DbtupExecQuery.cpp 70 KB
Newer Older
1 2 3 4
/* Copyright (C) 2003 MySQL AB

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
unknown's avatar
unknown committed
5
   the Free Software Foundation; version 2 of the License.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */


#define DBTUP_C
#include "Dbtup.hpp"
#include <RefConvert.hpp>
#include <ndb_limits.h>
#include <pc.hpp>
#include <AttributeDescriptor.hpp>
#include "AttributeOffset.hpp"
#include <AttributeHeader.hpp>
#include <Interpreter.hpp>
#include <signaldata/TupCommit.hpp>
#include <signaldata/TupKey.hpp>
#include <NdbSqlUtil.hpp>

/* ----------------------------------------------------------------- */
/* -----------       INIT_STORED_OPERATIONREC         -------------- */
/* ----------------------------------------------------------------- */
int Dbtup::initStoredOperationrec(Operationrec* const regOperPtr,
                                  Uint32 storedId) 
{
  jam();
  StoredProcPtr storedPtr;
  c_storedProcPool.getPtr(storedPtr, storedId);
  if (storedPtr.i != RNIL) {
    if (storedPtr.p->storedCode == ZSCAN_PROCEDURE) {
      storedPtr.p->storedCounter++;
      regOperPtr->firstAttrinbufrec = storedPtr.p->storedLinkFirst;
      regOperPtr->lastAttrinbufrec = storedPtr.p->storedLinkLast;
      regOperPtr->attrinbufLen = storedPtr.p->storedProcLength;
      regOperPtr->currentAttrinbufLen = storedPtr.p->storedProcLength;
      return ZOK;
    }//if
  }//if
  terrorCode = ZSTORED_PROC_ID_ERROR;
  return terrorCode;
}//Dbtup::initStoredOperationrec()

void Dbtup::copyAttrinfo(Signal* signal,
                         Operationrec * const regOperPtr,
                         Uint32* inBuffer)
{
  AttrbufrecPtr copyAttrBufPtr;
  Uint32 RnoOfAttrBufrec = cnoOfAttrbufrec;
  int RbufLen;
  Uint32 RinBufIndex = 0;
  Uint32 Rnext;
  Uint32 Rfirst;
  Uint32 TstoredProcedure = (regOperPtr->storedProcedureId != ZNIL);
  Uint32 RnoFree = cnoFreeAttrbufrec;

//-------------------------------------------------------------------------
// As a prelude to the execution of the TUPKEYREQ we will copy the program
// into the inBuffer to enable easy execution without any complex jumping
// between the buffers. In particular this will make the interpreter less
// complex. Hopefully it does also improve performance.
//-------------------------------------------------------------------------
  copyAttrBufPtr.i = regOperPtr->firstAttrinbufrec;
  while (copyAttrBufPtr.i != RNIL) {
    jam();
    ndbrequire(copyAttrBufPtr.i < RnoOfAttrBufrec);
    ptrAss(copyAttrBufPtr, attrbufrec);
    RbufLen = copyAttrBufPtr.p->attrbuf[ZBUF_DATA_LEN];
    Rnext = copyAttrBufPtr.p->attrbuf[ZBUF_NEXT];
    Rfirst = cfirstfreeAttrbufrec;
    MEMCOPY_NO_WORDS(&inBuffer[RinBufIndex],
                     &copyAttrBufPtr.p->attrbuf[0],
                     RbufLen);
    RinBufIndex += RbufLen;
    if (!TstoredProcedure) {
      copyAttrBufPtr.p->attrbuf[ZBUF_NEXT] = Rfirst;
      cfirstfreeAttrbufrec = copyAttrBufPtr.i;
      RnoFree++;
    }//if
    copyAttrBufPtr.i = Rnext;
  }//while
  cnoFreeAttrbufrec = RnoFree;
  if (TstoredProcedure) {
    jam();
    StoredProcPtr storedPtr;
    c_storedProcPool.getPtr(storedPtr, (Uint32)regOperPtr->storedProcedureId);
    ndbrequire(storedPtr.p->storedCode == ZSCAN_PROCEDURE);
    storedPtr.p->storedCounter--;
    regOperPtr->storedProcedureId = ZNIL;
  }//if
  // Release the ATTRINFO buffers
  regOperPtr->firstAttrinbufrec = RNIL;
  regOperPtr->lastAttrinbufrec = RNIL;
}//Dbtup::copyAttrinfo()

void Dbtup::handleATTRINFOforTUPKEYREQ(Signal* signal,
                                       Uint32 length,
                                       Operationrec * const regOperPtr) 
{
  AttrbufrecPtr TAttrinbufptr;
  TAttrinbufptr.i = cfirstfreeAttrbufrec;
  if ((cfirstfreeAttrbufrec < cnoOfAttrbufrec) &&
      (cnoFreeAttrbufrec > MIN_ATTRBUF)) {
    ptrAss(TAttrinbufptr, attrbufrec);
    MEMCOPY_NO_WORDS(&TAttrinbufptr.p->attrbuf[0],
                     &signal->theData[3],
                     length);
    Uint32 RnoFree = cnoFreeAttrbufrec;
    Uint32 Rnext = TAttrinbufptr.p->attrbuf[ZBUF_NEXT];
    TAttrinbufptr.p->attrbuf[ZBUF_DATA_LEN] = length;
    TAttrinbufptr.p->attrbuf[ZBUF_NEXT] = RNIL;

    AttrbufrecPtr locAttrinbufptr;
    Uint32 RnewLen = regOperPtr->currentAttrinbufLen;

    locAttrinbufptr.i = regOperPtr->lastAttrinbufrec;
    cfirstfreeAttrbufrec = Rnext;
    cnoFreeAttrbufrec = RnoFree - 1;
    RnewLen += length;
    regOperPtr->lastAttrinbufrec = TAttrinbufptr.i;
    regOperPtr->currentAttrinbufLen = RnewLen;
    if (locAttrinbufptr.i == RNIL) {
      regOperPtr->firstAttrinbufrec = TAttrinbufptr.i;
      return;
    } else {
      jam();
      ptrCheckGuard(locAttrinbufptr, cnoOfAttrbufrec, attrbufrec);
      locAttrinbufptr.p->attrbuf[ZBUF_NEXT] = TAttrinbufptr.i;
    }//if
    if (RnewLen < ZATTR_BUFFER_SIZE) {
      return;
    } else {
      jam();
      regOperPtr->transstate = TOO_MUCH_AI;
      return;
    }//if
  } else if (cnoFreeAttrbufrec <= MIN_ATTRBUF) {
    jam();
    regOperPtr->transstate = ERROR_WAIT_TUPKEYREQ;
  } else {
    ndbrequire(false);
  }//if
}//Dbtup::handleATTRINFOforTUPKEYREQ()

void Dbtup::execATTRINFO(Signal* signal) 
{
  OperationrecPtr regOpPtr;
  Uint32 Rsig0 = signal->theData[0];
  Uint32 Rlen = signal->length();
  regOpPtr.i = Rsig0;

  jamEntry();

  ptrCheckGuard(regOpPtr, cnoOfOprec, operationrec);
  if (regOpPtr.p->transstate == IDLE) {
    handleATTRINFOforTUPKEYREQ(signal, Rlen - 3, regOpPtr.p);
    return;
  } else if (regOpPtr.p->transstate == WAIT_STORED_PROCEDURE_ATTR_INFO) {
    storedProcedureAttrInfo(signal, regOpPtr.p, Rlen - 3, 3, false);
    return;
  }//if
  switch (regOpPtr.p->transstate) {
  case ERROR_WAIT_STORED_PROCREQ:
    jam();
  case TOO_MUCH_AI:
    jam();
  case ERROR_WAIT_TUPKEYREQ:
    jam();
    return;	/* IGNORE ATTRINFO IN THOSE STATES, WAITING FOR ABORT SIGNAL */
    break;
  case DISCONNECTED:
    jam();
  case STARTED:
    jam();
  default:
    ndbrequire(false);
  }//switch
}//Dbtup::execATTRINFO()

void Dbtup::execTUP_ALLOCREQ(Signal* signal)
{
  OperationrecPtr regOperPtr;
  TablerecPtr regTabPtr;
  FragrecordPtr regFragPtr;

  jamEntry();

  regOperPtr.i = signal->theData[0];
  regFragPtr.i = signal->theData[1];
  regTabPtr.i = signal->theData[2];

  if (!((regOperPtr.i < cnoOfOprec) &&
        (regFragPtr.i < cnoOfFragrec) &&
        (regTabPtr.i < cnoOfTablerec))) {
    ndbrequire(false);
  }//if
  ptrAss(regOperPtr, operationrec);
  ptrAss(regFragPtr, fragrecord);
  ptrAss(regTabPtr, tablerec);

//---------------------------------------------------
/* --- Allocate a tuple as requested by ACC    --- */
//---------------------------------------------------
  PagePtr pagePtr;
  Uint32 pageOffset;
unknown's avatar
unknown committed
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

  if (ERROR_INSERTED(4025))
  {
    signal->theData[0] = 827;
    return;
  }
  if (ERROR_INSERTED(4026))
  {
    CLEAR_ERROR_INSERT_VALUE;
    signal->theData[0] = 827;
    return;
  }
  if (ERROR_INSERTED(4027) && (rand() % 100) > 25)
  {
    signal->theData[0] = 827;
    return;
  }
  if (ERROR_INSERTED(4028) && (rand() % 100) > 25)
  {
    CLEAR_ERROR_INSERT_VALUE;
    signal->theData[0] = 827;
    return;
  }
  
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
  if (!allocTh(regFragPtr.p,
               regTabPtr.p,
               NORMAL_PAGE,
               signal,
               pageOffset,
               pagePtr)) {
    signal->theData[0] = terrorCode; // Indicate failure
    return;
  }//if
  Uint32 fragPageId = pagePtr.p->pageWord[ZPAGE_FRAG_PAGE_ID_POS];
  Uint32 pageIndex = ((pageOffset - ZPAGE_HEADER_SIZE) /
                       regTabPtr.p->tupheadsize) << 1;
  regOperPtr.p->tableRef = regTabPtr.i;
  regOperPtr.p->fragId = regFragPtr.p->fragmentId;
  regOperPtr.p->realPageId = pagePtr.i;
  regOperPtr.p->fragPageId = fragPageId;
  regOperPtr.p->pageOffset = pageOffset;
  regOperPtr.p->pageIndex  = pageIndex;
  /* -------------------------------------------------------------- */
  /* AN INSERT IS UNDONE BY FREEING THE DATA OCCUPIED BY THE INSERT */
  /* THE ONLY DATA WE HAVE TO LOG EXCEPT THE TYPE, PAGE AND INDEX   */
  /* IS THE AMOUNT OF DATA TO FREE                                  */
  /* -------------------------------------------------------------- */
  if (isUndoLoggingNeeded(regFragPtr.p, fragPageId)) {
    jam();
    cprAddUndoLogRecord(signal,
                        ZLCPR_TYPE_DELETE_TH,
                        fragPageId,
                        pageIndex,
                        regTabPtr.i,
                        regFragPtr.p->fragmentId,
                        regFragPtr.p->checkpointVersion);
  }//if

