pars0opt.c 29.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
/******************************************************
Simple SQL optimizer

(c) 1997 Innobase Oy

Created 12/21/1997 Heikki Tuuri
*******************************************************/

#include "pars0opt.h"

#ifdef UNIV_NONINL
#include "pars0opt.ic"
#endif

#include "row0sel.h"
#include "row0ins.h"
#include "row0upd.h"
#include "dict0dict.h"
#include "dict0mem.h"
#include "que0que.h"
#include "pars0grm.h"
#include "pars0pars.h"
#include "lock0lock.h"

#define OPT_EQUAL	1	/* comparison by = */
#define OPT_COMPARISON	2	/* comparison by <, >, <=, or >= */

#define OPT_NOT_COND	1
#define OPT_END_COND	2
#define OPT_TEST_COND	3
#define OPT_SCROLL_COND	4


/***********************************************************************
Inverts a comparison operator. */
static
int
opt_invert_cmp_op(
/*==============*/
			/* out: the equivalent operator when the order of
			the arguments is switched */
	int	op)	/* in: operator */
{
	if (op == '<') {
		return('>');
	} else if (op == '>') {
		return('<');
	} else if (op == '=') {
		return('=');
	} else if (op == PARS_LE_TOKEN) {
		return(PARS_GE_TOKEN);
	} else if (op == PARS_GE_TOKEN) {
		return(PARS_LE_TOKEN);
	} else {
		ut_error;
	}

	return(0);
}

/***********************************************************************
Checks if the value of an expression can be calculated BEFORE the nth table
in a join is accessed. If this is the case, it can possibly be used in an
index search for the nth table. */
static
ibool
opt_check_exp_determined_before(
/*============================*/
					/* out: TRUE if already determined */
	que_node_t*	exp,		/* in: expression */
	sel_node_t*	sel_node,	/* in: select node */
	ulint		nth_table)	/* in: nth table will be accessed */
{
	func_node_t*	func_node;
	sym_node_t*	sym_node;
	dict_table_t*	table;
	que_node_t*	arg;
	ulint		i;

	ut_ad(exp && sel_node);

	if (que_node_get_type(exp) == QUE_NODE_FUNC) {
		func_node = exp;

		arg = func_node->args;

		while (arg) {
			if (!opt_check_exp_determined_before(arg, sel_node,
								nth_table)) {
				return(FALSE);
			}

			arg = que_node_get_next(arg);
		}

		return(TRUE);
	}

	ut_a(que_node_get_type(exp) == QUE_NODE_SYMBOL);

	sym_node = exp;

	if (sym_node->token_type != SYM_COLUMN) {

		return(TRUE);
	}

	for (i = 0; i < nth_table; i++) {
	
		table = sel_node_get_nth_plan(sel_node, i)->table;

		if (sym_node->table == table) {

			return(TRUE);
		}
	}

	return(FALSE);	
}

/***********************************************************************
Looks in a comparison condition if a column value is already restricted by
it BEFORE the nth table is accessed. */
static
que_node_t*
opt_look_for_col_in_comparison_before(
/*==================================*/
					/* out: expression restricting the
					value of the column, or NULL if not
					known */
	ulint		cmp_type,	/* in: OPT_EQUAL, OPT_COMPARISON */
	ulint		col_no,		/* in: column number */
	func_node_t*	search_cond,	/* in: comparison condition */
	sel_node_t*	sel_node,	/* in: select node */
	ulint		nth_table,	/* in: nth table in a join (a query
					from a single table is considered a
					join of 1 table) */
	ulint*		op)		/* out: comparison operator ('=',
					PARS_GE_TOKEN, ... ); this is inverted
					if the column appears on the right
					side */
{
	sym_node_t*	sym_node;
	dict_table_t*	table;
	que_node_t*	exp;
	que_node_t*	arg;

	ut_ad(search_cond);

	ut_a((search_cond->func == '<')
	     || (search_cond->func == '>')		
	     || (search_cond->func == '=')		
	     || (search_cond->func == PARS_GE_TOKEN)
	     || (search_cond->func == PARS_LE_TOKEN));

	table = sel_node_get_nth_plan(sel_node, nth_table)->table;

	if ((cmp_type == OPT_EQUAL) && (search_cond->func != '=')) {

		return(NULL);

