> #include <asm/mmu.h>
#include <asm/pgtable.h> #include <asm/pgtable.h>
#include <asm/pgalloc.h> #include <asm/pgalloc.h>
#include <asm/pte-walk.h>
#include <asm/reg.h>
static struct patb_entry *pseries_partition_tb; static struct patb_entry *pseries_partition_tb;
...@@ -403,10 +406,20 @@ struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid) ...@@ -403,10 +406,20 @@ struct kvm_nested_guest *kvmhv_alloc_nested(struct kvm *kvm, unsigned int lpid)
*/ */
static void kvmhv_release_nested(struct kvm_nested_guest *gp) static void kvmhv_release_nested(struct kvm_nested_guest *gp)
{ {
struct kvm *kvm = gp->l1_host;
if (gp->shadow_pgtable) {
/*
* No vcpu is using this struct and no call to
* kvmhv_get_nested can find this struct,
* so we don't need to hold kvm->mmu_lock.
*/
kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable,
gp->shadow_lpid);
pgd_free(kvm->mm, gp->shadow_pgtable);
}
kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0); kvmhv_set_ptbl_entry(gp->shadow_lpid, 0, 0);
kvmppc_free_lpid(gp->shadow_lpid); kvmppc_free_lpid(gp->shadow_lpid);
if (gp->shadow_pgtable)
pgd_free(gp->l1_host->mm, gp->shadow_pgtable);
kfree(gp); kfree(gp);
} }
...@@ -466,6 +479,12 @@ void kvmhv_release_all_nested(struct kvm *kvm) ...@@ -466,6 +479,12 @@ void kvmhv_release_all_nested(struct kvm *kvm)
/* caller must hold gp->tlb_lock */ /* caller must hold gp->tlb_lock */
void kvmhv_flush_nested(struct kvm_nested_guest *gp) void kvmhv_flush_nested(struct kvm_nested_guest *gp)
{ {
struct kvm *kvm = gp->l1_host;
spin_lock(&kvm->mmu_lock);
kvmppc_free_pgtable_radix(kvm, gp->shadow_pgtable, gp->shadow_lpid);
spin_unlock(&kvm->mmu_lock);
radix__flush_tlb_lpid(gp->shadow_lpid);
kvmhv_update_ptbl_cache(gp); kvmhv_update_ptbl_cache(gp);
if (gp->l1_gr_to_hr == 0) if (gp->l1_gr_to_hr == 0)
kvmhv_remove_nested(gp); kvmhv_remove_nested(gp);
...@@ -525,7 +544,314 @@ void kvmhv_put_nested(struct kvm_nested_guest *gp) ...@@ -525,7 +544,314 @@ void kvmhv_put_nested(struct kvm_nested_guest *gp)
kvmhv_release_nested(gp); kvmhv_release_nested(gp);
} }
long kvmhv_nested_page_fault(struct kvm_vcpu *vcpu) static bool kvmhv_invalidate_shadow_pte(struct kvm_vcpu *vcpu,
struct kvm_nested_guest *gp,
long gpa, int *shift_ret)
{
struct kvm *kvm = vcpu->kvm;
bool ret = false;
pte_t *ptep;
int shift;
spin_lock(&kvm->mmu_lock);
ptep = __find_linux_pte(gp->shadow_pgtable, gpa, NULL, &shift);
if (!shift)
shift = PAGE_SHIFT;
if (ptep && pte_present(*ptep)) {
kvmppc_unmap_pte(kvm, ptep, gpa, shift, NULL, gp->shadow_lpid);
ret = true;
}
spin_unlock(&kvm->mmu_lock);
if (shift_ret)
*shift_ret = shift;
return ret;
}
/* Used to convert a nested guest real address to a L1 guest real address */
static int kvmhv_translate_addr_nested(struct kvm_vcpu *vcpu,
struct kvm_nested_guest *gp,
unsigned long n_gpa, unsigned long dsisr,
struct kvmppc_pte *gpte_p)
{
u64 fault_addr, flags = dsisr & DSISR_ISSTORE;
int ret;
ret = kvmppc_mmu_walk_radix_tree(vcpu, n_gpa, gpte_p, gp->l1_gr_to_hr,
&fault_addr);
if (ret) {
/* We didn't find a pte */
if (ret == -EINVAL) {
/* Unsupported mmu config */
flags |= DSISR_UNSUPP_MMU;
} else if (ret == -ENOENT) {
/* No translation found */
flags |= DSISR_NOHPTE;
} else if (ret == -EFAULT) {
/* Couldn't access L1 real address */
flags |= DSISR_PRTABLE_FAULT;
vcpu->arch.fault_gpa = fault_addr;
} else {
/* Unknown error */
return ret;
}
goto forward_to_l1;
} else {
/* We found a pte -> check permissions */
if (dsisr & DSISR_ISSTORE) {
/* Can we write? */