  //---------------------------------------------------------------
  // Initialise Active operation list by setting the list to empty
  //---------------------------------------------------------------
  ndbrequire(pageOffset < ZWORDS_ON_PAGE);
  pagePtr.p->pageWord[pageOffset] = RNIL;

  signal->theData[0] = 0;
  signal->theData[1] = fragPageId;
  signal->theData[2] = pageIndex;
}//Dbtup::execTUP_ALLOCREQ()

void
Dbtup::setChecksum(Page* const pagePtr, Uint32 tupHeadOffset, Uint32 tupHeadSize)
{
  // 2 == regTabPtr.p->tupChecksumIndex
  pagePtr->pageWord[tupHeadOffset + 2] = 0;
  Uint32 checksum = calculateChecksum(pagePtr, tupHeadOffset, tupHeadSize);
  pagePtr->pageWord[tupHeadOffset + 2] = checksum;
}//Dbtup::setChecksum()

Uint32
Dbtup::calculateChecksum(Page* pagePtr,
                         Uint32 tupHeadOffset,
                         Uint32 tupHeadSize)
{
  Uint32 checksum = 0;
  Uint32 loopStop = tupHeadOffset + tupHeadSize;
  ndbrequire(loopStop <= ZWORDS_ON_PAGE);
  // includes tupVersion
  for (Uint32 i = tupHeadOffset + 1; i < loopStop; i++) {
    checksum ^= pagePtr->pageWord[i];
  }//if
  return checksum;
}//Dbtup::calculateChecksum()

/* ----------------------------------------------------------------- */
/* -----------       INSERT_ACTIVE_OP_LIST            -------------- */
/* ----------------------------------------------------------------- */
void Dbtup::insertActiveOpList(Signal* signal, 
                               OperationrecPtr regOperPtr,
                               Page*  const pagePtr,
                               Uint32 pageOffset) 
{
  OperationrecPtr iaoPrevOpPtr;
  ndbrequire(regOperPtr.p->inActiveOpList == ZFALSE);
  regOperPtr.p->inActiveOpList = ZTRUE;
  ndbrequire(pageOffset < ZWORDS_ON_PAGE);
  iaoPrevOpPtr.i = pagePtr->pageWord[pageOffset];
  pagePtr->pageWord[pageOffset] = regOperPtr.i;
  regOperPtr.p->prevActiveOp = RNIL;
  regOperPtr.p->nextActiveOp = iaoPrevOpPtr.i;
  if (iaoPrevOpPtr.i == RNIL) {
    return;
  } else {
    jam();
    ptrCheckGuard(iaoPrevOpPtr, cnoOfOprec, operationrec);
    iaoPrevOpPtr.p->prevActiveOp = regOperPtr.i;
    if (iaoPrevOpPtr.p->optype == ZDELETE &&
        regOperPtr.p->optype == ZINSERT) {
      jam();
      // mark both
      iaoPrevOpPtr.p->deleteInsertFlag = 1;
      regOperPtr.p->deleteInsertFlag = 1;
    }
    return;
  }//if
}//Dbtup::insertActiveOpList()

void Dbtup::linkOpIntoFragList(OperationrecPtr regOperPtr,
                               Fragrecord* const regFragPtr) 
{
  OperationrecPtr sopTmpOperPtr;
345
  Uint32 tail = regFragPtr->lastusedOprec;
346 347
  ndbrequire(regOperPtr.p->inFragList == ZFALSE);
  regOperPtr.p->inFragList = ZTRUE;
348 349 350 351 352
  regOperPtr.p->prevOprecInList = tail;
  regOperPtr.p->nextOprecInList = RNIL;
  sopTmpOperPtr.i = tail;
  if (tail == RNIL) {
    regFragPtr->firstusedOprec = regOperPtr.i;
353 354 355
  } else {
    jam();
    ptrCheckGuard(sopTmpOperPtr, cnoOfOprec, operationrec);
356
    sopTmpOperPtr.p->nextOprecInList = regOperPtr.i;
357
  }//if
358
  regFragPtr->lastusedOprec = regOperPtr.i;
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
}//Dbtup::linkOpIntoFragList()

/*
This routine is optimised for use from TUPKEYREQ.
This means that a lot of input data is stored in the operation record.
The routine expects the following data in the operation record to be
set-up properly.
Transaction data
1) transid1
2) transid2
3) savePointId

Operation data
4) optype
5) dirtyOp

Tuple address
6) fragPageId
7) pageIndex

regFragPtr and regTabPtr are references to the table and fragment data and
is read-only.

The routine will set up the following data in the operation record if
returned with success.

Tuple address data
1) realPageId
2) fragPageId
3) pageOffset
4) pageIndex

Also the pagePtr is an output variable if the routine returns with success.
It's input value can be undefined.
*/
bool
Dbtup::getPage(PagePtr& pagePtr,
               Operationrec* const regOperPtr,
               Fragrecord* const regFragPtr,
               Tablerec* const regTabPtr)
{
/* ------------------------------------------------------------------------- */
// GET THE REFERENCE TO THE TUPLE HEADER BY TRANSLATING THE FRAGMENT PAGE ID
// INTO A REAL PAGE ID AND BY USING THE PAGE INDEX TO DERIVE THE PROPER INDEX
// IN THE REAL PAGE.
/* ------------------------------------------------------------------------- */
  pagePtr.i = getRealpid(regFragPtr, regOperPtr->fragPageId);
  regOperPtr->realPageId = pagePtr.i;
  Uint32 RpageIndex = regOperPtr->pageIndex;
  Uint32 Rtupheadsize = regTabPtr->tupheadsize;
  ptrCheckGuard(pagePtr, cnoOfPage, page);
  Uint32 RpageIndexScaled = RpageIndex >> 1;
  ndbrequire((RpageIndex & 1) == 0);
  regOperPtr->pageOffset = ZPAGE_HEADER_SIZE + 
                           (Rtupheadsize * RpageIndexScaled);

  OperationrecPtr leaderOpPtr;
  ndbrequire(regOperPtr->pageOffset < ZWORDS_ON_PAGE);
  leaderOpPtr.i = pagePtr.p->pageWord[regOperPtr->pageOffset];
  if (leaderOpPtr.i == RNIL) {
    return true;
  }//if
  ptrCheckGuard(leaderOpPtr, cnoOfOprec, operationrec);
  bool dirtyRead = ((regOperPtr->optype == ZREAD) &&
                    (regOperPtr->dirtyOp == 1));
  if (dirtyRead) {
    bool sameTrans = ((regOperPtr->transid1 == leaderOpPtr.p->transid1) &&
                      (regOperPtr->transid2 == leaderOpPtr.p->transid2));
    if (!sameTrans) {
      if (!getPageLastCommitted(regOperPtr, leaderOpPtr.p)) {
        return false;
      }//if
      pagePtr.i = regOperPtr->realPageId;
      ptrCheckGuard(pagePtr, cnoOfPage, page);
      return true;
    }//if
  }//if
  if (regOperPtr->optype == ZREAD) {
    /*
    Read uses savepoint id's to find the correct tuple version.
    */
    if (getPageThroughSavePoint(regOperPtr, leaderOpPtr.p)) {
      jam();
      pagePtr.i = regOperPtr->realPageId;
      ptrCheckGuard(pagePtr, cnoOfPage, page);
      return true;
    }
    return false;
  }
//----------------------------------------------------------------------
// Check that no other operation is already active on the tuple. Also
// that abort or commit is not ongoing.
//----------------------------------------------------------------------
  if (leaderOpPtr.p->tupleState == NO_OTHER_OP) {
    jam();
    if ((leaderOpPtr.p->optype == ZDELETE) &&
        (regOperPtr->optype != ZINSERT)) {
      jam();
      terrorCode = ZTUPLE_DELETED_ERROR;
      return false;
    }//if
    return true;
  } else if (leaderOpPtr.p->tupleState == ALREADY_ABORTED) {
    jam();
    terrorCode = ZMUST_BE_ABORTED_ERROR;
    return false;
  } else {
    ndbrequire(false);
  }//if
  return true;
}//Dbtup::getPage()

bool
Dbtup::getPageThroughSavePoint(Operationrec* regOperPtr,
                               Operationrec* leaderOpPtr)
{
  bool found = false;
  OperationrecPtr loopOpPtr;
  loopOpPtr.p = leaderOpPtr;
  while(true) {
    if (regOperPtr->savePointId > loopOpPtr.p->savePointId) {
      jam();
      found = true;
      break;
    }
    if (loopOpPtr.p->nextActiveOp == RNIL) {
      break;
    }
    loopOpPtr.i = loopOpPtr.p->nextActiveOp;
    ptrCheckGuard(loopOpPtr, cnoOfOprec, operationrec);
    jam();
  }
  if (!found) {
    return getPageLastCommitted(regOperPtr, loopOpPtr.p);
  } else {
    if (loopOpPtr.p->optype == ZDELETE) {
      jam();
      terrorCode = ZTUPLE_DELETED_ERROR;
      return false;
    }
    if (loopOpPtr.p->tupleState == ALREADY_ABORTED) {
      /*
      Requested tuple version has already been aborted
      */
      jam();
      terrorCode = ZMUST_BE_ABORTED_ERROR;
      return false;
    }
    bool use_copy;
    if (loopOpPtr.p->prevActiveOp == RNIL) {
      jam();
      /*
      Use original tuple since we are reading from the last written tuple.
      We are the 
      */
      use_copy = false;
    } else {
      /*
      Go forward in time to find a copy of the tuple which this operation
      produced
      */
      loopOpPtr.i = loopOpPtr.p->prevActiveOp;
      ptrCheckGuard(loopOpPtr, cnoOfOprec, operationrec);
      if (loopOpPtr.p->optype == ZDELETE) {
        /*
        This operation was a Delete and thus have no copy tuple attached to
        it. We will move forward to the next that either doesn't exist in
        which case we will return the original tuple of any operation and
        otherwise it must be an insert which contains a copy record.
        */
        if (loopOpPtr.p->prevActiveOp == RNIL) {
          jam();
          use_copy = false;
        } else {
          jam();
          loopOpPtr.i = loopOpPtr.p->prevActiveOp;
          ptrCheckGuard(loopOpPtr, cnoOfOprec, operationrec);
          ndbrequire(loopOpPtr.p->optype == ZINSERT);
          use_copy = true;
        }
      } else if (loopOpPtr.p->optype == ZUPDATE) {
        jam();
        /*
        This operation which was the next in time have a copy which was the
        result of the previous operation which we want to use. Thus use
        the copy tuple of this operation.
        */
        use_copy = true;
      } else {
        /*
        This operation was an insert that happened after an insert or update.
        This is not a possible case.
        */
        ndbrequire(false);
        return false;
      }
    }
    if (use_copy) {
      regOperPtr->realPageId = loopOpPtr.p->realPageIdC;
      regOperPtr->fragPageId = loopOpPtr.p->fragPageIdC;
      regOperPtr->pageIndex = loopOpPtr.p->pageIndexC;
      regOperPtr->pageOffset = loopOpPtr.p->pageOffsetC;
    } else {
      regOperPtr->realPageId = loopOpPtr.p->realPageId;
      regOperPtr->fragPageId = loopOpPtr.p->fragPageId;
      regOperPtr->pageIndex = loopOpPtr.p->pageIndex;
      regOperPtr->pageOffset = loopOpPtr.p->pageOffset;
    }
    return true;
  }
}