	} else if ((cmp_type == OPT_COMPARISON)
			&& (search_cond->func != '<')
			&& (search_cond->func != '>')			
			&& (search_cond->func != PARS_GE_TOKEN)
			&& (search_cond->func != PARS_LE_TOKEN)) {

		return(NULL);
	}

	arg = search_cond->args;

	if (que_node_get_type(arg) == QUE_NODE_SYMBOL) {
		sym_node = arg;

		if ((sym_node->token_type == SYM_COLUMN)
				&& (sym_node->table == table)
				&& (sym_node->col_no == col_no)) {
				
			/* sym_node contains the desired column id */

			/* Check if the expression on the right side of the
			operator is already determined */

			exp = que_node_get_next(arg);
				
			if (opt_check_exp_determined_before(exp, sel_node,
								nth_table)) {
				*op = search_cond->func;

				return(exp);
			}
		}
    	}

    	exp = search_cond->args;
        arg = que_node_get_next(arg);

	if (que_node_get_type(arg) == QUE_NODE_SYMBOL) {
		sym_node = arg;

		if ((sym_node->token_type == SYM_COLUMN)
				&& (sym_node->table == table)
				&& (sym_node->col_no == col_no)) {
				
			if (opt_check_exp_determined_before(exp, sel_node,
								nth_table)) {
				*op = opt_invert_cmp_op(search_cond->func);

				return(exp);
			}
		}
    	}
	
	return(NULL);
}

/***********************************************************************
Looks in a search condition if a column value is already restricted by the
search condition BEFORE the nth table is accessed. Takes into account that
if we will fetch in an ascending order, we cannot utilize an upper limit for
a column value; in a descending order, respectively, a lower limit. */
static
que_node_t*
opt_look_for_col_in_cond_before(
/*============================*/
					/* out: expression restricting the
					value of the column, or NULL if not
					known */
	ulint		cmp_type,	/* in: OPT_EQUAL, OPT_COMPARISON */
	ulint		col_no,		/* in: column number */
	func_node_t*	search_cond,	/* in: search condition or NULL */
	sel_node_t*	sel_node,	/* in: select node */
	ulint		nth_table,	/* in: nth table in a join (a query
					from a single table is considered a
					join of 1 table) */
	ulint*		op)		/* out: comparison operator ('=',
					PARS_GE_TOKEN, ... ) */
{
	func_node_t*	new_cond;
	que_node_t*	exp;

	if (search_cond == NULL) {

		return(NULL);
	}		

	ut_a(que_node_get_type(search_cond) == QUE_NODE_FUNC);
	ut_a(search_cond->func != PARS_OR_TOKEN);
	ut_a(search_cond->func != PARS_NOT_TOKEN);	
	
	if (search_cond->func == PARS_AND_TOKEN) {
		new_cond = search_cond->args;

		exp = opt_look_for_col_in_cond_before(cmp_type, col_no,
					new_cond, sel_node, nth_table, op);
		if (exp) {

			return(exp);
		}

		new_cond = que_node_get_next(new_cond);
		
		exp = opt_look_for_col_in_cond_before(cmp_type, col_no,
					new_cond, sel_node, nth_table, op);
		return(exp);
	}

	exp = opt_look_for_col_in_comparison_before(cmp_type, col_no,
					search_cond, sel_node, nth_table, op);
	if (exp == NULL) {

		return(NULL);
	}

	/* If we will fetch in an ascending order, we cannot utilize an upper
	limit for a column value; in a descending order, respectively, a lower
	limit */
	
	if (sel_node->asc && ((*op == '<') || (*op == PARS_LE_TOKEN))) {

		return(NULL);

	} else if (!sel_node->asc && ((*op == '>') || (*op == PARS_GE_TOKEN))) {

		return(NULL);
	}

	return(exp);
}

/***********************************************************************
Calculates the goodness for an index according to a select node. The
goodness is 4 times the number of first fields in index whose values we
already know exactly in the query. If we have a comparison condition for
an additional field, 2 point are added. If the index is unique, and we know
all the unique fields for the index we add 1024 points. For a clustered index
we add 1 point. */
static
ulint
opt_calc_index_goodness(
/*====================*/
					/* out: goodness */
	dict_index_t*	index,		/* in: index */
	sel_node_t*	sel_node,	/* in: parsed select node */
	ulint		nth_table,	/* in: nth table in a join */
	que_node_t**	index_plan,	/* in/out: comparison expressions for
					this index */
	ulint*		last_op)	/* out: last comparison operator, if
					goodness > 1 */
{
	que_node_t*	exp;
	ulint		goodness;
	ulint		n_fields;
	ulint		col_no;
	ulint		mix_id_col_no;
	ulint		op;
	ulint		j;

	goodness = 0;

