opt_range.cc 287 KB
Newer Older
unknown's avatar
unknown committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */

unknown's avatar
unknown committed
17 18 19 20 21
/*
  TODO:
  Fix that MAYBE_KEY are stored in the tree so that we can detect use
  of full hash keys for queries like:

unknown's avatar
unknown committed
22 23
  select s.id, kws.keyword_id from sites as s,kws where s.id=kws.site_id and kws.keyword_id in (204,205);

unknown's avatar
unknown committed
24 25
*/

26 27
/*
  Classes in this file are used in the following way:
unknown's avatar
unknown committed
28 29
  1. For a selection condition a tree of SEL_IMERGE/SEL_TREE/SEL_ARG objects
     is created. #of rows in table and index statistics are ignored at this
30
     step.
unknown's avatar
unknown committed
31 32 33 34
  2. Created SEL_TREE and index stats data are used to construct a
     TABLE_READ_PLAN-derived object (TRP_*). Several 'candidate' table read
     plans may be created.
  3. The least expensive table read plan is used to create a tree of
35 36 37 38
     QUICK_SELECT_I-derived objects which are later used for row retrieval.
     QUICK_RANGEs are also created in this step.
*/

39
#ifdef USE_PRAGMA_IMPLEMENTATION
unknown's avatar
unknown committed
40 41 42 43 44 45 46 47 48 49 50 51
#pragma implementation				// gcc: Class implementation
#endif

#include "mysql_priv.h"
#include <m_ctype.h>
#include "sql_select.h"

#ifndef EXTRA_DEBUG
#define test_rb_tree(A,B) {}
#define test_use_count(A) {}
#endif

52
/*
53
  Convert double value to #rows. Currently this does floor(), and we
54 55
  might consider using round() instead.
*/
56
#define double2rows(x) ((ha_rows)(x))
57

unknown's avatar
unknown committed
58 59 60 61
static int sel_cmp(Field *f,char *a,char *b,uint8 a_flag,uint8 b_flag);

static char is_null_string[2]= {1,0};

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

/*
  A construction block of the SEL_ARG-graph.
  
  The following description only covers graphs of SEL_ARG objects with 
  sel_arg->type==KEY_RANGE:

  One SEL_ARG object represents an "elementary interval" in form
  
      min_value <=?  table.keypartX  <=? max_value
  
  The interval is a non-empty interval of any kind: with[out] minimum/maximum
  bound, [half]open/closed, single-point interval, etc.

  1. SEL_ARG GRAPH STRUCTURE
  
  SEL_ARG objects are linked together in a graph. The meaning of the graph
  is better demostrated by an example:
  
     tree->keys[i]
      | 
      |             $              $
      |    part=1   $     part=2   $    part=3
      |             $              $
      |  +-------+  $   +-------+  $   +--------+
      |  | kp1<1 |--$-->| kp2=5 |--$-->| kp3=10 |
      |  +-------+  $   +-------+  $   +--------+
      |      |      $              $       |
      |      |      $              $   +--------+
      |      |      $              $   | kp3=12 | 
      |      |      $              $   +--------+ 
      |  +-------+  $              $   
      \->| kp1=2 |--$--------------$-+ 
         +-------+  $              $ |   +--------+
             |      $              $  ==>| kp3=11 |
         +-------+  $              $ |   +--------+
         | kp1=3 |--$--------------$-+       |
         +-------+  $              $     +--------+
             |      $              $     | kp3=14 |
            ...     $              $     +--------+
 
  The entire graph is partitioned into "interval lists".

  An interval list is a sequence of ordered disjoint intervals over the same
  key part. SEL_ARG are linked via "next" and "prev" pointers. Additionally,
  all intervals in the list form an RB-tree, linked via left/right/parent 
  pointers. The RB-tree root SEL_ARG object will be further called "root of the
  interval list".
  
    In the example pic, there are 4 interval lists: 
    "kp<1 OR kp1=2 OR kp1=3", "kp2=5", "kp3=10 OR kp3=12", "kp3=11 OR kp3=13".
    The vertical lines represent SEL_ARG::next/prev pointers.
    
  In an interval list, each member X may have SEL_ARG::next_key_part pointer
  pointing to the root of another interval list Y. The pointed interval list
  must cover a key part with greater number (i.e. Y->part > X->part).
    
    In the example pic, the next_key_part pointers are represented by
    horisontal lines.

  2. SEL_ARG GRAPH SEMANTICS

  It represents a condition in a special form (we don't have a name for it ATM)
  The SEL_ARG::next/prev is "OR", and next_key_part is "AND".
  
  For example, the picture represents the condition in form:
   (kp1 < 1 AND kp2=5 AND (kp3=10 OR kp3=12)) OR 
   (kp1=2 AND (kp3=11 OR kp3=14)) OR 
   (kp1=3 AND (kp3=11 OR kp3=14))


  3. SEL_ARG GRAPH USE

  Use get_mm_tree() to construct SEL_ARG graph from WHERE condition.
  Then walk the SEL_ARG graph and get a list of dijsoint ordered key
  intervals (i.e. intervals in form
  
   (constA1, .., const1_K) < (keypart1,.., keypartK) < (constB1, .., constB_K)

  Those intervals can be used to access the index. The uses are in:
   - check_quick_select() - Walk the SEL_ARG graph and find an estimate of
                            how many table records are contained within all
                            intervals.
   - get_quick_select()   - Walk the SEL_ARG, materialize the key intervals,
                            and create QUICK_RANGE_SELECT object that will
                            read records within these intervals.
*/

unknown's avatar
unknown committed
150 151 152 153 154 155
class SEL_ARG :public Sql_alloc
{
public:
  uint8 min_flag,max_flag,maybe_flag;
  uint8 part;					// Which key part
  uint8 maybe_null;
156 157 158 159 160 161 162 163 164 165 166 167
  /* 
    Number of children of this element in the RB-tree, plus 1 for this
    element itself.
  */
  uint16 elements;
  /*
    Valid only for elements which are RB-tree roots: Number of times this
    RB-tree is referred to (it is referred by SEL_ARG::next_key_part or by
    SEL_TREE::keys[i] or by a temporary SEL_ARG* variable)
  */
  ulong use_count;

unknown's avatar
unknown committed
168 169 170
  Field *field;
  char *min_value,*max_value;			// Pointer to range

171 172 173 174
  SEL_ARG *left,*right;   /* R-B tree children */
  SEL_ARG *next,*prev;    /* Links for bi-directional interval list */
  SEL_ARG *parent;        /* R-B tree parent */
  SEL_ARG *next_key_part; 
unknown's avatar
unknown committed
175 176 177 178 179 180 181 182 183
  enum leaf_color { BLACK,RED } color;
  enum Type { IMPOSSIBLE, MAYBE, MAYBE_KEY, KEY_RANGE } type;

  SEL_ARG() {}
  SEL_ARG(SEL_ARG &);
  SEL_ARG(Field *,const char *,const char *);
  SEL_ARG(Field *field, uint8 part, char *min_value, char *max_value,
	  uint8 min_flag, uint8 max_flag, uint8 maybe_flag);
  SEL_ARG(enum Type type_arg)
184 185
    :min_flag(0),elements(1),use_count(1),left(0),next_key_part(0),
    color(BLACK), type(type_arg)
unknown's avatar
unknown committed
186
  {}
unknown's avatar
unknown committed
187 188
  inline bool is_same(SEL_ARG *arg)
  {
189
    if (type != arg->type || part != arg->part)
unknown's avatar
unknown committed
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
      return 0;
    if (type != KEY_RANGE)
      return 1;
    return cmp_min_to_min(arg) == 0 && cmp_max_to_max(arg) == 0;
  }
  inline void merge_flags(SEL_ARG *arg) { maybe_flag|=arg->maybe_flag; }
  inline void maybe_smaller() { maybe_flag=1; }
  inline int cmp_min_to_min(SEL_ARG* arg)
  {
    return sel_cmp(field,min_value, arg->min_value, min_flag, arg->min_flag);
  }
  inline int cmp_min_to_max(SEL_ARG* arg)
  {
    return sel_cmp(field,min_value, arg->max_value, min_flag, arg->max_flag);
  }
  inline int cmp_max_to_max(SEL_ARG* arg)
  {
    return sel_cmp(field,max_value, arg->max_value, max_flag, arg->max_flag);
  }
  inline int cmp_max_to_min(SEL_ARG* arg)
  {
    return sel_cmp(field,max_value, arg->min_value, max_flag, arg->min_flag);
  }
  SEL_ARG *clone_and(SEL_ARG* arg)
  {						// Get overlapping range
    char *new_min,*new_max;
    uint8 flag_min,flag_max;
    if (cmp_min_to_min(arg) >= 0)
    {
      new_min=min_value; flag_min=min_flag;
    }
    else
    {
      new_min=arg->min_value; flag_min=arg->min_flag; /* purecov: deadcode */
    }
    if (cmp_max_to_max(arg) <= 0)
    {
      new_max=max_value; flag_max=max_flag;
    }
    else
    {
      new_max=arg->max_value; flag_max=arg->max_flag;
    }
    return new SEL_ARG(field, part, new_min, new_max, flag_min, flag_max,
		       test(maybe_flag && arg->maybe_flag));
  }
  SEL_ARG *clone_first(SEL_ARG *arg)
  {						// min <= X < arg->min
    return new SEL_ARG(field,part, min_value, arg->min_value,
		       min_flag, arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX,
		       maybe_flag | arg->maybe_flag);
  }
  SEL_ARG *clone_last(SEL_ARG *arg)
  {						// min <= X <= key_max
    return new SEL_ARG(field, part, min_value, arg->max_value,
		       min_flag, arg->max_flag, maybe_flag | arg->maybe_flag);
  }
  SEL_ARG *clone(SEL_ARG *new_parent,SEL_ARG **next);

  bool copy_min(SEL_ARG* arg)
  {						// Get overlapping range
    if (cmp_min_to_min(arg) > 0)
    {
      min_value=arg->min_value; min_flag=arg->min_flag;
      if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
	  (NO_MAX_RANGE | NO_MIN_RANGE))
	return 1;				// Full range
    }
    maybe_flag|=arg->maybe_flag;
    return 0;
  }
  bool copy_max(SEL_ARG* arg)
  {						// Get overlapping range
    if (cmp_max_to_max(arg) <= 0)
    {
      max_value=arg->max_value; max_flag=arg->max_flag;
      if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
	  (NO_MAX_RANGE | NO_MIN_RANGE))
	return 1;				// Full range
    }
    maybe_flag|=arg->maybe_flag;
    return 0;
  }

  void copy_min_to_min(SEL_ARG *arg)
  {
    min_value=arg->min_value; min_flag=arg->min_flag;
  }
  void copy_min_to_max(SEL_ARG *arg)
  {
    max_value=arg->min_value;
    max_flag=arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX;
  }
  void copy_max_to_min(SEL_ARG *arg)
  {
    min_value=arg->max_value;
    min_flag=arg->max_flag & NEAR_MAX ? 0 : NEAR_MIN;
  }
288
  void store_min(uint length,char **min_key,uint min_key_flag)
unknown's avatar
unknown committed
289
  {
unknown's avatar
unknown committed
290 291 292
    if ((min_flag & GEOM_FLAG) ||
        (!(min_flag & NO_MIN_RANGE) &&
	!(min_key_flag & (NO_MIN_RANGE | NEAR_MIN))))
unknown's avatar
unknown committed
293 294 295 296
    {
      if (maybe_null && *min_value)
      {
	**min_key=1;
unknown's avatar
unknown committed
297
	bzero(*min_key+1,length-1);
unknown's avatar
unknown committed
298 299
      }
      else
unknown's avatar
unknown committed
300 301
	memcpy(*min_key,min_value,length);
      (*min_key)+= length;
unknown's avatar
unknown committed
302
    }
303
  }
unknown's avatar
unknown committed
304 305 306
  void store(uint length,char **min_key,uint min_key_flag,
	     char **max_key, uint max_key_flag)
  {
307
    store_min(length, min_key, min_key_flag);
unknown's avatar
unknown committed
308 309 310 311 312 313
    if (!(max_flag & NO_MAX_RANGE) &&
	!(max_key_flag & (NO_MAX_RANGE | NEAR_MAX)))
    {
      if (maybe_null && *max_value)
      {
	**max_key=1;
unknown's avatar
unknown committed
314
	bzero(*max_key+1,length-1);
unknown's avatar
unknown committed
315 316
      }
      else
unknown's avatar
unknown committed
317 318
	memcpy(*max_key,max_value,length);
      (*max_key)+= length;
unknown's avatar
unknown committed
319 320 321 322 323 324
    }
  }

  void store_min_key(KEY_PART *key,char **range_key, uint *range_key_flag)
  {
    SEL_ARG *key_tree= first();
unknown's avatar
unknown committed
325
    key_tree->store(key[key_tree->part].store_length,
unknown's avatar
unknown committed
326 327 328 329 330 331 332 333 334 335 336 337
		    range_key,*range_key_flag,range_key,NO_MAX_RANGE);
    *range_key_flag|= key_tree->min_flag;
    if (key_tree->next_key_part &&
	key_tree->next_key_part->part == key_tree->part+1 &&
	!(*range_key_flag & (NO_MIN_RANGE | NEAR_MIN)) &&
	key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
      key_tree->next_key_part->store_min_key(key,range_key, range_key_flag);
  }

  void store_max_key(KEY_PART *key,char **range_key, uint *range_key_flag)
  {
    SEL_ARG *key_tree= last();
unknown's avatar
unknown committed
338
    key_tree->store(key[key_tree->part].store_length,
unknown's avatar
unknown committed
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
		    range_key, NO_MIN_RANGE, range_key,*range_key_flag);
    (*range_key_flag)|= key_tree->max_flag;
    if (key_tree->next_key_part &&
	key_tree->next_key_part->part == key_tree->part+1 &&
	!(*range_key_flag & (NO_MAX_RANGE | NEAR_MAX)) &&
	key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
      key_tree->next_key_part->store_max_key(key,range_key, range_key_flag);
  }

  SEL_ARG *insert(SEL_ARG *key);
  SEL_ARG *tree_delete(SEL_ARG *key);
  SEL_ARG *find_range(SEL_ARG *key);
  SEL_ARG *rb_insert(SEL_ARG *leaf);
  friend SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key, SEL_ARG *par);
#ifdef EXTRA_DEBUG
  friend int test_rb_tree(SEL_ARG *element,SEL_ARG *parent);
  void test_use_count(SEL_ARG *root);
#endif
  SEL_ARG *first();
  SEL_ARG *last();
  void make_root();
  inline bool simple_key()
  {
    return !next_key_part && elements == 1;
  }
  void increment_use_count(long count)
  {
    if (next_key_part)
    {
      next_key_part->use_count+=count;
      count*= (next_key_part->use_count-count);
      for (SEL_ARG *pos=next_key_part->first(); pos ; pos=pos->next)
	if (pos->next_key_part)
	  pos->increment_use_count(count);
    }
  }
  void free_tree()
  {
    for (SEL_ARG *pos=first(); pos ; pos=pos->next)
      if (pos->next_key_part)
      {
	pos->next_key_part->use_count--;
	pos->next_key_part->free_tree();
      }
  }

  inline SEL_ARG **parent_ptr()
  {
    return parent->left == this ? &parent->left : &parent->right;
  }
  SEL_ARG *clone_tree();
};

unknown's avatar
unknown committed
392
class SEL_IMERGE;
unknown's avatar
unknown committed
393

394

unknown's avatar
unknown committed
395 396 397 398 399
class SEL_TREE :public Sql_alloc
{
public:
  enum Type { IMPOSSIBLE, ALWAYS, MAYBE, KEY, KEY_SMALLER } type;
  SEL_TREE(enum Type type_arg) :type(type_arg) {}
unknown's avatar
unknown committed
400
  SEL_TREE() :type(KEY)
unknown's avatar
unknown committed
401
  {
unknown's avatar
unknown committed
402
    keys_map.clear_all();
unknown's avatar
unknown committed
403 404
    bzero((char*) keys,sizeof(keys));
  }
unknown's avatar
unknown committed
405
  SEL_ARG *keys[MAX_KEY];
406 407
  key_map keys_map;        /* bitmask of non-NULL elements in keys */

unknown's avatar
unknown committed
408 409
  /*
    Possible ways to read rows using index_merge. The list is non-empty only
410 411 412
    if type==KEY. Currently can be non empty only if keys_map.is_clear_all().
  */
  List<SEL_IMERGE> merges;
unknown's avatar
unknown committed
413

414 415
  /* The members below are filled/used only after get_mm_tree is done */
  key_map ror_scans_map;   /* bitmask of ROR scan-able elements in keys */
416
  uint    n_ror_scans;     /* number of set bits in ror_scans_map */
417 418 419 420

  struct st_ror_scan_info **ror_scans;     /* list of ROR key scans */
  struct st_ror_scan_info **ror_scans_end; /* last ROR scan */
  /* Note that #records for each key scan is stored in table->quick_rows */
unknown's avatar
unknown committed
421 422 423 424
};


typedef struct st_qsel_param {
425
  THD	*thd;
unknown's avatar
unknown committed
426
  TABLE *table;
427 428
  KEY_PART *key_parts,*key_parts_end;
  KEY_PART *key[MAX_KEY]; /* First key parts of keys used in the query */
429
  MEM_ROOT *mem_root, *old_root;
430
  table_map prev_tables,read_tables,current_table;
431
  uint baseflag, max_key_part, range_count;
unknown's avatar
unknown committed
432

433 434 435
  uint keys; /* number of keys used in the query */

  /* used_key_no -> table_key_no translation table */
unknown's avatar
unknown committed
436
  uint real_keynr[MAX_KEY];
437

unknown's avatar
unknown committed
438 439
  char min_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH],
    max_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH];
440
  bool quick;				// Don't calulate possible keys
441
  COND *cond;
442

unknown's avatar
unknown committed
443
  uint fields_bitmap_size;
444 445 446 447
  MY_BITMAP needed_fields;    /* bitmask of fields needed by the query */

  key_map *needed_reg;        /* ptr to SQL_SELECT::needed_reg */

448 449
  uint *imerge_cost_buff;     /* buffer for index_merge cost estimates */
  uint imerge_cost_buff_size; /* size of the buffer */
unknown's avatar
unknown committed
450

451
  /* TRUE if last checked tree->key can be used for ROR-scan */
unknown's avatar
unknown committed
452
  bool is_ror_scan;
453 454
  /* Number of ranges in the last checked tree->key */
  uint n_ranges;
unknown's avatar
unknown committed
455 456
} PARAM;

457 458 459 460 461
class TABLE_READ_PLAN;
  class TRP_RANGE;
  class TRP_ROR_INTERSECT;
  class TRP_ROR_UNION;
  class TRP_ROR_INDEX_MERGE;
462
  class TRP_GROUP_MIN_MAX;
463 464 465

struct st_ror_scan_info;

466
static SEL_TREE * get_mm_parts(PARAM *param,COND *cond_func,Field *field,
unknown's avatar
unknown committed
467 468
			       Item_func::Functype type,Item *value,
			       Item_result cmp_type);
469 470
static SEL_ARG *get_mm_leaf(PARAM *param,COND *cond_func,Field *field,
			    KEY_PART *key_part,
unknown's avatar
unknown committed
471 472
			    Item_func::Functype type,Item *value);
static SEL_TREE *get_mm_tree(PARAM *param,COND *cond);
473 474

static bool is_key_scan_ror(PARAM *param, uint keynr, uint8 nparts);
unknown's avatar
unknown committed
475 476 477 478 479
static ha_rows check_quick_select(PARAM *param,uint index,SEL_ARG *key_tree);
static ha_rows check_quick_keys(PARAM *param,uint index,SEL_ARG *key_tree,
				char *min_key,uint min_key_flag,
				char *max_key, uint max_key_flag);

unknown's avatar
unknown committed
480
QUICK_RANGE_SELECT *get_quick_select(PARAM *param,uint index,
unknown's avatar
unknown committed
481
                                     SEL_ARG *key_tree,
unknown's avatar
unknown committed
482
                                     MEM_ROOT *alloc = NULL);
483
static TRP_RANGE *get_key_scans_params(PARAM *param, SEL_TREE *tree,
unknown's avatar
unknown committed
484
                                       bool index_read_must_be_used,
485 486 487 488 489 490
                                       double read_time);
static
TRP_ROR_INTERSECT *get_best_ror_intersect(const PARAM *param, SEL_TREE *tree,
                                          double read_time,
                                          bool *are_all_covering);
static
unknown's avatar
unknown committed
491 492
TRP_ROR_INTERSECT *get_best_covering_ror_intersect(PARAM *param,
                                                   SEL_TREE *tree,
493 494 495 496
                                                   double read_time);
static
TABLE_READ_PLAN *get_best_disjunct_quick(PARAM *param, SEL_IMERGE *imerge,
                                         double read_time);
497 498
static
TRP_GROUP_MIN_MAX *get_best_group_min_max(PARAM *param, SEL_TREE *tree);
499
static int get_index_merge_params(PARAM *param, key_map& needed_reg,
unknown's avatar
unknown committed
500
                           SEL_IMERGE *imerge, double *read_time,
501
                           ha_rows* imerge_rows);
unknown's avatar
unknown committed
502
static double get_index_only_read_time(const PARAM* param, ha_rows records,
503 504
                                       int keynr);

unknown's avatar
unknown committed
505
#ifndef DBUG_OFF
506 507
static void print_sel_tree(PARAM *param, SEL_TREE *tree, key_map *tree_map,
                           const char *msg);
unknown's avatar
unknown committed
508 509
static void print_ror_scans_arr(TABLE *table, const char *msg,
                                struct st_ror_scan_info **start,
510 511 512
                                struct st_ror_scan_info **end);
static void print_rowid(byte* val, int len);
static void print_quick(QUICK_SELECT_I *quick, const key_map *needed_reg);
unknown's avatar
unknown committed
513
#endif
514

unknown's avatar
unknown committed
515 516 517 518 519 520
static SEL_TREE *tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2);
static SEL_TREE *tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2);
static SEL_ARG *sel_add(SEL_ARG *key1,SEL_ARG *key2);
static SEL_ARG *key_or(SEL_ARG *key1,SEL_ARG *key2);
static SEL_ARG *key_and(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag);
static bool get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1);
unknown's avatar
unknown committed
521
bool get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key,
unknown's avatar
unknown committed
522 523 524 525 526
			   SEL_ARG *key_tree,char *min_key,uint min_key_flag,
			   char *max_key,uint max_key_flag);
static bool eq_tree(SEL_ARG* a,SEL_ARG *b);

static SEL_ARG null_element(SEL_ARG::IMPOSSIBLE);
unknown's avatar
unknown committed
527
static bool null_part_in_key(KEY_PART *key_part, const char *key,
unknown's avatar
unknown committed
528
                             uint length);
unknown's avatar
unknown committed
529 530 531 532
bool sel_trees_can_be_ored(SEL_TREE *tree1, SEL_TREE *tree2, PARAM* param);


/*
unknown's avatar
unknown committed
533
  SEL_IMERGE is a list of possible ways to do index merge, i.e. it is
unknown's avatar
unknown committed
534
  a condition in the following form:
unknown's avatar
unknown committed
535
   (t_1||t_2||...||t_N) && (next)
unknown's avatar
unknown committed
536

unknown's avatar
unknown committed
537
  where all t_i are SEL_TREEs, next is another SEL_IMERGE and no pair
unknown's avatar
unknown committed
538 539 540 541 542 543 544 545 546 547 548
  (t_i,t_j) contains SEL_ARGS for the same index.

  SEL_TREE contained in SEL_IMERGE always has merges=NULL.

  This class relies on memory manager to do the cleanup.
*/

class SEL_IMERGE : public Sql_alloc
{
  enum { PREALLOCED_TREES= 10};
public:
unknown's avatar
unknown committed
549
  SEL_TREE *trees_prealloced[PREALLOCED_TREES];
unknown's avatar
unknown committed
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
  SEL_TREE **trees;             /* trees used to do index_merge   */
  SEL_TREE **trees_next;        /* last of these trees            */
  SEL_TREE **trees_end;         /* end of allocated space         */

  SEL_ARG  ***best_keys;        /* best keys to read in SEL_TREEs */

  SEL_IMERGE() :
    trees(&trees_prealloced[0]),
    trees_next(trees),
    trees_end(trees + PREALLOCED_TREES)
  {}
  int or_sel_tree(PARAM *param, SEL_TREE *tree);
  int or_sel_tree_with_checks(PARAM *param, SEL_TREE *new_tree);
  int or_sel_imerge_with_checks(PARAM *param, SEL_IMERGE* imerge);
};


unknown's avatar
unknown committed
567
/*
unknown's avatar
unknown committed
568 569
  Add SEL_TREE to this index_merge without any checks,

unknown's avatar
unknown committed
570 571
  NOTES
    This function implements the following:
unknown's avatar
unknown committed
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
      (x_1||...||x_N) || t = (x_1||...||x_N||t), where x_i, t are SEL_TREEs

  RETURN
     0 - OK
    -1 - Out of memory.
*/

int SEL_IMERGE::or_sel_tree(PARAM *param, SEL_TREE *tree)
{
  if (trees_next == trees_end)
  {
    const int realloc_ratio= 2;		/* Double size for next round */
    uint old_elements= (trees_end - trees);
    uint old_size= sizeof(SEL_TREE**) * old_elements;
    uint new_size= old_size * realloc_ratio;
    SEL_TREE **new_trees;
    if (!(new_trees= (SEL_TREE**)alloc_root(param->mem_root, new_size)))
      return -1;
    memcpy(new_trees, trees, old_size);
    trees=      new_trees;
    trees_next= trees + old_elements;
    trees_end=  trees + old_elements * realloc_ratio;
  }
  *(trees_next++)= tree;
  return 0;
}


/*
  Perform OR operation on this SEL_IMERGE and supplied SEL_TREE new_tree,
  combining new_tree with one of the trees in this SEL_IMERGE if they both
  have SEL_ARGs for the same key.
unknown's avatar
unknown committed
604

unknown's avatar
unknown committed
605 606 607 608 609
  SYNOPSIS
    or_sel_tree_with_checks()
      param    PARAM from SQL_SELECT::test_quick_select
      new_tree SEL_TREE with type KEY or KEY_SMALLER.

unknown's avatar
unknown committed
610
  NOTES
unknown's avatar
unknown committed
611
    This does the following:
unknown's avatar
unknown committed
612 613
    (t_1||...||t_k)||new_tree =
     either
unknown's avatar
unknown committed
614 615 616
       = (t_1||...||t_k||new_tree)
     or
       = (t_1||....||(t_j|| new_tree)||...||t_k),
unknown's avatar
unknown committed
617

unknown's avatar
unknown committed
618
     where t_i, y are SEL_TREEs.
unknown's avatar
unknown committed
619 620
    new_tree is combined with the first t_j it has a SEL_ARG on common
    key with. As a consequence of this, choice of keys to do index_merge
unknown's avatar
unknown committed
621 622
    read may depend on the order of conditions in WHERE part of the query.

unknown's avatar
unknown committed
623
  RETURN
unknown's avatar
unknown committed
624
    0  OK
unknown's avatar
unknown committed
625
    1  One of the trees was combined with new_tree to SEL_TREE::ALWAYS,
unknown's avatar
unknown committed
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
       and (*this) should be discarded.
   -1  An error occurred.
*/

int SEL_IMERGE::or_sel_tree_with_checks(PARAM *param, SEL_TREE *new_tree)
{
  for (SEL_TREE** tree = trees;
       tree != trees_next;
       tree++)
  {
    if (sel_trees_can_be_ored(*tree, new_tree, param))
    {
      *tree = tree_or(param, *tree, new_tree);
      if (!*tree)
        return 1;
      if (((*tree)->type == SEL_TREE::MAYBE) ||
          ((*tree)->type == SEL_TREE::ALWAYS))
        return 1;
      /* SEL_TREE::IMPOSSIBLE is impossible here */
      return 0;
    }
  }

649
  /* New tree cannot be combined with any of existing trees. */
unknown's avatar
unknown committed
650 651 652 653 654 655 656 657 658
  return or_sel_tree(param, new_tree);
}


/*
  Perform OR operation on this index_merge and supplied index_merge list.

  RETURN
    0 - OK
unknown's avatar
unknown committed
659
    1 - One of conditions in result is always TRUE and this SEL_IMERGE
unknown's avatar
unknown committed
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
        should be discarded.
   -1 - An error occurred
*/

int SEL_IMERGE::or_sel_imerge_with_checks(PARAM *param, SEL_IMERGE* imerge)
{
  for (SEL_TREE** tree= imerge->trees;
       tree != imerge->trees_next;
       tree++)
  {
    if (or_sel_tree_with_checks(param, *tree))
      return 1;
  }
  return 0;
}


unknown's avatar
unknown committed
677
/*
678
  Perform AND operation on two index_merge lists and store result in *im1.
unknown's avatar
unknown committed
679 680 681 682 683 684 685 686 687 688 689
*/

inline void imerge_list_and_list(List<SEL_IMERGE> *im1, List<SEL_IMERGE> *im2)
{
  im1->concat(im2);
}


/*
  Perform OR operation on 2 index_merge lists, storing result in first list.

unknown's avatar
unknown committed
690
  NOTES
unknown's avatar
unknown committed
691 692 693
    The following conversion is implemented:
     (a_1 &&...&& a_N)||(b_1 &&...&& b_K) = AND_i,j(a_i || b_j) =>
      => (a_1||b_1).
unknown's avatar
unknown committed
694 695

    i.e. all conjuncts except the first one are currently dropped.
unknown's avatar
unknown committed
696 697
    This is done to avoid producing N*K ways to do index_merge.

unknown's avatar
unknown committed
698
    If (a_1||b_1) produce a condition that is always TRUE, NULL is returned
unknown's avatar
unknown committed
699
    and index_merge is discarded (while it is actually possible to try
700
    harder).
unknown's avatar
unknown committed
701

702 703
    As a consequence of this, choice of keys to do index_merge read may depend
    on the order of conditions in WHERE part of the query.
unknown's avatar
unknown committed
704 705

  RETURN
706
    0     OK, result is stored in *im1
unknown's avatar
unknown committed
707 708 709
    other Error, both passed lists are unusable
*/

unknown's avatar
unknown committed
710
int imerge_list_or_list(PARAM *param,
unknown's avatar
unknown committed
711 712 713 714 715 716
                        List<SEL_IMERGE> *im1,
                        List<SEL_IMERGE> *im2)
{
  SEL_IMERGE *imerge= im1->head();
  im1->empty();
  im1->push_back(imerge);
unknown's avatar
unknown committed
717

unknown's avatar
unknown committed
718 719 720 721 722 723 724 725
  return imerge->or_sel_imerge_with_checks(param, im2->head());
}


/*
  Perform OR operation on index_merge list and key tree.

  RETURN
726
    0     OK, result is stored in *im1.
unknown's avatar
unknown committed
727 728 729
    other Error
*/

unknown's avatar
unknown committed
730
int imerge_list_or_tree(PARAM *param,
unknown's avatar
unknown committed
731 732 733 734 735
                        List<SEL_IMERGE> *im1,
                        SEL_TREE *tree)
{
  SEL_IMERGE *imerge;
  List_iterator<SEL_IMERGE> it(*im1);
unknown's avatar
unknown committed
736
  while ((imerge= it++))
unknown's avatar
unknown committed
737 738 739 740 741 742
  {
    if (imerge->or_sel_tree_with_checks(param, tree))
      it.remove();
  }
  return im1->is_empty();
}
unknown's avatar
unknown committed
743 744

/***************************************************************************
unknown's avatar
unknown committed
745
** Basic functions for SQL_SELECT and QUICK_RANGE_SELECT
unknown's avatar
unknown committed
746 747 748 749 750 751 752 753 754
***************************************************************************/

	/* make a select from mysql info
	   Error is set as following:
	   0 = ok
	   1 = Got some error (out of memory?)
	   */

SQL_SELECT *make_select(TABLE *head, table_map const_tables,
unknown's avatar
unknown committed
755 756 757
			table_map read_tables, COND *conds,
                        bool allow_null_cond,
                        int *error)
unknown's avatar
unknown committed
758 759 760 761 762
{
  SQL_SELECT *select;
  DBUG_ENTER("make_select");

  *error=0;
763 764

  if (!conds && !allow_null_cond)
unknown's avatar
unknown committed
765 766 767
    DBUG_RETURN(0);
  if (!(select= new SQL_SELECT))
  {
768 769
    *error= 1;			// out of memory
    DBUG_RETURN(0);		/* purecov: inspected */
unknown's avatar
unknown committed
770 771 772 773 774 775
  }
  select->read_tables=read_tables;
  select->const_tables=const_tables;
  select->head=head;
  select->cond=conds;

unknown's avatar
unknown committed
776
  if (head->sort.io_cache)
unknown's avatar
unknown committed
777
  {
unknown's avatar
unknown committed
778
    select->file= *head->sort.io_cache;
unknown's avatar
unknown committed
779 780
    select->records=(ha_rows) (select->file.end_of_file/
			       head->file->ref_length);
unknown's avatar
unknown committed
781 782
    my_free((gptr) (head->sort.io_cache),MYF(0));
    head->sort.io_cache=0;
unknown's avatar
unknown committed
783 784 785 786 787 788 789
  }
  DBUG_RETURN(select);
}


SQL_SELECT::SQL_SELECT() :quick(0),cond(0),free_cond(0)
{
unknown's avatar
unknown committed
790
  quick_keys.clear_all(); needed_reg.clear_all();
unknown's avatar
unknown committed
791 792 793 794
  my_b_clear(&file);
}


795
void SQL_SELECT::cleanup()
unknown's avatar
unknown committed
796 797
{
  delete quick;
798
  quick= 0;
unknown's avatar
unknown committed
799
  if (free_cond)
800 801
  {
    free_cond=0;
unknown's avatar
unknown committed
802
    delete cond;
803
    cond= 0;
unknown's avatar
unknown committed
804
  }
unknown's avatar
unknown committed
805 806 807
  close_cached_file(&file);
}

808 809 810 811 812 813

SQL_SELECT::~SQL_SELECT()
{
  cleanup();
}

unknown's avatar
unknown committed
814
#undef index					// Fix for Unixware 7
unknown's avatar
unknown committed
815

unknown's avatar
unknown committed
816 817
QUICK_SELECT_I::QUICK_SELECT_I()
  :max_used_key_length(0),
818
   used_key_parts(0)
unknown's avatar
unknown committed
819 820
{}

unknown's avatar
unknown committed
821
QUICK_RANGE_SELECT::QUICK_RANGE_SELECT(THD *thd, TABLE *table, uint key_nr,
unknown's avatar
unknown committed
822
                                       bool no_alloc, MEM_ROOT *parent_alloc)
823
  :dont_free(0),error(0),free_file(0),in_range(0),cur_range(NULL),range(0)
unknown's avatar
unknown committed
824
{
unknown's avatar
unknown committed
825
  sorted= 0;
unknown's avatar
unknown committed
826 827
  index= key_nr;
  head=  table;
unknown's avatar
unknown committed
828
  key_part_info= head->key_info[index].key_part;
829
  my_init_dynamic_array(&ranges, sizeof(QUICK_RANGE*), 16, 16);
unknown's avatar
unknown committed
830

unknown's avatar
unknown committed
831
  /* 'thd' is not accessible in QUICK_RANGE_SELECT::reset(). */
unknown's avatar
unknown committed
832 833 834 835 836 837
  multi_range_bufsiz= thd->variables.read_rnd_buff_size;
  multi_range_count= thd->variables.multi_range_count;
  multi_range_length= 0;
  multi_range= NULL;
  multi_range_buff= NULL;

unknown's avatar
unknown committed
838
  if (!no_alloc && !parent_alloc)
unknown's avatar
unknown committed
839
  {
840 841
    // Allocates everything through the internal memroot
    init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
unknown's avatar
unknown committed
842
    thd->mem_root= &alloc;
unknown's avatar
unknown committed
843 844 845
  }
  else
    bzero((char*) &alloc,sizeof(alloc));
unknown's avatar
unknown committed
846 847
  file= head->file;
  record= head->record[0];
unknown's avatar
unknown committed
848 849
}

unknown's avatar
unknown committed
850

unknown's avatar
unknown committed
851 852
int QUICK_RANGE_SELECT::init()
{
unknown's avatar
unknown committed
853
  DBUG_ENTER("QUICK_RANGE_SELECT::init");
unknown's avatar
unknown committed
854

855 856 857
  if (file->inited != handler::NONE)
    file->ha_index_or_rnd_end();
  DBUG_RETURN(error= file->ha_index_init(index));
unknown's avatar
unknown committed
858 859 860 861 862 863
}


void QUICK_RANGE_SELECT::range_end()
{
  if (file->inited != handler::NONE)
864
    file->ha_index_or_rnd_end();
unknown's avatar
unknown committed
865 866
}

unknown's avatar
unknown committed
867

unknown's avatar
unknown committed
868
QUICK_RANGE_SELECT::~QUICK_RANGE_SELECT()
unknown's avatar
unknown committed
869
{
870
  DBUG_ENTER("QUICK_RANGE_SELECT::~QUICK_RANGE_SELECT");
unknown's avatar
unknown committed
871 872
  if (!dont_free)
  {
unknown's avatar
unknown committed
873 874
    /* file is NULL for CPK scan on covering ROR-intersection */
    if (file) 
875
    {
unknown's avatar
unknown committed
876 877 878 879 880 881 882
      range_end();
      file->extra(HA_EXTRA_NO_KEYREAD);
      if (free_file)
      {
        DBUG_PRINT("info", ("Freeing separate handler %p (free=%d)", file,
                            free_file));
        file->reset();
unknown's avatar
unknown committed
883
        file->external_lock(current_thd, F_UNLCK);
unknown's avatar
unknown committed
884 885
        file->close();
      }
unknown's avatar
unknown committed
886
    }
unknown's avatar
unknown committed
887
    delete_dynamic(&ranges); /* ranges are allocated in alloc */
unknown's avatar
unknown committed
888 889
    free_root(&alloc,MYF(0));
  }
unknown's avatar
unknown committed
890 891 892 893
  if (multi_range)
    my_free((char*) multi_range, MYF(0));
  if (multi_range_buff)
    my_free((char*) multi_range_buff, MYF(0));
unknown's avatar
unknown committed
894
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
895 896
}

unknown's avatar
unknown committed
897

unknown's avatar
unknown committed
898
QUICK_INDEX_MERGE_SELECT::QUICK_INDEX_MERGE_SELECT(THD *thd_param,
unknown's avatar
unknown committed
899
                                                   TABLE *table)
unknown's avatar
unknown committed
900
  :pk_quick_select(NULL), thd(thd_param)
unknown's avatar
unknown committed
901
{
902
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::QUICK_INDEX_MERGE_SELECT");
unknown's avatar
unknown committed
903 904
  index= MAX_KEY;
  head= table;
905
  bzero(&read_record, sizeof(read_record));
906
  init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
907
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
908 909 910 911
}

int QUICK_INDEX_MERGE_SELECT::init()
{
unknown's avatar
unknown committed
912 913
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::init");
  DBUG_RETURN(0);
unknown's avatar
unknown committed
914 915
}

916
int QUICK_INDEX_MERGE_SELECT::reset()
unknown's avatar
unknown committed
917
{
918
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::reset");
unknown's avatar
unknown committed
919
  DBUG_RETURN(read_keys_and_merge());
unknown's avatar
unknown committed
920 921
}

unknown's avatar
unknown committed
922
bool
unknown's avatar
unknown committed
923 924
QUICK_INDEX_MERGE_SELECT::push_quick_back(QUICK_RANGE_SELECT *quick_sel_range)
{
unknown's avatar
unknown committed
925 926
  /*
    Save quick_select that does scan on clustered primary key as it will be
927
    processed separately.
928
  */
unknown's avatar
unknown committed
929
  if (head->file->primary_key_is_clustered() &&
930
      quick_sel_range->index == head->s->primary_key)
931 932 933 934
    pk_quick_select= quick_sel_range;
  else
    return quick_selects.push_back(quick_sel_range);
  return 0;
unknown's avatar
unknown committed
935 936 937 938
}

QUICK_INDEX_MERGE_SELECT::~QUICK_INDEX_MERGE_SELECT()
{
unknown's avatar
unknown committed
939 940
  List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
  QUICK_RANGE_SELECT* quick;
941
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::~QUICK_INDEX_MERGE_SELECT");
unknown's avatar
unknown committed
942 943 944
  quick_it.rewind();
  while ((quick= quick_it++))
    quick->file= NULL;
unknown's avatar
unknown committed
945
  quick_selects.delete_elements();
946
  delete pk_quick_select;
unknown's avatar
unknown committed
947
  free_root(&alloc,MYF(0));
948
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
949 950
}

951 952 953 954 955

QUICK_ROR_INTERSECT_SELECT::QUICK_ROR_INTERSECT_SELECT(THD *thd_param,
                                                       TABLE *table,
                                                       bool retrieve_full_rows,
                                                       MEM_ROOT *parent_alloc)
unknown's avatar
unknown committed
956
  : cpk_quick(NULL), thd(thd_param), need_to_fetch_row(retrieve_full_rows),
unknown's avatar
unknown committed
957
    scans_inited(FALSE)
958 959
{
  index= MAX_KEY;
unknown's avatar
unknown committed
960
  head= table;
961 962
  record= head->record[0];
  if (!parent_alloc)
963
    init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
964 965
  else
    bzero(&alloc, sizeof(MEM_ROOT));
unknown's avatar
unknown committed
966
  last_rowid= (byte*)alloc_root(parent_alloc? parent_alloc : &alloc,
967 968 969
                                head->file->ref_length);
}

970

unknown's avatar
unknown committed
971
/*
972 973 974
  Do post-constructor initialization.
  SYNOPSIS
    QUICK_ROR_INTERSECT_SELECT::init()
unknown's avatar
unknown committed
975

976 977 978 979 980
  RETURN
    0      OK
    other  Error code
*/

981 982
int QUICK_ROR_INTERSECT_SELECT::init()
{
unknown's avatar
unknown committed
983 984 985
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::init");
 /* Check if last_rowid was successfully allocated in ctor */
  DBUG_RETURN(!last_rowid);
986 987 988 989
}


/*
990 991 992 993
  Initialize this quick select to be a ROR-merged scan.

  SYNOPSIS
    QUICK_RANGE_SELECT::init_ror_merged_scan()
unknown's avatar
unknown committed
994
      reuse_handler If TRUE, use head->file, otherwise create a separate
995 996 997 998
                    handler object

  NOTES
    This function creates and prepares for subsequent use a separate handler
unknown's avatar
unknown committed
999
    object if it can't reuse head->file. The reason for this is that during
1000 1001 1002
    ROR-merge several key scans are performed simultaneously, and a single
    handler is only capable of preserving context of a single key scan.

unknown's avatar
unknown committed
1003
    In ROR-merge the quick select doing merge does full records retrieval,
1004
    merged quick selects read only keys.
unknown's avatar
unknown committed
1005 1006

  RETURN
1007 1008 1009 1010
    0  ROR child scan initialized, ok to use.
    1  error
*/

1011
int QUICK_RANGE_SELECT::init_ror_merged_scan(bool reuse_handler)
1012 1013
{
  handler *save_file= file;
1014
  DBUG_ENTER("QUICK_RANGE_SELECT::init_ror_merged_scan");
unknown's avatar
unknown committed
1015

1016 1017 1018 1019
  if (reuse_handler)
  {
    DBUG_PRINT("info", ("Reusing handler %p", file));
    if (file->extra(HA_EXTRA_KEYREAD) ||
1020
        file->extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) ||
1021 1022 1023 1024
        init() || reset())
    {
      DBUG_RETURN(1);
    }
unknown's avatar
unknown committed
1025
    DBUG_RETURN(0);
1026 1027 1028 1029 1030 1031 1032 1033
  }

  /* Create a separate handler object for this quick select */
  if (free_file)
  {
    /* already have own 'handler' object. */
    DBUG_RETURN(0);
  }
unknown's avatar
unknown committed
1034

unknown's avatar
unknown committed
1035
  THD *thd= current_thd;
1036
  if (!(file= get_new_handler(head, thd->mem_root, head->s->db_type)))
1037 1038
    goto failure;
  DBUG_PRINT("info", ("Allocated new handler %p", file));
1039
  if (file->ha_open(head->s->path, head->db_stat, HA_OPEN_IGNORE_IF_LOCKED))
1040
  {
unknown's avatar
unknown committed
1041
    /* Caller will free the memory */
1042 1043
    goto failure;
  }
unknown's avatar
unknown committed
1044 1045
  if (file->external_lock(thd, F_RDLCK))
    goto failure;
unknown's avatar
unknown committed
1046 1047

  if (file->extra(HA_EXTRA_KEYREAD) ||
1048
      file->extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) ||
1049 1050
      init() || reset())
  {
unknown's avatar
unknown committed
1051
    file->external_lock(thd, F_UNLCK);
1052 1053 1054
    file->close();
    goto failure;
  }
unknown's avatar
unknown committed
1055
  free_file= TRUE;
1056 1057 1058 1059 1060 1061 1062 1063
  last_rowid= file->ref;
  DBUG_RETURN(0);

failure:
  file= save_file;
  DBUG_RETURN(1);
}

1064 1065 1066 1067 1068

/*
  Initialize this quick select to be a part of a ROR-merged scan.
  SYNOPSIS
    QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan()
unknown's avatar
unknown committed
1069
      reuse_handler If TRUE, use head->file, otherwise create separate
1070
                    handler object.
unknown's avatar
unknown committed
1071
  RETURN
1072 1073 1074 1075
    0     OK
    other error code
*/
int QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan(bool reuse_handler)
1076 1077 1078
{
  List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
  QUICK_RANGE_SELECT* quick;
1079
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan");
1080 1081

  /* Initialize all merged "children" quick selects */
unknown's avatar
unknown committed
1082
  DBUG_ASSERT(!need_to_fetch_row || reuse_handler);
1083 1084 1085
  if (!need_to_fetch_row && reuse_handler)
  {
    quick= quick_it++;
unknown's avatar
unknown committed
1086
    /*
1087
      There is no use of this->file. Use it for the first of merged range
1088 1089
      selects.
    */
unknown's avatar
unknown committed
1090
    if (quick->init_ror_merged_scan(TRUE))
1091 1092 1093
      DBUG_RETURN(1);
    quick->file->extra(HA_EXTRA_KEYREAD_PRESERVE_FIELDS);
  }
unknown's avatar
unknown committed
1094
  while ((quick= quick_it++))
1095
  {
unknown's avatar
unknown committed
1096
    if (quick->init_ror_merged_scan(FALSE))
1097 1098
      DBUG_RETURN(1);
    quick->file->extra(HA_EXTRA_KEYREAD_PRESERVE_FIELDS);
1099
    /* All merged scans share the same record buffer in intersection. */
1100 1101 1102
    quick->record= head->record[0];
  }

unknown's avatar
unknown committed
1103
  if (need_to_fetch_row && head->file->ha_rnd_init(1))
1104 1105 1106 1107 1108 1109 1110
  {
    DBUG_PRINT("error", ("ROR index_merge rnd_init call failed"));
    DBUG_RETURN(1);
  }
  DBUG_RETURN(0);
}

1111

unknown's avatar
unknown committed
1112
/*
1113 1114 1115 1116 1117 1118 1119 1120
  Initialize quick select for row retrieval.
  SYNOPSIS
    reset()
  RETURN
    0      OK
    other  Error code
*/

1121 1122 1123
int QUICK_ROR_INTERSECT_SELECT::reset()
{
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::reset");
unknown's avatar
unknown committed
1124 1125
  if (!scans_inited && init_ror_merged_scan(TRUE))
    DBUG_RETURN(1);
unknown's avatar
unknown committed
1126
  scans_inited= TRUE;
unknown's avatar
unknown committed
1127 1128 1129 1130 1131
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  QUICK_RANGE_SELECT *quick;
  while ((quick= it++))
    quick->reset();
  DBUG_RETURN(0);
1132 1133
}

1134 1135 1136

/*
  Add a merged quick select to this ROR-intersection quick select.
unknown's avatar
unknown committed
1137

1138 1139 1140 1141 1142 1143
  SYNOPSIS
    QUICK_ROR_INTERSECT_SELECT::push_quick_back()
      quick Quick select to be added. The quick select must return
            rows in rowid order.
  NOTES
    This call can only be made before init() is called.
unknown's avatar
unknown committed
1144

1145
  RETURN
unknown's avatar
unknown committed
1146
    FALSE OK
unknown's avatar
unknown committed
1147
    TRUE  Out of memory.
1148 1149
*/

unknown's avatar
unknown committed
1150
bool
1151 1152
QUICK_ROR_INTERSECT_SELECT::push_quick_back(QUICK_RANGE_SELECT *quick)
{
1153
  return quick_selects.push_back(quick);
1154 1155 1156
}

QUICK_ROR_INTERSECT_SELECT::~QUICK_ROR_INTERSECT_SELECT()
unknown's avatar
unknown committed
1157
{
1158
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::~QUICK_ROR_INTERSECT_SELECT");
unknown's avatar
unknown committed
1159
  quick_selects.delete_elements();
1160 1161
  delete cpk_quick;
  free_root(&alloc,MYF(0));
unknown's avatar
unknown committed
1162 1163
  if (need_to_fetch_row && head->file->inited != handler::NONE)
    head->file->ha_rnd_end();
1164 1165 1166
  DBUG_VOID_RETURN;
}

unknown's avatar
unknown committed
1167

1168 1169
QUICK_ROR_UNION_SELECT::QUICK_ROR_UNION_SELECT(THD *thd_param,
                                               TABLE *table)
unknown's avatar
unknown committed
1170
  : thd(thd_param), scans_inited(FALSE)
1171 1172 1173 1174 1175 1176
{
  index= MAX_KEY;
  head= table;
  rowid_length= table->file->ref_length;
  record= head->record[0];
  init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
unknown's avatar
unknown committed
1177
  thd_param->mem_root= &alloc;
1178 1179
}

1180 1181 1182 1183 1184

/*
  Do post-constructor initialization.
  SYNOPSIS
    QUICK_ROR_UNION_SELECT::init()
unknown's avatar
unknown committed
1185

1186 1187 1188 1189 1190
  RETURN
    0      OK
    other  Error code
*/

1191 1192
int QUICK_ROR_UNION_SELECT::init()
{
unknown's avatar
unknown committed
1193
  DBUG_ENTER("QUICK_ROR_UNION_SELECT::init");
1194
  if (init_queue(&queue, quick_selects.elements, 0,
unknown's avatar
unknown committed
1195
                 FALSE , QUICK_ROR_UNION_SELECT::queue_cmp,
1196 1197 1198
                 (void*) this))
  {
    bzero(&queue, sizeof(QUEUE));
unknown's avatar
unknown committed
1199
    DBUG_RETURN(1);
1200
  }
unknown's avatar
unknown committed
1201

1202
  if (!(cur_rowid= (byte*)alloc_root(&alloc, 2*head->file->ref_length)))
unknown's avatar
unknown committed
1203
    DBUG_RETURN(1);
1204
  prev_rowid= cur_rowid + head->file->ref_length;
unknown's avatar
unknown committed
1205
  DBUG_RETURN(0);
1206 1207
}

1208

1209
/*
unknown's avatar
unknown committed
1210
  Comparison function to be used QUICK_ROR_UNION_SELECT::queue priority
1211 1212
  queue.