bool
Dbtup::getPageLastCommitted(Operationrec* const regOperPtr,
                            Operationrec* const leaderOpPtr)
{
//----------------------------------------------------------------------
// Dirty reads wants to read the latest committed tuple. The latest
// tuple value could be not existing or else we have to find the copy
// tuple. Start by finding the end of the list to find the first operation
// on the record in the ongoing transaction.
//----------------------------------------------------------------------
  jam();
  OperationrecPtr loopOpPtr;
  loopOpPtr.p = leaderOpPtr;
  while (loopOpPtr.p->nextActiveOp != RNIL) {
    jam();
    loopOpPtr.i = loopOpPtr.p->nextActiveOp;
    ptrCheckGuard(loopOpPtr, cnoOfOprec, operationrec);
  }//while
  if (loopOpPtr.p->optype == ZINSERT) {
    jam();
//----------------------------------------------------------------------
// With an insert in the start of the list we know that the tuple did not
// exist before this transaction was started. We don't care if the current
// transaction is in the commit phase since the commit is not really
// completed until the operation is gone from TUP.
//----------------------------------------------------------------------
    terrorCode = ZTUPLE_DELETED_ERROR;
    return false;
  } else {
//----------------------------------------------------------------------
// A successful update and delete as first in the queue means that a tuple
// exist in the committed world. We need to find it.
//----------------------------------------------------------------------
    if (loopOpPtr.p->optype == ZUPDATE) {
      jam();
//----------------------------------------------------------------------
// The first operation was a delete we set our tuple reference to the
// copy tuple of this operation.
//----------------------------------------------------------------------
      regOperPtr->realPageId = loopOpPtr.p->realPageIdC;
      regOperPtr->fragPageId = loopOpPtr.p->fragPageIdC;
      regOperPtr->pageIndex  = loopOpPtr.p->pageIndexC;
      regOperPtr->pageOffset = loopOpPtr.p->pageOffsetC;
    } else if ((loopOpPtr.p->optype == ZDELETE) &&
               (loopOpPtr.p->prevActiveOp == RNIL)) {
      jam();
//----------------------------------------------------------------------
// There was only a delete. The original tuple still is ok.
//----------------------------------------------------------------------
    } else {
      jam();
//----------------------------------------------------------------------
// There was another operation after the delete, this must be an insert
// and we have found our copy tuple there.
//----------------------------------------------------------------------
      loopOpPtr.i = loopOpPtr.p->prevActiveOp;
      ptrCheckGuard(loopOpPtr, cnoOfOprec, operationrec);
      ndbrequire(loopOpPtr.p->optype == ZINSERT);
      regOperPtr->realPageId = loopOpPtr.p->realPageIdC;
      regOperPtr->fragPageId = loopOpPtr.p->fragPageIdC;
      regOperPtr->pageIndex  = loopOpPtr.p->pageIndexC;
      regOperPtr->pageOffset = loopOpPtr.p->pageOffsetC;
    }//if
  }//if
  return true;
}//Dbtup::getPageLastCommitted()

void Dbtup::execTUPKEYREQ(Signal* signal) 
{
  TupKeyReq * const tupKeyReq = (TupKeyReq *)signal->getDataPtr();
  Uint32 RoperPtr = tupKeyReq->connectPtr;
  Uint32 Rtabptr = tupKeyReq->tableRef;
  Uint32 RfragId = tupKeyReq->fragId;
  Uint32 Rstoredid = tupKeyReq->storedProcedure;
  Uint32 Rfragptr = tupKeyReq->fragPtr;

  Uint32 RnoOfOprec = cnoOfOprec;
  Uint32 RnoOfTablerec = cnoOfTablerec;
  Uint32 RnoOfFragrec = cnoOfFragrec;

  operPtr.i = RoperPtr;
  fragptr.i = Rfragptr;
  tabptr.i = Rtabptr;
  jamEntry();

  ndbrequire(((RoperPtr < RnoOfOprec) &&
        (Rtabptr < RnoOfTablerec) &&
        (Rfragptr < RnoOfFragrec)));
  ptrAss(operPtr, operationrec);
  Operationrec * const regOperPtr = operPtr.p;
  ptrAss(fragptr, fragrecord);
  Fragrecord * const regFragPtr = fragptr.p;
  ptrAss(tabptr, tablerec);
  Tablerec* const regTabPtr = tabptr.p;

  Uint32 TrequestInfo = tupKeyReq->request;

  if (regOperPtr->transstate != IDLE) {
    TUPKEY_abort(signal, 39);
    return;
  }//if
/* ----------------------------------------------------------------- */
// Operation is ZREAD when we arrive here so no need to worry about the
// abort process.
/* ----------------------------------------------------------------- */
/* -----------    INITIATE THE OPERATION RECORD       -------------- */
/* ----------------------------------------------------------------- */
  regOperPtr->fragmentPtr = Rfragptr;
  regOperPtr->dirtyOp = TrequestInfo & 1;
  regOperPtr->opSimple = (TrequestInfo >> 1) & 1;
  regOperPtr->interpretedExec = (TrequestInfo >> 10) & 1;
  regOperPtr->optype = (TrequestInfo >> 6) & 0xf;

  // Attributes needed by trigger execution
  regOperPtr->noFiredTriggers = 0;
  regOperPtr->tableRef = Rtabptr;
  regOperPtr->tcOperationPtr = tupKeyReq->opRef;
  regOperPtr->primaryReplica = tupKeyReq->primaryReplica;
  regOperPtr->coordinatorTC = tupKeyReq->coordinatorTC;
  regOperPtr->tcOpIndex = tupKeyReq->tcOpIndex;
  regOperPtr->savePointId = tupKeyReq->savePointId;

  regOperPtr->fragId = RfragId;

  regOperPtr->fragPageId = tupKeyReq->keyRef1;
  regOperPtr->pageIndex = tupKeyReq->keyRef2;
  regOperPtr->attrinbufLen = regOperPtr->logSize = tupKeyReq->attrBufLen;
  regOperPtr->recBlockref = tupKeyReq->applRef;

// Schema Version in tupKeyReq->schemaVersion not used in this version
  regOperPtr->storedProcedureId = Rstoredid;
  regOperPtr->transid1 = tupKeyReq->transId1;
  regOperPtr->transid2 = tupKeyReq->transId2;

  regOperPtr->attroutbufLen = 0;
/* ----------------------------------------------------------------------- */
// INITIALISE TO DEFAULT VALUE
// INIT THE COPY REFERENCE RECORDS TO RNIL TO ENSURE THAT THEIR VALUES
// ARE VALID IF THEY EXISTS
// NO PENDING CHECKPOINT WHEN COPY CREATED (DEFAULT)
// NO TUPLE HAS BEEN ALLOCATED YET
// NO COPY HAS BEEN CREATED YET
/* ----------------------------------------------------------------------- */
  regOperPtr->undoLogged = false;
  regOperPtr->realPageId = RNIL;
  regOperPtr->realPageIdC = RNIL;
  regOperPtr->fragPageIdC = RNIL;

  regOperPtr->pageOffset = ZNIL;
  regOperPtr->pageOffsetC = ZNIL;

  regOperPtr->pageIndexC = ZNIL;

  // version not yet known
  regOperPtr->tupVersion = ZNIL;
  regOperPtr->deleteInsertFlag = 0;

  regOperPtr->tupleState = TUPLE_BLOCKED;
  regOperPtr->changeMask.clear();
730
  
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
  if (Rstoredid != ZNIL) {
    ndbrequire(initStoredOperationrec(regOperPtr, Rstoredid) == ZOK);
  }//if
  copyAttrinfo(signal, regOperPtr, &cinBuffer[0]);

  PagePtr pagePtr;
  if (!getPage(pagePtr, regOperPtr, regFragPtr, regTabPtr)) {
    tupkeyErrorLab(signal);
    return;
  }//if

  Uint32 Roptype = regOperPtr->optype;
  if (Roptype == ZREAD) {
    jam();
    if (handleReadReq(signal, regOperPtr, regTabPtr, pagePtr.p) != -1) {
      sendTUPKEYCONF(signal, regOperPtr, 0);
/* ------------------------------------------------------------------------- */
// Read Operations need not to be taken out of any lists. We also do not
// need to wait for commit since there is no changes to commit. Thus we
// prepare the operation record already now for the next operation.
// Write operations have set the state to STARTED above indicating that
// they are waiting for the Commit or Abort decision.
/* ------------------------------------------------------------------------- */
      regOperPtr->transstate = IDLE;
      regOperPtr->currentAttrinbufLen = 0;
    }//if
    return;
  }//if
  linkOpIntoFragList(operPtr, regFragPtr);
  insertActiveOpList(signal,
                     operPtr,
                     pagePtr.p,
                     regOperPtr->pageOffset);
  if (isUndoLoggingBlocked(regFragPtr)) {
    TUPKEY_abort(signal, 38);
    return;
  }//if
/* ---------------------------------------------------------------------- */
// WE SET THE CURRENT ACTIVE OPERATION IN THE TUPLE TO POINT TO OUR
//OPERATION RECORD. IF SEVERAL OPERATIONS WORK ON THIS TUPLE THEY ARE
// LINKED TO OUR OPERATION RECORD. DIRTY READS CAN ACCESS THE COPY
// TUPLE THROUGH OUR OPERATION RECORD.
/* ---------------------------------------------------------------------- */
  if (Roptype == ZINSERT) {
    jam();
    if (handleInsertReq(signal, regOperPtr,
                        regFragPtr, regTabPtr, pagePtr.p) == -1) {
      return;
    }//if
    if (!regTabPtr->tuxCustomTriggers.isEmpty()) {
      jam();
      if (executeTuxInsertTriggers(signal, regOperPtr, regTabPtr) != 0) {
        jam();
        tupkeyErrorLab(signal);
        return;
      }
    }
    checkImmediateTriggersAfterInsert(signal,
                                      regOperPtr,
                                      regTabPtr);
    sendTUPKEYCONF(signal, regOperPtr, regOperPtr->logSize);
    return;
  }//if
  if (regTabPtr->checksumIndicator &&
      (calculateChecksum(pagePtr.p,
                         regOperPtr->pageOffset,
                         regTabPtr->tupheadsize) != 0)) {
    jam();
    terrorCode = ZTUPLE_CORRUPTED_ERROR;
    tupkeyErrorLab(signal);
    return;
  }//if
  if (Roptype == ZUPDATE) {
    jam();
    if (handleUpdateReq(signal, regOperPtr,
                        regFragPtr, regTabPtr, pagePtr.p) == -1) {
      return;
    }//if
    // If update operation is done on primary, 
    // check any after op triggers
    terrorCode = 0;
    if (!regTabPtr->tuxCustomTriggers.isEmpty()) {
      jam();
      if (executeTuxUpdateTriggers(signal, regOperPtr, regTabPtr) != 0) {
        jam();
        tupkeyErrorLab(signal);
        return;
      }
    }
    checkImmediateTriggersAfterUpdate(signal,
                                      regOperPtr,
                                      regTabPtr);
    // XXX use terrorCode for now since all methods are void
    if (terrorCode != 0) {
      tupkeyErrorLab(signal);
      return;
    }
    sendTUPKEYCONF(signal, regOperPtr, regOperPtr->logSize);
    return;
  } else if (Roptype == ZDELETE) {
    jam();
    if (handleDeleteReq(signal, regOperPtr,
                        regFragPtr, regTabPtr, pagePtr.p) == -1) {
      return;
    }//if
    // If delete operation is done on primary, 
    // check any after op triggers
    if (!regTabPtr->tuxCustomTriggers.isEmpty()) {
      jam();
      if (executeTuxDeleteTriggers(signal, regOperPtr, regTabPtr) != 0) {
        jam();
        tupkeyErrorLab(signal);
        return;
      }
    }
    checkImmediateTriggersAfterDelete(signal,
                                      regOperPtr, 
                                      regTabPtr);
    sendTUPKEYCONF(signal, regOperPtr, 0);
    return;
  } else {
    ndbrequire(false);
  }//if
}//Dbtup::execTUPKEYREQ()