	/* Note that as higher level node pointers in the B-tree contain
	page addresses as the last field, we must not put more fields in
	the search tuple than dict_index_get_n_unique_in_tree(index); see
	the note in btr_cur_search_to_nth_level. */
	
	n_fields = dict_index_get_n_unique_in_tree(index);

	mix_id_col_no = dict_table_get_sys_col_no(index->table, DATA_MIX_ID);
	
	for (j = 0; j < n_fields; j++) {

		col_no = dict_index_get_nth_col_no(index, j);

		exp = opt_look_for_col_in_cond_before(OPT_EQUAL, col_no,
						sel_node->search_cond,
						sel_node, nth_table, &op);
		if (col_no == mix_id_col_no) {
			ut_ad(exp == NULL);
			
			index_plan[j] = NULL;
			*last_op = '=';
			goodness += 4;
		} else if (exp) {			
			/* The value for this column is exactly known already
			at this stage of the join */

			index_plan[j] = exp;
			*last_op = op;
			goodness += 4;
		} else {
			/* Look for non-equality comparisons */

			exp = opt_look_for_col_in_cond_before(OPT_COMPARISON,
						col_no, sel_node->search_cond,
						sel_node, nth_table, &op);
			if (exp) {
				index_plan[j] = exp;
				*last_op = op;
				goodness += 2;
			}				
		
			break;
		}	
	}

	if (goodness >= 4 * dict_index_get_n_unique(index)) {
		goodness += 1024;

		if (index->type & DICT_CLUSTERED) {

			goodness += 1024;
		}
	}

	if (index->type & DICT_CLUSTERED) {

		goodness++;
	}

	return(goodness);
}

/***********************************************************************
Calculates the number of matched fields based on an index goodness. */
UNIV_INLINE
ulint
opt_calc_n_fields_from_goodness(
/*============================*/
				/* out: number of excatly or partially matched
				fields */
	ulint	goodness)	/* in: goodness */
{
	return(((goodness % 1024) + 2) / 4);
}

/***********************************************************************
Converts a comparison operator to the corresponding search mode PAGE_CUR_GE,
... */
UNIV_INLINE
ulint
opt_op_to_search_mode(
/*==================*/
			/* out: search mode */
	ibool	asc,	/* in: TRUE if the rows should be fetched in an
			ascending order */
	ulint	op)	/* in: operator '=', PARS_GE_TOKEN, ... */
{
	if (op == '=') {
		if (asc) {
			return(PAGE_CUR_GE);
		} else {
			return(PAGE_CUR_LE);
		}	
	} else if (op == '<') {
		ut_a(!asc);
		return(PAGE_CUR_L);
	} else if (op == '>') {
		ut_a(asc);
		return(PAGE_CUR_G);
	} else if (op == PARS_GE_TOKEN) {
		ut_a(asc);
		return(PAGE_CUR_GE);
	} else if (op == PARS_LE_TOKEN) {
		ut_a(!asc);
		return(PAGE_CUR_LE);
	} else {
		ut_error;
	}

	return(0);
}

/***********************************************************************
Determines if a node is an argument node of a function node. */
static
ibool
opt_is_arg(
/*=======*/
					/* out: TRUE if is an argument */
	que_node_t*	arg_node,	/* in: possible argument node */
	func_node_t*	func_node)	/* in: function node */
{
	que_node_t*	arg;

	arg = func_node->args;

	while (arg) {
		if (arg == arg_node) {

			return(TRUE);
		}

		arg = que_node_get_next(arg);
	}

	return(FALSE);
}

/***********************************************************************
Decides if the fetching of rows should be made in a descending order, and
also checks that the chosen query plan produces a result which satisfies
the order-by. */
static
void
opt_check_order_by(
/*===============*/
	sel_node_t*	sel_node)	/* in: select node; asserts an error
					if the plan does not agree with the
					order-by */
{
	order_node_t*	order_node;
	dict_table_t*	order_table;
	ulint		order_col_no;
	plan_t*		plan;
	ulint		i;

	if (!sel_node->order_by) {

		return;
	}

	order_node = sel_node->order_by;
	order_col_no = order_node->column->col_no;
	order_table = order_node->column->table;