1213 1214 1215 1216 1217 1218
  SYNPOSIS
    QUICK_ROR_UNION_SELECT::queue_cmp()
      arg   Pointer to QUICK_ROR_UNION_SELECT
      val1  First merged select
      val2  Second merged select
*/
unknown's avatar
unknown committed
1219

1220 1221
int QUICK_ROR_UNION_SELECT::queue_cmp(void *arg, byte *val1, byte *val2)
{
1222
  QUICK_ROR_UNION_SELECT *self= (QUICK_ROR_UNION_SELECT*)arg;
1223 1224 1225 1226
  return self->head->file->cmp_ref(((QUICK_SELECT_I*)val1)->last_rowid,
                                   ((QUICK_SELECT_I*)val2)->last_rowid);
}

1227

unknown's avatar
unknown committed
1228
/*
1229 1230 1231
  Initialize quick select for row retrieval.
  SYNOPSIS
    reset()
unknown's avatar
unknown committed
1232

1233 1234 1235 1236 1237
  RETURN
    0      OK
    other  Error code
*/

1238 1239 1240 1241 1242
int QUICK_ROR_UNION_SELECT::reset()
{
  QUICK_SELECT_I* quick;
  int error;
  DBUG_ENTER("QUICK_ROR_UNION_SELECT::reset");
unknown's avatar
unknown committed
1243
  have_prev_rowid= FALSE;
unknown's avatar
unknown committed
1244 1245 1246 1247 1248 1249 1250 1251 1252
  if (!scans_inited)
  {
    QUICK_SELECT_I *quick;
    List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
    while ((quick= it++))
    {
      if (quick->init_ror_merged_scan(FALSE))
        DBUG_RETURN(1);
    }
unknown's avatar
unknown committed
1253
    scans_inited= TRUE;
unknown's avatar
unknown committed
1254 1255
  }
  queue_remove_all(&queue);
unknown's avatar
unknown committed
1256 1257
  /*
    Initialize scans for merged quick selects and put all merged quick
1258 1259 1260 1261 1262
    selects into the queue.
  */
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  while ((quick= it++))
  {
unknown's avatar
unknown committed
1263
    if (quick->reset())
unknown's avatar
unknown committed
1264
      DBUG_RETURN(1);
1265 1266 1267 1268
    if ((error= quick->get_next()))
    {
      if (error == HA_ERR_END_OF_FILE)
        continue;
unknown's avatar
unknown committed
1269
      DBUG_RETURN(error);
1270 1271 1272 1273 1274
    }
    quick->save_last_pos();
    queue_insert(&queue, (byte*)quick);
  }

unknown's avatar
unknown committed
1275
  if (head->file->ha_rnd_init(1))
1276 1277 1278 1279 1280 1281 1282 1283 1284
  {
    DBUG_PRINT("error", ("ROR index_merge rnd_init call failed"));
    DBUG_RETURN(1);
  }

  DBUG_RETURN(0);
}


unknown's avatar
unknown committed
1285
bool
1286 1287 1288 1289 1290 1291 1292 1293 1294
QUICK_ROR_UNION_SELECT::push_quick_back(QUICK_SELECT_I *quick_sel_range)
{
  return quick_selects.push_back(quick_sel_range);
}

QUICK_ROR_UNION_SELECT::~QUICK_ROR_UNION_SELECT()
{
  DBUG_ENTER("QUICK_ROR_UNION_SELECT::~QUICK_ROR_UNION_SELECT");
  delete_queue(&queue);
unknown's avatar
unknown committed
1295
  quick_selects.delete_elements();
1296 1297
  if (head->file->inited != handler::NONE)
    head->file->ha_rnd_end();
1298 1299
  free_root(&alloc,MYF(0));
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
1300 1301
}

1302

unknown's avatar
unknown committed
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
QUICK_RANGE::QUICK_RANGE()
  :min_key(0),max_key(0),min_length(0),max_length(0),
   flag(NO_MIN_RANGE | NO_MAX_RANGE)
{}

SEL_ARG::SEL_ARG(SEL_ARG &arg) :Sql_alloc()
{
  type=arg.type;
  min_flag=arg.min_flag;
  max_flag=arg.max_flag;
  maybe_flag=arg.maybe_flag;
  maybe_null=arg.maybe_null;
  part=arg.part;
  field=arg.field;
  min_value=arg.min_value;
  max_value=arg.max_value;
  next_key_part=arg.next_key_part;
  use_count=1; elements=1;
}


inline void SEL_ARG::make_root()
{
  left=right= &null_element;
  color=BLACK;
  next=prev=0;
  use_count=0; elements=1;
}

SEL_ARG::SEL_ARG(Field *f,const char *min_value_arg,const char *max_value_arg)
  :min_flag(0), max_flag(0), maybe_flag(0), maybe_null(f->real_maybe_null()),
   elements(1), use_count(1), field(f), min_value((char*) min_value_arg),
   max_value((char*) max_value_arg), next(0),prev(0),
   next_key_part(0),color(BLACK),type(KEY_RANGE)
{
  left=right= &null_element;
}

SEL_ARG::SEL_ARG(Field *field_,uint8 part_,char *min_value_,char *max_value_,
		 uint8 min_flag_,uint8 max_flag_,uint8 maybe_flag_)
  :min_flag(min_flag_),max_flag(max_flag_),maybe_flag(maybe_flag_),
   part(part_),maybe_null(field_->real_maybe_null()), elements(1),use_count(1),
   field(field_), min_value(min_value_), max_value(max_value_),
   next(0),prev(0),next_key_part(0),color(BLACK),type(KEY_RANGE)
{
  left=right= &null_element;
}

SEL_ARG *SEL_ARG::clone(SEL_ARG *new_parent,SEL_ARG **next_arg)
{
  SEL_ARG *tmp;
  if (type != KEY_RANGE)
  {
1356 1357
    if (!(tmp= new SEL_ARG(type)))
      return 0;					// out of memory
unknown's avatar
unknown committed
1358 1359 1360 1361 1362 1363
    tmp->prev= *next_arg;			// Link into next/prev chain
    (*next_arg)->next=tmp;
    (*next_arg)= tmp;
  }
  else
  {
1364 1365 1366
    if (!(tmp= new SEL_ARG(field,part, min_value,max_value,
			   min_flag, max_flag, maybe_flag)))
      return 0;					// OOM
unknown's avatar
unknown committed
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
    tmp->parent=new_parent;
    tmp->next_key_part=next_key_part;
    if (left != &null_element)
      tmp->left=left->clone(tmp,next_arg);

    tmp->prev= *next_arg;			// Link into next/prev chain
    (*next_arg)->next=tmp;
    (*next_arg)= tmp;

    if (right != &null_element)
1377 1378
      if (!(tmp->right= right->clone(tmp,next_arg)))
	return 0;				// OOM
unknown's avatar
unknown committed
1379 1380
  }
  increment_use_count(1);
1381
  tmp->color= color;
1382
  tmp->elements= this->elements;
unknown's avatar
unknown committed
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
  return tmp;
}

SEL_ARG *SEL_ARG::first()
{
  SEL_ARG *next_arg=this;
  if (!next_arg->left)
    return 0;					// MAYBE_KEY
  while (next_arg->left != &null_element)
    next_arg=next_arg->left;
  return next_arg;
}

SEL_ARG *SEL_ARG::last()
{
  SEL_ARG *next_arg=this;
  if (!next_arg->right)
    return 0;					// MAYBE_KEY
  while (next_arg->right != &null_element)
    next_arg=next_arg->right;
  return next_arg;
}

1406

unknown's avatar
unknown committed
1407 1408 1409
/*
  Check if a compare is ok, when one takes ranges in account
  Returns -2 or 2 if the ranges where 'joined' like  < 2 and >= 2
1410
*/
unknown's avatar
unknown committed
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433

static int sel_cmp(Field *field, char *a,char *b,uint8 a_flag,uint8 b_flag)
{
  int cmp;
  /* First check if there was a compare to a min or max element */
  if (a_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
  {
    if ((a_flag & (NO_MIN_RANGE | NO_MAX_RANGE)) ==
	(b_flag & (NO_MIN_RANGE | NO_MAX_RANGE)))
      return 0;
    return (a_flag & NO_MIN_RANGE) ? -1 : 1;
  }
  if (b_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
    return (b_flag & NO_MIN_RANGE) ? 1 : -1;

  if (field->real_maybe_null())			// If null is part of key
  {
    if (*a != *b)
    {
      return *a ? -1 : 1;
    }
    if (*a)
      goto end;					// NULL where equal
unknown's avatar
unknown committed
1434
    a++; b++;					// Skip NULL marker
unknown's avatar
unknown committed
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
  }
  cmp=field->key_cmp((byte*) a,(byte*) b);
  if (cmp) return cmp < 0 ? -1 : 1;		// The values differed

  // Check if the compared equal arguments was defined with open/closed range
 end:
  if (a_flag & (NEAR_MIN | NEAR_MAX))
  {
    if ((a_flag & (NEAR_MIN | NEAR_MAX)) == (b_flag & (NEAR_MIN | NEAR_MAX)))
      return 0;
    if (!(b_flag & (NEAR_MIN | NEAR_MAX)))
      return (a_flag & NEAR_MIN) ? 2 : -2;
    return (a_flag & NEAR_MIN) ? 1 : -1;
  }
  if (b_flag & (NEAR_MIN | NEAR_MAX))
    return (b_flag & NEAR_MIN) ? -2 : 2;
  return 0;					// The elements where equal
}


SEL_ARG *SEL_ARG::clone_tree()
{
  SEL_ARG tmp_link,*next_arg,*root;
  next_arg= &tmp_link;
1459
  root= clone((SEL_ARG *) 0, &next_arg);
unknown's avatar
unknown committed
1460 1461
  next_arg->next=0;				// Fix last link
  tmp_link.next->prev=0;			// Fix first link
1462 1463
  if (root)					// If not OOM
    root->use_count= 0;
unknown's avatar
unknown committed
1464 1465 1466
  return root;
}

1467

1468
/*
unknown's avatar
unknown committed
1469
  Find the best index to retrieve first N records in given order
1470 1471 1472 1473 1474 1475 1476 1477

  SYNOPSIS
    get_index_for_order()
      table  Table to be accessed
      order  Required ordering
      limit  Number of records that will be retrieved

  DESCRIPTION
unknown's avatar
unknown committed
1478 1479 1480 1481
    Find the best index that allows to retrieve first #limit records in the 
    given order cheaper then one would retrieve them using full table scan.

  IMPLEMENTATION
1482
    Run through all table indexes and find the shortest index that allows
unknown's avatar
unknown committed
1483 1484
    records to be retrieved in given order. We look for the shortest index
    as we will have fewer index pages to read with it.
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506

    This function is used only by UPDATE/DELETE, so we take into account how
    the UPDATE/DELETE code will work:
     * index can only be scanned in forward direction
     * HA_EXTRA_KEYREAD will not be used
    Perhaps these assumptions could be relaxed

  RETURN
    index number
    MAX_KEY if no such index was found.
*/

uint get_index_for_order(TABLE *table, ORDER *order, ha_rows limit)
{
  uint idx;
  uint match_key= MAX_KEY, match_key_len= MAX_KEY_LENGTH + 1;
  ORDER *ord;
  
  for (ord= order; ord; ord= ord->next)
    if (!ord->asc)
      return MAX_KEY;

unknown's avatar
unknown committed
1507
  for (idx= 0; idx < table->s->keys; idx++)
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
  {
    if (!(table->keys_in_use_for_query.is_set(idx)))
      continue;
    KEY_PART_INFO *keyinfo= table->key_info[idx].key_part;
    uint partno= 0;
    
    /* 
      The below check is sufficient considering we now have either BTREE 
      indexes (records are returned in order for any index prefix) or HASH 
      indexes (records are not returned in order for any index prefix).
    */
    if (!(table->file->index_flags(idx, 0, 1) & HA_READ_ORDER))
      continue;
    for (ord= order; ord; ord= ord->next, partno++)
    {
      Item *item= order->item[0];
      if (!(item->type() == Item::FIELD_ITEM &&
           ((Item_field*)item)->field->eq(keyinfo[partno].field)))
        break;
    }
    
    if (!ord && table->key_info[idx].key_length < match_key_len)
    {
      /* 
        Ok, the ordering is compatible and this key is shorter then
        previous match (we want shorter keys as we'll have to read fewer
        index pages for the same number of records)
      */
      match_key= idx;
      match_key_len= table->key_info[idx].key_length;
    }
  }

  if (match_key != MAX_KEY)
  {
    /* 
      Found an index that allows records to be retrieved in the requested 
      order. Now we'll check if using the index is cheaper then doing a table
      scan.
    */
    double full_scan_time= table->file->scan_time();
    double index_scan_time= table->file->read_time(match_key, 1, limit);
    if (index_scan_time > full_scan_time)
      match_key= MAX_KEY;
  }
  return match_key;
}


unknown's avatar
unknown committed
1557
/*
unknown's avatar
unknown committed
1558
  Table rows retrieval plan. Range optimizer creates QUICK_SELECT_I-derived
1559 1560 1561 1562 1563
  objects from table read plans.
*/
class TABLE_READ_PLAN
{
public:
unknown's avatar
unknown committed
1564 1565
  /*
    Plan read cost, with or without cost of full row retrieval, depending
1566 1567
    on plan creation parameters.
  */
unknown's avatar
unknown committed
1568
  double read_cost;
1569
  ha_rows records; /* estimate of #rows to be examined */
unknown's avatar
unknown committed
1570

unknown's avatar
unknown committed
1571 1572
  /*
    If TRUE, the scan returns rows in rowid order. This is used only for
1573 1574
    scans that can be both ROR and non-ROR.
  */
1575
  bool is_ror;
unknown's avatar
unknown committed
1576

1577 1578 1579 1580 1581
  /*
    Create quick select for this plan.
    SYNOPSIS
     make_quick()
       param               Parameter from test_quick_select
unknown's avatar
unknown committed
1582
       retrieve_full_rows  If TRUE, created quick select will do full record
1583 1584
                           retrieval.
       parent_alloc        Memory pool to use, if any.
unknown's avatar
unknown committed
1585

1586 1587
    NOTES
      retrieve_full_rows is ignored by some implementations.
unknown's avatar
unknown committed
1588 1589

    RETURN
1590 1591 1592
      created quick select
      NULL on any error.
  */
1593 1594 1595 1596
  virtual QUICK_SELECT_I *make_quick(PARAM *param,
                                     bool retrieve_full_rows,
                                     MEM_ROOT *parent_alloc=NULL) = 0;

1597
  /* Table read plans are allocated on MEM_ROOT and are never deleted */
1598 1599
  static void *operator new(size_t size, MEM_ROOT *mem_root)
  { return (void*) alloc_root(mem_root, (uint) size); }
unknown's avatar
unknown committed
1600
  static void operator delete(void *ptr,size_t size) { TRASH(ptr, size); }
1601
  static void operator delete(void *ptr, MEM_ROOT *mem_root) { /* Never called */ }
1602 1603
  virtual ~TABLE_READ_PLAN() {}               /* Remove gcc warning */

1604 1605 1606 1607 1608 1609 1610
};

class TRP_ROR_INTERSECT;
class TRP_ROR_UNION;
class TRP_INDEX_MERGE;


1611
/*
unknown's avatar
unknown committed
1612
  Plan for a QUICK_RANGE_SELECT scan.
1613 1614 1615
  TRP_RANGE::make_quick ignores retrieve_full_rows parameter because
  QUICK_RANGE_SELECT doesn't distinguish between 'index only' scans and full
  record retrieval scans.
unknown's avatar
unknown committed
1616
*/
unknown's avatar
unknown committed
1617

1618
class TRP_RANGE : public TABLE_READ_PLAN
unknown's avatar
unknown committed
1619
{
1620
public:
1621 1622
  SEL_ARG *key; /* set of intervals to be used in "range" method retrieval */
  uint     key_idx; /* key number in PARAM::key */
unknown's avatar
unknown committed
1623

unknown's avatar
unknown committed
1624
  TRP_RANGE(SEL_ARG *key_arg, uint idx_arg)
1625 1626
   : key(key_arg), key_idx(idx_arg)
  {}
1627
  virtual ~TRP_RANGE() {}                     /* Remove gcc warning */
unknown's avatar
unknown committed
1628

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
                             MEM_ROOT *parent_alloc)
  {
    DBUG_ENTER("TRP_RANGE::make_quick");
    QUICK_RANGE_SELECT *quick;
    if ((quick= get_quick_select(param, key_idx, key, parent_alloc)))
    {
      quick->records= records;
      quick->read_time= read_cost;
    }
    DBUG_RETURN(quick);
  }
};
unknown's avatar
unknown committed
1642 1643


1644 1645
/* Plan for QUICK_ROR_INTERSECT_SELECT scan. */

1646 1647 1648
class TRP_ROR_INTERSECT : public TABLE_READ_PLAN
{
public:
1649 1650
  TRP_ROR_INTERSECT() {}                      /* Remove gcc warning */
  virtual ~TRP_ROR_INTERSECT() {}             /* Remove gcc warning */
unknown's avatar
unknown committed
1651
  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
1652
                             MEM_ROOT *parent_alloc);
unknown's avatar
unknown committed
1653

1654
  /* Array of pointers to ROR range scans used in this intersection */
1655
  struct st_ror_scan_info **first_scan;
1656 1657
  struct st_ror_scan_info **last_scan; /* End of the above array */
  struct st_ror_scan_info *cpk_scan;  /* Clustered PK scan, if there is one */
unknown's avatar
unknown committed
1658
  bool is_covering; /* TRUE if no row retrieval phase is necessary */
1659
  double index_scan_costs; /* SUM(cost(index_scan)) */
1660 1661
};

1662

unknown's avatar
unknown committed
1663
/*
1664 1665
  Plan for QUICK_ROR_UNION_SELECT scan.
  QUICK_ROR_UNION_SELECT always retrieves full rows, so retrieve_full_rows
unknown's avatar
unknown committed
1666
  is ignored by make_quick.
1667
*/
1668

1669 1670 1671
class TRP_ROR_UNION : public TABLE_READ_PLAN
{
public:
1672 1673
  TRP_ROR_UNION() {}                          /* Remove gcc warning */
  virtual ~TRP_ROR_UNION() {}                 /* Remove gcc warning */
unknown's avatar
unknown committed
1674
  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
1675
                             MEM_ROOT *parent_alloc);
1676 1677
  TABLE_READ_PLAN **first_ror; /* array of ptrs to plans for merged scans */
  TABLE_READ_PLAN **last_ror;  /* end of the above array */
1678 1679
};

1680 1681 1682 1683

/*
  Plan for QUICK_INDEX_MERGE_SELECT scan.
  QUICK_ROR_INTERSECT_SELECT always retrieves full rows, so retrieve_full_rows
unknown's avatar
unknown committed
1684
  is ignored by make_quick.
1685 1686
*/

1687 1688 1689
class TRP_INDEX_MERGE : public TABLE_READ_PLAN
{
public:
1690 1691
  TRP_INDEX_MERGE() {}                        /* Remove gcc warning */
  virtual ~TRP_INDEX_MERGE() {}               /* Remove gcc warning */
unknown's avatar
unknown committed
1692
  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
1693
                             MEM_ROOT *parent_alloc);
1694 1695
  TRP_RANGE **range_scans; /* array of ptrs to plans of merged scans */
  TRP_RANGE **range_scans_end; /* end of the array */
1696 1697 1698
};


1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
/*
  Plan for a QUICK_GROUP_MIN_MAX_SELECT scan. 
*/

class TRP_GROUP_MIN_MAX : public TABLE_READ_PLAN
{
private:
  bool have_min, have_max;
  KEY_PART_INFO *min_max_arg_part;
  uint group_prefix_len;
  uint used_key_parts;
  uint group_key_parts;
  KEY *index_info;
  uint index;
  uint key_infix_len;
  byte key_infix[MAX_KEY_LENGTH];
  SEL_TREE *range_tree; /* Represents all range predicates in the query. */
  SEL_ARG  *index_tree; /* The SEL_ARG sub-tree corresponding to index_info. */
  uint param_idx; /* Index of used key in param->key. */
  /* Number of records selected by the ranges in index_tree. */
public:
  ha_rows quick_prefix_records;
public:
1722 1723 1724 1725
  TRP_GROUP_MIN_MAX(bool have_min_arg, bool have_max_arg,
                    KEY_PART_INFO *min_max_arg_part_arg,
                    uint group_prefix_len_arg, uint used_key_parts_arg,
                    uint group_key_parts_arg, KEY *index_info_arg,
1726 1727
                    uint index_arg, uint key_infix_len_arg,
                    byte *key_infix_arg,
1728 1729 1730 1731 1732 1733 1734 1735 1736
                    SEL_TREE *tree_arg, SEL_ARG *index_tree_arg,
                    uint param_idx_arg, ha_rows quick_prefix_records_arg)
  : have_min(have_min_arg), have_max(have_max_arg),
    min_max_arg_part(min_max_arg_part_arg),
    group_prefix_len(group_prefix_len_arg), used_key_parts(used_key_parts_arg),
    group_key_parts(group_key_parts_arg), index_info(index_info_arg),
    index(index_arg), key_infix_len(key_infix_len_arg), range_tree(tree_arg),
    index_tree(index_tree_arg), param_idx(param_idx_arg),
    quick_prefix_records(quick_prefix_records_arg)
1737 1738 1739 1740
    {
      if (key_infix_len)
        memcpy(this->key_infix, key_infix_arg, key_infix_len);
    }
1741
  virtual ~TRP_GROUP_MIN_MAX() {}             /* Remove gcc warning */
1742 1743 1744 1745 1746 1747

  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
                             MEM_ROOT *parent_alloc);
};


unknown's avatar
unknown committed
1748
/*
1749
  Fill param->needed_fields with bitmap of fields used in the query.
unknown's avatar
unknown committed
1750
  SYNOPSIS
1751 1752
    fill_used_fields_bitmap()
      param Parameter from test_quick_select function.
unknown's avatar
unknown committed
1753

1754 1755 1756
  NOTES
    Clustered PK members are not put into the bitmap as they are implicitly
    present in all keys (and it is impossible to avoid reading them).
unknown's avatar
unknown committed
1757 1758 1759
  RETURN
    0  Ok
    1  Out of memory.
1760 1761 1762 1763 1764
*/

static int fill_used_fields_bitmap(PARAM *param)
{
  TABLE *table= param->table;
1765
  param->fields_bitmap_size= (table->s->fields/8 + 1);
1766 1767 1768
  uchar *tmp;
  uint pk;
  if (!(tmp= (uchar*)alloc_root(param->mem_root,param->fields_bitmap_size)) ||
unknown's avatar
unknown committed
1769
      bitmap_init(&param->needed_fields, tmp, param->fields_bitmap_size*8,
unknown's avatar
unknown committed
1770
                  FALSE))
1771
    return 1;
unknown's avatar
unknown committed
1772

1773
  bitmap_clear_all(&param->needed_fields);
1774
  for (uint i= 0; i < table->s->fields; i++)
1775 1776 1777 1778 1779
  {
    if (param->thd->query_id == table->field[i]->query_id)
      bitmap_set_bit(&param->needed_fields, i+1);
  }

1780
  pk= param->table->s->primary_key;
1781 1782
  if (param->table->file->primary_key_is_clustered() && pk != MAX_KEY)
  {
1783
    /* The table uses clustered PK and it is not internally generated */
1784
    KEY_PART_INFO *key_part= param->table->key_info[pk].key_part;
unknown's avatar
unknown committed
1785
    KEY_PART_INFO *key_part_end= key_part +
1786
                                 param->table->key_info[pk].key_parts;
unknown's avatar
unknown committed
1787
    for (;key_part != key_part_end; ++key_part)
1788 1789 1790 1791 1792 1793 1794 1795
    {
      bitmap_clear_bit(&param->needed_fields, key_part->fieldnr);
    }
  }
  return 0;
}


unknown's avatar
unknown committed
1796
/*
unknown's avatar
unknown committed
1797
  Test if a key can be used in different ranges
unknown's avatar
unknown committed
1798 1799

  SYNOPSIS
1800 1801 1802 1803 1804
    SQL_SELECT::test_quick_select()
      thd               Current thread
      keys_to_use       Keys to use for range retrieval
      prev_tables       Tables assumed to be already read when the scan is
                        performed (but not read at the moment of this call)
unknown's avatar
unknown committed
1805 1806 1807
      limit             Query limit
      force_quick_range Prefer to use range (instead of full table scan) even
                        if it is more expensive.
1808 1809 1810 1811 1812

  NOTES
    Updates the following in the select parameter:
      needed_reg - Bits for keys with may be used if all prev regs are read
      quick      - Parameter to use when reading records.
unknown's avatar
unknown committed
1813

1814 1815 1816
    In the table struct the following information is updated:
      quick_keys - Which keys can be used
      quick_rows - How many rows the key matches
unknown's avatar
unknown committed
1817

1818 1819 1820 1821
  TODO
   Check if this function really needs to modify keys_to_use, and change the
   code to pass it by reference if it doesn't.

unknown's avatar
unknown committed
1822
   In addition to force_quick_range other means can be (an usually are) used
1823 1824
   to make this function prefer range over full table scan. Figure out if
   force_quick_range is really needed.
unknown's avatar
unknown committed
1825

1826 1827 1828 1829
  RETURN
   -1 if impossible select (i.e. certainly no rows will be selected)
    0 if can't use quick_select
    1 if found usable ranges and quick select has been successfully created.
unknown's avatar
unknown committed
1830
*/
unknown's avatar
unknown committed
1831

1832 1833
int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
				  table_map prev_tables,
unknown's avatar
unknown committed
1834 1835 1836 1837
				  ha_rows limit, bool force_quick_range)
{
  uint idx;
  double scan_time;
1838
  DBUG_ENTER("SQL_SELECT::test_quick_select");
unknown's avatar
unknown committed
1839 1840 1841
  DBUG_PRINT("enter",("keys_to_use: %lu  prev_tables: %lu  const_tables: %lu",
		      keys_to_use.to_ulonglong(), (ulong) prev_tables,
		      (ulong) const_tables));
1842
  DBUG_PRINT("info", ("records=%lu", (ulong)head->file->records));
unknown's avatar
unknown committed
1843 1844
  delete quick;
  quick=0;
1845 1846 1847
  needed_reg.clear_all();
  quick_keys.clear_all();
  if ((specialflag & SPECIAL_SAFE_MODE) && ! force_quick_range ||
unknown's avatar
unknown committed
1848 1849
      !limit)
    DBUG_RETURN(0); /* purecov: inspected */
unknown's avatar
unknown committed
1850 1851
  if (keys_to_use.is_clear_all())
    DBUG_RETURN(0);
1852
  records= head->file->records;
unknown's avatar
unknown committed
1853 1854
  if (!records)
    records++;					/* purecov: inspected */
1855 1856
  scan_time= (double) records / TIME_FOR_COMPARE + 1;
  read_time= (double) head->file->scan_time() + scan_time + 1.1;
1857 1858
  if (head->force_index)
    scan_time= read_time= DBL_MAX;
unknown's avatar
unknown committed
1859
  if (limit < records)
1860
    read_time= (double) records + scan_time + 1; // Force to use index
unknown's avatar
unknown committed
1861
  else if (read_time <= 2.0 && !force_quick_range)
1862
    DBUG_RETURN(0);				/* No need for quick select */
unknown's avatar
unknown committed
1863

1864
  DBUG_PRINT("info",("Time to scan table: %g", read_time));
unknown's avatar
unknown committed
1865

unknown's avatar
unknown committed
1866 1867
  keys_to_use.intersect(head->keys_in_use_for_query);
  if (!keys_to_use.is_clear_all())
unknown's avatar
unknown committed
1868
  {
1869
    MEM_ROOT alloc;
1870
    SEL_TREE *tree= NULL;
unknown's avatar
unknown committed
1871
    KEY_PART *key_parts;
unknown's avatar
unknown committed
1872
    KEY *key_info;
unknown's avatar
unknown committed
1873
    PARAM param;
unknown's avatar
unknown committed
1874

unknown's avatar
unknown committed
1875
    /* set up parameter that is passed to all functions */
1876
    param.thd= thd;
unknown's avatar
unknown committed
1877
    param.baseflag=head->file->table_flags();
unknown's avatar
unknown committed
1878 1879 1880 1881 1882
    param.prev_tables=prev_tables | const_tables;
    param.read_tables=read_tables;
    param.current_table= head->map;
    param.table=head;
    param.keys=0;
1883
    param.mem_root= &alloc;
1884
    param.old_root= thd->mem_root;
1885
    param.needed_reg= &needed_reg;
1886
    param.imerge_cost_buff_size= 0;
unknown's avatar
unknown committed
1887

unknown's avatar
unknown committed
1888
    thd->no_errors=1;				// Don't warn about NULL
1889
    init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
1890 1891 1892 1893
    if (!(param.key_parts= (KEY_PART*) alloc_root(&alloc,
                                                  sizeof(KEY_PART)*
                                                  head->s->key_parts)) ||
        fill_used_fields_bitmap(&param))
unknown's avatar
unknown committed
1894
    {
unknown's avatar
unknown committed
1895
      thd->no_errors=0;
1896
      free_root(&alloc,MYF(0));			// Return memory & allocator
unknown's avatar
unknown committed
1897 1898 1899
      DBUG_RETURN(0);				// Can't use range
    }
    key_parts= param.key_parts;
1900
    thd->mem_root= &alloc;
unknown's avatar
unknown committed
1901 1902 1903 1904

    /*
      Make an array with description of all key parts of all table keys.
      This is used in get_mm_parts function.
1905
    */
unknown's avatar
unknown committed
1906
    key_info= head->key_info;
1907
    for (idx=0 ; idx < head->s->keys ; idx++, key_info++)
unknown's avatar
unknown committed
1908
    {
unknown's avatar
unknown committed
1909
      KEY_PART_INFO *key_part_info;
unknown's avatar
unknown committed
1910
      if (!keys_to_use.is_set(idx))
unknown's avatar
unknown committed
1911 1912 1913 1914 1915
	continue;
      if (key_info->flags & HA_FULLTEXT)
	continue;    // ToDo: ft-keys in non-ft ranges, if possible   SerG

      param.key[param.keys]=key_parts;
unknown's avatar
unknown committed
1916 1917 1918
      key_part_info= key_info->key_part;
      for (uint part=0 ; part < key_info->key_parts ;
	   part++, key_parts++, key_part_info++)
unknown's avatar
unknown committed
1919
      {
unknown's avatar
unknown committed
1920 1921 1922 1923 1924 1925
	key_parts->key=		 param.keys;
	key_parts->part=	 part;
	key_parts->length=       key_part_info->length;
	key_parts->store_length= key_part_info->store_length;
	key_parts->field=	 key_part_info->field;
	key_parts->null_bit=	 key_part_info->null_bit;
unknown's avatar
unknown committed
1926
        key_parts->image_type =
unknown's avatar
unknown committed
1927
          (key_info->flags & HA_SPATIAL) ? Field::itMBR : Field::itRAW;
unknown's avatar
unknown committed
1928 1929 1930 1931 1932
      }
      param.real_keynr[param.keys++]=idx;
    }
    param.key_parts_end=key_parts;

unknown's avatar
unknown committed
1933 1934 1935 1936
    /* Calculate cost of full index read for the shortest covering index */
    if (!head->used_keys.is_clear_all())
    {
      int key_for_use= find_shortest_key(head, &head->used_keys);
1937 1938 1939
      double key_read_time= (get_index_only_read_time(&param, records,
                                                     key_for_use) +
                             (double) records / TIME_FOR_COMPARE);
unknown's avatar
unknown committed
1940 1941 1942 1943 1944
      DBUG_PRINT("info",  ("'all'+'using index' scan will be using key %d, "
                           "read time %g", key_for_use, key_read_time));
      if (key_read_time < read_time)
        read_time= key_read_time;
    }
unknown's avatar
unknown committed
1945

1946 1947 1948 1949 1950
    TABLE_READ_PLAN *best_trp= NULL;
    TRP_GROUP_MIN_MAX *group_trp;
    double best_read_time= read_time;

    if (cond)
unknown's avatar
unknown committed
1951
    {
unknown's avatar
unknown committed
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
      if ((tree= get_mm_tree(&param,cond)))
      {
        if (tree->type == SEL_TREE::IMPOSSIBLE)
        {
          records=0L;                      /* Return -1 from this function. */
          read_time= (double) HA_POS_ERROR;
          goto free_mem;
        }
        if (tree->type != SEL_TREE::KEY &&
            tree->type != SEL_TREE::KEY_SMALLER)
          goto free_mem;
      }
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
    }

    /*
      Try to construct a QUICK_GROUP_MIN_MAX_SELECT.
      Notice that it can be constructed no matter if there is a range tree.
    */
    group_trp= get_best_group_min_max(&param, tree);
    if (group_trp && group_trp->read_cost < best_read_time)
    {
      best_trp= group_trp;
      best_read_time= best_trp->read_cost;
    }

    if (tree)
unknown's avatar
unknown committed
1978
    {
unknown's avatar
unknown committed
1979 1980 1981
      /*
        It is possible to use a range-based quick select (but it might be
        slower than 'all' table scan).
1982 1983
      */
      if (tree->merges.is_empty())
unknown's avatar
unknown committed
1984
      {
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
        TRP_RANGE         *range_trp;
        TRP_ROR_INTERSECT *rori_trp;
        bool can_build_covering= FALSE;

        /* Get best 'range' plan and prepare data for making other plans */
        if ((range_trp= get_key_scans_params(&param, tree, FALSE,
                                             best_read_time)))
        {
          best_trp= range_trp;
          best_read_time= best_trp->read_cost;
        }

unknown's avatar
unknown committed
1997
        /*
1998 1999 2000
          Simultaneous key scans and row deletes on several handler
          objects are not allowed so don't use ROR-intersection for
          table deletes.
unknown's avatar
unknown committed
2001
        */
2002 2003 2004 2005
        if ((thd->lex->sql_command != SQLCOM_DELETE))
#ifdef NOT_USED
          if ((thd->lex->sql_command != SQLCOM_UPDATE))
#endif
unknown's avatar
unknown committed
2006
        {
unknown's avatar
unknown committed
2007
          /*
2008 2009
            Get best non-covering ROR-intersection plan and prepare data for
            building covering ROR-intersection.
unknown's avatar
unknown committed
2010
          */
2011 2012
          if ((rori_trp= get_best_ror_intersect(&param, tree, best_read_time,
                                                &can_build_covering)))
unknown's avatar
unknown committed
2013
          {
2014 2015
            best_trp= rori_trp;
            best_read_time= best_trp->read_cost;
unknown's avatar
unknown committed
2016 2017
            /*
              Try constructing covering ROR-intersect only if it looks possible
2018 2019
              and worth doing.
            */
2020 2021 2022 2023
            if (!rori_trp->is_covering && can_build_covering &&
                (rori_trp= get_best_covering_ror_intersect(&param, tree,
                                                           best_read_time)))
              best_trp= rori_trp;
unknown's avatar
unknown committed
2024 2025
          }
        }
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
      }
      else
      {
        /* Try creating index_merge/ROR-union scan. */
        SEL_IMERGE *imerge;
        TABLE_READ_PLAN *best_conj_trp= NULL, *new_conj_trp;
        LINT_INIT(new_conj_trp); /* no empty index_merge lists possible */

        DBUG_PRINT("info",("No range reads possible,"
                           " trying to construct index_merge"));
        List_iterator_fast<SEL_IMERGE> it(tree->merges);
        while ((imerge= it++))
unknown's avatar
unknown committed
2038
        {
2039 2040 2041 2042
          new_conj_trp= get_best_disjunct_quick(&param, imerge, best_read_time);
          if (!best_conj_trp || (new_conj_trp && new_conj_trp->read_cost <
                                 best_conj_trp->read_cost))
            best_conj_trp= new_conj_trp;
2043
        }
2044 2045 2046 2047
        if (best_conj_trp)
          best_trp= best_conj_trp;
      }
    }
unknown's avatar
unknown committed
2048

2049
    thd->mem_root= param.old_root;
2050 2051 2052 2053 2054 2055 2056 2057 2058

    /* If we got a read plan, create a quick select from it. */
    if (best_trp)
    {
      records= best_trp->records;
      if (!(quick= best_trp->make_quick(&param, TRUE)) || quick->init())
      {
        delete quick;
        quick= NULL;
unknown's avatar
unknown committed
2059 2060
      }
    }
2061 2062

  free_mem:
2063
    free_root(&alloc,MYF(0));			// Return memory & allocator
2064
    thd->mem_root= param.old_root;
unknown's avatar
unknown committed
2065
    thd->no_errors=0;
unknown's avatar
unknown committed
2066
  }
unknown's avatar
unknown committed
2067

2068
  DBUG_EXECUTE("info", print_quick(quick, &needed_reg););
unknown's avatar
unknown committed
2069

unknown's avatar
unknown committed
2070 2071 2072 2073 2074 2075 2076
  /*
    Assume that if the user is using 'limit' we will only need to scan
    limit rows if we are using a key
  */
  DBUG_RETURN(records ? test(quick) : -1);
}

unknown's avatar
unknown committed
2077

unknown's avatar
unknown committed
2078
/*
2079 2080 2081 2082
  Get cost of 'sweep' full records retrieval.
  SYNOPSIS
    get_sweep_read_cost()
      param            Parameter from test_quick_select
unknown's avatar
unknown committed
2083
      records          # of records to be retrieved
2084
  RETURN
unknown's avatar
unknown committed
2085
    cost of sweep
2086
*/
2087

2088
double get_sweep_read_cost(const PARAM *param, ha_rows records)
2089
{
2090
  double result;
2091
  DBUG_ENTER("get_sweep_read_cost");
2092 2093
  if (param->table->file->primary_key_is_clustered())
  {
2094
    result= param->table->file->read_time(param->table->s->primary_key,
2095
                                          records, records);
2096 2097
  }
  else
unknown's avatar
unknown committed
2098
  {
2099
    double n_blocks=
unknown's avatar
unknown committed
2100
      ceil(ulonglong2double(param->table->file->data_file_length) / IO_SIZE);
2101 2102 2103 2104
    double busy_blocks=
      n_blocks * (1.0 - pow(1.0 - 1.0/n_blocks, rows2double(records)));
    if (busy_blocks < 1.0)
      busy_blocks= 1.0;
unknown's avatar
unknown committed
2105
    DBUG_PRINT("info",("sweep: nblocks=%g, busy_blocks=%g", n_blocks,
2106
                       busy_blocks));
2107
    /*
unknown's avatar
unknown committed
2108
      Disabled: Bail out if # of blocks to read is bigger than # of blocks in
2109 2110 2111 2112 2113 2114 2115 2116
      table data file.
    if (max_cost != DBL_MAX  && (busy_blocks+index_reads_cost) >= n_blocks)
      return 1;
    */
    JOIN *join= param->thd->lex->select_lex.join;
    if (!join || join->tables == 1)
    {
      /* No join, assume reading is done in one 'sweep' */
unknown's avatar
unknown committed
2117
      result= busy_blocks*(DISK_SEEK_BASE_COST +
2118 2119 2120 2121
                          DISK_SEEK_PROP_COST*n_blocks/busy_blocks);
    }
    else
    {
unknown's avatar
unknown committed
2122
      /*
2123 2124 2125
        Possibly this is a join with source table being non-last table, so
        assume that disk seeks are random here.
      */
2126
      result= busy_blocks;
2127 2128
    }
  }
2129
  DBUG_PRINT("info",("returning cost=%g", result));
2130
  DBUG_RETURN(result);
2131
}
2132 2133


2134 2135 2136 2137
/*
  Get best plan for a SEL_IMERGE disjunctive expression.
  SYNOPSIS
    get_best_disjunct_quick()
2138 2139
      param     Parameter from check_quick_select function
      imerge    Expression to use
2140
      read_time Don't create scans with cost > read_time
unknown's avatar
unknown committed
2141

2142
  NOTES
2143
    index_merge cost is calculated as follows:
unknown's avatar
unknown committed
2144
    index_merge_cost =
2145 2146 2147 2148 2149
      cost(index_reads) +         (see #1)
      cost(rowid_to_row_scan) +   (see #2)
      cost(unique_use)            (see #3)

    1. cost(index_reads) =SUM_i(cost(index_read_i))
unknown's avatar
unknown committed
2150 2151
       For non-CPK scans,
         cost(index_read_i) = {cost of ordinary 'index only' scan}
2152 2153 2154 2155 2156
       For CPK scan,
         cost(index_read_i) = {cost of non-'index only' scan}

    2. cost(rowid_to_row_scan)
      If table PK is clustered then
unknown's avatar
unknown committed
2157
        cost(rowid_to_row_scan) =
2158
          {cost of ordinary clustered PK scan with n_ranges=n_rows}
unknown's avatar
unknown committed
2159 2160

      Otherwise, we use the following model to calculate costs:
2161
      We need to retrieve n_rows rows from file that occupies n_blocks blocks.
unknown's avatar
unknown committed
2162
      We assume that offsets of rows we need are independent variates with
2163
      uniform distribution in [0..max_file_offset] range.
unknown's avatar
unknown committed
2164

2165 2166
      We'll denote block as "busy" if it contains row(s) we need to retrieve
      and "empty" if doesn't contain rows we need.
unknown's avatar
unknown committed
2167

2168
      Probability that a block is empty is (1 - 1/n_blocks)^n_rows (this
unknown's avatar
unknown committed
2169
      applies to any block in file). Let x_i be a variate taking value 1 if
2170
      block #i is empty and 0 otherwise.
unknown's avatar
unknown committed
2171

2172 2173
      Then E(x_i) = (1 - 1/n_blocks)^n_rows;

unknown's avatar
unknown committed
2174 2175
      E(n_empty_blocks) = E(sum(x_i)) = sum(E(x_i)) =
        = n_blocks * ((1 - 1/n_blocks)^n_rows) =
2176 2177 2178 2179
       ~= n_blocks * exp(-n_rows/n_blocks).

      E(n_busy_blocks) = n_blocks*(1 - (1 - 1/n_blocks)^n_rows) =
       ~= n_blocks * (1 - exp(-n_rows/n_blocks)).
unknown's avatar
unknown committed
2180

2181 2182
      Average size of "hole" between neighbor non-empty blocks is
           E(hole_size) = n_blocks/E(n_busy_blocks).
unknown's avatar
unknown committed
2183

2184 2185 2186 2187 2188 2189
      The total cost of reading all needed blocks in one "sweep" is:

      E(n_busy_blocks)*
       (DISK_SEEK_BASE_COST + DISK_SEEK_PROP_COST*n_blocks/E(n_busy_blocks)).

    3. Cost of Unique use is calculated in Unique::get_use_cost function.
unknown's avatar
unknown committed
2190 2191 2192 2193 2194

  ROR-union cost is calculated in the same way index_merge, but instead of
  Unique a priority queue is used.