/* ---------------------------------------------------------------- */
/* ------------------------ CONFIRM REQUEST ----------------------- */
/* ---------------------------------------------------------------- */
void Dbtup::sendTUPKEYCONF(Signal* signal, 
                           Operationrec * const regOperPtr, 
                           Uint32 TlogSize) 
{
  TupKeyConf * const tupKeyConf = (TupKeyConf *)signal->getDataPtrSend();  

  Uint32 RuserPointer = regOperPtr->userpointer;
  Uint32 RattroutbufLen = regOperPtr->attroutbufLen;
  Uint32 RnoFiredTriggers = regOperPtr->noFiredTriggers;
  BlockReference Ruserblockref = regOperPtr->userblockref;
869
  Uint32 lastRow = regOperPtr->lastRow;
870 871 872 873 874 875 876

  regOperPtr->transstate = STARTED;
  regOperPtr->tupleState = NO_OTHER_OP;
  tupKeyConf->userPtr = RuserPointer;
  tupKeyConf->readLength = RattroutbufLen;
  tupKeyConf->writeLength = TlogSize;
  tupKeyConf->noFiredTriggers = RnoFiredTriggers;
877
  tupKeyConf->lastRow = lastRow;
878 879 880 881 882 883

  EXECUTE_DIRECT(refToBlock(Ruserblockref), GSN_TUPKEYCONF, signal,
		 TupKeyConf::SignalLength);
  return;
}//Dbtup::sendTUPKEYCONF()

unknown's avatar
unknown committed
884 885
#define MAX_READ (sizeof(signal->theData) > MAX_MESSAGE_SIZE ? MAX_MESSAGE_SIZE : sizeof(signal->theData))

886 887 888 889 890 891 892 893 894
/* ---------------------------------------------------------------- */
/* ----------------------------- READ  ---------------------------- */
/* ---------------------------------------------------------------- */
int Dbtup::handleReadReq(Signal* signal,
                         Operationrec* const regOperPtr,
                         Tablerec* const regTabPtr,
                         Page* pagePtr)
{
  Uint32 Ttupheadoffset = regOperPtr->pageOffset;
unknown's avatar
unknown committed
895
  const BlockReference sendBref = regOperPtr->recBlockref;
896 897 898 899 900 901 902 903 904
  if (regTabPtr->checksumIndicator &&
      (calculateChecksum(pagePtr, Ttupheadoffset,
                         regTabPtr->tupheadsize) != 0)) {
    jam();
    terrorCode = ZTUPLE_CORRUPTED_ERROR;
    tupkeyErrorLab(signal);
    return -1;
  }//if

unknown's avatar
unknown committed
905
  Uint32 * dst = &signal->theData[25];
unknown's avatar
unknown committed
906
  Uint32 dstLen = (MAX_READ / 4) - 25;
unknown's avatar
unknown committed
907 908 909 910 911 912 913 914 915
  const Uint32 node = refToNode(sendBref);
  if(node != 0 && node != getOwnNodeId()) {
    ;
  } else {
    jam();
    /**
     * execute direct
     */
    dst = &signal->theData[3];
unknown's avatar
unknown committed
916
    dstLen = (MAX_READ / 4) - 3;
unknown's avatar
unknown committed
917 918
  }
  
919 920
  if (regOperPtr->interpretedExec != 1) {
    jam();
unknown's avatar
unknown committed
921 922 923 924 925 926 927 928
    int ret = readAttributes(pagePtr,
			     Ttupheadoffset,
			     &cinBuffer[0],
			     regOperPtr->attrinbufLen,
			     dst,
			     dstLen,
			     false);
    if (ret != -1) {
929 930 931 932
/* ------------------------------------------------------------------------- */
// We have read all data into coutBuffer. Now send it to the API.
/* ------------------------------------------------------------------------- */
      jam();
unknown's avatar
unknown committed
933
      Uint32 TnoOfDataRead= (Uint32) ret;
934 935 936 937 938 939 940 941 942
      regOperPtr->attroutbufLen = TnoOfDataRead;
      sendReadAttrinfo(signal, TnoOfDataRead, regOperPtr);
      return 0;
    }//if
    jam();
    tupkeyErrorLab(signal);
    return -1;
  } else {
    jam();
943
    regOperPtr->lastRow = 0;
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
    if (interpreterStartLab(signal, pagePtr, Ttupheadoffset) != -1) {
      return 0;
    }//if
    return -1;
  }//if
}//Dbtup::handleReadReq()

/* ---------------------------------------------------------------- */
/* ---------------------------- UPDATE ---------------------------- */
/* ---------------------------------------------------------------- */
int Dbtup::handleUpdateReq(Signal* signal,
                           Operationrec* const regOperPtr,
                           Fragrecord* const regFragPtr,
                           Tablerec* const regTabPtr,
                           Page* const pagePtr) 
{
  PagePtr copyPagePtr;
  Uint32 tuple_size = regTabPtr->tupheadsize;

//---------------------------------------------------
/* --- MAKE A COPY OF THIS TUPLE ON A COPY PAGE --- */
//---------------------------------------------------
  Uint32 RpageOffsetC;
  if (!allocTh(regFragPtr,
               regTabPtr,
               COPY_PAGE,
               signal,
               RpageOffsetC,
               copyPagePtr)) {
    TUPKEY_abort(signal, 1);
    return -1;
  }//if
  Uint32 RpageIdC = copyPagePtr.i;
  Uint32 RfragPageIdC = copyPagePtr.p->pageWord[ZPAGE_FRAG_PAGE_ID_POS];
  Uint32 indexC = ((RpageOffsetC - ZPAGE_HEADER_SIZE) / tuple_size) << 1;
  regOperPtr->pageIndexC = indexC;
  regOperPtr->fragPageIdC = RfragPageIdC;
  regOperPtr->realPageIdC = RpageIdC;
  regOperPtr->pageOffsetC = RpageOffsetC;
  /* -------------------------------------------------------------- */
  /* IF WE HAVE AN ONGING CHECKPOINT WE HAVE TO LOG THE ALLOCATION  */
  /* OF THE TUPLE HEADER TO BE ABLE TO DELETE IT UPON RESTART       */
  /* THE ONLY DATA EXCEPT THE TYPE, PAGE, INDEX IS THE SIZE TO FREE */
  /* -------------------------------------------------------------- */
  if (isUndoLoggingActive(regFragPtr)) {
    if (isPageUndoLogged(regFragPtr, RfragPageIdC)) {
      jam();
      regOperPtr->undoLogged = true;
      cprAddUndoLogRecord(signal,
                          ZLCPR_TYPE_DELETE_TH,
                          RfragPageIdC,
                          indexC,
                          regOperPtr->tableRef,
                          regOperPtr->fragId,
                          regFragPtr->checkpointVersion);
    }//if
    if (isPageUndoLogged(regFragPtr, regOperPtr->fragPageId)) {
      jam();
      cprAddUndoLogRecord(signal,
                          ZLCPR_TYPE_UPDATE_TH,
                          regOperPtr->fragPageId,
                          regOperPtr->pageIndex,
                          regOperPtr->tableRef,
                          regOperPtr->fragId,
                          regFragPtr->checkpointVersion);
      cprAddData(signal,
                 regFragPtr,
                 regOperPtr->realPageId,
                 tuple_size,
                 regOperPtr->pageOffset);
    }//if
  }//if
  Uint32 RwordCount = tuple_size - 1;
  Uint32 end_dest = RpageOffsetC + tuple_size;
  Uint32 offset = regOperPtr->pageOffset;
  Uint32 end_source = offset + tuple_size;
  ndbrequire(end_dest <= ZWORDS_ON_PAGE && end_source <= ZWORDS_ON_PAGE);
  void* Tdestination = (void*)&copyPagePtr.p->pageWord[RpageOffsetC + 1];
  const void* Tsource = (void*)&pagePtr->pageWord[offset + 1];
  MEMCOPY_NO_WORDS(Tdestination, Tsource, RwordCount);

  Uint32 prev_tup_version;
  // nextActiveOp is before this op in event order
  if (regOperPtr->nextActiveOp == RNIL) {
    jam();
    prev_tup_version = ((const Uint32*)Tsource)[0];
  } else {
    OperationrecPtr prevOperPtr;
    jam();
    prevOperPtr.i = regOperPtr->nextActiveOp;
    ptrCheckGuard(prevOperPtr, cnoOfOprec, operationrec);
    prev_tup_version = prevOperPtr.p->tupVersion;
  }//if
  regOperPtr->tupVersion = (prev_tup_version + 1) &
                           ((1 << ZTUP_VERSION_BITS) - 1);
  // global variable alert
  ndbassert(operationrec + operPtr.i == regOperPtr);
  copyPagePtr.p->pageWord[RpageOffsetC] = operPtr.i;

  return updateStartLab(signal, regOperPtr, regTabPtr, pagePtr);
}//Dbtup::handleUpdateReq()

/* ---------------------------------------------------------------- */
/* ----------------------------- INSERT --------------------------- */
/* ---------------------------------------------------------------- */
int Dbtup::handleInsertReq(Signal* signal,
                           Operationrec* const regOperPtr,
                           Fragrecord* const regFragPtr,
                           Tablerec* const regTabPtr,
                           Page* const pagePtr) 
{
  Uint32 ret_value;

  if (regOperPtr->nextActiveOp != RNIL) {
    jam();
    OperationrecPtr prevExecOpPtr;
    prevExecOpPtr.i = regOperPtr->nextActiveOp;
    ptrCheckGuard(prevExecOpPtr, cnoOfOprec, operationrec);
    if (prevExecOpPtr.p->optype != ZDELETE) {
      terrorCode = ZINSERT_ERROR;
      tupkeyErrorLab(signal);
      return -1;
    }//if
    ret_value = handleUpdateReq(signal, regOperPtr,
                                regFragPtr, regTabPtr, pagePtr);
  } else {
    jam();
    regOperPtr->tupVersion = 0;
    ret_value = updateStartLab(signal, regOperPtr, regTabPtr, pagePtr);
  }//if
  if (ret_value != (Uint32)-1) {
    if (checkNullAttributes(regOperPtr, regTabPtr)) {
      jam();
      return 0;
    }//if
    TUPKEY_abort(signal, 17);
  }//if
  return -1;
}//Dbtup::handleInsertReq()