if (!gpte_p->may_write) {
flags |= DSISR_PROTFAULT;
goto forward_to_l1;
}
} else if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
/* Can we execute? */
if (!gpte_p->may_execute) {
flags |= SRR1_ISI_N_OR_G;
goto forward_to_l1;
}
} else {
/* Can we read? */
if (!gpte_p->may_read && !gpte_p->may_write) {
flags |= DSISR_PROTFAULT;
goto forward_to_l1;
}
}
}
return 0;
forward_to_l1:
vcpu->arch.fault_dsisr = flags;
if (vcpu->arch.trap == BOOK3S_INTERRUPT_H_INST_STORAGE) {
vcpu->arch.shregs.msr &= ~0x783f0000ul;
vcpu->arch.shregs.msr |= flags;
}
return RESUME_HOST;
}
static long kvmhv_handle_nested_set_rc(struct kvm_vcpu *vcpu,
struct kvm_nested_guest *gp,
unsigned long n_gpa,
struct kvmppc_pte gpte,
unsigned long dsisr)
{
struct kvm *kvm = vcpu->kvm;
bool writing = !!(dsisr & DSISR_ISSTORE);
u64 pgflags;
bool ret;
/* Are the rc bits set in the L1 partition scoped pte? */
pgflags = _PAGE_ACCESSED;
if (writing)
pgflags |= _PAGE_DIRTY;
if (pgflags & ~gpte.rc)
return RESUME_HOST;
spin_lock(&kvm->mmu_lock);
/* Set the rc bit in the pte of our (L0) pgtable for the L1 guest */
ret = kvmppc_hv_handle_set_rc(kvm, kvm->arch.pgtable, writing,
gpte.raddr, kvm->arch.lpid);
spin_unlock(&kvm->mmu_lock);
if (!ret)
return -EINVAL;
/* Set the rc bit in the pte of the shadow_pgtable for the nest guest */
ret = kvmppc_hv_handle_set_rc(kvm, gp->shadow_pgtable, writing, n_gpa,
gp->shadow_lpid);
if (!ret)
return -EINVAL;
return 0;
}
static inline int kvmppc_radix_level_to_shift(int level)
{
switch (level) {
case 2:
return PUD_SHIFT;
case 1:
return PMD_SHIFT;
default:
return PAGE_SHIFT;
}
}
static inline int kvmppc_radix_shift_to_level(int shift)
{
if (shift == PUD_SHIFT)
return 2;
if (shift == PMD_SHIFT)
return 1;
if (shift == PAGE_SHIFT)
return 0;
WARN_ON_ONCE(1);
return 0;
}
/* called with gp->tlb_lock held */
static long int __kvmhv_nested_page_fault(struct kvm_vcpu *vcpu,
struct kvm_nested_guest *gp)
{ {
struct kvm *kvm = vcpu->kvm;
struct kvm_memory_slot *memslot;
struct kvmppc_pte gpte;
pte_t pte, *pte_p;
unsigned long mmu_seq;
unsigned long dsisr = vcpu->arch.fault_dsisr;
unsigned long ea = vcpu->arch.fault_dar;
unsigned long n_gpa, gpa, gfn, perm = 0UL;
unsigned int shift, l1_shift, level;
bool writing = !!(dsisr & DSISR_ISSTORE);
bool kvm_ro = false;
long int ret;
if (!gp->l1_gr_to_hr) {
kvmhv_update_ptbl_cache(gp);
if (!gp->l1_gr_to_hr)
return RESUME_HOST; return RESUME_HOST;
}
/* Convert the nested guest real address into a L1 guest real address */
n_gpa = vcpu->arch.fault_gpa & ~0xF000000000000FFFULL;
if (!(dsisr & DSISR_PRTABLE_FAULT))
n_gpa |= ea & 0xFFF;
ret = kvmhv_translate_addr_nested(vcpu, gp, n_gpa, dsisr, &gpte);
/*
* If the hardware found a translation but we don't now have a usable
* translation in the l1 partition-scoped tree, remove the shadow pte
* and let the guest retry.
*/
if (ret == RESUME_HOST &&
(dsisr & (DSISR_PROTFAULT | DSISR_BADACCESS | DSISR_NOEXEC_OR_G |
DSISR_BAD_COPYPASTE)))
goto inval;
if (ret)
return ret;
/* Failed to set the reference/change bits */
if (dsisr & DSISR_SET_RC) {
ret = kvmhv_handle_nested_set_rc(vcpu, gp, n_gpa, gpte, dsisr);
if (ret == RESUME_HOST)
return ret;
if (ret)
goto inval;
dsisr &= ~DSISR_SET_RC;
if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
DSISR_PROTFAULT)))
return RESUME_GUEST;
}
/*
* We took an HISI or HDSI while we were running a nested guest which
* means we have no partition scoped translation for that. This means
* we need to insert a pte for the mapping into our shadow_pgtable.