  RETURN
2195 2196
    Created read plan
    NULL - Out of memory or no read scan could be built.
2197
*/
2198

2199 2200
static
TABLE_READ_PLAN *get_best_disjunct_quick(PARAM *param, SEL_IMERGE *imerge,
2201
                                         double read_time)
2202 2203 2204 2205 2206 2207 2208
{
  SEL_TREE **ptree;
  TRP_INDEX_MERGE *imerge_trp= NULL;
  uint n_child_scans= imerge->trees_next - imerge->trees;
  TRP_RANGE **range_scans;
  TRP_RANGE **cur_child;
  TRP_RANGE **cpk_scan= NULL;
unknown's avatar
unknown committed
2209
  bool imerge_too_expensive= FALSE;
2210 2211 2212 2213
  double imerge_cost= 0.0;
  ha_rows cpk_scan_records= 0;
  ha_rows non_cpk_scan_records= 0;
  bool pk_is_clustered= param->table->file->primary_key_is_clustered();
unknown's avatar
unknown committed
2214 2215
  bool all_scans_ror_able= TRUE;
  bool all_scans_rors= TRUE;
2216 2217 2218 2219 2220 2221 2222 2223 2224
  uint unique_calc_buff_size;
  TABLE_READ_PLAN **roru_read_plans;
  TABLE_READ_PLAN **cur_roru_plan;
  double roru_index_costs;
  ha_rows roru_total_records;
  double roru_intersect_part= 1.0;
  DBUG_ENTER("get_best_disjunct_quick");
  DBUG_PRINT("info", ("Full table scan cost =%g", read_time));

unknown's avatar
unknown committed
2225
  if (!(range_scans= (TRP_RANGE**)alloc_root(param->mem_root,
2226 2227 2228
                                             sizeof(TRP_RANGE*)*
                                             n_child_scans)))
    DBUG_RETURN(NULL);
2229
  /*
2230 2231 2232
    Collect best 'range' scan for each of disjuncts, and, while doing so,
    analyze possibility of ROR scans. Also calculate some values needed by
    other parts of the code.
2233
  */
2234
  for (ptree= imerge->trees, cur_child= range_scans;
2235
       ptree != imerge->trees_next;
2236
       ptree++, cur_child++)
2237
  {
2238 2239
    DBUG_EXECUTE("info", print_sel_tree(param, *ptree, &(*ptree)->keys_map,
                                        "tree in SEL_IMERGE"););
unknown's avatar
unknown committed
2240
    if (!(*cur_child= get_key_scans_params(param, *ptree, TRUE, read_time)))
2241 2242
    {
      /*
2243
        One of index scans in this index_merge is more expensive than entire
2244 2245 2246
        table read for another available option. The entire index_merge (and
        any possible ROR-union) will be more expensive then, too. We continue
        here only to update SQL_SELECT members.
2247
      */
unknown's avatar
unknown committed
2248
      imerge_too_expensive= TRUE;
2249 2250 2251
    }
    if (imerge_too_expensive)
      continue;
unknown's avatar
unknown committed
2252

2253 2254 2255
    imerge_cost += (*cur_child)->read_cost;
    all_scans_ror_able &= ((*ptree)->n_ror_scans > 0);
    all_scans_rors &= (*cur_child)->is_ror;
unknown's avatar
unknown committed
2256
    if (pk_is_clustered &&
2257 2258
        param->real_keynr[(*cur_child)->key_idx] ==
        param->table->s->primary_key)
2259
    {
2260 2261
      cpk_scan= cur_child;
      cpk_scan_records= (*cur_child)->records;
2262 2263
    }
    else
2264
      non_cpk_scan_records += (*cur_child)->records;
2265
  }
unknown's avatar
unknown committed
2266

2267
  DBUG_PRINT("info", ("index_merge scans cost=%g", imerge_cost));
unknown's avatar
unknown committed
2268
  if (imerge_too_expensive || (imerge_cost > read_time) ||
2269 2270
      (non_cpk_scan_records+cpk_scan_records >= param->table->file->records) &&
      read_time != DBL_MAX)
2271
  {
unknown's avatar
unknown committed
2272 2273
    /*
      Bail out if it is obvious that both index_merge and ROR-union will be
2274
      more expensive
2275
    */
2276 2277
    DBUG_PRINT("info", ("Sum of index_merge scans is more expensive than "
                        "full table scan, bailing out"));
unknown's avatar
unknown committed
2278
    DBUG_RETURN(NULL);
2279
  }
2280
  if (all_scans_rors)
2281
  {
2282 2283
    roru_read_plans= (TABLE_READ_PLAN**)range_scans;
    goto skip_to_ror_scan;
2284
  }
unknown's avatar
unknown committed
2285 2286
  if (cpk_scan)
  {
2287 2288
    /*
      Add one ROWID comparison for each row retrieved on non-CPK scan.  (it
unknown's avatar
unknown committed
2289 2290 2291
      is done in QUICK_RANGE_SELECT::row_in_ranges)
     */
    imerge_cost += non_cpk_scan_records / TIME_FOR_COMPARE_ROWID;
2292 2293 2294
  }

  /* Calculate cost(rowid_to_row_scan) */
2295
  imerge_cost += get_sweep_read_cost(param, non_cpk_scan_records);
unknown's avatar
unknown committed
2296
  DBUG_PRINT("info",("index_merge cost with rowid-to-row scan: %g",
2297
                     imerge_cost));
2298 2299
  if (imerge_cost > read_time)
    goto build_ror_index_merge;
2300 2301

  /* Add Unique operations cost */
unknown's avatar
unknown committed
2302 2303
  unique_calc_buff_size=
    Unique::get_cost_calc_buff_size(non_cpk_scan_records,
2304 2305 2306 2307 2308 2309
                                    param->table->file->ref_length,
                                    param->thd->variables.sortbuff_size);
  if (param->imerge_cost_buff_size < unique_calc_buff_size)
  {
    if (!(param->imerge_cost_buff= (uint*)alloc_root(param->mem_root,
                                                     unique_calc_buff_size)))
2310
      DBUG_RETURN(NULL);
2311 2312 2313
    param->imerge_cost_buff_size= unique_calc_buff_size;
  }

unknown's avatar
unknown committed
2314
  imerge_cost +=
2315
    Unique::get_use_cost(param->imerge_cost_buff, non_cpk_scan_records,
unknown's avatar
unknown committed
2316 2317
                         param->table->file->ref_length,
                         param->thd->variables.sortbuff_size);
unknown's avatar
unknown committed
2318
  DBUG_PRINT("info",("index_merge total cost: %g (wanted: less then %g)",
2319 2320 2321 2322 2323 2324 2325
                     imerge_cost, read_time));
  if (imerge_cost < read_time)
  {
    if ((imerge_trp= new (param->mem_root)TRP_INDEX_MERGE))
    {
      imerge_trp->read_cost= imerge_cost;
      imerge_trp->records= non_cpk_scan_records + cpk_scan_records;
unknown's avatar
unknown committed
2326
      imerge_trp->records= min(imerge_trp->records,
2327 2328 2329 2330 2331 2332
                               param->table->file->records);
      imerge_trp->range_scans= range_scans;
      imerge_trp->range_scans_end= range_scans + n_child_scans;
      read_time= imerge_cost;
    }
  }
unknown's avatar
unknown committed
2333

unknown's avatar
unknown committed
2334
build_ror_index_merge:
2335 2336
  if (!all_scans_ror_able || param->thd->lex->sql_command == SQLCOM_DELETE)
    DBUG_RETURN(imerge_trp);
unknown's avatar
unknown committed
2337

2338 2339
  /* Ok, it is possible to build a ROR-union, try it. */
  bool dummy;
unknown's avatar
unknown committed
2340
  if (!(roru_read_plans=
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
          (TABLE_READ_PLAN**)alloc_root(param->mem_root,
                                        sizeof(TABLE_READ_PLAN*)*
                                        n_child_scans)))
    DBUG_RETURN(imerge_trp);
skip_to_ror_scan:
  roru_index_costs= 0.0;
  roru_total_records= 0;
  cur_roru_plan= roru_read_plans;

  /* Find 'best' ROR scan for each of trees in disjunction */
  for (ptree= imerge->trees, cur_child= range_scans;
       ptree != imerge->trees_next;
       ptree++, cur_child++, cur_roru_plan++)
2354
  {
2355 2356
    /*
      Assume the best ROR scan is the one that has cheapest full-row-retrieval
unknown's avatar
unknown committed
2357 2358
      scan cost.
      Also accumulate index_only scan costs as we'll need them to calculate
2359 2360 2361 2362 2363 2364 2365
      overall index_intersection cost.
    */
    double cost;
    if ((*cur_child)->is_ror)
    {
      /* Ok, we have index_only cost, now get full rows scan cost */
      cost= param->table->file->
unknown's avatar
unknown committed
2366
              read_time(param->real_keynr[(*cur_child)->key_idx], 1,
2367 2368 2369 2370 2371 2372 2373
                        (*cur_child)->records) +
              rows2double((*cur_child)->records) / TIME_FOR_COMPARE;
    }
    else
      cost= read_time;

    TABLE_READ_PLAN *prev_plan= *cur_child;
unknown's avatar
unknown committed
2374
    if (!(*cur_roru_plan= get_best_ror_intersect(param, *ptree, cost,
2375 2376 2377 2378 2379 2380 2381 2382 2383
                                                 &dummy)))
    {
      if (prev_plan->is_ror)
        *cur_roru_plan= prev_plan;
      else
        DBUG_RETURN(imerge_trp);
      roru_index_costs += (*cur_roru_plan)->read_cost;
    }
    else
unknown's avatar
unknown committed
2384 2385
      roru_index_costs +=
        ((TRP_ROR_INTERSECT*)(*cur_roru_plan))->index_scan_costs;
2386
    roru_total_records += (*cur_roru_plan)->records;
unknown's avatar
unknown committed
2387
    roru_intersect_part *= (*cur_roru_plan)->records /
2388
                           param->table->file->records;
2389
  }
2390

unknown's avatar
unknown committed
2391 2392
  /*
    rows to retrieve=
2393
      SUM(rows_in_scan_i) - table_rows * PROD(rows_in_scan_i / table_rows).
2394
    This is valid because index_merge construction guarantees that conditions
2395 2396 2397
    in disjunction do not share key parts.
  */
  roru_total_records -= (ha_rows)(roru_intersect_part*
unknown's avatar
unknown committed
2398 2399 2400
                                  param->table->file->records);
  /* ok, got a ROR read plan for each of the disjuncts
    Calculate cost:
2401 2402 2403 2404 2405 2406
    cost(index_union_scan(scan_1, ... scan_n)) =
      SUM_i(cost_of_index_only_scan(scan_i)) +
      queue_use_cost(rowid_len, n) +
      cost_of_row_retrieval
    See get_merge_buffers_cost function for queue_use_cost formula derivation.
  */
unknown's avatar
unknown committed
2407

2408
  double roru_total_cost;
unknown's avatar
unknown committed
2409 2410 2411
  roru_total_cost= roru_index_costs +
                   rows2double(roru_total_records)*log((double)n_child_scans) /
                   (TIME_FOR_COMPARE_ROWID * M_LN2) +
2412 2413
                   get_sweep_read_cost(param, roru_total_records);

unknown's avatar
unknown committed
2414
  DBUG_PRINT("info", ("ROR-union: cost %g, %d members", roru_total_cost,
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
                      n_child_scans));
  TRP_ROR_UNION* roru;
  if (roru_total_cost < read_time)
  {
    if ((roru= new (param->mem_root) TRP_ROR_UNION))
    {
      roru->first_ror= roru_read_plans;
      roru->last_ror= roru_read_plans + n_child_scans;
      roru->read_cost= roru_total_cost;
      roru->records= roru_total_records;
      DBUG_RETURN(roru);
    }
  }
  DBUG_RETURN(imerge_trp);
2429 2430 2431 2432 2433 2434 2435
}


/*
  Calculate cost of 'index only' scan for given index and number of records.

  SYNOPSIS
2436
    get_index_only_read_time()
2437 2438 2439 2440 2441
      param    parameters structure
      records  #of records to read
      keynr    key to read

  NOTES
unknown's avatar
unknown committed
2442
    It is assumed that we will read trough the whole key range and that all
2443 2444 2445 2446
    key blocks are half full (normally things are much better). It is also
    assumed that each time we read the next key from the index, the handler
    performs a random seek, thus the cost is proportional to the number of
    blocks read.
2447 2448 2449 2450 2451 2452

  TODO:
    Move this to handler->read_time() by adding a flag 'index-only-read' to
    this call. The reason for doing this is that the current function doesn't
    handle the case when the row is stored in the b-tree (like in innodb
    clustered index)
2453 2454
*/

unknown's avatar
unknown committed
2455
static double get_index_only_read_time(const PARAM* param, ha_rows records,
unknown's avatar
unknown committed
2456
                                       int keynr)
2457 2458 2459 2460 2461 2462 2463
{
  double read_time;
  uint keys_per_block= (param->table->file->block_size/2/
			(param->table->key_info[keynr].key_length+
			 param->table->file->ref_length) + 1);
  read_time=((double) (records+keys_per_block-1)/
             (double) keys_per_block);
2464
  return read_time;
2465 2466
}

2467

2468 2469
typedef struct st_ror_scan_info
{
2470 2471 2472 2473 2474
  uint      idx;      /* # of used key in param->keys */
  uint      keynr;    /* # of used key in table */
  ha_rows   records;  /* estimate of # records this scan will return */

  /* Set of intervals over key fields that will be used for row retrieval. */
unknown's avatar
unknown committed
2475
  SEL_ARG   *sel_arg;
2476 2477

  /* Fields used in the query and covered by this ROR scan. */
unknown's avatar
unknown committed
2478 2479
  MY_BITMAP covered_fields;
  uint      used_fields_covered; /* # of set bits in covered_fields */
2480
  int       key_rec_length; /* length of key record (including rowid) */
2481 2482

  /*
2483 2484
    Cost of reading all index records with values in sel_arg intervals set
    (assuming there is no need to access full table records)
unknown's avatar
unknown committed
2485 2486
  */
  double    index_read_cost;
2487 2488 2489
  uint      first_uncovered_field; /* first unused bit in covered_fields */
  uint      key_components; /* # of parts in the key */
} ROR_SCAN_INFO;
2490 2491 2492


/*
unknown's avatar
unknown committed
2493
  Create ROR_SCAN_INFO* structure with a single ROR scan on index idx using
2494
  sel_arg set of intervals.
unknown's avatar
unknown committed
2495

2496 2497
  SYNOPSIS
    make_ror_scan()
2498 2499 2500
      param    Parameter from test_quick_select function
      idx      Index of key in param->keys
      sel_arg  Set of intervals for a given key
unknown's avatar
unknown committed
2501

2502
  RETURN
unknown's avatar
unknown committed
2503
    NULL - out of memory
2504
    ROR scan structure containing a scan for {idx, sel_arg}
2505 2506 2507 2508 2509 2510 2511 2512 2513
*/

static
ROR_SCAN_INFO *make_ror_scan(const PARAM *param, int idx, SEL_ARG *sel_arg)
{
  ROR_SCAN_INFO *ror_scan;
  uchar *bitmap_buf;
  uint keynr;
  DBUG_ENTER("make_ror_scan");
unknown's avatar
unknown committed
2514

2515 2516 2517 2518 2519 2520
  if (!(ror_scan= (ROR_SCAN_INFO*)alloc_root(param->mem_root,
                                             sizeof(ROR_SCAN_INFO))))
    DBUG_RETURN(NULL);

  ror_scan->idx= idx;
  ror_scan->keynr= keynr= param->real_keynr[idx];
unknown's avatar
unknown committed
2521 2522
  ror_scan->key_rec_length= (param->table->key_info[keynr].key_length +
                             param->table->file->ref_length);
2523 2524
  ror_scan->sel_arg= sel_arg;
  ror_scan->records= param->table->quick_rows[keynr];
unknown's avatar
unknown committed
2525 2526

  if (!(bitmap_buf= (uchar*)alloc_root(param->mem_root,
unknown's avatar
unknown committed
2527
                                       param->fields_bitmap_size)))
2528
    DBUG_RETURN(NULL);
unknown's avatar
unknown committed
2529

2530
  if (bitmap_init(&ror_scan->covered_fields, bitmap_buf,
unknown's avatar
unknown committed
2531
                  param->fields_bitmap_size*8, FALSE))
2532 2533
    DBUG_RETURN(NULL);
  bitmap_clear_all(&ror_scan->covered_fields);
unknown's avatar
unknown committed
2534

2535
  KEY_PART_INFO *key_part= param->table->key_info[keynr].key_part;
unknown's avatar
unknown committed
2536
  KEY_PART_INFO *key_part_end= key_part +
2537 2538 2539 2540 2541 2542
                               param->table->key_info[keynr].key_parts;
  for (;key_part != key_part_end; ++key_part)
  {
    if (bitmap_is_set(&param->needed_fields, key_part->fieldnr))
      bitmap_set_bit(&ror_scan->covered_fields, key_part->fieldnr);
  }
unknown's avatar
unknown committed
2543
  ror_scan->index_read_cost=
2544 2545 2546 2547 2548 2549
    get_index_only_read_time(param, param->table->quick_rows[ror_scan->keynr],
                             ror_scan->keynr);
  DBUG_RETURN(ror_scan);
}


unknown's avatar
unknown committed
2550
/*
2551 2552 2553 2554 2555 2556 2557
  Compare two ROR_SCAN_INFO** by  E(#records_matched) * key_record_length.
  SYNOPSIS
    cmp_ror_scan_info()
      a ptr to first compared value
      b ptr to second compared value

  RETURN
unknown's avatar
unknown committed
2558
   -1 a < b
2559 2560
    0 a = b
    1 a > b
2561
*/
unknown's avatar
unknown committed
2562

2563
static int cmp_ror_scan_info(ROR_SCAN_INFO** a, ROR_SCAN_INFO** b)
2564 2565 2566 2567 2568 2569 2570
{
  double val1= rows2double((*a)->records) * (*a)->key_rec_length;
  double val2= rows2double((*b)->records) * (*b)->key_rec_length;
  return (val1 < val2)? -1: (val1 == val2)? 0 : 1;
}

/*
unknown's avatar
unknown committed
2571 2572 2573
  Compare two ROR_SCAN_INFO** by
   (#covered fields in F desc,
    #components asc,
2574
    number of first not covered component asc)
2575 2576 2577 2578 2579 2580 2581

  SYNOPSIS
    cmp_ror_scan_info_covering()
      a ptr to first compared value
      b ptr to second compared value

  RETURN
unknown's avatar
unknown committed
2582
   -1 a < b
2583 2584
    0 a = b
    1 a > b
2585
*/
unknown's avatar
unknown committed
2586

2587
static int cmp_ror_scan_info_covering(ROR_SCAN_INFO** a, ROR_SCAN_INFO** b)
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
{
  if ((*a)->used_fields_covered > (*b)->used_fields_covered)
    return -1;
  if ((*a)->used_fields_covered < (*b)->used_fields_covered)
    return 1;
  if ((*a)->key_components < (*b)->key_components)
    return -1;
  if ((*a)->key_components > (*b)->key_components)
    return 1;
  if ((*a)->first_uncovered_field < (*b)->first_uncovered_field)
    return -1;
  if ((*a)->first_uncovered_field > (*b)->first_uncovered_field)
    return 1;
  return 0;
}

unknown's avatar
unknown committed
2604

2605
/* Auxiliary structure for incremental ROR-intersection creation */
unknown's avatar
unknown committed
2606
typedef struct
2607 2608 2609
{
  const PARAM *param;
  MY_BITMAP covered_fields; /* union of fields covered by all scans */
unknown's avatar
unknown committed
2610
  /*
2611
    Fraction of table records that satisfies conditions of all scans.
unknown's avatar
unknown committed
2612
    This is the number of full records that will be retrieved if a
2613 2614
    non-index_only index intersection will be employed.
  */
2615 2616 2617 2618
  double out_rows;
  /* TRUE if covered_fields is a superset of needed_fields */
  bool is_covering;

2619
  ha_rows index_records; /* sum(#records to look in indexes) */
2620 2621
  double index_scan_costs; /* SUM(cost of 'index-only' scans) */
  double total_cost;
2622
} ROR_INTERSECT_INFO;
2623 2624


2625 2626 2627 2628
/*
  Allocate a ROR_INTERSECT_INFO and initialize it to contain zero scans.

  SYNOPSIS
unknown's avatar
unknown committed
2629 2630 2631
    ror_intersect_init()
      param         Parameter from test_quick_select

2632 2633 2634 2635 2636 2637
  RETURN
    allocated structure
    NULL on error
*/

static
2638
ROR_INTERSECT_INFO* ror_intersect_init(const PARAM *param)
2639 2640 2641
{
  ROR_INTERSECT_INFO *info;
  uchar* buf;
unknown's avatar
unknown committed
2642
  if (!(info= (ROR_INTERSECT_INFO*)alloc_root(param->mem_root,
2643 2644 2645 2646 2647 2648
                                              sizeof(ROR_INTERSECT_INFO))))
    return NULL;
  info->param= param;
  if (!(buf= (uchar*)alloc_root(param->mem_root, param->fields_bitmap_size)))
    return NULL;
  if (bitmap_init(&info->covered_fields, buf, param->fields_bitmap_size*8,
unknown's avatar
unknown committed
2649
                  FALSE))
2650
    return NULL;
2651
  info->is_covering= FALSE;
2652
  info->index_scan_costs= 0.0;
2653 2654 2655
  info->index_records= 0;
  info->out_rows= param->table->file->records;
  bitmap_clear_all(&info->covered_fields);
2656 2657 2658
  return info;
}

2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
void ror_intersect_cpy(ROR_INTERSECT_INFO *dst, const ROR_INTERSECT_INFO *src)
{
  dst->param= src->param;
  memcpy(dst->covered_fields.bitmap, src->covered_fields.bitmap, 
         src->covered_fields.bitmap_size);
  dst->out_rows= src->out_rows;
  dst->is_covering= src->is_covering;
  dst->index_records= src->index_records;
  dst->index_scan_costs= src->index_scan_costs;
  dst->total_cost= src->total_cost;
}
unknown's avatar
unknown committed
2670 2671


2672
/*
2673
  Get selectivity of a ROR scan wrt ROR-intersection.
2674

2675
  SYNOPSIS
2676 2677 2678 2679
    ror_scan_selectivity()
      info  ROR-interection 
      scan  ROR scan
      
2680
  NOTES
2681
    Suppose we have a condition on several keys
unknown's avatar
unknown committed
2682 2683
    cond=k_11=c_11 AND k_12=c_12 AND ...  // parts of first key
         k_21=c_21 AND k_22=c_22 AND ...  // parts of second key
2684
          ...
2685
         k_n1=c_n1 AND k_n3=c_n3 AND ...  (1) //parts of the key used by *scan
unknown's avatar
unknown committed
2686

2687 2688
    where k_ij may be the same as any k_pq (i.e. keys may have common parts).

unknown's avatar
unknown committed
2689
    A full row is retrieved if entire condition holds.
2690 2691

    The recursive procedure for finding P(cond) is as follows:
unknown's avatar
unknown committed
2692

2693
    First step:
unknown's avatar
unknown committed
2694
    Pick 1st part of 1st key and break conjunction (1) into two parts:
2695 2696
      cond= (k_11=c_11 AND R)

unknown's avatar
unknown committed
2697
    Here R may still contain condition(s) equivalent to k_11=c_11.
2698 2699
    Nevertheless, the following holds:

unknown's avatar
unknown committed
2700
      P(k_11=c_11 AND R) = P(k_11=c_11) * P(R | k_11=c_11).
2701 2702 2703 2704 2705

    Mark k_11 as fixed field (and satisfied condition) F, save P(F),
    save R to be cond and proceed to recursion step.

    Recursion step:
2706
    We have a set of fixed fields/satisfied conditions) F, probability P(F),
2707 2708 2709
    and remaining conjunction R
    Pick next key part on current key and its condition "k_ij=c_ij".
    We will add "k_ij=c_ij" into F and update P(F).
2710
    Lets denote k_ij as t,  R = t AND R1, where R1 may still contain t. Then
2711

2712
     P((t AND R1)|F) = P(t|F) * P(R1|t|F) = P(t|F) * P(R1|(t AND F)) (2)
2713 2714 2715 2716 2717 2718 2719

    (where '|' mean conditional probability, not "or")

    Consider the first multiplier in (2). One of the following holds:
    a) F contains condition on field used in t (i.e. t AND F = F).
      Then P(t|F) = 1

unknown's avatar
unknown committed
2720 2721
    b) F doesn't contain condition on field used in t. Then F and t are
     considered independent.
2722

unknown's avatar
unknown committed
2723
     P(t|F) = P(t|(fields_before_t_in_key AND other_fields)) =
2724 2725
          = P(t|fields_before_t_in_key).

2726 2727
     P(t|fields_before_t_in_key) = #records(fields_before_t_in_key) /
                                   #records(fields_before_t_in_key, t)
unknown's avatar
unknown committed
2728 2729

    The second multiplier is calculated by applying this step recursively.
2730

2731 2732 2733 2734 2735
  IMPLEMENTATION
    This function calculates the result of application of the "recursion step"
    described above for all fixed key members of a single key, accumulating set
    of covered fields, selectivity, etc.

unknown's avatar
unknown committed
2736
    The calculation is conducted as follows:
2737
    Lets denote #records(keypart1, ... keypartK) as n_k. We need to calculate
unknown's avatar
unknown committed
2738

2739 2740
     n_{k1}      n_{k_2}
    --------- * ---------  * .... (3)
unknown's avatar
unknown committed
2741
     n_{k1-1}    n_{k2_1}
2742

unknown's avatar
unknown committed
2743 2744 2745 2746
    where k1,k2,... are key parts which fields were not yet marked as fixed
    ( this is result of application of option b) of the recursion step for
      parts of a single key).
    Since it is reasonable to expect that most of the fields are not marked
unknown's avatar
unknown committed
2747
    as fixed, we calculate (3) as
2748 2749 2750

                                  n_{i1}      n_{i_2}
    (3) = n_{max_key_part}  / (   --------- * ---------  * ....  )
unknown's avatar
unknown committed
2751 2752 2753 2754
                                  n_{i1-1}    n_{i2_1}

    where i1,i2, .. are key parts that were already marked as fixed.

2755 2756
    In order to minimize number of expensive records_in_range calls we group
    and reduce adjacent fractions.
unknown's avatar
unknown committed
2757

2758
  RETURN
2759 2760
    Selectivity of given ROR scan.
    
2761 2762
*/

2763 2764
static double ror_scan_selectivity(const ROR_INTERSECT_INFO *info, 
                                   const ROR_SCAN_INFO *scan)
2765 2766
{
  double selectivity_mult= 1.0;
2767
  KEY_PART_INFO *key_part= info->param->table->key_info[scan->keynr].key_part;
unknown's avatar
unknown committed
2768
  byte key_val[MAX_KEY_LENGTH+MAX_FIELD_WIDTH]; /* key values tuple */
2769
  char *key_ptr= (char*) key_val;
2770 2771
  SEL_ARG *sel_arg, *tuple_arg= NULL;
  bool cur_covered;
2772 2773
  bool prev_covered= test(bitmap_is_set(&info->covered_fields,
                                        key_part->fieldnr));
unknown's avatar
unknown committed
2774 2775 2776 2777 2778 2779
  key_range min_range;
  key_range max_range;
  min_range.key= (byte*) key_val;
  min_range.flag= HA_READ_KEY_EXACT;
  max_range.key= (byte*) key_val;
  max_range.flag= HA_READ_AFTER_KEY;
2780 2781
  ha_rows prev_records= info->param->table->file->records;
  DBUG_ENTER("ror_intersect_selectivity");
unknown's avatar
unknown committed
2782 2783 2784

  for (sel_arg= scan->sel_arg; sel_arg;
       sel_arg= sel_arg->next_key_part)
2785
  {
2786
    DBUG_PRINT("info",("sel_arg step"));
2787
    cur_covered= test(bitmap_is_set(&info->covered_fields,
unknown's avatar
unknown committed
2788
                                    key_part[sel_arg->part].fieldnr));
2789
    if (cur_covered != prev_covered)
2790
    {
2791
      /* create (part1val, ..., part{n-1}val) tuple. */
unknown's avatar
unknown committed
2792 2793
      ha_rows records;
      if (!tuple_arg)
2794
      {
unknown's avatar
unknown committed
2795 2796
        tuple_arg= scan->sel_arg;
        /* Here we use the length of the first key part */
2797
        tuple_arg->store_min(key_part->store_length, &key_ptr, 0);
unknown's avatar
unknown committed
2798 2799 2800 2801
      }
      while (tuple_arg->next_key_part != sel_arg)
      {
        tuple_arg= tuple_arg->next_key_part;
2802
        tuple_arg->store_min(key_part[tuple_arg->part].store_length, &key_ptr, 0);
unknown's avatar
unknown committed
2803
      }
2804
      min_range.length= max_range.length= ((char*) key_ptr - (char*) key_val);
unknown's avatar
unknown committed
2805 2806
      records= (info->param->table->file->
                records_in_range(scan->keynr, &min_range, &max_range));
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
      if (cur_covered)
      {
        /* uncovered -> covered */
        double tmp= rows2double(records)/rows2double(prev_records);
        DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp));
        selectivity_mult *= tmp;
        prev_records= HA_POS_ERROR;
      }
      else
      {
        /* covered -> uncovered */
unknown's avatar
unknown committed
2818
        prev_records= records;
2819
      }
2820
    }
2821 2822 2823 2824
    prev_covered= cur_covered;
  }
  if (!prev_covered)
  {
2825
    double tmp= rows2double(info->param->table->quick_rows[scan->keynr]) /
2826 2827
                rows2double(prev_records);
    DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp));
unknown's avatar
unknown committed
2828
    selectivity_mult *= tmp;
2829
  }
2830 2831 2832
  DBUG_PRINT("info", ("Returning multiplier: %g", selectivity_mult));
  DBUG_RETURN(selectivity_mult);
}
2833

unknown's avatar
unknown committed
2834

2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
/*
  Check if adding a ROR scan to a ROR-intersection reduces its cost of
  ROR-intersection and if yes, update parameters of ROR-intersection,
  including its cost.

  SYNOPSIS
    ror_intersect_add()
      param        Parameter from test_quick_select
      info         ROR-intersection structure to add the scan to.
      ror_scan     ROR scan info to add.
      is_cpk_scan  If TRUE, add the scan as CPK scan (this can be inferred
                   from other parameters and is passed separately only to
                   avoid duplicating the inference code)

  NOTES
    Adding a ROR scan to ROR-intersect "makes sense" iff the cost of ROR-
    intersection decreases. The cost of ROR-intersection is calculated as
    follows:

    cost= SUM_i(key_scan_cost_i) + cost_of_full_rows_retrieval

    When we add a scan the first increases and the second decreases.

    cost_of_full_rows_retrieval=
      (union of indexes used covers all needed fields) ?
        cost_of_sweep_read(E(rows_to_retrieve), rows_in_table) :
        0

    E(rows_to_retrieve) = #rows_in_table * ror_scan_selectivity(null, scan1) *
                           ror_scan_selectivity({scan1}, scan2) * ... *
                           ror_scan_selectivity({scan1,...}, scanN). 
  RETURN
    TRUE   ROR scan added to ROR-intersection, cost updated.
    FALSE  It doesn't make sense to add this ROR scan to this ROR-intersection.
*/

static bool ror_intersect_add(ROR_INTERSECT_INFO *info,
unknown's avatar
unknown committed
2872
                              ROR_SCAN_INFO* ror_scan, bool is_cpk_scan)
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
{
  double selectivity_mult= 1.0;

  DBUG_ENTER("ror_intersect_add");
  DBUG_PRINT("info", ("Current out_rows= %g", info->out_rows));
  DBUG_PRINT("info", ("Adding scan on %s",
                      info->param->table->key_info[ror_scan->keynr].name));
  DBUG_PRINT("info", ("is_cpk_scan=%d",is_cpk_scan));

  selectivity_mult = ror_scan_selectivity(info, ror_scan);
2883 2884 2885
  if (selectivity_mult == 1.0)
  {
    /* Don't add this scan if it doesn't improve selectivity. */
2886
    DBUG_PRINT("info", ("The scan doesn't improve selectivity."));
unknown's avatar
unknown committed
2887
    DBUG_RETURN(FALSE);
2888
  }
2889 2890 2891 2892
  
  info->out_rows *= selectivity_mult;
  DBUG_PRINT("info", ("info->total_cost= %g", info->total_cost));
  
2893
  if (is_cpk_scan)
unknown's avatar
unknown committed
2894
  {
2895 2896 2897 2898 2899 2900
    /*
      CPK scan is used to filter out rows. We apply filtering for 
      each record of every scan. Assuming 1/TIME_FOR_COMPARE_ROWID
      per check this gives us:
    */
    info->index_scan_costs += rows2double(info->index_records) / 
2901 2902 2903 2904
                              TIME_FOR_COMPARE_ROWID;
  }
  else
  {
2905
    info->index_records += info->param->table->quick_rows[ror_scan->keynr];
2906 2907
    info->index_scan_costs += ror_scan->index_read_cost;
    bitmap_union(&info->covered_fields, &ror_scan->covered_fields);
2908 2909 2910 2911 2912 2913
    if (!info->is_covering && bitmap_is_subset(&info->param->needed_fields,
                                               &info->covered_fields))
    {
      DBUG_PRINT("info", ("ROR-intersect is covering now"));
      info->is_covering= TRUE;
    }
2914
  }
unknown's avatar
unknown committed
2915

2916
  info->total_cost= info->index_scan_costs;
2917
  DBUG_PRINT("info", ("info->total_cost= %g", info->total_cost));
2918 2919
  if (!info->is_covering)
  {
2920 2921 2922
    info->total_cost += 
      get_sweep_read_cost(info->param, double2rows(info->out_rows));
    DBUG_PRINT("info", ("info->total_cost= %g", info->total_cost));
2923
  }
2924
  DBUG_PRINT("info", ("New out_rows= %g", info->out_rows));
unknown's avatar
unknown committed
2925
  DBUG_PRINT("info", ("New cost= %g, %scovering", info->total_cost,
2926
                      info->is_covering?"" : "non-"));
2927
  DBUG_RETURN(TRUE);
2928 2929
}

2930

unknown's avatar
unknown committed
2931 2932
/*
  Get best ROR-intersection plan using non-covering ROR-intersection search
2933 2934 2935 2936
  algorithm. The returned plan may be covering.

  SYNOPSIS
    get_best_ror_intersect()
2937 2938 2939
      param            Parameter from test_quick_select function.
      tree             Transformed restriction condition to be used to look
                       for ROR scans.
2940
      read_time        Do not return read plans with cost > read_time.
unknown's avatar
unknown committed
2941
      are_all_covering [out] set to TRUE if union of all scans covers all
2942 2943
                       fields needed by the query (and it is possible to build
                       a covering ROR-intersection)
2944

2945
  NOTES
2946 2947 2948 2949 2950
    get_key_scans_params must be called before this function can be called.
    
    When this function is called by ROR-union construction algorithm it
    assumes it is building an uncovered ROR-intersection (and thus # of full
    records to be retrieved is wrong here). This is a hack.
unknown's avatar
unknown committed
2951

2952
  IMPLEMENTATION
2953
    The approximate best non-covering plan search algorithm is as follows:
2954

2955 2956 2957 2958
    find_min_ror_intersection_scan()
    {
      R= select all ROR scans;
      order R by (E(#records_matched) * key_record_length).
unknown's avatar
unknown committed
2959

2960 2961 2962 2963 2964 2965
      S= first(R); -- set of scans that will be used for ROR-intersection
      R= R-first(S);
      min_cost= cost(S);
      min_scan= make_scan(S);
      while (R is not empty)
      {
2966 2967
        firstR= R - first(R);
        if (!selectivity(S + firstR < selectivity(S)))
2968
          continue;
2969
          
2970 2971 2972 2973 2974 2975 2976 2977 2978
        S= S + first(R);
        if (cost(S) < min_cost)
        {
          min_cost= cost(S);
          min_scan= make_scan(S);
        }
      }
      return min_scan;
    }
2979

2980
    See ror_intersect_add function for ROR intersection costs.
2981

2982
    Special handling for Clustered PK scans
unknown's avatar
unknown committed
2983 2984
    Clustered PK contains all table fields, so using it as a regular scan in
    index intersection doesn't make sense: a range scan on CPK will be less
2985 2986
    expensive in this case.
    Clustered PK scan has special handling in ROR-intersection: it is not used
unknown's avatar
unknown committed
2987
    to retrieve rows, instead its condition is used to filter row references
2988
    we get from scans on other keys.
2989 2990

  RETURN
unknown's avatar
unknown committed
2991
    ROR-intersection table read plan
2992
    NULL if out of memory or no suitable plan found.
2993 2994
*/

2995 2996 2997 2998 2999 3000
static
TRP_ROR_INTERSECT *get_best_ror_intersect(const PARAM *param, SEL_TREE *tree,
                                          double read_time,
                                          bool *are_all_covering)
{
  uint idx;
3001
  double min_cost= DBL_MAX;
3002
  DBUG_ENTER("get_best_ror_intersect");
3003

unknown's avatar
unknown committed
3004
  if ((tree->n_ror_scans < 2) || !param->table->file->records)
3005
    DBUG_RETURN(NULL);
3006 3007

  /*
3008 3009
    Step1: Collect ROR-able SEL_ARGs and create ROR_SCAN_INFO for each of 
    them. Also find and save clustered PK scan if there is one.
3010
  */
3011
  ROR_SCAN_INFO **cur_ror_scan;
3012
  ROR_SCAN_INFO *cpk_scan= NULL;
3013
  uint cpk_no;
unknown's avatar
unknown committed
3014
  bool cpk_scan_used= FALSE;
3015

3016 3017 3018 3019
  if (!(tree->ror_scans= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
                                                     sizeof(ROR_SCAN_INFO*)*
                                                     param->keys)))
    return NULL;
3020 3021
  cpk_no= ((param->table->file->primary_key_is_clustered()) ?
           param->table->s->primary_key : MAX_KEY);
unknown's avatar
unknown committed
3022

3023
  for (idx= 0, cur_ror_scan= tree->ror_scans; idx < param->keys; idx++)
3024
  {
3025
    ROR_SCAN_INFO *scan;
3026
    if (!tree->ror_scans_map.is_set(idx))
3027
      continue;
3028
    if (!(scan= make_ror_scan(param, idx, tree->keys[idx])))
3029
      return NULL;
3030
    if (param->real_keynr[idx] == cpk_no)
3031
    {
3032 3033
      cpk_scan= scan;
      tree->n_ror_scans--;
3034 3035
    }
    else
3036
      *(cur_ror_scan++)= scan;
3037
  }
unknown's avatar
unknown committed
3038

3039
  tree->ror_scans_end= cur_ror_scan;
unknown's avatar
unknown committed
3040 3041
  DBUG_EXECUTE("info",print_ror_scans_arr(param->table, "original",
                                          tree->ror_scans,
3042 3043
                                          tree->ror_scans_end););
  /*
unknown's avatar
unknown committed
3044
    Ok, [ror_scans, ror_scans_end) is array of ptrs to initialized
3045 3046
    ROR_SCAN_INFO's.
    Step 2: Get best ROR-intersection using an approximate algorithm.
3047 3048 3049
  */
  qsort(tree->ror_scans, tree->n_ror_scans, sizeof(ROR_SCAN_INFO*),
        (qsort_cmp)cmp_ror_scan_info);
unknown's avatar
unknown committed
3050 3051
  DBUG_EXECUTE("info",print_ror_scans_arr(param->table, "ordered",
                                          tree->ror_scans,
3052
                                          tree->ror_scans_end););
unknown's avatar
unknown committed
3053

3054 3055 3056 3057 3058 3059 3060 3061 3062
  ROR_SCAN_INFO **intersect_scans; /* ROR scans used in index intersection */
  ROR_SCAN_INFO **intersect_scans_end;
  if (!(intersect_scans= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
                                                     sizeof(ROR_SCAN_INFO*)*
                                                     tree->n_ror_scans)))
    return NULL;
  intersect_scans_end= intersect_scans;

  /* Create and incrementally update ROR intersection. */
3063 3064 3065
  ROR_INTERSECT_INFO *intersect, *intersect_best;
  if (!(intersect= ror_intersect_init(param)) || 
      !(intersect_best= ror_intersect_init(param)))
3066
    return NULL;
unknown's avatar
unknown committed
3067

3068
  /* [intersect_scans,intersect_scans_best) will hold the best intersection */
unknown's avatar
unknown committed
3069
  ROR_SCAN_INFO **intersect_scans_best;
3070
  cur_ror_scan= tree->ror_scans;
3071
  intersect_scans_best= intersect_scans;
3072
  while (cur_ror_scan != tree->ror_scans_end && !intersect->is_covering)
3073
  {
3074
    /* S= S + first(R);  R= R - first(R); */
unknown's avatar
unknown committed
3075
    if (!ror_intersect_add(intersect, *cur_ror_scan, FALSE))
3076 3077 3078 3079 3080 3081
    {
      cur_ror_scan++;
      continue;
    }
    
    *(intersect_scans_end++)= *(cur_ror_scan++);
unknown's avatar
unknown committed
3082

3083
    if (intersect->total_cost < min_cost)
3084
    {
3085
      /* Local minimum found, save it */
3086
      ror_intersect_cpy(intersect_best, intersect);
3087
      intersect_scans_best= intersect_scans_end;
3088
      min_cost = intersect->total_cost;
3089 3090
    }
  }
unknown's avatar
unknown committed
3091

3092 3093 3094 3095 3096 3097
  if (intersect_scans_best == intersect_scans)
  {
    DBUG_PRINT("info", ("None of scans increase selectivity"));
    DBUG_RETURN(NULL);
  }
    
3098 3099 3100 3101
  DBUG_EXECUTE("info",print_ror_scans_arr(param->table,
                                          "best ROR-intersection",
                                          intersect_scans,
                                          intersect_scans_best););
unknown's avatar
unknown committed
3102

3103
  *are_all_covering= intersect->is_covering;
unknown's avatar
unknown committed
3104
  uint best_num= intersect_scans_best - intersect_scans;
3105 3106
  ror_intersect_cpy(intersect, intersect_best);

3107 3108
  /*
    Ok, found the best ROR-intersection of non-CPK key scans.
3109 3110
    Check if we should add a CPK scan. If the obtained ROR-intersection is 
    covering, it doesn't make sense to add CPK scan.
3111 3112
  */
  if (cpk_scan && !intersect->is_covering)
3113
  {
3114
    if (ror_intersect_add(intersect, cpk_scan, TRUE) && 
3115
        (intersect->total_cost < min_cost))
3116
    {
unknown's avatar
unknown committed
3117
      cpk_scan_used= TRUE;
3118
      intersect_best= intersect; //just set pointer here
3119 3120
    }
  }
unknown's avatar
unknown committed
3121

3122
  /* Ok, return ROR-intersect plan if we have found one */
3123
  TRP_ROR_INTERSECT *trp= NULL;
3124
  if (min_cost < read_time && (cpk_scan_used || best_num > 1))
3125
  {
3126 3127
    if (!(trp= new (param->mem_root) TRP_ROR_INTERSECT))
      DBUG_RETURN(trp);
unknown's avatar
unknown committed
3128 3129
    if (!(trp->first_scan=
           (ROR_SCAN_INFO**)alloc_root(param->mem_root,
3130 3131 3132 3133
                                       sizeof(ROR_SCAN_INFO*)*best_num)))
      DBUG_RETURN(NULL);
    memcpy(trp->first_scan, intersect_scans, best_num*sizeof(ROR_SCAN_INFO*));
    trp->last_scan=  trp->first_scan + best_num;
3134 3135 3136 3137 3138 3139
    trp->is_covering= intersect_best->is_covering;
    trp->read_cost= intersect_best->total_cost;
    /* Prevent divisons by zero */
    ha_rows best_rows = double2rows(intersect_best->out_rows);
    if (!best_rows)
      best_rows= 1;
unknown's avatar
unknown committed
3140
    trp->records= best_rows;
3141 3142 3143 3144 3145
    trp->index_scan_costs= intersect_best->index_scan_costs;
    trp->cpk_scan= cpk_scan_used? cpk_scan: NULL;
    DBUG_PRINT("info", ("Returning non-covering ROR-intersect plan:"
                        "cost %g, records %lu",
                        trp->read_cost, (ulong) trp->records));
unknown's avatar
unknown committed
3146
  }
3147
  DBUG_RETURN(trp);
3148 3149 3150 3151
}


/*
3152
  Get best covering ROR-intersection.
3153
  SYNOPSIS
3154
    get_best_covering_ror_intersect()
3155 3156 3157
      param     Parameter from test_quick_select function.
      tree      SEL_TREE with sets of intervals for different keys.
      read_time Don't return table read plans with cost > read_time.
3158

unknown's avatar
unknown committed
3159 3160
  RETURN
    Best covering ROR-intersection plan
3161
    NULL if no plan found.
3162 3163

  NOTES
3164
    get_best_ror_intersect must be called for a tree before calling this
unknown's avatar
unknown committed
3165
    function for it.
3166
    This function invalidates tree->ror_scans member values.
unknown's avatar
unknown committed
3167

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
  The following approximate algorithm is used:
    I=set of all covering indexes
    F=set of all fields to cover
    S={}

    do {
      Order I by (#covered fields in F desc,
                  #components asc,
                  number of first not covered component asc);
      F=F-covered by first(I);
      S=S+first(I);
      I=I-first(I);
    } while F is not empty.
3181 3182
*/

3183
static
unknown's avatar
unknown committed
3184 3185
TRP_ROR_INTERSECT *get_best_covering_ror_intersect(PARAM *param,
                                                   SEL_TREE *tree,
3186
                                                   double read_time)
3187
{
3188
  ROR_SCAN_INFO **ror_scan_mark;
unknown's avatar
unknown committed
3189
  ROR_SCAN_INFO **ror_scans_end= tree->ror_scans_end;
3190 3191 3192 3193
  DBUG_ENTER("get_best_covering_ror_intersect");
  uint nbits= param->fields_bitmap_size*8;

  for (ROR_SCAN_INFO **scan= tree->ror_scans; scan != ror_scans_end; ++scan)
unknown's avatar
unknown committed
3194
    (*scan)->key_components=
3195
      param->table->key_info[(*scan)->keynr].key_parts;
unknown's avatar
unknown committed
3196

3197 3198
  /*
    Run covering-ROR-search algorithm.
unknown's avatar
unknown committed
3199
    Assume set I is [ror_scan .. ror_scans_end)
3200
  */
unknown's avatar
unknown committed
3201

3202 3203
  /*I=set of all covering indexes */
  ror_scan_mark= tree->ror_scans;
unknown's avatar
unknown committed
3204

3205 3206
  uchar buf[MAX_KEY/8+1];
  MY_BITMAP covered_fields;
unknown's avatar
unknown committed
3207
  if (bitmap_init(&covered_fields, buf, nbits, FALSE))
3208 3209 3210 3211 3212
    DBUG_RETURN(0);
  bitmap_clear_all(&covered_fields);

  double total_cost= 0.0f;
  ha_rows records=0;
unknown's avatar
unknown committed
3213 3214
  bool all_covered;

3215 3216 3217 3218 3219 3220
  DBUG_PRINT("info", ("Building covering ROR-intersection"));
  DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
                                           "building covering ROR-I",
                                           ror_scan_mark, ror_scans_end););
  do {
    /*
unknown's avatar
unknown committed
3221
      Update changed sorting info:
3222
        #covered fields,
unknown's avatar
unknown committed
3223
	number of first not covered component
3224 3225 3226 3227 3228
      Calculate and save these values for each of remaining scans.
    */
    for (ROR_SCAN_INFO **scan= ror_scan_mark; scan != ror_scans_end; ++scan)
    {
      bitmap_subtract(&(*scan)->covered_fields, &covered_fields);
unknown's avatar
unknown committed
3229
      (*scan)->used_fields_covered=
3230
        bitmap_bits_set(&(*scan)->covered_fields);
unknown's avatar
unknown committed
3231
      (*scan)->first_uncovered_field=
3232 3233 3234 3235 3236 3237 3238 3239 3240
        bitmap_get_first(&(*scan)->covered_fields);
    }

    qsort(ror_scan_mark, ror_scans_end-ror_scan_mark, sizeof(ROR_SCAN_INFO*),
          (qsort_cmp)cmp_ror_scan_info_covering);

    DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
                                             "remaining scans",
                                             ror_scan_mark, ror_scans_end););
unknown's avatar
unknown committed
3241

3242 3243 3244
    /* I=I-first(I) */
    total_cost += (*ror_scan_mark)->index_read_cost;
    records += (*ror_scan_mark)->records;
unknown's avatar
unknown committed
3245
    DBUG_PRINT("info", ("Adding scan on %s",
3246 3247 3248 3249 3250 3251
                        param->table->key_info[(*ror_scan_mark)->keynr].name));
    if (total_cost > read_time)
      DBUG_RETURN(NULL);
    /* F=F-covered by first(I) */
    bitmap_union(&covered_fields, &(*ror_scan_mark)->covered_fields);
    all_covered= bitmap_is_subset(&param->needed_fields, &covered_fields);
3252 3253 3254 3255
  } while ((++ror_scan_mark < ror_scans_end) && !all_covered);
  
  if (!all_covered || (ror_scan_mark - tree->ror_scans) == 1)
    DBUG_RETURN(NULL);
3256 3257 3258 3259 3260 3261 3262 3263 3264

  /*
    Ok, [tree->ror_scans .. ror_scan) holds covering index_intersection with
    cost total_cost.
  */
  DBUG_PRINT("info", ("Covering ROR-intersect scans cost: %g", total_cost));
  DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
                                           "creating covering ROR-intersect",
                                           tree->ror_scans, ror_scan_mark););
unknown's avatar
unknown committed
3265

3266
  /* Add priority queue use cost. */
unknown's avatar
unknown committed
3267 3268
  total_cost += rows2double(records)*
                log((double)(ror_scan_mark - tree->ror_scans)) /
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
                (TIME_FOR_COMPARE_ROWID * M_LN2);
  DBUG_PRINT("info", ("Covering ROR-intersect full cost: %g", total_cost));

  if (total_cost > read_time)
    DBUG_RETURN(NULL);

  TRP_ROR_INTERSECT *trp;
  if (!(trp= new (param->mem_root) TRP_ROR_INTERSECT))
    DBUG_RETURN(trp);
  uint best_num= (ror_scan_mark - tree->ror_scans);
  if (!(trp->first_scan= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
                                                     sizeof(ROR_SCAN_INFO*)*
                                                     best_num)))
    DBUG_RETURN(NULL);
3283
  memcpy(trp->first_scan, tree->ror_scans, best_num*sizeof(ROR_SCAN_INFO*));
3284
  trp->last_scan=  trp->first_scan + best_num;
unknown's avatar
unknown committed
3285
  trp->is_covering= TRUE;
3286 3287
  trp->read_cost= total_cost;
  trp->records= records;
3288
  trp->cpk_scan= NULL;
3289