/* ---------------------------------------------------------------- */
/* ---------------------------- DELETE ---------------------------- */
/* ---------------------------------------------------------------- */
int Dbtup::handleDeleteReq(Signal* signal,
                           Operationrec* const regOperPtr,
                           Fragrecord* const regFragPtr,
                           Tablerec* const regTabPtr,
                           Page* const pagePtr)
{
  // delete must set but not increment tupVersion
  if (regOperPtr->nextActiveOp != RNIL) {
    OperationrecPtr prevExecOpPtr;
    prevExecOpPtr.i = regOperPtr->nextActiveOp;
    ptrCheckGuard(prevExecOpPtr, cnoOfOprec, operationrec);
    regOperPtr->tupVersion = prevExecOpPtr.p->tupVersion;
  } else {
    jam();
    regOperPtr->tupVersion = pagePtr->pageWord[regOperPtr->pageOffset + 1];
  }
  if (isUndoLoggingNeeded(regFragPtr, regOperPtr->fragPageId)) {
    jam();
    cprAddUndoLogRecord(signal,
                        ZINDICATE_NO_OP_ACTIVE,
                        regOperPtr->fragPageId,
                        regOperPtr->pageIndex,
                        regOperPtr->tableRef,
                        regOperPtr->fragId,
                        regFragPtr->checkpointVersion);
  }//if
  if (regOperPtr->attrinbufLen == 0) {
    return 0;
  }//if
/* ------------------------------------------------------------------------ */
/* THE APPLICATION WANTS TO READ THE TUPLE BEFORE IT IS DELETED.            */
/* ------------------------------------------------------------------------ */
  return handleReadReq(signal, regOperPtr, regTabPtr, pagePtr);
}//Dbtup::handleDeleteReq()

int
Dbtup::updateStartLab(Signal* signal,
                      Operationrec* const regOperPtr,
                      Tablerec* const regTabPtr,
                      Page* const pagePtr)
{
unknown's avatar
unknown committed
1128
  int retValue;
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
  if (regOperPtr->optype == ZINSERT) {
    jam();
    setNullBits(pagePtr, regTabPtr, regOperPtr->pageOffset);
  }
  if (regOperPtr->interpretedExec != 1) {
    jam();
    retValue = updateAttributes(pagePtr,
                                regOperPtr->pageOffset,
                                &cinBuffer[0],
                                regOperPtr->attrinbufLen);
  } else {
    jam();
1141 1142
    retValue = interpreterStartLab(signal, pagePtr, regOperPtr->pageOffset);
    if (retValue == -1)
unknown's avatar
unknown committed
1143 1144 1145 1146
    {
      jam();
      return -1;
    }
1147
  }//if
unknown's avatar
unknown committed
1148 1149 1150 1151 1152 1153

  if (retValue == -1) {
    tupkeyErrorLab(signal);
    return -1;
  }//if

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
  ndbrequire(regOperPtr->tupVersion != ZNIL);
  pagePtr->pageWord[regOperPtr->pageOffset + 1] = regOperPtr->tupVersion;
  if (regTabPtr->checksumIndicator) {
    jam();
    setChecksum(pagePtr, regOperPtr->pageOffset, regTabPtr->tupheadsize);
  }//if
  return retValue;
}//Dbtup::updateStartLab()

void
Dbtup::setNullBits(Page* const regPage, Tablerec* const regTabPtr, Uint32 pageOffset)
{
  Uint32 noOfExtraNullWords = regTabPtr->tupNullWords;
  Uint32 nullOffsetStart = regTabPtr->tupNullIndex + pageOffset;
  ndbrequire((noOfExtraNullWords + nullOffsetStart) < ZWORDS_ON_PAGE);
  for (Uint32 i = 0; i < noOfExtraNullWords; i++) {
    regPage->pageWord[nullOffsetStart + i] = 0xFFFFFFFF;
  }//for
}//Dbtup::setNullBits()

bool
Dbtup::checkNullAttributes(Operationrec* const regOperPtr,
                           Tablerec* const regTabPtr)
{
// Implement checking of updating all not null attributes in an insert here.
  Bitmask<MAXNROFATTRIBUTESINWORDS> attributeMask;  
  /* 
   * The idea here is maybe that changeMask is not-null attributes
   * and must contain notNullAttributeMask.  But:
   *
   * 1. changeMask has all bits set on insert
   * 2. not-null is checked in each UpdateFunction
   * 3. the code below does not work except trivially due to 1.
   *
   * XXX remove or fix
   */
  attributeMask.clear();
  attributeMask.bitOR(regOperPtr->changeMask);
  attributeMask.bitAND(regTabPtr->notNullAttributeMask);
  attributeMask.bitXOR(regTabPtr->notNullAttributeMask);
  if (!attributeMask.isclear()) {
    return false;
  }//if
  return true;
}//Dbtup::checkNullAttributes()

/* ---------------------------------------------------------------- */
/* THIS IS THE START OF THE INTERPRETED EXECUTION OF UPDATES. WE    */
/* START BY LINKING ALL ATTRINFO'S IN A DOUBLY LINKED LIST (THEY ARE*/
/* ALREADY IN A LINKED LIST). WE ALLOCATE A REGISTER MEMORY (EQUAL  */
/* TO AN ATTRINFO RECORD). THE INTERPRETER GOES THROUGH FOUR  PHASES*/
/* DURING THE FIRST PHASE IT IS ONLY ALLOWED TO READ ATTRIBUTES THAT*/
/* ARE SENT TO THE CLIENT APPLICATION. DURING THE SECOND PHASE IT IS*/
/* ALLOWED TO READ FROM ATTRIBUTES INTO REGISTERS, TO UPDATE        */
/* ATTRIBUTES BASED ON EITHER A CONSTANT VALUE OR A REGISTER VALUE, */
/* A DIVERSE SET OF OPERATIONS ON REGISTERS ARE AVAILABLE AS WELL.  */
/* IT IS ALSO POSSIBLE TO PERFORM JUMPS WITHIN THE INSTRUCTIONS THAT*/
/* BELONGS TO THE SECOND PHASE. ALSO SUBROUTINES CAN BE CALLED IN   */
/* THIS PHASE. THE THIRD PHASE IS TO AGAIN READ ATTRIBUTES AND      */
/* FINALLY THE FOURTH PHASE READS SELECTED REGISTERS AND SEND THEM  */
/* TO THE CLIENT APPLICATION.                                       */
/* THERE IS A FIFTH REGION WHICH CONTAINS SUBROUTINES CALLABLE FROM */
/* THE INTERPRETER EXECUTION REGION.                                */
/* THE FIRST FIVE WORDS WILL GIVE THE LENGTH OF THE FIVEE REGIONS   */
/*                                                                  */
/* THIS MEANS THAT FROM THE APPLICATIONS POINT OF VIEW THE DATABASE */
/* CAN HANDLE SUBROUTINE CALLS WHERE THE CODE IS SENT IN THE REQUEST*/
/* THE RETURN PARAMETERS ARE FIXED AND CAN EITHER BE GENERATED      */
/* BEFORE THE EXECUTION OF THE ROUTINE OR AFTER.                    */
/*                                                                  */
/* IN LATER VERSIONS WE WILL ADD MORE THINGS LIKE THE POSSIBILITY   */
/* TO ALLOCATE MEMORY AND USE THIS AS LOCAL STORAGE. IT IS ALSO     */
/* IMAGINABLE TO HAVE SPECIAL ROUTINES THAT CAN PERFORM CERTAIN     */
/* OPERATIONS ON BLOB'S DEPENDENT ON WHAT THE BLOB REPRESENTS.      */
/*                                                                  */
/*                                                                  */
/*       -----------------------------------------                  */
/*       +   INITIAL READ REGION                 +                  */
/*       -----------------------------------------                  */
/*       +   INTERPRETED EXECUTE  REGION         +                  */
/*       -----------------------------------------                  */
/*       +   FINAL UPDATE REGION                 +                  */
/*       -----------------------------------------                  */
/*       +   FINAL READ REGION                   +                  */
/*       -----------------------------------------                  */
/*       +   SUBROUTINE REGION                   +                  */
/*       -----------------------------------------                  */
/* ---------------------------------------------------------------- */
/* ---------------------------------------------------------------- */
/* ----------------- INTERPRETED EXECUTION  ----------------------- */
/* ---------------------------------------------------------------- */
int Dbtup::interpreterStartLab(Signal* signal,
                               Page* const pagePtr,
                               Uint32 TupHeadOffset) 
{
  Operationrec *  const regOperPtr = operPtr.p;
  Uint32 RtotalLen;
unknown's avatar
unknown committed
1251
  int TnoDataRW;
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261

  Uint32 RinitReadLen = cinBuffer[0];
  Uint32 RexecRegionLen = cinBuffer[1];
  Uint32 RfinalUpdateLen = cinBuffer[2];
  Uint32 RfinalRLen = cinBuffer[3];
  Uint32 RsubLen = cinBuffer[4];

  Uint32 RattrinbufLen = regOperPtr->attrinbufLen;
  const BlockReference sendBref = regOperPtr->recBlockref;

unknown's avatar
unknown committed
1262
  Uint32 * dst = &signal->theData[25];
unknown's avatar
unknown committed
1263
  Uint32 dstLen = (MAX_READ / 4) - 25;
1264 1265 1266 1267 1268 1269 1270 1271 1272
  const Uint32 node = refToNode(sendBref);
  if(node != 0 && node != getOwnNodeId()) {
    ;
  } else {
    jam();
    /**
     * execute direct
     */
    dst = &signal->theData[3];
unknown's avatar
unknown committed
1273
    dstLen = (MAX_READ / 4) - 3;
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
  }
  
  RtotalLen = RinitReadLen;
  RtotalLen += RexecRegionLen;
  RtotalLen += RfinalUpdateLen;
  RtotalLen += RfinalRLen;
  RtotalLen += RsubLen;