	/* If there is an order-by clause, the first non-exactly matched field
	in the index used for the last table in the table list should be the
	column defined in the order-by clause, and for all the other tables
	we should get only at most a single row, otherwise we cannot presently
	calculate the order-by, as we have no sort utility */
		
	for (i = 0; i < sel_node->n_tables; i++) {	

		plan = sel_node_get_nth_plan(sel_node, i);

		if (i < sel_node->n_tables - 1) {
			ut_a(dict_index_get_n_unique(plan->index)
						<= plan->n_exact_match);
		} else {
			ut_a(plan->table == order_table);

			ut_a((dict_index_get_n_unique(plan->index)
						<= plan->n_exact_match)
			     || (dict_index_get_nth_col_no(plan->index,
			     				plan->n_exact_match)
			   			== order_col_no));
		}
	}
}

/***********************************************************************
Optimizes a select. Decides which indexes to tables to use. The tables
are accessed in the order that they were written to the FROM part in the
select statement. */
static
void
opt_search_plan_for_table(
/*======================*/
	sel_node_t*	sel_node,	/* in: parsed select node */
	ulint		i,		/* in: this is the ith table */
	dict_table_t*	table)		/* in: table */
{
	plan_t*		plan;
	dict_index_t*	index;
	dict_index_t*	best_index;
	ulint		n_fields;
	ulint		goodness;
unknown's avatar
unknown committed
529 530
	ulint		last_op		= 75946965;	/* Eliminate a Purify
							warning */
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
	ulint		best_goodness;
	ulint		best_last_op;
	ulint		mix_id_pos;
	que_node_t*	index_plan[128];
	que_node_t*	best_index_plan[128];

	plan = sel_node_get_nth_plan(sel_node, i);

	plan->table = table;
	plan->asc = sel_node->asc;
	plan->pcur_is_open = FALSE;
	plan->cursor_at_end = FALSE;

	/* Calculate goodness for each index of the table */

	index = dict_table_get_first_index(table);
547
	best_index = index; /* Eliminate compiler warning */
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
	best_goodness = 0;
	
	while (index) {
		goodness = opt_calc_index_goodness(index, sel_node, i,
						index_plan, &last_op);
		if (goodness > best_goodness) {

			best_index = index;
			best_goodness = goodness;
			n_fields = opt_calc_n_fields_from_goodness(goodness);

			ut_memcpy(best_index_plan, index_plan,
						n_fields * sizeof(void*));
			best_last_op = last_op;
		}

		index = dict_table_get_next_index(index);
	}	

	plan->index = best_index;

	n_fields = opt_calc_n_fields_from_goodness(best_goodness);

	if (n_fields == 0) {
		plan->tuple = NULL;
		plan->n_exact_match = 0;
	} else {
		plan->tuple = dtuple_create(pars_sym_tab_global->heap,
								n_fields);
		dict_index_copy_types(plan->tuple, plan->index, n_fields);
		
		plan->tuple_exps = mem_heap_alloc(pars_sym_tab_global->heap,
						n_fields * sizeof(void*));

		ut_memcpy(plan->tuple_exps, best_index_plan,
				  		n_fields * sizeof(void*));
		if (best_last_op == '=') {
			plan->n_exact_match = n_fields;
		} else {
			plan->n_exact_match = n_fields - 1;
		}
			
		plan->mode = opt_op_to_search_mode(sel_node->asc,
								best_last_op);
	}

	if ((best_index->type & DICT_CLUSTERED)
	    && (plan->n_exact_match >= dict_index_get_n_unique(best_index))) {

		plan->unique_search = TRUE;
	} else {
		plan->unique_search = FALSE;
	}

	if ((table->type != DICT_TABLE_ORDINARY)
	    			&& (best_index->type & DICT_CLUSTERED)) {

	    	plan->mixed_index = TRUE;

	    	mix_id_pos = table->mix_len;

	    	if (mix_id_pos < n_fields) {
	    		/* We have to add the mix id as a (string) literal
			expression to the tuple_exps */

			plan->tuple_exps[mix_id_pos] =
				sym_tab_add_str_lit(pars_sym_tab_global,
							table->mix_id_buf,
							table->mix_id_len);
	    	}
	} else {
		plan->mixed_index = FALSE;
	}
	