3290 3291 3292
  DBUG_PRINT("info",
             ("Returning covering ROR-intersect plan: cost %g, records %lu",
              trp->read_cost, (ulong) trp->records));
3293
  DBUG_RETURN(trp);
3294 3295 3296
}


unknown's avatar
unknown committed
3297
/*
unknown's avatar
unknown committed
3298
  Get best "range" table read plan for given SEL_TREE.
3299
  Also update PARAM members and store ROR scans info in the SEL_TREE.
3300
  SYNOPSIS
3301
    get_key_scans_params
3302
      param        parameters from test_quick_select
unknown's avatar
unknown committed
3303
      tree         make range select for this SEL_TREE
unknown's avatar
unknown committed
3304
      index_read_must_be_used if TRUE, assume 'index only' option will be set
3305
                             (except for clustered PK indexes)
3306 3307
      read_time    don't create read plans with cost > read_time.
  RETURN
unknown's avatar
unknown committed
3308
    Best range read plan
3309
    NULL if no plan found or error occurred
unknown's avatar
unknown committed
3310 3311
*/

3312
static TRP_RANGE *get_key_scans_params(PARAM *param, SEL_TREE *tree,
unknown's avatar
unknown committed
3313
                                       bool index_read_must_be_used,
3314
                                       double read_time)
unknown's avatar
unknown committed
3315 3316
{
  int idx;
3317 3318 3319
  SEL_ARG **key,**end, **key_to_read= NULL;
  ha_rows best_records;
  TRP_RANGE* read_plan= NULL;
3320
  bool pk_is_clustered= param->table->file->primary_key_is_clustered();
3321 3322
  DBUG_ENTER("get_key_scans_params");
  LINT_INIT(best_records); /* protected by key_to_read */
unknown's avatar
unknown committed
3323
  /*
unknown's avatar
unknown committed
3324 3325
    Note that there may be trees that have type SEL_TREE::KEY but contain no
    key reads at all, e.g. tree for expression "key1 is not null" where key1
3326
    is defined as "not null".
unknown's avatar
unknown committed
3327 3328
  */
  DBUG_EXECUTE("info", print_sel_tree(param, tree, &tree->keys_map,
3329 3330 3331 3332
                                      "tree scans"););
  tree->ror_scans_map.clear_all();
  tree->n_ror_scans= 0;
  for (idx= 0,key=tree->keys, end=key+param->keys;
unknown's avatar
unknown committed
3333 3334 3335 3336 3337 3338 3339
       key != end ;
       key++,idx++)
  {
    ha_rows found_records;
    double found_read_time;
    if (*key)
    {
3340
      uint keynr= param->real_keynr[idx];
unknown's avatar
unknown committed
3341 3342
      if ((*key)->type == SEL_ARG::MAYBE_KEY ||
          (*key)->maybe_flag)
3343
        param->needed_reg->set_bit(keynr);
unknown's avatar
unknown committed
3344

unknown's avatar
unknown committed
3345 3346
      bool read_index_only= index_read_must_be_used ? TRUE :
                            (bool) param->table->used_keys.is_set(keynr);
3347

3348 3349 3350 3351 3352 3353
      found_records= check_quick_select(param, idx, *key);
      if (param->is_ror_scan)
      {
        tree->n_ror_scans++;
        tree->ror_scans_map.set_bit(idx);
      }
3354
      double cpu_cost= (double) found_records / TIME_FOR_COMPARE;
unknown's avatar
unknown committed
3355
      if (found_records != HA_POS_ERROR && found_records > 2 &&
unknown's avatar
unknown committed
3356
          read_index_only &&
unknown's avatar
unknown committed
3357
          (param->table->file->index_flags(keynr, param->max_key_part,1) &
unknown's avatar
unknown committed
3358
           HA_KEYREAD_ONLY) &&
3359
          !(pk_is_clustered && keynr == param->table->s->primary_key))
3360 3361 3362 3363 3364
      {
        /*
          We can resolve this by only reading through this key. 
          0.01 is added to avoid races between range and 'index' scan.
        */
3365
        found_read_time= get_index_only_read_time(param,found_records,keynr) +
3366 3367
                         cpu_cost + 0.01;
      }
unknown's avatar
unknown committed
3368
      else
3369
      {
unknown's avatar
unknown committed
3370
        /*
3371 3372 3373
          cost(read_through_index) = cost(disk_io) + cost(row_in_range_checks)
          The row_in_range check is in QUICK_RANGE_SELECT::cmp_next function.
        */
3374 3375 3376
	found_read_time= param->table->file->read_time(keynr,
                                                       param->range_count,
                                                       found_records) +
3377 3378
			 cpu_cost + 0.01;
      }
3379 3380 3381
      DBUG_PRINT("info",("key %s: found_read_time: %g (cur. read_time: %g)",
                         param->table->key_info[keynr].name, found_read_time,
                         read_time));
3382

3383 3384
      if (read_time > found_read_time && found_records != HA_POS_ERROR
          /*|| read_time == DBL_MAX*/ )
unknown's avatar
unknown committed
3385
      {
3386
        read_time=    found_read_time;
unknown's avatar
unknown committed
3387
        best_records= found_records;
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
        key_to_read=  key;
      }

    }
  }

  DBUG_EXECUTE("info", print_sel_tree(param, tree, &tree->ror_scans_map,
                                      "ROR scans"););
  if (key_to_read)
  {
    idx= key_to_read - tree->keys;
    if ((read_plan= new (param->mem_root) TRP_RANGE(*key_to_read, idx)))
    {
      read_plan->records= best_records;
      read_plan->is_ror= tree->ror_scans_map.is_set(idx);
      read_plan->read_cost= read_time;
3404 3405 3406 3407
      DBUG_PRINT("info",
                 ("Returning range plan for key %s, cost %g, records %lu",
                  param->table->key_info[param->real_keynr[idx]].name,
                  read_plan->read_cost, (ulong) read_plan->records));
3408 3409 3410 3411 3412 3413 3414 3415 3416
    }
  }
  else
    DBUG_PRINT("info", ("No 'range' table read plan found"));

  DBUG_RETURN(read_plan);
}


unknown's avatar
unknown committed
3417
QUICK_SELECT_I *TRP_INDEX_MERGE::make_quick(PARAM *param,
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
                                            bool retrieve_full_rows,
                                            MEM_ROOT *parent_alloc)
{
  QUICK_INDEX_MERGE_SELECT *quick_imerge;
  QUICK_RANGE_SELECT *quick;
  /* index_merge always retrieves full rows, ignore retrieve_full_rows */
  if (!(quick_imerge= new QUICK_INDEX_MERGE_SELECT(param->thd, param->table)))
    return NULL;

  quick_imerge->records= records;
  quick_imerge->read_time= read_cost;
unknown's avatar
unknown committed
3429 3430
  for (TRP_RANGE **range_scan= range_scans; range_scan != range_scans_end;
       range_scan++)
3431 3432
  {
    if (!(quick= (QUICK_RANGE_SELECT*)
unknown's avatar
unknown committed
3433
          ((*range_scan)->make_quick(param, FALSE, &quick_imerge->alloc)))||
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
        quick_imerge->push_quick_back(quick))
    {
      delete quick;
      delete quick_imerge;
      return NULL;
    }
  }
  return quick_imerge;
}

unknown's avatar
unknown committed
3444
QUICK_SELECT_I *TRP_ROR_INTERSECT::make_quick(PARAM *param,
3445 3446 3447 3448 3449 3450 3451
                                              bool retrieve_full_rows,
                                              MEM_ROOT *parent_alloc)
{
  QUICK_ROR_INTERSECT_SELECT *quick_intrsect;
  QUICK_RANGE_SELECT *quick;
  DBUG_ENTER("TRP_ROR_INTERSECT::make_quick");
  MEM_ROOT *alloc;
unknown's avatar
unknown committed
3452 3453

  if ((quick_intrsect=
3454
         new QUICK_ROR_INTERSECT_SELECT(param->thd, param->table,
unknown's avatar
unknown committed
3455
                                        retrieve_full_rows? (!is_covering):FALSE,
3456 3457
                                        parent_alloc)))
  {
unknown's avatar
unknown committed
3458
    DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
3459 3460 3461
                                             "creating ROR-intersect",
                                             first_scan, last_scan););
    alloc= parent_alloc? parent_alloc: &quick_intrsect->alloc;
unknown's avatar
unknown committed
3462
    for (; first_scan != last_scan;++first_scan)
3463 3464 3465 3466
    {
      if (!(quick= get_quick_select(param, (*first_scan)->idx,
                                    (*first_scan)->sel_arg, alloc)) ||
          quick_intrsect->push_quick_back(quick))
unknown's avatar
unknown committed
3467
      {
3468 3469
        delete quick_intrsect;
        DBUG_RETURN(NULL);
unknown's avatar
unknown committed
3470 3471
      }
    }
3472 3473 3474 3475
    if (cpk_scan)
    {
      if (!(quick= get_quick_select(param, cpk_scan->idx,
                                    cpk_scan->sel_arg, alloc)))
unknown's avatar
unknown committed
3476
      {
3477 3478
        delete quick_intrsect;
        DBUG_RETURN(NULL);
unknown's avatar
unknown committed
3479
      }
unknown's avatar
unknown committed
3480
      quick->file= NULL; 
3481
      quick_intrsect->cpk_quick= quick;
unknown's avatar
unknown committed
3482
    }
unknown's avatar
unknown committed
3483
    quick_intrsect->records= records;
3484
    quick_intrsect->read_time= read_cost;
unknown's avatar
unknown committed
3485
  }
3486 3487 3488
  DBUG_RETURN(quick_intrsect);
}

3489

unknown's avatar
unknown committed
3490
QUICK_SELECT_I *TRP_ROR_UNION::make_quick(PARAM *param,
3491 3492 3493 3494 3495 3496 3497
                                          bool retrieve_full_rows,
                                          MEM_ROOT *parent_alloc)
{
  QUICK_ROR_UNION_SELECT *quick_roru;
  TABLE_READ_PLAN **scan;
  QUICK_SELECT_I *quick;
  DBUG_ENTER("TRP_ROR_UNION::make_quick");
unknown's avatar
unknown committed
3498 3499
  /*
    It is impossible to construct a ROR-union that will not retrieve full
3500
    rows, ignore retrieve_full_rows parameter.
3501 3502 3503
  */
  if ((quick_roru= new QUICK_ROR_UNION_SELECT(param->thd, param->table)))
  {
unknown's avatar
unknown committed
3504
    for (scan= first_ror; scan != last_ror; scan++)
3505
    {
unknown's avatar
unknown committed
3506
      if (!(quick= (*scan)->make_quick(param, FALSE, &quick_roru->alloc)) ||
3507 3508 3509 3510 3511
          quick_roru->push_quick_back(quick))
        DBUG_RETURN(NULL);
    }
    quick_roru->records= records;
    quick_roru->read_time= read_cost;
unknown's avatar
unknown committed
3512
  }
3513
  DBUG_RETURN(quick_roru);
unknown's avatar
unknown committed
3514 3515
}

3516

unknown's avatar
unknown committed
3517
/*
unknown's avatar
unknown committed
3518
  Build a SEL_TREE for <> or NOT BETWEEN predicate
unknown's avatar
unknown committed
3519 3520 3521 3522 3523 3524
 
  SYNOPSIS
    get_ne_mm_tree()
      param       PARAM from SQL_SELECT::test_quick_select
      cond_func   item for the predicate
      field       field in the predicate
unknown's avatar
unknown committed
3525 3526
      lt_value    constant that field should be smaller
      gt_value    constant that field should be greaterr
unknown's avatar
unknown committed
3527 3528 3529
      cmp_type    compare type for the field

  RETURN 
unknown's avatar
unknown committed
3530 3531
    #  Pointer to tree built tree
    0  on error
unknown's avatar
unknown committed
3532 3533 3534
*/

static SEL_TREE *get_ne_mm_tree(PARAM *param, Item_func *cond_func, 
unknown's avatar
unknown committed
3535 3536
                                Field *field,
                                Item *lt_value, Item *gt_value,
unknown's avatar
unknown committed
3537 3538
                                Item_result cmp_type)
{
unknown's avatar
unknown committed
3539
  SEL_TREE *tree;
unknown's avatar
unknown committed
3540
  tree= get_mm_parts(param, cond_func, field, Item_func::LT_FUNC,
unknown's avatar
unknown committed
3541
                     lt_value, cmp_type);
unknown's avatar
unknown committed
3542 3543 3544 3545
  if (tree)
  {
    tree= tree_or(param, tree, get_mm_parts(param, cond_func, field,
					    Item_func::GT_FUNC,
unknown's avatar
unknown committed
3546
					    gt_value, cmp_type));
unknown's avatar
unknown committed
3547 3548 3549 3550 3551
  }
  return tree;
}
   

unknown's avatar
unknown committed
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
/*
  Build a SEL_TREE for a simple predicate
 
  SYNOPSIS
    get_func_mm_tree()
      param       PARAM from SQL_SELECT::test_quick_select
      cond_func   item for the predicate
      field       field in the predicate
      value       constant in the predicate
      cmp_type    compare type for the field
unknown's avatar
unknown committed
3562
      inv         TRUE <> NOT cond_func is considered
unknown's avatar
unknown committed
3563
                  (makes sense only when cond_func is BETWEEN or IN) 
unknown's avatar
unknown committed
3564 3565

  RETURN 
unknown's avatar
unknown committed
3566
    Pointer to the tree built tree
unknown's avatar
unknown committed
3567 3568
*/

3569 3570
static SEL_TREE *get_func_mm_tree(PARAM *param, Item_func *cond_func, 
                                  Field *field, Item *value,
unknown's avatar
unknown committed
3571
                                  Item_result cmp_type, bool inv)
3572 3573 3574 3575
{
  SEL_TREE *tree= 0;
  DBUG_ENTER("get_func_mm_tree");

unknown's avatar
unknown committed
3576
  switch (cond_func->functype()) {
unknown's avatar
unknown committed
3577

unknown's avatar
unknown committed
3578
  case Item_func::NE_FUNC:
unknown's avatar
unknown committed
3579
    tree= get_ne_mm_tree(param, cond_func, field, value, value, cmp_type);
unknown's avatar
unknown committed
3580
    break;
unknown's avatar
unknown committed
3581

unknown's avatar
unknown committed
3582
  case Item_func::BETWEEN:
unknown's avatar
unknown committed
3583 3584
    if (inv)
    {
unknown's avatar
unknown committed
3585 3586
      tree= get_ne_mm_tree(param, cond_func, field, cond_func->arguments()[1],
                           cond_func->arguments()[2], cmp_type);
unknown's avatar
unknown committed
3587 3588
    }
    else
3589
    {
unknown's avatar
unknown committed
3590 3591 3592 3593 3594 3595 3596 3597 3598
      tree= get_mm_parts(param, cond_func, field, Item_func::GE_FUNC,
		         cond_func->arguments()[1],cmp_type);
      if (tree)
      {
        tree= tree_and(param, tree, get_mm_parts(param, cond_func, field,
					         Item_func::LE_FUNC,
					         cond_func->arguments()[2],
                                                 cmp_type));
      }
3599
    }
unknown's avatar
unknown committed
3600
    break;
unknown's avatar
unknown committed
3601

unknown's avatar
unknown committed
3602
  case Item_func::IN_FUNC:
3603 3604
  {
    Item_func_in *func=(Item_func_in*) cond_func;
unknown's avatar
unknown committed
3605 3606

    if (inv)
3607
    {
3608
      if (func->array && func->cmp_type != ROW_RESULT)
3609
      {
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647
        /*
          We get here for conditions in form "t.key NOT IN (c1, c2, ...)" 
          (where c{i} are constants).
          Our goal is to produce a SEL_ARG graph that represents intervals:
          
          ($MIN<t.key<c1) OR (c1<t.key<c2) OR (c2<t.key<c3) OR ...    (*)
          
          where $MIN is either "-inf" or NULL.
          
          The most straightforward way to handle NOT IN would be to convert
          it to "(t.key != c1) AND (t.key != c2) AND ..." and let the range
          optimizer to build SEL_ARG graph from that. However that will cause
          the range optimizer to use O(N^2) memory (it's a bug, not filed),
          and people do use big NOT IN lists (see BUG#15872). Also, for big          
          NOT IN lists constructing/using graph (*) does not make the query
          faster.
          
          So, we will handle NOT IN manually in the following way:
          * if the number of entries in the NOT IN list is less then 
            NOT_IN_IGNORE_THRESHOLD, we will construct SEL_ARG graph (*)
            manually.
          * Otherwise, we will construct a smaller graph: for 
            "t.key NOT IN (c1,...cN)" we construct a graph representing 
            ($MIN < t.key) OR (cN < t.key)  // here sequence of c_i is
                                            // ordered.

          A note about partially-covering indexes: for those (e.g. for 
          "a CHAR(10), KEY(a(5))") the handling is correct (albeit not very
          efficient):
          Instead of "t.key < c1" we get "t.key <= prefix-val(c1)".
          Combining the intervals in (*) together, we get:
          (-inf<=t.key<=c1) OR (c1<=t.key<=c2) OR (c2<=t.key<=c3) OR ...
          i.e. actually we get intervals combined into one interval:
          (-inf<=t.key<=+inf). This doesn't make much sense but it doesn't
          cause any problems.
        */
        MEM_ROOT *tmp_root= param->mem_root;
        param->thd->mem_root= param->old_root;
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
        /* 
          Create one Item_type constant object. We'll need it as
          get_mm_parts only accepts constant values wrapped in Item_Type
          objects.
          We create the Item on param->mem_root which points to
          per-statement mem_root (while thd->mem_root is currently pointing
          to mem_root local to range optimizer).
        */
        Item *value_item= func->array->create_item();
        param->thd->mem_root= tmp_root;

        if (!value_item)
          break;
        
3662
        /* Get a SEL_TREE for "(-inf|NULL) < X < c_0" interval.  */
3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
        uint i=0;
        do 
        {
          func->array->value_to_item(i, value_item);
          tree= get_mm_parts(param, cond_func, field, Item_func::LT_FUNC,
                             value_item, cmp_type);
          if (!tree)
            break;
          i++;
        } while (i < func->array->count && tree->type == SEL_TREE::IMPOSSIBLE);

        if (!tree || tree->type == SEL_TREE::IMPOSSIBLE)
        {
          /* We get here in cases like "t.unsigned NOT IN (-1,-2,-3) */
          tree= NULL;
3678
          break;
3679
        }
3680 3681 3682 3683
#define NOT_IN_IGNORE_THRESHOLD 1000        
        SEL_TREE *tree2;
        if (func->array->count < NOT_IN_IGNORE_THRESHOLD)
        {
3684
          for (; i < func->array->count; i++)
3685 3686 3687 3688 3689 3690 3691
          {
            if (func->array->compare_elems(i, i-1))
            {
              /* Get a SEL_TREE for "-inf < X < c_i" interval */
              func->array->value_to_item(i, value_item);
              tree2= get_mm_parts(param, cond_func, field, Item_func::LT_FUNC,
                                  value_item, cmp_type);
3692 3693 3694 3695 3696 3697
              if (!tree2)
              {
                tree= NULL;
                break;
              }

3698 3699 3700
              /* Change all intervals to be "c_{i-1} < X < c_i" */
              for (uint idx= 0; idx < param->keys; idx++)
              {
3701 3702 3703
                SEL_ARG *new_interval, *last_val;
                if (((new_interval= tree2->keys[idx])) && 
                    ((last_val= tree->keys[idx]->last())))
3704 3705 3706 3707 3708
                {
                  new_interval->min_value= last_val->max_value;
                  new_interval->min_flag= NEAR_MIN;
                }
              }
3709 3710 3711 3712
              /* 
                The following doesn't try to allocate memory so no need to
                check for NULL.
              */
3713 3714 3715 3716 3717 3718
              tree= tree_or(param, tree, tree2);
            }
          }
        }
        else
          func->array->value_to_item(func->array->count - 1, value_item);
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
        
        if (tree && tree->type != SEL_TREE::IMPOSSIBLE)
        {
          /* 
            Get the SEL_TREE for the last "c_last < X < +inf" interval 
            (value_item cotains c_last already)
          */
          tree2= get_mm_parts(param, cond_func, field, Item_func::GT_FUNC,
                              value_item, cmp_type);
          tree= tree_or(param, tree, tree2);
        }
3730 3731 3732 3733 3734 3735 3736
      }
      else
      {
        tree= get_ne_mm_tree(param, cond_func, field,
                             func->arguments()[1], func->arguments()[1],
                             cmp_type);
        if (tree)
unknown's avatar
unknown committed
3737
        {
3738 3739 3740 3741 3742 3743 3744
          Item **arg, **end;
          for (arg= func->arguments()+2, end= arg+func->argument_count()-2;
               arg < end ; arg++)
          {
            tree=  tree_and(param, tree, get_ne_mm_tree(param, cond_func, field, 
                                                        *arg, *arg, cmp_type));
          }
unknown's avatar
unknown committed
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
        }
      }
    }
    else
    {    
      tree= get_mm_parts(param, cond_func, field, Item_func::EQ_FUNC,
                         func->arguments()[1], cmp_type);
      if (tree)
      {
        Item **arg, **end;
        for (arg= func->arguments()+2, end= arg+func->argument_count()-2;
             arg < end ; arg++)
        {
          tree= tree_or(param, tree, get_mm_parts(param, cond_func, field, 
                                                  Item_func::EQ_FUNC,
                                                  *arg, cmp_type));
        }
3762 3763
      }
    }
unknown's avatar
unknown committed
3764
    break;
3765
  }
unknown's avatar
unknown committed
3766
  default: 
3767
  {
unknown's avatar
unknown committed
3768 3769 3770 3771 3772 3773 3774
    /* 
       Here the function for the following predicates are processed:
       <, <=, =, >=, >, LIKE, IS NULL, IS NOT NULL.
       If the predicate is of the form (value op field) it is handled
       as the equivalent predicate (field rev_op value), e.g.
       2 <= a is handled as a >= 2.
    */
3775 3776 3777
    Item_func::Functype func_type=
      (value != cond_func->arguments()[0]) ? cond_func->functype() :
        ((Item_bool_func2*) cond_func)->rev_functype();
3778
    tree= get_mm_parts(param, cond_func, field, func_type, value, cmp_type);
3779
  }
unknown's avatar
unknown committed
3780 3781
  }

3782
  DBUG_RETURN(tree);
3783

3784 3785
}

unknown's avatar
unknown committed
3786 3787 3788 3789 3790
	/* make a select tree of all keys in condition */

static SEL_TREE *get_mm_tree(PARAM *param,COND *cond)
{
  SEL_TREE *tree=0;
3791 3792
  SEL_TREE *ftree= 0;
  Item_field *field_item= 0;
unknown's avatar
unknown committed
3793
  bool inv= FALSE;
3794
  Item *value;
unknown's avatar
unknown committed
3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
  DBUG_ENTER("get_mm_tree");

  if (cond->type() == Item::COND_ITEM)
  {
    List_iterator<Item> li(*((Item_cond*) cond)->argument_list());

    if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
    {
      tree=0;
      Item *item;
      while ((item=li++))
      {
	SEL_TREE *new_tree=get_mm_tree(param,item);
3808
	if (param->thd->is_fatal_error)
3809
	  DBUG_RETURN(0);	// out of memory
unknown's avatar
unknown committed
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
	tree=tree_and(param,tree,new_tree);
	if (tree && tree->type == SEL_TREE::IMPOSSIBLE)
	  break;
      }
    }
    else
    {						// COND OR
      tree=get_mm_tree(param,li++);
      if (tree)
      {
	Item *item;
	while ((item=li++))
	{
	  SEL_TREE *new_tree=get_mm_tree(param,item);
	  if (!new_tree)
3825
	    DBUG_RETURN(0);	// out of memory
unknown's avatar
unknown committed
3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
	  tree=tree_or(param,tree,new_tree);
	  if (!tree || tree->type == SEL_TREE::ALWAYS)
	    break;
	}
      }
    }
    DBUG_RETURN(tree);
  }
  /* Here when simple cond */
  if (cond->const_item())
  {
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
    /*
      During the cond->val_int() evaluation we can come across a subselect 
      item which may allocate memory on the thd->mem_root and assumes 
      all the memory allocated has the same life span as the subselect 
      item itself. So we have to restore the thread's mem_root here.
    */
    MEM_ROOT *tmp_root= param->mem_root;
    param->thd->mem_root= param->old_root;
    tree= cond->val_int() ? new(tmp_root) SEL_TREE(SEL_TREE::ALWAYS) :
                            new(tmp_root) SEL_TREE(SEL_TREE::IMPOSSIBLE);
    param->thd->mem_root= tmp_root;
    DBUG_RETURN(tree);
unknown's avatar
unknown committed
3849
  }
3850

3851 3852 3853
  table_map ref_tables= 0;
  table_map param_comp= ~(param->prev_tables | param->read_tables |
		          param->current_table);
unknown's avatar
unknown committed
3854 3855
  if (cond->type() != Item::FUNC_ITEM)
  {						// Should be a field
3856
    ref_tables= cond->used_tables();
unknown's avatar
unknown committed
3857 3858
    if ((ref_tables & param->current_table) ||
	(ref_tables & ~(param->prev_tables | param->read_tables)))
unknown's avatar
unknown committed
3859 3860 3861
      DBUG_RETURN(0);
    DBUG_RETURN(new SEL_TREE(SEL_TREE::MAYBE));
  }
3862

unknown's avatar
unknown committed
3863
  Item_func *cond_func= (Item_func*) cond;
3864 3865 3866
  if (cond_func->functype() == Item_func::BETWEEN ||
      cond_func->functype() == Item_func::IN_FUNC)
    inv= ((Item_func_opt_neg *) cond_func)->negated;
unknown's avatar
unknown committed
3867
  else if (cond_func->select_optimize() == Item_func::OPTIMIZE_NONE)
unknown's avatar
unknown committed
3868
    DBUG_RETURN(0);			       
3869

unknown's avatar
unknown committed
3870 3871
  param->cond= cond;

unknown's avatar
unknown committed
3872 3873
  switch (cond_func->functype()) {
  case Item_func::BETWEEN:
3874
    if (cond_func->arguments()[0]->real_item()->type() != Item::FIELD_ITEM)
unknown's avatar
unknown committed
3875
      DBUG_RETURN(0);
3876
    field_item= (Item_field*) (cond_func->arguments()[0]->real_item());
unknown's avatar
unknown committed
3877 3878 3879
    value= NULL;
    break;
  case Item_func::IN_FUNC:
unknown's avatar
unknown committed
3880 3881
  {
    Item_func_in *func=(Item_func_in*) cond_func;
3882
    if (func->key_item()->real_item()->type() != Item::FIELD_ITEM)
3883
      DBUG_RETURN(0);
3884
    field_item= (Item_field*) (func->key_item()->real_item());
unknown's avatar
unknown committed
3885 3886
    value= NULL;
    break;
3887
  }
unknown's avatar
unknown committed
3888
  case Item_func::MULT_EQUAL_FUNC:
unknown's avatar
unknown committed
3889
  {
3890 3891
    Item_equal *item_equal= (Item_equal *) cond;    
    if (!(value= item_equal->get_const()))
unknown's avatar
unknown committed
3892 3893 3894 3895
      DBUG_RETURN(0);
    Item_equal_iterator it(*item_equal);
    ref_tables= value->used_tables();
    while ((field_item= it++))
unknown's avatar
unknown committed
3896
    {
unknown's avatar
unknown committed
3897 3898 3899
      Field *field= field_item->field;
      Item_result cmp_type= field->cmp_type();
      if (!((ref_tables | field->table->map) & param_comp))
unknown's avatar
unknown committed
3900
      {
3901
        tree= get_mm_parts(param, cond, field, Item_func::EQ_FUNC,
unknown's avatar
unknown committed
3902 3903
		           value,cmp_type);
        ftree= !ftree ? tree : tree_and(param, ftree, tree);
unknown's avatar
unknown committed
3904 3905
      }
    }
unknown's avatar
unknown committed
3906
    
3907
    DBUG_RETURN(ftree);
unknown's avatar
unknown committed
3908 3909
  }
  default:
unknown's avatar
unknown committed
3910
    if (cond_func->arguments()[0]->real_item()->type() == Item::FIELD_ITEM)
unknown's avatar
unknown committed
3911
    {
unknown's avatar
unknown committed
3912
      field_item= (Item_field*) (cond_func->arguments()[0]->real_item());
unknown's avatar
unknown committed
3913
      value= cond_func->arg_count > 1 ? cond_func->arguments()[1] : 0;
unknown's avatar
unknown committed
3914
    }
unknown's avatar
unknown committed
3915
    else if (cond_func->have_rev_func() &&
unknown's avatar
unknown committed
3916 3917
             cond_func->arguments()[1]->real_item()->type() ==
                                                            Item::FIELD_ITEM)
unknown's avatar
unknown committed
3918
    {
unknown's avatar
unknown committed
3919
      field_item= (Item_field*) (cond_func->arguments()[1]->real_item());
unknown's avatar
unknown committed
3920 3921 3922 3923
      value= cond_func->arguments()[0];
    }
    else
      DBUG_RETURN(0);
unknown's avatar
unknown committed
3924
  }
unknown's avatar
unknown committed
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939

  /* 
     If the where condition contains a predicate (ti.field op const),
     then not only SELL_TREE for this predicate is built, but
     the trees for the results of substitution of ti.field for
     each tj.field belonging to the same multiple equality as ti.field
     are built as well.
     E.g. for WHERE t1.a=t2.a AND t2.a > 10 
     a SEL_TREE for t2.a > 10 will be built for quick select from t2
     and   
     a SEL_TREE for t1.a > 10 will be built for quick select from t1.
  */
     
  for (uint i= 0; i < cond_func->arg_count; i++)
  {
unknown's avatar
unknown committed
3940
    Item *arg= cond_func->arguments()[i]->real_item();
unknown's avatar
unknown committed
3941 3942 3943 3944 3945 3946
    if (arg != field_item)
      ref_tables|= arg->used_tables();
  }
  Field *field= field_item->field;
  Item_result cmp_type= field->cmp_type();
  if (!((ref_tables | field->table->map) & param_comp))
unknown's avatar
unknown committed
3947
    ftree= get_func_mm_tree(param, cond_func, field, value, cmp_type, inv);
unknown's avatar
unknown committed
3948 3949 3950 3951 3952 3953
  Item_equal *item_equal= field_item->item_equal;
  if (item_equal)
  {
    Item_equal_iterator it(*item_equal);
    Item_field *item;
    while ((item= it++))
unknown's avatar
unknown committed
3954
    {
unknown's avatar
unknown committed
3955 3956 3957 3958
      Field *f= item->field;
      if (field->eq(f))
        continue;
      if (!((ref_tables | f->table->map) & param_comp))
unknown's avatar
unknown committed
3959
      {
unknown's avatar
unknown committed
3960
        tree= get_func_mm_tree(param, cond_func, f, value, cmp_type, inv);
unknown's avatar
unknown committed
3961
        ftree= !ftree ? tree : tree_and(param, ftree, tree);
unknown's avatar
unknown committed
3962 3963 3964
      }
    }
  }
unknown's avatar
unknown committed
3965
  DBUG_RETURN(ftree);
unknown's avatar
unknown committed
3966 3967 3968 3969
}


static SEL_TREE *
3970
get_mm_parts(PARAM *param, COND *cond_func, Field *field,
unknown's avatar
unknown committed
3971
	     Item_func::Functype type,
3972
	     Item *value, Item_result cmp_type)
unknown's avatar
unknown committed
3973 3974 3975 3976 3977
{
  DBUG_ENTER("get_mm_parts");
  if (field->table != param->table)
    DBUG_RETURN(0);

3978 3979
  KEY_PART *key_part = param->key_parts;
  KEY_PART *end = param->key_parts_end;
unknown's avatar
unknown committed
3980 3981 3982 3983
  SEL_TREE *tree=0;
  if (value &&
      value->used_tables() & ~(param->prev_tables | param->read_tables))
    DBUG_RETURN(0);
3984
  for (; key_part != end ; key_part++)
unknown's avatar
unknown committed
3985 3986 3987 3988
  {
    if (field->eq(key_part->field))
    {
      SEL_ARG *sel_arg=0;
3989
      if (!tree && !(tree=new SEL_TREE()))
3990
	DBUG_RETURN(0);				// OOM
unknown's avatar
unknown committed
3991 3992
      if (!value || !(value->used_tables() & ~param->read_tables))
      {
3993 3994
	sel_arg=get_mm_leaf(param,cond_func,
			    key_part->field,key_part,type,value);
unknown's avatar
unknown committed
3995 3996 3997 3998 3999 4000 4001 4002
	if (!sel_arg)
	  continue;
	if (sel_arg->type == SEL_ARG::IMPOSSIBLE)
	{
	  tree->type=SEL_TREE::IMPOSSIBLE;
	  DBUG_RETURN(tree);
	}
      }
4003 4004
      else
      {
4005
	// This key may be used later
unknown's avatar
unknown committed
4006
	if (!(sel_arg= new SEL_ARG(SEL_ARG::MAYBE_KEY)))
4007
	  DBUG_RETURN(0);			// OOM
4008
      }
unknown's avatar
unknown committed
4009 4010
      sel_arg->part=(uchar) key_part->part;
      tree->keys[key_part->key]=sel_add(tree->keys[key_part->key],sel_arg);
unknown's avatar
unknown committed
4011
      tree->keys_map.set_bit(key_part->key);
unknown's avatar
unknown committed
4012 4013
    }
  }
4014

unknown's avatar
unknown committed
4015 4016 4017 4018 4019
  DBUG_RETURN(tree);
}


static SEL_ARG *
4020
get_mm_leaf(PARAM *param, COND *conf_func, Field *field, KEY_PART *key_part,
unknown's avatar
unknown committed
4021 4022
	    Item_func::Functype type,Item *value)
{
4023
  uint maybe_null=(uint) field->real_maybe_null();
unknown's avatar
unknown committed
4024
  bool optimize_range;
4025 4026
  SEL_ARG *tree= 0;
  MEM_ROOT *alloc= param->mem_root;
4027
  char *str;
unknown's avatar
unknown committed
4028
  ulong orig_sql_mode;
unknown's avatar
unknown committed
4029 4030
  DBUG_ENTER("get_mm_leaf");

4031 4032
  /*
    We need to restore the runtime mem_root of the thread in this
unknown's avatar
unknown committed
4033
    function because it evaluates the value of its argument, while
4034 4035 4036 4037 4038 4039
    the argument can be any, e.g. a subselect. The subselect
    items, in turn, assume that all the memory allocated during
    the evaluation has the same life span as the item itself.
    TODO: opt_range.cc should not reset thd->mem_root at all.
  */
  param->thd->mem_root= param->old_root;
4040 4041
  if (!value)					// IS NULL or IS NOT NULL
  {
4042
    if (field->table->maybe_null)		// Can't use a key on this
4043
      goto end;
4044
    if (!maybe_null)				// Not null field
4045 4046 4047 4048 4049 4050 4051
    {
      if (type == Item_func::ISNULL_FUNC)
        tree= &null_element;
      goto end;
    }
    if (!(tree= new (alloc) SEL_ARG(field,is_null_string,is_null_string)))
      goto end;                                 // out of memory
4052 4053 4054 4055 4056
    if (type == Item_func::ISNOTNULL_FUNC)
    {
      tree->min_flag=NEAR_MIN;		    /* IS NOT NULL ->  X > NULL */
      tree->max_flag=NO_MAX_RANGE;
    }
4057
    goto end;
4058 4059 4060
  }

  /*
4061 4062 4063 4064 4065 4066 4067 4068 4069 4070
    1. Usually we can't use an index if the column collation
       differ from the operation collation.

    2. However, we can reuse a case insensitive index for
       the binary searches:

       WHERE latin1_swedish_ci_column = 'a' COLLATE lati1_bin;

       WHERE latin1_swedish_ci_colimn = BINARY 'a '

4071 4072 4073 4074
  */
  if (field->result_type() == STRING_RESULT &&
      value->result_type() == STRING_RESULT &&
      key_part->image_type == Field::itRAW &&
4075 4076
      ((Field_str*)field)->charset() != conf_func->compare_collation() &&
      !(conf_func->compare_collation()->state & MY_CS_BINSORT))
4077
    goto end;
4078

unknown's avatar
unknown committed
4079 4080 4081
  optimize_range= field->optimize_range(param->real_keynr[key_part->key],
                                        key_part->part);

unknown's avatar
unknown committed
4082 4083 4084 4085
  if (type == Item_func::LIKE_FUNC)
  {
    bool like_error;
    char buff1[MAX_FIELD_WIDTH],*min_str,*max_str;
4086
    String tmp(buff1,sizeof(buff1),value->collation.collation),*res;
unknown's avatar
unknown committed
4087
    uint length,offset,min_length,max_length;
4088
    uint field_length= field->pack_length()+maybe_null;
unknown's avatar
unknown committed
4089

unknown's avatar
unknown committed
4090
    if (!optimize_range)
4091
      goto end;
unknown's avatar
unknown committed
4092
    if (!(res= value->val_str(&tmp)))
4093 4094 4095 4096
    {
      tree= &null_element;
      goto end;
    }
unknown's avatar
unknown committed
4097

4098 4099 4100 4101 4102
    /*
      TODO:
      Check if this was a function. This should have be optimized away
      in the sql_select.cc
    */
unknown's avatar
unknown committed
4103 4104 4105 4106 4107 4108
    if (res != &tmp)
    {
      tmp.copy(*res);				// Get own copy
      res= &tmp;
    }
    if (field->cmp_type() != STRING_RESULT)
4109
      goto end;                                 // Can only optimize strings
unknown's avatar
unknown committed
4110 4111

    offset=maybe_null;
unknown's avatar
unknown committed
4112 4113 4114
    length=key_part->store_length;

    if (length != key_part->length  + maybe_null)
unknown's avatar
unknown committed
4115
    {
unknown's avatar
unknown committed
4116 4117 4118
      /* key packed with length prefix */
      offset+= HA_KEY_BLOB_LENGTH;
      field_length= length - HA_KEY_BLOB_LENGTH;
unknown's avatar
unknown committed
4119 4120 4121
    }
    else
    {
unknown's avatar
unknown committed
4122 4123 4124 4125 4126 4127 4128 4129
      if (unlikely(length < field_length))
      {
	/*
	  This can only happen in a table created with UNIREG where one key
	  overlaps many fields
	*/
	length= field_length;
      }
unknown's avatar
unknown committed
4130
      else
unknown's avatar
unknown committed
4131
	field_length= length;
unknown's avatar
unknown committed
4132 4133
    }
    length+=offset;
4134 4135
    if (!(min_str= (char*) alloc_root(alloc, length*2)))
      goto end;
4136

unknown's avatar
unknown committed
4137 4138 4139
    max_str=min_str+length;
    if (maybe_null)
      max_str[0]= min_str[0]=0;
4140

4141
    field_length-= maybe_null;
4142
    like_error= my_like_range(field->charset(),
unknown's avatar
unknown committed
4143
			      res->ptr(), res->length(),
unknown's avatar
unknown committed
4144 4145
			      ((Item_func_like*)(param->cond))->escape,
			      wild_one, wild_many,
4146
			      field_length,
unknown's avatar
unknown committed
4147 4148
			      min_str+offset, max_str+offset,
			      &min_length, &max_length);
unknown's avatar
unknown committed
4149
    if (like_error)				// Can't optimize with LIKE
4150
      goto end;
unknown's avatar
unknown committed
4151

4152
    if (offset != maybe_null)			// BLOB or VARCHAR
unknown's avatar
unknown committed
4153 4154 4155 4156
    {
      int2store(min_str+maybe_null,min_length);
      int2store(max_str+maybe_null,max_length);
    }
4157 4158
    tree= new (alloc) SEL_ARG(field, min_str, max_str);
    goto end;
unknown's avatar
unknown committed
4159 4160
  }

unknown's avatar
unknown committed
4161
  if (!optimize_range &&
unknown's avatar
unknown committed
4162
      type != Item_func::EQ_FUNC &&
unknown's avatar
unknown committed
4163
      type != Item_func::EQUAL_FUNC)
4164
    goto end;                                   // Can't optimize this
unknown's avatar
unknown committed
4165

4166 4167 4168 4169
  /*
    We can't always use indexes when comparing a string index to a number
    cmp_type() is checked to allow compare of dates to numbers
  */
unknown's avatar
unknown committed
4170 4171 4172
  if (field->result_type() == STRING_RESULT &&
      value->result_type() != STRING_RESULT &&
      field->cmp_type() != value->result_type())
4173
    goto end;
4174
  /* For comparison purposes allow invalid dates like 2000-01-32 */
unknown's avatar
unknown committed
4175
  orig_sql_mode= field->table->in_use->variables.sql_mode;
4176 4177 4178 4179
  if (value->real_item()->type() == Item::STRING_ITEM &&
      (field->type() == FIELD_TYPE_DATE ||
       field->type() == FIELD_TYPE_DATETIME))
    field->table->in_use->variables.sql_mode|= MODE_INVALID_DATES;
4180
  if (value->save_in_field_no_warnings(field, 1) < 0)
unknown's avatar
unknown committed
4181
  {
4182
    field->table->in_use->variables.sql_mode= orig_sql_mode;
4183
    /* This happens when we try to insert a NULL field in a not null column */
4184 4185
    tree= &null_element;                        // cmp with NULL is never TRUE
    goto end;
unknown's avatar
unknown committed
4186
  }
4187
  field->table->in_use->variables.sql_mode= orig_sql_mode;
4188
  str= (char*) alloc_root(alloc, key_part->store_length+1);
unknown's avatar
unknown committed
4189
  if (!str)
4190
    goto end;
unknown's avatar
unknown committed
4191
  if (maybe_null)
4192
    *str= (char) field->is_real_null();		// Set to 1 if null
4193
  field->get_key_image(str+maybe_null, key_part->length, key_part->image_type);
4194 4195
  if (!(tree= new (alloc) SEL_ARG(field, str, str)))
    goto end;                                   // out of memory
unknown's avatar
unknown committed
4196

unknown's avatar
unknown committed
4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
  /*
    Check if we are comparing an UNSIGNED integer with a negative constant.
    In this case we know that:
    (a) (unsigned_int [< | <=] negative_constant) == FALSE
    (b) (unsigned_int [> | >=] negative_constant) == TRUE
    In case (a) the condition is false for all values, and in case (b) it
    is true for all values, so we can avoid unnecessary retrieval and condition
    testing, and we also get correct comparison of unsinged integers with
    negative integers (which otherwise fails because at query execution time
    negative integers are cast to unsigned if compared with unsigned).
   */
unknown's avatar
unknown committed
4208 4209
  if (field->result_type() == INT_RESULT &&
      value->result_type() == INT_RESULT &&
unknown's avatar
unknown committed
4210 4211 4212 4213 4214 4215 4216 4217
      ((Field_num*)field)->unsigned_flag && !((Item_int*)value)->unsigned_flag)
  {
    longlong item_val= value->val_int();
    if (item_val < 0)
    {
      if (type == Item_func::LT_FUNC || type == Item_func::LE_FUNC)
      {
        tree->type= SEL_ARG::IMPOSSIBLE;
4218
        goto end;
unknown's avatar
unknown committed
4219 4220
      }
      if (type == Item_func::GT_FUNC || type == Item_func::GE_FUNC)
4221 4222 4223 4224
      {
        tree= 0;
        goto end;
      }
unknown's avatar
unknown committed
4225 4226 4227
    }
  }

unknown's avatar
unknown committed
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248
  switch (type) {
  case Item_func::LT_FUNC:
    if (field_is_equal_to_item(field,value))
      tree->max_flag=NEAR_MAX;
    /* fall through */
  case Item_func::LE_FUNC:
    if (!maybe_null)
      tree->min_flag=NO_MIN_RANGE;		/* From start */
    else
    {						// > NULL
      tree->min_value=is_null_string;
      tree->min_flag=NEAR_MIN;
    }
    break;
  case Item_func::GT_FUNC:
    if (field_is_equal_to_item(field,value))
      tree->min_flag=NEAR_MIN;
    /* fall through */
  case Item_func::GE_FUNC:
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4249
  case Item_func::SP_EQUALS_FUNC:
unknown's avatar
unknown committed
4250 4251 4252
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_EQUAL;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4253
  case Item_func::SP_DISJOINT_FUNC:
unknown's avatar
unknown committed
4254 4255 4256
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_DISJOINT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4257
  case Item_func::SP_INTERSECTS_FUNC:
unknown's avatar
unknown committed
4258 4259 4260
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4261
  case Item_func::SP_TOUCHES_FUNC:
unknown's avatar
unknown committed
4262 4263 4264
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4265 4266

  case Item_func::SP_CROSSES_FUNC:
unknown's avatar
unknown committed
4267 4268 4269
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4270
  case Item_func::SP_WITHIN_FUNC:
unknown's avatar
unknown committed
4271 4272 4273
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_WITHIN;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4274 4275

  case Item_func::SP_CONTAINS_FUNC:
unknown's avatar
unknown committed
4276 4277 4278
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_CONTAIN;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4279
  case Item_func::SP_OVERLAPS_FUNC:
unknown's avatar
unknown committed
4280 4281 4282
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4283

unknown's avatar
unknown committed
4284 4285 4286
  default:
    break;
  }
4287 4288 4289

end:
  param->thd->mem_root= alloc;
unknown's avatar
unknown committed
4290 4291 4292 4293 4294 4295 4296 4297 4298
  DBUG_RETURN(tree);
}


/******************************************************************************
** Tree manipulation functions
** If tree is 0 it means that the condition can't be tested. It refers
** to a non existent table or to a field in current table with isn't a key.
** The different tree flags:
unknown's avatar
unknown committed
4299 4300
** IMPOSSIBLE:	 Condition is never TRUE
** ALWAYS:	 Condition is always TRUE
unknown's avatar
unknown committed
4301 4302 4303 4304 4305 4306
** MAYBE:	 Condition may exists when tables are read
** MAYBE_KEY:	 Condition refers to a key that may be used in join loop
** KEY_RANGE:	 Condition uses a key
******************************************************************************/

/*
4307 4308
  Add a new key test to a key when scanning through all keys
  This will never be called for same key parts.
unknown's avatar
unknown committed
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
*/

static SEL_ARG *
sel_add(SEL_ARG *key1,SEL_ARG *key2)
{
  SEL_ARG *root,**key_link;

  if (!key1)
    return key2;
  if (!key2)
    return key1;

  key_link= &root;
  while (key1 && key2)
  {
    if (key1->part < key2->part)
    {
      *key_link= key1;
      key_link= &key1->next_key_part;
      key1=key1->next_key_part;
    }
    else
    {
      *key_link= key2;
      key_link= &key2->next_key_part;
      key2=key2->next_key_part;
    }
  }
  *key_link=key1 ? key1 : key2;
  return root;
}

#define CLONE_KEY1_MAYBE 1
#define CLONE_KEY2_MAYBE 2
#define swap_clone_flag(A) ((A & 1) << 1) | ((A & 2) >> 1)


static SEL_TREE *
tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
{
  DBUG_ENTER("tree_and");
  if (!tree1)
    DBUG_RETURN(tree2);
  if (!tree2)
    DBUG_RETURN(tree1);
  if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
    DBUG_RETURN(tree1);
  if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
    DBUG_RETURN(tree2);
  if (tree1->type == SEL_TREE::MAYBE)
  {
    if (tree2->type == SEL_TREE::KEY)
      tree2->type=SEL_TREE::KEY_SMALLER;
    DBUG_RETURN(tree2);
  }
  if (tree2->type == SEL_TREE::MAYBE)
  {
    tree1->type=SEL_TREE::KEY_SMALLER;
    DBUG_RETURN(tree1);
  }

unknown's avatar
unknown committed
4370 4371
  key_map  result_keys;
  result_keys.clear_all();
unknown's avatar
unknown committed
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
  /* Join the trees key per key */
  SEL_ARG **key1,**key2,**end;
  for (key1= tree1->keys,key2= tree2->keys,end=key1+param->keys ;
       key1 != end ; key1++,key2++)
  {
    uint flag=0;
    if (*key1 || *key2)
    {
      if (*key1 && !(*key1)->simple_key())
	flag|=CLONE_KEY1_MAYBE;
      if (*key2 && !(*key2)->simple_key())
	flag|=CLONE_KEY2_MAYBE;
      *key1=key_and(*key1,*key2,flag);
4385
      if (*key1 && (*key1)->type == SEL_ARG::IMPOSSIBLE)
unknown's avatar
unknown committed
4386 4387
      {
	tree1->type= SEL_TREE::IMPOSSIBLE;
unknown's avatar
unknown committed
4388
        DBUG_RETURN(tree1);
unknown's avatar
unknown committed
4389
      }
unknown's avatar
unknown committed
4390
      result_keys.set_bit(key1 - tree1->keys);
unknown's avatar
unknown committed
4391
#ifdef EXTRA_DEBUG
4392 4393
      if (*key1)
        (*key1)->test_use_count(*key1);
unknown's avatar
unknown committed
4394 4395 4396
#endif
    }
  }
unknown's avatar
unknown committed
4397 4398
  tree1->keys_map= result_keys;
  /* dispose index_merge if there is a "range" option */
unknown's avatar
unknown committed
4399
  if (!result_keys.is_clear_all())
unknown's avatar
unknown committed
4400 4401 4402 4403 4404 4405 4406
  {
    tree1->merges.empty();
    DBUG_RETURN(tree1);
  }

  /* ok, both trees are index_merge trees */
  imerge_list_and_list(&tree1->merges, &tree2->merges);
unknown's avatar
unknown committed
4407 4408 4409 4410
  DBUG_RETURN(tree1);
}


unknown's avatar
unknown committed
4411
/*
unknown's avatar
unknown committed
4412 4413
  Check if two SEL_TREES can be combined into one (i.e. a single key range
  read can be constructed for "cond_of_tree1 OR cond_of_tree2" ) without
4414
  using index_merge.
unknown's avatar
unknown committed
4415 4416 4417 4418
*/

bool sel_trees_can_be_ored(SEL_TREE *tree1, SEL_TREE *tree2, PARAM* param)
{
unknown's avatar
unknown committed
4419
  key_map common_keys= tree1->keys_map;
unknown's avatar
unknown committed
4420
  DBUG_ENTER("sel_trees_can_be_ored");
4421
  common_keys.intersect(tree2->keys_map);
unknown's avatar
unknown committed
4422

unknown's avatar
unknown committed
4423
  if (common_keys.is_clear_all())
unknown's avatar
unknown committed
4424
    DBUG_RETURN(FALSE);
unknown's avatar
unknown committed
4425 4426

  /* trees have a common key, check if they refer to same key part */
unknown's avatar
unknown committed
4427
  SEL_ARG **key1,**key2;
unknown's avatar
unknown committed
4428
  for (uint key_no=0; key_no < param->keys; key_no++)
unknown's avatar
unknown committed
4429
  {
unknown's avatar
unknown committed
4430
    if (common_keys.is_set(key_no))
unknown's avatar
unknown committed
4431 4432 4433 4434 4435
    {
      key1= tree1->keys + key_no;
      key2= tree2->keys + key_no;
      if ((*key1)->part == (*key2)->part)
      {
unknown's avatar
unknown committed
4436
        DBUG_RETURN(TRUE);
unknown's avatar
unknown committed
4437 4438 4439
      }
    }
  }
unknown's avatar
unknown committed
4440
  DBUG_RETURN(FALSE);
unknown's avatar
unknown committed
4441
}
unknown's avatar
unknown committed
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457

static SEL_TREE *
tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
{
  DBUG_ENTER("tree_or");
  if (!tree1 || !tree2)
    DBUG_RETURN(0);
  if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
    DBUG_RETURN(tree2);
  if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
    DBUG_RETURN(tree1);
  if (tree1->type == SEL_TREE::MAYBE)
    DBUG_RETURN(tree1);				// Can't use this
  if (tree2->type == SEL_TREE::MAYBE)
    DBUG_RETURN(tree2);

unknown's avatar
unknown committed
4458
  SEL_TREE *result= 0;
unknown's avatar
unknown committed
4459 4460
  key_map  result_keys;
  result_keys.clear_all();
unknown's avatar
unknown committed
4461
  if (sel_trees_can_be_ored(tree1, tree2, param))
unknown's avatar
unknown committed
4462
  {
unknown's avatar
unknown committed
4463 4464 4465 4466
    /* Join the trees key per key */
    SEL_ARG **key1,**key2,**end;
    for (key1= tree1->keys,key2= tree2->keys,end= key1+param->keys ;
         key1 != end ; key1++,key2++)
unknown's avatar
unknown committed
4467
    {
unknown's avatar
unknown committed
4468 4469 4470 4471
      *key1=key_or(*key1,*key2);
      if (*key1)
      {
        result=tree1;				// Added to tree1
unknown's avatar
unknown committed
4472
        result_keys.set_bit(key1 - tree1->keys);
unknown's avatar
unknown committed
4473
#ifdef EXTRA_DEBUG
unknown's avatar
unknown committed
4474
        (*key1)->test_use_count(*key1);
unknown's avatar
unknown committed
4475
#endif
unknown's avatar
unknown committed
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506
      }
    }
    if (result)
      result->keys_map= result_keys;
  }
  else
  {
    /* ok, two trees have KEY type but cannot be used without index merge */
    if (tree1->merges.is_empty() && tree2->merges.is_empty())
    {
      SEL_IMERGE *merge;
      /* both trees are "range" trees, produce new index merge structure */
      if (!(result= new SEL_TREE()) || !(merge= new SEL_IMERGE()) ||
          (result->merges.push_back(merge)) ||
          (merge->or_sel_tree(param, tree1)) ||
          (merge->or_sel_tree(param, tree2)))
        result= NULL;
      else
        result->type= tree1->type;
    }
    else if (!tree1->merges.is_empty() && !tree2->merges.is_empty())
    {
      if (imerge_list_or_list(param, &tree1->merges, &tree2->merges))
        result= new SEL_TREE(SEL_TREE::ALWAYS);
      else
        result= tree1;
    }
    else
    {
      /* one tree is index merge tree and another is range tree */
      if (tree1->merges.is_empty())
unknown's avatar
unknown committed
4507
        swap_variables(SEL_TREE*, tree1, tree2);
unknown's avatar
unknown committed
4508 4509 4510 4511 4512 4513

      /* add tree2 to tree1->merges, checking if it collapses to ALWAYS */
      if (imerge_list_or_tree(param, &tree1->merges, tree2))
        result= new SEL_TREE(SEL_TREE::ALWAYS);
      else
        result= tree1;
unknown's avatar
unknown committed
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
    }
  }
  DBUG_RETURN(result);
}


/* And key trees where key1->part < key2 -> part */

static SEL_ARG *
and_all_keys(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag)
{
  SEL_ARG *next;
  ulong use_count=key1->use_count;

  if (key1->elements != 1)
  {
    key2->use_count+=key1->elements-1;
    key2->increment_use_count((int) key1->elements-1);
  }
  if (key1->type == SEL_ARG::MAYBE_KEY)
  {
4535 4536
    key1->right= key1->left= &null_element;
    key1->next= key1->prev= 0;
unknown's avatar
unknown committed
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
  }
  for (next=key1->first(); next ; next=next->next)
  {
    if (next->next_key_part)
    {
      SEL_ARG *tmp=key_and(next->next_key_part,key2,clone_flag);
      if (tmp && tmp->type == SEL_ARG::IMPOSSIBLE)
      {
	key1=key1->tree_delete(next);
	continue;
      }
      next->next_key_part=tmp;
      if (use_count)
	next->increment_use_count(use_count);
    }
    else
      next->next_key_part=key2;
  }
  if (!key1)
    return &null_element;			// Impossible ranges
  key1->use_count++;
  return key1;
}


4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
/*
  Produce a SEL_ARG graph that represents "key1 AND key2"

  SYNOPSIS
    key_and()
      key1   First argument, root of its RB-tree
      key2   Second argument, root of its RB-tree

  RETURN
    RB-tree root of the resulting SEL_ARG graph.
    NULL if the result of AND operation is an empty interval {0}.
*/

unknown's avatar
unknown committed
4575
static SEL_ARG *
4576
key_and(SEL_ARG *key1, SEL_ARG *key2, uint clone_flag)
unknown's avatar
unknown committed
4577 4578 4579 4580 4581 4582 4583 4584 4585
{
  if (!key1)
    return key2;
  if (!key2)
    return key1;
  if (key1->part != key2->part)
  {
    if (key1->part > key2->part)
    {
4586
      swap_variables(SEL_ARG *, key1, key2);
unknown's avatar
unknown committed
4587 4588 4589 4590 4591
      clone_flag=swap_clone_flag(clone_flag);
    }
    // key1->part < key2->part
    key1->use_count--;
    if (key1->use_count > 0)
4592 4593
      if (!(key1= key1->clone_tree()))
	return 0;				// OOM
unknown's avatar
unknown committed
4594 4595 4596 4597
    return and_all_keys(key1,key2,clone_flag);
  }

  if (((clone_flag & CLONE_KEY2_MAYBE) &&
4598 4599
       !(clone_flag & CLONE_KEY1_MAYBE) &&
       key2->type != SEL_ARG::MAYBE_KEY) ||
unknown's avatar
unknown committed
4600 4601
      key1->type == SEL_ARG::MAYBE_KEY)
  {						// Put simple key in key2
4602
    swap_variables(SEL_ARG *, key1, key2);
unknown's avatar
unknown committed
4603 4604 4605
    clone_flag=swap_clone_flag(clone_flag);
  }

unknown's avatar
unknown committed
4606
  /* If one of the key is MAYBE_KEY then the found region may be smaller */
unknown's avatar
unknown committed
4607 4608 4609 4610 4611
  if (key2->type == SEL_ARG::MAYBE_KEY)
  {
    if (key1->use_count > 1)
    {
      key1->use_count--;
4612 4613
      if (!(key1=key1->clone_tree()))
	return 0;				// OOM
unknown's avatar
unknown committed
4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
      key1->use_count++;
    }
    if (key1->type == SEL_ARG::MAYBE_KEY)
    {						// Both are maybe key
      key1->next_key_part=key_and(key1->next_key_part,key2->next_key_part,
				 clone_flag);
      if (key1->next_key_part &&
	  key1->next_key_part->type == SEL_ARG::IMPOSSIBLE)
	return key1;
    }
    else
    {
      key1->maybe_smaller();
      if (key2->next_key_part)
4628 4629
      {
	key1->use_count--;			// Incremented in and_all_keys
unknown's avatar
unknown committed
4630
	return and_all_keys(key1,key2,clone_flag);
4631
      }
unknown's avatar
unknown committed
4632 4633 4634 4635 4636
      key2->use_count--;			// Key2 doesn't have a tree
    }
    return key1;
  }

4637 4638
  if ((key1->min_flag | key2->min_flag) & GEOM_FLAG)
  {
4639
    /* TODO: why not leave one of the trees? */
4640 4641 4642 4643 4644
    key1->free_tree();
    key2->free_tree();
    return 0;					// Can't optimize this
  }

4645 4646 4647
  if ((key1->min_flag | key2->min_flag) & GEOM_FLAG)
  {
    key1->free_tree();
4648 4649 4650 4651
    key2->free_tree();
    return 0;					// Can't optimize this
  }

unknown's avatar
unknown committed
4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
  key1->use_count--;
  key2->use_count--;
  SEL_ARG *e1=key1->first(), *e2=key2->first(), *new_tree=0;

  while (e1 && e2)
  {
    int cmp=e1->cmp_min_to_min(e2);
    if (cmp < 0)
    {
      if (get_range(&e1,&e2,key1))
	continue;
    }
    else if (get_range(&e2,&e1,key2))
      continue;
    SEL_ARG *next=key_and(e1->next_key_part,e2->next_key_part,clone_flag);
    e1->increment_use_count(1);
    e2->increment_use_count(1);
    if (!next || next->type != SEL_ARG::IMPOSSIBLE)
    {
      SEL_ARG *new_arg= e1->clone_and(e2);
4672 4673
      if (!new_arg)
	return &null_element;			// End of memory
unknown's avatar
unknown committed
4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724
      new_arg->next_key_part=next;
      if (!new_tree)
      {
	new_tree=new_arg;
      }
      else
	new_tree=new_tree->insert(new_arg);
    }
    if (e1->cmp_max_to_max(e2) < 0)
      e1=e1->next;				// e1 can't overlapp next e2
    else
      e2=e2->next;
  }
  key1->free_tree();
  key2->free_tree();
  if (!new_tree)
    return &null_element;			// Impossible range
  return new_tree;
}


static bool
get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1)
{
  (*e1)=root1->find_range(*e2);			// first e1->min < e2->min
  if ((*e1)->cmp_max_to_min(*e2) < 0)
  {
    if (!((*e1)=(*e1)->next))
      return 1;
    if ((*e1)->cmp_min_to_max(*e2) > 0)
    {
      (*e2)=(*e2)->next;
      return 1;
    }
  }
  return 0;
}


static SEL_ARG *
key_or(SEL_ARG *key1,SEL_ARG *key2)
{
  if (!key1)
  {
    if (key2)
    {
      key2->use_count--;
      key2->free_tree();
    }
    return 0;
  }
4725
  if (!key2)
unknown's avatar
unknown committed
4726 4727 4728 4729 4730 4731 4732 4733
  {
    key1->use_count--;
    key1->free_tree();
    return 0;
  }
  key1->use_count--;
  key2->use_count--;

4734 4735
  if (key1->part != key2->part || 
      (key1->min_flag | key2->min_flag) & GEOM_FLAG)
unknown's avatar
unknown committed
4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
  {
    key1->free_tree();
    key2->free_tree();
    return 0;					// Can't optimize this
  }

  // If one of the key is MAYBE_KEY then the found region may be bigger
  if (key1->type == SEL_ARG::MAYBE_KEY)
  {
    key2->free_tree();
    key1->use_count++;
    return key1;
  }
  if (key2->type == SEL_ARG::MAYBE_KEY)
  {
    key1->free_tree();
    key2->use_count++;
    return key2;
  }

  if (key1->use_count > 0)
  {
    if (key2->use_count == 0 || key1->elements > key2->elements)
    {
4760
      swap_variables(SEL_ARG *,key1,key2);
unknown's avatar
unknown committed
4761
    }
4762
    if (key1->use_count > 0 || !(key1=key1->clone_tree()))
4763
      return 0;					// OOM
unknown's avatar
unknown committed
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
  }

  // Add tree at key2 to tree at key1
  bool key2_shared=key2->use_count != 0;
  key1->maybe_flag|=key2->maybe_flag;

  for (key2=key2->first(); key2; )
  {
    SEL_ARG *tmp=key1->find_range(key2);	// Find key1.min <= key2.min
    int cmp;

    if (!tmp)
    {
      tmp=key1->first();			// tmp.min > key2.min
      cmp= -1;
    }
    else if ((cmp=tmp->cmp_max_to_min(key2)) < 0)
    {						// Found tmp.max < key2.min
      SEL_ARG *next=tmp->next;
      if (cmp == -2 && eq_tree(tmp->next_key_part,key2->next_key_part))
      {
	// Join near ranges like tmp.max < 0 and key2.min >= 0
	SEL_ARG *key2_next=key2->next;
	if (key2_shared)
	{
unknown's avatar
unknown committed
4789
	  if (!(key2=new SEL_ARG(*key2)))
4790
	    return 0;		// out of memory
unknown's avatar
unknown committed
4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
	  key2->increment_use_count(key1->use_count+1);
	  key2->next=key2_next;			// New copy of key2
	}
	key2->copy_min(tmp);
	if (!(key1=key1->tree_delete(tmp)))
	{					// Only one key in tree
	  key1=key2;
	  key1->make_root();
	  key2=key2_next;
	  break;
	}
      }
      if (!(tmp=next))				// tmp.min > key2.min
	break;					// Copy rest of key2
    }
    if (cmp < 0)
    {						// tmp.min > key2.min
      int tmp_cmp;
      if ((tmp_cmp=tmp->cmp_min_to_max(key2)) > 0) // if tmp.min > key2.max
      {
	if (tmp_cmp == 2 && eq_tree(tmp->next_key_part,key2->next_key_part))
	{					// ranges are connected
	  tmp->copy_min_to_min(key2);
	  key1->merge_flags(key2);
	  if (tmp->min_flag & NO_MIN_RANGE &&
	      tmp->max_flag & NO_MAX_RANGE)
	  {
	    if (key1->maybe_flag)
	      return new SEL_ARG(SEL_ARG::MAYBE_KEY);
	    return 0;
	  }
	  key2->increment_use_count(-1);	// Free not used tree
	  key2=key2->next;
	  continue;
	}
	else
	{
	  SEL_ARG *next=key2->next;		// Keys are not overlapping
	  if (key2_shared)
	  {
4831 4832
	    SEL_ARG *cpy= new SEL_ARG(*key2);	// Must make copy
	    if (!cpy)
4833
	      return 0;				// OOM
4834
	    key1=key1->insert(cpy);
unknown's avatar
unknown committed
4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862
	    key2->increment_use_count(key1->use_count+1);
	  }
	  else
	    key1=key1->insert(key2);		// Will destroy key2_root
	  key2=next;
	  continue;
	}
      }
    }

    // tmp.max >= key2.min && tmp.min <= key.max  (overlapping ranges)
    if (eq_tree(tmp->next_key_part,key2->next_key_part))
    {
      if (tmp->is_same(key2))
      {
	tmp->merge_flags(key2);			// Copy maybe flags
	key2->increment_use_count(-1);		// Free not used tree
      }
      else
      {
	SEL_ARG *last=tmp;
	while (last->next && last->next->cmp_min_to_max(key2) <= 0 &&
	       eq_tree(last->next->next_key_part,key2->next_key_part))
	{
	  SEL_ARG *save=last;
	  last=last->next;
	  key1=key1->tree_delete(save);
	}
unknown's avatar
unknown committed
4863
        last->copy_min(tmp);
unknown's avatar
unknown committed
4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880
	if (last->copy_min(key2) || last->copy_max(key2))
	{					// Full range
	  key1->free_tree();
	  for (; key2 ; key2=key2->next)
	    key2->increment_use_count(-1);	// Free not used tree
	  if (key1->maybe_flag)
	    return new SEL_ARG(SEL_ARG::MAYBE_KEY);
	  return 0;
	}
      }
      key2=key2->next;
      continue;
    }

    if (cmp >= 0 && tmp->cmp_min_to_min(key2) < 0)
    {						// tmp.min <= x < key2.min
      SEL_ARG *new_arg=tmp->clone_first(key2);
4881 4882
      if (!new_arg)
	return 0;				// OOM
unknown's avatar
unknown committed
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895
      if ((new_arg->next_key_part= key1->next_key_part))
	new_arg->increment_use_count(key1->use_count+1);
      tmp->copy_min_to_min(key2);
      key1=key1->insert(new_arg);
    }

    // tmp.min >= key2.min && tmp.min <= key2.max
    SEL_ARG key(*key2);				// Get copy we can modify
    for (;;)
    {
      if (tmp->cmp_min_to_min(&key) > 0)
      {						// key.min <= x < tmp.min
	SEL_ARG *new_arg=key.clone_first(tmp);
4896 4897
	if (!new_arg)
	  return 0;				// OOM
unknown's avatar
unknown committed
4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911
	if ((new_arg->next_key_part=key.next_key_part))
	  new_arg->increment_use_count(key1->use_count+1);
	key1=key1->insert(new_arg);
      }
      if ((cmp=tmp->cmp_max_to_max(&key)) <= 0)
      {						// tmp.min. <= x <= tmp.max
	tmp->maybe_flag|= key.maybe_flag;
	key.increment_use_count(key1->use_count+1);
	tmp->next_key_part=key_or(tmp->next_key_part,key.next_key_part);
	if (!cmp)				// Key2 is ready
	  break;
	key.copy_max_to_min(tmp);
	if (!(tmp=tmp->next))
	{
4912 4913 4914 4915
	  SEL_ARG *tmp2= new SEL_ARG(key);
	  if (!tmp2)
	    return 0;				// OOM
	  key1=key1->insert(tmp2);
unknown's avatar
unknown committed
4916 4917 4918 4919 4920
	  key2=key2->next;
	  goto end;
	}
	if (tmp->cmp_min_to_max(&key) > 0)
	{
4921 4922 4923 4924
	  SEL_ARG *tmp2= new SEL_ARG(key);
	  if (!tmp2)
	    return 0;				// OOM
	  key1=key1->insert(tmp2);
unknown's avatar
unknown committed
4925 4926 4927 4928 4929 4930
	  break;
	}
      }
      else
      {
	SEL_ARG *new_arg=tmp->clone_last(&key); // tmp.min <= x <= key.max
4931 4932
	if (!new_arg)
	  return 0;				// OOM
unknown's avatar
unknown committed
4933 4934
	tmp->copy_max_to_min(&key);
	tmp->increment_use_count(key1->use_count+1);
4935 4936
	/* Increment key count as it may be used for next loop */
	key.increment_use_count(1);
unknown's avatar
unknown committed
4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950
	new_arg->next_key_part=key_or(tmp->next_key_part,key.next_key_part);
	key1=key1->insert(new_arg);
	break;
      }
    }
    key2=key2->next;
  }

end:
  while (key2)
  {
    SEL_ARG *next=key2->next;
    if (key2_shared)
    {
4951 4952 4953
      SEL_ARG *tmp=new SEL_ARG(*key2);		// Must make copy
      if (!tmp)
	return 0;
unknown's avatar
unknown committed
4954
      key2->increment_use_count(key1->use_count+1);
4955
      key1=key1->insert(tmp);
unknown's avatar
unknown committed
4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002
    }
    else
      key1=key1->insert(key2);			// Will destroy key2_root
    key2=next;
  }
  key1->use_count++;
  return key1;
}


/* Compare if two trees are equal */

static bool eq_tree(SEL_ARG* a,SEL_ARG *b)
{
  if (a == b)
    return 1;
  if (!a || !b || !a->is_same(b))
    return 0;
  if (a->left != &null_element && b->left != &null_element)
  {
    if (!eq_tree(a->left,b->left))
      return 0;
  }
  else if (a->left != &null_element || b->left != &null_element)
    return 0;
  if (a->right != &null_element && b->right != &null_element)
  {
    if (!eq_tree(a->right,b->right))
      return 0;
  }
  else if (a->right != &null_element || b->right != &null_element)
    return 0;
  if (a->next_key_part != b->next_key_part)
  {						// Sub range
    if (!a->next_key_part != !b->next_key_part ||
	!eq_tree(a->next_key_part, b->next_key_part))
      return 0;
  }
  return 1;
}


SEL_ARG *
SEL_ARG::insert(SEL_ARG *key)
{
  SEL_ARG *element,**par,*last_element;
  LINT_INIT(par); LINT_INIT(last_element);
unknown's avatar
unknown committed
5003

unknown's avatar
unknown committed
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070
  for (element= this; element != &null_element ; )
  {
    last_element=element;
    if (key->cmp_min_to_min(element) > 0)
    {
      par= &element->right; element= element->right;
    }
    else
    {
      par = &element->left; element= element->left;
    }
  }
  *par=key;
  key->parent=last_element;
	/* Link in list */
  if (par == &last_element->left)
  {
    key->next=last_element;
    if ((key->prev=last_element->prev))
      key->prev->next=key;
    last_element->prev=key;
  }
  else
  {
    if ((key->next=last_element->next))
      key->next->prev=key;
    key->prev=last_element;
    last_element->next=key;
  }
  key->left=key->right= &null_element;
  SEL_ARG *root=rb_insert(key);			// rebalance tree
  root->use_count=this->use_count;		// copy root info
  root->elements= this->elements+1;
  root->maybe_flag=this->maybe_flag;
  return root;
}


/*
** Find best key with min <= given key
** Because the call context this should never return 0 to get_range
*/

SEL_ARG *
SEL_ARG::find_range(SEL_ARG *key)
{
  SEL_ARG *element=this,*found=0;

  for (;;)
  {
    if (element == &null_element)
      return found;
    int cmp=element->cmp_min_to_min(key);
    if (cmp == 0)
      return element;
    if (cmp < 0)
    {
      found=element;
      element=element->right;
    }
    else
      element=element->left;
  }
}


/*
5071 5072 5073 5074 5075
  Remove a element from the tree

  SYNOPSIS
    tree_delete()
    key		Key that is to be deleted from tree (this)
unknown's avatar
unknown committed
5076

5077 5078 5079 5080 5081
  NOTE
    This also frees all sub trees that is used by the element

  RETURN
    root of new tree (with key deleted)
unknown's avatar
unknown committed
5082 5083 5084 5085 5086 5087 5088
*/

SEL_ARG *
SEL_ARG::tree_delete(SEL_ARG *key)
{
  enum leaf_color remove_color;
  SEL_ARG *root,*nod,**par,*fix_par;
5089 5090 5091 5092
  DBUG_ENTER("tree_delete");

  root=this;
  this->parent= 0;
unknown's avatar
unknown committed
5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138

  /* Unlink from list */
  if (key->prev)
    key->prev->next=key->next;
  if (key->next)
    key->next->prev=key->prev;
  key->increment_use_count(-1);
  if (!key->parent)
    par= &root;
  else
    par=key->parent_ptr();

  if (key->left == &null_element)
  {
    *par=nod=key->right;
    fix_par=key->parent;
    if (nod != &null_element)
      nod->parent=fix_par;
    remove_color= key->color;
  }
  else if (key->right == &null_element)
  {
    *par= nod=key->left;
    nod->parent=fix_par=key->parent;
    remove_color= key->color;
  }
  else
  {
    SEL_ARG *tmp=key->next;			// next bigger key (exist!)
    nod= *tmp->parent_ptr()= tmp->right;	// unlink tmp from tree
    fix_par=tmp->parent;
    if (nod != &null_element)
      nod->parent=fix_par;
    remove_color= tmp->color;

    tmp->parent=key->parent;			// Move node in place of key
    (tmp->left=key->left)->parent=tmp;
    if ((tmp->right=key->right) != &null_element)
      tmp->right->parent=tmp;
    tmp->color=key->color;
    *par=tmp;
    if (fix_par == key)				// key->right == key->next
      fix_par=tmp;				// new parent of nod
  }

  if (root == &null_element)
5139
    DBUG_RETURN(0);				// Maybe root later
unknown's avatar
unknown committed
5140 5141 5142 5143 5144 5145 5146
  if (remove_color == BLACK)
    root=rb_delete_fixup(root,nod,fix_par);
  test_rb_tree(root,root->parent);

  root->use_count=this->use_count;		// Fix root counters
  root->elements=this->elements-1;
  root->maybe_flag=this->maybe_flag;
5147
  DBUG_RETURN(root);
unknown's avatar
unknown committed
5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322
}


	/* Functions to fix up the tree after insert and delete */

static void left_rotate(SEL_ARG **root,SEL_ARG *leaf)
{
  SEL_ARG *y=leaf->right;
  leaf->right=y->left;
  if (y->left != &null_element)
    y->left->parent=leaf;
  if (!(y->parent=leaf->parent))
    *root=y;
  else
    *leaf->parent_ptr()=y;
  y->left=leaf;
  leaf->parent=y;
}

static void right_rotate(SEL_ARG **root,SEL_ARG *leaf)
{
  SEL_ARG *y=leaf->left;
  leaf->left=y->right;
  if (y->right != &null_element)
    y->right->parent=leaf;
  if (!(y->parent=leaf->parent))
    *root=y;
  else
    *leaf->parent_ptr()=y;
  y->right=leaf;
  leaf->parent=y;
}


SEL_ARG *
SEL_ARG::rb_insert(SEL_ARG *leaf)
{
  SEL_ARG *y,*par,*par2,*root;
  root= this; root->parent= 0;

  leaf->color=RED;
  while (leaf != root && (par= leaf->parent)->color == RED)
  {					// This can't be root or 1 level under
    if (par == (par2= leaf->parent->parent)->left)
    {
      y= par2->right;
      if (y->color == RED)
      {
	par->color=BLACK;
	y->color=BLACK;
	leaf=par2;
	leaf->color=RED;		/* And the loop continues */
      }
      else
      {
	if (leaf == par->right)
	{
	  left_rotate(&root,leaf->parent);
	  par=leaf;			/* leaf is now parent to old leaf */
	}
	par->color=BLACK;
	par2->color=RED;
	right_rotate(&root,par2);
	break;
      }
    }
    else
    {
      y= par2->left;
      if (y->color == RED)
      {
	par->color=BLACK;
	y->color=BLACK;
	leaf=par2;
	leaf->color=RED;		/* And the loop continues */
      }
      else
      {
	if (leaf == par->left)
	{
	  right_rotate(&root,par);
	  par=leaf;
	}
	par->color=BLACK;
	par2->color=RED;
	left_rotate(&root,par2);
	break;
      }
    }
  }
  root->color=BLACK;
  test_rb_tree(root,root->parent);
  return root;
}


SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key,SEL_ARG *par)
{
  SEL_ARG *x,*w;
  root->parent=0;

  x= key;
  while (x != root && x->color == SEL_ARG::BLACK)
  {
    if (x == par->left)
    {
      w=par->right;
      if (w->color == SEL_ARG::RED)
      {
	w->color=SEL_ARG::BLACK;
	par->color=SEL_ARG::RED;
	left_rotate(&root,par);
	w=par->right;
      }
      if (w->left->color == SEL_ARG::BLACK && w->right->color == SEL_ARG::BLACK)
      {
	w->color=SEL_ARG::RED;
	x=par;
      }
      else
      {
	if (w->right->color == SEL_ARG::BLACK)
	{
	  w->left->color=SEL_ARG::BLACK;
	  w->color=SEL_ARG::RED;
	  right_rotate(&root,w);
	  w=par->right;
	}
	w->color=par->color;
	par->color=SEL_ARG::BLACK;
	w->right->color=SEL_ARG::BLACK;
	left_rotate(&root,par);
	x=root;
	break;
      }
    }
    else
    {
      w=par->left;
      if (w->color == SEL_ARG::RED)
      {
	w->color=SEL_ARG::BLACK;
	par->color=SEL_ARG::RED;
	right_rotate(&root,par);
	w=par->left;
      }
      if (w->right->color == SEL_ARG::BLACK && w->left->color == SEL_ARG::BLACK)
      {
	w->color=SEL_ARG::RED;
	x=par;
      }
      else
      {
	if (w->left->color == SEL_ARG::BLACK)
	{
	  w->right->color=SEL_ARG::BLACK;
	  w->color=SEL_ARG::RED;
	  left_rotate(&root,w);
	  w=par->left;
	}
	w->color=par->color;
	par->color=SEL_ARG::BLACK;
	w->left->color=SEL_ARG::BLACK;
	right_rotate(&root,par);
	x=root;
	break;
      }
    }
    par=x->parent;
  }
  x->color=SEL_ARG::BLACK;
  return root;
}


5323
	/* Test that the properties for a red-black tree hold */
unknown's avatar
unknown committed
5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360

#ifdef EXTRA_DEBUG
int test_rb_tree(SEL_ARG *element,SEL_ARG *parent)
{
  int count_l,count_r;

  if (element == &null_element)
    return 0;					// Found end of tree
  if (element->parent != parent)
  {
    sql_print_error("Wrong tree: Parent doesn't point at parent");
    return -1;
  }
  if (element->color == SEL_ARG::RED &&
      (element->left->color == SEL_ARG::RED ||
       element->right->color == SEL_ARG::RED))
  {
    sql_print_error("Wrong tree: Found two red in a row");
    return -1;
  }
  if (element->left == element->right && element->left != &null_element)
  {						// Dummy test
    sql_print_error("Wrong tree: Found right == left");
    return -1;
  }
  count_l=test_rb_tree(element->left,element);
  count_r=test_rb_tree(element->right,element);
  if (count_l >= 0 && count_r >= 0)
  {
    if (count_l == count_r)
      return count_l+(element->color == SEL_ARG::BLACK);
    sql_print_error("Wrong tree: Incorrect black-count: %d - %d",
	    count_l,count_r);
  }
  return -1;					// Error, no more warnings
}

5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405

/*
  Count how many times SEL_ARG graph "root" refers to its part "key"
  
  SYNOPSIS
    count_key_part_usage()
      root  An RB-Root node in a SEL_ARG graph.
      key   Another RB-Root node in that SEL_ARG graph.

  DESCRIPTION
    The passed "root" node may refer to "key" node via root->next_key_part,
    root->next->n

    This function counts how many times the node "key" is referred (via
    SEL_ARG::next_key_part) by 
     - intervals of RB-tree pointed by "root", 
     - intervals of RB-trees that are pointed by SEL_ARG::next_key_part from 
       intervals of RB-tree pointed by "root",
     - and so on.
    
    Here is an example (horizontal links represent next_key_part pointers, 
    vertical links - next/prev prev pointers):  
    
         +----+               $
         |root|-----------------+
         +----+               $ |
           |                  $ |
           |                  $ |
         +----+       +---+   $ |     +---+    Here the return value
         |    |- ... -|   |---$-+--+->|key|    will be 4.
         +----+       +---+   $ |  |  +---+
           |                  $ |  |
          ...                 $ |  |
           |                  $ |  |
         +----+   +---+       $ |  |
         |    |---|   |---------+  |
         +----+   +---+       $    |
           |        |         $    |
          ...     +---+       $    |
                  |   |------------+
                  +---+       $
  RETURN 
    Number of links to "key" from nodes reachable from "root".
*/

unknown's avatar
unknown committed
5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
static ulong count_key_part_usage(SEL_ARG *root, SEL_ARG *key)
{
  ulong count= 0;
  for (root=root->first(); root ; root=root->next)
  {
    if (root->next_key_part)
    {
      if (root->next_key_part == key)
	count++;
      if (root->next_key_part->part < key->part)
	count+=count_key_part_usage(root->next_key_part,key);
    }
  }
  return count;
}


5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436
/*
  Check if SEL_ARG::use_count value is correct

  SYNOPSIS
    SEL_ARG::test_use_count()
      root  The root node of the SEL_ARG graph (an RB-tree root node that
            has the least value of sel_arg->part in the entire graph, and
            thus is the "origin" of the graph)

  DESCRIPTION
    Check if SEL_ARG::use_count value is correct. See the definition of
    use_count for what is "correct".
*/

unknown's avatar
unknown committed
5437 5438
void SEL_ARG::test_use_count(SEL_ARG *root)
{
5439
  uint e_count=0;
unknown's avatar
unknown committed
5440 5441
  if (this == root && use_count != 1)
  {
unknown's avatar
unknown committed
5442
    sql_print_information("Use_count: Wrong count %lu for root",use_count);
unknown's avatar
unknown committed
5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454
    return;
  }
  if (this->type != SEL_ARG::KEY_RANGE)
    return;
  for (SEL_ARG *pos=first(); pos ; pos=pos->next)
  {
    e_count++;
    if (pos->next_key_part)
    {
      ulong count=count_key_part_usage(root,pos->next_key_part);
      if (count > pos->next_key_part->use_count)
      {
unknown's avatar
unknown committed
5455
	sql_print_information("Use_count: Wrong count for key at 0x%lx, %lu should be %lu",
unknown's avatar
unknown committed
5456 5457 5458 5459 5460 5461 5462
			pos,pos->next_key_part->use_count,count);
	return;
      }
      pos->next_key_part->test_use_count(root);
    }
  }
  if (e_count != elements)
unknown's avatar
unknown committed
5463
    sql_print_warning("Wrong use count: %u (should be %u) for tree at 0x%lx",
5464
		    e_count, elements, (gptr) this);
unknown's avatar
unknown committed
5465 5466 5467 5468 5469
}

#endif


5470 5471 5472 5473 5474 5475 5476 5477 5478 5479
/*
  Calculate estimate of number records that will be retrieved by a range
  scan on given index using given SEL_ARG intervals tree.
  SYNOPSIS
    check_quick_select
      param  Parameter from test_quick_select
      idx    Number of index to use in PARAM::key SEL_TREE::key
      tree   Transformed selection condition, tree->key[idx] holds intervals
             tree to be used for scanning.
  NOTES
unknown's avatar
unknown committed
5480
    param->is_ror_scan is set to reflect if the key scan is a ROR (see
5481
    is_key_scan_ror function for more info)
unknown's avatar
unknown committed
5482
    param->table->quick_*, param->range_count (and maybe others) are
5483
    updated with data of given key scan, see check_quick_keys for details.
unknown's avatar
unknown committed
5484 5485

  RETURN
5486
    Estimate # of records to be retrieved.
unknown's avatar
unknown committed
5487
    HA_POS_ERROR if estimate calculation failed due to table handler problems.
unknown's avatar
unknown committed
5488

5489
*/
unknown's avatar
unknown committed
5490 5491 5492 5493 5494

static ha_rows
check_quick_select(PARAM *param,uint idx,SEL_ARG *tree)
{
  ha_rows records;
5495 5496
  bool    cpk_scan;
  uint key;
unknown's avatar
unknown committed
5497
  DBUG_ENTER("check_quick_select");
unknown's avatar
unknown committed
5498

unknown's avatar
unknown committed
5499
  param->is_ror_scan= FALSE;
unknown's avatar
unknown committed
5500

unknown's avatar
unknown committed
5501 5502
  if (!tree)
    DBUG_RETURN(HA_POS_ERROR);			// Can't use it
unknown's avatar
unknown committed
5503 5504
  param->max_key_part=0;
  param->range_count=0;
5505 5506
  key= param->real_keynr[idx];

unknown's avatar
unknown committed
5507 5508 5509 5510
  if (tree->type == SEL_ARG::IMPOSSIBLE)
    DBUG_RETURN(0L);				// Impossible select. return
  if (tree->type != SEL_ARG::KEY_RANGE || tree->part != 0)
    DBUG_RETURN(HA_POS_ERROR);				// Don't use tree
5511 5512 5513 5514 5515

  enum ha_key_alg key_alg= param->table->key_info[key].algorithm;
  if ((key_alg != HA_KEY_ALG_BTREE) && (key_alg!= HA_KEY_ALG_UNDEF))
  {
    /* Records are not ordered by rowid for other types of indexes. */
unknown's avatar
unknown committed
5516
    cpk_scan= FALSE;
5517 5518 5519 5520 5521 5522 5523
  }
  else
  {
    /*
      Clustered PK scan is a special case, check_quick_keys doesn't recognize
      CPK scans as ROR scans (while actually any CPK scan is a ROR scan).
    */
5524 5525
    cpk_scan= ((param->table->s->primary_key == param->real_keynr[idx]) &&
               param->table->file->primary_key_is_clustered());
unknown's avatar
unknown committed
5526
    param->is_ror_scan= !cpk_scan;
5527
  }
5528
  param->n_ranges= 0;
5529

unknown's avatar
unknown committed
5530 5531
  records=check_quick_keys(param,idx,tree,param->min_key,0,param->max_key,0);
  if (records != HA_POS_ERROR)
unknown's avatar
unknown committed
5532
  {
unknown's avatar
unknown committed
5533
    param->table->quick_keys.set_bit(key);
unknown's avatar
unknown committed
5534 5535
    param->table->quick_rows[key]=records;
    param->table->quick_key_parts[key]=param->max_key_part+1;
5536
    param->table->quick_n_ranges[key]= param->n_ranges;
5537
    if (cpk_scan)
unknown's avatar
unknown committed
5538
      param->is_ror_scan= TRUE;
unknown's avatar
unknown committed
5539
  }
5540 5541
  if (param->table->file->index_flags(key, 0, TRUE) & HA_KEY_SCAN_NOT_ROR)
    param->is_ror_scan= FALSE;
5542
  DBUG_PRINT("exit", ("Records: %lu", (ulong) records));
unknown's avatar
unknown committed
5543 5544 5545 5546
  DBUG_RETURN(records);
}


5547
/*
unknown's avatar
unknown committed
5548 5549
  Recursively calculate estimate of # rows that will be retrieved by
  key scan on key idx.
5550 5551
  SYNOPSIS
    check_quick_keys()
5552
      param         Parameter from test_quick select function.
unknown's avatar
unknown committed
5553
      idx           Number of key to use in PARAM::keys in list of used keys
5554 5555 5556
                    (param->real_keynr[idx] holds the key number in table)
      key_tree      SEL_ARG tree being examined.
      min_key       Buffer with partial min key value tuple
unknown's avatar
unknown committed
5557
      min_key_flag
5558
      max_key       Buffer with partial max key value tuple
5559 5560
      max_key_flag

5561
  NOTES
unknown's avatar
unknown committed
5562 5563
    The function does the recursive descent on the tree via SEL_ARG::left,
    SEL_ARG::right, and SEL_ARG::next_key_part edges. The #rows estimates
5564 5565
    are calculated using records_in_range calls at the leaf nodes and then
    summed.
5566

5567 5568
    param->min_key and param->max_key are used to hold prefixes of key value
    tuples.
5569 5570

    The side effects are:
unknown's avatar
unknown committed
5571

5572 5573
    param->max_key_part is updated to hold the maximum number of key parts used
      in scan minus 1.
unknown's avatar
unknown committed
5574 5575

    param->range_count is incremented if the function finds a range that
5576
      wasn't counted by the caller.
unknown's avatar
unknown committed
5577

5578 5579 5580
    param->is_ror_scan is cleared if the function detects that the key scan is
      not a Rowid-Ordered Retrieval scan ( see comments for is_key_scan_ror
      function for description of which key scans are ROR scans)
5581 5582
*/

unknown's avatar
unknown committed
5583 5584 5585 5586 5587
static ha_rows
check_quick_keys(PARAM *param,uint idx,SEL_ARG *key_tree,
		 char *min_key,uint min_key_flag, char *max_key,
		 uint max_key_flag)
{
unknown's avatar
unknown committed
5588 5589 5590
  ha_rows records=0, tmp;
  uint tmp_min_flag, tmp_max_flag, keynr, min_key_length, max_key_length;
  char *tmp_min_key, *tmp_max_key;
unknown's avatar
unknown committed
5591 5592 5593 5594

  param->max_key_part=max(param->max_key_part,key_tree->part);
  if (key_tree->left != &null_element)
  {
5595 5596 5597 5598 5599 5600
    /*
      There are at least two intervals for current key part, i.e. condition
      was converted to something like
        (keyXpartY less/equals c1) OR (keyXpartY more/equals c2).
      This is not a ROR scan if the key is not Clustered Primary Key.
    */
unknown's avatar
unknown committed
5601
    param->is_ror_scan= FALSE;
unknown's avatar
unknown committed
5602 5603 5604 5605 5606 5607
    records=check_quick_keys(param,idx,key_tree->left,min_key,min_key_flag,
			     max_key,max_key_flag);
    if (records == HA_POS_ERROR)			// Impossible
      return records;
  }

unknown's avatar
unknown committed
5608 5609
  tmp_min_key= min_key;
  tmp_max_key= max_key;
unknown's avatar
unknown committed
5610
  key_tree->store(param->key[idx][key_tree->part].store_length,
unknown's avatar
unknown committed
5611
		  &tmp_min_key,min_key_flag,&tmp_max_key,max_key_flag);
unknown's avatar
unknown committed
5612 5613
  min_key_length= (uint) (tmp_min_key- param->min_key);
  max_key_length= (uint) (tmp_max_key- param->max_key);
unknown's avatar
unknown committed
5614

5615 5616
  if (param->is_ror_scan)
  {
unknown's avatar
unknown committed
5617
    /*
5618
      If the index doesn't cover entire key, mark the scan as non-ROR scan.
5619
      Actually we're cutting off some ROR scans here.
5620 5621 5622
    */
    uint16 fieldnr= param->table->key_info[param->real_keynr[idx]].
                    key_part[key_tree->part].fieldnr - 1;
unknown's avatar
unknown committed
5623
    if (param->table->field[fieldnr]->key_length() !=
5624
        param->key[idx][key_tree->part].length)
unknown's avatar
unknown committed
5625
      param->is_ror_scan= FALSE;
5626 5627
  }

unknown's avatar
unknown committed
5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640
  if (key_tree->next_key_part &&
      key_tree->next_key_part->part == key_tree->part+1 &&
      key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
  {						// const key as prefix
    if (min_key_length == max_key_length &&
	!memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) &&
	!key_tree->min_flag && !key_tree->max_flag)
    {
      tmp=check_quick_keys(param,idx,key_tree->next_key_part,
			   tmp_min_key, min_key_flag | key_tree->min_flag,
			   tmp_max_key, max_key_flag | key_tree->max_flag);
      goto end;					// Ugly, but efficient
    }
5641
    else
5642 5643
    {
      /* The interval for current key part is not c1 <= keyXpartY <= c1 */
unknown's avatar
unknown committed
5644
      param->is_ror_scan= FALSE;
5645
    }
5646

unknown's avatar
unknown committed
5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664
    tmp_min_flag=key_tree->min_flag;
    tmp_max_flag=key_tree->max_flag;
    if (!tmp_min_flag)
      key_tree->next_key_part->store_min_key(param->key[idx], &tmp_min_key,
					     &tmp_min_flag);
    if (!tmp_max_flag)
      key_tree->next_key_part->store_max_key(param->key[idx], &tmp_max_key,
					     &tmp_max_flag);
    min_key_length= (uint) (tmp_min_key- param->min_key);
    max_key_length= (uint) (tmp_max_key- param->max_key);
  }
  else
  {
    tmp_min_flag=min_key_flag | key_tree->min_flag;
    tmp_max_flag=max_key_flag | key_tree->max_flag;
  }

  keynr=param->real_keynr[idx];
unknown's avatar
unknown committed
5665
  param->range_count++;
unknown's avatar
unknown committed
5666 5667
  if (!tmp_min_flag && ! tmp_max_flag &&
      (uint) key_tree->part+1 == param->table->key_info[keynr].key_parts &&
5668 5669
      (param->table->key_info[keynr].flags & (HA_NOSAME | HA_END_SPACE_KEY)) ==
      HA_NOSAME &&
unknown's avatar
unknown committed
5670 5671
      min_key_length == max_key_length &&
      !memcmp(param->min_key,param->max_key,min_key_length))
5672
  {
unknown's avatar
unknown committed
5673
    tmp=1;					// Max one record
5674 5675
    param->n_ranges++;
  }
unknown's avatar
unknown committed
5676
  else
unknown's avatar
unknown committed
5677
  {
5678 5679
    if (param->is_ror_scan)
    {
5680 5681 5682 5683 5684 5685 5686 5687 5688
      /*
        If we get here, the condition on the key was converted to form
        "(keyXpart1 = c1) AND ... AND (keyXpart{key_tree->part - 1} = cN) AND
          somecond(keyXpart{key_tree->part})"
        Check if
          somecond is "keyXpart{key_tree->part} = const" and
          uncovered "tail" of KeyX parts is either empty or is identical to
          first members of clustered primary key.
      */
5689 5690
      if (!(min_key_length == max_key_length &&
            !memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) &&
unknown's avatar
unknown committed
5691
            !key_tree->min_flag && !key_tree->max_flag &&
5692
            is_key_scan_ror(param, keynr, key_tree->part + 1)))
unknown's avatar
unknown committed
5693
        param->is_ror_scan= FALSE;
5694
    }
5695
    param->n_ranges++;
5696

unknown's avatar
unknown committed
5697
    if (tmp_min_flag & GEOM_FLAG)
unknown's avatar
unknown committed
5698
    {
unknown's avatar
unknown committed
5699 5700 5701 5702 5703 5704 5705 5706
      key_range min_range;
      min_range.key=    (byte*) param->min_key;
      min_range.length= min_key_length;
      /* In this case tmp_min_flag contains the handler-read-function */
      min_range.flag=   (ha_rkey_function) (tmp_min_flag ^ GEOM_FLAG);

      tmp= param->table->file->records_in_range(keynr, &min_range,
                                                (key_range*) 0);
unknown's avatar
unknown committed
5707 5708 5709
    }
    else
    {
unknown's avatar
unknown committed
5710 5711 5712 5713 5714 5715
      key_range min_range, max_range;

      min_range.key=    (byte*) param->min_key;
      min_range.length= min_key_length;
      min_range.flag=   (tmp_min_flag & NEAR_MIN ? HA_READ_AFTER_KEY :
                         HA_READ_KEY_EXACT);
unknown's avatar
unknown committed
5716
      max_range.key=    (byte*) param->max_key;
unknown's avatar
unknown committed
5717 5718 5719 5720 5721 5722 5723 5724
      max_range.length= max_key_length;
      max_range.flag=   (tmp_max_flag & NEAR_MAX ?
                         HA_READ_BEFORE_KEY : HA_READ_AFTER_KEY);
      tmp=param->table->file->records_in_range(keynr,
                                               (min_key_length ? &min_range :
                                                (key_range*) 0),
                                               (max_key_length ? &max_range :
                                                (key_range*) 0));
unknown's avatar
unknown committed
5725 5726
    }
  }
unknown's avatar
unknown committed
5727 5728 5729 5730 5731 5732
 end:
  if (tmp == HA_POS_ERROR)			// Impossible range
    return tmp;
  records+=tmp;
  if (key_tree->right != &null_element)
  {
5733 5734 5735 5736 5737 5738
    /*
      There are at least two intervals for current key part, i.e. condition
      was converted to something like
        (keyXpartY less/equals c1) OR (keyXpartY more/equals c2).
      This is not a ROR scan if the key is not Clustered Primary Key.
    */
unknown's avatar
unknown committed
5739
    param->is_ror_scan= FALSE;
unknown's avatar
unknown committed
5740 5741 5742 5743 5744 5745 5746 5747 5748
    tmp=check_quick_keys(param,idx,key_tree->right,min_key,min_key_flag,
			 max_key,max_key_flag);
    if (tmp == HA_POS_ERROR)
      return tmp;
    records+=tmp;
  }
  return records;
}

5749

5750
/*
unknown's avatar
unknown committed
5751
  Check if key scan on given index with equality conditions on first n key
5752 5753 5754 5755
  parts is a ROR scan.

  SYNOPSIS
    is_key_scan_ror()
unknown's avatar
unknown committed
5756
      param  Parameter from test_quick_select
5757 5758 5759 5760
      keynr  Number of key in the table. The key must not be a clustered
             primary key.
      nparts Number of first key parts for which equality conditions
             are present.
unknown's avatar
unknown committed
5761

5762 5763 5764
  NOTES
    ROR (Rowid Ordered Retrieval) key scan is a key scan that produces
    ordered sequence of rowids (ha_xxx::cmp_ref is the comparison function)
unknown's avatar
unknown committed
5765

5766 5767 5768
    An index scan is a ROR scan if it is done using a condition in form

        "key1_1=c_1 AND ... AND key1_n=c_n"  (1)
unknown's avatar
unknown committed
5769

5770 5771
    where the index is defined on (key1_1, ..., key1_N [,a_1, ..., a_n])

unknown's avatar
unknown committed
5772
    and the table has a clustered Primary Key
5773

unknown's avatar
unknown committed
5774
    PRIMARY KEY(a_1, ..., a_n, b1, ..., b_k) with first key parts being
5775
    identical to uncovered parts ot the key being scanned (2)
unknown's avatar
unknown committed
5776 5777

    Scans on HASH indexes are not ROR scans,
5778 5779 5780 5781 5782 5783
    any range scan on clustered primary key is ROR scan  (3)

    Check (1) is made in check_quick_keys()
    Check (3) is made check_quick_select()
    Check (2) is made by this function.

unknown's avatar
unknown committed
5784
  RETURN
unknown's avatar
unknown committed
5785 5786
    TRUE  If the scan is ROR-scan
    FALSE otherwise
5787
*/
5788

5789 5790 5791 5792
static bool is_key_scan_ror(PARAM *param, uint keynr, uint8 nparts)
{
  KEY *table_key= param->table->key_info + keynr;
  KEY_PART_INFO *key_part= table_key->key_part + nparts;
5793 5794 5795
  KEY_PART_INFO *key_part_end= (table_key->key_part +
                                table_key->key_parts);
  uint pk_number;
unknown's avatar
unknown committed
5796

5797
  if (key_part == key_part_end)
unknown's avatar
unknown committed
5798
    return TRUE;
5799
  pk_number= param->table->s->primary_key;
5800
  if (!param->table->file->primary_key_is_clustered() || pk_number == MAX_KEY)
unknown's avatar
unknown committed
5801
    return FALSE;
5802 5803

  KEY_PART_INFO *pk_part= param->table->key_info[pk_number].key_part;
unknown's avatar
unknown committed
5804
  KEY_PART_INFO *pk_part_end= pk_part +
5805
                              param->table->key_info[pk_number].key_parts;
unknown's avatar
unknown committed
5806 5807
  for (;(key_part!=key_part_end) && (pk_part != pk_part_end);
       ++key_part, ++pk_part)
5808
  {
unknown's avatar
unknown committed
5809
    if ((key_part->field != pk_part->field) ||
5810
        (key_part->length != pk_part->length))
unknown's avatar
unknown committed
5811
      return FALSE;
unknown's avatar
unknown committed
5812
  }
5813
  return (key_part == key_part_end);
unknown's avatar
unknown committed
5814 5815 5816
}


5817 5818
/*
  Create a QUICK_RANGE_SELECT from given key and SEL_ARG tree for that key.
unknown's avatar
unknown committed
5819

5820 5821
  SYNOPSIS
    get_quick_select()
unknown's avatar
unknown committed
5822
      param
5823
      idx          Index of used key in param->key.
unknown's avatar
unknown committed
5824 5825
      key_tree     SEL_ARG tree for the used key
      parent_alloc If not NULL, use it to allocate memory for
5826
                   quick select data. Otherwise use quick->alloc.
5827
  NOTES
5828
    The caller must call QUICK_SELECT::init for returned quick select
5829

5830
    CAUTION! This function may change thd->mem_root to a MEM_ROOT which will be
5831
    deallocated when the returned quick select is deleted.
5832 5833 5834 5835

  RETURN
    NULL on error
    otherwise created quick select
5836
*/
5837

unknown's avatar
unknown committed
5838 5839 5840
QUICK_RANGE_SELECT *
get_quick_select(PARAM *param,uint idx,SEL_ARG *key_tree,
                 MEM_ROOT *parent_alloc)
unknown's avatar
unknown committed
5841
{
unknown's avatar
unknown committed
5842
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
5843
  DBUG_ENTER("get_quick_select");
unknown's avatar
unknown committed
5844 5845 5846 5847 5848 5849 5850 5851 5852

  if (param->table->key_info[param->real_keynr[idx]].flags & HA_SPATIAL)
    quick=new QUICK_RANGE_SELECT_GEOM(param->thd, param->table,
                                      param->real_keynr[idx],
                                      test(parent_alloc),
                                      parent_alloc);
  else
    quick=new QUICK_RANGE_SELECT(param->thd, param->table,
                                 param->real_keynr[idx],
unknown's avatar
unknown committed
5853
                                 test(parent_alloc));
unknown's avatar
unknown committed
5854

unknown's avatar
unknown committed
5855
  if (quick)
unknown's avatar
unknown committed
5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866
  {
    if (quick->error ||
	get_quick_keys(param,quick,param->key[idx],key_tree,param->min_key,0,
		       param->max_key,0))
    {
      delete quick;
      quick=0;
    }
    else
    {
      quick->key_parts=(KEY_PART*)
unknown's avatar
unknown committed
5867 5868 5869 5870
        memdup_root(parent_alloc? parent_alloc : &quick->alloc,
                    (char*) param->key[idx],
                    sizeof(KEY_PART)*
                    param->table->key_info[param->real_keynr[idx]].key_parts);
unknown's avatar
unknown committed
5871
    }
unknown's avatar
unknown committed
5872
  }
unknown's avatar
unknown committed
5873 5874 5875 5876 5877 5878 5879
  DBUG_RETURN(quick);
}


/*
** Fix this to get all possible sub_ranges
*/
unknown's avatar
unknown committed
5880 5881
bool
get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key,
unknown's avatar
unknown committed
5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894
	       SEL_ARG *key_tree,char *min_key,uint min_key_flag,
	       char *max_key, uint max_key_flag)
{
  QUICK_RANGE *range;
  uint flag;

  if (key_tree->left != &null_element)
  {
    if (get_quick_keys(param,quick,key,key_tree->left,
		       min_key,min_key_flag, max_key, max_key_flag))
      return 1;
  }
  char *tmp_min_key=min_key,*tmp_max_key=max_key;
unknown's avatar
unknown committed
5895
  key_tree->store(key[key_tree->part].store_length,
unknown's avatar
unknown committed
5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923
		  &tmp_min_key,min_key_flag,&tmp_max_key,max_key_flag);

  if (key_tree->next_key_part &&
      key_tree->next_key_part->part == key_tree->part+1 &&
      key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
  {						  // const key as prefix
    if (!((tmp_min_key - min_key) != (tmp_max_key - max_key) ||
	  memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) ||
	  key_tree->min_flag || key_tree->max_flag))
    {
      if (get_quick_keys(param,quick,key,key_tree->next_key_part,
			 tmp_min_key, min_key_flag | key_tree->min_flag,
			 tmp_max_key, max_key_flag | key_tree->max_flag))
	return 1;
      goto end;					// Ugly, but efficient
    }
    {
      uint tmp_min_flag=key_tree->min_flag,tmp_max_flag=key_tree->max_flag;
      if (!tmp_min_flag)
	key_tree->next_key_part->store_min_key(key, &tmp_min_key,
					       &tmp_min_flag);
      if (!tmp_max_flag)
	key_tree->next_key_part->store_max_key(key, &tmp_max_key,
					       &tmp_max_flag);
      flag=tmp_min_flag | tmp_max_flag;
    }
  }
  else
unknown's avatar
unknown committed
5924 5925 5926 5927
  {
    flag = (key_tree->min_flag & GEOM_FLAG) ?
      key_tree->min_flag : key_tree->min_flag | key_tree->max_flag;
  }
unknown's avatar
unknown committed
5928

unknown's avatar
unknown committed
5929 5930 5931 5932 5933
  /*
    Ensure that some part of min_key and max_key are used.  If not,
    regard this as no lower/upper range
  */
  if ((flag & GEOM_FLAG) == 0)
unknown's avatar
unknown committed
5934 5935 5936 5937 5938 5939 5940 5941 5942 5943
  {
    if (tmp_min_key != param->min_key)
      flag&= ~NO_MIN_RANGE;
    else
      flag|= NO_MIN_RANGE;
    if (tmp_max_key != param->max_key)
      flag&= ~NO_MAX_RANGE;
    else
      flag|= NO_MAX_RANGE;
  }
unknown's avatar
unknown committed
5944 5945 5946 5947 5948 5949 5950 5951
  if (flag == 0)
  {
    uint length= (uint) (tmp_min_key - param->min_key);
    if (length == (uint) (tmp_max_key - param->max_key) &&
	!memcmp(param->min_key,param->max_key,length))
    {
      KEY *table_key=quick->head->key_info+quick->index;
      flag=EQ_RANGE;
5952 5953
      if ((table_key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME &&
	  key->part == table_key->key_parts-1)
5954 5955 5956 5957 5958 5959 5960 5961 5962
      {
	if (!(table_key->flags & HA_NULL_PART_KEY) ||
	    !null_part_in_key(key,
			      param->min_key,
			      (uint) (tmp_min_key - param->min_key)))
	  flag|= UNIQUE_RANGE;
	else
	  flag|= NULL_RANGE;
      }
unknown's avatar
unknown committed
5963 5964 5965 5966
    }
  }

  /* Get range for retrieving rows in QUICK_SELECT::get_next */
5967
  if (!(range= new QUICK_RANGE((const char *) param->min_key,
5968
			       (uint) (tmp_min_key - param->min_key),
5969
			       (const char *) param->max_key,
5970 5971
			       (uint) (tmp_max_key - param->max_key),
			       flag)))
5972 5973
    return 1;			// out of memory

unknown's avatar
unknown committed
5974 5975
  set_if_bigger(quick->max_used_key_length,range->min_length);
  set_if_bigger(quick->max_used_key_length,range->max_length);
unknown's avatar
unknown committed
5976
  set_if_bigger(quick->used_key_parts, (uint) key_tree->part+1);
5977 5978 5979
  if (insert_dynamic(&quick->ranges, (gptr)&range))
    return 1;

unknown's avatar
unknown committed
5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
 end:
  if (key_tree->right != &null_element)
    return get_quick_keys(param,quick,key,key_tree->right,
			  min_key,min_key_flag,
			  max_key,max_key_flag);
  return 0;
}

/*
  Return 1 if there is only one range and this uses the whole primary key
*/

unknown's avatar
unknown committed
5992
bool QUICK_RANGE_SELECT::unique_key_range()
unknown's avatar
unknown committed
5993 5994 5995
{
  if (ranges.elements == 1)
  {
5996 5997
    QUICK_RANGE *tmp= *((QUICK_RANGE**)ranges.buffer);
    if ((tmp->flag & (EQ_RANGE | NULL_RANGE)) == EQ_RANGE)
unknown's avatar
unknown committed
5998 5999
    {
      KEY *key=head->key_info+index;
6000
      return ((key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME &&
unknown's avatar
unknown committed
6001 6002 6003 6004 6005 6006
	      key->key_length == tmp->min_length);
    }
  }
  return 0;
}

6007

unknown's avatar
unknown committed
6008
/* Returns TRUE if any part of the key is NULL */
6009 6010 6011

static bool null_part_in_key(KEY_PART *key_part, const char *key, uint length)
{
unknown's avatar
unknown committed
6012
  for (const char *end=key+length ;
6013
       key < end;
unknown's avatar
unknown committed
6014
       key+= key_part++->store_length)
6015
  {
unknown's avatar
unknown committed
6016 6017
    if (key_part->null_bit && *key)
      return 1;
6018 6019 6020 6021
  }
  return 0;
}

unknown's avatar
unknown committed
6022

6023
bool QUICK_SELECT_I::is_keys_used(List<Item> *fields)
6024
{
6025
  return is_key_used(head, index, *fields);
6026 6027
}

6028
bool QUICK_INDEX_MERGE_SELECT::is_keys_used(List<Item> *fields)
6029 6030 6031 6032 6033
{
  QUICK_RANGE_SELECT *quick;
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  while ((quick= it++))
  {
6034
    if (is_key_used(head, quick->index, *fields))
6035 6036 6037 6038 6039
      return 1;
  }
  return 0;
}

6040
bool QUICK_ROR_INTERSECT_SELECT::is_keys_used(List<Item> *fields)
6041 6042 6043 6044 6045
{
  QUICK_RANGE_SELECT *quick;
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  while ((quick= it++))
  {
6046
    if (is_key_used(head, quick->index, *fields))
6047 6048 6049 6050 6051
      return 1;
  }
  return 0;
}

6052
bool QUICK_ROR_UNION_SELECT::is_keys_used(List<Item> *fields)
6053 6054 6055 6056 6057
{
  QUICK_SELECT_I *quick;
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  while ((quick= it++))
  {
6058
    if (quick->is_keys_used(fields))
6059 6060 6061 6062 6063
      return 1;
  }
  return 0;
}

unknown's avatar
unknown committed
6064

unknown's avatar
unknown committed
6065 6066
/*
  Create quick select from ref/ref_or_null scan.
unknown's avatar
unknown committed
6067

unknown's avatar
unknown committed
6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082
  SYNOPSIS
    get_quick_select_for_ref()
      thd      Thread handle
      table    Table to access
      ref      ref[_or_null] scan parameters
      records  Estimate of number of records (needed only to construct 
               quick select)
  NOTES
    This allocates things in a new memory root, as this may be called many
    times during a query.
  
  RETURN 
    Quick select that retrieves the same rows as passed ref scan
    NULL on error.
*/
unknown's avatar
unknown committed
6083

unknown's avatar
unknown committed
6084
QUICK_RANGE_SELECT *get_quick_select_for_ref(THD *thd, TABLE *table,
unknown's avatar
unknown committed
6085
                                             TABLE_REF *ref, ha_rows records)
unknown's avatar
unknown committed
6086
{
unknown's avatar
unknown committed
6087 6088
  MEM_ROOT *old_root, *alloc;
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
6089 6090
  KEY *key_info = &table->key_info[ref->key];
  KEY_PART *key_part;
unknown's avatar
unknown committed
6091
  QUICK_RANGE *range;
unknown's avatar
unknown committed
6092
  uint part;
unknown's avatar
unknown committed
6093 6094 6095 6096 6097 6098

  old_root= thd->mem_root;
  /* The following call may change thd->mem_root */
  quick= new QUICK_RANGE_SELECT(thd, table, ref->key, 0);
  /* save mem_root set by QUICK_RANGE_SELECT constructor */
  alloc= thd->mem_root;
6099 6100 6101 6102 6103
  /*
    return back default mem_root (thd->mem_root) changed by
    QUICK_RANGE_SELECT constructor
  */
  thd->mem_root= old_root;
unknown's avatar
unknown committed
6104 6105

  if (!quick)
6106
    return 0;			/* no ranges found */
unknown's avatar
unknown committed
6107
  if (quick->init())
unknown's avatar
unknown committed
6108
    goto err;
unknown's avatar
unknown committed
6109
  quick->records= records;
6110

unknown's avatar
unknown committed
6111
  if (cp_buffer_from_ref(thd,ref) && thd->is_fatal_error ||
6112
      !(range= new(alloc) QUICK_RANGE()))
unknown's avatar
unknown committed
6113
    goto err;                                   // out of memory
6114

unknown's avatar
unknown committed
6115 6116 6117
  range->min_key=range->max_key=(char*) ref->key_buff;
  range->min_length=range->max_length=ref->key_length;
  range->flag= ((ref->key_length == key_info->key_length &&
6118 6119
		 (key_info->flags & (HA_NOSAME | HA_END_SPACE_KEY)) ==
		 HA_NOSAME) ? EQ_RANGE : 0);
unknown's avatar
unknown committed
6120 6121

  if (!(quick->key_parts=key_part=(KEY_PART *)
6122
	alloc_root(&quick->alloc,sizeof(KEY_PART)*ref->key_parts)))
unknown's avatar
unknown committed
6123 6124 6125 6126 6127 6128
    goto err;

  for (part=0 ; part < ref->key_parts ;part++,key_part++)
  {
    key_part->part=part;
    key_part->field=        key_info->key_part[part].field;
unknown's avatar
unknown committed
6129 6130
    key_part->length=  	    key_info->key_part[part].length;
    key_part->store_length= key_info->key_part[part].store_length;
unknown's avatar
unknown committed
6131 6132
    key_part->null_bit=     key_info->key_part[part].null_bit;
  }
unknown's avatar
unknown committed
6133
  if (insert_dynamic(&quick->ranges,(gptr)&range))
6134 6135
    goto err;

unknown's avatar
unknown committed
6136
  /*
6137 6138 6139 6140 6141
     Add a NULL range if REF_OR_NULL optimization is used.
     For example:
       if we have "WHERE A=2 OR A IS NULL" we created the (A=2) range above
       and have ref->null_ref_key set. Will create a new NULL range here.
  */
6142 6143 6144 6145 6146
  if (ref->null_ref_key)
  {
    QUICK_RANGE *null_range;

    *ref->null_ref_key= 1;		// Set null byte then create a range
6147 6148 6149 6150 6151
    if (!(null_range= new (alloc) QUICK_RANGE((char*)ref->key_buff,
                                              ref->key_length,
                                              (char*)ref->key_buff,
                                              ref->key_length,
                                              EQ_RANGE)))
6152 6153
      goto err;
    *ref->null_ref_key= 0;		// Clear null byte
unknown's avatar
unknown committed
6154
    if (insert_dynamic(&quick->ranges,(gptr)&null_range))
6155 6156 6157 6158
      goto err;
  }

  return quick;
unknown's avatar
unknown committed
6159 6160 6161 6162 6163 6164

err:
  delete quick;
  return 0;
}

unknown's avatar
unknown committed
6165 6166

/*
unknown's avatar
unknown committed
6167 6168 6169 6170 6171 6172
  Perform key scans for all used indexes (except CPK), get rowids and merge 
  them into an ordered non-recurrent sequence of rowids.
  
  The merge/duplicate removal is performed using Unique class. We put all
  rowids into Unique, get the sorted sequence and destroy the Unique.
  
unknown's avatar
unknown committed
6173
  If table has a clustered primary key that covers all rows (TRUE for bdb
6174
     and innodb currently) and one of the index_merge scans is a scan on PK,
unknown's avatar
unknown committed
6175
  then
unknown's avatar
unknown committed
6176 6177
    rows that will be retrieved by PK scan are not put into Unique and 
    primary key scan is not performed here, it is performed later separately.
unknown's avatar
unknown committed
6178

6179 6180 6181
  RETURN
    0     OK
    other error
unknown's avatar
unknown committed
6182
*/
6183

unknown's avatar
unknown committed
6184
int QUICK_INDEX_MERGE_SELECT::read_keys_and_merge()
unknown's avatar
unknown committed
6185
{
unknown's avatar
unknown committed
6186 6187
  List_iterator_fast<QUICK_RANGE_SELECT> cur_quick_it(quick_selects);
  QUICK_RANGE_SELECT* cur_quick;
6188
  int result;
unknown's avatar
unknown committed
6189
  Unique *unique;
6190
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::prepare_unique");
unknown's avatar
unknown committed
6191

6192
  /* We're going to just read rowids. */
6193 6194
  if (head->file->extra(HA_EXTRA_KEYREAD))
    DBUG_RETURN(1);
6195

unknown's avatar
unknown committed
6196 6197
  /*
    Make innodb retrieve all PK member fields, so
6198
     * ha_innobase::position (which uses them) call works.
6199
     * We can filter out rows that will be retrieved by clustered PK.
6200
    (This also creates a deficiency - it is possible that we will retrieve
6201
     parts of key that are not used by current query at all.)
6202
  */
6203 6204
  if (head->file->extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY))
    DBUG_RETURN(1);
6205

unknown's avatar
unknown committed
6206 6207
  cur_quick_it.rewind();
  cur_quick= cur_quick_it++;
6208
  DBUG_ASSERT(cur_quick != 0);
unknown's avatar
unknown committed
6209 6210 6211 6212 6213
  
  /*
    We reuse the same instance of handler so we need to call both init and 
    reset here.
  */
unknown's avatar
unknown committed
6214
  if (cur_quick->init() || cur_quick->reset())
unknown's avatar
unknown committed
6215
    DBUG_RETURN(1);
6216

6217
  unique= new Unique(refpos_order_cmp, (void *)head->file,
6218
                     head->file->ref_length,
6219
                     thd->variables.sortbuff_size);
6220 6221
  if (!unique)
    DBUG_RETURN(1);
unknown's avatar
unknown committed
6222
  for (;;)
6223
  {
unknown's avatar
unknown committed
6224
    while ((result= cur_quick->get_next()) == HA_ERR_END_OF_FILE)
6225
    {
unknown's avatar
unknown committed
6226 6227 6228
      cur_quick->range_end();
      cur_quick= cur_quick_it++;
      if (!cur_quick)
unknown's avatar
unknown committed
6229
        break;
6230

unknown's avatar
unknown committed
6231 6232
      if (cur_quick->file->inited != handler::NONE) 
        cur_quick->file->ha_index_end();
unknown's avatar
unknown committed
6233
      if (cur_quick->init() || cur_quick->reset())
6234
        DBUG_RETURN(1);
unknown's avatar
unknown committed
6235 6236 6237
    }

    if (result)
unknown's avatar
unknown committed
6238
    {
6239
      if (result != HA_ERR_END_OF_FILE)
unknown's avatar
unknown committed
6240 6241
      {
        cur_quick->range_end();
6242
        DBUG_RETURN(result);
unknown's avatar
unknown committed
6243
      }
6244
      break;
unknown's avatar
unknown committed
6245
    }
unknown's avatar
unknown committed
6246

6247 6248
    if (thd->killed)
      DBUG_RETURN(1);
unknown's avatar
unknown committed
6249

6250
    /* skip row if it will be retrieved by clustered PK scan */
6251 6252
    if (pk_quick_select && pk_quick_select->row_in_ranges())
      continue;
6253

unknown's avatar
unknown committed
6254 6255
    cur_quick->file->position(cur_quick->record);
    result= unique->unique_add((char*)cur_quick->file->ref);
6256
    if (result)
6257 6258
      DBUG_RETURN(1);

unknown's avatar
unknown committed
6259
  }
unknown's avatar
unknown committed
6260

6261 6262
  /* ok, all row ids are in Unique */
  result= unique->get(head);
unknown's avatar
unknown committed
6263
  delete unique;
unknown's avatar
unknown committed
6264
  doing_pk_scan= FALSE;
unknown's avatar
unknown committed
6265 6266
  /* start table scan */
  init_read_record(&read_record, thd, head, (SQL_SELECT*) 0, 1, 1);
6267 6268
  /* index_merge currently doesn't support "using index" at all */
  head->file->extra(HA_EXTRA_NO_KEYREAD);
6269

6270 6271 6272
  DBUG_RETURN(result);
}

6273

6274 6275 6276
/*
  Get next row for index_merge.
  NOTES
6277 6278 6279 6280
    The rows are read from
      1. rowids stored in Unique.
      2. QUICK_RANGE_SELECT with clustered primary key (if any).
    The sets of rows retrieved in 1) and 2) are guaranteed to be disjoint.
6281
*/
6282

6283 6284
int QUICK_INDEX_MERGE_SELECT::get_next()
{
6285
  int result;
6286
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::get_next");
unknown's avatar
unknown committed
6287

6288 6289 6290 6291 6292 6293 6294 6295 6296
  if (doing_pk_scan)
    DBUG_RETURN(pk_quick_select->get_next());

  result= read_record.read_record(&read_record);

  if (result == -1)
  {
    result= HA_ERR_END_OF_FILE;
    end_read_record(&read_record);
6297
    /* All rows from Unique have been retrieved, do a clustered PK scan */
unknown's avatar
unknown committed
6298
    if (pk_quick_select)
6299
    {
unknown's avatar
unknown committed
6300
      doing_pk_scan= TRUE;
unknown's avatar
unknown committed
6301
      if ((result= pk_quick_select->init()) || (result= pk_quick_select->reset()))
6302 6303 6304 6305 6306 6307
        DBUG_RETURN(result);
      DBUG_RETURN(pk_quick_select->get_next());
    }
  }

  DBUG_RETURN(result);
unknown's avatar
unknown committed
6308 6309
}

6310 6311

/*
unknown's avatar
unknown committed
6312
  Retrieve next record.
6313
  SYNOPSIS
unknown's avatar
unknown committed
6314 6315
     QUICK_ROR_INTERSECT_SELECT::get_next()

6316
  NOTES
6317 6318
    Invariant on enter/exit: all intersected selects have retrieved all index
    records with rowid <= some_rowid_val and no intersected select has
6319 6320 6321 6322
    retrieved any index records with rowid > some_rowid_val.
    We start fresh and loop until we have retrieved the same rowid in each of
    the key scans or we got an error.

unknown's avatar
unknown committed
6323
    If a Clustered PK scan is present, it is used only to check if row
6324 6325 6326 6327 6328
    satisfies its condition (and never used for row retrieval).

  RETURN
   0     - Ok
   other - Error code if any error occurred.
6329 6330 6331 6332 6333 6334 6335 6336 6337
*/

int QUICK_ROR_INTERSECT_SELECT::get_next()
{
  List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
  QUICK_RANGE_SELECT* quick;
  int error, cmp;
  uint last_rowid_count=0;
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::get_next");
unknown's avatar
unknown committed
6338

6339 6340 6341 6342 6343 6344 6345 6346 6347 6348
  /* Get a rowid for first quick and save it as a 'candidate' */
  quick= quick_it++;
  if (cpk_quick)
  {
    do {
      error= quick->get_next();
    }while (!error && !cpk_quick->row_in_ranges());
  }
  else
    error= quick->get_next();
unknown's avatar
unknown committed
6349

6350 6351 6352 6353 6354 6355
  if (error)
    DBUG_RETURN(error);

  quick->file->position(quick->record);
  memcpy(last_rowid, quick->file->ref, head->file->ref_length);
  last_rowid_count= 1;
unknown's avatar
unknown committed
6356

6357 6358 6359 6360 6361 6362 6363
  while (last_rowid_count < quick_selects.elements)
  {
    if (!(quick= quick_it++))
    {
      quick_it.rewind();
      quick= quick_it++;
    }
unknown's avatar
unknown committed
6364

6365 6366 6367 6368
    do {
      if ((error= quick->get_next()))
        DBUG_RETURN(error);
      quick->file->position(quick->record);
unknown's avatar
unknown committed
6369
      cmp= head->file->cmp_ref(quick->file->ref, last_rowid);
6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384
    } while (cmp < 0);

    /* Ok, current select 'caught up' and returned ref >= cur_ref */
    if (cmp > 0)
    {
      /* Found a row with ref > cur_ref. Make it a new 'candidate' */
      if (cpk_quick)
      {
        while (!cpk_quick->row_in_ranges())
        {
          if ((error= quick->get_next()))
            DBUG_RETURN(error);
        }
      }
      memcpy(last_rowid, quick->file->ref, head->file->ref_length);
unknown's avatar
unknown committed
6385
      last_rowid_count= 1;
6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400
    }
    else
    {
      /* current 'candidate' row confirmed by this select */
      last_rowid_count++;
    }
  }

  /* We get here iff we got the same row ref in all scans. */
  if (need_to_fetch_row)
    error= head->file->rnd_pos(head->record[0], last_rowid);
  DBUG_RETURN(error);
}


unknown's avatar
unknown committed
6401 6402
/*
  Retrieve next record.
6403 6404
  SYNOPSIS
    QUICK_ROR_UNION_SELECT::get_next()
unknown's avatar
unknown committed
6405

6406
  NOTES
unknown's avatar
unknown committed
6407 6408
    Enter/exit invariant:
    For each quick select in the queue a {key,rowid} tuple has been
6409
    retrieved but the corresponding row hasn't been passed to output.
6410

unknown's avatar
unknown committed
6411
  RETURN
6412 6413
   0     - Ok
   other - Error code if any error occurred.
6414 6415 6416 6417 6418 6419 6420 6421
*/

int QUICK_ROR_UNION_SELECT::get_next()
{
  int error, dup_row;
  QUICK_SELECT_I *quick;
  byte *tmp;
  DBUG_ENTER("QUICK_ROR_UNION_SELECT::get_next");
unknown's avatar
unknown committed
6422

6423 6424 6425 6426
  do
  {
    if (!queue.elements)
      DBUG_RETURN(HA_ERR_END_OF_FILE);
6427
    /* Ok, we have a queue with >= 1 scans */
6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443

    quick= (QUICK_SELECT_I*)queue_top(&queue);
    memcpy(cur_rowid, quick->last_rowid, rowid_length);

    /* put into queue rowid from the same stream as top element */
    if ((error= quick->get_next()))
    {
      if (error != HA_ERR_END_OF_FILE)
        DBUG_RETURN(error);
      queue_remove(&queue, 0);
    }
    else
    {
      quick->save_last_pos();
      queue_replaced(&queue);
    }
unknown's avatar
unknown committed
6444

6445 6446 6447
    if (!have_prev_rowid)
    {
      /* No rows have been returned yet */
unknown's avatar
unknown committed
6448 6449
      dup_row= FALSE;
      have_prev_rowid= TRUE;
6450 6451 6452 6453
    }
    else
      dup_row= !head->file->cmp_ref(cur_rowid, prev_rowid);
  }while (dup_row);
unknown's avatar
unknown committed
6454

6455 6456 6457 6458 6459 6460 6461 6462
  tmp= cur_rowid;
  cur_rowid= prev_rowid;
  prev_rowid= tmp;

  error= head->file->rnd_pos(quick->record, prev_rowid);
  DBUG_RETURN(error);
}

unknown's avatar
unknown committed
6463
int QUICK_RANGE_SELECT::reset()
unknown's avatar
unknown committed
6464 6465 6466
{
  uint  mrange_bufsiz;
  byte  *mrange_buff;
unknown's avatar
unknown committed
6467 6468 6469
  DBUG_ENTER("QUICK_RANGE_SELECT::reset");
  next=0;
  range= NULL;
6470
  in_range= FALSE;
unknown's avatar
unknown committed
6471
  cur_range= (QUICK_RANGE**) ranges.buffer;
unknown's avatar
unknown committed
6472 6473

  if (file->inited == handler::NONE && (error= file->ha_index_init(index)))
unknown's avatar
unknown committed
6474
    DBUG_RETURN(error);
unknown's avatar
unknown committed
6475
 
unknown's avatar
unknown committed
6476 6477 6478 6479 6480 6481 6482
  /* Do not allocate the buffers twice. */
  if (multi_range_length)
  {
    DBUG_ASSERT(multi_range_length == min(multi_range_count, ranges.elements));
    DBUG_RETURN(0);
  }

unknown's avatar
unknown committed
6483 6484
  /* Allocate the ranges array. */
  DBUG_ASSERT(ranges.elements);
unknown's avatar
unknown committed
6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500
  multi_range_length= min(multi_range_count, ranges.elements);
  DBUG_ASSERT(multi_range_length > 0);
  while (multi_range_length && ! (multi_range= (KEY_MULTI_RANGE*)
                                  my_malloc(multi_range_length *
                                            sizeof(KEY_MULTI_RANGE),
                                            MYF(MY_WME))))
  {
    /* Try to shrink the buffers until it is 0. */
    multi_range_length/= 2;
  }
  if (! multi_range)
  {
    multi_range_length= 0;
    DBUG_RETURN(HA_ERR_OUT_OF_MEM);
  }

unknown's avatar
unknown committed
6501
  /* Allocate the handler buffer if necessary.  */
unknown's avatar
unknown committed
6502 6503 6504
  if (file->table_flags() & HA_NEED_READ_RANGE_BUFFER)
  {
    mrange_bufsiz= min(multi_range_bufsiz,
unknown's avatar
merge  
unknown committed
6505
                       (QUICK_SELECT_I::records + 1)* head->s->reclength);
unknown's avatar
unknown committed
6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546

    while (mrange_bufsiz &&
           ! my_multi_malloc(MYF(MY_WME),
                             &multi_range_buff, sizeof(*multi_range_buff),
                             &mrange_buff, mrange_bufsiz,
                             NullS))
    {
      /* Try to shrink the buffers until both are 0. */
      mrange_bufsiz/= 2;
    }
    if (! multi_range_buff)
    {
      my_free((char*) multi_range, MYF(0));
      multi_range= NULL;
      multi_range_length= 0;
      DBUG_RETURN(HA_ERR_OUT_OF_MEM);
    }

    /* Initialize the handler buffer. */
    multi_range_buff->buffer= mrange_buff;
    multi_range_buff->buffer_end= mrange_buff + mrange_bufsiz;
    multi_range_buff->end_of_used_area= mrange_buff;
  }
  DBUG_RETURN(0);
}


/*
  Get next possible record using quick-struct.

  SYNOPSIS
    QUICK_RANGE_SELECT::get_next()

  NOTES
    Record is read into table->record[0]

  RETURN
    0			Found row
    HA_ERR_END_OF_FILE	No (more) rows in range
    #			Error code
*/
unknown's avatar
unknown committed
6547

unknown's avatar
unknown committed
6548
int QUICK_RANGE_SELECT::get_next()
unknown's avatar
unknown committed
6549
{
unknown's avatar
unknown committed
6550 6551 6552 6553
  int             result;
  KEY_MULTI_RANGE *mrange;
  key_range       *start_key;
  key_range       *end_key;
unknown's avatar
unknown committed
6554
  DBUG_ENTER("QUICK_RANGE_SELECT::get_next");
unknown's avatar
unknown committed
6555 6556 6557
  DBUG_ASSERT(multi_range_length && multi_range &&
              (cur_range >= (QUICK_RANGE**) ranges.buffer) &&
              (cur_range <= (QUICK_RANGE**) ranges.buffer + ranges.elements));
unknown's avatar
unknown committed
6558 6559 6560

  for (;;)
  {
unknown's avatar
unknown committed
6561
    if (in_range)
unknown's avatar
unknown committed
6562
    {
unknown's avatar
unknown committed
6563 6564
      /* We did already start to read this key. */
      result= file->read_multi_range_next(&mrange);
unknown's avatar
unknown committed
6565
      if (result != HA_ERR_END_OF_FILE)
unknown's avatar
unknown committed
6566 6567
      {
        in_range= ! result;
6568
	DBUG_RETURN(result);
unknown's avatar
unknown committed
6569
      }
unknown's avatar
unknown committed
6570
    }
unknown's avatar
unknown committed
6571

unknown's avatar
unknown committed
6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601
    uint count= min(multi_range_length, ranges.elements -
                    (cur_range - (QUICK_RANGE**) ranges.buffer));
    if (count == 0)
    {
      /* Ranges have already been used up before. None is left for read. */
      in_range= FALSE;
      DBUG_RETURN(HA_ERR_END_OF_FILE);
    }
    KEY_MULTI_RANGE *mrange_slot, *mrange_end;
    for (mrange_slot= multi_range, mrange_end= mrange_slot+count;
         mrange_slot < mrange_end;
         mrange_slot++)
    {
      start_key= &mrange_slot->start_key;
      end_key= &mrange_slot->end_key;
      range= *(cur_range++);

      start_key->key=    (const byte*) range->min_key;
      start_key->length= range->min_length;
      start_key->flag=   ((range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY :
                          (range->flag & EQ_RANGE) ?
                          HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT);
      end_key->key=      (const byte*) range->max_key;
      end_key->length=   range->max_length;
      /*
        We use HA_READ_AFTER_KEY here because if we are reading on a key
        prefix. We want to find all keys with this prefix.
      */
      end_key->flag=     (range->flag & NEAR_MAX ? HA_READ_BEFORE_KEY :
                          HA_READ_AFTER_KEY);
unknown's avatar
unknown committed
6602

unknown's avatar
unknown committed
6603 6604
      mrange_slot->range_flag= range->flag;
    }
unknown's avatar
unknown committed
6605

unknown's avatar
unknown committed
6606 6607
    result= file->read_multi_range_first(&mrange, multi_range, count,
                                         sorted, multi_range_buff);
unknown's avatar
unknown committed
6608
    if (result != HA_ERR_END_OF_FILE)
unknown's avatar
unknown committed
6609 6610
    {
      in_range= ! result;
unknown's avatar
unknown committed
6611
      DBUG_RETURN(result);
unknown's avatar
unknown committed
6612 6613
    }
    in_range= FALSE; /* No matching rows; go to next set of ranges. */
unknown's avatar
unknown committed
6614 6615 6616
  }
}

unknown's avatar
unknown committed
6617

6618 6619 6620 6621 6622 6623
/*
  Get the next record with a different prefix.

  SYNOPSIS
    QUICK_RANGE_SELECT::get_next_prefix()
    prefix_length  length of cur_prefix
6624
    cur_prefix     prefix of a key to be searched for
6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656

  DESCRIPTION
    Each subsequent call to the method retrieves the first record that has a
    prefix with length prefix_length different from cur_prefix, such that the
    record with the new prefix is within the ranges described by
    this->ranges. The record found is stored into the buffer pointed by
    this->record.
    The method is useful for GROUP-BY queries with range conditions to
    discover the prefix of the next group that satisfies the range conditions.

  TODO
    This method is a modified copy of QUICK_RANGE_SELECT::get_next(), so both
    methods should be unified into a more general one to reduce code
    duplication.

  RETURN
    0                  on success
    HA_ERR_END_OF_FILE if returned all keys
    other              if some error occurred
*/

int QUICK_RANGE_SELECT::get_next_prefix(uint prefix_length, byte *cur_prefix)
{
  DBUG_ENTER("QUICK_RANGE_SELECT::get_next_prefix");

  for (;;)
  {
    int result;
    key_range start_key, end_key;
    if (range)
    {
      /* Read the next record in the same range with prefix after cur_prefix. */
6657
      DBUG_ASSERT(cur_prefix != 0);
6658 6659 6660 6661 6662 6663
      result= file->index_read(record, cur_prefix, prefix_length,
                               HA_READ_AFTER_KEY);
      if (result || (file->compare_key(file->end_range) <= 0))
        DBUG_RETURN(result);
    }

unknown's avatar
unknown committed
6664 6665 6666 6667 6668 6669 6670 6671
    uint count= ranges.elements - (cur_range - (QUICK_RANGE**) ranges.buffer);
    if (count == 0)
    {
      /* Ranges have already been used up before. None is left for read. */
      range= 0;
      DBUG_RETURN(HA_ERR_END_OF_FILE);
    }
    range= *(cur_range++);
6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700

    start_key.key=    (const byte*) range->min_key;
    start_key.length= min(range->min_length, prefix_length);
    start_key.flag=   ((range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY :
		       (range->flag & EQ_RANGE) ?
		       HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT);
    end_key.key=      (const byte*) range->max_key;
    end_key.length=   min(range->max_length, prefix_length);
    /*
      We use READ_AFTER_KEY here because if we are reading on a key
      prefix we want to find all keys with this prefix
    */
    end_key.flag=     (range->flag & NEAR_MAX ? HA_READ_BEFORE_KEY :
		       HA_READ_AFTER_KEY);

    result= file->read_range_first(range->min_length ? &start_key : 0,
				   range->max_length ? &end_key : 0,
                                   test(range->flag & EQ_RANGE),
				   sorted);
    if (range->flag == (UNIQUE_RANGE | EQ_RANGE))
      range=0;				// Stop searching

    if (result != HA_ERR_END_OF_FILE)
      DBUG_RETURN(result);
    range=0;				// No matching rows; go to next range
  }
}


unknown's avatar
unknown committed
6701
/* Get next for geometrical indexes */
unknown's avatar
unknown committed
6702

unknown's avatar
unknown committed
6703
int QUICK_RANGE_SELECT_GEOM::get_next()
unknown's avatar
unknown committed
6704
{
unknown's avatar
unknown committed
6705
  DBUG_ENTER("QUICK_RANGE_SELECT_GEOM::get_next");
unknown's avatar
unknown committed
6706

unknown's avatar
unknown committed
6707
  for (;;)
unknown's avatar
unknown committed
6708
  {
unknown's avatar
unknown committed
6709 6710
    int result;
    if (range)
unknown's avatar
unknown committed
6711
    {
unknown's avatar
unknown committed
6712 6713 6714 6715 6716
      // Already read through key
      result= file->index_next_same(record, (byte*) range->min_key,
				    range->min_length);
      if (result != HA_ERR_END_OF_FILE)
	DBUG_RETURN(result);
unknown's avatar
unknown committed
6717
    }
unknown's avatar
unknown committed
6718

unknown's avatar
unknown committed
6719 6720 6721 6722 6723 6724 6725 6726
    uint count= ranges.elements - (cur_range - (QUICK_RANGE**) ranges.buffer);
    if (count == 0)
    {
      /* Ranges have already been used up before. None is left for read. */
      range= 0;
      DBUG_RETURN(HA_ERR_END_OF_FILE);
    }
    range= *(cur_range++);
unknown's avatar
unknown committed
6727 6728 6729 6730 6731 6732 6733 6734

    result= file->index_read(record,
			     (byte*) range->min_key,
			     range->min_length,
			     (ha_rkey_function)(range->flag ^ GEOM_FLAG));
    if (result != HA_ERR_KEY_NOT_FOUND)
      DBUG_RETURN(result);
    range=0;				// Not found, to next range
unknown's avatar
unknown committed
6735 6736 6737
  }
}

unknown's avatar
unknown committed
6738

6739 6740 6741 6742
/*
  Check if current row will be retrieved by this QUICK_RANGE_SELECT

  NOTES
unknown's avatar
unknown committed
6743 6744
    It is assumed that currently a scan is being done on another index
    which reads all necessary parts of the index that is scanned by this
6745
    quick select.
unknown's avatar
unknown committed
6746
    The implementation does a binary search on sorted array of disjoint
6747 6748
    ranges, without taking size of range into account.

unknown's avatar
unknown committed
6749
    This function is used to filter out clustered PK scan rows in
6750 6751
    index_merge quick select.

6752
  RETURN
unknown's avatar
unknown committed
6753 6754
    TRUE  if current row will be retrieved by this quick select
    FALSE if not
6755 6756 6757 6758 6759 6760 6761 6762 6763 6764
*/

bool QUICK_RANGE_SELECT::row_in_ranges()
{
  QUICK_RANGE *range;
  uint min= 0;
  uint max= ranges.elements - 1;
  uint mid= (max + min)/2;

  while (min != max)
unknown's avatar
unknown committed
6765
  {
6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778
    if (cmp_next(*(QUICK_RANGE**)dynamic_array_ptr(&ranges, mid)))
    {
      /* current row value > mid->max */
      min= mid + 1;
    }
    else
      max= mid;
    mid= (min + max) / 2;
  }
  range= *(QUICK_RANGE**)dynamic_array_ptr(&ranges, mid);
  return (!cmp_next(range) && !cmp_prev(range));
}

6779
/*
6780 6781 6782 6783 6784 6785 6786
  This is a hack: we inherit from QUICK_SELECT so that we can use the
  get_next() interface, but we have to hold a pointer to the original
  QUICK_SELECT because its data are used all over the place.  What
  should be done is to factor out the data that is needed into a base
  class (QUICK_SELECT), and then have two subclasses (_ASC and _DESC)
  which handle the ranges and implement the get_next() function.  But
  for now, this seems to work right at least.
6787
 */
unknown's avatar
unknown committed
6788

unknown's avatar
unknown committed
6789
QUICK_SELECT_DESC::QUICK_SELECT_DESC(QUICK_RANGE_SELECT *q,
unknown's avatar
unknown committed
6790 6791
                                     uint used_key_parts)
 : QUICK_RANGE_SELECT(*q), rev_it(rev_ranges)
6792
{
unknown's avatar
unknown committed
6793
  QUICK_RANGE *r;
unknown's avatar
unknown committed
6794

6795 6796
  QUICK_RANGE **pr= (QUICK_RANGE**)ranges.buffer;
  QUICK_RANGE **last_range= pr + ranges.elements;
unknown's avatar
unknown committed
6797 6798
  for (; pr!=last_range; pr++)
    rev_ranges.push_front(*pr);
unknown's avatar
unknown committed
6799

unknown's avatar
unknown committed
6800
  /* Remove EQ_RANGE flag for keys that are not using the full key */
unknown's avatar
unknown committed
6801
  for (r = rev_it++; r; r = rev_it++)
unknown's avatar
unknown committed
6802 6803 6804 6805 6806 6807 6808 6809
  {
    if ((r->flag & EQ_RANGE) &&
	head->key_info[index].key_length != r->max_length)
      r->flag&= ~EQ_RANGE;
  }
  rev_it.rewind();
  q->dont_free=1;				// Don't free shared mem
  delete q;
6810 6811
}

unknown's avatar
unknown committed
6812

6813 6814 6815 6816 6817 6818
int QUICK_SELECT_DESC::get_next()
{
  DBUG_ENTER("QUICK_SELECT_DESC::get_next");

  /* The max key is handled as follows:
   *   - if there is NO_MAX_RANGE, start at the end and move backwards
unknown's avatar
unknown committed
6819 6820
   *   - if it is an EQ_RANGE, which means that max key covers the entire
   *     key, go directly to the key and read through it (sorting backwards is
6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832
   *     same as sorting forwards)
   *   - if it is NEAR_MAX, go to the key or next, step back once, and
   *     move backwards
   *   - otherwise (not NEAR_MAX == include the key), go after the key,
   *     step back once, and move backwards
   */

  for (;;)
  {
    int result;
    if (range)
    {						// Already read through key
unknown's avatar
unknown committed
6833 6834 6835
      result = ((range->flag & EQ_RANGE)
		? file->index_next_same(record, (byte*) range->min_key,
					range->min_length) :
6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850
		file->index_prev(record));
      if (!result)
      {
	if (cmp_prev(*rev_it.ref()) == 0)
	  DBUG_RETURN(0);
      }
      else if (result != HA_ERR_END_OF_FILE)
	DBUG_RETURN(result);
    }

    if (!(range=rev_it++))
      DBUG_RETURN(HA_ERR_END_OF_FILE);		// All ranges used

    if (range->flag & NO_MAX_RANGE)		// Read last record
    {
6851 6852 6853
      int local_error;
      if ((local_error=file->index_last(record)))
	DBUG_RETURN(local_error);		// Empty table
6854 6855 6856 6857 6858 6859
      if (cmp_prev(range) == 0)
	DBUG_RETURN(0);
      range=0;			// No matching records; go to next range
      continue;
    }

unknown's avatar
unknown committed
6860
    if (range->flag & EQ_RANGE)
6861 6862 6863 6864 6865 6866
    {
      result = file->index_read(record, (byte*) range->max_key,
				range->max_length, HA_READ_KEY_EXACT);
    }
    else
    {
6867 6868 6869 6870 6871
      DBUG_ASSERT(range->flag & NEAR_MAX || range_reads_after_key(range));
      result=file->index_read(record, (byte*) range->max_key,
			      range->max_length,
			      ((range->flag & NEAR_MAX) ?
			       HA_READ_BEFORE_KEY : HA_READ_PREFIX_LAST_OR_PREV));
6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889
    }
    if (result)
    {
      if (result != HA_ERR_KEY_NOT_FOUND)
	DBUG_RETURN(result);
      range=0;					// Not found, to next range
      continue;
    }
    if (cmp_prev(range) == 0)
    {
      if (range->flag == (UNIQUE_RANGE | EQ_RANGE))
	range = 0;				// Stop searching
      DBUG_RETURN(0);				// Found key is in range
    }
    range = 0;					// To next range
  }
}

6890

unknown's avatar
unknown committed
6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931
/*
  Compare if found key is over max-value
  Returns 0 if key <= range->max_key
*/

int QUICK_RANGE_SELECT::cmp_next(QUICK_RANGE *range_arg)
{
  if (range_arg->flag & NO_MAX_RANGE)
    return 0;                                   /* key can't be to large */

  KEY_PART *key_part=key_parts;
  uint store_length;

  for (char *key=range_arg->max_key, *end=key+range_arg->max_length;
       key < end;
       key+= store_length, key_part++)
  {
    int cmp;
    store_length= key_part->store_length;
    if (key_part->null_bit)
    {
      if (*key)
      {
        if (!key_part->field->is_null())
          return 1;
        continue;
      }
      else if (key_part->field->is_null())
        return 0;
      key++;					// Skip null byte
      store_length--;
    }
    if ((cmp=key_part->field->key_cmp((byte*) key, key_part->length)) < 0)
      return 0;
    if (cmp > 0)
      return 1;
  }
  return (range_arg->flag & NEAR_MAX) ? 1 : 0;          // Exact match
}


6932
/*
6933 6934 6935
  Returns 0 if found key is inside range (found key >= range->min_key).
*/

6936
int QUICK_RANGE_SELECT::cmp_prev(QUICK_RANGE *range_arg)
6937
{
unknown's avatar
unknown committed
6938
  int cmp;
6939
  if (range_arg->flag & NO_MIN_RANGE)
unknown's avatar
unknown committed
6940
    return 0;					/* key can't be to small */
6941

unknown's avatar
unknown committed
6942 6943
  cmp= key_cmp(key_part_info, (byte*) range_arg->min_key,
               range_arg->min_length);
unknown's avatar
unknown committed
6944 6945 6946
  if (cmp > 0 || cmp == 0 && !(range_arg->flag & NEAR_MIN))
    return 0;
  return 1;                                     // outside of range
6947 6948
}

6949

6950
/*
unknown's avatar
unknown committed
6951
 * TRUE if this range will require using HA_READ_AFTER_KEY
unknown's avatar
unknown committed
6952
   See comment in get_next() about this
6953
 */
unknown's avatar
unknown committed
6954

6955
bool QUICK_SELECT_DESC::range_reads_after_key(QUICK_RANGE *range_arg)
6956
{
unknown's avatar
unknown committed
6957
  return ((range_arg->flag & (NO_MAX_RANGE | NEAR_MAX)) ||
6958
	  !(range_arg->flag & EQ_RANGE) ||
unknown's avatar
unknown committed
6959
	  head->key_info[index].key_length != range_arg->max_length) ? 1 : 0;
6960 6961
}

6962

unknown's avatar
unknown committed
6963
/* TRUE if we are reading over a key that may have a NULL value */
unknown's avatar
unknown committed
6964

unknown's avatar
unknown committed
6965
#ifdef NOT_USED
6966
bool QUICK_SELECT_DESC::test_if_null_range(QUICK_RANGE *range_arg,
unknown's avatar
unknown committed
6967 6968
					   uint used_key_parts)
{
unknown's avatar
unknown committed
6969
  uint offset, end;
unknown's avatar
unknown committed
6970 6971 6972
  KEY_PART *key_part = key_parts,
           *key_part_end= key_part+used_key_parts;

6973
  for (offset= 0,  end = min(range_arg->min_length, range_arg->max_length) ;
unknown's avatar
unknown committed
6974
       offset < end && key_part != key_part_end ;
unknown's avatar
unknown committed
6975
       offset+= key_part++->store_length)
unknown's avatar
unknown committed
6976
  {
6977 6978
    if (!memcmp((char*) range_arg->min_key+offset,
		(char*) range_arg->max_key+offset,
unknown's avatar
unknown committed
6979
		key_part->store_length))
unknown's avatar
unknown committed
6980
      continue;
unknown's avatar
unknown committed
6981 6982

    if (key_part->null_bit && range_arg->min_key[offset])
unknown's avatar
unknown committed
6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994
      return 1;				// min_key is null and max_key isn't
    // Range doesn't cover NULL. This is ok if there is no more null parts
    break;
  }
  /*
    If the next min_range is > NULL, then we can use this, even if
    it's a NULL key
    Example:  SELECT * FROM t1 WHERE a = 2 AND b >0 ORDER BY a DESC,b DESC;

  */
  if (key_part != key_part_end && key_part->null_bit)
  {
6995
    if (offset >= range_arg->min_length || range_arg->min_key[offset])
unknown's avatar
unknown committed
6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007
      return 1;					// Could be null
    key_part++;
  }
  /*
    If any of the key parts used in the ORDER BY could be NULL, we can't
    use the key to sort the data.
  */
  for (; key_part != key_part_end ; key_part++)
    if (key_part->null_bit)
      return 1;					// Covers null part
  return 0;
}
unknown's avatar
unknown committed
7008
#endif
unknown's avatar
unknown committed
7009 7010


7011 7012 7013 7014 7015 7016 7017 7018 7019
void QUICK_RANGE_SELECT::add_info_string(String *str)
{
  KEY *key_info= head->key_info + index;
  str->append(key_info->name);
}

void QUICK_INDEX_MERGE_SELECT::add_info_string(String *str)
{
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
7020
  bool first= TRUE;
7021
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
7022
  str->append(STRING_WITH_LEN("sort_union("));
7023 7024 7025 7026 7027
  while ((quick= it++))
  {
    if (!first)
      str->append(',');
    else
unknown's avatar
unknown committed
7028
      first= FALSE;
7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040
    quick->add_info_string(str);
  }
  if (pk_quick_select)
  {
    str->append(',');
    pk_quick_select->add_info_string(str);
  }
  str->append(')');
}

void QUICK_ROR_INTERSECT_SELECT::add_info_string(String *str)
{
unknown's avatar
unknown committed
7041
  bool first= TRUE;
7042 7043
  QUICK_RANGE_SELECT *quick;
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
7044
  str->append(STRING_WITH_LEN("intersect("));
7045 7046 7047 7048 7049
  while ((quick= it++))
  {
    KEY *key_info= head->key_info + quick->index;
    if (!first)
      str->append(',');
unknown's avatar
unknown committed
7050
    else
unknown's avatar
unknown committed
7051
      first= FALSE;
7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064
    str->append(key_info->name);
  }
  if (cpk_quick)
  {
    KEY *key_info= head->key_info + cpk_quick->index;
    str->append(',');
    str->append(key_info->name);
  }
  str->append(')');
}

void QUICK_ROR_UNION_SELECT::add_info_string(String *str)
{
unknown's avatar
unknown committed
7065
  bool first= TRUE;
7066 7067
  QUICK_SELECT_I *quick;
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
7068
  str->append(STRING_WITH_LEN("union("));
7069 7070 7071 7072 7073
  while ((quick= it++))
  {
    if (!first)
      str->append(',');
    else
unknown's avatar
unknown committed
7074
      first= FALSE;
7075 7076 7077 7078 7079 7080
    quick->add_info_string(str);
  }
  str->append(')');
}


unknown's avatar
unknown committed
7081
void QUICK_RANGE_SELECT::add_keys_and_lengths(String *key_names,
7082
                                              String *used_lengths)
7083 7084 7085 7086 7087 7088 7089 7090 7091
{
  char buf[64];
  uint length;
  KEY *key_info= head->key_info + index;
  key_names->append(key_info->name);
  length= longlong2str(max_used_key_length, buf, 10) - buf;
  used_lengths->append(buf, length);
}

7092 7093
void QUICK_INDEX_MERGE_SELECT::add_keys_and_lengths(String *key_names,
                                                    String *used_lengths)
7094 7095 7096
{
  char buf[64];
  uint length;
unknown's avatar
unknown committed
7097
  bool first= TRUE;
7098
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
7099

7100 7101 7102
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  while ((quick= it++))
  {
7103
    if (first)
unknown's avatar
unknown committed
7104
      first= FALSE;
7105 7106
    else
    {
7107 7108
      key_names->append(',');
      used_lengths->append(',');
7109
    }
unknown's avatar
unknown committed
7110

7111 7112
    KEY *key_info= head->key_info + quick->index;
    key_names->append(key_info->name);
7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126
    length= longlong2str(quick->max_used_key_length, buf, 10) - buf;
    used_lengths->append(buf, length);
  }
  if (pk_quick_select)
  {
    KEY *key_info= head->key_info + pk_quick_select->index;
    key_names->append(',');
    key_names->append(key_info->name);
    length= longlong2str(pk_quick_select->max_used_key_length, buf, 10) - buf;
    used_lengths->append(',');
    used_lengths->append(buf, length);
  }
}

7127 7128
void QUICK_ROR_INTERSECT_SELECT::add_keys_and_lengths(String *key_names,
                                                      String *used_lengths)
7129 7130 7131
{
  char buf[64];
  uint length;
unknown's avatar
unknown committed
7132
  bool first= TRUE;
7133 7134 7135 7136 7137 7138
  QUICK_RANGE_SELECT *quick;
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  while ((quick= it++))
  {
    KEY *key_info= head->key_info + quick->index;
    if (first)
unknown's avatar
unknown committed
7139
      first= FALSE;
7140
    else
7141 7142
    {
      key_names->append(',');
7143
      used_lengths->append(',');
7144 7145
    }
    key_names->append(key_info->name);
7146 7147 7148
    length= longlong2str(quick->max_used_key_length, buf, 10) - buf;
    used_lengths->append(buf, length);
  }
unknown's avatar
unknown committed
7149

7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160
  if (cpk_quick)
  {
    KEY *key_info= head->key_info + cpk_quick->index;
    key_names->append(',');
    key_names->append(key_info->name);
    length= longlong2str(cpk_quick->max_used_key_length, buf, 10) - buf;
    used_lengths->append(',');
    used_lengths->append(buf, length);
  }
}

7161 7162
void QUICK_ROR_UNION_SELECT::add_keys_and_lengths(String *key_names,
                                                  String *used_lengths)
7163
{
unknown's avatar
unknown committed
7164
  bool first= TRUE;
7165 7166 7167 7168 7169
  QUICK_SELECT_I *quick;
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  while ((quick= it++))
  {
    if (first)
unknown's avatar
unknown committed
7170
      first= FALSE;
7171
    else
unknown's avatar
unknown committed
7172
    {
7173 7174 7175
      used_lengths->append(',');
      key_names->append(',');
    }
7176
    quick->add_keys_and_lengths(key_names, used_lengths);
7177 7178 7179
  }
}

7180 7181 7182 7183 7184 7185 7186 7187 7188

/*******************************************************************************
* Implementation of QUICK_GROUP_MIN_MAX_SELECT
*******************************************************************************/

static inline uint get_field_keypart(KEY *index, Field *field);
static inline SEL_ARG * get_index_range_tree(uint index, SEL_TREE* range_tree,
                                             PARAM *param, uint *param_idx);
static bool
7189
get_constant_key_infix(KEY *index_info, SEL_ARG *index_range_tree,
7190
                       KEY_PART_INFO *first_non_group_part,
7191 7192 7193 7194
                       KEY_PART_INFO *min_max_arg_part,
                       KEY_PART_INFO *last_part, THD *thd,
                       byte *key_infix, uint *key_infix_len,
                       KEY_PART_INFO **first_non_infix_part);
7195
static bool
7196 7197
check_group_min_max_predicates(COND *cond, Item_field *min_max_arg_item,
                               Field::imagetype image_type);
7198

7199 7200 7201 7202 7203 7204
static void
cost_group_min_max(TABLE* table, KEY *index_info, uint used_key_parts,
                   uint group_key_parts, SEL_TREE *range_tree,
                   SEL_ARG *index_tree, ha_rows quick_prefix_records,
                   bool have_min, bool have_max,
                   double *read_cost, ha_rows *records);
7205

unknown's avatar
unknown committed
7206

7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231
/*
  Test if this access method is applicable to a GROUP query with MIN/MAX
  functions, and if so, construct a new TRP object.

  SYNOPSIS
    get_best_group_min_max()
    param    Parameter from test_quick_select
    sel_tree Range tree generated by get_mm_tree

  DESCRIPTION
    Test whether a query can be computed via a QUICK_GROUP_MIN_MAX_SELECT.
    Queries computable via a QUICK_GROUP_MIN_MAX_SELECT must satisfy the
    following conditions:
    A) Table T has at least one compound index I of the form:
       I = <A_1, ...,A_k, [B_1,..., B_m], C, [D_1,...,D_n]>
    B) Query conditions:
    B0. Q is over a single table T.
    B1. The attributes referenced by Q are a subset of the attributes of I.
    B2. All attributes QA in Q can be divided into 3 overlapping groups:
        - SA = {S_1, ..., S_l, [C]} - from the SELECT clause, where C is
          referenced by any number of MIN and/or MAX functions if present.
        - WA = {W_1, ..., W_p} - from the WHERE clause
        - GA = <G_1, ..., G_k> - from the GROUP BY clause (if any)
             = SA              - if Q is a DISTINCT query (based on the
                                 equivalence of DISTINCT and GROUP queries.
unknown's avatar
unknown committed
7232 7233
        - NGA = QA - (GA union C) = {NG_1, ..., NG_m} - the ones not in
          GROUP BY and not referenced by MIN/MAX functions.
7234
        with the following properties specified below.
7235 7236
    B3. If Q has a GROUP BY WITH ROLLUP clause the access method is not 
        applicable.
7237 7238 7239 7240 7241 7242 7243 7244 7245 7246

    SA1. There is at most one attribute in SA referenced by any number of
         MIN and/or MAX functions which, which if present, is denoted as C.
    SA2. The position of the C attribute in the index is after the last A_k.
    SA3. The attribute C can be referenced in the WHERE clause only in
         predicates of the forms:
         - (C {< | <= | > | >= | =} const)
         - (const {< | <= | > | >= | =} C)
         - (C between const_i and const_j)
         - C IS NULL
7247 7248
         - C IS NOT NULL
         - C != const
7249 7250 7251
    SA4. If Q has a GROUP BY clause, there are no other aggregate functions
         except MIN and MAX. For queries with DISTINCT, aggregate functions
         are allowed.
7252
    SA5. The select list in DISTINCT queries should not contain expressions.
7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281
    GA1. If Q has a GROUP BY clause, then GA is a prefix of I. That is, if
         G_i = A_j => i = j.
    GA2. If Q has a DISTINCT clause, then there is a permutation of SA that
         forms a prefix of I. This permutation is used as the GROUP clause
         when the DISTINCT query is converted to a GROUP query.
    GA3. The attributes in GA may participate in arbitrary predicates, divided
         into two groups:
         - RNG(G_1,...,G_q ; where q <= k) is a range condition over the
           attributes of a prefix of GA
         - PA(G_i1,...G_iq) is an arbitrary predicate over an arbitrary subset
           of GA. Since P is applied to only GROUP attributes it filters some
           groups, and thus can be applied after the grouping.
    GA4. There are no expressions among G_i, just direct column references.
    NGA1.If in the index I there is a gap between the last GROUP attribute G_k,
         and the MIN/MAX attribute C, then NGA must consist of exactly the index
         attributes that constitute the gap. As a result there is a permutation
         of NGA that coincides with the gap in the index <B_1, ..., B_m>.
    NGA2.If BA <> {}, then the WHERE clause must contain a conjunction EQ of
         equality conditions for all NG_i of the form (NG_i = const) or
         (const = NG_i), such that each NG_i is referenced in exactly one
         conjunct. Informally, the predicates provide constants to fill the
         gap in the index.
    WA1. There are no other attributes in the WHERE clause except the ones
         referenced in predicates RNG, PA, PC, EQ defined above. Therefore
         WA is subset of (GA union NGA union C) for GA,NGA,C that pass the above
         tests. By transitivity then it also follows that each WA_i participates
         in the index I (if this was already tested for GA, NGA and C).

    C) Overall query form:
7282 7283 7284 7285
       SELECT EXPR([A_1,...,A_k], [B_1,...,B_m], [MIN(C)], [MAX(C)])
         FROM T
        WHERE [RNG(A_1,...,A_p ; where p <= k)]
         [AND EQ(B_1,...,B_m)]
7286 7287
         [AND PC(C)]
         [AND PA(A_i1,...,A_iq)]
7288 7289 7290 7291
       GROUP BY A_1,...,A_k
       [HAVING PH(A_1, ..., B_1,..., C)]
    where EXPR(...) is an arbitrary expression over some or all SELECT fields,
    or:
7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320
       SELECT DISTINCT A_i1,...,A_ik
         FROM T
        WHERE [RNG(A_1,...,A_p ; where p <= k)]
         [AND PA(A_i1,...,A_iq)];

  NOTES
    If the current query satisfies the conditions above, and if
    (mem_root! = NULL), then the function constructs and returns a new TRP
    object, that is later used to construct a new QUICK_GROUP_MIN_MAX_SELECT.
    If (mem_root == NULL), then the function only tests whether the current
    query satisfies the conditions above, and, if so, sets
    is_applicable = TRUE.

    Queries with DISTINCT for which index access can be used are transformed
    into equivalent group-by queries of the form:

    SELECT A_1,...,A_k FROM T
     WHERE [RNG(A_1,...,A_p ; where p <= k)]
      [AND PA(A_i1,...,A_iq)]
    GROUP BY A_1,...,A_k;

    The group-by list is a permutation of the select attributes, according
    to their order in the index.

  TODO
  - What happens if the query groups by the MIN/MAX field, and there is no
    other field as in: "select min(a) from t1 group by a" ?
  - We assume that the general correctness of the GROUP-BY query was checked
    before this point. Is this correct, or do we have to check it completely?
7321 7322
  - Lift the limitation in condition (B3), that is, make this access method 
    applicable to ROLLUP queries.
7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361

  RETURN
    If mem_root != NULL
    - valid TRP_GROUP_MIN_MAX object if this QUICK class can be used for
      the query
    -  NULL o/w.
    If mem_root == NULL
    - NULL
*/

static TRP_GROUP_MIN_MAX *
get_best_group_min_max(PARAM *param, SEL_TREE *tree)
{
  THD *thd= param->thd;
  JOIN *join= thd->lex->select_lex.join;
  TABLE *table= param->table;
  bool have_min= FALSE;              /* TRUE if there is a MIN function. */
  bool have_max= FALSE;              /* TRUE if there is a MAX function. */
  Item_field *min_max_arg_item= NULL;/* The argument of all MIN/MAX functions.*/
  KEY_PART_INFO *min_max_arg_part= NULL; /* The corresponding keypart. */
  uint group_prefix_len= 0; /* Length (in bytes) of the key prefix. */
  KEY *index_info= NULL;    /* The index chosen for data access. */
  uint index= 0;            /* The id of the chosen index. */
  uint group_key_parts= 0;  /* Number of index key parts in the group prefix. */
  uint used_key_parts= 0;   /* Number of index key parts used for access. */
  byte key_infix[MAX_KEY_LENGTH]; /* Constants from equality predicates.*/
  uint key_infix_len= 0;          /* Length of key_infix. */
  TRP_GROUP_MIN_MAX *read_plan= NULL; /* The eventually constructed TRP. */
  uint key_part_nr;
  ORDER *tmp_group;
  Item *item;
  Item_field *item_field;
  DBUG_ENTER("get_best_group_min_max");

  /* Perform few 'cheap' tests whether this access method is applicable. */
  if (!join || (thd->lex->sql_command != SQLCOM_SELECT))
    DBUG_RETURN(NULL);        /* This is not a select statement. */
  if ((join->tables != 1) ||  /* The query must reference one table. */
      ((!join->group_list) && /* Neither GROUP BY nor a DISTINCT query. */
7362 7363
       (!join->select_distinct)) ||
      (thd->lex->select_lex.olap == ROLLUP_TYPE)) /* Check (B3) for ROLLUP */
7364
    DBUG_RETURN(NULL);
7365
  if (table->s->keys == 0)        /* There are no indexes to use. */
7366 7367 7368
    DBUG_RETURN(NULL);

  /* Analyze the query in more detail. */
7369
  List_iterator<Item> select_items_it(join->fields_list);
7370

7371
  /* Check (SA1,SA4) and store the only MIN/MAX argument - the C attribute.*/
unknown's avatar
unknown committed
7372
  if (join->make_sum_func_list(join->all_fields, join->fields_list, 1))
7373 7374
    DBUG_RETURN(NULL);
  if (join->sum_funcs[0])
7375
  {
7376 7377 7378
    Item_sum *min_max_item;
    Item_sum **func_ptr= join->sum_funcs;
    while ((min_max_item= *(func_ptr++)))
7379
    {
7380 7381 7382 7383 7384
      if (min_max_item->sum_func() == Item_sum::MIN_FUNC)
        have_min= TRUE;
      else if (min_max_item->sum_func() == Item_sum::MAX_FUNC)
        have_max= TRUE;
      else
7385 7386
        DBUG_RETURN(NULL);

7387 7388
      Item *expr= min_max_item->args[0];    /* The argument of MIN/MAX. */
      if (expr->type() == Item::FIELD_ITEM) /* Is it an attribute? */
7389
      {
7390 7391 7392 7393
        if (! min_max_arg_item)
          min_max_arg_item= (Item_field*) expr;
        else if (! min_max_arg_item->eq(expr, 1))
          DBUG_RETURN(NULL);
7394
      }
7395 7396
      else
        DBUG_RETURN(NULL);
7397
    }
7398
  }
7399

7400 7401 7402 7403
  /* Check (SA5). */
  if (join->select_distinct)
  {
    while ((item= select_items_it++))
7404
    {
7405 7406
      if (item->type() != Item::FIELD_ITEM)
        DBUG_RETURN(NULL);
7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422
    }
  }

  /* Check (GA4) - that there are no expressions among the group attributes. */
  for (tmp_group= join->group_list; tmp_group; tmp_group= tmp_group->next)
  {
    if ((*tmp_group->item)->type() != Item::FIELD_ITEM)
      DBUG_RETURN(NULL);
  }

  /*
    Check that table has at least one compound index such that the conditions
    (GA1,GA2) are all TRUE. If there is more than one such index, select the
    first one. Here we set the variables: group_prefix_len and index_info.
  */
  KEY *cur_index_info= table->key_info;
7423
  KEY *cur_index_info_end= cur_index_info + table->s->keys;
7424
  KEY_PART_INFO *cur_part= NULL;
7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442
  KEY_PART_INFO *end_part; /* Last part for loops. */
  /* Last index part. */
  KEY_PART_INFO *last_part= NULL;
  KEY_PART_INFO *first_non_group_part= NULL;
  KEY_PART_INFO *first_non_infix_part= NULL;
  uint key_infix_parts= 0;
  uint cur_group_key_parts= 0;
  uint cur_group_prefix_len= 0;
  /* Cost-related variables for the best index so far. */
  double best_read_cost= DBL_MAX;
  ha_rows best_records= 0;
  SEL_ARG *best_index_tree= NULL;
  ha_rows best_quick_prefix_records= 0;
  uint best_param_idx= 0;
  double cur_read_cost= DBL_MAX;
  ha_rows cur_records;
  SEL_ARG *cur_index_tree= NULL;
  ha_rows cur_quick_prefix_records= 0;
7443
  uint cur_param_idx=MAX_KEY;
unknown's avatar
unknown committed
7444
  key_map cur_used_key_parts;
unknown's avatar
unknown committed
7445
  uint pk= param->table->s->primary_key;
7446 7447 7448 7449 7450 7451 7452

  for (uint cur_index= 0 ; cur_index_info != cur_index_info_end ;
       cur_index_info++, cur_index++)
  {
    /* Check (B1) - if current index is covering. */
    if (!table->used_keys.is_set(cur_index))
      goto next_index;
7453

unknown's avatar
unknown committed
7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477
    /*
      If the current storage manager is such that it appends the primary key to
      each index, then the above condition is insufficient to check if the
      index is covering. In such cases it may happen that some fields are
      covered by the PK index, but not by the current index. Since we can't
      use the concatenation of both indexes for index lookup, such an index
      does not qualify as covering in our case. If this is the case, below
      we check that all query fields are indeed covered by 'cur_index'.
    */
    if (pk < MAX_KEY && cur_index != pk &&
        (table->file->table_flags() & HA_PRIMARY_KEY_IN_READ_INDEX))
    {
      /* For each table field */
      for (uint i= 0; i < table->s->fields; i++)
      {
        Field *cur_field= table->field[i];
        /*
          If the field is used in the current query, check that the
          field is covered by some keypart of the current index.
        */
        if (thd->query_id == cur_field->query_id)
        {
          KEY_PART_INFO *key_part= cur_index_info->key_part;
          KEY_PART_INFO *key_part_end= key_part + cur_index_info->key_parts;
7478
          for (;;)
unknown's avatar
unknown committed
7479 7480 7481
          {
            if (key_part->field == cur_field)
              break;
7482 7483
            if (++key_part == key_part_end)
              goto next_index;                  // Field was not part of key
unknown's avatar
unknown committed
7484 7485 7486 7487 7488
          }
        }
      }
    }

7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509
    /*
      Check (GA1) for GROUP BY queries.
    */
    if (join->group_list)
    {
      cur_part= cur_index_info->key_part;
      end_part= cur_part + cur_index_info->key_parts;
      /* Iterate in parallel over the GROUP list and the index parts. */
      for (tmp_group= join->group_list; tmp_group && (cur_part != end_part);
           tmp_group= tmp_group->next, cur_part++)
      {
        /*
          TODO:
          tmp_group::item is an array of Item, is it OK to consider only the
          first Item? If so, then why? What is the array for?
        */
        /* Above we already checked that all group items are fields. */
        DBUG_ASSERT((*tmp_group->item)->type() == Item::FIELD_ITEM);
        Item_field *group_field= (Item_field *) (*tmp_group->item);
        if (group_field->field->eq(cur_part->field))
        {
7510 7511
          cur_group_prefix_len+= cur_part->store_length;
          ++cur_group_key_parts;
7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526
        }
        else
          goto next_index;
      }
    }
    /*
      Check (GA2) if this is a DISTINCT query.
      If GA2, then Store a new ORDER object in group_fields_array at the
      position of the key part of item_field->field. Thus we get the ORDER
      objects for each field ordered as the corresponding key parts.
      Later group_fields_array of ORDER objects is used to convert the query
      to a GROUP query.
    */
    else if (join->select_distinct)
    {
7527
      select_items_it.rewind();
unknown's avatar
unknown committed
7528
      cur_used_key_parts.clear_all();
7529
      uint max_key_part= 0;
7530
      while ((item= select_items_it++))
7531
      {
7532
        item_field= (Item_field*) item; /* (SA5) already checked above. */
7533 7534
        /* Find the order of the key part in the index. */
        key_part_nr= get_field_keypart(cur_index_info, item_field->field);
unknown's avatar
unknown committed
7535 7536 7537 7538 7539 7540
        /*
          Check if this attribute was already present in the select list.
          If it was present, then its corresponding key part was alredy used.
        */
        if (cur_used_key_parts.is_set(key_part_nr))
          continue;
7541
        if (key_part_nr < 1 || key_part_nr > join->fields_list.elements)
7542 7543
          goto next_index;
        cur_part= cur_index_info->key_part + key_part_nr - 1;
7544
        cur_group_prefix_len+= cur_part->store_length;
unknown's avatar
unknown committed
7545 7546
        cur_used_key_parts.set_bit(key_part_nr);
        ++cur_group_key_parts;
7547
        max_key_part= max(max_key_part,key_part_nr);
7548
      }
7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559
      /*
        Check that used key parts forms a prefix of the index.
        To check this we compare bits in all_parts and cur_parts.
        all_parts have all bits set from 0 to (max_key_part-1).
        cur_parts have bits set for only used keyparts.
      */
      ulonglong all_parts, cur_parts;
      all_parts= (1<<max_key_part) - 1;
      cur_parts= cur_used_key_parts.to_ulonglong() >> 1;
      if (all_parts != cur_parts)
        goto next_index;
7560 7561 7562 7563 7564 7565 7566 7567
    }
    else
      DBUG_ASSERT(FALSE);

    /* Check (SA2). */
    if (min_max_arg_item)
    {
      key_part_nr= get_field_keypart(cur_index_info, min_max_arg_item->field);
7568
      if (key_part_nr <= cur_group_key_parts)
7569 7570 7571 7572 7573 7574 7575 7576
        goto next_index;
      min_max_arg_part= cur_index_info->key_part + key_part_nr - 1;
    }

    /*
      Check (NGA1, NGA2) and extract a sequence of constants to be used as part
      of all search keys.
    */
7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598

    /*
      If there is MIN/MAX, each keypart between the last group part and the
      MIN/MAX part must participate in one equality with constants, and all
      keyparts after the MIN/MAX part must not be referenced in the query.

      If there is no MIN/MAX, the keyparts after the last group part can be
      referenced only in equalities with constants, and the referenced keyparts
      must form a sequence without any gaps that starts immediately after the
      last group keypart.
    */
    last_part= cur_index_info->key_part + cur_index_info->key_parts;
    first_non_group_part= (cur_group_key_parts < cur_index_info->key_parts) ?
                          cur_index_info->key_part + cur_group_key_parts :
                          NULL;
    first_non_infix_part= min_max_arg_part ?
                          (min_max_arg_part < last_part) ?
                             min_max_arg_part + 1 :
                             NULL :
                           NULL;
    if (first_non_group_part &&
        (!min_max_arg_part || (min_max_arg_part - first_non_group_part > 0)))
7599
    {
7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612
      if (tree)
      {
        uint dummy;
        SEL_ARG *index_range_tree= get_index_range_tree(cur_index, tree, param,
                                                        &dummy);
        if (!get_constant_key_infix(cur_index_info, index_range_tree,
                                    first_non_group_part, min_max_arg_part,
                                    last_part, thd, key_infix, &key_infix_len,
                                    &first_non_infix_part))
          goto next_index;
      }
      else if (min_max_arg_part &&
               (min_max_arg_part - first_non_group_part > 0))
unknown's avatar
unknown committed
7613
      {
7614 7615 7616 7617
        /*
          There is a gap but no range tree, thus no predicates at all for the
          non-group keyparts.
        */
7618
        goto next_index;
unknown's avatar
unknown committed
7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642
      }
      else if (first_non_group_part && join->conds)
      {
        /*
          If there is no MIN/MAX function in the query, but some index
          key part is referenced in the WHERE clause, then this index
          cannot be used because the WHERE condition over the keypart's
          field cannot be 'pushed' to the index (because there is no
          range 'tree'), and the WHERE clause must be evaluated before
          GROUP BY/DISTINCT.
        */
        /*
          Store the first and last keyparts that need to be analyzed
          into one array that can be passed as parameter.
        */
        KEY_PART_INFO *key_part_range[2];
        key_part_range[0]= first_non_group_part;
        key_part_range[1]= last_part;

        /* Check if cur_part is referenced in the WHERE clause. */
        if (join->conds->walk(&Item::find_item_in_field_list_processor,
                              (byte*) key_part_range))
          goto next_index;
      }
7643 7644
    }

7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657
    /*
      Test (WA1) partially - that no other keypart after the last infix part is
      referenced in the query.
    */
    if (first_non_infix_part)
    {
      for (cur_part= first_non_infix_part; cur_part != last_part; cur_part++)
      {
        if (cur_part->field->query_id == thd->query_id)
          goto next_index;
      }
    }

7658
    /* If we got to this point, cur_index_info passes the test. */
7659 7660 7661
    key_infix_parts= key_infix_len ?
                     (first_non_infix_part - first_non_group_part) : 0;
    used_key_parts= cur_group_key_parts + key_infix_parts;
7662

7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676
    /* Compute the cost of using this index. */
    if (tree)
    {
      /* Find the SEL_ARG sub-tree that corresponds to the chosen index. */
      cur_index_tree= get_index_range_tree(cur_index, tree, param,
                                           &cur_param_idx);
      /* Check if this range tree can be used for prefix retrieval. */
      cur_quick_prefix_records= check_quick_select(param, cur_param_idx,
                                                    cur_index_tree);
    }
    cost_group_min_max(table, cur_index_info, used_key_parts,
                       cur_group_key_parts, tree, cur_index_tree,
                       cur_quick_prefix_records, have_min, have_max,
                       &cur_read_cost, &cur_records);
unknown's avatar
unknown committed
7677 7678 7679 7680 7681 7682
    /*
      If cur_read_cost is lower than best_read_cost use cur_index.
      Do not compare doubles directly because they may have different
      representations (64 vs. 80 bits).
    */
    if (cur_read_cost < best_read_cost - (DBL_EPSILON * cur_read_cost))
7683
    {
7684
      DBUG_ASSERT(tree != 0 || cur_param_idx == MAX_KEY);
7685 7686 7687 7688 7689 7690 7691 7692 7693 7694
      index_info= cur_index_info;
      index= cur_index;
      best_read_cost= cur_read_cost;
      best_records= cur_records;
      best_index_tree= cur_index_tree;
      best_quick_prefix_records= cur_quick_prefix_records;
      best_param_idx= cur_param_idx;
      group_key_parts= cur_group_key_parts;
      group_prefix_len= cur_group_prefix_len;
    }
7695 7696

  next_index:
7697 7698
    cur_group_key_parts= 0;
    cur_group_prefix_len= 0;
7699 7700 7701 7702
  }
  if (!index_info) /* No usable index found. */
    DBUG_RETURN(NULL);

7703 7704 7705
  /* Check (SA3) for the where clause. */
  if (join->conds && min_max_arg_item &&
      !check_group_min_max_predicates(join->conds, min_max_arg_item,
7706 7707
                                      (index_info->flags & HA_SPATIAL) ?
                                      Field::itMBR : Field::itRAW))
7708 7709 7710 7711
    DBUG_RETURN(NULL);

  /* The query passes all tests, so construct a new TRP object. */
  read_plan= new (param->mem_root)
7712 7713 7714 7715
                 TRP_GROUP_MIN_MAX(have_min, have_max, min_max_arg_part,
                                   group_prefix_len, used_key_parts,
                                   group_key_parts, index_info, index,
                                   key_infix_len,
7716
                                   (key_infix_len > 0) ? key_infix : NULL,
7717
                                   tree, best_index_tree, best_param_idx,
7718
                                   best_quick_prefix_records);
7719 7720 7721 7722 7723
  if (read_plan)
  {
    if (tree && read_plan->quick_prefix_records == 0)
      DBUG_RETURN(NULL);

7724 7725 7726
    read_plan->read_cost= best_read_cost;
    read_plan->records=   best_records;

7727 7728 7729 7730 7731 7732 7733 7734 7735 7736
    DBUG_PRINT("info",
               ("Returning group min/max plan: cost: %g, records: %lu",
                read_plan->read_cost, (ulong) read_plan->records));
  }

  DBUG_RETURN(read_plan);
}


/*
7737 7738
  Check that the MIN/MAX attribute participates only in range predicates
  with constants.
7739 7740 7741 7742 7743 7744

  SYNOPSIS
    check_group_min_max_predicates()
    cond              tree (or subtree) describing all or part of the WHERE
                      clause being analyzed
    min_max_arg_item  the field referenced by the MIN/MAX function(s)
7745
    min_max_arg_part  the keypart of the MIN/MAX argument if any
7746 7747 7748

  DESCRIPTION
    The function walks recursively over the cond tree representing a WHERE
7749
    clause, and checks condition (SA3) - if a field is referenced by a MIN/MAX
7750 7751
    aggregate function, it is referenced only by one of the following
    predicates: {=, !=, <, <=, >, >=, between, is null, is not null}.
7752 7753 7754 7755 7756 7757 7758

  RETURN
    TRUE  if cond passes the test
    FALSE o/w
*/

static bool
7759 7760
check_group_min_max_predicates(COND *cond, Item_field *min_max_arg_item,
                               Field::imagetype image_type)
7761 7762
{
  DBUG_ENTER("check_group_min_max_predicates");
7763
  DBUG_ASSERT(cond && min_max_arg_item);
7764 7765 7766 7767 7768 7769 7770 7771 7772

  Item::Type cond_type= cond->type();
  if (cond_type == Item::COND_ITEM) /* 'AND' or 'OR' */
  {
    DBUG_PRINT("info", ("Analyzing: %s", ((Item_func*) cond)->func_name()));
    List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
    Item *and_or_arg;
    while ((and_or_arg= li++))
    {
unknown's avatar
unknown committed
7773
      if (!check_group_min_max_predicates(and_or_arg, min_max_arg_item,
7774
                                         image_type))
7775 7776 7777 7778 7779
        DBUG_RETURN(FALSE);
    }
    DBUG_RETURN(TRUE);
  }

7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792
  /*
    TODO:
    This is a very crude fix to handle sub-selects in the WHERE clause
    (Item_subselect objects). With the test below we rule out from the
    optimization all queries with subselects in the WHERE clause. What has to
    be done, is that here we should analyze whether the subselect references
    the MIN/MAX argument field, and disallow the optimization only if this is
    so.
  */
  if (cond_type == Item::SUBSELECT_ITEM)
    DBUG_RETURN(FALSE);
  
  /* We presume that at this point there are no other Items than functions. */
7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805
  DBUG_ASSERT(cond_type == Item::FUNC_ITEM);

  /* Test if cond references only group-by or non-group fields. */
  Item_func *pred= (Item_func*) cond;
  Item **arguments= pred->arguments();
  Item *cur_arg;
  DBUG_PRINT("info", ("Analyzing: %s", pred->func_name()));
  for (uint arg_idx= 0; arg_idx < pred->argument_count (); arg_idx++)
  {
    cur_arg= arguments[arg_idx];
    DBUG_PRINT("info", ("cur_arg: %s", cur_arg->full_name()));
    if (cur_arg->type() == Item::FIELD_ITEM)
    {
7806
      if (min_max_arg_item->eq(cur_arg, 1)) 
7807 7808 7809
      {
       /*
         If pred references the MIN/MAX argument, check whether pred is a range
7810
         condition that compares the MIN/MAX argument with a constant.
7811 7812
       */
        Item_func::Functype pred_type= pred->functype();
7813 7814 7815 7816 7817 7818 7819 7820 7821 7822
        if (pred_type != Item_func::EQUAL_FUNC     &&
            pred_type != Item_func::LT_FUNC        &&
            pred_type != Item_func::LE_FUNC        &&
            pred_type != Item_func::GT_FUNC        &&
            pred_type != Item_func::GE_FUNC        &&
            pred_type != Item_func::BETWEEN        &&
            pred_type != Item_func::ISNULL_FUNC    &&
            pred_type != Item_func::ISNOTNULL_FUNC &&
            pred_type != Item_func::EQ_FUNC        &&
            pred_type != Item_func::NE_FUNC)
7823 7824 7825 7826
          DBUG_RETURN(FALSE);

        /* Check that pred compares min_max_arg_item with a constant. */
        Item *args[3];
7827
        bzero(args, 3 * sizeof(Item*));
7828 7829 7830 7831
        bool inv;
        /* Test if this is a comparison of a field and a constant. */
        if (!simple_pred(pred, args, &inv))
          DBUG_RETURN(FALSE);
7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850

        /* Check for compatible string comparisons - similar to get_mm_leaf. */
        if (args[0] && args[1] && !args[2] && // this is a binary function
            min_max_arg_item->result_type() == STRING_RESULT &&
            /*
              Don't use an index when comparing strings of different collations.
            */
            ((args[1]->result_type() == STRING_RESULT &&
              image_type == Field::itRAW &&
              ((Field_str*) min_max_arg_item->field)->charset() !=
              pred->compare_collation())
             ||
             /*
               We can't always use indexes when comparing a string index to a
               number.
             */
             (args[1]->result_type() != STRING_RESULT &&
              min_max_arg_item->field->cmp_type() != args[1]->result_type())))
          DBUG_RETURN(FALSE);
7851 7852 7853 7854
      }
    }
    else if (cur_arg->type() == Item::FUNC_ITEM)
    {
unknown's avatar
unknown committed
7855
      if (!check_group_min_max_predicates(cur_arg, min_max_arg_item,
7856
                                         image_type))
7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875
        DBUG_RETURN(FALSE);
    }
    else if (cur_arg->const_item())
    {
      DBUG_RETURN(TRUE);
    }
    else
      DBUG_RETURN(FALSE);
  }

  DBUG_RETURN(TRUE);
}


/*
  Extract a sequence of constants from a conjunction of equality predicates.

  SYNOPSIS
    get_constant_key_infix()
7876 7877 7878 7879 7880 7881 7882 7883 7884
    index_info             [in]  Descriptor of the chosen index.
    index_range_tree       [in]  Range tree for the chosen index
    first_non_group_part   [in]  First index part after group attribute parts
    min_max_arg_part       [in]  The keypart of the MIN/MAX argument if any
    last_part              [in]  Last keypart of the index
    thd                    [in]  Current thread
    key_infix              [out] Infix of constants to be used for index lookup
    key_infix_len          [out] Lenghth of the infix
    first_non_infix_part   [out] The first keypart after the infix (if any)
7885 7886 7887
    
  DESCRIPTION
    Test conditions (NGA1, NGA2) from get_best_group_min_max(). Namely,
unknown's avatar
unknown committed
7888 7889
    for each keypart field NGF_i not in GROUP-BY, check that there is a
    constant equality predicate among conds with the form (NGF_i = const_ci) or
7890 7891
    (const_ci = NGF_i).
    Thus all the NGF_i attributes must fill the 'gap' between the last group-by
7892 7893 7894 7895 7896 7897
    attribute and the MIN/MAX attribute in the index (if present). If these
    conditions hold, copy each constant from its corresponding predicate into
    key_infix, in the order its NG_i attribute appears in the index, and update
    key_infix_len with the total length of the key parts in key_infix.

  RETURN
7898
    TRUE  if the index passes the test
7899 7900 7901 7902
    FALSE o/w
*/

static bool
7903
get_constant_key_infix(KEY *index_info, SEL_ARG *index_range_tree,
7904
                       KEY_PART_INFO *first_non_group_part,
7905 7906 7907 7908
                       KEY_PART_INFO *min_max_arg_part,
                       KEY_PART_INFO *last_part, THD *thd,
                       byte *key_infix, uint *key_infix_len,
                       KEY_PART_INFO **first_non_infix_part)
7909 7910 7911
{
  SEL_ARG       *cur_range;
  KEY_PART_INFO *cur_part;
7912 7913
  /* End part for the first loop below. */
  KEY_PART_INFO *end_part= min_max_arg_part ? min_max_arg_part : last_part;
7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930

  *key_infix_len= 0;
  byte *key_ptr= key_infix;
  for (cur_part= first_non_group_part; cur_part != end_part; cur_part++)
  {
    /*
      Find the range tree for the current keypart. We assume that
      index_range_tree points to the leftmost keypart in the index.
    */
    for (cur_range= index_range_tree; cur_range;
         cur_range= cur_range->next_key_part)
    {
      if (cur_range->field->eq(cur_part->field))
        break;
    }
    if (!cur_range)
    {
7931 7932 7933 7934 7935 7936 7937
      if (min_max_arg_part)
        return FALSE; /* The current keypart has no range predicates at all. */
      else
      {
        *first_non_infix_part= cur_part;
        return TRUE;
      }
7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961
    }

    /* Check that the current range tree is a single point interval. */
    if (cur_range->prev || cur_range->next)
      return FALSE; /* This is not the only range predicate for the field. */
    if ((cur_range->min_flag & NO_MIN_RANGE) ||
        (cur_range->max_flag & NO_MAX_RANGE) ||
        (cur_range->min_flag & NEAR_MIN) || (cur_range->max_flag & NEAR_MAX))
      return FALSE;

    uint field_length= cur_part->store_length;
    if ((cur_range->maybe_null &&
         cur_range->min_value[0] && cur_range->max_value[0])
        ||
        (memcmp(cur_range->min_value, cur_range->max_value, field_length) == 0))
    { /* cur_range specifies 'IS NULL' or an equality condition. */
      memcpy(key_ptr, cur_range->min_value, field_length);
      key_ptr+= field_length;
      *key_infix_len+= field_length;
    }
    else
      return FALSE;
  }

7962 7963 7964
  if (!min_max_arg_part && (cur_part == last_part))
    *first_non_infix_part= last_part;

7965 7966 7967 7968
  return TRUE;
}


7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988
/*
  Find the key part referenced by a field.

  SYNOPSIS
    get_field_keypart()
    index  descriptor of an index
    field  field that possibly references some key part in index

  NOTES
    The return value can be used to get a KEY_PART_INFO pointer by
    part= index->key_part + get_field_keypart(...) - 1;

  RETURN
    Positive number which is the consecutive number of the key part, or
    0 if field does not reference any index field.
*/

static inline uint
get_field_keypart(KEY *index, Field *field)
{
7989
  KEY_PART_INFO *part, *end;
7990

7991
  for (part= index->key_part, end= part + index->key_parts; part < end; part++)
7992 7993
  {
    if (field->eq(part->field))
unknown's avatar
unknown committed
7994
      return part - index->key_part + 1;
7995
  }
7996
  return 0;
7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037
}


/*
  Find the SEL_ARG sub-tree that corresponds to the chosen index.

  SYNOPSIS
    get_index_range_tree()
    index     [in]  The ID of the index being looked for
    range_tree[in]  Tree of ranges being searched
    param     [in]  PARAM from SQL_SELECT::test_quick_select
    param_idx [out] Index in the array PARAM::key that corresponds to 'index'

  DESCRIPTION

    A SEL_TREE contains range trees for all usable indexes. This procedure
    finds the SEL_ARG sub-tree for 'index'. The members of a SEL_TREE are
    ordered in the same way as the members of PARAM::key, thus we first find
    the corresponding index in the array PARAM::key. This index is returned
    through the variable param_idx, to be used later as argument of
    check_quick_select().

  RETURN
    Pointer to the SEL_ARG subtree that corresponds to index.
*/

SEL_ARG * get_index_range_tree(uint index, SEL_TREE* range_tree, PARAM *param,
                               uint *param_idx)
{
  uint idx= 0; /* Index nr in param->key_parts */
  while (idx < param->keys)
  {
    if (index == param->real_keynr[idx])
      break;
    idx++;
  }
  *param_idx= idx;
  return(range_tree->keys[idx]);
}


8038
/*
8039
  Compute the cost of a quick_group_min_max_select for a particular index.
8040 8041

  SYNOPSIS
8042 8043 8044 8045 8046 8047 8048
    cost_group_min_max()
    table                [in] The table being accessed
    index_info           [in] The index used to access the table
    used_key_parts       [in] Number of key parts used to access the index
    group_key_parts      [in] Number of index key parts in the group prefix
    range_tree           [in] Tree of ranges for all indexes
    index_tree           [in] The range tree for the current index
unknown's avatar
unknown committed
8049 8050
    quick_prefix_records [in] Number of records retrieved by the internally
			      used quick range select if any
8051 8052 8053 8054
    have_min             [in] True if there is a MIN function
    have_max             [in] True if there is a MAX function
    read_cost           [out] The cost to retrieve rows via this quick select
    records             [out] The number of rows retrieved
8055 8056

  DESCRIPTION
unknown's avatar
unknown committed
8057 8058
    This method computes the access cost of a TRP_GROUP_MIN_MAX instance and
    the number of rows returned. It updates this->read_cost and this->records.
8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097

  NOTES
    The cost computation distinguishes several cases:
    1) No equality predicates over non-group attributes (thus no key_infix).
       If groups are bigger than blocks on the average, then we assume that it
       is very unlikely that block ends are aligned with group ends, thus even
       if we look for both MIN and MAX keys, all pairs of neighbor MIN/MAX
       keys, except for the first MIN and the last MAX keys, will be in the
       same block.  If groups are smaller than blocks, then we are going to
       read all blocks.
    2) There are equality predicates over non-group attributes.
       In this case the group prefix is extended by additional constants, and
       as a result the min/max values are inside sub-groups of the original
       groups. The number of blocks that will be read depends on whether the
       ends of these sub-groups will be contained in the same or in different
       blocks. We compute the probability for the two ends of a subgroup to be
       in two different blocks as the ratio of:
       - the number of positions of the left-end of a subgroup inside a group,
         such that the right end of the subgroup is past the end of the buffer
         containing the left-end, and
       - the total number of possible positions for the left-end of the
         subgroup, which is the number of keys in the containing group.
       We assume it is very unlikely that two ends of subsequent subgroups are
       in the same block.
    3) The are range predicates over the group attributes.
       Then some groups may be filtered by the range predicates. We use the
       selectivity of the range predicates to decide how many groups will be
       filtered.