  Uint32 RattroutCounter = 0;
  Uint32 RinstructionCounter = 5;
  Uint32 RlogSize = 0;

  if (((RtotalLen + 5) == RattrinbufLen) &&
      (RattrinbufLen >= 5) &&
      (RattrinbufLen < ZATTR_BUFFER_SIZE)) {
    /* ---------------------------------------------------------------- */
    // We start by checking consistency. We must have the first five
    // words of the ATTRINFO to give us the length of the regions. The
    // size of these regions must be the same as the total ATTRINFO
    // length and finally the total length must be within the limits.
    /* ---------------------------------------------------------------- */

    if (RinitReadLen > 0) {
      jam();
      /* ---------------------------------------------------------------- */
      // The first step that can be taken in the interpreter is to read
      // data of the tuple before any updates have been applied.
      /* ---------------------------------------------------------------- */
      TnoDataRW = readAttributes(pagePtr,
				 TupHeadOffset,
				 &cinBuffer[5],
				 RinitReadLen,
				 &dst[0],
1307 1308
				 dstLen,
                                 false);
unknown's avatar
unknown committed
1309
      if (TnoDataRW != -1) {
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	RattroutCounter = TnoDataRW;
	RinstructionCounter += RinitReadLen;
      } else {
	jam();
	tupkeyErrorLab(signal);
	return -1;
      }//if
    }//if
    if (RexecRegionLen > 0) {
      jam();
      /* ---------------------------------------------------------------- */
      // The next step is the actual interpreted execution. This executes
      // a register-based virtual machine which can read and write attributes
      // to and from registers.
      /* ---------------------------------------------------------------- */
      Uint32 RsubPC = RinstructionCounter + RfinalUpdateLen + RfinalRLen;     
      TnoDataRW = interpreterNextLab(signal,
				     pagePtr,
				     TupHeadOffset,
				     &clogMemBuffer[0],
				     &cinBuffer[RinstructionCounter],
				     RexecRegionLen,
				     &cinBuffer[RsubPC],
				     RsubLen,
unknown's avatar
unknown committed
1334 1335
				     &coutBuffer[0],
				     sizeof(coutBuffer) / 4);
unknown's avatar
unknown committed
1336
      if (TnoDataRW != -1) {
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
	RinstructionCounter += RexecRegionLen;
	RlogSize = TnoDataRW;
      } else {
	jam();
	return -1;
      }//if
    }//if
    if (RfinalUpdateLen > 0) {
      jam();
      /* ---------------------------------------------------------------- */
      // We can also apply a set of updates without any conditions as part
      // of the interpreted execution.
      /* ---------------------------------------------------------------- */
      if (regOperPtr->optype == ZUPDATE) {
	TnoDataRW = updateAttributes(pagePtr,
				     TupHeadOffset,
				     &cinBuffer[RinstructionCounter],
				     RfinalUpdateLen);
unknown's avatar
unknown committed
1355
	if (TnoDataRW != -1) {
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	  MEMCOPY_NO_WORDS(&clogMemBuffer[RlogSize],
			   &cinBuffer[RinstructionCounter],
			   RfinalUpdateLen);
	  RinstructionCounter += RfinalUpdateLen;
	  RlogSize += RfinalUpdateLen;
	} else {
	  jam();
	  tupkeyErrorLab(signal);
	  return -1;
	}//if
      } else {
	return TUPKEY_abort(signal, 19);
      }//if
    }//if
    if (RfinalRLen > 0) {
      jam();
      /* ---------------------------------------------------------------- */
      // The final action is that we can also read the tuple after it has
      // been updated.
      /* ---------------------------------------------------------------- */
      TnoDataRW = readAttributes(pagePtr,
				 TupHeadOffset,
				 &cinBuffer[RinstructionCounter],
				 RfinalRLen,
				 &dst[RattroutCounter],
1381 1382
				 (dstLen - RattroutCounter),
                                 false);
unknown's avatar
unknown committed
1383
      if (TnoDataRW != -1) {
1384 1385 1386 1387 1388 1389 1390 1391 1392
	RattroutCounter += TnoDataRW;
      } else {
	jam();
	tupkeyErrorLab(signal);
	return -1;
      }//if
    }//if
    regOperPtr->logSize = RlogSize;
    regOperPtr->attroutbufLen = RattroutCounter;
unknown's avatar
unknown committed
1393
    sendReadAttrinfo(signal, RattroutCounter, regOperPtr);
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
    if (RlogSize > 0) {
      sendLogAttrinfo(signal, RlogSize, regOperPtr);
    }//if
    return 0;
  } else {
    return TUPKEY_abort(signal, 22);
  }//if
}//Dbtup::interpreterStartLab()

/* ---------------------------------------------------------------- */
/*       WHEN EXECUTION IS INTERPRETED WE NEED TO SEND SOME ATTRINFO*/
/*       BACK TO LQH FOR LOGGING AND SENDING TO BACKUP AND STANDBY  */
/*       NODES.                                                     */
/*       INPUT:  LOG_ATTRINFOPTR         WHERE TO FETCH DATA FROM   */
/*               TLOG_START              FIRST INDEX TO LOG         */
/*               TLOG_END                LAST INDEX + 1 TO LOG      */
/* ---------------------------------------------------------------- */
void Dbtup::sendLogAttrinfo(Signal* signal,
                            Uint32 TlogSize,
                            Operationrec *  const regOperPtr)

{
  Uint32 TbufferIndex = 0;
  signal->theData[0] = regOperPtr->userpointer;
  while (TlogSize > 22) {
    MEMCOPY_NO_WORDS(&signal->theData[3],
                     &clogMemBuffer[TbufferIndex],
                     22);
    EXECUTE_DIRECT(refToBlock(regOperPtr->userblockref), 
                   GSN_TUP_ATTRINFO, signal, 25);
    TbufferIndex += 22;
    TlogSize -= 22;
  }//while
  MEMCOPY_NO_WORDS(&signal->theData[3],
                   &clogMemBuffer[TbufferIndex],
                   TlogSize);
  EXECUTE_DIRECT(refToBlock(regOperPtr->userblockref), 
                 GSN_TUP_ATTRINFO, signal, 3 + TlogSize);
}//Dbtup::sendLogAttrinfo()

inline
Uint32 
brancher(Uint32 TheInstruction, Uint32 TprogramCounter)
{         
  Uint32 TbranchDirection = TheInstruction >> 31;
  Uint32 TbranchLength = (TheInstruction >> 16) & 0x7fff;
  TprogramCounter--;
  if (TbranchDirection == 1) {
    jam();
    /* ---------------------------------------------------------------- */
    /*       WE JUMP BACKWARDS.                                         */
    /* ---------------------------------------------------------------- */
    return (TprogramCounter - TbranchLength);
  } else {
    jam();
    /* ---------------------------------------------------------------- */
    /*       WE JUMP FORWARD.                                           */
    /* ---------------------------------------------------------------- */
    return (TprogramCounter + TbranchLength);
  }//if
}//brancher()

int Dbtup::interpreterNextLab(Signal* signal,
                              Page* const pagePtr,
                              Uint32 TupHeadOffset,
                              Uint32* logMemory,
                              Uint32* mainProgram,
                              Uint32 TmainProgLen,
                              Uint32* subroutineProg,
                              Uint32 TsubroutineLen,
			      Uint32 * tmpArea,
			      Uint32 tmpAreaSz)
{
  register Uint32* TcurrentProgram = mainProgram;
  register Uint32 TcurrentSize = TmainProgLen;
  register Uint32 RnoOfInstructions = 0;
  register Uint32 TprogramCounter = 0;
  register Uint32 theInstruction;
  register Uint32 theRegister;
  Uint32 TdataWritten = 0;
  Uint32 RstackPtr = 0;
1475 1476 1477 1478
  union {
    Uint32 TregMemBuffer[32];
    Uint64 Tdummy[16];
  };
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
  Uint32 TstackMemBuffer[32];

  /* ---------------------------------------------------------------- */
  // Initialise all 8 registers to contain the NULL value.
  // In this version we can handle 32 and 64 bit unsigned integers.
  // They are handled as 64 bit values. Thus the 32 most significant
  // bits are zeroed for 32 bit values.
  /* ---------------------------------------------------------------- */
  TregMemBuffer[0] = 0;
  TregMemBuffer[4] = 0;
  TregMemBuffer[8] = 0;
  TregMemBuffer[12] = 0;
  TregMemBuffer[16] = 0;
  TregMemBuffer[20] = 0;
  TregMemBuffer[24] = 0;
  TregMemBuffer[28] = 0;
  Uint32 tmpHabitant = ~0;

  while (RnoOfInstructions < 8000) {
    /* ---------------------------------------------------------------- */
    /* EXECUTE THE NEXT INTERPRETER INSTRUCTION.                        */
    /* ---------------------------------------------------------------- */
    RnoOfInstructions++;
    theInstruction = TcurrentProgram[TprogramCounter];
    theRegister = Interpreter::getReg1(theInstruction) << 2;
    if (TprogramCounter < TcurrentSize) {
      TprogramCounter++;
      switch (Interpreter::getOpCode(theInstruction)) {
      case Interpreter::READ_ATTR_INTO_REG:
	jam();
	/* ---------------------------------------------------------------- */
	// Read an attribute from the tuple into a register.
	// While reading an attribute we allow the attribute to be an array
	// as long as it fits in the 64 bits of the register.
	/* ---------------------------------------------------------------- */
	{
	  Uint32 theAttrinfo = theInstruction;
unknown's avatar
unknown committed
1516 1517 1518 1519 1520 1521 1522
	  int TnoDataRW= readAttributes(pagePtr,
					TupHeadOffset,
					&theAttrinfo,
					(Uint32)1,
					&TregMemBuffer[theRegister],
					(Uint32)3,
					false);
1523 1524 1525 1526 1527 1528
	  if (TnoDataRW == 2) {
	    /* ------------------------------------------------------------- */
	    // Two words read means that we get the instruction plus one 32 
	    // word read. Thus we set the register to be a 32 bit register.
	    /* ------------------------------------------------------------- */
	    TregMemBuffer[theRegister] = 0x50;
1529
            // arithmetic conversion if big-endian
1530
            * (Int64*)(TregMemBuffer+theRegister+2) = TregMemBuffer[theRegister+1];
1531 1532 1533 1534 1535 1536
	  } else if (TnoDataRW == 3) {
	    /* ------------------------------------------------------------- */
	    // Three words read means that we get the instruction plus two 
	    // 32 words read. Thus we set the register to be a 64 bit register.
	    /* ------------------------------------------------------------- */
	    TregMemBuffer[theRegister] = 0x60;
1537 1538
            TregMemBuffer[theRegister+3] = TregMemBuffer[theRegister+2];
            TregMemBuffer[theRegister+2] = TregMemBuffer[theRegister+1];
1539 1540 1541 1542 1543 1544
	  } else if (TnoDataRW == 1) {
	    /* ------------------------------------------------------------- */
	    // One word read means that we must have read a NULL value. We set
	    // the register to indicate a NULL value.
	    /* ------------------------------------------------------------- */
	    TregMemBuffer[theRegister] = 0;
unknown's avatar
unknown committed
1545
	    TregMemBuffer[theRegister + 2] = 0;
1546
	    TregMemBuffer[theRegister + 3] = 0;
unknown's avatar
unknown committed
1547
	  } else if (TnoDataRW == -1) {
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
	    jam();
	    tupkeyErrorLab(signal);
	    return -1;
	  } else {
	    /* ------------------------------------------------------------- */
	    // Any other return value from the read attribute here is not 
	    // allowed and will lead to a system crash.
	    /* ------------------------------------------------------------- */
	    ndbrequire(false);
	  }//if
	  break;
	}

      case Interpreter::WRITE_ATTR_FROM_REG:
	jam();
	{
	  Uint32 TattrId = theInstruction >> 16;
	  Uint32 TattrDescrIndex = tabptr.p->tabDescriptor +
	    (TattrId << ZAD_LOG_SIZE);
	  Uint32 TattrDesc1 = tableDescriptor[TattrDescrIndex].tabDescr;
	  Uint32 TregType = TregMemBuffer[theRegister];

	  /* --------------------------------------------------------------- */
	  // Calculate the number of words of this attribute.
	  // We allow writes into arrays as long as they fit into the 64 bit
	  // register size.
	  /* --------------------------------------------------------------- */
1575
          Uint32 TattrNoOfWords = AttributeDescriptor::getSizeInWords(TattrDesc1);
1576 1577 1578 1579 1580
	  Uint32 Toptype = operPtr.p->optype;

	  Uint32 TdataForUpdate[3];
	  Uint32 Tlen;

1581 1582
	  AttributeHeader ah(TattrId, TattrNoOfWords);
          TdataForUpdate[0] = ah.m_value;
1583 1584
	  TdataForUpdate[1] = TregMemBuffer[theRegister + 2];
	  TdataForUpdate[2] = TregMemBuffer[theRegister + 3];
1585 1586 1587
	  Tlen = TattrNoOfWords + 1;
	  if (Toptype == ZUPDATE) {
	    if (TattrNoOfWords <= 2) {
1588 1589 1590 1591 1592
              if (TattrNoOfWords == 1) {
                // arithmetic conversion if big-endian
                TdataForUpdate[1] = *(Int64*)&TregMemBuffer[theRegister + 2];
                TdataForUpdate[2] = 0;
              }
1593 1594 1595 1596 1597
	      if (TregType == 0) {
		/* --------------------------------------------------------- */
		// Write a NULL value into the attribute
		/* --------------------------------------------------------- */
		ah.setNULL();
1598
                TdataForUpdate[0] = ah.m_value;
1599 1600
		Tlen = 1;
	      }//if
unknown's avatar
unknown committed
1601 1602 1603 1604 1605
	      int TnoDataRW= updateAttributes(pagePtr,
					      TupHeadOffset,
					      &TdataForUpdate[0],
					      Tlen);
	      if (TnoDataRW != -1) {
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
		/* --------------------------------------------------------- */
		// Write the written data also into the log buffer so that it 
		// will be logged.
		/* --------------------------------------------------------- */
		logMemory[TdataWritten + 0] = TdataForUpdate[0];
		logMemory[TdataWritten + 1] = TdataForUpdate[1];
		logMemory[TdataWritten + 2] = TdataForUpdate[2];
		TdataWritten += Tlen;
	      } else {
		tupkeyErrorLab(signal);
		return -1;
	      }//if
	    } else {
	      return TUPKEY_abort(signal, 15);
	    }//if
	  } else {
	    return TUPKEY_abort(signal, 16);
	  }//if
	  break;
	}

      case Interpreter::LOAD_CONST_NULL:
	jam();
	TregMemBuffer[theRegister] = 0;	/* NULL INDICATOR */
	break;

      case Interpreter::LOAD_CONST16:
	jam();
	TregMemBuffer[theRegister] = 0x50;	/* 32 BIT UNSIGNED CONSTANT */
1635
	* (Int64*)(TregMemBuffer+theRegister+2) = theInstruction >> 16;
1636 1637 1638 1639 1640
	break;

      case Interpreter::LOAD_CONST32:
	jam();
	TregMemBuffer[theRegister] = 0x50;	/* 32 BIT UNSIGNED CONSTANT */
1641
	* (Int64*)(TregMemBuffer+theRegister+2) = * 
unknown's avatar
unknown committed
1642
	  (TcurrentProgram+TprogramCounter);
1643 1644 1645 1646 1647 1648
	TprogramCounter++;
	break;

      case Interpreter::LOAD_CONST64:
	jam();
	TregMemBuffer[theRegister] = 0x60;	/* 64 BIT UNSIGNED CONSTANT */
1649 1650
        TregMemBuffer[theRegister + 2 ] = * (TcurrentProgram + TprogramCounter++);
        TregMemBuffer[theRegister + 3 ] = * (TcurrentProgram + TprogramCounter++);
1651 1652 1653 1654 1655 1656 1657 1658 1659
	break;

      case Interpreter::ADD_REG_REG:
	jam();
	{
	  Uint32 TrightRegister = Interpreter::getReg2(theInstruction) << 2;
	  Uint32 TdestRegister = Interpreter::getReg3(theInstruction) << 2;

	  Uint32 TrightType = TregMemBuffer[TrightRegister];
1660
	  Int64 Tright0 = * (Int64*)(TregMemBuffer + TrightRegister + 2);
unknown's avatar
unknown committed
1661
	  
1662 1663

	  Uint32 TleftType = TregMemBuffer[theRegister];
1664
	  Int64 Tleft0 = * (Int64*)(TregMemBuffer + theRegister + 2);
1665 1666
         
	  if ((TleftType | TrightType) != 0) {
unknown's avatar
unknown committed
1667
	    Uint64 Tdest0 = Tleft0 + Tright0;
1668
	    * (Int64*)(TregMemBuffer+TdestRegister+2) = Tdest0;
unknown's avatar
unknown committed
1669
	    TregMemBuffer[TdestRegister] = 0x60;
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
	  } else {
	    return TUPKEY_abort(signal, 20);
	  }
	  break;
	}

      case Interpreter::SUB_REG_REG:
	jam();
	{
	  Uint32 TrightRegister = Interpreter::getReg2(theInstruction) << 2;
	  Uint32 TdestRegister = Interpreter::getReg3(theInstruction) << 2;

	  Uint32 TrightType = TregMemBuffer[TrightRegister];
1683
	  Int64 Tright0 = * (Int64*)(TregMemBuffer + TrightRegister + 2);
unknown's avatar
unknown committed
1684
	  
1685
	  Uint32 TleftType = TregMemBuffer[theRegister];
1686
	  Int64 Tleft0 = * (Int64*)(TregMemBuffer + theRegister + 2);
1687 1688
         
	  if ((TleftType | TrightType) != 0) {
unknown's avatar
unknown committed
1689
	    Int64 Tdest0 = Tleft0 - Tright0;
1690
	    * (Int64*)(TregMemBuffer+TdestRegister+2) = Tdest0;
unknown's avatar
unknown committed
1691
	    TregMemBuffer[TdestRegister] = 0x60;
1692
	  } else {
unknown's avatar
unknown committed
1693 1694
	    return TUPKEY_abort(signal, 20);
	  }
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
	  break;
	}

      case Interpreter::BRANCH:
	TprogramCounter = brancher(theInstruction, TprogramCounter);
	break;

      case Interpreter::BRANCH_REG_EQ_NULL:
	if (TregMemBuffer[theRegister] != 0) {
	  jam();
	  continue;
	} else {
	  jam();
	  TprogramCounter = brancher(theInstruction, TprogramCounter);
	}//if
	break;

      case Interpreter::BRANCH_REG_NE_NULL:
	if (TregMemBuffer[theRegister] == 0) {
	  jam();
	  continue;
	} else {
	  jam();
	  TprogramCounter = brancher(theInstruction, TprogramCounter);
	}//if
	break;


      case Interpreter::BRANCH_EQ_REG_REG:
	{
	  Uint32 TrightRegister = Interpreter::getReg2(theInstruction) << 2;

	  Uint32 TleftType = TregMemBuffer[theRegister];
1728 1729
	  Uint32 Tleft0    = TregMemBuffer[theRegister + 2];
	  Uint32 Tleft1    = TregMemBuffer[theRegister + 3];
1730 1731

	  Uint32 TrightType = TregMemBuffer[TrightRegister];
1732 1733
	  Uint32 Tright0 = TregMemBuffer[TrightRegister + 2];
	  Uint32 Tright1 = TregMemBuffer[TrightRegister + 3];
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
	  if ((TrightType | TleftType) != 0) {
	    jam();
	    if ((Tleft0 == Tright0) && (Tleft1 == Tright1)) {
	      TprogramCounter = brancher(theInstruction, TprogramCounter);
	    }//if
	  } else {
	    return TUPKEY_abort(signal, 23);
	  }//if
	  break;
	}

      case Interpreter::BRANCH_NE_REG_REG:
	{
	  Uint32 TrightRegister = Interpreter::getReg2(theInstruction) << 2;

	  Uint32 TleftType = TregMemBuffer[theRegister];
1750 1751
	  Uint32 Tleft0    = TregMemBuffer[theRegister + 2];
	  Uint32 Tleft1    = TregMemBuffer[theRegister + 3];
1752 1753

	  Uint32 TrightType = TregMemBuffer[TrightRegister];
1754 1755
	  Uint32 Tright0 = TregMemBuffer[TrightRegister + 2];
	  Uint32 Tright1 = TregMemBuffer[TrightRegister + 3];
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
	  if ((TrightType | TleftType) != 0) {
	    jam();
	    if ((Tleft0 != Tright0) || (Tleft1 != Tright1)) {
	      TprogramCounter = brancher(theInstruction, TprogramCounter);
	    }//if
	  } else {
	    return TUPKEY_abort(signal, 24);
	  }//if
	  break;
	}

      case Interpreter::BRANCH_LT_REG_REG:
	{
	  Uint32 TrightRegister = Interpreter::getReg2(theInstruction) << 2;

unknown's avatar
unknown committed
1771
	  Uint32 TrightType = TregMemBuffer[TrightRegister];
1772
	  Int64 Tright0 = * (Int64*)(TregMemBuffer + TrightRegister + 2);
unknown's avatar
unknown committed
1773
	  
1774
	  Uint32 TleftType = TregMemBuffer[theRegister];
1775
	  Int64 Tleft0 = * (Int64*)(TregMemBuffer + theRegister + 2);
unknown's avatar
unknown committed
1776
         
1777 1778 1779

	  if ((TrightType | TleftType) != 0) {
	    jam();
unknown's avatar
unknown committed
1780
	    if (Tleft0 < Tright0) {
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	      TprogramCounter = brancher(theInstruction, TprogramCounter);
	    }//if
	  } else {
	    return TUPKEY_abort(signal, 24);
	  }//if
	  break;
	}

      case Interpreter::BRANCH_LE_REG_REG:
	{
	  Uint32 TrightRegister = Interpreter::getReg2(theInstruction) << 2;

unknown's avatar
unknown committed
1793
	  Uint32 TrightType = TregMemBuffer[TrightRegister];
1794
	  Int64 Tright0 = * (Int64*)(TregMemBuffer + TrightRegister + 2);
unknown's avatar
unknown committed
1795
	  
1796
	  Uint32 TleftType = TregMemBuffer[theRegister];
1797
	  Int64 Tleft0 = * (Int64*)(TregMemBuffer + theRegister + 2);
unknown's avatar
unknown committed
1798
	  