	plan->old_vers_heap = NULL;

	btr_pcur_init(&(plan->pcur));
	btr_pcur_init(&(plan->clust_pcur));
}

/***********************************************************************
Looks at a comparison condition and decides if it can, and need, be tested for
a table AFTER the table has been accessed. */
static
ulint
opt_classify_comparison(
/*====================*/
					/* out: OPT_NOT_COND if not for this
					table, else OPT_END_COND,
					OPT_TEST_COND, or OPT_SCROLL_COND,
					where the last means that the
					condition need not be tested, except
					when scroll cursors are used */
	sel_node_t*	sel_node,	/* in: select node */
	ulint		i,		/* in: ith table in the join */
	func_node_t*	cond)		/* in: comparison condition */
{
	plan_t*	plan;
	ulint	n_fields;
	ulint	op;
	ulint	j;

	ut_ad(cond && sel_node);

	plan = sel_node_get_nth_plan(sel_node, i);

	/* Check if the condition is determined after the ith table has been
	accessed, but not after the i - 1:th */

	if (!opt_check_exp_determined_before(cond, sel_node, i + 1)) {

		return(OPT_NOT_COND);
	}

	if ((i > 0) && opt_check_exp_determined_before(cond, sel_node, i)) {

		return(OPT_NOT_COND);
	}

	/* If the condition is an exact match condition used in constructing
	the search tuple, it is classified as OPT_END_COND */

	if (plan->tuple) {
		n_fields = dtuple_get_n_fields(plan->tuple);
	} else {
		n_fields = 0;
	}

	for (j = 0; j < plan->n_exact_match; j++) {

		if (opt_is_arg(plan->tuple_exps[j], cond)) {

			return(OPT_END_COND);
		}
	}

	/* If the condition is an non-exact match condition used in
	constructing the search tuple, it is classified as OPT_SCROLL_COND.
	When the cursor is positioned, and if a non-scroll cursor is used,
	there is no need to test this condition; if a scroll cursor is used
	the testing is necessary when the cursor is reversed. */

	if ((n_fields > plan->n_exact_match)
	    	&& opt_is_arg(plan->tuple_exps[n_fields - 1], cond)) {

	    	return(OPT_SCROLL_COND);
	}

	/* If the condition is a non-exact match condition on the first field
	in index for which there is no exact match, and it limits the search
	range from the opposite side of the search tuple already BEFORE we
	access the table, it is classified as OPT_END_COND */

	if ((dict_index_get_n_fields(plan->index) > plan->n_exact_match)
	    && opt_look_for_col_in_comparison_before(
				OPT_COMPARISON,
	    			dict_index_get_nth_col_no(plan->index,
	    						plan->n_exact_match),
	    			cond, sel_node, i, &op)) {
	    				
		if (sel_node->asc && ((op == '<') || (op == PARS_LE_TOKEN))) {

			return(OPT_END_COND);
		}

		if (!sel_node->asc && ((op == '>') || (op == PARS_GE_TOKEN))) {

			return(OPT_END_COND);
		}
	}

	/* Otherwise, cond is classified as OPT_TEST_COND */

	return(OPT_TEST_COND);
}

/***********************************************************************
Recursively looks for test conditions for a table in a join. */
static
void
opt_find_test_conds(
/*================*/
	sel_node_t*	sel_node,	/* in: select node */
	ulint		i,		/* in: ith table in the join */
	func_node_t*	cond)		/* in: conjunction of search
					conditions or NULL */
{
	func_node_t*	new_cond;
	ulint		class;
	plan_t*		plan;

	if (cond == NULL) {

		return;
	}

	if (cond->func == PARS_AND_TOKEN) {
		new_cond = cond->args;

		opt_find_test_conds(sel_node, i, new_cond);

		new_cond = que_node_get_next(new_cond);
		
		opt_find_test_conds(sel_node, i, new_cond);

		return;
	}

	plan = sel_node_get_nth_plan(sel_node, i);

	class = opt_classify_comparison(sel_node, i, cond);

	if (class == OPT_END_COND) {
		UT_LIST_ADD_LAST(cond_list, plan->end_conds, cond);

	} else if (class == OPT_TEST_COND) {
		UT_LIST_ADD_LAST(cond_list, plan->other_conds, cond);

	}
}

/***********************************************************************
Normalizes a list of comparison conditions so that a column of the table
appears on the left side of the comparison if possible. This is accomplished
by switching the arguments of the operator. */
static
void
opt_normalize_cmp_conds(
/*====================*/
	func_node_t*	cond,	/* in: first in a list of comparison
				conditions, or NULL */
	dict_table_t*	table)	/* in: table */
{
	que_node_t*	arg1;
	que_node_t*	arg2;
	sym_node_t*	sym_node;

	while (cond) {
		arg1 = cond->args;
		arg2 = que_node_get_next(arg1);

		if (que_node_get_type(arg2) == QUE_NODE_SYMBOL) {

			sym_node = arg2;

			if ((sym_node->token_type == SYM_COLUMN)
					&& (sym_node->table == table)) {

				/* Switch the order of the arguments */

				cond->args = arg2;
				que_node_list_add_last(NULL, arg2);
				que_node_list_add_last(arg2, arg1);

				/* Invert the operator */
				cond->func = opt_invert_cmp_op(cond->func);
			}
		}

		cond = UT_LIST_GET_NEXT(cond_list, cond);
	}
}	

/***********************************************************************
Finds out the search condition conjuncts we can, and need, to test as the ith
table in a join is accessed. The search tuple can eliminate the need to test
some conjuncts. */
static
void
opt_determine_and_normalize_test_conds(
/*===================================*/
	sel_node_t*	sel_node,	/* in: select node */
	ulint		i)		/* in: ith table in the join */
{
	plan_t*	plan;

	plan = sel_node_get_nth_plan(sel_node, i);

	UT_LIST_INIT(plan->end_conds);
	UT_LIST_INIT(plan->other_conds);
	
	/* Recursively go through the conjuncts and classify them */

	opt_find_test_conds(sel_node, i, sel_node->search_cond);

	opt_normalize_cmp_conds(UT_LIST_GET_FIRST(plan->end_conds),
								plan->table);

	ut_a(UT_LIST_GET_LEN(plan->end_conds) >= plan->n_exact_match);
}

/***********************************************************************
Looks for occurrences of the columns of the table in the query subgraph and
adds them to the list of columns if an occurrence of the same column does not
already exist in the list. If the column is already in the list, puts a value
indirection to point to the occurrence in the column list, except if the
column occurrence we are looking at is in the column list, in which case
nothing is done. */

void
opt_find_all_cols(
/*==============*/
	ibool		copy_val,	/* in: if TRUE, new found columns are
					added as columns to copy */
	dict_index_t*	index,		/* in: index of the table to use */
	sym_node_list_t* col_list,	/* in: base node of a list where
					to add new found columns */
	plan_t*		plan,		/* in: plan or NULL */
	que_node_t*	exp)		/* in: expression or condition or
					NULL */
{
	func_node_t*	func_node;
	que_node_t*	arg;
	sym_node_t*	sym_node;
	sym_node_t*	col_node;
	ulint		col_pos;

	if (exp == NULL) {

		return;
	}
	
	if (que_node_get_type(exp) == QUE_NODE_FUNC) {
		func_node = exp;

		arg = func_node->args;

		while (arg) {
			opt_find_all_cols(copy_val, index, col_list, plan,
									arg);
			arg = que_node_get_next(arg);
		}

		return;
	}

	ut_a(que_node_get_type(exp) == QUE_NODE_SYMBOL);

	sym_node = exp;

	if (sym_node->token_type != SYM_COLUMN) {

		return;
	}

	if (sym_node->table != index->table) {

		return;
	}

	/* Look for an occurrence of the same column in the plan column
	list */

	col_node = UT_LIST_GET_FIRST(*col_list);

	while (col_node) {
		if (col_node->col_no == sym_node->col_no) {

			if (col_node == sym_node) {
				/* sym_node was already in a list: do
				nothing */

				return;
			}

			/* Put an indirection */
			sym_node->indirection = col_node;
			sym_node->alias = col_node;

			return;
		}

		col_node = UT_LIST_GET_NEXT(col_var_list, col_node);
	}

	/* The same column did not occur in the list: add it */

	UT_LIST_ADD_LAST(col_var_list, *col_list, sym_node);

	sym_node->copy_val = copy_val;