*/
l1_shift = gpte.page_shift;
if (l1_shift < PAGE_SHIFT) {
/* We don't support l1 using a page size smaller than our own */
pr_err("KVM: L1 guest page shift (%d) less than our own (%d)\n",
l1_shift, PAGE_SHIFT);
return -EINVAL;
}
gpa = gpte.raddr;
gfn = gpa >> PAGE_SHIFT;
/* 1. Get the corresponding host memslot */
memslot = gfn_to_memslot(kvm, gfn);
if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS)) {
/* unusual error -> reflect to the guest as a DSI */
kvmppc_core_queue_data_storage(vcpu, ea, dsisr);
return RESUME_GUEST;
}
/* passthrough of emulated MMIO case... */
pr_err("emulated MMIO passthrough?\n");
return -EINVAL;
}
if (memslot->flags & KVM_MEM_READONLY) {
if (writing) {
/* Give the guest a DSI */
kvmppc_core_queue_data_storage(vcpu, ea,
DSISR_ISSTORE | DSISR_PROTFAULT);
return RESUME_GUEST;
}
kvm_ro = true;
}
/* 2. Find the host pte for this L1 guest real address */
/* Used to check for invalidations in progress */
mmu_seq = kvm->mmu_notifier_seq;
smp_rmb();
/* See if can find translation in our partition scoped tables for L1 */
pte = __pte(0);
spin_lock(&kvm->mmu_lock);
pte_p = __find_linux_pte(kvm->arch.pgtable, gpa, NULL, &shift);
if (!shift)
shift = PAGE_SHIFT;
if (pte_p)
pte = *pte_p;
spin_unlock(&kvm->mmu_lock);
if (!pte_present(pte) || (writing && !(pte_val(pte) & _PAGE_WRITE))) {
/* No suitable pte found -> try to insert a mapping */
ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot,
writing, kvm_ro, &pte, &level);
if (ret == -EAGAIN)
return RESUME_GUEST;
else if (ret)
return ret;
shift = kvmppc_radix_level_to_shift(level);
}
/* 3. Compute the pte we need to insert for nest_gpa -> host r_addr */
/* The permissions is the combination of the host and l1 guest ptes */
perm |= gpte.may_read ? 0UL : _PAGE_READ;
perm |= gpte.may_write ? 0UL : _PAGE_WRITE;
perm |= gpte.may_execute ? 0UL : _PAGE_EXEC;
pte = __pte(pte_val(pte) & ~perm);
/* What size pte can we insert? */
if (shift > l1_shift) {
u64 mask;
unsigned int actual_shift = PAGE_SHIFT;
if (PMD_SHIFT < l1_shift)
actual_shift = PMD_SHIFT;
mask = (1UL << shift) - (1UL << actual_shift);
pte = __pte(pte_val(pte) | (gpa & mask));
shift = actual_shift;
}
level = kvmppc_radix_shift_to_level(shift);
n_gpa &= ~((1UL << shift) - 1);
/* 4. Insert the pte into our shadow_pgtable */
ret = kvmppc_create_pte(kvm, gp->shadow_pgtable, pte, n_gpa, level,
mmu_seq, gp->shadow_lpid);
if (ret == -EAGAIN)
ret = RESUME_GUEST; /* Let the guest try again */
return ret;
inval:
kvmhv_invalidate_shadow_pte(vcpu, gp, n_gpa, NULL);
return RESUME_GUEST;
}
long int kvmhv_nested_page_fault(struct kvm_vcpu *vcpu)
{
struct kvm_nested_guest *gp = vcpu->arch.nested;
long int ret;
mutex_lock(&gp->tlb_lock);
ret = __kvmhv_nested_page_fault(vcpu, gp);
mutex_unlock(&gp->tlb_lock);
return ret;
} }
...@@ -830,6 +830,15 @@ void radix__flush_pwc_lpid(unsigned int lpid) ...@@ -830,6 +830,15 @@ void radix__flush_pwc_lpid(unsigned int lpid)
} }
EXPORT_SYMBOL_GPL(radix__flush_pwc_lpid); EXPORT_SYMBOL_GPL(radix__flush_pwc_lpid);
/*
* Flush partition scoped translations from LPID (=LPIDR)
*/
void radix__flush_tlb_lpid(unsigned int lpid)
{
_tlbie_lpid(lpid, RIC_FLUSH_ALL);
}
EXPORT_SYMBOL_GPL(radix__flush_tlb_lpid);
/* /*
* Flush partition scoped translations from LPID (=LPIDR) * Flush partition scoped translations from LPID (=LPIDR)
*/ */
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment