opt_range.cc 272 KB
Newer Older
unknown's avatar
unknown committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */

unknown's avatar
unknown committed
17 18 19 20 21
/*
  TODO:
  Fix that MAYBE_KEY are stored in the tree so that we can detect use
  of full hash keys for queries like:

unknown's avatar
unknown committed
22 23
  select s.id, kws.keyword_id from sites as s,kws where s.id=kws.site_id and kws.keyword_id in (204,205);

unknown's avatar
unknown committed
24 25
*/

26 27
/*
  Classes in this file are used in the following way:
unknown's avatar
unknown committed
28 29
  1. For a selection condition a tree of SEL_IMERGE/SEL_TREE/SEL_ARG objects
     is created. #of rows in table and index statistics are ignored at this
30
     step.
unknown's avatar
unknown committed
31 32 33 34
  2. Created SEL_TREE and index stats data are used to construct a
     TABLE_READ_PLAN-derived object (TRP_*). Several 'candidate' table read
     plans may be created.
  3. The least expensive table read plan is used to create a tree of
35 36 37 38
     QUICK_SELECT_I-derived objects which are later used for row retrieval.
     QUICK_RANGEs are also created in this step.
*/

39
#ifdef USE_PRAGMA_IMPLEMENTATION
unknown's avatar
unknown committed
40 41 42 43 44 45 46 47 48 49 50 51
#pragma implementation				// gcc: Class implementation
#endif

#include "mysql_priv.h"
#include <m_ctype.h>
#include "sql_select.h"

#ifndef EXTRA_DEBUG
#define test_rb_tree(A,B) {}
#define test_use_count(A) {}
#endif

52
/*
53
  Convert double value to #rows. Currently this does floor(), and we
54 55
  might consider using round() instead.
*/
56
#define double2rows(x) ((ha_rows)(x))
57

unknown's avatar
unknown committed
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int sel_cmp(Field *f,char *a,char *b,uint8 a_flag,uint8 b_flag);

static char is_null_string[2]= {1,0};

class SEL_ARG :public Sql_alloc
{
public:
  uint8 min_flag,max_flag,maybe_flag;
  uint8 part;					// Which key part
  uint8 maybe_null;
  uint16 elements;				// Elements in tree
  ulong use_count;				// use of this sub_tree
  Field *field;
  char *min_value,*max_value;			// Pointer to range

  SEL_ARG *left,*right,*next,*prev,*parent,*next_key_part;
  enum leaf_color { BLACK,RED } color;
  enum Type { IMPOSSIBLE, MAYBE, MAYBE_KEY, KEY_RANGE } type;

  SEL_ARG() {}
  SEL_ARG(SEL_ARG &);
  SEL_ARG(Field *,const char *,const char *);
  SEL_ARG(Field *field, uint8 part, char *min_value, char *max_value,
	  uint8 min_flag, uint8 max_flag, uint8 maybe_flag);
  SEL_ARG(enum Type type_arg)
unknown's avatar
unknown committed
83 84 85
    :elements(1),use_count(1),left(0),next_key_part(0),color(BLACK),
     type(type_arg)
  {}
unknown's avatar
unknown committed
86 87
  inline bool is_same(SEL_ARG *arg)
  {
88
    if (type != arg->type || part != arg->part)
unknown's avatar
unknown committed
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
      return 0;
    if (type != KEY_RANGE)
      return 1;
    return cmp_min_to_min(arg) == 0 && cmp_max_to_max(arg) == 0;
  }
  inline void merge_flags(SEL_ARG *arg) { maybe_flag|=arg->maybe_flag; }
  inline void maybe_smaller() { maybe_flag=1; }
  inline int cmp_min_to_min(SEL_ARG* arg)
  {
    return sel_cmp(field,min_value, arg->min_value, min_flag, arg->min_flag);
  }
  inline int cmp_min_to_max(SEL_ARG* arg)
  {
    return sel_cmp(field,min_value, arg->max_value, min_flag, arg->max_flag);
  }
  inline int cmp_max_to_max(SEL_ARG* arg)
  {
    return sel_cmp(field,max_value, arg->max_value, max_flag, arg->max_flag);
  }
  inline int cmp_max_to_min(SEL_ARG* arg)
  {
    return sel_cmp(field,max_value, arg->min_value, max_flag, arg->min_flag);
  }
  SEL_ARG *clone_and(SEL_ARG* arg)
  {						// Get overlapping range
    char *new_min,*new_max;
    uint8 flag_min,flag_max;
    if (cmp_min_to_min(arg) >= 0)
    {
      new_min=min_value; flag_min=min_flag;
    }
    else
    {
      new_min=arg->min_value; flag_min=arg->min_flag; /* purecov: deadcode */
    }
    if (cmp_max_to_max(arg) <= 0)
    {
      new_max=max_value; flag_max=max_flag;
    }
    else
    {
      new_max=arg->max_value; flag_max=arg->max_flag;
    }
    return new SEL_ARG(field, part, new_min, new_max, flag_min, flag_max,
		       test(maybe_flag && arg->maybe_flag));
  }
  SEL_ARG *clone_first(SEL_ARG *arg)
  {						// min <= X < arg->min
    return new SEL_ARG(field,part, min_value, arg->min_value,
		       min_flag, arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX,
		       maybe_flag | arg->maybe_flag);
  }
  SEL_ARG *clone_last(SEL_ARG *arg)
  {						// min <= X <= key_max
    return new SEL_ARG(field, part, min_value, arg->max_value,
		       min_flag, arg->max_flag, maybe_flag | arg->maybe_flag);
  }
  SEL_ARG *clone(SEL_ARG *new_parent,SEL_ARG **next);

  bool copy_min(SEL_ARG* arg)
  {						// Get overlapping range
    if (cmp_min_to_min(arg) > 0)
    {
      min_value=arg->min_value; min_flag=arg->min_flag;
      if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
	  (NO_MAX_RANGE | NO_MIN_RANGE))
	return 1;				// Full range
    }
    maybe_flag|=arg->maybe_flag;
    return 0;
  }
  bool copy_max(SEL_ARG* arg)
  {						// Get overlapping range
    if (cmp_max_to_max(arg) <= 0)
    {
      max_value=arg->max_value; max_flag=arg->max_flag;
      if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
	  (NO_MAX_RANGE | NO_MIN_RANGE))
	return 1;				// Full range
    }
    maybe_flag|=arg->maybe_flag;
    return 0;
  }

  void copy_min_to_min(SEL_ARG *arg)
  {
    min_value=arg->min_value; min_flag=arg->min_flag;
  }
  void copy_min_to_max(SEL_ARG *arg)
  {
    max_value=arg->min_value;
    max_flag=arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX;
  }
  void copy_max_to_min(SEL_ARG *arg)
  {
    min_value=arg->max_value;
    min_flag=arg->max_flag & NEAR_MAX ? 0 : NEAR_MIN;
  }
187
  void store_min(uint length,char **min_key,uint min_key_flag)
unknown's avatar
unknown committed
188
  {
unknown's avatar
unknown committed
189 190 191
    if ((min_flag & GEOM_FLAG) ||
        (!(min_flag & NO_MIN_RANGE) &&
	!(min_key_flag & (NO_MIN_RANGE | NEAR_MIN))))
unknown's avatar
unknown committed
192 193 194 195
    {
      if (maybe_null && *min_value)
      {
	**min_key=1;
unknown's avatar
unknown committed
196
	bzero(*min_key+1,length-1);
unknown's avatar
unknown committed
197 198
      }
      else
unknown's avatar
unknown committed
199 200
	memcpy(*min_key,min_value,length);
      (*min_key)+= length;
unknown's avatar
unknown committed
201
    }
202
  }
unknown's avatar
unknown committed
203 204 205
  void store(uint length,char **min_key,uint min_key_flag,
	     char **max_key, uint max_key_flag)
  {
206
    store_min(length, min_key, min_key_flag);
unknown's avatar
unknown committed
207 208 209 210 211 212
    if (!(max_flag & NO_MAX_RANGE) &&
	!(max_key_flag & (NO_MAX_RANGE | NEAR_MAX)))
    {
      if (maybe_null && *max_value)
      {
	**max_key=1;
unknown's avatar
unknown committed
213
	bzero(*max_key+1,length-1);
unknown's avatar
unknown committed
214 215
      }
      else
unknown's avatar
unknown committed
216 217
	memcpy(*max_key,max_value,length);
      (*max_key)+= length;
unknown's avatar
unknown committed
218 219 220 221 222 223
    }
  }

  void store_min_key(KEY_PART *key,char **range_key, uint *range_key_flag)
  {
    SEL_ARG *key_tree= first();
unknown's avatar
unknown committed
224
    key_tree->store(key[key_tree->part].store_length,
unknown's avatar
unknown committed
225 226 227 228 229 230 231 232 233 234 235 236
		    range_key,*range_key_flag,range_key,NO_MAX_RANGE);
    *range_key_flag|= key_tree->min_flag;
    if (key_tree->next_key_part &&
	key_tree->next_key_part->part == key_tree->part+1 &&
	!(*range_key_flag & (NO_MIN_RANGE | NEAR_MIN)) &&
	key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
      key_tree->next_key_part->store_min_key(key,range_key, range_key_flag);
  }

  void store_max_key(KEY_PART *key,char **range_key, uint *range_key_flag)
  {
    SEL_ARG *key_tree= last();
unknown's avatar
unknown committed
237
    key_tree->store(key[key_tree->part].store_length,
unknown's avatar
unknown committed
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
		    range_key, NO_MIN_RANGE, range_key,*range_key_flag);
    (*range_key_flag)|= key_tree->max_flag;
    if (key_tree->next_key_part &&
	key_tree->next_key_part->part == key_tree->part+1 &&
	!(*range_key_flag & (NO_MAX_RANGE | NEAR_MAX)) &&
	key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
      key_tree->next_key_part->store_max_key(key,range_key, range_key_flag);
  }

  SEL_ARG *insert(SEL_ARG *key);
  SEL_ARG *tree_delete(SEL_ARG *key);
  SEL_ARG *find_range(SEL_ARG *key);
  SEL_ARG *rb_insert(SEL_ARG *leaf);
  friend SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key, SEL_ARG *par);
#ifdef EXTRA_DEBUG
  friend int test_rb_tree(SEL_ARG *element,SEL_ARG *parent);
  void test_use_count(SEL_ARG *root);
#endif
  SEL_ARG *first();
  SEL_ARG *last();
  void make_root();
  inline bool simple_key()
  {
    return !next_key_part && elements == 1;
  }
  void increment_use_count(long count)
  {
    if (next_key_part)
    {
      next_key_part->use_count+=count;
      count*= (next_key_part->use_count-count);
      for (SEL_ARG *pos=next_key_part->first(); pos ; pos=pos->next)
	if (pos->next_key_part)
	  pos->increment_use_count(count);
    }
  }
  void free_tree()
  {
    for (SEL_ARG *pos=first(); pos ; pos=pos->next)
      if (pos->next_key_part)
      {
	pos->next_key_part->use_count--;
	pos->next_key_part->free_tree();
      }
  }

  inline SEL_ARG **parent_ptr()
  {
    return parent->left == this ? &parent->left : &parent->right;
  }
  SEL_ARG *clone_tree();
};

unknown's avatar
unknown committed
291
class SEL_IMERGE;
unknown's avatar
unknown committed
292

293

unknown's avatar
unknown committed
294 295 296 297 298
class SEL_TREE :public Sql_alloc
{
public:
  enum Type { IMPOSSIBLE, ALWAYS, MAYBE, KEY, KEY_SMALLER } type;
  SEL_TREE(enum Type type_arg) :type(type_arg) {}
unknown's avatar
unknown committed
299
  SEL_TREE() :type(KEY)
unknown's avatar
unknown committed
300
  {
unknown's avatar
unknown committed
301
    keys_map.clear_all();
unknown's avatar
unknown committed
302 303
    bzero((char*) keys,sizeof(keys));
  }
unknown's avatar
unknown committed
304
  SEL_ARG *keys[MAX_KEY];
305 306
  key_map keys_map;        /* bitmask of non-NULL elements in keys */

unknown's avatar
unknown committed
307 308
  /*
    Possible ways to read rows using index_merge. The list is non-empty only
309 310 311
    if type==KEY. Currently can be non empty only if keys_map.is_clear_all().
  */
  List<SEL_IMERGE> merges;
unknown's avatar
unknown committed
312

313 314
  /* The members below are filled/used only after get_mm_tree is done */
  key_map ror_scans_map;   /* bitmask of ROR scan-able elements in keys */
315
  uint    n_ror_scans;     /* number of set bits in ror_scans_map */
316 317 318 319

  struct st_ror_scan_info **ror_scans;     /* list of ROR key scans */
  struct st_ror_scan_info **ror_scans_end; /* last ROR scan */
  /* Note that #records for each key scan is stored in table->quick_rows */
unknown's avatar
unknown committed
320 321 322 323
};


typedef struct st_qsel_param {
324
  THD	*thd;
unknown's avatar
unknown committed
325
  TABLE *table;
326 327
  KEY_PART *key_parts,*key_parts_end;
  KEY_PART *key[MAX_KEY]; /* First key parts of keys used in the query */
328
  MEM_ROOT *mem_root, *old_root;
329
  table_map prev_tables,read_tables,current_table;
330
  uint baseflag, max_key_part, range_count;
unknown's avatar
unknown committed
331

332 333 334
  uint keys; /* number of keys used in the query */

  /* used_key_no -> table_key_no translation table */
unknown's avatar
unknown committed
335
  uint real_keynr[MAX_KEY];
336

unknown's avatar
unknown committed
337 338
  char min_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH],
    max_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH];
339
  bool quick;				// Don't calulate possible keys
340
  COND *cond;
341

unknown's avatar
unknown committed
342
  uint fields_bitmap_size;
343 344 345 346
  MY_BITMAP needed_fields;    /* bitmask of fields needed by the query */

  key_map *needed_reg;        /* ptr to SQL_SELECT::needed_reg */

347 348
  uint *imerge_cost_buff;     /* buffer for index_merge cost estimates */
  uint imerge_cost_buff_size; /* size of the buffer */
unknown's avatar
unknown committed
349 350 351

 /* TRUE if last checked tree->key can be used for ROR-scan */
  bool is_ror_scan;
unknown's avatar
unknown committed
352 353
} PARAM;

354 355 356 357 358
class TABLE_READ_PLAN;
  class TRP_RANGE;
  class TRP_ROR_INTERSECT;
  class TRP_ROR_UNION;
  class TRP_ROR_INDEX_MERGE;
359
  class TRP_GROUP_MIN_MAX;
360 361 362

struct st_ror_scan_info;

363
static SEL_TREE * get_mm_parts(PARAM *param,COND *cond_func,Field *field,
unknown's avatar
unknown committed
364 365
			       Item_func::Functype type,Item *value,
			       Item_result cmp_type);
366 367
static SEL_ARG *get_mm_leaf(PARAM *param,COND *cond_func,Field *field,
			    KEY_PART *key_part,
unknown's avatar
unknown committed
368 369
			    Item_func::Functype type,Item *value);
static SEL_TREE *get_mm_tree(PARAM *param,COND *cond);
370 371

static bool is_key_scan_ror(PARAM *param, uint keynr, uint8 nparts);
unknown's avatar
unknown committed
372 373 374 375 376
static ha_rows check_quick_select(PARAM *param,uint index,SEL_ARG *key_tree);
static ha_rows check_quick_keys(PARAM *param,uint index,SEL_ARG *key_tree,
				char *min_key,uint min_key_flag,
				char *max_key, uint max_key_flag);

unknown's avatar
unknown committed
377
QUICK_RANGE_SELECT *get_quick_select(PARAM *param,uint index,
unknown's avatar
unknown committed
378
                                     SEL_ARG *key_tree,
unknown's avatar
unknown committed
379
                                     MEM_ROOT *alloc = NULL);
380
static TRP_RANGE *get_key_scans_params(PARAM *param, SEL_TREE *tree,
unknown's avatar
unknown committed
381
                                       bool index_read_must_be_used,
382 383 384 385 386 387
                                       double read_time);
static
TRP_ROR_INTERSECT *get_best_ror_intersect(const PARAM *param, SEL_TREE *tree,
                                          double read_time,
                                          bool *are_all_covering);
static
unknown's avatar
unknown committed
388 389
TRP_ROR_INTERSECT *get_best_covering_ror_intersect(PARAM *param,
                                                   SEL_TREE *tree,
390 391 392 393
                                                   double read_time);
static
TABLE_READ_PLAN *get_best_disjunct_quick(PARAM *param, SEL_IMERGE *imerge,
                                         double read_time);
394 395
static
TRP_GROUP_MIN_MAX *get_best_group_min_max(PARAM *param, SEL_TREE *tree);
396
static int get_index_merge_params(PARAM *param, key_map& needed_reg,
unknown's avatar
unknown committed
397
                           SEL_IMERGE *imerge, double *read_time,
398
                           ha_rows* imerge_rows);
unknown's avatar
unknown committed
399
static double get_index_only_read_time(const PARAM* param, ha_rows records,
400 401
                                       int keynr);

unknown's avatar
unknown committed
402
#ifndef DBUG_OFF
403 404
static void print_sel_tree(PARAM *param, SEL_TREE *tree, key_map *tree_map,
                           const char *msg);
unknown's avatar
unknown committed
405 406
static void print_ror_scans_arr(TABLE *table, const char *msg,
                                struct st_ror_scan_info **start,
407 408 409
                                struct st_ror_scan_info **end);
static void print_rowid(byte* val, int len);
static void print_quick(QUICK_SELECT_I *quick, const key_map *needed_reg);
unknown's avatar
unknown committed
410
#endif
411

unknown's avatar
unknown committed
412 413 414 415 416 417
static SEL_TREE *tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2);
static SEL_TREE *tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2);
static SEL_ARG *sel_add(SEL_ARG *key1,SEL_ARG *key2);
static SEL_ARG *key_or(SEL_ARG *key1,SEL_ARG *key2);
static SEL_ARG *key_and(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag);
static bool get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1);
unknown's avatar
unknown committed
418
bool get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key,
unknown's avatar
unknown committed
419 420 421 422 423
			   SEL_ARG *key_tree,char *min_key,uint min_key_flag,
			   char *max_key,uint max_key_flag);
static bool eq_tree(SEL_ARG* a,SEL_ARG *b);

static SEL_ARG null_element(SEL_ARG::IMPOSSIBLE);
unknown's avatar
unknown committed
424
static bool null_part_in_key(KEY_PART *key_part, const char *key,
unknown's avatar
unknown committed
425
                             uint length);
unknown's avatar
unknown committed
426 427 428 429
bool sel_trees_can_be_ored(SEL_TREE *tree1, SEL_TREE *tree2, PARAM* param);


/*
unknown's avatar
unknown committed
430
  SEL_IMERGE is a list of possible ways to do index merge, i.e. it is
unknown's avatar
unknown committed
431
  a condition in the following form:
unknown's avatar
unknown committed
432
   (t_1||t_2||...||t_N) && (next)
unknown's avatar
unknown committed
433

unknown's avatar
unknown committed
434
  where all t_i are SEL_TREEs, next is another SEL_IMERGE and no pair
unknown's avatar
unknown committed
435 436 437 438 439 440 441 442 443 444 445
  (t_i,t_j) contains SEL_ARGS for the same index.

  SEL_TREE contained in SEL_IMERGE always has merges=NULL.

  This class relies on memory manager to do the cleanup.
*/

class SEL_IMERGE : public Sql_alloc
{
  enum { PREALLOCED_TREES= 10};
public:
unknown's avatar
unknown committed
446
  SEL_TREE *trees_prealloced[PREALLOCED_TREES];
unknown's avatar
unknown committed
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
  SEL_TREE **trees;             /* trees used to do index_merge   */
  SEL_TREE **trees_next;        /* last of these trees            */
  SEL_TREE **trees_end;         /* end of allocated space         */

  SEL_ARG  ***best_keys;        /* best keys to read in SEL_TREEs */

  SEL_IMERGE() :
    trees(&trees_prealloced[0]),
    trees_next(trees),
    trees_end(trees + PREALLOCED_TREES)
  {}
  int or_sel_tree(PARAM *param, SEL_TREE *tree);
  int or_sel_tree_with_checks(PARAM *param, SEL_TREE *new_tree);
  int or_sel_imerge_with_checks(PARAM *param, SEL_IMERGE* imerge);
};


unknown's avatar
unknown committed
464
/*
unknown's avatar
unknown committed
465 466
  Add SEL_TREE to this index_merge without any checks,

unknown's avatar
unknown committed
467 468
  NOTES
    This function implements the following:
unknown's avatar
unknown committed
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
      (x_1||...||x_N) || t = (x_1||...||x_N||t), where x_i, t are SEL_TREEs

  RETURN
     0 - OK
    -1 - Out of memory.
*/

int SEL_IMERGE::or_sel_tree(PARAM *param, SEL_TREE *tree)
{
  if (trees_next == trees_end)
  {
    const int realloc_ratio= 2;		/* Double size for next round */
    uint old_elements= (trees_end - trees);
    uint old_size= sizeof(SEL_TREE**) * old_elements;
    uint new_size= old_size * realloc_ratio;
    SEL_TREE **new_trees;
    if (!(new_trees= (SEL_TREE**)alloc_root(param->mem_root, new_size)))
      return -1;
    memcpy(new_trees, trees, old_size);
    trees=      new_trees;
    trees_next= trees + old_elements;
    trees_end=  trees + old_elements * realloc_ratio;
  }
  *(trees_next++)= tree;
  return 0;
}


/*
  Perform OR operation on this SEL_IMERGE and supplied SEL_TREE new_tree,
  combining new_tree with one of the trees in this SEL_IMERGE if they both
  have SEL_ARGs for the same key.
unknown's avatar
unknown committed
501

unknown's avatar
unknown committed
502 503 504 505 506
  SYNOPSIS
    or_sel_tree_with_checks()
      param    PARAM from SQL_SELECT::test_quick_select
      new_tree SEL_TREE with type KEY or KEY_SMALLER.

unknown's avatar
unknown committed
507
  NOTES
unknown's avatar
unknown committed
508
    This does the following:
unknown's avatar
unknown committed
509 510
    (t_1||...||t_k)||new_tree =
     either
unknown's avatar
unknown committed
511 512 513
       = (t_1||...||t_k||new_tree)
     or
       = (t_1||....||(t_j|| new_tree)||...||t_k),
unknown's avatar
unknown committed
514

unknown's avatar
unknown committed
515
     where t_i, y are SEL_TREEs.
unknown's avatar
unknown committed
516 517
    new_tree is combined with the first t_j it has a SEL_ARG on common
    key with. As a consequence of this, choice of keys to do index_merge
unknown's avatar
unknown committed
518 519
    read may depend on the order of conditions in WHERE part of the query.

unknown's avatar
unknown committed
520
  RETURN
unknown's avatar
unknown committed
521
    0  OK
unknown's avatar
unknown committed
522
    1  One of the trees was combined with new_tree to SEL_TREE::ALWAYS,
unknown's avatar
unknown committed
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
       and (*this) should be discarded.
   -1  An error occurred.
*/

int SEL_IMERGE::or_sel_tree_with_checks(PARAM *param, SEL_TREE *new_tree)
{
  for (SEL_TREE** tree = trees;
       tree != trees_next;
       tree++)
  {
    if (sel_trees_can_be_ored(*tree, new_tree, param))
    {
      *tree = tree_or(param, *tree, new_tree);
      if (!*tree)
        return 1;
      if (((*tree)->type == SEL_TREE::MAYBE) ||
          ((*tree)->type == SEL_TREE::ALWAYS))
        return 1;
      /* SEL_TREE::IMPOSSIBLE is impossible here */
      return 0;
    }
  }

546
  /* New tree cannot be combined with any of existing trees. */
unknown's avatar
unknown committed
547 548 549 550 551 552 553 554 555
  return or_sel_tree(param, new_tree);
}


/*
  Perform OR operation on this index_merge and supplied index_merge list.

  RETURN
    0 - OK
unknown's avatar
unknown committed
556
    1 - One of conditions in result is always TRUE and this SEL_IMERGE
unknown's avatar
unknown committed
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
        should be discarded.
   -1 - An error occurred
*/

int SEL_IMERGE::or_sel_imerge_with_checks(PARAM *param, SEL_IMERGE* imerge)
{
  for (SEL_TREE** tree= imerge->trees;
       tree != imerge->trees_next;
       tree++)
  {
    if (or_sel_tree_with_checks(param, *tree))
      return 1;
  }
  return 0;
}


unknown's avatar
unknown committed
574
/*
575
  Perform AND operation on two index_merge lists and store result in *im1.
unknown's avatar
unknown committed
576 577 578 579 580 581 582 583 584 585 586
*/

inline void imerge_list_and_list(List<SEL_IMERGE> *im1, List<SEL_IMERGE> *im2)
{
  im1->concat(im2);
}


/*
  Perform OR operation on 2 index_merge lists, storing result in first list.

unknown's avatar
unknown committed
587
  NOTES
unknown's avatar
unknown committed
588 589 590
    The following conversion is implemented:
     (a_1 &&...&& a_N)||(b_1 &&...&& b_K) = AND_i,j(a_i || b_j) =>
      => (a_1||b_1).
unknown's avatar
unknown committed
591 592

    i.e. all conjuncts except the first one are currently dropped.
unknown's avatar
unknown committed
593 594
    This is done to avoid producing N*K ways to do index_merge.

unknown's avatar
unknown committed
595
    If (a_1||b_1) produce a condition that is always TRUE, NULL is returned
unknown's avatar
unknown committed
596
    and index_merge is discarded (while it is actually possible to try
597
    harder).
unknown's avatar
unknown committed
598

599 600
    As a consequence of this, choice of keys to do index_merge read may depend
    on the order of conditions in WHERE part of the query.
unknown's avatar
unknown committed
601 602

  RETURN
603
    0     OK, result is stored in *im1
unknown's avatar
unknown committed
604 605 606
    other Error, both passed lists are unusable
*/

unknown's avatar
unknown committed
607
int imerge_list_or_list(PARAM *param,
unknown's avatar
unknown committed
608 609 610 611 612 613
                        List<SEL_IMERGE> *im1,
                        List<SEL_IMERGE> *im2)
{
  SEL_IMERGE *imerge= im1->head();
  im1->empty();
  im1->push_back(imerge);
unknown's avatar
unknown committed
614

unknown's avatar
unknown committed
615 616 617 618 619 620 621 622
  return imerge->or_sel_imerge_with_checks(param, im2->head());
}


/*
  Perform OR operation on index_merge list and key tree.

  RETURN
623
    0     OK, result is stored in *im1.
unknown's avatar
unknown committed
624 625 626
    other Error
*/

unknown's avatar
unknown committed
627
int imerge_list_or_tree(PARAM *param,
unknown's avatar
unknown committed
628 629 630 631 632
                        List<SEL_IMERGE> *im1,
                        SEL_TREE *tree)
{
  SEL_IMERGE *imerge;
  List_iterator<SEL_IMERGE> it(*im1);
unknown's avatar
unknown committed
633
  while ((imerge= it++))
unknown's avatar
unknown committed
634 635 636 637 638 639
  {
    if (imerge->or_sel_tree_with_checks(param, tree))
      it.remove();
  }
  return im1->is_empty();
}
unknown's avatar
unknown committed
640 641

/***************************************************************************
unknown's avatar
unknown committed
642
** Basic functions for SQL_SELECT and QUICK_RANGE_SELECT
unknown's avatar
unknown committed
643 644 645 646 647 648 649 650 651
***************************************************************************/

	/* make a select from mysql info
	   Error is set as following:
	   0 = ok
	   1 = Got some error (out of memory?)
	   */

SQL_SELECT *make_select(TABLE *head, table_map const_tables,
unknown's avatar
unknown committed
652 653 654 655
			table_map read_tables, COND *conds,
                        bool allow_null_cond,
                        int *error)
                        
unknown's avatar
unknown committed
656 657 658 659 660
{
  SQL_SELECT *select;
  DBUG_ENTER("make_select");

  *error=0;
661 662

  if (!conds && !allow_null_cond)
unknown's avatar
unknown committed
663 664 665
    DBUG_RETURN(0);
  if (!(select= new SQL_SELECT))
  {
666 667
    *error= 1;			// out of memory
    DBUG_RETURN(0);		/* purecov: inspected */
unknown's avatar
unknown committed
668 669 670 671 672 673
  }
  select->read_tables=read_tables;
  select->const_tables=const_tables;
  select->head=head;
  select->cond=conds;

unknown's avatar
unknown committed
674
  if (head->sort.io_cache)
unknown's avatar
unknown committed
675
  {
unknown's avatar
unknown committed
676
    select->file= *head->sort.io_cache;
unknown's avatar
unknown committed
677 678
    select->records=(ha_rows) (select->file.end_of_file/
			       head->file->ref_length);
unknown's avatar
unknown committed
679 680
    my_free((gptr) (head->sort.io_cache),MYF(0));
    head->sort.io_cache=0;
unknown's avatar
unknown committed
681 682 683 684 685 686 687
  }
  DBUG_RETURN(select);
}


SQL_SELECT::SQL_SELECT() :quick(0),cond(0),free_cond(0)
{
unknown's avatar
unknown committed
688
  quick_keys.clear_all(); needed_reg.clear_all();
unknown's avatar
unknown committed
689 690 691 692
  my_b_clear(&file);
}


693
void SQL_SELECT::cleanup()
unknown's avatar
unknown committed
694 695
{
  delete quick;
696
  quick= 0;
unknown's avatar
unknown committed
697
  if (free_cond)
698 699
  {
    free_cond=0;
unknown's avatar
unknown committed
700
    delete cond;
701
    cond= 0;
unknown's avatar
unknown committed
702
  }
unknown's avatar
unknown committed
703 704 705
  close_cached_file(&file);
}

706 707 708 709 710 711

SQL_SELECT::~SQL_SELECT()
{
  cleanup();
}

unknown's avatar
unknown committed
712
#undef index					// Fix for Unixware 7
unknown's avatar
unknown committed
713

unknown's avatar
unknown committed
714 715
QUICK_SELECT_I::QUICK_SELECT_I()
  :max_used_key_length(0),
716
   used_key_parts(0)
unknown's avatar
unknown committed
717 718
{}

unknown's avatar
unknown committed
719
QUICK_RANGE_SELECT::QUICK_RANGE_SELECT(THD *thd, TABLE *table, uint key_nr,
unknown's avatar
unknown committed
720
                                       bool no_alloc, MEM_ROOT *parent_alloc)
721
  :dont_free(0),error(0),free_file(0),in_range(0),cur_range(NULL),range(0)
unknown's avatar
unknown committed
722
{
unknown's avatar
unknown committed
723
  sorted= 0;
unknown's avatar
unknown committed
724 725
  index= key_nr;
  head=  table;
unknown's avatar
unknown committed
726
  key_part_info= head->key_info[index].key_part;
727
  my_init_dynamic_array(&ranges, sizeof(QUICK_RANGE*), 16, 16);
unknown's avatar
unknown committed
728

unknown's avatar
unknown committed
729
  /* 'thd' is not accessible in QUICK_RANGE_SELECT::reset(). */
unknown's avatar
unknown committed
730 731 732 733 734 735
  multi_range_bufsiz= thd->variables.read_rnd_buff_size;
  multi_range_count= thd->variables.multi_range_count;
  multi_range_length= 0;
  multi_range= NULL;
  multi_range_buff= NULL;

unknown's avatar
unknown committed
736
  if (!no_alloc && !parent_alloc)
unknown's avatar
unknown committed
737
  {
738 739
    // Allocates everything through the internal memroot
    init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
unknown's avatar
unknown committed
740
    thd->mem_root= &alloc;
unknown's avatar
unknown committed
741 742 743
  }
  else
    bzero((char*) &alloc,sizeof(alloc));
unknown's avatar
unknown committed
744 745
  file= head->file;
  record= head->record[0];
unknown's avatar
unknown committed
746 747
}

unknown's avatar
unknown committed
748

unknown's avatar
unknown committed
749 750
int QUICK_RANGE_SELECT::init()
{
unknown's avatar
unknown committed
751
  DBUG_ENTER("QUICK_RANGE_SELECT::init");
unknown's avatar
unknown committed
752

753 754 755
  if (file->inited != handler::NONE)
    file->ha_index_or_rnd_end();
  DBUG_RETURN(error= file->ha_index_init(index));
unknown's avatar
unknown committed
756 757 758 759 760 761
}


void QUICK_RANGE_SELECT::range_end()
{
  if (file->inited != handler::NONE)
762
    file->ha_index_or_rnd_end();
unknown's avatar
unknown committed
763 764
}

unknown's avatar
unknown committed
765

unknown's avatar
unknown committed
766
QUICK_RANGE_SELECT::~QUICK_RANGE_SELECT()
unknown's avatar
unknown committed
767
{
768
  DBUG_ENTER("QUICK_RANGE_SELECT::~QUICK_RANGE_SELECT");
unknown's avatar
unknown committed
769 770
  if (!dont_free)
  {
unknown's avatar
unknown committed
771 772
    /* file is NULL for CPK scan on covering ROR-intersection */
    if (file) 
773
    {
unknown's avatar
unknown committed
774 775 776 777 778 779 780
      range_end();
      file->extra(HA_EXTRA_NO_KEYREAD);
      if (free_file)
      {
        DBUG_PRINT("info", ("Freeing separate handler %p (free=%d)", file,
                            free_file));
        file->reset();
unknown's avatar
unknown committed
781
        file->external_lock(current_thd, F_UNLCK);
unknown's avatar
unknown committed
782 783
        file->close();
      }
unknown's avatar
unknown committed
784
    }
unknown's avatar
unknown committed
785
    delete_dynamic(&ranges); /* ranges are allocated in alloc */
unknown's avatar
unknown committed
786 787
    free_root(&alloc,MYF(0));
  }
unknown's avatar
unknown committed
788 789 790 791
  if (multi_range)
    my_free((char*) multi_range, MYF(0));
  if (multi_range_buff)
    my_free((char*) multi_range_buff, MYF(0));
unknown's avatar
unknown committed
792
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
793 794
}

unknown's avatar
unknown committed
795

unknown's avatar
unknown committed
796
QUICK_INDEX_MERGE_SELECT::QUICK_INDEX_MERGE_SELECT(THD *thd_param,
unknown's avatar
unknown committed
797
                                                   TABLE *table)
unknown's avatar
unknown committed
798
  :pk_quick_select(NULL), thd(thd_param)
unknown's avatar
unknown committed
799
{
800
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::QUICK_INDEX_MERGE_SELECT");
unknown's avatar
unknown committed
801 802
  index= MAX_KEY;
  head= table;
803
  bzero(&read_record, sizeof(read_record));
804
  init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
805
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
806 807 808 809
}

int QUICK_INDEX_MERGE_SELECT::init()
{
unknown's avatar
unknown committed
810 811
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::init");
  DBUG_RETURN(0);
unknown's avatar
unknown committed
812 813
}

814
int QUICK_INDEX_MERGE_SELECT::reset()
unknown's avatar
unknown committed
815
{
816
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::reset");
unknown's avatar
unknown committed
817
  DBUG_RETURN(read_keys_and_merge());
unknown's avatar
unknown committed
818 819
}

unknown's avatar
unknown committed
820
bool
unknown's avatar
unknown committed
821 822
QUICK_INDEX_MERGE_SELECT::push_quick_back(QUICK_RANGE_SELECT *quick_sel_range)
{
unknown's avatar
unknown committed
823 824
  /*
    Save quick_select that does scan on clustered primary key as it will be
825
    processed separately.
826
  */
unknown's avatar
unknown committed
827
  if (head->file->primary_key_is_clustered() &&
828
      quick_sel_range->index == head->s->primary_key)
829 830 831 832
    pk_quick_select= quick_sel_range;
  else
    return quick_selects.push_back(quick_sel_range);
  return 0;
unknown's avatar
unknown committed
833 834 835 836
}

QUICK_INDEX_MERGE_SELECT::~QUICK_INDEX_MERGE_SELECT()
{
unknown's avatar
unknown committed
837 838
  List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
  QUICK_RANGE_SELECT* quick;
839
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::~QUICK_INDEX_MERGE_SELECT");
unknown's avatar
unknown committed
840 841 842
  quick_it.rewind();
  while ((quick= quick_it++))
    quick->file= NULL;
unknown's avatar
unknown committed
843
  quick_selects.delete_elements();
844
  delete pk_quick_select;
unknown's avatar
unknown committed
845
  free_root(&alloc,MYF(0));
846
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
847 848
}

849 850 851 852 853

QUICK_ROR_INTERSECT_SELECT::QUICK_ROR_INTERSECT_SELECT(THD *thd_param,
                                                       TABLE *table,
                                                       bool retrieve_full_rows,
                                                       MEM_ROOT *parent_alloc)
unknown's avatar
unknown committed
854
  : cpk_quick(NULL), thd(thd_param), need_to_fetch_row(retrieve_full_rows),
unknown's avatar
unknown committed
855
    scans_inited(FALSE)
856 857
{
  index= MAX_KEY;
unknown's avatar
unknown committed
858
  head= table;
859 860
  record= head->record[0];
  if (!parent_alloc)
861
    init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
862 863
  else
    bzero(&alloc, sizeof(MEM_ROOT));
unknown's avatar
unknown committed
864
  last_rowid= (byte*)alloc_root(parent_alloc? parent_alloc : &alloc,
865 866 867
                                head->file->ref_length);
}

868

unknown's avatar
unknown committed
869
/*
870 871 872
  Do post-constructor initialization.
  SYNOPSIS
    QUICK_ROR_INTERSECT_SELECT::init()
unknown's avatar
unknown committed
873

874 875 876 877 878
  RETURN
    0      OK
    other  Error code
*/

879 880
int QUICK_ROR_INTERSECT_SELECT::init()
{
unknown's avatar
unknown committed
881 882 883
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::init");
 /* Check if last_rowid was successfully allocated in ctor */
  DBUG_RETURN(!last_rowid);
884 885 886 887
}


/*
888 889 890 891
  Initialize this quick select to be a ROR-merged scan.

  SYNOPSIS
    QUICK_RANGE_SELECT::init_ror_merged_scan()
unknown's avatar
unknown committed
892
      reuse_handler If TRUE, use head->file, otherwise create a separate
893 894 895 896
                    handler object

  NOTES
    This function creates and prepares for subsequent use a separate handler
unknown's avatar
unknown committed
897
    object if it can't reuse head->file. The reason for this is that during
898 899 900
    ROR-merge several key scans are performed simultaneously, and a single
    handler is only capable of preserving context of a single key scan.

unknown's avatar
unknown committed
901
    In ROR-merge the quick select doing merge does full records retrieval,
902
    merged quick selects read only keys.
unknown's avatar
unknown committed
903 904

  RETURN
905 906 907 908
    0  ROR child scan initialized, ok to use.
    1  error
*/

909
int QUICK_RANGE_SELECT::init_ror_merged_scan(bool reuse_handler)
910 911
{
  handler *save_file= file;
912
  DBUG_ENTER("QUICK_RANGE_SELECT::init_ror_merged_scan");
unknown's avatar
unknown committed
913

914 915 916 917
  if (reuse_handler)
  {
    DBUG_PRINT("info", ("Reusing handler %p", file));
    if (file->extra(HA_EXTRA_KEYREAD) ||
918
        file->extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) ||
919 920 921 922
        init() || reset())
    {
      DBUG_RETURN(1);
    }
unknown's avatar
unknown committed
923
    DBUG_RETURN(0);
924 925 926 927 928 929 930 931
  }

  /* Create a separate handler object for this quick select */
  if (free_file)
  {
    /* already have own 'handler' object. */
    DBUG_RETURN(0);
  }
unknown's avatar
unknown committed
932

unknown's avatar
unknown committed
933
  THD *thd= current_thd;
934
  if (!(file= get_new_handler(head, thd->mem_root, head->s->db_type)))
935 936
    goto failure;
  DBUG_PRINT("info", ("Allocated new handler %p", file));
937
  if (file->ha_open(head->s->path, head->db_stat, HA_OPEN_IGNORE_IF_LOCKED))
938
  {
unknown's avatar
unknown committed
939
    /* Caller will free the memory */
940 941
    goto failure;
  }
unknown's avatar
unknown committed
942 943
  if (file->external_lock(thd, F_RDLCK))
    goto failure;
unknown's avatar
unknown committed
944 945

  if (file->extra(HA_EXTRA_KEYREAD) ||
946
      file->extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) ||
947 948
      init() || reset())
  {
unknown's avatar
unknown committed
949
    file->external_lock(thd, F_UNLCK);
950 951 952
    file->close();
    goto failure;
  }
unknown's avatar
unknown committed
953
  free_file= TRUE;
954 955 956 957 958 959 960 961
  last_rowid= file->ref;
  DBUG_RETURN(0);

failure:
  file= save_file;
  DBUG_RETURN(1);
}

962 963 964 965 966

/*
  Initialize this quick select to be a part of a ROR-merged scan.
  SYNOPSIS
    QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan()
unknown's avatar
unknown committed
967
      reuse_handler If TRUE, use head->file, otherwise create separate
968
                    handler object.
unknown's avatar
unknown committed
969
  RETURN
970 971 972 973
    0     OK
    other error code
*/
int QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan(bool reuse_handler)
974 975 976
{
  List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
  QUICK_RANGE_SELECT* quick;
977
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan");
978 979

  /* Initialize all merged "children" quick selects */
unknown's avatar
unknown committed
980
  DBUG_ASSERT(!need_to_fetch_row || reuse_handler);
981 982 983
  if (!need_to_fetch_row && reuse_handler)
  {
    quick= quick_it++;
unknown's avatar
unknown committed
984
    /*
985
      There is no use of this->file. Use it for the first of merged range
986 987
      selects.
    */
unknown's avatar
unknown committed
988
    if (quick->init_ror_merged_scan(TRUE))
989 990 991
      DBUG_RETURN(1);
    quick->file->extra(HA_EXTRA_KEYREAD_PRESERVE_FIELDS);
  }
unknown's avatar
unknown committed
992
  while ((quick= quick_it++))
993
  {
unknown's avatar
unknown committed
994
    if (quick->init_ror_merged_scan(FALSE))
995 996
      DBUG_RETURN(1);
    quick->file->extra(HA_EXTRA_KEYREAD_PRESERVE_FIELDS);
997
    /* All merged scans share the same record buffer in intersection. */
998 999 1000
    quick->record= head->record[0];
  }

unknown's avatar
unknown committed
1001
  if (need_to_fetch_row && head->file->ha_rnd_init(1))
1002 1003 1004 1005 1006 1007 1008
  {
    DBUG_PRINT("error", ("ROR index_merge rnd_init call failed"));
    DBUG_RETURN(1);
  }
  DBUG_RETURN(0);
}

1009

unknown's avatar
unknown committed
1010
/*
1011 1012 1013 1014 1015 1016 1017 1018
  Initialize quick select for row retrieval.
  SYNOPSIS
    reset()
  RETURN
    0      OK
    other  Error code
*/

1019 1020 1021
int QUICK_ROR_INTERSECT_SELECT::reset()
{
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::reset");
unknown's avatar
unknown committed
1022 1023
  if (!scans_inited && init_ror_merged_scan(TRUE))
    DBUG_RETURN(1);
unknown's avatar
unknown committed
1024
  scans_inited= TRUE;
unknown's avatar
unknown committed
1025 1026 1027 1028 1029
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  QUICK_RANGE_SELECT *quick;
  while ((quick= it++))
    quick->reset();
  DBUG_RETURN(0);
1030 1031
}

1032 1033 1034

/*
  Add a merged quick select to this ROR-intersection quick select.
unknown's avatar
unknown committed
1035

1036 1037 1038 1039 1040 1041
  SYNOPSIS
    QUICK_ROR_INTERSECT_SELECT::push_quick_back()
      quick Quick select to be added. The quick select must return
            rows in rowid order.
  NOTES
    This call can only be made before init() is called.
unknown's avatar
unknown committed
1042

1043
  RETURN
unknown's avatar
unknown committed
1044
    FALSE OK
unknown's avatar
unknown committed
1045
    TRUE  Out of memory.
1046 1047
*/

unknown's avatar
unknown committed
1048
bool
1049 1050
QUICK_ROR_INTERSECT_SELECT::push_quick_back(QUICK_RANGE_SELECT *quick)
{
1051
  return quick_selects.push_back(quick);
1052 1053 1054
}

QUICK_ROR_INTERSECT_SELECT::~QUICK_ROR_INTERSECT_SELECT()
unknown's avatar
unknown committed
1055
{
1056
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::~QUICK_ROR_INTERSECT_SELECT");
unknown's avatar
unknown committed
1057
  quick_selects.delete_elements();
1058 1059
  delete cpk_quick;
  free_root(&alloc,MYF(0));
unknown's avatar
unknown committed
1060 1061
  if (need_to_fetch_row && head->file->inited != handler::NONE)
    head->file->ha_rnd_end();
1062 1063 1064
  DBUG_VOID_RETURN;
}

unknown's avatar
unknown committed
1065

1066 1067
QUICK_ROR_UNION_SELECT::QUICK_ROR_UNION_SELECT(THD *thd_param,
                                               TABLE *table)
unknown's avatar
unknown committed
1068
  : thd(thd_param), scans_inited(FALSE)
1069 1070 1071 1072 1073 1074
{
  index= MAX_KEY;
  head= table;
  rowid_length= table->file->ref_length;
  record= head->record[0];
  init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
unknown's avatar
unknown committed
1075
  thd_param->mem_root= &alloc;
1076 1077
}

1078 1079 1080 1081 1082

/*
  Do post-constructor initialization.
  SYNOPSIS
    QUICK_ROR_UNION_SELECT::init()
unknown's avatar
unknown committed
1083

1084 1085 1086 1087 1088
  RETURN
    0      OK
    other  Error code
*/

1089 1090
int QUICK_ROR_UNION_SELECT::init()
{
unknown's avatar
unknown committed
1091
  DBUG_ENTER("QUICK_ROR_UNION_SELECT::init");
1092
  if (init_queue(&queue, quick_selects.elements, 0,
unknown's avatar
unknown committed
1093
                 FALSE , QUICK_ROR_UNION_SELECT::queue_cmp,
1094 1095 1096
                 (void*) this))
  {
    bzero(&queue, sizeof(QUEUE));
unknown's avatar
unknown committed
1097
    DBUG_RETURN(1);
1098
  }
unknown's avatar
unknown committed
1099

1100
  if (!(cur_rowid= (byte*)alloc_root(&alloc, 2*head->file->ref_length)))
unknown's avatar
unknown committed
1101
    DBUG_RETURN(1);
1102
  prev_rowid= cur_rowid + head->file->ref_length;
unknown's avatar
unknown committed
1103
  DBUG_RETURN(0);
1104 1105
}

1106

1107
/*
unknown's avatar
unknown committed
1108
  Comparison function to be used QUICK_ROR_UNION_SELECT::queue priority
1109 1110
  queue.