1799 1800 1801

	  if ((TrightType | TleftType) != 0) {
	    jam();
unknown's avatar
unknown committed
1802
	    if (Tleft0 <= Tright0) {
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	      TprogramCounter = brancher(theInstruction, TprogramCounter);
	    }//if
	  } else {
	    return TUPKEY_abort(signal, 26);
	  }//if
	  break;
	}

      case Interpreter::BRANCH_GT_REG_REG:
	{
	  Uint32 TrightRegister = Interpreter::getReg2(theInstruction) << 2;

unknown's avatar
unknown committed
1815
	  Uint32 TrightType = TregMemBuffer[TrightRegister];
1816
	  Int64 Tright0 = * (Int64*)(TregMemBuffer + TrightRegister + 2);
unknown's avatar
unknown committed
1817
	  
1818
	  Uint32 TleftType = TregMemBuffer[theRegister];
1819
	  Int64 Tleft0 = * (Int64*)(TregMemBuffer + theRegister + 2);
unknown's avatar
unknown committed
1820
	  
1821 1822 1823

	  if ((TrightType | TleftType) != 0) {
	    jam();
unknown's avatar
unknown committed
1824
	    if (Tleft0 > Tright0){
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	      TprogramCounter = brancher(theInstruction, TprogramCounter);
	    }//if
	  } else {
	    return TUPKEY_abort(signal, 27);
	  }//if
	  break;
	}

      case Interpreter::BRANCH_GE_REG_REG:
	{
	  Uint32 TrightRegister = Interpreter::getReg2(theInstruction) << 2;

unknown's avatar
unknown committed
1837
	  Uint32 TrightType = TregMemBuffer[TrightRegister];
1838
	  Int64 Tright0 = * (Int64*)(TregMemBuffer + TrightRegister + 2);
unknown's avatar
unknown committed
1839
	  
1840
	  Uint32 TleftType = TregMemBuffer[theRegister];
1841
	  Int64 Tleft0 = * (Int64*)(TregMemBuffer + theRegister + 2);
unknown's avatar
unknown committed
1842
	  
1843 1844 1845

	  if ((TrightType | TleftType) != 0) {
	    jam();
unknown's avatar
unknown committed
1846
	    if (Tleft0 >= Tright0){
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	      TprogramCounter = brancher(theInstruction, TprogramCounter);
	    }//if
	  } else {
	    return TUPKEY_abort(signal, 28);
	  }//if
	  break;
	}

      case Interpreter::BRANCH_ATTR_OP_ARG:{
	jam();
	Uint32 cond = Interpreter::getBinaryCondition(theInstruction);
	Uint32 ins2 = TcurrentProgram[TprogramCounter];
	Uint32 attrId = Interpreter::getBranchCol_AttrId(ins2) << 16;
	Uint32 argLen = Interpreter::getBranchCol_Len(ins2);

	if(tmpHabitant != attrId){
	  Int32 TnoDataR = readAttributes(pagePtr,
					  TupHeadOffset,
					  &attrId, 1,
1866 1867
					  tmpArea, tmpAreaSz,
                                          false);
1868 1869 1870 1871 1872 1873 1874 1875 1876
	  
	  if (TnoDataR == -1) {
	    jam();
	    tupkeyErrorLab(signal);
	    return -1;
	  }
	  tmpHabitant = attrId;
	}

1877
        // get type
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
	attrId >>= 16;
	Uint32 TattrDescrIndex = tabptr.p->tabDescriptor +
	  (attrId << ZAD_LOG_SIZE);
	Uint32 TattrDesc1 = tableDescriptor[TattrDescrIndex].tabDescr;
	Uint32 TattrDesc2 = tableDescriptor[TattrDescrIndex+1].tabDescr;
	Uint32 typeId = AttributeDescriptor::getType(TattrDesc1);
	void * cs = 0;
	if(AttributeOffset::getCharsetFlag(TattrDesc2))
	{
	  Uint32 pos = AttributeOffset::getCharsetPos(TattrDesc2);
	  cs = tabptr.p->charsetArray[pos];
	}
	const NdbSqlUtil::Type& sqlType = NdbSqlUtil::getType(typeId);
1891 1892 1893 1894 1895 1896 1897 1898

        // get data
	AttributeHeader ah(tmpArea[0]);
        const char* s1 = (char*)&tmpArea[1];
        const char* s2 = (char*)&TcurrentProgram[TprogramCounter+1];
        // fixed length in 5.0
	Uint32 attrLen = AttributeDescriptor::getSizeInBytes(TattrDesc1);

1899 1900
	bool r1_null = ah.isNULL();
	bool r2_null = argLen == 0;
1901
	int res1;
1902 1903 1904 1905
        if (cond != Interpreter::LIKE &&
            cond != Interpreter::NOT_LIKE) {
          if (r1_null || r2_null) {
            // NULL==NULL and NULL<not-NULL
1906
            res1 = r1_null && r2_null ? 0 : r1_null ? -1 : 1;
1907
          } else {
unknown's avatar
unknown committed
1908 1909 1910 1911 1912
	    jam();
	    if (unlikely(sqlType.m_cmp == 0))
	    {
	      return TUPKEY_abort(signal, 40);
	    }
1913
            res1 = (*sqlType.m_cmp)(cs, s1, attrLen, s2, argLen, true);
1914 1915 1916 1917
          }
	} else {
          if (r1_null || r2_null) {
            // NULL like NULL is true (has no practical use)
1918
            res1 =  r1_null && r2_null ? 0 : -1;
1919
          } else {
unknown's avatar
unknown committed
1920 1921 1922 1923 1924
	    jam();
	    if (unlikely(sqlType.m_like == 0))
	    {
	      return TUPKEY_abort(signal, 40);
	    }
1925
            res1 = (*sqlType.m_like)(cs, s1, attrLen, s2, argLen);
1926
          }
1927 1928
        }

1929
        int res = 0;
1930 1931
        switch ((Interpreter::BinaryCondition)cond) {
        case Interpreter::EQ:
1932
          res = (res1 == 0);
1933 1934
          break;
        case Interpreter::NE:
1935
          res = (res1 != 0);
1936 1937 1938
          break;
        // note the condition is backwards
        case Interpreter::LT:
1939
          res = (res1 > 0);
1940 1941
          break;
        case Interpreter::LE:
1942
          res = (res1 >= 0);
1943 1944
          break;
        case Interpreter::GT:
1945
          res = (res1 < 0);
1946 1947
          break;
        case Interpreter::GE:
1948
          res = (res1 <= 0);
1949 1950
          break;
        case Interpreter::LIKE:
1951
          res = (res1 == 0);
1952 1953
          break;
        case Interpreter::NOT_LIKE:
1954
          res = (res1 == 1);
1955
          break;
1956
	  // XXX handle invalid value
1957 1958
        }
#ifdef TRACE_INTERPRETER
1959 1960 1961
	ndbout_c("cond=%u attr(%d)='%.*s'(%d) str='%.*s'(%d) res1=%d res=%d",
		 cond, attrId >> 16,
                 attrLen, s1, attrLen, argLen, s2, argLen, res1, res);
1962 1963 1964
#endif
        if (res)
          TprogramCounter = brancher(theInstruction, TprogramCounter);
1965 1966 1967
        else 
	{
          Uint32 tmp = ((argLen + 3) >> 2) + 1;
1968 1969 1970 1971
          TprogramCounter += tmp;
        }
	break;
      }
1972
	
1973 1974 1975 1976 1977 1978 1979 1980 1981
      case Interpreter::BRANCH_ATTR_EQ_NULL:{
	jam();
	Uint32 ins2 = TcurrentProgram[TprogramCounter];
	Uint32 attrId = Interpreter::getBranchCol_AttrId(ins2) << 16;
	
	if(tmpHabitant != attrId){
	  Int32 TnoDataR = readAttributes(pagePtr,
					  TupHeadOffset,
					  &attrId, 1,
1982 1983
					  tmpArea, tmpAreaSz,
                                          false);
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	  
	  if (TnoDataR == -1) {
	    jam();
	    tupkeyErrorLab(signal);
	    return -1;
	  }
	  tmpHabitant = attrId;
	}
	
	AttributeHeader ah(tmpArea[0]);
	if(ah.isNULL()){
	  TprogramCounter = brancher(theInstruction, TprogramCounter);
	} else {
	  TprogramCounter ++;
	}
	break;
      }

      case Interpreter::BRANCH_ATTR_NE_NULL:{
	jam();
	Uint32 ins2 = TcurrentProgram[TprogramCounter];
	Uint32 attrId = Interpreter::getBranchCol_AttrId(ins2) << 16;
	
	if(tmpHabitant != attrId){
	  Int32 TnoDataR = readAttributes(pagePtr,
					  TupHeadOffset,
					  &attrId, 1,
2011 2012
					  tmpArea, tmpAreaSz,
                                          false);
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
	  
	  if (TnoDataR == -1) {
	    jam();
	    tupkeyErrorLab(signal);
	    return -1;
	  }
	  tmpHabitant = attrId;
	}
	
	AttributeHeader ah(tmpArea[0]);
	if(ah.isNULL()){
	  TprogramCounter ++;
	} else {
	  TprogramCounter = brancher(theInstruction, TprogramCounter);
	}
	break;
      }
	
      case Interpreter::EXIT_OK:
	jam();
#ifdef TRACE_INTERPRETER
	ndbout_c(" - exit_ok");
#endif
	return TdataWritten;
2037 2038 2039

      case Interpreter::EXIT_OK_LAST:
	jam();
unknown's avatar
unknown committed
2040
#ifdef TRACE_INTERPRETER
2041 2042 2043 2044
	ndbout_c(" - exit_ok_last");
#endif
	operPtr.p->lastRow = 1;
	return TdataWritten;
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
	
      case Interpreter::EXIT_REFUSE:
	jam();
#ifdef TRACE_INTERPRETER
	ndbout_c(" - exit_nok");
#endif
	terrorCode = theInstruction >> 16;
	return TUPKEY_abort(signal, 29);

      case Interpreter::CALL:
	jam();
	RstackPtr++;
	if (RstackPtr < 32) {
	  TstackMemBuffer[RstackPtr] = TprogramCounter + 1;
	  TprogramCounter = theInstruction >> 16;
	  if (TprogramCounter < TsubroutineLen) {
	    TcurrentProgram = subroutineProg;
	    TcurrentSize = TsubroutineLen;
	  } else {
	    return TUPKEY_abort(signal, 30);
	  }//if
	} else {
	  return TUPKEY_abort(signal, 31);
	}//if
	break;

      case Interpreter::RETURN:
	jam();
	if (RstackPtr > 0) {
	  TprogramCounter = TstackMemBuffer[RstackPtr];
	  RstackPtr--;
	  if (RstackPtr == 0) {
	    jam();
	    /* ------------------------------------------------------------- */
	    // We are back to the main program.
	    /* ------------------------------------------------------------- */
	    TcurrentProgram = mainProgram;
	    TcurrentSize = TmainProgLen;
	  }//if
	} else {
	  return TUPKEY_abort(signal, 32);
	}//if
	break;

      default:
	return TUPKEY_abort(signal, 33);
      }//switch
    } else {
      return TUPKEY_abort(signal, 34);
    }//if
  }//while
  return TUPKEY_abort(signal, 35);
}//Dbtup::interpreterNextLab()