  TODO
     - Take into account the optional range predicates over the MIN/MAX
       argument.
     - Check if we have a PK index and we use all cols - then each key is a
       group, and it will be better to use an index scan.

  RETURN
    None
*/

8098 8099 8100 8101 8102
void cost_group_min_max(TABLE* table, KEY *index_info, uint used_key_parts,
                        uint group_key_parts, SEL_TREE *range_tree,
                        SEL_ARG *index_tree, ha_rows quick_prefix_records,
                        bool have_min, bool have_max,
                        double *read_cost, ha_rows *records)
8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114
{
  uint table_records;
  uint num_groups;
  uint num_blocks;
  uint keys_per_block;
  uint keys_per_group;
  uint keys_per_subgroup; /* Average number of keys in sub-groups */
                          /* formed by a key infix. */
  double p_overlap; /* Probability that a sub-group overlaps two blocks. */
  double quick_prefix_selectivity;
  double io_cost;
  double cpu_cost= 0; /* TODO: CPU cost of index_read calls? */
unknown's avatar
unknown committed
8115
  DBUG_ENTER("cost_group_min_max");
unknown's avatar
unknown committed
8116

8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134
  table_records= table->file->records;
  keys_per_block= (table->file->block_size / 2 /
                   (index_info->key_length + table->file->ref_length)
                        + 1);
  num_blocks= (table_records / keys_per_block) + 1;

  /* Compute the number of keys in a group. */
  keys_per_group= index_info->rec_per_key[group_key_parts - 1];
  if (keys_per_group == 0) /* If there is no statistics try to guess */
    /* each group contains 10% of all records */
    keys_per_group= (table_records / 10) + 1;
  num_groups= (table_records / keys_per_group) + 1;

  /* Apply the selectivity of the quick select for group prefixes. */
  if (range_tree && (quick_prefix_records != HA_POS_ERROR))
  {
    quick_prefix_selectivity= (double) quick_prefix_records /
                              (double) table_records;
unknown's avatar
unknown committed
8135
    num_groups= (uint) rint(num_groups * quick_prefix_selectivity);
unknown's avatar
unknown committed
8136
    set_if_bigger(num_groups, 1);
8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167
  }

  if (used_key_parts > group_key_parts)
  { /*
      Compute the probability that two ends of a subgroup are inside
      different blocks.
    */
    keys_per_subgroup= index_info->rec_per_key[used_key_parts - 1];
    if (keys_per_subgroup >= keys_per_block) /* If a subgroup is bigger than */
      p_overlap= 1.0;       /* a block, it will overlap at least two blocks. */
    else
    {
      double blocks_per_group= (double) num_blocks / (double) num_groups;
      p_overlap= (blocks_per_group * (keys_per_subgroup - 1)) / keys_per_group;
      p_overlap= min(p_overlap, 1.0);
    }
    io_cost= (double) min(num_groups * (1 + p_overlap), num_blocks);
  }
  else
    io_cost= (keys_per_group > keys_per_block) ?
             (have_min && have_max) ? (double) (num_groups + 1) :
                                      (double) num_groups :
             (double) num_blocks;

  /*
    TODO: If there is no WHERE clause and no other expressions, there should be
    no CPU cost. We leave it here to make this cost comparable to that of index
    scan as computed in SQL_SELECT::test_quick_select().
  */
  cpu_cost= (double) num_groups / TIME_FOR_COMPARE;

8168
  *read_cost= io_cost + cpu_cost;
8169
  *records= num_groups;
8170 8171

  DBUG_PRINT("info",
8172 8173
             ("table rows=%u, keys/block=%u, keys/group=%u, result rows=%u, blocks=%u",
              table_records, keys_per_block, keys_per_group, *records,
8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206
              num_blocks));
  DBUG_VOID_RETURN;
}


/*
  Construct a new quick select object for queries with group by with min/max.

  SYNOPSIS
    TRP_GROUP_MIN_MAX::make_quick()
    param              Parameter from test_quick_select
    retrieve_full_rows ignored
    parent_alloc       Memory pool to use, if any.

  NOTES
    Make_quick ignores the retrieve_full_rows parameter because
    QUICK_GROUP_MIN_MAX_SELECT always performs 'index only' scans.
    The other parameter are ignored as well because all necessary
    data to create the QUICK object is computed at this TRP creation
    time.

  RETURN
    New QUICK_GROUP_MIN_MAX_SELECT object if successfully created,
    NULL o/w.
*/

QUICK_SELECT_I *
TRP_GROUP_MIN_MAX::make_quick(PARAM *param, bool retrieve_full_rows,
                              MEM_ROOT *parent_alloc)
{
  QUICK_GROUP_MIN_MAX_SELECT *quick;
  DBUG_ENTER("TRP_GROUP_MIN_MAX::make_quick");

8207 8208 8209 8210 8211
  quick= new QUICK_GROUP_MIN_MAX_SELECT(param->table,
                                        param->thd->lex->select_lex.join,
                                        have_min, have_max, min_max_arg_part,
                                        group_prefix_len, used_key_parts,
                                        index_info, index, read_cost, records,
unknown's avatar
unknown committed
8212 8213
                                        key_infix_len, key_infix,
                                        parent_alloc);
8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229
  if (!quick)
    DBUG_RETURN(NULL);

  if (quick->init())
  {
    delete quick;
    DBUG_RETURN(NULL);
  }

  if (range_tree)
  {
    DBUG_ASSERT(quick_prefix_records > 0);
    if (quick_prefix_records == HA_POS_ERROR)
      quick->quick_prefix_select= NULL; /* Can't construct a quick select. */
    else
      /* Make a QUICK_RANGE_SELECT to be used for group prefix retrieval. */
8230 8231
      quick->quick_prefix_select= get_quick_select(param, param_idx,
                                                   index_tree,
8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253
                                                   &quick->alloc);

    /*
      Extract the SEL_ARG subtree that contains only ranges for the MIN/MAX
      attribute, and create an array of QUICK_RANGES to be used by the
      new quick select.
    */
    if (min_max_arg_part)
    {
      SEL_ARG *min_max_range= index_tree;
      while (min_max_range) /* Find the tree for the MIN/MAX key part. */
      {
        if (min_max_range->field->eq(min_max_arg_part->field))
          break;
        min_max_range= min_max_range->next_key_part;
      }
      /* Scroll to the leftmost interval for the MIN/MAX argument. */
      while (min_max_range && min_max_range->prev)
        min_max_range= min_max_range->prev;
      /* Create an array of QUICK_RANGEs for the MIN/MAX argument. */
      while (min_max_range)
      {
8254
        if (quick->add_range(min_max_range))
8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296
        {
          delete quick;
          quick= NULL;
          DBUG_RETURN(NULL);
        }
        min_max_range= min_max_range->next;
      }
    }
  }
  else
    quick->quick_prefix_select= NULL;

  quick->update_key_stat();

  DBUG_RETURN(quick);
}


/*
  Construct new quick select for group queries with min/max.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::QUICK_GROUP_MIN_MAX_SELECT()
    table             The table being accessed
    join              Descriptor of the current query
    have_min          TRUE if the query selects a MIN function
    have_max          TRUE if the query selects a MAX function
    min_max_arg_part  The only argument field of all MIN/MAX functions
    group_prefix_len  Length of all key parts in the group prefix
    prefix_key_parts  All key parts in the group prefix
    index_info        The index chosen for data access
    use_index         The id of index_info
    read_cost         Cost of this access method
    records           Number of records returned
    key_infix_len     Length of the key infix appended to the group prefix
    key_infix         Infix of constants from equality predicates
    parent_alloc      Memory pool for this and quick_prefix_select data

  RETURN
    None
*/

unknown's avatar
unknown committed
8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309
QUICK_GROUP_MIN_MAX_SELECT::
QUICK_GROUP_MIN_MAX_SELECT(TABLE *table, JOIN *join_arg, bool have_min_arg,
                           bool have_max_arg,
                           KEY_PART_INFO *min_max_arg_part_arg,
                           uint group_prefix_len_arg,
                           uint used_key_parts_arg, KEY *index_info_arg,
                           uint use_index, double read_cost_arg,
                           ha_rows records_arg, uint key_infix_len_arg,
                           byte *key_infix_arg, MEM_ROOT *parent_alloc)
  :join(join_arg), index_info(index_info_arg),
   group_prefix_len(group_prefix_len_arg), have_min(have_min_arg),
   have_max(have_max_arg), seen_first_key(FALSE),
   min_max_arg_part(min_max_arg_part_arg), key_infix(key_infix_arg),
8310 8311
   key_infix_len(key_infix_len_arg), min_functions_it(NULL),
   max_functions_it(NULL)
8312 8313 8314 8315 8316 8317
{
  head=       table;
  file=       head->file;
  index=      use_index;
  record=     head->record[0];
  tmp_record= head->record[1];
8318 8319 8320
  read_time= read_cost_arg;
  records= records_arg;
  used_key_parts= used_key_parts_arg;
8321 8322 8323
  real_prefix_len= group_prefix_len + key_infix_len;
  group_prefix= NULL;
  min_max_arg_len= min_max_arg_part ? min_max_arg_part->store_length : 0;
unknown's avatar
unknown committed
8324 8325 8326 8327 8328 8329

  /*
    We can't have parent_alloc set as the init function can't handle this case
    yet.
  */
  DBUG_ASSERT(!parent_alloc);
8330 8331 8332
  if (!parent_alloc)
  {
    init_sql_alloc(&alloc, join->thd->variables.range_alloc_block_size, 0);
unknown's avatar
unknown committed
8333
    join->thd->mem_root= &alloc;
8334 8335
  }
  else
8336
    bzero(&alloc, sizeof(MEM_ROOT));            // ensure that it's not used
8337 8338 8339 8340 8341 8342 8343 8344 8345
}


/*
  Do post-constructor initialization.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::init()
  
8346 8347 8348 8349 8350 8351
  DESCRIPTION
    The method performs initialization that cannot be done in the constructor
    such as memory allocations that may fail. It allocates memory for the
    group prefix and inifix buffers, and for the lists of MIN/MAX item to be
    updated during execution.

8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386
  RETURN
    0      OK
    other  Error code
*/

int QUICK_GROUP_MIN_MAX_SELECT::init()
{
  if (group_prefix) /* Already initialized. */
    return 0;

  if (!(last_prefix= (byte*) alloc_root(&alloc, group_prefix_len)))
      return 1;
  /*
    We may use group_prefix to store keys with all select fields, so allocate
    enough space for it.
  */
  if (!(group_prefix= (byte*) alloc_root(&alloc,
                                         real_prefix_len + min_max_arg_len)))
    return 1;

  if (key_infix_len > 0)
  {
    /*
      The memory location pointed to by key_infix will be deleted soon, so
      allocate a new buffer and copy the key_infix into it.
    */
    byte *tmp_key_infix= (byte*) alloc_root(&alloc, key_infix_len);
    if (!tmp_key_infix)
      return 1;
    memcpy(tmp_key_infix, this->key_infix, key_infix_len);
    this->key_infix= tmp_key_infix;
  }

  if (min_max_arg_part)
  {
unknown's avatar
unknown committed
8387
    if (my_init_dynamic_array(&min_max_ranges, sizeof(QUICK_RANGE*), 16, 16))
8388 8389
      return 1;

8390 8391
    if (have_min)
    {
unknown's avatar
unknown committed
8392
      if (!(min_functions= new List<Item_sum>))
8393 8394 8395 8396 8397 8398
        return 1;
    }
    else
      min_functions= NULL;
    if (have_max)
    {
unknown's avatar
unknown committed
8399
      if (!(max_functions= new List<Item_sum>))
8400 8401 8402 8403
        return 1;
    }
    else
      max_functions= NULL;
8404

8405 8406 8407
    Item_sum *min_max_item;
    Item_sum **func_ptr= join->sum_funcs;
    while ((min_max_item= *(func_ptr++)))
8408
    {
8409 8410 8411 8412
      if (have_min && (min_max_item->sum_func() == Item_sum::MIN_FUNC))
        min_functions->push_back(min_max_item);
      else if (have_max && (min_max_item->sum_func() == Item_sum::MAX_FUNC))
        max_functions->push_back(min_max_item);
8413 8414
    }

8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425
    if (have_min)
    {
      if (!(min_functions_it= new List_iterator<Item_sum>(*min_functions)))
        return 1;
    }

    if (have_max)
    {
      if (!(max_functions_it= new List_iterator<Item_sum>(*max_functions)))
        return 1;
    }
8426
  }
unknown's avatar
unknown committed
8427 8428
  else
    min_max_ranges.elements= 0;
8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441

  return 0;
}


QUICK_GROUP_MIN_MAX_SELECT::~QUICK_GROUP_MIN_MAX_SELECT()
{
  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::~QUICK_GROUP_MIN_MAX_SELECT");
  if (file->inited != handler::NONE) 
    file->ha_index_end();
  if (min_max_arg_part)
    delete_dynamic(&min_max_ranges);
  free_root(&alloc,MYF(0));
8442 8443
  delete min_functions_it;
  delete max_functions_it;
8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462
  delete quick_prefix_select;
  DBUG_VOID_RETURN; 
}


/*
  Eventually create and add a new quick range object.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::add_range()
    sel_range  Range object from which a 

  NOTES
    Construct a new QUICK_RANGE object from a SEL_ARG object, and
    add it to the array min_max_ranges. If sel_arg is an infinite
    range, e.g. (x < 5 or x > 4), then skip it and do not construct
    a quick range.

  RETURN
8463 8464
    FALSE on success
    TRUE  otherwise
8465 8466 8467 8468 8469 8470 8471 8472
*/

bool QUICK_GROUP_MIN_MAX_SELECT::add_range(SEL_ARG *sel_range)
{
  QUICK_RANGE *range;
  uint range_flag= sel_range->min_flag | sel_range->max_flag;

  /* Skip (-inf,+inf) ranges, e.g. (x < 5 or x > 4). */
unknown's avatar
unknown committed
8473
  if ((range_flag & NO_MIN_RANGE) && (range_flag & NO_MAX_RANGE))
8474
    return FALSE;
8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489

  if (!(sel_range->min_flag & NO_MIN_RANGE) &&
      !(sel_range->max_flag & NO_MAX_RANGE))
  {
    if (sel_range->maybe_null &&
        sel_range->min_value[0] && sel_range->max_value[0])
      range_flag|= NULL_RANGE; /* IS NULL condition */
    else if (memcmp(sel_range->min_value, sel_range->max_value,
                    min_max_arg_len) == 0)
      range_flag|= EQ_RANGE;  /* equality condition */
  }
  range= new QUICK_RANGE(sel_range->min_value, min_max_arg_len,
                         sel_range->max_value, min_max_arg_len,
                         range_flag);
  if (!range)
8490
    return TRUE;
8491
  if (insert_dynamic(&min_max_ranges, (gptr)&range))
8492 8493
    return TRUE;
  return FALSE;
8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522
}


/*
  Determine the total number and length of the keys that will be used for
  index lookup.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::update_key_stat()

  DESCRIPTION
    The total length of the keys used for index lookup depends on whether
    there are any predicates referencing the min/max argument, and/or if
    the min/max argument field can be NULL.
    This function does an optimistic analysis whether the search key might
    be extended by a constant for the min/max keypart. It is 'optimistic'
    because during actual execution it may happen that a particular range
    is skipped, and then a shorter key will be used. However this is data
    dependent and can't be easily estimated here.

  RETURN
    None
*/

void QUICK_GROUP_MIN_MAX_SELECT::update_key_stat()
{
  max_used_key_length= real_prefix_len;
  if (min_max_ranges.elements > 0)
  {
8523
    QUICK_RANGE *cur_range;
8524 8525 8526 8527 8528 8529 8530
    if (have_min)
    { /* Check if the right-most range has a lower boundary. */
      get_dynamic(&min_max_ranges, (gptr)&cur_range,
                  min_max_ranges.elements - 1);
      if (!(cur_range->flag & NO_MIN_RANGE))
      {
        max_used_key_length+= min_max_arg_len;
8531
        used_key_parts++;
8532 8533 8534 8535 8536 8537 8538 8539 8540
        return;
      }
    }
    if (have_max)
    { /* Check if the left-most range has an upper boundary. */
      get_dynamic(&min_max_ranges, (gptr)&cur_range, 0);
      if (!(cur_range->flag & NO_MAX_RANGE))
      {
        max_used_key_length+= min_max_arg_len;
8541
        used_key_parts++;
8542 8543 8544 8545
        return;
      }
    }
  }
8546 8547
  else if (have_min && min_max_arg_part &&
           min_max_arg_part->field->real_maybe_null())
8548
  {
8549 8550 8551 8552 8553 8554 8555 8556
    /*
      If a MIN/MAX argument value is NULL, we can quickly determine
      that we're in the beginning of the next group, because NULLs
      are always < any other value. This allows us to quickly
      determine the end of the current group and jump to the next
      group (see next_min()) and thus effectively increases the
      usable key length.
    */
8557
    max_used_key_length+= min_max_arg_len;
8558
    used_key_parts++;
8559 8560 8561 8562 8563 8564 8565 8566 8567 8568
  }
}


/*
  Initialize a quick group min/max select for key retrieval.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::reset()

8569 8570 8571 8572
  DESCRIPTION
    Initialize the index chosen for access and find and store the prefix
    of the last group. The method is expensive since it performs disk access.

8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585
  RETURN
    0      OK
    other  Error code
*/

int QUICK_GROUP_MIN_MAX_SELECT::reset(void)
{
  int result;
  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::reset");

  file->extra(HA_EXTRA_KEYREAD); /* We need only the key attributes */
  result= file->ha_index_init(index);
  result= file->index_last(record);
unknown's avatar
unknown committed
8586 8587
  if (result == HA_ERR_END_OF_FILE)
    DBUG_RETURN(0);
8588 8589
  if (result)
    DBUG_RETURN(result);
unknown's avatar
unknown committed
8590 8591
  if (quick_prefix_select && quick_prefix_select->reset())
    DBUG_RETURN(1);
8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630
  /* Save the prefix of the last group. */
  key_copy(last_prefix, record, index_info, group_prefix_len);

  DBUG_RETURN(0);
}



/* 
  Get the next key containing the MIN and/or MAX key for the next group.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::get_next()

  DESCRIPTION
    The method finds the next subsequent group of records that satisfies the
    query conditions and finds the keys that contain the MIN/MAX values for
    the key part referenced by the MIN/MAX function(s). Once a group and its
    MIN/MAX values are found, store these values in the Item_sum objects for
    the MIN/MAX functions. The rest of the values in the result row are stored
    in the Item_field::result_field of each select field. If the query does
    not contain MIN and/or MAX functions, then the function only finds the
    group prefix, which is a query answer itself.

  NOTES
    If both MIN and MAX are computed, then we use the fact that if there is
    no MIN key, there can't be a MAX key as well, so we can skip looking
    for a MAX key in this case.

  RETURN
    0                  on success
    HA_ERR_END_OF_FILE if returned all keys
    other              if some error occurred
*/

int QUICK_GROUP_MIN_MAX_SELECT::get_next()
{
  int min_res= 0;
  int max_res= 0;
unknown's avatar
unknown committed
8631 8632 8633 8634 8635 8636 8637
#ifdef HPUX11
  /*
    volatile is required by a bug in the HP compiler due to which the
    last test of result fails.
  */
  volatile int result;
#else
8638
  int result;
unknown's avatar
unknown committed
8639
#endif
8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679
  int is_last_prefix;

  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::get_next");

  /*
    Loop until a group is found that satisfies all query conditions or the last
    group is reached.
  */
  do
  {
    result= next_prefix();
    /*
      Check if this is the last group prefix. Notice that at this point
      this->record contains the current prefix in record format.
    */
    is_last_prefix= key_cmp(index_info->key_part, last_prefix,
                            group_prefix_len);
    DBUG_ASSERT(is_last_prefix <= 0);
    if (result == HA_ERR_KEY_NOT_FOUND)
      continue;
    else if (result)
      break;

    if (have_min)
    {
      min_res= next_min();
      if (min_res == 0)
        update_min_result();
    }
    /* If there is no MIN in the group, there is no MAX either. */
    if ((have_max && !have_min) ||
        (have_max && have_min && (min_res == 0)))
    {
      max_res= next_max();
      if (max_res == 0)
        update_max_result();
      /* If a MIN was found, a MAX must have been found as well. */
      DBUG_ASSERT((have_max && !have_min) ||
                  (have_max && have_min && (max_res == 0)));
    }
8680
    /*
unknown's avatar
unknown committed
8681
      If this is just a GROUP BY or DISTINCT without MIN or MAX and there
8682 8683 8684 8685 8686 8687 8688
      are equality predicates for the key parts after the group, find the
      first sub-group with the extended prefix.
    */
    if (!have_min && !have_max && key_infix_len > 0)
      result= file->index_read(record, group_prefix, real_prefix_len,
                               HA_READ_KEY_EXACT);

8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714
    result= have_min ? min_res : have_max ? max_res : result;
  }
  while (result == HA_ERR_KEY_NOT_FOUND && is_last_prefix != 0);

  if (result == 0)
    /*
      Partially mimic the behavior of end_select_send. Copy the
      field data from Item_field::field into Item_field::result_field
      of each non-aggregated field (the group fields, and optionally
      other fields in non-ANSI SQL mode).
    */
    copy_fields(&join->tmp_table_param);
  else if (result == HA_ERR_KEY_NOT_FOUND)
    result= HA_ERR_END_OF_FILE;

  DBUG_RETURN(result);
}


/*
  Retrieve the minimal key in the next group.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_min()

  DESCRIPTION
8715 8716
    Find the minimal key within this group such that the key satisfies the query
    conditions and NULL semantics. The found key is loaded into this->record.
8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742

  IMPLEMENTATION
    Depending on the values of min_max_ranges.elements, key_infix_len, and
    whether there is a  NULL in the MIN field, this function may directly
    return without any data access. In this case we use the key loaded into
    this->record by the call to this->next_prefix() just before this call.

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if no MIN key was found that fulfills all conditions.
    other                if some error occurred
*/

int QUICK_GROUP_MIN_MAX_SELECT::next_min()
{
  int result= 0;
  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_min");

  /* Find the MIN key using the eventually extended group prefix. */
  if (min_max_ranges.elements > 0)
  {
    if ((result= next_min_in_range()))
      DBUG_RETURN(result);
  }
  else
  {
unknown's avatar
unknown committed
8743
    /* Apply the constant equality conditions to the non-group select fields */
8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776
    if (key_infix_len > 0)
    {
      if ((result= file->index_read(record, group_prefix, real_prefix_len,
                                    HA_READ_KEY_EXACT)))
        DBUG_RETURN(result);
    }

    /*
      If the min/max argument field is NULL, skip subsequent rows in the same
      group with NULL in it. Notice that:
      - if the first row in a group doesn't have a NULL in the field, no row
      in the same group has (because NULL < any other value),
      - min_max_arg_part->field->ptr points to some place in 'record'.
    */
    if (min_max_arg_part && min_max_arg_part->field->is_null())
    {
      /* Find the first subsequent record without NULL in the MIN/MAX field. */
      key_copy(tmp_record, record, index_info, 0);
      result= file->index_read(record, tmp_record,
                               real_prefix_len + min_max_arg_len,
                               HA_READ_AFTER_KEY);
      /*
        Check if the new record belongs to the current group by comparing its
        prefix with the group's prefix. If it is from the next group, then the
        whole group has NULLs in the MIN/MAX field, so use the first record in
        the group as a result.
        TODO:
        It is possible to reuse this new record as the result candidate for the
        next call to next_min(), and to save one lookup in the next call. For
        this add a new member 'this->next_group_prefix'.
      */
      if (!result)
      {
unknown's avatar
unknown committed
8777
        if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
8778
          key_restore(record, tmp_record, index_info, 0);
unknown's avatar
unknown committed
8779 8780
      }
      else if (result == HA_ERR_KEY_NOT_FOUND) 
8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799
        result= 0; /* There is a result in any case. */
    }
  }

  /*
    If the MIN attribute is non-nullable, this->record already contains the
    MIN key in the group, so just return.
  */
  DBUG_RETURN(result);
}


/* 
  Retrieve the maximal key in the next group.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_max()

  DESCRIPTION
8800
    Lookup the maximal key of the group, and store it into this->record.
8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if no MAX key was found that fulfills all conditions.
    other                if some error occurred
*/

int QUICK_GROUP_MIN_MAX_SELECT::next_max()
{
  int result;

  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_max");

  /* Get the last key in the (possibly extended) group. */
  if (min_max_ranges.elements > 0)
    result= next_max_in_range();
  else
    result= file->index_read(record, group_prefix, real_prefix_len,
                             HA_READ_PREFIX_LAST);
  DBUG_RETURN(result);
}


/*
  Determine the prefix of the next group.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_prefix()

  DESCRIPTION
    Determine the prefix of the next group that satisfies the query conditions.
    If there is a range condition referencing the group attributes, use a
    QUICK_RANGE_SELECT object to retrieve the *first* key that satisfies the
    condition. If there is a key infix of constants, append this infix
    immediately after the group attributes. The possibly extended prefix is
    stored in this->group_prefix. The first key of the found group is stored in
    this->record, on which relies this->next_min().

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if there is no key with the formed prefix
    HA_ERR_END_OF_FILE   if there are no more keys
    other                if some error occurred
*/
int QUICK_GROUP_MIN_MAX_SELECT::next_prefix()
{
  int result;
  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_prefix");

  if (quick_prefix_select)
  {
    byte *cur_prefix= seen_first_key ? group_prefix : NULL;
    if ((result= quick_prefix_select->get_next_prefix(group_prefix_len,
                                                      cur_prefix)))
      DBUG_RETURN(result);
    seen_first_key= TRUE;
  }
  else
  {
    if (!seen_first_key)
    {
      result= file->index_first(record);
      if (result)
        DBUG_RETURN(result);
      seen_first_key= TRUE;
    }
    else
    {
      /* Load the first key in this group into record. */
      result= file->index_read(record, group_prefix, group_prefix_len,
                               HA_READ_AFTER_KEY);
      if (result)
        DBUG_RETURN(result);
    }
  }

  /* Save the prefix of this group for subsequent calls. */
  key_copy(group_prefix, record, index_info, group_prefix_len);
  /* Append key_infix to group_prefix. */
  if (key_infix_len > 0)
    memcpy(group_prefix + group_prefix_len,
           key_infix, key_infix_len);

  DBUG_RETURN(0);
}


/*
  Find the minimal key in a group that satisfies some range conditions for the
  min/max argument field.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_min_in_range()

  DESCRIPTION
    Given the sequence of ranges min_max_ranges, find the minimal key that is
    in the left-most possible range. If there is no such key, then the current
    group does not have a MIN key that satisfies the WHERE clause. If a key is
    found, its value is stored in this->record.

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if there is no key with the given prefix in any of
                         the ranges
    other                if some error
*/

int QUICK_GROUP_MIN_MAX_SELECT::next_min_in_range()
{
  ha_rkey_function find_flag;
  uint search_prefix_len;
  QUICK_RANGE *cur_range;
  bool found_null= FALSE;
  int result= HA_ERR_KEY_NOT_FOUND;

  DBUG_ASSERT(min_max_ranges.elements > 0);

  for (uint range_idx= 0; range_idx < min_max_ranges.elements; range_idx++)
  { /* Search from the left-most range to the right. */
    get_dynamic(&min_max_ranges, (gptr)&cur_range, range_idx);

    /*
      If the current value for the min/max argument is bigger than the right
      boundary of cur_range, there is no need to check this range.
    */
    if (range_idx != 0 && !(cur_range->flag & NO_MAX_RANGE) &&
8927
        (key_cmp(min_max_arg_part, (const byte*) cur_range->max_key,
8928
                 min_max_arg_len) == 1))
8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952
      continue;

    if (cur_range->flag & NO_MIN_RANGE)
    {
      find_flag= HA_READ_KEY_EXACT;
      search_prefix_len= real_prefix_len;
    }
    else
    {
      /* Extend the search key with the lower boundary for this range. */
      memcpy(group_prefix + real_prefix_len, cur_range->min_key,
             cur_range->min_length);
      search_prefix_len= real_prefix_len + min_max_arg_len;
      find_flag= (cur_range->flag & (EQ_RANGE | NULL_RANGE)) ?
                 HA_READ_KEY_EXACT : (cur_range->flag & NEAR_MIN) ?
                 HA_READ_AFTER_KEY : HA_READ_KEY_OR_NEXT;
    }

    result= file->index_read(record, group_prefix, search_prefix_len,
                             find_flag);
    if ((result == HA_ERR_KEY_NOT_FOUND) &&
        (cur_range->flag & (EQ_RANGE | NULL_RANGE)))
        continue; /* Check the next range. */
    else if (result)
8953 8954 8955 8956 8957 8958
    {
      /*
        In all other cases (HA_ERR_*, HA_READ_KEY_EXACT with NO_MIN_RANGE,
        HA_READ_AFTER_KEY, HA_READ_KEY_OR_NEXT) if the lookup failed for this
        range, it can't succeed for any other subsequent range.
      */
8959
      break;
8960
    }
8961 8962 8963 8964 8965 8966

    /* A key was found. */
    if (cur_range->flag & EQ_RANGE)
      break; /* No need to perform the checks below for equal keys. */

    if (cur_range->flag & NULL_RANGE)
8967 8968 8969 8970 8971 8972
    {
      /*
        Remember this key, and continue looking for a non-NULL key that
        satisfies some other condition.
      */
      memcpy(tmp_record, record, head->s->rec_buff_length);
8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012
      found_null= TRUE;
      continue;
    }

    /* Check if record belongs to the current group. */
    if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
    {
      result = HA_ERR_KEY_NOT_FOUND;
      continue;
    }

    /* If there is an upper limit, check if the found key is in the range. */
    if ( !(cur_range->flag & NO_MAX_RANGE) )
    {
      /* Compose the MAX key for the range. */
      byte *max_key= (byte*) my_alloca(real_prefix_len + min_max_arg_len);
      memcpy(max_key, group_prefix, real_prefix_len);
      memcpy(max_key + real_prefix_len, cur_range->max_key,
             cur_range->max_length);
      /* Compare the found key with max_key. */
      int cmp_res= key_cmp(index_info->key_part, max_key,
                           real_prefix_len + min_max_arg_len);
      if (!((cur_range->flag & NEAR_MAX) && (cmp_res == -1) ||
            (cmp_res <= 0)))
      {
        result = HA_ERR_KEY_NOT_FOUND;
        continue;
      }
    }
    /* If we got to this point, the current key qualifies as MIN. */
    DBUG_ASSERT(result == 0);
    break;
  }
  /*
    If there was a key with NULL in the MIN/MAX field, and there was no other
    key without NULL from the same group that satisfies some other condition,
    then use the key with the NULL.
  */
  if (found_null && result)
  {
9013
    memcpy(record, tmp_record, head->s->rec_buff_length);
9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058
    result= 0;
  }
  return result;
}


/*
  Find the maximal key in a group that satisfies some range conditions for the
  min/max argument field.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_max_in_range()

  DESCRIPTION
    Given the sequence of ranges min_max_ranges, find the maximal key that is
    in the right-most possible range. If there is no such key, then the current
    group does not have a MAX key that satisfies the WHERE clause. If a key is
    found, its value is stored in this->record.

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if there is no key with the given prefix in any of
                         the ranges
    other                if some error
*/

int QUICK_GROUP_MIN_MAX_SELECT::next_max_in_range()
{
  ha_rkey_function find_flag;
  uint search_prefix_len;
  QUICK_RANGE *cur_range;
  int result;

  DBUG_ASSERT(min_max_ranges.elements > 0);

  for (uint range_idx= min_max_ranges.elements; range_idx > 0; range_idx--)
  { /* Search from the right-most range to the left. */
    get_dynamic(&min_max_ranges, (gptr)&cur_range, range_idx - 1);

    /*
      If the current value for the min/max argument is smaller than the left
      boundary of cur_range, there is no need to check this range.
    */
    if (range_idx != min_max_ranges.elements &&
        !(cur_range->flag & NO_MIN_RANGE) &&
9059
        (key_cmp(min_max_arg_part, (const byte*) cur_range->min_key,
9060
                 min_max_arg_len) == -1))
9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083
      continue;

    if (cur_range->flag & NO_MAX_RANGE)
    {
      find_flag= HA_READ_PREFIX_LAST;
      search_prefix_len= real_prefix_len;
    }
    else
    {
      /* Extend the search key with the upper boundary for this range. */
      memcpy(group_prefix + real_prefix_len, cur_range->max_key,
             cur_range->max_length);
      search_prefix_len= real_prefix_len + min_max_arg_len;
      find_flag= (cur_range->flag & EQ_RANGE) ?
                 HA_READ_KEY_EXACT : (cur_range->flag & NEAR_MAX) ?
                 HA_READ_BEFORE_KEY : HA_READ_PREFIX_LAST_OR_PREV;
    }

    result= file->index_read(record, group_prefix, search_prefix_len,
                             find_flag);

    if ((result == HA_ERR_KEY_NOT_FOUND) && (cur_range->flag & EQ_RANGE))
      continue; /* Check the next range. */
unknown's avatar
unknown committed
9084 9085
    if (result)
    {
9086 9087 9088 9089 9090
      /*
        In no key was found with this upper bound, there certainly are no keys
        in the ranges to the left.
      */
      return result;
unknown's avatar
unknown committed
9091
    }
9092 9093
    /* A key was found. */
    if (cur_range->flag & EQ_RANGE)
unknown's avatar
unknown committed
9094
      return 0; /* No need to perform the checks below for equal keys. */
9095 9096 9097

    /* Check if record belongs to the current group. */
    if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
unknown's avatar
unknown committed
9098
      continue;                                 // Row not found
9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186

    /* If there is a lower limit, check if the found key is in the range. */
    if ( !(cur_range->flag & NO_MIN_RANGE) )
    {
      /* Compose the MIN key for the range. */
      byte *min_key= (byte*) my_alloca(real_prefix_len + min_max_arg_len);
      memcpy(min_key, group_prefix, real_prefix_len);
      memcpy(min_key + real_prefix_len, cur_range->min_key,
             cur_range->min_length);
      /* Compare the found key with min_key. */
      int cmp_res= key_cmp(index_info->key_part, min_key,
                           real_prefix_len + min_max_arg_len);
      if (!((cur_range->flag & NEAR_MIN) && (cmp_res == 1) ||
            (cmp_res >= 0)))
        continue;
    }
    /* If we got to this point, the current key qualifies as MAX. */
    return result;
  }
  return HA_ERR_KEY_NOT_FOUND;
}


/*
  Update all MIN function results with the newly found value.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::update_min_result()

  DESCRIPTION
    The method iterates through all MIN functions and updates the result value
    of each function by calling Item_sum::reset(), which in turn picks the new
    result value from this->head->record[0], previously updated by
    next_min(). The updated value is stored in a member variable of each of the
    Item_sum objects, depending on the value type.

  IMPLEMENTATION
    The update must be done separately for MIN and MAX, immediately after
    next_min() was called and before next_max() is called, because both MIN and
    MAX take their result value from the same buffer this->head->record[0]
    (i.e.  this->record).

  RETURN
    None
*/

void QUICK_GROUP_MIN_MAX_SELECT::update_min_result()
{
  Item_sum *min_func;

  min_functions_it->rewind();
  while ((min_func= (*min_functions_it)++))
    min_func->reset();
}


/*
  Update all MAX function results with the newly found value.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::update_max_result()

  DESCRIPTION
    The method iterates through all MAX functions and updates the result value
    of each function by calling Item_sum::reset(), which in turn picks the new
    result value from this->head->record[0], previously updated by
    next_max(). The updated value is stored in a member variable of each of the
    Item_sum objects, depending on the value type.

  IMPLEMENTATION
    The update must be done separately for MIN and MAX, immediately after
    next_max() was called, because both MIN and MAX take their result value
    from the same buffer this->head->record[0] (i.e.  this->record).

  RETURN
    None
*/

void QUICK_GROUP_MIN_MAX_SELECT::update_max_result()
{
  Item_sum *max_func;

  max_functions_it->rewind();
  while ((max_func= (*max_functions_it)++))
    max_func->reset();
}


9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201
/*
  Append comma-separated list of keys this quick select uses to key_names;
  append comma-separated list of corresponding used lengths to used_lengths.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::add_keys_and_lengths()
    key_names    [out] Names of used indexes
    used_lengths [out] Corresponding lengths of the index names

  DESCRIPTION
    This method is used by select_describe to extract the names of the
    indexes used by a quick select.

*/

9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212
void QUICK_GROUP_MIN_MAX_SELECT::add_keys_and_lengths(String *key_names,
                                                      String *used_lengths)
{
  char buf[64];
  uint length;
  key_names->append(index_info->name);
  length= longlong2str(max_used_key_length, buf, 10) - buf;
  used_lengths->append(buf, length);
}


9213
#ifndef DBUG_OFF
9214

9215 9216 9217 9218 9219 9220 9221 9222 9223
static void print_sel_tree(PARAM *param, SEL_TREE *tree, key_map *tree_map,
                           const char *msg)
{
  SEL_ARG **key,**end;
  int idx;
  char buff[1024];
  DBUG_ENTER("print_sel_tree");
  if (! _db_on_)
    DBUG_VOID_RETURN;
9224

9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239
  String tmp(buff,sizeof(buff),&my_charset_bin);
  tmp.length(0);
  for (idx= 0,key=tree->keys, end=key+param->keys ;
       key != end ;
       key++,idx++)
  {
    if (tree_map->is_set(idx))
    {
      uint keynr= param->real_keynr[idx];
      if (tmp.length())
        tmp.append(',');
      tmp.append(param->table->key_info[keynr].name);
    }
  }
  if (!tmp.length())
9240
    tmp.append(STRING_WITH_LEN("(empty)"));
9241

9242
  DBUG_PRINT("info", ("SEL_TREE %p (%s) scans:%s", tree, msg, tmp.ptr()));
9243

9244 9245
  DBUG_VOID_RETURN;
}
9246

9247 9248 9249 9250

static void print_ror_scans_arr(TABLE *table, const char *msg,
                                struct st_ror_scan_info **start,
                                struct st_ror_scan_info **end)
9251
{
9252 9253 9254 9255 9256 9257 9258
  DBUG_ENTER("print_ror_scans");
  if (! _db_on_)
    DBUG_VOID_RETURN;

  char buff[1024];
  String tmp(buff,sizeof(buff),&my_charset_bin);
  tmp.length(0);
unknown's avatar
unknown committed
9259
  for (;start != end; start++)
9260
  {
9261 9262 9263
    if (tmp.length())
      tmp.append(',');
    tmp.append(table->key_info[(*start)->keynr].name);
9264
  }
9265
  if (!tmp.length())
9266
    tmp.append(STRING_WITH_LEN("(empty)"));
9267 9268
  DBUG_PRINT("info", ("ROR key scans (%s): %s", msg, tmp.ptr()));
  DBUG_VOID_RETURN;
9269 9270 9271
}


unknown's avatar
unknown committed
9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282
/*****************************************************************************
** Print a quick range for debugging
** TODO:
** This should be changed to use a String to store each row instead
** of locking the DEBUG stream !
*****************************************************************************/

static void
print_key(KEY_PART *key_part,const char *key,uint used_length)
{
  char buff[1024];
unknown's avatar
unknown committed
9283
  const char *key_end= key+used_length;
unknown's avatar
unknown committed
9284
  String tmp(buff,sizeof(buff),&my_charset_bin);
unknown's avatar
unknown committed
9285
  uint store_length;
unknown's avatar
unknown committed
9286

unknown's avatar
unknown committed
9287
  for (; key < key_end; key+=store_length, key_part++)
unknown's avatar
unknown committed
9288
  {
unknown's avatar
unknown committed
9289 9290 9291
    Field *field=      key_part->field;
    store_length= key_part->store_length;

unknown's avatar
unknown committed
9292 9293
    if (field->real_maybe_null())
    {
unknown's avatar
unknown committed
9294
      if (*key)
unknown's avatar
unknown committed
9295 9296 9297 9298
      {
	fwrite("NULL",sizeof(char),4,DBUG_FILE);
	continue;
      }
unknown's avatar
unknown committed
9299 9300
      key++;					// Skip null byte
      store_length--;
unknown's avatar
unknown committed
9301
    }
9302
    field->set_key_image((char*) key, key_part->length);
unknown's avatar
unknown committed
9303 9304 9305 9306
    if (field->type() == MYSQL_TYPE_BIT)
      (void) field->val_int_as_str(&tmp, 1);
    else
      field->val_str(&tmp);
unknown's avatar
unknown committed
9307
    fwrite(tmp.ptr(),sizeof(char),tmp.length(),DBUG_FILE);
unknown's avatar
unknown committed
9308 9309
    if (key+store_length < key_end)
      fputc('/',DBUG_FILE);
unknown's avatar
unknown committed
9310 9311 9312
  }
}

unknown's avatar
unknown committed
9313

9314
static void print_quick(QUICK_SELECT_I *quick, const key_map *needed_reg)
unknown's avatar
unknown committed
9315
{
9316
  char buf[MAX_KEY/8+1];
9317
  DBUG_ENTER("print_quick");
unknown's avatar
unknown committed
9318 9319
  if (! _db_on_ || !quick)
    DBUG_VOID_RETURN;
9320
  DBUG_LOCK_FILE;
unknown's avatar
unknown committed
9321

unknown's avatar
unknown committed
9322
  quick->dbug_dump(0, TRUE);
9323
  fprintf(DBUG_FILE,"other_keys: 0x%s:\n", needed_reg->print(buf));
unknown's avatar
unknown committed
9324

9325
  DBUG_UNLOCK_FILE;
unknown's avatar
unknown committed
9326 9327 9328
  DBUG_VOID_RETURN;
}

unknown's avatar
unknown committed
9329

9330
static void print_rowid(byte* val, int len)
unknown's avatar
unknown committed
9331
{
9332
  byte *pb;
unknown's avatar
unknown committed
9333
  DBUG_LOCK_FILE;
9334 9335 9336 9337 9338 9339 9340 9341 9342 9343
  fputc('\"', DBUG_FILE);
  for (pb= val; pb!= val + len; ++pb)
    fprintf(DBUG_FILE, "%c", *pb);
  fprintf(DBUG_FILE, "\", hex: ");

  for (pb= val; pb!= val + len; ++pb)
    fprintf(DBUG_FILE, "%x ", *pb);
  fputc('\n', DBUG_FILE);
  DBUG_UNLOCK_FILE;
}
9344

9345 9346 9347 9348
void QUICK_RANGE_SELECT::dbug_dump(int indent, bool verbose)
{
  fprintf(DBUG_FILE, "%*squick range select, key %s, length: %d\n",
	  indent, "", head->key_info[index].name, max_used_key_length);
unknown's avatar
unknown committed
9349

9350
  if (verbose)
unknown's avatar
unknown committed
9351
  {
9352 9353
    QUICK_RANGE *range;
    QUICK_RANGE **pr= (QUICK_RANGE**)ranges.buffer;
unknown's avatar
unknown committed
9354
    QUICK_RANGE **last_range= pr + ranges.elements;
9355
    for (; pr!=last_range; ++pr)
unknown's avatar
unknown committed
9356
    {
9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367
      fprintf(DBUG_FILE, "%*s", indent + 2, "");
      range= *pr;
      if (!(range->flag & NO_MIN_RANGE))
      {
        print_key(key_parts,range->min_key,range->min_length);
        if (range->flag & NEAR_MIN)
	  fputs(" < ",DBUG_FILE);
        else
	  fputs(" <= ",DBUG_FILE);
      }
      fputs("X",DBUG_FILE);
unknown's avatar
unknown committed
9368

9369 9370 9371 9372 9373 9374 9375 9376 9377
      if (!(range->flag & NO_MAX_RANGE))
      {
        if (range->flag & NEAR_MAX)
	  fputs(" < ",DBUG_FILE);
        else
	  fputs(" <= ",DBUG_FILE);
        print_key(key_parts,range->max_key,range->max_length);
      }
      fputs("\n",DBUG_FILE);
unknown's avatar
unknown committed
9378 9379
    }
  }
9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391
}

void QUICK_INDEX_MERGE_SELECT::dbug_dump(int indent, bool verbose)
{
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  QUICK_RANGE_SELECT *quick;
  fprintf(DBUG_FILE, "%*squick index_merge select\n", indent, "");
  fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
  while ((quick= it++))
    quick->dbug_dump(indent+2, verbose);
  if (pk_quick_select)
  {
unknown's avatar
unknown committed
9392
    fprintf(DBUG_FILE, "%*sclustered PK quick:\n", indent, "");
9393 9394 9395 9396 9397 9398 9399 9400 9401
    pk_quick_select->dbug_dump(indent+2, verbose);
  }
  fprintf(DBUG_FILE, "%*s}\n", indent, "");
}

void QUICK_ROR_INTERSECT_SELECT::dbug_dump(int indent, bool verbose)
{
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
9402
  fprintf(DBUG_FILE, "%*squick ROR-intersect select, %scovering\n",
9403 9404 9405
          indent, "", need_to_fetch_row? "":"non-");
  fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
  while ((quick= it++))
unknown's avatar
unknown committed
9406
    quick->dbug_dump(indent+2, verbose);
9407 9408
  if (cpk_quick)
  {
unknown's avatar
unknown committed
9409
    fprintf(DBUG_FILE, "%*sclustered PK quick:\n", indent, "");
9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423
    cpk_quick->dbug_dump(indent+2, verbose);
  }
  fprintf(DBUG_FILE, "%*s}\n", indent, "");
}

void QUICK_ROR_UNION_SELECT::dbug_dump(int indent, bool verbose)
{
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  QUICK_SELECT_I *quick;
  fprintf(DBUG_FILE, "%*squick ROR-union select\n", indent, "");
  fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
  while ((quick= it++))
    quick->dbug_dump(indent+2, verbose);
  fprintf(DBUG_FILE, "%*s}\n", indent, "");
unknown's avatar
unknown committed
9424 9425
}

9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469

/*
  Print quick select information to DBUG_FILE.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::dbug_dump()
    indent  Indentation offset
    verbose If TRUE show more detailed output.

  DESCRIPTION
    Print the contents of this quick select to DBUG_FILE. The method also
    calls dbug_dump() for the used quick select if any.

  IMPLEMENTATION
    Caller is responsible for locking DBUG_FILE before this call and unlocking
    it afterwards.

  RETURN
    None
*/

void QUICK_GROUP_MIN_MAX_SELECT::dbug_dump(int indent, bool verbose)
{
  fprintf(DBUG_FILE,
          "%*squick_group_min_max_select: index %s (%d), length: %d\n",
	  indent, "", index_info->name, index, max_used_key_length);
  if (key_infix_len > 0)
  {
    fprintf(DBUG_FILE, "%*susing key_infix with length %d:\n",
            indent, "", key_infix_len);
  }
  if (quick_prefix_select)
  {
    fprintf(DBUG_FILE, "%*susing quick_range_select:\n", indent, "");
    quick_prefix_select->dbug_dump(indent + 2, verbose);
  }
  if (min_max_ranges.elements > 0)
  {
    fprintf(DBUG_FILE, "%*susing %d quick_ranges for MIN/MAX:\n",
            indent, "", min_max_ranges.elements);
  }
}


unknown's avatar
unknown committed
9470
#endif /* NOT_USED */
unknown's avatar
unknown committed
9471 9472

/*****************************************************************************
9473
** Instantiate templates
unknown's avatar
unknown committed
9474 9475
*****************************************************************************/

9476
#ifdef HAVE_EXPLICIT_TEMPLATE_INSTANTIATION
unknown's avatar
unknown committed
9477 9478 9479
template class List<QUICK_RANGE>;
template class List_iterator<QUICK_RANGE>;
#endif