1111 1112 1113 1114 1115 1116
  SYNPOSIS
    QUICK_ROR_UNION_SELECT::queue_cmp()
      arg   Pointer to QUICK_ROR_UNION_SELECT
      val1  First merged select
      val2  Second merged select
*/
unknown's avatar
unknown committed
1117

1118 1119
int QUICK_ROR_UNION_SELECT::queue_cmp(void *arg, byte *val1, byte *val2)
{
1120
  QUICK_ROR_UNION_SELECT *self= (QUICK_ROR_UNION_SELECT*)arg;
1121 1122 1123 1124
  return self->head->file->cmp_ref(((QUICK_SELECT_I*)val1)->last_rowid,
                                   ((QUICK_SELECT_I*)val2)->last_rowid);
}

1125

unknown's avatar
unknown committed
1126
/*
1127 1128 1129
  Initialize quick select for row retrieval.
  SYNOPSIS
    reset()
unknown's avatar
unknown committed
1130

1131 1132 1133 1134 1135
  RETURN
    0      OK
    other  Error code
*/

1136 1137 1138 1139 1140
int QUICK_ROR_UNION_SELECT::reset()
{
  QUICK_SELECT_I* quick;
  int error;
  DBUG_ENTER("QUICK_ROR_UNION_SELECT::reset");
unknown's avatar
unknown committed
1141
  have_prev_rowid= FALSE;
unknown's avatar
unknown committed
1142 1143 1144 1145 1146 1147 1148 1149 1150
  if (!scans_inited)
  {
    QUICK_SELECT_I *quick;
    List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
    while ((quick= it++))
    {
      if (quick->init_ror_merged_scan(FALSE))
        DBUG_RETURN(1);
    }
unknown's avatar
unknown committed
1151
    scans_inited= TRUE;
unknown's avatar
unknown committed
1152 1153
  }
  queue_remove_all(&queue);
unknown's avatar
unknown committed
1154 1155
  /*
    Initialize scans for merged quick selects and put all merged quick
1156 1157 1158 1159 1160
    selects into the queue.
  */
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  while ((quick= it++))
  {
unknown's avatar
unknown committed
1161
    if (quick->reset())
unknown's avatar
unknown committed
1162
      DBUG_RETURN(1);
1163 1164 1165 1166
    if ((error= quick->get_next()))
    {
      if (error == HA_ERR_END_OF_FILE)
        continue;
unknown's avatar
unknown committed
1167
      DBUG_RETURN(error);
1168 1169 1170 1171 1172
    }
    quick->save_last_pos();
    queue_insert(&queue, (byte*)quick);
  }

unknown's avatar
unknown committed
1173
  if (head->file->ha_rnd_init(1))
1174 1175 1176 1177 1178 1179 1180 1181 1182
  {
    DBUG_PRINT("error", ("ROR index_merge rnd_init call failed"));
    DBUG_RETURN(1);
  }

  DBUG_RETURN(0);
}


unknown's avatar
unknown committed
1183
bool
1184 1185 1186 1187 1188 1189 1190 1191 1192
QUICK_ROR_UNION_SELECT::push_quick_back(QUICK_SELECT_I *quick_sel_range)
{
  return quick_selects.push_back(quick_sel_range);
}

QUICK_ROR_UNION_SELECT::~QUICK_ROR_UNION_SELECT()
{
  DBUG_ENTER("QUICK_ROR_UNION_SELECT::~QUICK_ROR_UNION_SELECT");
  delete_queue(&queue);
unknown's avatar
unknown committed
1193
  quick_selects.delete_elements();
1194 1195
  if (head->file->inited != handler::NONE)
    head->file->ha_rnd_end();
1196 1197
  free_root(&alloc,MYF(0));
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
1198 1199
}

1200

unknown's avatar
unknown committed
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
QUICK_RANGE::QUICK_RANGE()
  :min_key(0),max_key(0),min_length(0),max_length(0),
   flag(NO_MIN_RANGE | NO_MAX_RANGE)
{}

SEL_ARG::SEL_ARG(SEL_ARG &arg) :Sql_alloc()
{
  type=arg.type;
  min_flag=arg.min_flag;
  max_flag=arg.max_flag;
  maybe_flag=arg.maybe_flag;
  maybe_null=arg.maybe_null;
  part=arg.part;
  field=arg.field;
  min_value=arg.min_value;
  max_value=arg.max_value;
  next_key_part=arg.next_key_part;
  use_count=1; elements=1;
}


inline void SEL_ARG::make_root()
{
  left=right= &null_element;
  color=BLACK;
  next=prev=0;
  use_count=0; elements=1;
}

SEL_ARG::SEL_ARG(Field *f,const char *min_value_arg,const char *max_value_arg)
  :min_flag(0), max_flag(0), maybe_flag(0), maybe_null(f->real_maybe_null()),
   elements(1), use_count(1), field(f), min_value((char*) min_value_arg),
   max_value((char*) max_value_arg), next(0),prev(0),
   next_key_part(0),color(BLACK),type(KEY_RANGE)
{
  left=right= &null_element;
}

SEL_ARG::SEL_ARG(Field *field_,uint8 part_,char *min_value_,char *max_value_,
		 uint8 min_flag_,uint8 max_flag_,uint8 maybe_flag_)
  :min_flag(min_flag_),max_flag(max_flag_),maybe_flag(maybe_flag_),
   part(part_),maybe_null(field_->real_maybe_null()), elements(1),use_count(1),
   field(field_), min_value(min_value_), max_value(max_value_),
   next(0),prev(0),next_key_part(0),color(BLACK),type(KEY_RANGE)
{
  left=right= &null_element;
}

SEL_ARG *SEL_ARG::clone(SEL_ARG *new_parent,SEL_ARG **next_arg)
{
  SEL_ARG *tmp;
  if (type != KEY_RANGE)
  {
1254 1255
    if (!(tmp= new SEL_ARG(type)))
      return 0;					// out of memory
unknown's avatar
unknown committed
1256 1257 1258 1259 1260 1261
    tmp->prev= *next_arg;			// Link into next/prev chain
    (*next_arg)->next=tmp;
    (*next_arg)= tmp;
  }
  else
  {
1262 1263 1264
    if (!(tmp= new SEL_ARG(field,part, min_value,max_value,
			   min_flag, max_flag, maybe_flag)))
      return 0;					// OOM
unknown's avatar
unknown committed
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
    tmp->parent=new_parent;
    tmp->next_key_part=next_key_part;
    if (left != &null_element)
      tmp->left=left->clone(tmp,next_arg);

    tmp->prev= *next_arg;			// Link into next/prev chain
    (*next_arg)->next=tmp;
    (*next_arg)= tmp;

    if (right != &null_element)
1275 1276
      if (!(tmp->right= right->clone(tmp,next_arg)))
	return 0;				// OOM
unknown's avatar
unknown committed
1277 1278
  }
  increment_use_count(1);
1279
  tmp->color= color;
unknown's avatar
unknown committed
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
  return tmp;
}

SEL_ARG *SEL_ARG::first()
{
  SEL_ARG *next_arg=this;
  if (!next_arg->left)
    return 0;					// MAYBE_KEY
  while (next_arg->left != &null_element)
    next_arg=next_arg->left;
  return next_arg;
}

SEL_ARG *SEL_ARG::last()
{
  SEL_ARG *next_arg=this;
  if (!next_arg->right)
    return 0;					// MAYBE_KEY
  while (next_arg->right != &null_element)
    next_arg=next_arg->right;
  return next_arg;
}

1303

unknown's avatar
unknown committed
1304 1305 1306
/*
  Check if a compare is ok, when one takes ranges in account
  Returns -2 or 2 if the ranges where 'joined' like  < 2 and >= 2
1307
*/
unknown's avatar
unknown committed
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330

static int sel_cmp(Field *field, char *a,char *b,uint8 a_flag,uint8 b_flag)
{
  int cmp;
  /* First check if there was a compare to a min or max element */
  if (a_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
  {
    if ((a_flag & (NO_MIN_RANGE | NO_MAX_RANGE)) ==
	(b_flag & (NO_MIN_RANGE | NO_MAX_RANGE)))
      return 0;
    return (a_flag & NO_MIN_RANGE) ? -1 : 1;
  }
  if (b_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
    return (b_flag & NO_MIN_RANGE) ? 1 : -1;

  if (field->real_maybe_null())			// If null is part of key
  {
    if (*a != *b)
    {
      return *a ? -1 : 1;
    }
    if (*a)
      goto end;					// NULL where equal
unknown's avatar
unknown committed
1331
    a++; b++;					// Skip NULL marker
unknown's avatar
unknown committed
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
  }
  cmp=field->key_cmp((byte*) a,(byte*) b);
  if (cmp) return cmp < 0 ? -1 : 1;		// The values differed

  // Check if the compared equal arguments was defined with open/closed range
 end:
  if (a_flag & (NEAR_MIN | NEAR_MAX))
  {
    if ((a_flag & (NEAR_MIN | NEAR_MAX)) == (b_flag & (NEAR_MIN | NEAR_MAX)))
      return 0;
    if (!(b_flag & (NEAR_MIN | NEAR_MAX)))
      return (a_flag & NEAR_MIN) ? 2 : -2;
    return (a_flag & NEAR_MIN) ? 1 : -1;
  }
  if (b_flag & (NEAR_MIN | NEAR_MAX))
    return (b_flag & NEAR_MIN) ? -2 : 2;
  return 0;					// The elements where equal
}


SEL_ARG *SEL_ARG::clone_tree()
{
  SEL_ARG tmp_link,*next_arg,*root;
  next_arg= &tmp_link;
1356
  root= clone((SEL_ARG *) 0, &next_arg);
unknown's avatar
unknown committed
1357 1358
  next_arg->next=0;				// Fix last link
  tmp_link.next->prev=0;			// Fix first link
1359 1360
  if (root)					// If not OOM
    root->use_count= 0;
unknown's avatar
unknown committed
1361 1362 1363
  return root;
}

1364

1365
/*
unknown's avatar
unknown committed
1366
  Find the best index to retrieve first N records in given order
1367 1368 1369 1370 1371 1372 1373 1374

  SYNOPSIS
    get_index_for_order()
      table  Table to be accessed
      order  Required ordering
      limit  Number of records that will be retrieved

  DESCRIPTION
unknown's avatar
unknown committed
1375 1376 1377 1378
    Find the best index that allows to retrieve first #limit records in the 
    given order cheaper then one would retrieve them using full table scan.

  IMPLEMENTATION
1379
    Run through all table indexes and find the shortest index that allows
unknown's avatar
unknown committed
1380 1381
    records to be retrieved in given order. We look for the shortest index
    as we will have fewer index pages to read with it.
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403

    This function is used only by UPDATE/DELETE, so we take into account how
    the UPDATE/DELETE code will work:
     * index can only be scanned in forward direction
     * HA_EXTRA_KEYREAD will not be used
    Perhaps these assumptions could be relaxed

  RETURN
    index number
    MAX_KEY if no such index was found.
*/

uint get_index_for_order(TABLE *table, ORDER *order, ha_rows limit)
{
  uint idx;
  uint match_key= MAX_KEY, match_key_len= MAX_KEY_LENGTH + 1;
  ORDER *ord;
  
  for (ord= order; ord; ord= ord->next)
    if (!ord->asc)
      return MAX_KEY;

unknown's avatar
unknown committed
1404
  for (idx= 0; idx < table->s->keys; idx++)
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
  {
    if (!(table->keys_in_use_for_query.is_set(idx)))
      continue;
    KEY_PART_INFO *keyinfo= table->key_info[idx].key_part;
    uint partno= 0;
    
    /* 
      The below check is sufficient considering we now have either BTREE 
      indexes (records are returned in order for any index prefix) or HASH 
      indexes (records are not returned in order for any index prefix).
    */
    if (!(table->file->index_flags(idx, 0, 1) & HA_READ_ORDER))
      continue;
    for (ord= order; ord; ord= ord->next, partno++)
    {
      Item *item= order->item[0];
      if (!(item->type() == Item::FIELD_ITEM &&
           ((Item_field*)item)->field->eq(keyinfo[partno].field)))
        break;
    }
    
    if (!ord && table->key_info[idx].key_length < match_key_len)
    {
      /* 
        Ok, the ordering is compatible and this key is shorter then
        previous match (we want shorter keys as we'll have to read fewer
        index pages for the same number of records)
      */
      match_key= idx;
      match_key_len= table->key_info[idx].key_length;
    }
  }

  if (match_key != MAX_KEY)
  {
    /* 
      Found an index that allows records to be retrieved in the requested 
      order. Now we'll check if using the index is cheaper then doing a table
      scan.
    */
    double full_scan_time= table->file->scan_time();
    double index_scan_time= table->file->read_time(match_key, 1, limit);
    if (index_scan_time > full_scan_time)
      match_key= MAX_KEY;
  }
  return match_key;
}


unknown's avatar
unknown committed
1454
/*
unknown's avatar
unknown committed
1455
  Table rows retrieval plan. Range optimizer creates QUICK_SELECT_I-derived
1456 1457 1458 1459 1460
  objects from table read plans.
*/
class TABLE_READ_PLAN
{
public:
unknown's avatar
unknown committed
1461 1462
  /*
    Plan read cost, with or without cost of full row retrieval, depending
1463 1464
    on plan creation parameters.
  */
unknown's avatar
unknown committed
1465
  double read_cost;
1466
  ha_rows records; /* estimate of #rows to be examined */
unknown's avatar
unknown committed
1467

unknown's avatar
unknown committed
1468 1469
  /*
    If TRUE, the scan returns rows in rowid order. This is used only for
1470 1471
    scans that can be both ROR and non-ROR.
  */
1472
  bool is_ror;
unknown's avatar
unknown committed
1473

1474 1475 1476 1477 1478
  /*
    Create quick select for this plan.
    SYNOPSIS
     make_quick()
       param               Parameter from test_quick_select
unknown's avatar
unknown committed
1479
       retrieve_full_rows  If TRUE, created quick select will do full record
1480 1481
                           retrieval.
       parent_alloc        Memory pool to use, if any.
unknown's avatar
unknown committed
1482

1483 1484
    NOTES
      retrieve_full_rows is ignored by some implementations.
unknown's avatar
unknown committed
1485 1486

    RETURN
1487 1488 1489
      created quick select
      NULL on any error.
  */
1490 1491 1492 1493
  virtual QUICK_SELECT_I *make_quick(PARAM *param,
                                     bool retrieve_full_rows,
                                     MEM_ROOT *parent_alloc=NULL) = 0;

1494
  /* Table read plans are allocated on MEM_ROOT and are never deleted */
1495 1496
  static void *operator new(size_t size, MEM_ROOT *mem_root)
  { return (void*) alloc_root(mem_root, (uint) size); }
unknown's avatar
unknown committed
1497
  static void operator delete(void *ptr,size_t size) { TRASH(ptr, size); }
1498
  static void operator delete(void *ptr, MEM_ROOT *mem_root) { /* Never called */ }
1499 1500 1501 1502 1503 1504 1505
};

class TRP_ROR_INTERSECT;
class TRP_ROR_UNION;
class TRP_INDEX_MERGE;


1506
/*
unknown's avatar
unknown committed
1507
  Plan for a QUICK_RANGE_SELECT scan.
1508 1509 1510
  TRP_RANGE::make_quick ignores retrieve_full_rows parameter because
  QUICK_RANGE_SELECT doesn't distinguish between 'index only' scans and full
  record retrieval scans.
unknown's avatar
unknown committed
1511
*/
unknown's avatar
unknown committed
1512

1513
class TRP_RANGE : public TABLE_READ_PLAN
unknown's avatar
unknown committed
1514
{
1515
public:
1516 1517
  SEL_ARG *key; /* set of intervals to be used in "range" method retrieval */
  uint     key_idx; /* key number in PARAM::key */
unknown's avatar
unknown committed
1518

unknown's avatar
unknown committed
1519
  TRP_RANGE(SEL_ARG *key_arg, uint idx_arg)
1520 1521
   : key(key_arg), key_idx(idx_arg)
  {}
unknown's avatar
unknown committed
1522

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
                             MEM_ROOT *parent_alloc)
  {
    DBUG_ENTER("TRP_RANGE::make_quick");
    QUICK_RANGE_SELECT *quick;
    if ((quick= get_quick_select(param, key_idx, key, parent_alloc)))
    {
      quick->records= records;
      quick->read_time= read_cost;
    }
    DBUG_RETURN(quick);
  }
};
unknown's avatar
unknown committed
1536 1537


1538 1539
/* Plan for QUICK_ROR_INTERSECT_SELECT scan. */

1540 1541 1542
class TRP_ROR_INTERSECT : public TABLE_READ_PLAN
{
public:
unknown's avatar
unknown committed
1543
  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
1544
                             MEM_ROOT *parent_alloc);
unknown's avatar
unknown committed
1545

1546
  /* Array of pointers to ROR range scans used in this intersection */
1547
  struct st_ror_scan_info **first_scan;
1548 1549
  struct st_ror_scan_info **last_scan; /* End of the above array */
  struct st_ror_scan_info *cpk_scan;  /* Clustered PK scan, if there is one */
unknown's avatar
unknown committed
1550
  bool is_covering; /* TRUE if no row retrieval phase is necessary */
1551
  double index_scan_costs; /* SUM(cost(index_scan)) */
1552 1553
};

1554

unknown's avatar
unknown committed
1555
/*
1556 1557
  Plan for QUICK_ROR_UNION_SELECT scan.
  QUICK_ROR_UNION_SELECT always retrieves full rows, so retrieve_full_rows
unknown's avatar
unknown committed
1558
  is ignored by make_quick.
1559
*/
1560

1561 1562 1563
class TRP_ROR_UNION : public TABLE_READ_PLAN
{
public:
unknown's avatar
unknown committed
1564
  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
1565
                             MEM_ROOT *parent_alloc);
1566 1567
  TABLE_READ_PLAN **first_ror; /* array of ptrs to plans for merged scans */
  TABLE_READ_PLAN **last_ror;  /* end of the above array */
1568 1569
};

1570 1571 1572 1573

/*
  Plan for QUICK_INDEX_MERGE_SELECT scan.
  QUICK_ROR_INTERSECT_SELECT always retrieves full rows, so retrieve_full_rows
unknown's avatar
unknown committed
1574
  is ignored by make_quick.
1575 1576
*/

1577 1578 1579
class TRP_INDEX_MERGE : public TABLE_READ_PLAN
{
public:
unknown's avatar
unknown committed
1580
  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
1581
                             MEM_ROOT *parent_alloc);
1582 1583
  TRP_RANGE **range_scans; /* array of ptrs to plans of merged scans */
  TRP_RANGE **range_scans_end; /* end of the array */
1584 1585 1586
};


1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
/*
  Plan for a QUICK_GROUP_MIN_MAX_SELECT scan. 
*/

class TRP_GROUP_MIN_MAX : public TABLE_READ_PLAN
{
private:
  bool have_min, have_max;
  KEY_PART_INFO *min_max_arg_part;
  uint group_prefix_len;
  uint used_key_parts;
  uint group_key_parts;
  KEY *index_info;
  uint index;
  uint key_infix_len;
  byte key_infix[MAX_KEY_LENGTH];
  SEL_TREE *range_tree; /* Represents all range predicates in the query. */
  SEL_ARG  *index_tree; /* The SEL_ARG sub-tree corresponding to index_info. */
  uint param_idx; /* Index of used key in param->key. */
  /* Number of records selected by the ranges in index_tree. */
public:
  ha_rows quick_prefix_records;
public:
1610 1611 1612 1613
  TRP_GROUP_MIN_MAX(bool have_min_arg, bool have_max_arg,
                    KEY_PART_INFO *min_max_arg_part_arg,
                    uint group_prefix_len_arg, uint used_key_parts_arg,
                    uint group_key_parts_arg, KEY *index_info_arg,
1614 1615
                    uint index_arg, uint key_infix_len_arg,
                    byte *key_infix_arg,
1616 1617 1618 1619 1620 1621 1622 1623 1624
                    SEL_TREE *tree_arg, SEL_ARG *index_tree_arg,
                    uint param_idx_arg, ha_rows quick_prefix_records_arg)
  : have_min(have_min_arg), have_max(have_max_arg),
    min_max_arg_part(min_max_arg_part_arg),
    group_prefix_len(group_prefix_len_arg), used_key_parts(used_key_parts_arg),
    group_key_parts(group_key_parts_arg), index_info(index_info_arg),
    index(index_arg), key_infix_len(key_infix_len_arg), range_tree(tree_arg),
    index_tree(index_tree_arg), param_idx(param_idx_arg),
    quick_prefix_records(quick_prefix_records_arg)
1625 1626 1627 1628
    {
      if (key_infix_len)
        memcpy(this->key_infix, key_infix_arg, key_infix_len);
    }
1629 1630 1631 1632 1633 1634

  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
                             MEM_ROOT *parent_alloc);
};


unknown's avatar
unknown committed
1635
/*
1636
  Fill param->needed_fields with bitmap of fields used in the query.
unknown's avatar
unknown committed
1637
  SYNOPSIS
1638 1639
    fill_used_fields_bitmap()
      param Parameter from test_quick_select function.
unknown's avatar
unknown committed
1640

1641 1642 1643
  NOTES
    Clustered PK members are not put into the bitmap as they are implicitly
    present in all keys (and it is impossible to avoid reading them).
unknown's avatar
unknown committed
1644 1645 1646
  RETURN
    0  Ok
    1  Out of memory.
1647 1648 1649 1650 1651
*/

static int fill_used_fields_bitmap(PARAM *param)
{
  TABLE *table= param->table;
1652
  param->fields_bitmap_size= (table->s->fields/8 + 1);
1653 1654 1655
  uchar *tmp;
  uint pk;
  if (!(tmp= (uchar*)alloc_root(param->mem_root,param->fields_bitmap_size)) ||
unknown's avatar
unknown committed
1656
      bitmap_init(&param->needed_fields, tmp, param->fields_bitmap_size*8,
unknown's avatar
unknown committed
1657
                  FALSE))
1658
    return 1;
unknown's avatar
unknown committed
1659

1660
  bitmap_clear_all(&param->needed_fields);
1661
  for (uint i= 0; i < table->s->fields; i++)
1662 1663 1664 1665 1666
  {
    if (param->thd->query_id == table->field[i]->query_id)
      bitmap_set_bit(&param->needed_fields, i+1);
  }

1667
  pk= param->table->s->primary_key;
1668 1669
  if (param->table->file->primary_key_is_clustered() && pk != MAX_KEY)
  {
1670
    /* The table uses clustered PK and it is not internally generated */
1671
    KEY_PART_INFO *key_part= param->table->key_info[pk].key_part;
unknown's avatar
unknown committed
1672
    KEY_PART_INFO *key_part_end= key_part +
1673
                                 param->table->key_info[pk].key_parts;
unknown's avatar
unknown committed
1674
    for (;key_part != key_part_end; ++key_part)
1675 1676 1677 1678 1679 1680 1681 1682
    {
      bitmap_clear_bit(&param->needed_fields, key_part->fieldnr);
    }
  }
  return 0;
}


unknown's avatar
unknown committed
1683
/*
unknown's avatar
unknown committed
1684
  Test if a key can be used in different ranges
unknown's avatar
unknown committed
1685 1686

  SYNOPSIS
1687 1688 1689 1690 1691
    SQL_SELECT::test_quick_select()
      thd               Current thread
      keys_to_use       Keys to use for range retrieval
      prev_tables       Tables assumed to be already read when the scan is
                        performed (but not read at the moment of this call)
unknown's avatar
unknown committed
1692 1693 1694
      limit             Query limit
      force_quick_range Prefer to use range (instead of full table scan) even
                        if it is more expensive.
1695 1696 1697 1698 1699

  NOTES
    Updates the following in the select parameter:
      needed_reg - Bits for keys with may be used if all prev regs are read
      quick      - Parameter to use when reading records.
unknown's avatar
unknown committed
1700

1701 1702 1703
    In the table struct the following information is updated:
      quick_keys - Which keys can be used
      quick_rows - How many rows the key matches
unknown's avatar
unknown committed
1704

1705 1706 1707 1708
  TODO
   Check if this function really needs to modify keys_to_use, and change the
   code to pass it by reference if it doesn't.

unknown's avatar
unknown committed
1709
   In addition to force_quick_range other means can be (an usually are) used
1710 1711
   to make this function prefer range over full table scan. Figure out if
   force_quick_range is really needed.
unknown's avatar
unknown committed
1712

1713 1714 1715 1716
  RETURN
   -1 if impossible select (i.e. certainly no rows will be selected)
    0 if can't use quick_select
    1 if found usable ranges and quick select has been successfully created.
unknown's avatar
unknown committed
1717
*/
unknown's avatar
unknown committed
1718

1719 1720
int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
				  table_map prev_tables,
unknown's avatar
unknown committed
1721 1722 1723 1724
				  ha_rows limit, bool force_quick_range)
{
  uint idx;
  double scan_time;
1725
  DBUG_ENTER("SQL_SELECT::test_quick_select");
unknown's avatar
unknown committed
1726 1727 1728
  DBUG_PRINT("enter",("keys_to_use: %lu  prev_tables: %lu  const_tables: %lu",
		      keys_to_use.to_ulonglong(), (ulong) prev_tables,
		      (ulong) const_tables));
1729
  DBUG_PRINT("info", ("records=%lu", (ulong)head->file->records));
unknown's avatar
unknown committed
1730 1731
  delete quick;
  quick=0;
1732 1733 1734
  needed_reg.clear_all();
  quick_keys.clear_all();
  if ((specialflag & SPECIAL_SAFE_MODE) && ! force_quick_range ||
unknown's avatar
unknown committed
1735 1736
      !limit)
    DBUG_RETURN(0); /* purecov: inspected */
unknown's avatar
unknown committed
1737 1738
  if (keys_to_use.is_clear_all())
    DBUG_RETURN(0);
1739
  records= head->file->records;
unknown's avatar
unknown committed
1740 1741
  if (!records)
    records++;					/* purecov: inspected */
1742 1743
  scan_time= (double) records / TIME_FOR_COMPARE + 1;
  read_time= (double) head->file->scan_time() + scan_time + 1.1;
1744 1745
  if (head->force_index)
    scan_time= read_time= DBL_MAX;
unknown's avatar
unknown committed
1746
  if (limit < records)
1747
    read_time= (double) records + scan_time + 1; // Force to use index
unknown's avatar
unknown committed
1748
  else if (read_time <= 2.0 && !force_quick_range)
1749
    DBUG_RETURN(0);				/* No need for quick select */
unknown's avatar
unknown committed
1750

1751
  DBUG_PRINT("info",("Time to scan table: %g", read_time));
unknown's avatar
unknown committed
1752

1753 1754
  keys_to_use.intersect(head->keys_in_use_for_query);
  if (!keys_to_use.is_clear_all())
unknown's avatar
unknown committed
1755
  {
1756
    MEM_ROOT alloc;
1757
    SEL_TREE *tree= NULL;
unknown's avatar
unknown committed
1758
    KEY_PART *key_parts;
unknown's avatar
unknown committed
1759
    KEY *key_info;
unknown's avatar
unknown committed
1760
    PARAM param;
unknown's avatar
unknown committed
1761

unknown's avatar
unknown committed
1762
    /* set up parameter that is passed to all functions */
1763
    param.thd= thd;
unknown's avatar
unknown committed
1764
    param.baseflag=head->file->table_flags();
unknown's avatar
unknown committed
1765 1766 1767 1768 1769
    param.prev_tables=prev_tables | const_tables;
    param.read_tables=read_tables;
    param.current_table= head->map;
    param.table=head;
    param.keys=0;
1770
    param.mem_root= &alloc;
1771
    param.old_root= thd->mem_root;
1772
    param.needed_reg= &needed_reg;
1773
    param.imerge_cost_buff_size= 0;
unknown's avatar
unknown committed
1774

unknown's avatar
unknown committed
1775
    thd->no_errors=1;				// Don't warn about NULL
1776
    init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
1777 1778 1779 1780
    if (!(param.key_parts= (KEY_PART*) alloc_root(&alloc,
                                                  sizeof(KEY_PART)*
                                                  head->s->key_parts)) ||
        fill_used_fields_bitmap(&param))
unknown's avatar
unknown committed
1781
    {
unknown's avatar
unknown committed
1782
      thd->no_errors=0;
1783
      free_root(&alloc,MYF(0));			// Return memory & allocator
unknown's avatar
unknown committed
1784 1785 1786
      DBUG_RETURN(0);				// Can't use range
    }
    key_parts= param.key_parts;
1787
    thd->mem_root= &alloc;
unknown's avatar
unknown committed
1788 1789 1790 1791

    /*
      Make an array with description of all key parts of all table keys.
      This is used in get_mm_parts function.
1792
    */
unknown's avatar
unknown committed
1793
    key_info= head->key_info;
1794
    for (idx=0 ; idx < head->s->keys ; idx++, key_info++)
unknown's avatar
unknown committed
1795
    {
unknown's avatar
unknown committed
1796
      KEY_PART_INFO *key_part_info;
1797
      if (!keys_to_use.is_set(idx))
unknown's avatar
unknown committed
1798 1799 1800 1801 1802
	continue;
      if (key_info->flags & HA_FULLTEXT)
	continue;    // ToDo: ft-keys in non-ft ranges, if possible   SerG

      param.key[param.keys]=key_parts;
unknown's avatar
unknown committed
1803 1804 1805
      key_part_info= key_info->key_part;
      for (uint part=0 ; part < key_info->key_parts ;
	   part++, key_parts++, key_part_info++)
unknown's avatar
unknown committed
1806
      {
unknown's avatar
unknown committed
1807 1808 1809 1810 1811 1812
	key_parts->key=		 param.keys;
	key_parts->part=	 part;
	key_parts->length=       key_part_info->length;
	key_parts->store_length= key_part_info->store_length;
	key_parts->field=	 key_part_info->field;
	key_parts->null_bit=	 key_part_info->null_bit;
1813
        key_parts->image_type =
unknown's avatar
unknown committed
1814
          (key_info->flags & HA_SPATIAL) ? Field::itMBR : Field::itRAW;
unknown's avatar
unknown committed
1815 1816 1817 1818 1819
      }
      param.real_keynr[param.keys++]=idx;
    }
    param.key_parts_end=key_parts;

unknown's avatar
unknown committed
1820 1821 1822 1823
    /* Calculate cost of full index read for the shortest covering index */
    if (!head->used_keys.is_clear_all())
    {
      int key_for_use= find_shortest_key(head, &head->used_keys);
1824 1825 1826
      double key_read_time= (get_index_only_read_time(&param, records,
                                                     key_for_use) +
                             (double) records / TIME_FOR_COMPARE);
unknown's avatar
unknown committed
1827 1828 1829 1830 1831
      DBUG_PRINT("info",  ("'all'+'using index' scan will be using key %d, "
                           "read time %g", key_for_use, key_read_time));
      if (key_read_time < read_time)
        read_time= key_read_time;
    }
unknown's avatar
unknown committed
1832

1833 1834 1835 1836 1837
    TABLE_READ_PLAN *best_trp= NULL;
    TRP_GROUP_MIN_MAX *group_trp;
    double best_read_time= read_time;

    if (cond)
unknown's avatar
unknown committed
1838
    {
unknown's avatar
unknown committed
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
      if ((tree= get_mm_tree(&param,cond)))
      {
        if (tree->type == SEL_TREE::IMPOSSIBLE)
        {
          records=0L;                      /* Return -1 from this function. */
          read_time= (double) HA_POS_ERROR;
          goto free_mem;
        }
        if (tree->type != SEL_TREE::KEY &&
            tree->type != SEL_TREE::KEY_SMALLER)
          goto free_mem;
      }
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
    }

    /*
      Try to construct a QUICK_GROUP_MIN_MAX_SELECT.
      Notice that it can be constructed no matter if there is a range tree.
    */
    group_trp= get_best_group_min_max(&param, tree);
    if (group_trp && group_trp->read_cost < best_read_time)
    {
      best_trp= group_trp;
      best_read_time= best_trp->read_cost;
    }

    if (tree)
unknown's avatar
unknown committed
1865
    {
unknown's avatar
unknown committed
1866 1867 1868
      /*
        It is possible to use a range-based quick select (but it might be
        slower than 'all' table scan).
1869 1870
      */
      if (tree->merges.is_empty())
unknown's avatar
unknown committed
1871
      {
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
        TRP_RANGE         *range_trp;
        TRP_ROR_INTERSECT *rori_trp;
        bool can_build_covering= FALSE;

        /* Get best 'range' plan and prepare data for making other plans */
        if ((range_trp= get_key_scans_params(&param, tree, FALSE,
                                             best_read_time)))
        {
          best_trp= range_trp;
          best_read_time= best_trp->read_cost;
        }

unknown's avatar
unknown committed
1884
        /*
1885 1886 1887
          Simultaneous key scans and row deletes on several handler
          objects are not allowed so don't use ROR-intersection for
          table deletes.
unknown's avatar
unknown committed
1888
        */
1889 1890 1891 1892
        if ((thd->lex->sql_command != SQLCOM_DELETE))
#ifdef NOT_USED
          if ((thd->lex->sql_command != SQLCOM_UPDATE))
#endif
unknown's avatar
unknown committed
1893
        {
unknown's avatar
unknown committed
1894
          /*
1895 1896
            Get best non-covering ROR-intersection plan and prepare data for
            building covering ROR-intersection.
unknown's avatar
unknown committed
1897
          */
1898 1899
          if ((rori_trp= get_best_ror_intersect(&param, tree, best_read_time,
                                                &can_build_covering)))
unknown's avatar
unknown committed
1900
          {
1901 1902
            best_trp= rori_trp;
            best_read_time= best_trp->read_cost;
unknown's avatar
unknown committed
1903 1904
            /*
              Try constructing covering ROR-intersect only if it looks possible
1905 1906
              and worth doing.
            */
1907 1908 1909 1910
            if (!rori_trp->is_covering && can_build_covering &&
                (rori_trp= get_best_covering_ror_intersect(&param, tree,
                                                           best_read_time)))
              best_trp= rori_trp;
unknown's avatar
unknown committed
1911 1912
          }
        }
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
      }
      else
      {
        /* Try creating index_merge/ROR-union scan. */
        SEL_IMERGE *imerge;
        TABLE_READ_PLAN *best_conj_trp= NULL, *new_conj_trp;
        LINT_INIT(new_conj_trp); /* no empty index_merge lists possible */

        DBUG_PRINT("info",("No range reads possible,"
                           " trying to construct index_merge"));
        List_iterator_fast<SEL_IMERGE> it(tree->merges);
        while ((imerge= it++))
unknown's avatar
unknown committed
1925
        {
1926 1927 1928 1929
          new_conj_trp= get_best_disjunct_quick(&param, imerge, best_read_time);
          if (!best_conj_trp || (new_conj_trp && new_conj_trp->read_cost <
                                 best_conj_trp->read_cost))
            best_conj_trp= new_conj_trp;
1930
        }
1931 1932 1933 1934
        if (best_conj_trp)
          best_trp= best_conj_trp;
      }
    }
unknown's avatar
unknown committed
1935

1936
    thd->mem_root= param.old_root;
1937 1938 1939 1940 1941 1942 1943 1944 1945

    /* If we got a read plan, create a quick select from it. */
    if (best_trp)
    {
      records= best_trp->records;
      if (!(quick= best_trp->make_quick(&param, TRUE)) || quick->init())
      {
        delete quick;
        quick= NULL;
unknown's avatar
unknown committed
1946 1947
      }
    }
1948 1949

  free_mem:
1950
    free_root(&alloc,MYF(0));			// Return memory & allocator
1951
    thd->mem_root= param.old_root;
unknown's avatar
unknown committed
1952
    thd->no_errors=0;
unknown's avatar
unknown committed
1953
  }
unknown's avatar
unknown committed
1954

1955
  DBUG_EXECUTE("info", print_quick(quick, &needed_reg););
unknown's avatar
unknown committed
1956

unknown's avatar
unknown committed
1957 1958 1959 1960 1961 1962 1963
  /*
    Assume that if the user is using 'limit' we will only need to scan
    limit rows if we are using a key
  */
  DBUG_RETURN(records ? test(quick) : -1);
}

unknown's avatar
unknown committed
1964

unknown's avatar
unknown committed
1965
/*
1966 1967 1968 1969
  Get cost of 'sweep' full records retrieval.
  SYNOPSIS
    get_sweep_read_cost()
      param            Parameter from test_quick_select
unknown's avatar
unknown committed
1970
      records          # of records to be retrieved
1971
  RETURN
unknown's avatar
unknown committed
1972
    cost of sweep
1973
*/
1974

1975
double get_sweep_read_cost(const PARAM *param, ha_rows records)
1976
{
1977
  double result;
1978
  DBUG_ENTER("get_sweep_read_cost");
1979 1980
  if (param->table->file->primary_key_is_clustered())
  {
1981
    result= param->table->file->read_time(param->table->s->primary_key,
1982
                                          records, records);
1983 1984
  }
  else
unknown's avatar
unknown committed
1985
  {
1986
    double n_blocks=
unknown's avatar
unknown committed
1987
      ceil(ulonglong2double(param->table->file->data_file_length) / IO_SIZE);
1988 1989 1990 1991
    double busy_blocks=
      n_blocks * (1.0 - pow(1.0 - 1.0/n_blocks, rows2double(records)));
    if (busy_blocks < 1.0)
      busy_blocks= 1.0;
unknown's avatar
unknown committed
1992
    DBUG_PRINT("info",("sweep: nblocks=%g, busy_blocks=%g", n_blocks,
1993
                       busy_blocks));
1994
    /*
unknown's avatar
unknown committed
1995
      Disabled: Bail out if # of blocks to read is bigger than # of blocks in
1996 1997 1998 1999 2000 2001 2002 2003
      table data file.
    if (max_cost != DBL_MAX  && (busy_blocks+index_reads_cost) >= n_blocks)
      return 1;
    */
    JOIN *join= param->thd->lex->select_lex.join;
    if (!join || join->tables == 1)
    {
      /* No join, assume reading is done in one 'sweep' */
unknown's avatar
unknown committed
2004
      result= busy_blocks*(DISK_SEEK_BASE_COST +
2005 2006 2007 2008
                          DISK_SEEK_PROP_COST*n_blocks/busy_blocks);
    }
    else
    {
unknown's avatar
unknown committed
2009
      /*
2010 2011 2012
        Possibly this is a join with source table being non-last table, so
        assume that disk seeks are random here.
      */
2013
      result= busy_blocks;
2014 2015
    }
  }
2016
  DBUG_PRINT("info",("returning cost=%g", result));
2017
  DBUG_RETURN(result);
2018
}
2019 2020


2021 2022 2023 2024
/*
  Get best plan for a SEL_IMERGE disjunctive expression.
  SYNOPSIS
    get_best_disjunct_quick()
2025 2026
      param     Parameter from check_quick_select function
      imerge    Expression to use
2027
      read_time Don't create scans with cost > read_time
unknown's avatar
unknown committed
2028

2029
  NOTES
2030
    index_merge cost is calculated as follows:
unknown's avatar
unknown committed
2031
    index_merge_cost =
2032 2033 2034 2035 2036
      cost(index_reads) +         (see #1)
      cost(rowid_to_row_scan) +   (see #2)
      cost(unique_use)            (see #3)

    1. cost(index_reads) =SUM_i(cost(index_read_i))
unknown's avatar
unknown committed
2037 2038
       For non-CPK scans,
         cost(index_read_i) = {cost of ordinary 'index only' scan}
2039 2040 2041 2042 2043
       For CPK scan,
         cost(index_read_i) = {cost of non-'index only' scan}

    2. cost(rowid_to_row_scan)
      If table PK is clustered then
unknown's avatar
unknown committed
2044
        cost(rowid_to_row_scan) =
2045
          {cost of ordinary clustered PK scan with n_ranges=n_rows}
unknown's avatar
unknown committed
2046 2047

      Otherwise, we use the following model to calculate costs:
2048
      We need to retrieve n_rows rows from file that occupies n_blocks blocks.
unknown's avatar
unknown committed
2049
      We assume that offsets of rows we need are independent variates with
2050
      uniform distribution in [0..max_file_offset] range.
unknown's avatar
unknown committed
2051

2052 2053
      We'll denote block as "busy" if it contains row(s) we need to retrieve
      and "empty" if doesn't contain rows we need.
unknown's avatar
unknown committed
2054

2055
      Probability that a block is empty is (1 - 1/n_blocks)^n_rows (this
unknown's avatar
unknown committed
2056
      applies to any block in file). Let x_i be a variate taking value 1 if
2057
      block #i is empty and 0 otherwise.
unknown's avatar
unknown committed
2058

2059 2060
      Then E(x_i) = (1 - 1/n_blocks)^n_rows;

unknown's avatar
unknown committed
2061 2062
      E(n_empty_blocks) = E(sum(x_i)) = sum(E(x_i)) =
        = n_blocks * ((1 - 1/n_blocks)^n_rows) =
2063 2064 2065 2066
       ~= n_blocks * exp(-n_rows/n_blocks).

      E(n_busy_blocks) = n_blocks*(1 - (1 - 1/n_blocks)^n_rows) =
       ~= n_blocks * (1 - exp(-n_rows/n_blocks)).
unknown's avatar
unknown committed
2067

2068 2069
      Average size of "hole" between neighbor non-empty blocks is
           E(hole_size) = n_blocks/E(n_busy_blocks).
unknown's avatar
unknown committed
2070

2071 2072 2073 2074 2075 2076
      The total cost of reading all needed blocks in one "sweep" is:

      E(n_busy_blocks)*
       (DISK_SEEK_BASE_COST + DISK_SEEK_PROP_COST*n_blocks/E(n_busy_blocks)).

    3. Cost of Unique use is calculated in Unique::get_use_cost function.
unknown's avatar
unknown committed
2077 2078 2079 2080 2081

  ROR-union cost is calculated in the same way index_merge, but instead of
  Unique a priority queue is used.

  RETURN
2082 2083
    Created read plan
    NULL - Out of memory or no read scan could be built.
2084
*/
2085

2086 2087
static
TABLE_READ_PLAN *get_best_disjunct_quick(PARAM *param, SEL_IMERGE *imerge,
2088
                                         double read_time)
2089 2090 2091 2092 2093 2094 2095
{
  SEL_TREE **ptree;
  TRP_INDEX_MERGE *imerge_trp= NULL;
  uint n_child_scans= imerge->trees_next - imerge->trees;
  TRP_RANGE **range_scans;
  TRP_RANGE **cur_child;
  TRP_RANGE **cpk_scan= NULL;
unknown's avatar
unknown committed
2096
  bool imerge_too_expensive= FALSE;
2097 2098 2099 2100
  double imerge_cost= 0.0;
  ha_rows cpk_scan_records= 0;
  ha_rows non_cpk_scan_records= 0;
  bool pk_is_clustered= param->table->file->primary_key_is_clustered();
unknown's avatar
unknown committed
2101 2102
  bool all_scans_ror_able= TRUE;
  bool all_scans_rors= TRUE;
2103 2104 2105 2106 2107 2108 2109 2110 2111
  uint unique_calc_buff_size;
  TABLE_READ_PLAN **roru_read_plans;
  TABLE_READ_PLAN **cur_roru_plan;
  double roru_index_costs;
  ha_rows roru_total_records;
  double roru_intersect_part= 1.0;
  DBUG_ENTER("get_best_disjunct_quick");
  DBUG_PRINT("info", ("Full table scan cost =%g", read_time));

unknown's avatar
unknown committed
2112
  if (!(range_scans= (TRP_RANGE**)alloc_root(param->mem_root,
2113 2114 2115
                                             sizeof(TRP_RANGE*)*
                                             n_child_scans)))
    DBUG_RETURN(NULL);
2116
  /*
2117 2118 2119
    Collect best 'range' scan for each of disjuncts, and, while doing so,
    analyze possibility of ROR scans. Also calculate some values needed by
    other parts of the code.
2120
  */
2121
  for (ptree= imerge->trees, cur_child= range_scans;
2122
       ptree != imerge->trees_next;
2123
       ptree++, cur_child++)
2124
  {
2125 2126
    DBUG_EXECUTE("info", print_sel_tree(param, *ptree, &(*ptree)->keys_map,
                                        "tree in SEL_IMERGE"););
unknown's avatar
unknown committed
2127
    if (!(*cur_child= get_key_scans_params(param, *ptree, TRUE, read_time)))
2128 2129
    {
      /*
2130
        One of index scans in this index_merge is more expensive than entire
2131 2132 2133
        table read for another available option. The entire index_merge (and
        any possible ROR-union) will be more expensive then, too. We continue
        here only to update SQL_SELECT members.
2134
      */
unknown's avatar
unknown committed
2135
      imerge_too_expensive= TRUE;
2136 2137 2138
    }
    if (imerge_too_expensive)
      continue;
unknown's avatar
unknown committed
2139

2140 2141 2142
    imerge_cost += (*cur_child)->read_cost;
    all_scans_ror_able &= ((*ptree)->n_ror_scans > 0);
    all_scans_rors &= (*cur_child)->is_ror;
unknown's avatar
unknown committed
2143
    if (pk_is_clustered &&
2144 2145
        param->real_keynr[(*cur_child)->key_idx] ==
        param->table->s->primary_key)
2146
    {
2147 2148
      cpk_scan= cur_child;
      cpk_scan_records= (*cur_child)->records;
2149 2150
    }
    else
2151
      non_cpk_scan_records += (*cur_child)->records;
2152
  }
unknown's avatar
unknown committed
2153

2154
  DBUG_PRINT("info", ("index_merge scans cost=%g", imerge_cost));
unknown's avatar
unknown committed
2155
  if (imerge_too_expensive || (imerge_cost > read_time) ||
2156 2157
      (non_cpk_scan_records+cpk_scan_records >= param->table->file->records) &&
      read_time != DBL_MAX)
2158
  {
unknown's avatar
unknown committed
2159 2160
    /*
      Bail out if it is obvious that both index_merge and ROR-union will be
2161
      more expensive
2162
    */
2163 2164
    DBUG_PRINT("info", ("Sum of index_merge scans is more expensive than "
                        "full table scan, bailing out"));
unknown's avatar
unknown committed
2165
    DBUG_RETURN(NULL);
2166
  }
2167
  if (all_scans_rors)
2168
  {
2169 2170
    roru_read_plans= (TABLE_READ_PLAN**)range_scans;
    goto skip_to_ror_scan;
2171
  }
unknown's avatar
unknown committed
2172 2173
  if (cpk_scan)
  {
2174 2175
    /*
      Add one ROWID comparison for each row retrieved on non-CPK scan.  (it
unknown's avatar
unknown committed
2176 2177 2178
      is done in QUICK_RANGE_SELECT::row_in_ranges)
     */
    imerge_cost += non_cpk_scan_records / TIME_FOR_COMPARE_ROWID;
2179 2180 2181
  }

  /* Calculate cost(rowid_to_row_scan) */
2182
  imerge_cost += get_sweep_read_cost(param, non_cpk_scan_records);
unknown's avatar
unknown committed
2183
  DBUG_PRINT("info",("index_merge cost with rowid-to-row scan: %g",
2184
                     imerge_cost));
2185 2186
  if (imerge_cost > read_time)
    goto build_ror_index_merge;
2187 2188

  /* Add Unique operations cost */
unknown's avatar
unknown committed
2189 2190
  unique_calc_buff_size=
    Unique::get_cost_calc_buff_size(non_cpk_scan_records,
2191 2192 2193 2194 2195 2196
                                    param->table->file->ref_length,
                                    param->thd->variables.sortbuff_size);
  if (param->imerge_cost_buff_size < unique_calc_buff_size)
  {
    if (!(param->imerge_cost_buff= (uint*)alloc_root(param->mem_root,
                                                     unique_calc_buff_size)))
2197
      DBUG_RETURN(NULL);
2198 2199 2200
    param->imerge_cost_buff_size= unique_calc_buff_size;
  }

unknown's avatar
unknown committed
2201
  imerge_cost +=
2202
    Unique::get_use_cost(param->imerge_cost_buff, non_cpk_scan_records,
unknown's avatar
unknown committed
2203 2204
                         param->table->file->ref_length,
                         param->thd->variables.sortbuff_size);
unknown's avatar
unknown committed
2205
  DBUG_PRINT("info",("index_merge total cost: %g (wanted: less then %g)",
2206 2207 2208 2209 2210 2211 2212
                     imerge_cost, read_time));
  if (imerge_cost < read_time)
  {
    if ((imerge_trp= new (param->mem_root)TRP_INDEX_MERGE))
    {
      imerge_trp->read_cost= imerge_cost;
      imerge_trp->records= non_cpk_scan_records + cpk_scan_records;
unknown's avatar
unknown committed
2213
      imerge_trp->records= min(imerge_trp->records,
2214 2215 2216 2217 2218 2219
                               param->table->file->records);
      imerge_trp->range_scans= range_scans;
      imerge_trp->range_scans_end= range_scans + n_child_scans;
      read_time= imerge_cost;
    }
  }
unknown's avatar
unknown committed
2220

unknown's avatar
unknown committed
2221
build_ror_index_merge:
2222 2223
  if (!all_scans_ror_able || param->thd->lex->sql_command == SQLCOM_DELETE)
    DBUG_RETURN(imerge_trp);
unknown's avatar
unknown committed
2224

2225 2226
  /* Ok, it is possible to build a ROR-union, try it. */
  bool dummy;
unknown's avatar
unknown committed
2227
  if (!(roru_read_plans=
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
          (TABLE_READ_PLAN**)alloc_root(param->mem_root,
                                        sizeof(TABLE_READ_PLAN*)*
                                        n_child_scans)))
    DBUG_RETURN(imerge_trp);
skip_to_ror_scan:
  roru_index_costs= 0.0;
  roru_total_records= 0;
  cur_roru_plan= roru_read_plans;

  /* Find 'best' ROR scan for each of trees in disjunction */
  for (ptree= imerge->trees, cur_child= range_scans;
       ptree != imerge->trees_next;
       ptree++, cur_child++, cur_roru_plan++)
2241
  {
2242 2243
    /*
      Assume the best ROR scan is the one that has cheapest full-row-retrieval
unknown's avatar
unknown committed
2244 2245
      scan cost.
      Also accumulate index_only scan costs as we'll need them to calculate
2246 2247 2248 2249 2250 2251 2252
      overall index_intersection cost.
    */
    double cost;
    if ((*cur_child)->is_ror)
    {
      /* Ok, we have index_only cost, now get full rows scan cost */
      cost= param->table->file->
unknown's avatar
unknown committed
2253
              read_time(param->real_keynr[(*cur_child)->key_idx], 1,
2254 2255 2256 2257 2258 2259 2260
                        (*cur_child)->records) +
              rows2double((*cur_child)->records) / TIME_FOR_COMPARE;
    }
    else
      cost= read_time;

    TABLE_READ_PLAN *prev_plan= *cur_child;
unknown's avatar
unknown committed
2261
    if (!(*cur_roru_plan= get_best_ror_intersect(param, *ptree, cost,
2262 2263 2264 2265 2266 2267 2268 2269 2270
                                                 &dummy)))
    {
      if (prev_plan->is_ror)
        *cur_roru_plan= prev_plan;
      else
        DBUG_RETURN(imerge_trp);
      roru_index_costs += (*cur_roru_plan)->read_cost;
    }
    else
unknown's avatar
unknown committed
2271 2272
      roru_index_costs +=
        ((TRP_ROR_INTERSECT*)(*cur_roru_plan))->index_scan_costs;
2273
    roru_total_records += (*cur_roru_plan)->records;
unknown's avatar
unknown committed
2274
    roru_intersect_part *= (*cur_roru_plan)->records /
2275
                           param->table->file->records;
2276
  }
2277

unknown's avatar
unknown committed
2278 2279
  /*
    rows to retrieve=
2280
      SUM(rows_in_scan_i) - table_rows * PROD(rows_in_scan_i / table_rows).
2281
    This is valid because index_merge construction guarantees that conditions
2282 2283 2284
    in disjunction do not share key parts.
  */
  roru_total_records -= (ha_rows)(roru_intersect_part*
unknown's avatar
unknown committed
2285 2286 2287
                                  param->table->file->records);
  /* ok, got a ROR read plan for each of the disjuncts
    Calculate cost:
2288 2289 2290 2291 2292 2293
    cost(index_union_scan(scan_1, ... scan_n)) =
      SUM_i(cost_of_index_only_scan(scan_i)) +
      queue_use_cost(rowid_len, n) +
      cost_of_row_retrieval
    See get_merge_buffers_cost function for queue_use_cost formula derivation.
  */
unknown's avatar
unknown committed
2294

2295
  double roru_total_cost;
unknown's avatar
unknown committed
2296 2297 2298
  roru_total_cost= roru_index_costs +
                   rows2double(roru_total_records)*log((double)n_child_scans) /
                   (TIME_FOR_COMPARE_ROWID * M_LN2) +
2299 2300
                   get_sweep_read_cost(param, roru_total_records);

unknown's avatar
unknown committed
2301
  DBUG_PRINT("info", ("ROR-union: cost %g, %d members", roru_total_cost,
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
                      n_child_scans));
  TRP_ROR_UNION* roru;
  if (roru_total_cost < read_time)
  {
    if ((roru= new (param->mem_root) TRP_ROR_UNION))
    {
      roru->first_ror= roru_read_plans;
      roru->last_ror= roru_read_plans + n_child_scans;
      roru->read_cost= roru_total_cost;
      roru->records= roru_total_records;
      DBUG_RETURN(roru);
    }
  }
  DBUG_RETURN(imerge_trp);
2316 2317 2318 2319 2320 2321 2322
}


/*
  Calculate cost of 'index only' scan for given index and number of records.

  SYNOPSIS
2323
    get_index_only_read_time()
2324 2325 2326 2327 2328
      param    parameters structure
      records  #of records to read
      keynr    key to read

  NOTES
unknown's avatar
unknown committed
2329
    It is assumed that we will read trough the whole key range and that all
2330 2331 2332 2333
    key blocks are half full (normally things are much better). It is also
    assumed that each time we read the next key from the index, the handler
    performs a random seek, thus the cost is proportional to the number of
    blocks read.
2334 2335 2336 2337 2338 2339

  TODO:
    Move this to handler->read_time() by adding a flag 'index-only-read' to
    this call. The reason for doing this is that the current function doesn't
    handle the case when the row is stored in the b-tree (like in innodb
    clustered index)
2340 2341
*/

unknown's avatar
unknown committed
2342
static double get_index_only_read_time(const PARAM* param, ha_rows records,
unknown's avatar
unknown committed
2343
                                       int keynr)
2344 2345 2346 2347 2348 2349 2350
{
  double read_time;
  uint keys_per_block= (param->table->file->block_size/2/
			(param->table->key_info[keynr].key_length+
			 param->table->file->ref_length) + 1);
  read_time=((double) (records+keys_per_block-1)/
             (double) keys_per_block);
2351
  return read_time;
2352 2353
}

2354

2355 2356
typedef struct st_ror_scan_info
{
2357 2358 2359 2360 2361
  uint      idx;      /* # of used key in param->keys */
  uint      keynr;    /* # of used key in table */
  ha_rows   records;  /* estimate of # records this scan will return */

  /* Set of intervals over key fields that will be used for row retrieval. */
unknown's avatar
unknown committed
2362
  SEL_ARG   *sel_arg;
2363 2364

  /* Fields used in the query and covered by this ROR scan. */
unknown's avatar
unknown committed
2365 2366
  MY_BITMAP covered_fields;
  uint      used_fields_covered; /* # of set bits in covered_fields */
2367
  int       key_rec_length; /* length of key record (including rowid) */
2368 2369

  /*
2370 2371
    Cost of reading all index records with values in sel_arg intervals set
    (assuming there is no need to access full table records)
unknown's avatar
unknown committed
2372 2373
  */
  double    index_read_cost;
2374 2375 2376
  uint      first_uncovered_field; /* first unused bit in covered_fields */
  uint      key_components; /* # of parts in the key */
} ROR_SCAN_INFO;
2377 2378 2379


/*
unknown's avatar
unknown committed
2380
  Create ROR_SCAN_INFO* structure with a single ROR scan on index idx using
2381
  sel_arg set of intervals.
unknown's avatar
unknown committed
2382

2383 2384
  SYNOPSIS
    make_ror_scan()
2385 2386 2387
      param    Parameter from test_quick_select function
      idx      Index of key in param->keys
      sel_arg  Set of intervals for a given key
unknown's avatar
unknown committed
2388

2389
  RETURN
unknown's avatar
unknown committed
2390
    NULL - out of memory
2391
    ROR scan structure containing a scan for {idx, sel_arg}
2392 2393 2394 2395 2396 2397 2398 2399 2400
*/

static
ROR_SCAN_INFO *make_ror_scan(const PARAM *param, int idx, SEL_ARG *sel_arg)
{
  ROR_SCAN_INFO *ror_scan;
  uchar *bitmap_buf;
  uint keynr;
  DBUG_ENTER("make_ror_scan");
unknown's avatar
unknown committed
2401

2402 2403 2404 2405 2406 2407
  if (!(ror_scan= (ROR_SCAN_INFO*)alloc_root(param->mem_root,
                                             sizeof(ROR_SCAN_INFO))))
    DBUG_RETURN(NULL);

  ror_scan->idx= idx;
  ror_scan->keynr= keynr= param->real_keynr[idx];
unknown's avatar
unknown committed
2408 2409
  ror_scan->key_rec_length= (param->table->key_info[keynr].key_length +
                             param->table->file->ref_length);
2410 2411
  ror_scan->sel_arg= sel_arg;
  ror_scan->records= param->table->quick_rows[keynr];
unknown's avatar
unknown committed
2412 2413

  if (!(bitmap_buf= (uchar*)alloc_root(param->mem_root,
unknown's avatar
unknown committed
2414
                                       param->fields_bitmap_size)))
2415
    DBUG_RETURN(NULL);
unknown's avatar
unknown committed
2416

2417
  if (bitmap_init(&ror_scan->covered_fields, bitmap_buf,
unknown's avatar
unknown committed
2418
                  param->fields_bitmap_size*8, FALSE))
2419 2420
    DBUG_RETURN(NULL);
  bitmap_clear_all(&ror_scan->covered_fields);
unknown's avatar
unknown committed
2421

2422
  KEY_PART_INFO *key_part= param->table->key_info[keynr].key_part;
unknown's avatar
unknown committed
2423
  KEY_PART_INFO *key_part_end= key_part +
2424 2425 2426 2427 2428 2429
                               param->table->key_info[keynr].key_parts;
  for (;key_part != key_part_end; ++key_part)
  {
    if (bitmap_is_set(&param->needed_fields, key_part->fieldnr))
      bitmap_set_bit(&ror_scan->covered_fields, key_part->fieldnr);
  }
unknown's avatar
unknown committed
2430
  ror_scan->index_read_cost=
2431 2432 2433 2434 2435 2436
    get_index_only_read_time(param, param->table->quick_rows[ror_scan->keynr],
                             ror_scan->keynr);
  DBUG_RETURN(ror_scan);
}


unknown's avatar
unknown committed
2437
/*
2438 2439 2440 2441 2442 2443 2444
  Compare two ROR_SCAN_INFO** by  E(#records_matched) * key_record_length.
  SYNOPSIS
    cmp_ror_scan_info()
      a ptr to first compared value
      b ptr to second compared value

  RETURN
unknown's avatar
unknown committed
2445
   -1 a < b
2446 2447
    0 a = b
    1 a > b
2448
*/
unknown's avatar
unknown committed
2449

2450
static int cmp_ror_scan_info(ROR_SCAN_INFO** a, ROR_SCAN_INFO** b)
2451 2452 2453 2454 2455 2456 2457
{
  double val1= rows2double((*a)->records) * (*a)->key_rec_length;
  double val2= rows2double((*b)->records) * (*b)->key_rec_length;
  return (val1 < val2)? -1: (val1 == val2)? 0 : 1;
}

/*
unknown's avatar
unknown committed
2458 2459 2460
  Compare two ROR_SCAN_INFO** by
   (#covered fields in F desc,
    #components asc,
2461
    number of first not covered component asc)
2462 2463 2464 2465 2466 2467 2468

  SYNOPSIS
    cmp_ror_scan_info_covering()
      a ptr to first compared value
      b ptr to second compared value

  RETURN
unknown's avatar
unknown committed
2469
   -1 a < b
2470 2471
    0 a = b
    1 a > b
2472
*/
unknown's avatar
unknown committed
2473

2474
static int cmp_ror_scan_info_covering(ROR_SCAN_INFO** a, ROR_SCAN_INFO** b)
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
{
  if ((*a)->used_fields_covered > (*b)->used_fields_covered)
    return -1;
  if ((*a)->used_fields_covered < (*b)->used_fields_covered)
    return 1;
  if ((*a)->key_components < (*b)->key_components)
    return -1;
  if ((*a)->key_components > (*b)->key_components)
    return 1;
  if ((*a)->first_uncovered_field < (*b)->first_uncovered_field)
    return -1;
  if ((*a)->first_uncovered_field > (*b)->first_uncovered_field)
    return 1;
  return 0;
}

unknown's avatar
unknown committed
2491

2492
/* Auxiliary structure for incremental ROR-intersection creation */
unknown's avatar
unknown committed
2493
typedef struct
2494 2495 2496
{
  const PARAM *param;
  MY_BITMAP covered_fields; /* union of fields covered by all scans */
unknown's avatar
unknown committed
2497
  /*
2498
    Fraction of table records that satisfies conditions of all scans.
unknown's avatar
unknown committed
2499
    This is the number of full records that will be retrieved if a
2500 2501
    non-index_only index intersection will be employed.
  */
2502 2503 2504 2505
  double out_rows;
  /* TRUE if covered_fields is a superset of needed_fields */
  bool is_covering;

2506
  ha_rows index_records; /* sum(#records to look in indexes) */
2507 2508
  double index_scan_costs; /* SUM(cost of 'index-only' scans) */
  double total_cost;
2509
} ROR_INTERSECT_INFO;
2510 2511


2512 2513 2514 2515
/*
  Allocate a ROR_INTERSECT_INFO and initialize it to contain zero scans.

  SYNOPSIS
unknown's avatar
unknown committed
2516 2517 2518
    ror_intersect_init()
      param         Parameter from test_quick_select

2519 2520 2521 2522 2523 2524
  RETURN
    allocated structure
    NULL on error
*/

static
2525
ROR_INTERSECT_INFO* ror_intersect_init(const PARAM *param)
2526 2527 2528
{
  ROR_INTERSECT_INFO *info;
  uchar* buf;
unknown's avatar
unknown committed
2529
  if (!(info= (ROR_INTERSECT_INFO*)alloc_root(param->mem_root,
2530 2531 2532 2533 2534 2535
                                              sizeof(ROR_INTERSECT_INFO))))
    return NULL;
  info->param= param;
  if (!(buf= (uchar*)alloc_root(param->mem_root, param->fields_bitmap_size)))
    return NULL;
  if (bitmap_init(&info->covered_fields, buf, param->fields_bitmap_size*8,
unknown's avatar
unknown committed
2536
                  FALSE))
2537
    return NULL;
2538
  info->is_covering= FALSE;
2539
  info->index_scan_costs= 0.0;
2540 2541 2542
  info->index_records= 0;
  info->out_rows= param->table->file->records;
  bitmap_clear_all(&info->covered_fields);
2543 2544 2545
  return info;
}

2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
void ror_intersect_cpy(ROR_INTERSECT_INFO *dst, const ROR_INTERSECT_INFO *src)
{
  dst->param= src->param;
  memcpy(dst->covered_fields.bitmap, src->covered_fields.bitmap, 
         src->covered_fields.bitmap_size);
  dst->out_rows= src->out_rows;
  dst->is_covering= src->is_covering;
  dst->index_records= src->index_records;
  dst->index_scan_costs= src->index_scan_costs;
  dst->total_cost= src->total_cost;
}
unknown's avatar
unknown committed
2557 2558


2559
/*
2560
  Get selectivity of a ROR scan wrt ROR-intersection.
2561

2562
  SYNOPSIS
2563 2564 2565 2566
    ror_scan_selectivity()
      info  ROR-interection 
      scan  ROR scan
      
2567
  NOTES
2568
    Suppose we have a condition on several keys
unknown's avatar
unknown committed
2569 2570
    cond=k_11=c_11 AND k_12=c_12 AND ...  // parts of first key
         k_21=c_21 AND k_22=c_22 AND ...  // parts of second key
2571
          ...
2572
         k_n1=c_n1 AND k_n3=c_n3 AND ...  (1) //parts of the key used by *scan
unknown's avatar
unknown committed
2573

2574 2575
    where k_ij may be the same as any k_pq (i.e. keys may have common parts).

unknown's avatar
unknown committed
2576
    A full row is retrieved if entire condition holds.
2577 2578

    The recursive procedure for finding P(cond) is as follows:
unknown's avatar
unknown committed
2579

2580
    First step:
unknown's avatar
unknown committed
2581
    Pick 1st part of 1st key and break conjunction (1) into two parts:
2582 2583
      cond= (k_11=c_11 AND R)

unknown's avatar
unknown committed
2584
    Here R may still contain condition(s) equivalent to k_11=c_11.
2585 2586
    Nevertheless, the following holds:

unknown's avatar
unknown committed
2587
      P(k_11=c_11 AND R) = P(k_11=c_11) * P(R | k_11=c_11).
2588 2589 2590 2591 2592

    Mark k_11 as fixed field (and satisfied condition) F, save P(F),
    save R to be cond and proceed to recursion step.

    Recursion step:
2593
    We have a set of fixed fields/satisfied conditions) F, probability P(F),
2594 2595 2596
    and remaining conjunction R
    Pick next key part on current key and its condition "k_ij=c_ij".
    We will add "k_ij=c_ij" into F and update P(F).
2597
    Lets denote k_ij as t,  R = t AND R1, where R1 may still contain t. Then
2598

2599
     P((t AND R1)|F) = P(t|F) * P(R1|t|F) = P(t|F) * P(R1|(t AND F)) (2)
2600 2601 2602 2603 2604 2605 2606

    (where '|' mean conditional probability, not "or")

    Consider the first multiplier in (2). One of the following holds:
    a) F contains condition on field used in t (i.e. t AND F = F).
      Then P(t|F) = 1

unknown's avatar
unknown committed
2607 2608
    b) F doesn't contain condition on field used in t. Then F and t are
     considered independent.
2609

unknown's avatar
unknown committed
2610
     P(t|F) = P(t|(fields_before_t_in_key AND other_fields)) =
2611 2612
          = P(t|fields_before_t_in_key).

2613 2614
     P(t|fields_before_t_in_key) = #records(fields_before_t_in_key) /
                                   #records(fields_before_t_in_key, t)
unknown's avatar
unknown committed
2615 2616

    The second multiplier is calculated by applying this step recursively.
2617

2618 2619 2620 2621 2622
  IMPLEMENTATION
    This function calculates the result of application of the "recursion step"
    described above for all fixed key members of a single key, accumulating set
    of covered fields, selectivity, etc.

unknown's avatar
unknown committed
2623
    The calculation is conducted as follows:
2624
    Lets denote #records(keypart1, ... keypartK) as n_k. We need to calculate
unknown's avatar
unknown committed
2625

2626 2627
     n_{k1}      n_{k_2}
    --------- * ---------  * .... (3)
unknown's avatar
unknown committed
2628
     n_{k1-1}    n_{k2_1}
2629

unknown's avatar
unknown committed
2630 2631 2632 2633
    where k1,k2,... are key parts which fields were not yet marked as fixed
    ( this is result of application of option b) of the recursion step for
      parts of a single key).
    Since it is reasonable to expect that most of the fields are not marked
unknown's avatar
unknown committed
2634
    as fixed, we calculate (3) as
2635 2636 2637

                                  n_{i1}      n_{i_2}
    (3) = n_{max_key_part}  / (   --------- * ---------  * ....  )
unknown's avatar
unknown committed
2638 2639 2640 2641
                                  n_{i1-1}    n_{i2_1}

    where i1,i2, .. are key parts that were already marked as fixed.

2642 2643
    In order to minimize number of expensive records_in_range calls we group
    and reduce adjacent fractions.
unknown's avatar
unknown committed
2644

2645
  RETURN
2646 2647
    Selectivity of given ROR scan.
    
2648 2649
*/

2650 2651
static double ror_scan_selectivity(const ROR_INTERSECT_INFO *info, 
                                   const ROR_SCAN_INFO *scan)
2652 2653
{
  double selectivity_mult= 1.0;
2654
  KEY_PART_INFO *key_part= info->param->table->key_info[scan->keynr].key_part;
unknown's avatar
unknown committed
2655
  byte key_val[MAX_KEY_LENGTH+MAX_FIELD_WIDTH]; /* key values tuple */
2656
  char *key_ptr= (char*) key_val;
2657 2658
  SEL_ARG *sel_arg, *tuple_arg= NULL;
  bool cur_covered;
2659 2660
  bool prev_covered= test(bitmap_is_set(&info->covered_fields,
                                        key_part->fieldnr));
unknown's avatar
unknown committed
2661 2662 2663 2664 2665 2666
  key_range min_range;
  key_range max_range;
  min_range.key= (byte*) key_val;
  min_range.flag= HA_READ_KEY_EXACT;
  max_range.key= (byte*) key_val;
  max_range.flag= HA_READ_AFTER_KEY;
2667 2668
  ha_rows prev_records= info->param->table->file->records;
  DBUG_ENTER("ror_intersect_selectivity");
unknown's avatar
unknown committed
2669 2670 2671

  for (sel_arg= scan->sel_arg; sel_arg;
       sel_arg= sel_arg->next_key_part)
2672
  {
2673
    DBUG_PRINT("info",("sel_arg step"));
2674
    cur_covered= test(bitmap_is_set(&info->covered_fields,
unknown's avatar
unknown committed
2675
                                    key_part[sel_arg->part].fieldnr));
2676
    if (cur_covered != prev_covered)
2677
    {
2678
      /* create (part1val, ..., part{n-1}val) tuple. */
unknown's avatar
unknown committed
2679 2680
      ha_rows records;
      if (!tuple_arg)
2681
      {
unknown's avatar
unknown committed
2682 2683
        tuple_arg= scan->sel_arg;
        /* Here we use the length of the first key part */
2684
        tuple_arg->store_min(key_part->store_length, &key_ptr, 0);
unknown's avatar
unknown committed
2685 2686 2687 2688
      }
      while (tuple_arg->next_key_part != sel_arg)
      {
        tuple_arg= tuple_arg->next_key_part;
2689
        tuple_arg->store_min(key_part[tuple_arg->part].store_length, &key_ptr, 0);
unknown's avatar
unknown committed
2690
      }
2691
      min_range.length= max_range.length= ((char*) key_ptr - (char*) key_val);
unknown's avatar
unknown committed
2692 2693
      records= (info->param->table->file->
                records_in_range(scan->keynr, &min_range, &max_range));
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
      if (cur_covered)
      {
        /* uncovered -> covered */
        double tmp= rows2double(records)/rows2double(prev_records);
        DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp));
        selectivity_mult *= tmp;
        prev_records= HA_POS_ERROR;
      }
      else
      {
        /* covered -> uncovered */
unknown's avatar
unknown committed
2705
        prev_records= records;
2706
      }
2707
    }
2708 2709 2710 2711
    prev_covered= cur_covered;
  }
  if (!prev_covered)
  {
2712
    double tmp= rows2double(info->param->table->quick_rows[scan->keynr]) /
2713 2714
                rows2double(prev_records);
    DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp));
unknown's avatar
unknown committed
2715
    selectivity_mult *= tmp;
2716
  }
2717 2718 2719
  DBUG_PRINT("info", ("Returning multiplier: %g", selectivity_mult));
  DBUG_RETURN(selectivity_mult);
}
2720

unknown's avatar
unknown committed
2721

2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
/*
  Check if adding a ROR scan to a ROR-intersection reduces its cost of
  ROR-intersection and if yes, update parameters of ROR-intersection,
  including its cost.

  SYNOPSIS
    ror_intersect_add()
      param        Parameter from test_quick_select
      info         ROR-intersection structure to add the scan to.
      ror_scan     ROR scan info to add.
      is_cpk_scan  If TRUE, add the scan as CPK scan (this can be inferred
                   from other parameters and is passed separately only to
                   avoid duplicating the inference code)

  NOTES
    Adding a ROR scan to ROR-intersect "makes sense" iff the cost of ROR-
    intersection decreases. The cost of ROR-intersection is calculated as
    follows:

    cost= SUM_i(key_scan_cost_i) + cost_of_full_rows_retrieval

    When we add a scan the first increases and the second decreases.

    cost_of_full_rows_retrieval=
      (union of indexes used covers all needed fields) ?
        cost_of_sweep_read(E(rows_to_retrieve), rows_in_table) :
        0

    E(rows_to_retrieve) = #rows_in_table * ror_scan_selectivity(null, scan1) *
                           ror_scan_selectivity({scan1}, scan2) * ... *
                           ror_scan_selectivity({scan1,...}, scanN). 
  RETURN
    TRUE   ROR scan added to ROR-intersection, cost updated.
    FALSE  It doesn't make sense to add this ROR scan to this ROR-intersection.
*/

static bool ror_intersect_add(ROR_INTERSECT_INFO *info,
unknown's avatar
unknown committed
2759
                              ROR_SCAN_INFO* ror_scan, bool is_cpk_scan)
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
{
  double selectivity_mult= 1.0;

  DBUG_ENTER("ror_intersect_add");
  DBUG_PRINT("info", ("Current out_rows= %g", info->out_rows));
  DBUG_PRINT("info", ("Adding scan on %s",
                      info->param->table->key_info[ror_scan->keynr].name));
  DBUG_PRINT("info", ("is_cpk_scan=%d",is_cpk_scan));

  selectivity_mult = ror_scan_selectivity(info, ror_scan);
2770 2771 2772
  if (selectivity_mult == 1.0)
  {
    /* Don't add this scan if it doesn't improve selectivity. */
2773
    DBUG_PRINT("info", ("The scan doesn't improve selectivity."));
unknown's avatar
unknown committed
2774
    DBUG_RETURN(FALSE);
2775
  }
2776 2777 2778 2779
  
  info->out_rows *= selectivity_mult;
  DBUG_PRINT("info", ("info->total_cost= %g", info->total_cost));
  
2780
  if (is_cpk_scan)
unknown's avatar
unknown committed
2781
  {
2782 2783 2784 2785 2786 2787
    /*
      CPK scan is used to filter out rows. We apply filtering for 
      each record of every scan. Assuming 1/TIME_FOR_COMPARE_ROWID
      per check this gives us:
    */
    info->index_scan_costs += rows2double(info->index_records) / 
2788 2789 2790 2791
                              TIME_FOR_COMPARE_ROWID;
  }
  else
  {
2792
    info->index_records += info->param->table->quick_rows[ror_scan->keynr];
2793 2794
    info->index_scan_costs += ror_scan->index_read_cost;
    bitmap_union(&info->covered_fields, &ror_scan->covered_fields);
2795 2796 2797 2798 2799 2800
    if (!info->is_covering && bitmap_is_subset(&info->param->needed_fields,
                                               &info->covered_fields))
    {
      DBUG_PRINT("info", ("ROR-intersect is covering now"));
      info->is_covering= TRUE;
    }
2801
  }
unknown's avatar
unknown committed
2802

2803
  info->total_cost= info->index_scan_costs;
2804
  DBUG_PRINT("info", ("info->total_cost= %g", info->total_cost));
2805 2806
  if (!info->is_covering)
  {
2807 2808 2809
    info->total_cost += 
      get_sweep_read_cost(info->param, double2rows(info->out_rows));
    DBUG_PRINT("info", ("info->total_cost= %g", info->total_cost));
2810
  }
2811
  DBUG_PRINT("info", ("New out_rows= %g", info->out_rows));
unknown's avatar
unknown committed
2812
  DBUG_PRINT("info", ("New cost= %g, %scovering", info->total_cost,
2813
                      info->is_covering?"" : "non-"));
2814
  DBUG_RETURN(TRUE);
2815 2816
}

2817

unknown's avatar
unknown committed
2818 2819
/*
  Get best ROR-intersection plan using non-covering ROR-intersection search
2820 2821 2822 2823
  algorithm. The returned plan may be covering.

  SYNOPSIS
    get_best_ror_intersect()
2824 2825 2826
      param            Parameter from test_quick_select function.
      tree             Transformed restriction condition to be used to look
                       for ROR scans.
2827
      read_time        Do not return read plans with cost > read_time.
unknown's avatar
unknown committed
2828
      are_all_covering [out] set to TRUE if union of all scans covers all
2829 2830
                       fields needed by the query (and it is possible to build
                       a covering ROR-intersection)
2831

2832
  NOTES
2833 2834 2835 2836 2837
    get_key_scans_params must be called before this function can be called.
    
    When this function is called by ROR-union construction algorithm it
    assumes it is building an uncovered ROR-intersection (and thus # of full
    records to be retrieved is wrong here). This is a hack.
unknown's avatar
unknown committed
2838

2839
  IMPLEMENTATION
2840
    The approximate best non-covering plan search algorithm is as follows:
2841

2842 2843 2844 2845
    find_min_ror_intersection_scan()
    {
      R= select all ROR scans;
      order R by (E(#records_matched) * key_record_length).
unknown's avatar
unknown committed
2846

2847 2848 2849 2850 2851 2852
      S= first(R); -- set of scans that will be used for ROR-intersection
      R= R-first(S);
      min_cost= cost(S);
      min_scan= make_scan(S);
      while (R is not empty)
      {
2853 2854
        firstR= R - first(R);
        if (!selectivity(S + firstR < selectivity(S)))
2855
          continue;
2856
          
2857 2858 2859 2860 2861 2862 2863 2864 2865
        S= S + first(R);
        if (cost(S) < min_cost)
        {
          min_cost= cost(S);
          min_scan= make_scan(S);
        }
      }
      return min_scan;
    }
2866

2867
    See ror_intersect_add function for ROR intersection costs.
2868

2869
    Special handling for Clustered PK scans
unknown's avatar
unknown committed
2870 2871
    Clustered PK contains all table fields, so using it as a regular scan in
    index intersection doesn't make sense: a range scan on CPK will be less
2872 2873
    expensive in this case.
    Clustered PK scan has special handling in ROR-intersection: it is not used
unknown's avatar
unknown committed
2874
    to retrieve rows, instead its condition is used to filter row references
2875
    we get from scans on other keys.
2876 2877

  RETURN
unknown's avatar
unknown committed
2878
    ROR-intersection table read plan
2879
    NULL if out of memory or no suitable plan found.
2880 2881
*/

2882 2883 2884 2885 2886 2887
static
TRP_ROR_INTERSECT *get_best_ror_intersect(const PARAM *param, SEL_TREE *tree,
                                          double read_time,
                                          bool *are_all_covering)
{
  uint idx;
2888
  double min_cost= DBL_MAX;
2889
  DBUG_ENTER("get_best_ror_intersect");
2890

2891
  if ((tree->n_ror_scans < 2) || !param->table->file->records)
2892
    DBUG_RETURN(NULL);
2893 2894

  /*
2895 2896
    Step1: Collect ROR-able SEL_ARGs and create ROR_SCAN_INFO for each of 
    them. Also find and save clustered PK scan if there is one.
2897
  */
2898
  ROR_SCAN_INFO **cur_ror_scan;
2899
  ROR_SCAN_INFO *cpk_scan= NULL;
2900
  uint cpk_no;
unknown's avatar
unknown committed
2901
  bool cpk_scan_used= FALSE;
2902

2903 2904 2905 2906
  if (!(tree->ror_scans= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
                                                     sizeof(ROR_SCAN_INFO*)*
                                                     param->keys)))
    return NULL;
2907 2908
  cpk_no= ((param->table->file->primary_key_is_clustered()) ?
           param->table->s->primary_key : MAX_KEY);
unknown's avatar
unknown committed
2909

2910
  for (idx= 0, cur_ror_scan= tree->ror_scans; idx < param->keys; idx++)
2911
  {
2912
    ROR_SCAN_INFO *scan;
2913
    if (!tree->ror_scans_map.is_set(idx))
2914
      continue;
2915
    if (!(scan= make_ror_scan(param, idx, tree->keys[idx])))
2916
      return NULL;
2917
    if (param->real_keynr[idx] == cpk_no)
2918
    {
2919 2920
      cpk_scan= scan;
      tree->n_ror_scans--;
2921 2922
    }
    else
2923
      *(cur_ror_scan++)= scan;
2924
  }
unknown's avatar
unknown committed
2925

2926
  tree->ror_scans_end= cur_ror_scan;
unknown's avatar
unknown committed
2927 2928
  DBUG_EXECUTE("info",print_ror_scans_arr(param->table, "original",
                                          tree->ror_scans,
2929 2930
                                          tree->ror_scans_end););
  /*
unknown's avatar
unknown committed
2931
    Ok, [ror_scans, ror_scans_end) is array of ptrs to initialized
2932 2933
    ROR_SCAN_INFO's.
    Step 2: Get best ROR-intersection using an approximate algorithm.
2934 2935 2936
  */
  qsort(tree->ror_scans, tree->n_ror_scans, sizeof(ROR_SCAN_INFO*),
        (qsort_cmp)cmp_ror_scan_info);
unknown's avatar
unknown committed
2937 2938
  DBUG_EXECUTE("info",print_ror_scans_arr(param->table, "ordered",
                                          tree->ror_scans,
2939
                                          tree->ror_scans_end););
unknown's avatar
unknown committed
2940

2941 2942 2943 2944 2945 2946 2947 2948 2949
  ROR_SCAN_INFO **intersect_scans; /* ROR scans used in index intersection */
  ROR_SCAN_INFO **intersect_scans_end;
  if (!(intersect_scans= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
                                                     sizeof(ROR_SCAN_INFO*)*
                                                     tree->n_ror_scans)))
    return NULL;
  intersect_scans_end= intersect_scans;

  /* Create and incrementally update ROR intersection. */
2950 2951 2952
  ROR_INTERSECT_INFO *intersect, *intersect_best;
  if (!(intersect= ror_intersect_init(param)) || 
      !(intersect_best= ror_intersect_init(param)))
2953
    return NULL;
unknown's avatar
unknown committed
2954

2955
  /* [intersect_scans,intersect_scans_best) will hold the best intersection */
unknown's avatar
unknown committed
2956
  ROR_SCAN_INFO **intersect_scans_best;
2957
  cur_ror_scan= tree->ror_scans;
2958
  intersect_scans_best= intersect_scans;
2959
  while (cur_ror_scan != tree->ror_scans_end && !intersect->is_covering)
2960
  {
2961
    /* S= S + first(R);  R= R - first(R); */
unknown's avatar
unknown committed
2962
    if (!ror_intersect_add(intersect, *cur_ror_scan, FALSE))
2963 2964 2965 2966 2967 2968
    {
      cur_ror_scan++;
      continue;
    }
    
    *(intersect_scans_end++)= *(cur_ror_scan++);
unknown's avatar
unknown committed
2969

2970
    if (intersect->total_cost < min_cost)
2971
    {
2972
      /* Local minimum found, save it */
2973
      ror_intersect_cpy(intersect_best, intersect);
2974
      intersect_scans_best= intersect_scans_end;
2975
      min_cost = intersect->total_cost;
2976 2977
    }
  }
unknown's avatar
unknown committed
2978

2979 2980 2981 2982 2983 2984
  if (intersect_scans_best == intersect_scans)
  {
    DBUG_PRINT("info", ("None of scans increase selectivity"));
    DBUG_RETURN(NULL);
  }
    
2985 2986 2987 2988
  DBUG_EXECUTE("info",print_ror_scans_arr(param->table,
                                          "best ROR-intersection",
                                          intersect_scans,
                                          intersect_scans_best););
unknown's avatar
unknown committed
2989

2990
  *are_all_covering= intersect->is_covering;
unknown's avatar
unknown committed
2991
  uint best_num= intersect_scans_best - intersect_scans;
2992 2993
  ror_intersect_cpy(intersect, intersect_best);

2994 2995
  /*
    Ok, found the best ROR-intersection of non-CPK key scans.
2996 2997
    Check if we should add a CPK scan. If the obtained ROR-intersection is 
    covering, it doesn't make sense to add CPK scan.
2998 2999
  */
  if (cpk_scan && !intersect->is_covering)
3000
  {
3001
    if (ror_intersect_add(intersect, cpk_scan, TRUE) && 
3002
        (intersect->total_cost < min_cost))
3003
    {
unknown's avatar
unknown committed
3004
      cpk_scan_used= TRUE;
3005
      intersect_best= intersect; //just set pointer here
3006 3007
    }
  }
unknown's avatar
unknown committed
3008

3009
  /* Ok, return ROR-intersect plan if we have found one */
3010
  TRP_ROR_INTERSECT *trp= NULL;
3011
  if (min_cost < read_time && (cpk_scan_used || best_num > 1))
3012
  {
3013 3014
    if (!(trp= new (param->mem_root) TRP_ROR_INTERSECT))
      DBUG_RETURN(trp);
unknown's avatar
unknown committed
3015 3016
    if (!(trp->first_scan=
           (ROR_SCAN_INFO**)alloc_root(param->mem_root,
3017 3018 3019 3020
                                       sizeof(ROR_SCAN_INFO*)*best_num)))
      DBUG_RETURN(NULL);
    memcpy(trp->first_scan, intersect_scans, best_num*sizeof(ROR_SCAN_INFO*));
    trp->last_scan=  trp->first_scan + best_num;
3021 3022 3023 3024 3025 3026
    trp->is_covering= intersect_best->is_covering;
    trp->read_cost= intersect_best->total_cost;
    /* Prevent divisons by zero */
    ha_rows best_rows = double2rows(intersect_best->out_rows);
    if (!best_rows)
      best_rows= 1;
3027
    trp->records= best_rows;
3028 3029 3030 3031 3032
    trp->index_scan_costs= intersect_best->index_scan_costs;
    trp->cpk_scan= cpk_scan_used? cpk_scan: NULL;
    DBUG_PRINT("info", ("Returning non-covering ROR-intersect plan:"
                        "cost %g, records %lu",
                        trp->read_cost, (ulong) trp->records));
unknown's avatar
unknown committed
3033
  }
3034
  DBUG_RETURN(trp);
3035 3036 3037 3038
}


/*
3039
  Get best covering ROR-intersection.
3040
  SYNOPSIS
3041
    get_best_covering_ror_intersect()
3042 3043 3044
      param     Parameter from test_quick_select function.
      tree      SEL_TREE with sets of intervals for different keys.
      read_time Don't return table read plans with cost > read_time.
3045

unknown's avatar
unknown committed
3046 3047
  RETURN
    Best covering ROR-intersection plan
3048
    NULL if no plan found.
3049 3050

  NOTES
3051
    get_best_ror_intersect must be called for a tree before calling this
unknown's avatar
unknown committed
3052
    function for it.
3053
    This function invalidates tree->ror_scans member values.
unknown's avatar
unknown committed
3054

3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
  The following approximate algorithm is used:
    I=set of all covering indexes
    F=set of all fields to cover
    S={}

    do {
      Order I by (#covered fields in F desc,
                  #components asc,
                  number of first not covered component asc);
      F=F-covered by first(I);
      S=S+first(I);
      I=I-first(I);
    } while F is not empty.
3068 3069
*/

3070
static
unknown's avatar
unknown committed
3071 3072
TRP_ROR_INTERSECT *get_best_covering_ror_intersect(PARAM *param,
                                                   SEL_TREE *tree,
3073
                                                   double read_time)
3074
{
3075
  ROR_SCAN_INFO **ror_scan_mark;
unknown's avatar
unknown committed
3076
  ROR_SCAN_INFO **ror_scans_end= tree->ror_scans_end;
3077 3078 3079 3080
  DBUG_ENTER("get_best_covering_ror_intersect");
  uint nbits= param->fields_bitmap_size*8;

  for (ROR_SCAN_INFO **scan= tree->ror_scans; scan != ror_scans_end; ++scan)
unknown's avatar
unknown committed
3081
    (*scan)->key_components=
3082
      param->table->key_info[(*scan)->keynr].key_parts;
unknown's avatar
unknown committed
3083

3084 3085
  /*
    Run covering-ROR-search algorithm.
unknown's avatar
unknown committed
3086
    Assume set I is [ror_scan .. ror_scans_end)
3087
  */
unknown's avatar
unknown committed
3088

3089 3090
  /*I=set of all covering indexes */
  ror_scan_mark= tree->ror_scans;
unknown's avatar
unknown committed
3091

3092 3093
  uchar buf[MAX_KEY/8+1];
  MY_BITMAP covered_fields;
unknown's avatar
unknown committed
3094
  if (bitmap_init(&covered_fields, buf, nbits, FALSE))
3095 3096 3097 3098 3099
    DBUG_RETURN(0);
  bitmap_clear_all(&covered_fields);

  double total_cost= 0.0f;
  ha_rows records=0;
unknown's avatar
unknown committed
3100 3101
  bool all_covered;

3102 3103 3104 3105 3106 3107
  DBUG_PRINT("info", ("Building covering ROR-intersection"));
  DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
                                           "building covering ROR-I",
                                           ror_scan_mark, ror_scans_end););
  do {
    /*
unknown's avatar
unknown committed
3108
      Update changed sorting info:
3109
        #covered fields,
unknown's avatar
unknown committed
3110
	number of first not covered component
3111 3112 3113 3114 3115
      Calculate and save these values for each of remaining scans.
    */
    for (ROR_SCAN_INFO **scan= ror_scan_mark; scan != ror_scans_end; ++scan)
    {
      bitmap_subtract(&(*scan)->covered_fields, &covered_fields);
unknown's avatar
unknown committed
3116
      (*scan)->used_fields_covered=
3117
        bitmap_bits_set(&(*scan)->covered_fields);
unknown's avatar
unknown committed
3118
      (*scan)->first_uncovered_field=
3119 3120 3121 3122 3123 3124 3125 3126 3127
        bitmap_get_first(&(*scan)->covered_fields);
    }

    qsort(ror_scan_mark, ror_scans_end-ror_scan_mark, sizeof(ROR_SCAN_INFO*),
          (qsort_cmp)cmp_ror_scan_info_covering);

    DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
                                             "remaining scans",
                                             ror_scan_mark, ror_scans_end););
unknown's avatar
unknown committed
3128

3129 3130 3131
    /* I=I-first(I) */
    total_cost += (*ror_scan_mark)->index_read_cost;
    records += (*ror_scan_mark)->records;
unknown's avatar
unknown committed
3132
    DBUG_PRINT("info", ("Adding scan on %s",
3133 3134 3135 3136 3137 3138 3139
                        param->table->key_info[(*ror_scan_mark)->keynr].name));
    if (total_cost > read_time)
      DBUG_RETURN(NULL);
    /* F=F-covered by first(I) */
    bitmap_union(&covered_fields, &(*ror_scan_mark)->covered_fields);
    all_covered= bitmap_is_subset(&param->needed_fields, &covered_fields);
  } while (!all_covered && (++ror_scan_mark < ror_scans_end));
unknown's avatar
unknown committed
3140

3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
  if (!all_covered)
    DBUG_RETURN(NULL); /* should not happen actually */

  /*
    Ok, [tree->ror_scans .. ror_scan) holds covering index_intersection with
    cost total_cost.
  */
  DBUG_PRINT("info", ("Covering ROR-intersect scans cost: %g", total_cost));
  DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
                                           "creating covering ROR-intersect",
                                           tree->ror_scans, ror_scan_mark););
unknown's avatar
unknown committed
3152

3153
  /* Add priority queue use cost. */
unknown's avatar
unknown committed
3154 3155
  total_cost += rows2double(records)*
                log((double)(ror_scan_mark - tree->ror_scans)) /
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
                (TIME_FOR_COMPARE_ROWID * M_LN2);
  DBUG_PRINT("info", ("Covering ROR-intersect full cost: %g", total_cost));

  if (total_cost > read_time)
    DBUG_RETURN(NULL);

  TRP_ROR_INTERSECT *trp;
  if (!(trp= new (param->mem_root) TRP_ROR_INTERSECT))
    DBUG_RETURN(trp);
  uint best_num= (ror_scan_mark - tree->ror_scans);
  if (!(trp->first_scan= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
                                                     sizeof(ROR_SCAN_INFO*)*
                                                     best_num)))
    DBUG_RETURN(NULL);
  memcpy(trp->first_scan, ror_scan_mark, best_num*sizeof(ROR_SCAN_INFO*));
  trp->last_scan=  trp->first_scan + best_num;
unknown's avatar
unknown committed
3172
  trp->is_covering= TRUE;
3173 3174 3175
  trp->read_cost= total_cost;
  trp->records= records;

3176 3177 3178
  DBUG_PRINT("info",
             ("Returning covering ROR-intersect plan: cost %g, records %lu",
              trp->read_cost, (ulong) trp->records));
3179
  DBUG_RETURN(trp);
3180 3181 3182
}


unknown's avatar
unknown committed
3183
/*
unknown's avatar
unknown committed
3184
  Get best "range" table read plan for given SEL_TREE.
3185
  Also update PARAM members and store ROR scans info in the SEL_TREE.
3186
  SYNOPSIS
3187
    get_key_scans_params
3188
      param        parameters from test_quick_select
unknown's avatar
unknown committed
3189
      tree         make range select for this SEL_TREE
unknown's avatar
unknown committed
3190
      index_read_must_be_used if TRUE, assume 'index only' option will be set
3191
                             (except for clustered PK indexes)
3192 3193
      read_time    don't create read plans with cost > read_time.
  RETURN
unknown's avatar
unknown committed
3194
    Best range read plan
3195
    NULL if no plan found or error occurred
unknown's avatar
unknown committed
3196 3197
*/

3198
static TRP_RANGE *get_key_scans_params(PARAM *param, SEL_TREE *tree,
unknown's avatar
unknown committed
3199
                                       bool index_read_must_be_used,
3200
                                       double read_time)
unknown's avatar
unknown committed
3201 3202
{
  int idx;
3203 3204 3205
  SEL_ARG **key,**end, **key_to_read= NULL;
  ha_rows best_records;
  TRP_RANGE* read_plan= NULL;
3206
  bool pk_is_clustered= param->table->file->primary_key_is_clustered();
3207 3208
  DBUG_ENTER("get_key_scans_params");
  LINT_INIT(best_records); /* protected by key_to_read */
unknown's avatar
unknown committed
3209
  /*
unknown's avatar
unknown committed
3210 3211
    Note that there may be trees that have type SEL_TREE::KEY but contain no
    key reads at all, e.g. tree for expression "key1 is not null" where key1
3212
    is defined as "not null".
unknown's avatar
unknown committed
3213 3214
  */
  DBUG_EXECUTE("info", print_sel_tree(param, tree, &tree->keys_map,
3215 3216 3217 3218
                                      "tree scans"););
  tree->ror_scans_map.clear_all();
  tree->n_ror_scans= 0;
  for (idx= 0,key=tree->keys, end=key+param->keys;
unknown's avatar
unknown committed
3219 3220 3221 3222 3223 3224 3225
       key != end ;
       key++,idx++)
  {
    ha_rows found_records;
    double found_read_time;
    if (*key)
    {
3226
      uint keynr= param->real_keynr[idx];
unknown's avatar
unknown committed
3227 3228
      if ((*key)->type == SEL_ARG::MAYBE_KEY ||
          (*key)->maybe_flag)
3229
        param->needed_reg->set_bit(keynr);
unknown's avatar
unknown committed
3230

unknown's avatar
unknown committed
3231 3232
      bool read_index_only= index_read_must_be_used ? TRUE :
                            (bool) param->table->used_keys.is_set(keynr);
3233

3234 3235 3236 3237 3238 3239
      found_records= check_quick_select(param, idx, *key);
      if (param->is_ror_scan)
      {
        tree->n_ror_scans++;
        tree->ror_scans_map.set_bit(idx);
      }
3240
      double cpu_cost= (double) found_records / TIME_FOR_COMPARE;
unknown's avatar
unknown committed
3241
      if (found_records != HA_POS_ERROR && found_records > 2 &&
unknown's avatar
unknown committed
3242
          read_index_only &&
unknown's avatar
unknown committed
3243
          (param->table->file->index_flags(keynr, param->max_key_part,1) &
unknown's avatar
unknown committed
3244
           HA_KEYREAD_ONLY) &&
3245
          !(pk_is_clustered && keynr == param->table->s->primary_key))
3246 3247 3248 3249 3250
      {
        /*
          We can resolve this by only reading through this key. 
          0.01 is added to avoid races between range and 'index' scan.
        */
3251
        found_read_time= get_index_only_read_time(param,found_records,keynr) +
3252 3253
                         cpu_cost + 0.01;
      }
unknown's avatar
unknown committed
3254
      else
3255
      {
unknown's avatar
unknown committed
3256
        /*
3257 3258 3259
          cost(read_through_index) = cost(disk_io) + cost(row_in_range_checks)
          The row_in_range check is in QUICK_RANGE_SELECT::cmp_next function.
        */
3260 3261 3262
	found_read_time= param->table->file->read_time(keynr,
                                                       param->range_count,
                                                       found_records) +
3263 3264
			 cpu_cost + 0.01;
      }
3265 3266 3267
      DBUG_PRINT("info",("key %s: found_read_time: %g (cur. read_time: %g)",
                         param->table->key_info[keynr].name, found_read_time,
                         read_time));
3268

3269 3270
      if (read_time > found_read_time && found_records != HA_POS_ERROR
          /*|| read_time == DBL_MAX*/ )
unknown's avatar
unknown committed
3271
      {
3272
        read_time=    found_read_time;
unknown's avatar
unknown committed
3273
        best_records= found_records;
3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
        key_to_read=  key;
      }

    }
  }

  DBUG_EXECUTE("info", print_sel_tree(param, tree, &tree->ror_scans_map,
                                      "ROR scans"););
  if (key_to_read)
  {
    idx= key_to_read - tree->keys;
    if ((read_plan= new (param->mem_root) TRP_RANGE(*key_to_read, idx)))
    {
      read_plan->records= best_records;
      read_plan->is_ror= tree->ror_scans_map.is_set(idx);
      read_plan->read_cost= read_time;
3290 3291 3292 3293
      DBUG_PRINT("info",
                 ("Returning range plan for key %s, cost %g, records %lu",
                  param->table->key_info[param->real_keynr[idx]].name,
                  read_plan->read_cost, (ulong) read_plan->records));
3294 3295 3296 3297 3298 3299 3300 3301 3302
    }
  }
  else
    DBUG_PRINT("info", ("No 'range' table read plan found"));

  DBUG_RETURN(read_plan);
}


unknown's avatar
unknown committed
3303
QUICK_SELECT_I *TRP_INDEX_MERGE::make_quick(PARAM *param,
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
                                            bool retrieve_full_rows,
                                            MEM_ROOT *parent_alloc)
{
  QUICK_INDEX_MERGE_SELECT *quick_imerge;
  QUICK_RANGE_SELECT *quick;
  /* index_merge always retrieves full rows, ignore retrieve_full_rows */
  if (!(quick_imerge= new QUICK_INDEX_MERGE_SELECT(param->thd, param->table)))
    return NULL;

  quick_imerge->records= records;
  quick_imerge->read_time= read_cost;
unknown's avatar
unknown committed
3315 3316
  for (TRP_RANGE **range_scan= range_scans; range_scan != range_scans_end;
       range_scan++)
3317 3318
  {
    if (!(quick= (QUICK_RANGE_SELECT*)
unknown's avatar
unknown committed
3319
          ((*range_scan)->make_quick(param, FALSE, &quick_imerge->alloc)))||
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
        quick_imerge->push_quick_back(quick))
    {
      delete quick;
      delete quick_imerge;
      return NULL;
    }
  }
  return quick_imerge;
}

unknown's avatar
unknown committed
3330
QUICK_SELECT_I *TRP_ROR_INTERSECT::make_quick(PARAM *param,
3331 3332 3333 3334 3335 3336 3337
                                              bool retrieve_full_rows,
                                              MEM_ROOT *parent_alloc)
{
  QUICK_ROR_INTERSECT_SELECT *quick_intrsect;
  QUICK_RANGE_SELECT *quick;
  DBUG_ENTER("TRP_ROR_INTERSECT::make_quick");
  MEM_ROOT *alloc;
unknown's avatar
unknown committed
3338 3339

  if ((quick_intrsect=
3340
         new QUICK_ROR_INTERSECT_SELECT(param->thd, param->table,
unknown's avatar
unknown committed
3341
                                        retrieve_full_rows? (!is_covering):FALSE,
3342 3343
                                        parent_alloc)))
  {
unknown's avatar
unknown committed
3344
    DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
3345 3346 3347
                                             "creating ROR-intersect",
                                             first_scan, last_scan););
    alloc= parent_alloc? parent_alloc: &quick_intrsect->alloc;
unknown's avatar
unknown committed
3348
    for (; first_scan != last_scan;++first_scan)
3349 3350 3351 3352
    {
      if (!(quick= get_quick_select(param, (*first_scan)->idx,
                                    (*first_scan)->sel_arg, alloc)) ||
          quick_intrsect->push_quick_back(quick))
unknown's avatar
unknown committed
3353
      {
3354 3355
        delete quick_intrsect;
        DBUG_RETURN(NULL);
unknown's avatar
unknown committed
3356 3357
      }
    }
3358 3359 3360 3361
    if (cpk_scan)
    {
      if (!(quick= get_quick_select(param, cpk_scan->idx,
                                    cpk_scan->sel_arg, alloc)))
unknown's avatar
unknown committed
3362
      {
3363 3364
        delete quick_intrsect;
        DBUG_RETURN(NULL);
unknown's avatar
unknown committed
3365
      }
unknown's avatar
unknown committed
3366
      quick->file= NULL; 
3367
      quick_intrsect->cpk_quick= quick;
unknown's avatar
unknown committed
3368
    }
unknown's avatar
unknown committed
3369
    quick_intrsect->records= records;
3370
    quick_intrsect->read_time= read_cost;
unknown's avatar
unknown committed
3371
  }
3372 3373 3374
  DBUG_RETURN(quick_intrsect);
}

3375

unknown's avatar
unknown committed
3376
QUICK_SELECT_I *TRP_ROR_UNION::make_quick(PARAM *param,
3377 3378 3379 3380 3381 3382 3383
                                          bool retrieve_full_rows,
                                          MEM_ROOT *parent_alloc)
{
  QUICK_ROR_UNION_SELECT *quick_roru;
  TABLE_READ_PLAN **scan;
  QUICK_SELECT_I *quick;
  DBUG_ENTER("TRP_ROR_UNION::make_quick");
unknown's avatar
unknown committed
3384 3385
  /*
    It is impossible to construct a ROR-union that will not retrieve full
3386
    rows, ignore retrieve_full_rows parameter.
3387 3388 3389
  */
  if ((quick_roru= new QUICK_ROR_UNION_SELECT(param->thd, param->table)))
  {
unknown's avatar
unknown committed
3390
    for (scan= first_ror; scan != last_ror; scan++)
3391
    {
unknown's avatar
unknown committed
3392
      if (!(quick= (*scan)->make_quick(param, FALSE, &quick_roru->alloc)) ||
3393 3394 3395 3396 3397
          quick_roru->push_quick_back(quick))
        DBUG_RETURN(NULL);
    }
    quick_roru->records= records;
    quick_roru->read_time= read_cost;
unknown's avatar
unknown committed
3398
  }
3399
  DBUG_RETURN(quick_roru);
unknown's avatar
unknown committed
3400 3401
}

3402

unknown's avatar
unknown committed
3403
/*
unknown's avatar
unknown committed
3404
  Build a SEL_TREE for <> or NOT BETWEEN predicate
unknown's avatar
unknown committed
3405 3406 3407 3408 3409 3410
 
  SYNOPSIS
    get_ne_mm_tree()
      param       PARAM from SQL_SELECT::test_quick_select
      cond_func   item for the predicate
      field       field in the predicate
unknown's avatar
unknown committed
3411 3412
      lt_value    constant that field should be smaller
      gt_value    constant that field should be greaterr
unknown's avatar
unknown committed
3413 3414 3415
      cmp_type    compare type for the field

  RETURN 
unknown's avatar
unknown committed
3416 3417
    #  Pointer to tree built tree
    0  on error
unknown's avatar
unknown committed
3418 3419 3420
*/

static SEL_TREE *get_ne_mm_tree(PARAM *param, Item_func *cond_func, 
unknown's avatar
unknown committed
3421 3422
                                Field *field,
                                Item *lt_value, Item *gt_value,
unknown's avatar
unknown committed
3423 3424
                                Item_result cmp_type)
{
unknown's avatar
unknown committed
3425
  SEL_TREE *tree;
unknown's avatar
unknown committed
3426
  tree= get_mm_parts(param, cond_func, field, Item_func::LT_FUNC,
unknown's avatar
unknown committed
3427
                     lt_value, cmp_type);
unknown's avatar
unknown committed
3428 3429 3430 3431
  if (tree)
  {
    tree= tree_or(param, tree, get_mm_parts(param, cond_func, field,
					    Item_func::GT_FUNC,
unknown's avatar
unknown committed
3432
					    gt_value, cmp_type));
unknown's avatar
unknown committed
3433 3434 3435 3436 3437
  }
  return tree;
}
   

unknown's avatar
unknown committed
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
/*
  Build a SEL_TREE for a simple predicate
 
  SYNOPSIS
    get_func_mm_tree()
      param       PARAM from SQL_SELECT::test_quick_select
      cond_func   item for the predicate
      field       field in the predicate
      value       constant in the predicate
      cmp_type    compare type for the field
unknown's avatar
unknown committed
3448
      inv         TRUE <> NOT cond_func is considered
unknown's avatar
unknown committed
3449
                  (makes sense only when cond_func is BETWEEN or IN) 
unknown's avatar
unknown committed
3450 3451

  RETURN 
unknown's avatar
unknown committed
3452
    Pointer to the tree built tree
unknown's avatar
unknown committed
3453 3454
*/

3455 3456
static SEL_TREE *get_func_mm_tree(PARAM *param, Item_func *cond_func, 
                                  Field *field, Item *value,
unknown's avatar
unknown committed
3457
                                  Item_result cmp_type, bool inv)
3458 3459 3460 3461
{
  SEL_TREE *tree= 0;
  DBUG_ENTER("get_func_mm_tree");

unknown's avatar
unknown committed
3462
  switch (cond_func->functype()) {
unknown's avatar
unknown committed
3463

unknown's avatar
unknown committed
3464
  case Item_func::NE_FUNC:
unknown's avatar
unknown committed
3465
    tree= get_ne_mm_tree(param, cond_func, field, value, value, cmp_type);
unknown's avatar
unknown committed
3466
    break;
unknown's avatar
unknown committed
3467

unknown's avatar
unknown committed
3468
  case Item_func::BETWEEN:
unknown's avatar
unknown committed
3469 3470
    if (inv)
    {
unknown's avatar
unknown committed
3471 3472
      tree= get_ne_mm_tree(param, cond_func, field, cond_func->arguments()[1],
                           cond_func->arguments()[2], cmp_type);
unknown's avatar
unknown committed
3473 3474
    }
    else
3475
    {
unknown's avatar
unknown committed
3476 3477 3478 3479 3480 3481 3482 3483 3484
      tree= get_mm_parts(param, cond_func, field, Item_func::GE_FUNC,
		         cond_func->arguments()[1],cmp_type);
      if (tree)
      {
        tree= tree_and(param, tree, get_mm_parts(param, cond_func, field,
					         Item_func::LE_FUNC,
					         cond_func->arguments()[2],
                                                 cmp_type));
      }
3485
    }
unknown's avatar
unknown committed
3486
    break;
unknown's avatar
unknown committed
3487

unknown's avatar
unknown committed
3488
  case Item_func::IN_FUNC:
3489 3490
  {
    Item_func_in *func=(Item_func_in*) cond_func;
unknown's avatar
unknown committed
3491 3492

    if (inv)
3493
    {
unknown's avatar
unknown committed
3494
      tree= get_ne_mm_tree(param, cond_func, field,
unknown's avatar
unknown committed
3495 3496
                           func->arguments()[1], func->arguments()[1],
                           cmp_type);
unknown's avatar
unknown committed
3497
      if (tree)
3498
      {
unknown's avatar
unknown committed
3499 3500 3501 3502 3503
        Item **arg, **end;
        for (arg= func->arguments()+2, end= arg+func->argument_count()-2;
             arg < end ; arg++)
        {
          tree=  tree_and(param, tree, get_ne_mm_tree(param, cond_func, field, 
unknown's avatar
unknown committed
3504
                                                      *arg, *arg, cmp_type));
unknown's avatar
unknown committed
3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
        }
      }
    }
    else
    {    
      tree= get_mm_parts(param, cond_func, field, Item_func::EQ_FUNC,
                         func->arguments()[1], cmp_type);
      if (tree)
      {
        Item **arg, **end;
        for (arg= func->arguments()+2, end= arg+func->argument_count()-2;
             arg < end ; arg++)
        {
          tree= tree_or(param, tree, get_mm_parts(param, cond_func, field, 
                                                  Item_func::EQ_FUNC,
                                                  *arg, cmp_type));
        }
3522 3523
      }
    }
unknown's avatar
unknown committed
3524
    break;
3525
  }
unknown's avatar
unknown committed
3526
  default: 
3527
  {
unknown's avatar
unknown committed
3528 3529 3530 3531 3532 3533 3534
    /* 
       Here the function for the following predicates are processed:
       <, <=, =, >=, >, LIKE, IS NULL, IS NOT NULL.
       If the predicate is of the form (value op field) it is handled
       as the equivalent predicate (field rev_op value), e.g.
       2 <= a is handled as a >= 2.
    */
3535 3536 3537
    Item_func::Functype func_type=
      (value != cond_func->arguments()[0]) ? cond_func->functype() :
        ((Item_bool_func2*) cond_func)->rev_functype();
3538
    tree= get_mm_parts(param, cond_func, field, func_type, value, cmp_type);
3539
  }
unknown's avatar
unknown committed
3540 3541
  }

3542
  DBUG_RETURN(tree);
3543

3544 3545
}

unknown's avatar
unknown committed
3546 3547 3548 3549 3550
	/* make a select tree of all keys in condition */

static SEL_TREE *get_mm_tree(PARAM *param,COND *cond)
{
  SEL_TREE *tree=0;
3551 3552
  SEL_TREE *ftree= 0;
  Item_field *field_item= 0;
unknown's avatar
unknown committed
3553
  bool inv= FALSE;
3554
  Item *value;
unknown's avatar
unknown committed
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
  DBUG_ENTER("get_mm_tree");

  if (cond->type() == Item::COND_ITEM)
  {
    List_iterator<Item> li(*((Item_cond*) cond)->argument_list());

    if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
    {
      tree=0;
      Item *item;
      while ((item=li++))
      {
	SEL_TREE *new_tree=get_mm_tree(param,item);
3568
	if (param->thd->is_fatal_error)
3569
	  DBUG_RETURN(0);	// out of memory
unknown's avatar
unknown committed
3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
	tree=tree_and(param,tree,new_tree);
	if (tree && tree->type == SEL_TREE::IMPOSSIBLE)
	  break;
      }
    }
    else
    {						// COND OR
      tree=get_mm_tree(param,li++);
      if (tree)
      {
	Item *item;
	while ((item=li++))
	{
	  SEL_TREE *new_tree=get_mm_tree(param,item);
	  if (!new_tree)
3585
	    DBUG_RETURN(0);	// out of memory
unknown's avatar
unknown committed
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
	  tree=tree_or(param,tree,new_tree);
	  if (!tree || tree->type == SEL_TREE::ALWAYS)
	    break;
	}
      }
    }
    DBUG_RETURN(tree);
  }
  /* Here when simple cond */
  if (cond->const_item())
  {
    if (cond->val_int())
      DBUG_RETURN(new SEL_TREE(SEL_TREE::ALWAYS));
    DBUG_RETURN(new SEL_TREE(SEL_TREE::IMPOSSIBLE));
  }
3601