	/* Fill in the field_no fields in sym_node */
	
	sym_node->field_nos[SYM_CLUST_FIELD_NO]
				= dict_index_get_nth_col_pos(
				dict_table_get_first_index(index->table),
							sym_node->col_no);
	if (!(index->type & DICT_CLUSTERED)) {	

		ut_a(plan);

		col_pos = dict_index_get_nth_col_pos(index, sym_node->col_no);

		if (col_pos == ULINT_UNDEFINED) {

			plan->must_get_clust = TRUE;
		}
		
		sym_node->field_nos[SYM_SEC_FIELD_NO] = col_pos;
	}
}

/***********************************************************************
Looks for occurrences of the columns of the table in conditions which are
not yet determined AFTER the join operation has fetched a row in the ith
table. The values for these column must be copied to dynamic memory for
later use. */
static
void
opt_find_copy_cols(
/*===============*/
	sel_node_t*	sel_node,	/* in: select node */
	ulint		i,		/* in: ith table in the join */
	func_node_t*	search_cond)	/* in: search condition or NULL */
{
	func_node_t*	new_cond;
	plan_t*		plan;

	if (search_cond == NULL) {

		return;
	}
	
	ut_ad(que_node_get_type(search_cond) == QUE_NODE_FUNC);

	if (search_cond->func == PARS_AND_TOKEN) {
		new_cond = search_cond->args;

		opt_find_copy_cols(sel_node, i, new_cond);
		
		new_cond = que_node_get_next(new_cond);
		
		opt_find_copy_cols(sel_node, i, new_cond);

		return;
	}

	if (!opt_check_exp_determined_before(search_cond, sel_node, i + 1)) {

		/* Any ith table columns occurring in search_cond should be
		copied, as this condition cannot be tested already on the
		fetch from the ith table */

		plan = sel_node_get_nth_plan(sel_node, i);
		
		opt_find_all_cols(TRUE, plan->index, &(plan->columns), plan,
								search_cond);
	}
}

/***********************************************************************
Classifies the table columns according to whether we use the column only while
holding the latch on the page, or whether we have to copy the column value to
dynamic memory. Puts the first occurrence of a column to either list in the
plan node, and puts indirections to later occurrences of the column. */
static
void
opt_classify_cols(
/*==============*/
	sel_node_t*	sel_node,	/* in: select node */
	ulint		i)		/* in: ith table in the join */
{
	plan_t*		plan;
	que_node_t*	exp;

	plan = sel_node_get_nth_plan(sel_node, i);

	/* The final value of the following field will depend on the
	environment of the select statement: */

	plan->must_get_clust = FALSE;

	UT_LIST_INIT(plan->columns);

	/* All select list columns should be copied: therefore TRUE as the
	first argument */

	exp = sel_node->select_list;

	while (exp) {
		opt_find_all_cols(TRUE, plan->index, &(plan->columns), plan,
									exp);
		exp = que_node_get_next(exp);
	}

	opt_find_copy_cols(sel_node, i, sel_node->search_cond);

	/* All remaining columns in the search condition are temporary
	columns: therefore FALSE */
	
	opt_find_all_cols(FALSE, plan->index, &(plan->columns), plan,
						sel_node->search_cond);
}

/***********************************************************************
Fills in the info in plan which is used in accessing a clustered index
record. The columns must already be classified for the plan node. */
static
void
opt_clust_access(
/*=============*/
	sel_node_t*	sel_node,	/* in: select node */
	ulint		n)		/* in: nth table in select */
{
	plan_t*		plan;
	dict_table_t*	table;
	dict_index_t*	clust_index;
	dict_index_t*	index;
	dfield_t*	dfield;
	mem_heap_t*	heap;
	ulint		n_fields;
	ulint		col_no;
	ulint		pos;
	ulint		i;

	plan = sel_node_get_nth_plan(sel_node, n);

	index = plan->index;
	
	/* The final value of the following field depends on the environment
	of the select statement: */
		
	plan->no_prefetch = FALSE;

	if (index->type & DICT_CLUSTERED) {
		plan->clust_map = NULL;
		plan->clust_ref = NULL;

		return;
	}

	table = index->table;

	clust_index = dict_table_get_first_index(table);

	n_fields = dict_index_get_n_unique(clust_index);

	heap = pars_sym_tab_global->heap;

	plan->clust_ref = dtuple_create(heap, n_fields);

	dict_index_copy_types(plan->clust_ref, clust_index, n_fields);
	
	plan->clust_map = mem_heap_alloc(heap, n_fields * sizeof(ulint));
	
	for (i = 0; i < n_fields; i++) {
		col_no = dict_index_get_nth_col_no(clust_index, i);
		pos = dict_index_get_nth_col_pos(index, col_no);

		*(plan->clust_map + i) = pos;

		ut_ad((pos != ULINT_UNDEFINED)
			|| ((table->type == DICT_TABLE_CLUSTER_MEMBER)
				 		&& (i == table->mix_len)));
	}

	if (table->type == DICT_TABLE_CLUSTER_MEMBER) {
		
		/* Preset the mix id field to the mix id constant */
		
		dfield = dtuple_get_nth_field(plan->clust_ref, table->mix_len);
		
		dfield_set_data(dfield, mem_heap_alloc(heap, table->mix_id_len),
							table->mix_id_len);
		ut_memcpy(dfield_get_data(dfield), table->mix_id_buf,
							table->mix_id_len);
	}
}

/***********************************************************************
Optimizes a select. Decides which indexes to tables to use. The tables
are accessed in the order that they were written to the FROM part in the
select statement. */

void
opt_search_plan(
/*============*/
	sel_node_t*	sel_node)	/* in: parsed select node */
{
	sym_node_t*	table_node;
	dict_table_t*	table;
	order_node_t*	order_by;
	ulint		i;
	
	sel_node->plans = mem_heap_alloc(pars_sym_tab_global->heap,
					sel_node->n_tables * sizeof(plan_t));

	/* Analyze the search condition to find out what we know at each
	join stage about the conditions that the columns of a table should
	satisfy */

	table_node = sel_node->table_list;

	if (sel_node->order_by == NULL) {
		sel_node->asc = TRUE;
	} else {
		order_by = sel_node->order_by;

		sel_node->asc = order_by->asc;
	}
	
	for (i = 0; i < sel_node->n_tables; i++) {

		table = table_node->table;

		/* Choose index through which to access the table */
	
		opt_search_plan_for_table(sel_node, i, table);

		/* Determine the search condition conjuncts we can test at
		this table; normalize the end conditions */
	
		opt_determine_and_normalize_test_conds(sel_node, i);

		table_node = que_node_get_next(table_node);
	}

	table_node = sel_node->table_list;

	for (i = 0; i < sel_node->n_tables; i++) {

		/* Classify the table columns into those we only need to access
		but not copy, and to those we must copy to dynamic memory */

		opt_classify_cols(sel_node, i);

		/* Calculate possible info for accessing the clustered index
		record */

		opt_clust_access(sel_node, i);

		table_node = que_node_get_next(table_node);
	}
	
	/* Check that the plan obeys a possible order-by clause: if not,
	an assertion error occurs */
	
	opt_check_order_by(sel_node);

#ifdef UNIV_SQL_DEBUG
	opt_print_query_plan(sel_node);
#endif
}

/************************************************************************
Prints info of a query plan. */

void
opt_print_query_plan(
/*=================*/
	sel_node_t*	sel_node)	/* in: select node */
{
	plan_t*	plan;
	ulint	n_fields;
	ulint	i;

	printf("QUERY PLAN FOR A SELECT NODE\n");

	if (sel_node->asc) {
		printf("Asc. search; ");
	} else {
		printf("Desc. search; ");
	}

	if (sel_node->set_x_locks) {
		printf("sets row x-locks; ");
		ut_a(sel_node->row_lock_mode == LOCK_X);
		ut_a(!sel_node->consistent_read);
	} else if (sel_node->consistent_read) {
		printf("consistent read; ");
	} else {
		ut_a(sel_node->row_lock_mode == LOCK_S);
		printf("sets row s-locks; ");
	}

	printf("\n");	

	for (i = 0; i < sel_node->n_tables; i++) {
		plan = sel_node_get_nth_plan(sel_node, i);

		if (plan->tuple) {
			n_fields = dtuple_get_n_fields(plan->tuple);
		} else {
			n_fields = 0;
		}

		printf(
		"Table %s index %s; exact m. %lu, match %lu, end conds %lu\n",
			plan->table->name, plan->index->name,
			plan->n_exact_match, n_fields,
			UT_LIST_GET_LEN(plan->end_conds));
	}
}