3602 3603 3604
  table_map ref_tables= 0;
  table_map param_comp= ~(param->prev_tables | param->read_tables |
		          param->current_table);
unknown's avatar
unknown committed
3605 3606
  if (cond->type() != Item::FUNC_ITEM)
  {						// Should be a field
3607
    ref_tables= cond->used_tables();
unknown's avatar
unknown committed
3608 3609
    if ((ref_tables & param->current_table) ||
	(ref_tables & ~(param->prev_tables | param->read_tables)))
unknown's avatar
unknown committed
3610 3611 3612
      DBUG_RETURN(0);
    DBUG_RETURN(new SEL_TREE(SEL_TREE::MAYBE));
  }
3613

unknown's avatar
unknown committed
3614
  Item_func *cond_func= (Item_func*) cond;
3615 3616 3617
  if (cond_func->functype() == Item_func::BETWEEN ||
      cond_func->functype() == Item_func::IN_FUNC)
    inv= ((Item_func_opt_neg *) cond_func)->negated;
unknown's avatar
unknown committed
3618
  else if (cond_func->select_optimize() == Item_func::OPTIMIZE_NONE)
unknown's avatar
unknown committed
3619
    DBUG_RETURN(0);			       
3620

unknown's avatar
unknown committed
3621 3622
  param->cond= cond;

unknown's avatar
unknown committed
3623 3624
  switch (cond_func->functype()) {
  case Item_func::BETWEEN:
3625
    if (cond_func->arguments()[0]->real_item()->type() != Item::FIELD_ITEM)
unknown's avatar
unknown committed
3626
      DBUG_RETURN(0);
3627
    field_item= (Item_field*) (cond_func->arguments()[0]->real_item());
unknown's avatar
unknown committed
3628 3629 3630
    value= NULL;
    break;
  case Item_func::IN_FUNC:
unknown's avatar
unknown committed
3631 3632
  {
    Item_func_in *func=(Item_func_in*) cond_func;
3633
    if (func->key_item()->real_item()->type() != Item::FIELD_ITEM)
3634
      DBUG_RETURN(0);
3635
    field_item= (Item_field*) (func->key_item()->real_item());
unknown's avatar
unknown committed
3636 3637
    value= NULL;
    break;
3638
  }
unknown's avatar
unknown committed
3639
  case Item_func::MULT_EQUAL_FUNC:
unknown's avatar
unknown committed
3640
  {
3641 3642
    Item_equal *item_equal= (Item_equal *) cond;    
    if (!(value= item_equal->get_const()))
unknown's avatar
unknown committed
3643 3644 3645 3646
      DBUG_RETURN(0);
    Item_equal_iterator it(*item_equal);
    ref_tables= value->used_tables();
    while ((field_item= it++))
unknown's avatar
unknown committed
3647
    {
unknown's avatar
unknown committed
3648 3649 3650
      Field *field= field_item->field;
      Item_result cmp_type= field->cmp_type();
      if (!((ref_tables | field->table->map) & param_comp))
unknown's avatar
unknown committed
3651
      {
3652
        tree= get_mm_parts(param, cond, field, Item_func::EQ_FUNC,
unknown's avatar
unknown committed
3653 3654
		           value,cmp_type);
        ftree= !ftree ? tree : tree_and(param, ftree, tree);
unknown's avatar
unknown committed
3655 3656
      }
    }
unknown's avatar
unknown committed
3657
    
3658
    DBUG_RETURN(ftree);
unknown's avatar
unknown committed
3659 3660
  }
  default:
unknown's avatar
unknown committed
3661
    if (cond_func->arguments()[0]->real_item()->type() == Item::FIELD_ITEM)
unknown's avatar
unknown committed
3662
    {
unknown's avatar
unknown committed
3663
      field_item= (Item_field*) (cond_func->arguments()[0]->real_item());
unknown's avatar
unknown committed
3664
      value= cond_func->arg_count > 1 ? cond_func->arguments()[1] : 0;
unknown's avatar
unknown committed
3665
    }
unknown's avatar
unknown committed
3666
    else if (cond_func->have_rev_func() &&
unknown's avatar
unknown committed
3667 3668
             cond_func->arguments()[1]->real_item()->type() ==
                                                            Item::FIELD_ITEM)
unknown's avatar
unknown committed
3669
    {
unknown's avatar
unknown committed
3670
      field_item= (Item_field*) (cond_func->arguments()[1]->real_item());
unknown's avatar
unknown committed
3671 3672 3673 3674
      value= cond_func->arguments()[0];
    }
    else
      DBUG_RETURN(0);
unknown's avatar
unknown committed
3675
  }
unknown's avatar
unknown committed
3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690

  /* 
     If the where condition contains a predicate (ti.field op const),
     then not only SELL_TREE for this predicate is built, but
     the trees for the results of substitution of ti.field for
     each tj.field belonging to the same multiple equality as ti.field
     are built as well.
     E.g. for WHERE t1.a=t2.a AND t2.a > 10 
     a SEL_TREE for t2.a > 10 will be built for quick select from t2
     and   
     a SEL_TREE for t1.a > 10 will be built for quick select from t1.
  */
     
  for (uint i= 0; i < cond_func->arg_count; i++)
  {
unknown's avatar
unknown committed
3691
    Item *arg= cond_func->arguments()[i]->real_item();
unknown's avatar
unknown committed
3692 3693 3694 3695 3696 3697
    if (arg != field_item)
      ref_tables|= arg->used_tables();
  }
  Field *field= field_item->field;
  Item_result cmp_type= field->cmp_type();
  if (!((ref_tables | field->table->map) & param_comp))
unknown's avatar
unknown committed
3698
    ftree= get_func_mm_tree(param, cond_func, field, value, cmp_type, inv);
unknown's avatar
unknown committed
3699 3700 3701 3702 3703 3704
  Item_equal *item_equal= field_item->item_equal;
  if (item_equal)
  {
    Item_equal_iterator it(*item_equal);
    Item_field *item;
    while ((item= it++))
unknown's avatar
unknown committed
3705
    {
unknown's avatar
unknown committed
3706 3707 3708 3709
      Field *f= item->field;
      if (field->eq(f))
        continue;
      if (!((ref_tables | f->table->map) & param_comp))
unknown's avatar
unknown committed
3710
      {
unknown's avatar
unknown committed
3711
        tree= get_func_mm_tree(param, cond_func, f, value, cmp_type, inv);
unknown's avatar
unknown committed
3712
        ftree= !ftree ? tree : tree_and(param, ftree, tree);
unknown's avatar
unknown committed
3713 3714 3715
      }
    }
  }
unknown's avatar
unknown committed
3716
  DBUG_RETURN(ftree);
unknown's avatar
unknown committed
3717 3718 3719 3720
}


static SEL_TREE *
3721
get_mm_parts(PARAM *param, COND *cond_func, Field *field,
unknown's avatar
unknown committed
3722
	     Item_func::Functype type,
3723
	     Item *value, Item_result cmp_type)
unknown's avatar
unknown committed
3724 3725 3726 3727 3728
{
  DBUG_ENTER("get_mm_parts");
  if (field->table != param->table)
    DBUG_RETURN(0);

3729 3730
  KEY_PART *key_part = param->key_parts;
  KEY_PART *end = param->key_parts_end;
unknown's avatar
unknown committed
3731 3732 3733 3734
  SEL_TREE *tree=0;
  if (value &&
      value->used_tables() & ~(param->prev_tables | param->read_tables))
    DBUG_RETURN(0);
3735
  for (; key_part != end ; key_part++)
unknown's avatar
unknown committed
3736 3737 3738 3739
  {
    if (field->eq(key_part->field))
    {
      SEL_ARG *sel_arg=0;
3740
      if (!tree && !(tree=new SEL_TREE()))
3741
	DBUG_RETURN(0);				// OOM
unknown's avatar
unknown committed
3742 3743
      if (!value || !(value->used_tables() & ~param->read_tables))
      {
3744 3745
	sel_arg=get_mm_leaf(param,cond_func,
			    key_part->field,key_part,type,value);
unknown's avatar
unknown committed
3746 3747 3748 3749 3750 3751 3752 3753
	if (!sel_arg)
	  continue;
	if (sel_arg->type == SEL_ARG::IMPOSSIBLE)
	{
	  tree->type=SEL_TREE::IMPOSSIBLE;
	  DBUG_RETURN(tree);
	}
      }
3754 3755
      else
      {
3756
	// This key may be used later
unknown's avatar
unknown committed
3757
	if (!(sel_arg= new SEL_ARG(SEL_ARG::MAYBE_KEY)))
3758
	  DBUG_RETURN(0);			// OOM
3759
      }
unknown's avatar
unknown committed
3760 3761
      sel_arg->part=(uchar) key_part->part;
      tree->keys[key_part->key]=sel_add(tree->keys[key_part->key],sel_arg);
unknown's avatar
unknown committed
3762
      tree->keys_map.set_bit(key_part->key);
unknown's avatar
unknown committed
3763 3764
    }
  }
3765

unknown's avatar
unknown committed
3766 3767 3768 3769 3770
  DBUG_RETURN(tree);
}


static SEL_ARG *
3771
get_mm_leaf(PARAM *param, COND *conf_func, Field *field, KEY_PART *key_part,
unknown's avatar
unknown committed
3772 3773
	    Item_func::Functype type,Item *value)
{
3774
  uint maybe_null=(uint) field->real_maybe_null();
unknown's avatar
unknown committed
3775
  bool optimize_range;
3776 3777
  SEL_ARG *tree= 0;
  MEM_ROOT *alloc= param->mem_root;
3778
  char *str;
unknown's avatar
unknown committed
3779
  ulong orig_sql_mode;
unknown's avatar
unknown committed
3780 3781
  DBUG_ENTER("get_mm_leaf");

3782 3783
  /*
    We need to restore the runtime mem_root of the thread in this
unknown's avatar
unknown committed
3784
    function because it evaluates the value of its argument, while
3785 3786 3787 3788 3789 3790
    the argument can be any, e.g. a subselect. The subselect
    items, in turn, assume that all the memory allocated during
    the evaluation has the same life span as the item itself.
    TODO: opt_range.cc should not reset thd->mem_root at all.
  */
  param->thd->mem_root= param->old_root;
3791 3792
  if (!value)					// IS NULL or IS NOT NULL
  {
3793
    if (field->table->maybe_null)		// Can't use a key on this
3794
      goto end;
3795
    if (!maybe_null)				// Not null field
3796 3797 3798 3799 3800 3801 3802
    {
      if (type == Item_func::ISNULL_FUNC)
        tree= &null_element;
      goto end;
    }
    if (!(tree= new (alloc) SEL_ARG(field,is_null_string,is_null_string)))
      goto end;                                 // out of memory
3803 3804 3805 3806 3807
    if (type == Item_func::ISNOTNULL_FUNC)
    {
      tree->min_flag=NEAR_MIN;		    /* IS NOT NULL ->  X > NULL */
      tree->max_flag=NO_MAX_RANGE;
    }
3808
    goto end;
3809 3810 3811
  }

  /*
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821
    1. Usually we can't use an index if the column collation
       differ from the operation collation.

    2. However, we can reuse a case insensitive index for
       the binary searches:

       WHERE latin1_swedish_ci_column = 'a' COLLATE lati1_bin;

       WHERE latin1_swedish_ci_colimn = BINARY 'a '

3822 3823 3824 3825
  */
  if (field->result_type() == STRING_RESULT &&
      value->result_type() == STRING_RESULT &&
      key_part->image_type == Field::itRAW &&
3826 3827
      ((Field_str*)field)->charset() != conf_func->compare_collation() &&
      !(conf_func->compare_collation()->state & MY_CS_BINSORT))
3828
    goto end;
3829

unknown's avatar
unknown committed
3830 3831 3832
  optimize_range= field->optimize_range(param->real_keynr[key_part->key],
                                        key_part->part);

unknown's avatar
unknown committed
3833 3834 3835 3836
  if (type == Item_func::LIKE_FUNC)
  {
    bool like_error;
    char buff1[MAX_FIELD_WIDTH],*min_str,*max_str;
3837
    String tmp(buff1,sizeof(buff1),value->collation.collation),*res;
unknown's avatar
unknown committed
3838
    uint length,offset,min_length,max_length;
3839
    uint field_length= field->pack_length()+maybe_null;
unknown's avatar
unknown committed
3840

unknown's avatar
unknown committed
3841
    if (!optimize_range)
3842
      goto end;
unknown's avatar
unknown committed
3843
    if (!(res= value->val_str(&tmp)))
3844 3845 3846 3847
    {
      tree= &null_element;
      goto end;
    }
unknown's avatar
unknown committed
3848

3849 3850 3851 3852 3853
    /*
      TODO:
      Check if this was a function. This should have be optimized away
      in the sql_select.cc
    */
unknown's avatar
unknown committed
3854 3855 3856 3857 3858 3859
    if (res != &tmp)
    {
      tmp.copy(*res);				// Get own copy
      res= &tmp;
    }
    if (field->cmp_type() != STRING_RESULT)
3860
      goto end;                                 // Can only optimize strings
unknown's avatar
unknown committed
3861 3862

    offset=maybe_null;
unknown's avatar
unknown committed
3863 3864 3865
    length=key_part->store_length;

    if (length != key_part->length  + maybe_null)
unknown's avatar
unknown committed
3866
    {
unknown's avatar
unknown committed
3867 3868 3869
      /* key packed with length prefix */
      offset+= HA_KEY_BLOB_LENGTH;
      field_length= length - HA_KEY_BLOB_LENGTH;
unknown's avatar
unknown committed
3870 3871 3872
    }
    else
    {
unknown's avatar
unknown committed
3873 3874 3875 3876 3877 3878 3879 3880
      if (unlikely(length < field_length))
      {
	/*
	  This can only happen in a table created with UNIREG where one key
	  overlaps many fields
	*/
	length= field_length;
      }
unknown's avatar
unknown committed
3881
      else
unknown's avatar
unknown committed
3882
	field_length= length;
unknown's avatar
unknown committed
3883 3884
    }
    length+=offset;
3885 3886
    if (!(min_str= (char*) alloc_root(alloc, length*2)))
      goto end;
3887

unknown's avatar
unknown committed
3888 3889 3890
    max_str=min_str+length;
    if (maybe_null)
      max_str[0]= min_str[0]=0;
3891

3892
    field_length-= maybe_null;
3893
    like_error= my_like_range(field->charset(),
unknown's avatar
unknown committed
3894
			      res->ptr(), res->length(),
unknown's avatar
unknown committed
3895 3896
			      ((Item_func_like*)(param->cond))->escape,
			      wild_one, wild_many,
3897
			      field_length,
unknown's avatar
unknown committed
3898 3899
			      min_str+offset, max_str+offset,
			      &min_length, &max_length);
unknown's avatar
unknown committed
3900
    if (like_error)				// Can't optimize with LIKE
3901
      goto end;
unknown's avatar
unknown committed
3902

3903
    if (offset != maybe_null)			// BLOB or VARCHAR
unknown's avatar
unknown committed
3904 3905 3906 3907
    {
      int2store(min_str+maybe_null,min_length);
      int2store(max_str+maybe_null,max_length);
    }
3908 3909
    tree= new (alloc) SEL_ARG(field, min_str, max_str);
    goto end;
unknown's avatar
unknown committed
3910 3911
  }

unknown's avatar
unknown committed
3912
  if (!optimize_range &&
3913
      type != Item_func::EQ_FUNC &&
unknown's avatar
unknown committed
3914
      type != Item_func::EQUAL_FUNC)
3915
    goto end;                                   // Can't optimize this
unknown's avatar
unknown committed
3916

3917 3918 3919 3920
  /*
    We can't always use indexes when comparing a string index to a number
    cmp_type() is checked to allow compare of dates to numbers
  */
unknown's avatar
unknown committed
3921 3922 3923
  if (field->result_type() == STRING_RESULT &&
      value->result_type() != STRING_RESULT &&
      field->cmp_type() != value->result_type())
3924
    goto end;
3925
  /* For comparison purposes allow invalid dates like 2000-01-32 */
unknown's avatar
unknown committed
3926
  orig_sql_mode= field->table->in_use->variables.sql_mode;
3927 3928 3929 3930
  if (value->real_item()->type() == Item::STRING_ITEM &&
      (field->type() == FIELD_TYPE_DATE ||
       field->type() == FIELD_TYPE_DATETIME))
    field->table->in_use->variables.sql_mode|= MODE_INVALID_DATES;
3931
  if (value->save_in_field_no_warnings(field, 1) < 0)
unknown's avatar
unknown committed
3932
  {
3933
    field->table->in_use->variables.sql_mode= orig_sql_mode;
3934
    /* This happens when we try to insert a NULL field in a not null column */
3935 3936
    tree= &null_element;                        // cmp with NULL is never TRUE
    goto end;
unknown's avatar
unknown committed
3937
  }
3938
  field->table->in_use->variables.sql_mode= orig_sql_mode;
3939
  str= (char*) alloc_root(alloc, key_part->store_length+1);
unknown's avatar
unknown committed
3940
  if (!str)
3941
    goto end;
unknown's avatar
unknown committed
3942
  if (maybe_null)
3943
    *str= (char) field->is_real_null();		// Set to 1 if null
3944
  field->get_key_image(str+maybe_null, key_part->length, key_part->image_type);
3945 3946
  if (!(tree= new (alloc) SEL_ARG(field, str, str)))
    goto end;                                   // out of memory
unknown's avatar
unknown committed
3947

unknown's avatar
unknown committed
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
  /*
    Check if we are comparing an UNSIGNED integer with a negative constant.
    In this case we know that:
    (a) (unsigned_int [< | <=] negative_constant) == FALSE
    (b) (unsigned_int [> | >=] negative_constant) == TRUE
    In case (a) the condition is false for all values, and in case (b) it
    is true for all values, so we can avoid unnecessary retrieval and condition
    testing, and we also get correct comparison of unsinged integers with
    negative integers (which otherwise fails because at query execution time
    negative integers are cast to unsigned if compared with unsigned).
   */
unknown's avatar
unknown committed
3959 3960
  if (field->result_type() == INT_RESULT &&
      value->result_type() == INT_RESULT &&
unknown's avatar
unknown committed
3961 3962 3963 3964 3965 3966 3967 3968
      ((Field_num*)field)->unsigned_flag && !((Item_int*)value)->unsigned_flag)
  {
    longlong item_val= value->val_int();
    if (item_val < 0)
    {
      if (type == Item_func::LT_FUNC || type == Item_func::LE_FUNC)
      {
        tree->type= SEL_ARG::IMPOSSIBLE;
3969
        goto end;
unknown's avatar
unknown committed
3970 3971
      }
      if (type == Item_func::GT_FUNC || type == Item_func::GE_FUNC)
3972 3973 3974 3975
      {
        tree= 0;
        goto end;
      }
unknown's avatar
unknown committed
3976 3977 3978
    }
  }

unknown's avatar
unknown committed
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
  switch (type) {
  case Item_func::LT_FUNC:
    if (field_is_equal_to_item(field,value))
      tree->max_flag=NEAR_MAX;
    /* fall through */
  case Item_func::LE_FUNC:
    if (!maybe_null)
      tree->min_flag=NO_MIN_RANGE;		/* From start */
    else
    {						// > NULL
      tree->min_value=is_null_string;
      tree->min_flag=NEAR_MIN;
    }
    break;
  case Item_func::GT_FUNC:
    if (field_is_equal_to_item(field,value))
      tree->min_flag=NEAR_MIN;
    /* fall through */
  case Item_func::GE_FUNC:
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4000
  case Item_func::SP_EQUALS_FUNC:
unknown's avatar
unknown committed
4001 4002 4003
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_EQUAL;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4004
  case Item_func::SP_DISJOINT_FUNC:
unknown's avatar
unknown committed
4005 4006 4007
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_DISJOINT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4008
  case Item_func::SP_INTERSECTS_FUNC:
unknown's avatar
unknown committed
4009 4010 4011
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4012
  case Item_func::SP_TOUCHES_FUNC:
unknown's avatar
unknown committed
4013 4014 4015
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4016 4017

  case Item_func::SP_CROSSES_FUNC:
unknown's avatar
unknown committed
4018 4019 4020
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4021
  case Item_func::SP_WITHIN_FUNC:
unknown's avatar
unknown committed
4022 4023 4024
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_WITHIN;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4025 4026

  case Item_func::SP_CONTAINS_FUNC:
unknown's avatar
unknown committed
4027 4028 4029
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_CONTAIN;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4030
  case Item_func::SP_OVERLAPS_FUNC:
unknown's avatar
unknown committed
4031 4032 4033
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4034

unknown's avatar
unknown committed
4035 4036 4037
  default:
    break;
  }
4038 4039 4040

end:
  param->thd->mem_root= alloc;
unknown's avatar
unknown committed
4041 4042 4043 4044 4045 4046 4047 4048 4049
  DBUG_RETURN(tree);
}


/******************************************************************************
** Tree manipulation functions
** If tree is 0 it means that the condition can't be tested. It refers
** to a non existent table or to a field in current table with isn't a key.
** The different tree flags:
unknown's avatar
unknown committed
4050 4051
** IMPOSSIBLE:	 Condition is never TRUE
** ALWAYS:	 Condition is always TRUE
unknown's avatar
unknown committed
4052 4053 4054 4055 4056 4057
** MAYBE:	 Condition may exists when tables are read
** MAYBE_KEY:	 Condition refers to a key that may be used in join loop
** KEY_RANGE:	 Condition uses a key
******************************************************************************/

/*
4058 4059
  Add a new key test to a key when scanning through all keys
  This will never be called for same key parts.
unknown's avatar
unknown committed
4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120
*/

static SEL_ARG *
sel_add(SEL_ARG *key1,SEL_ARG *key2)
{
  SEL_ARG *root,**key_link;

  if (!key1)
    return key2;
  if (!key2)
    return key1;

  key_link= &root;
  while (key1 && key2)
  {
    if (key1->part < key2->part)
    {
      *key_link= key1;
      key_link= &key1->next_key_part;
      key1=key1->next_key_part;
    }
    else
    {
      *key_link= key2;
      key_link= &key2->next_key_part;
      key2=key2->next_key_part;
    }
  }
  *key_link=key1 ? key1 : key2;
  return root;
}

#define CLONE_KEY1_MAYBE 1
#define CLONE_KEY2_MAYBE 2
#define swap_clone_flag(A) ((A & 1) << 1) | ((A & 2) >> 1)


static SEL_TREE *
tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
{
  DBUG_ENTER("tree_and");
  if (!tree1)
    DBUG_RETURN(tree2);
  if (!tree2)
    DBUG_RETURN(tree1);
  if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
    DBUG_RETURN(tree1);
  if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
    DBUG_RETURN(tree2);
  if (tree1->type == SEL_TREE::MAYBE)
  {
    if (tree2->type == SEL_TREE::KEY)
      tree2->type=SEL_TREE::KEY_SMALLER;
    DBUG_RETURN(tree2);
  }
  if (tree2->type == SEL_TREE::MAYBE)
  {
    tree1->type=SEL_TREE::KEY_SMALLER;
    DBUG_RETURN(tree1);
  }

unknown's avatar
unknown committed
4121 4122
  key_map  result_keys;
  result_keys.clear_all();
unknown's avatar
unknown committed
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135
  /* Join the trees key per key */
  SEL_ARG **key1,**key2,**end;
  for (key1= tree1->keys,key2= tree2->keys,end=key1+param->keys ;
       key1 != end ; key1++,key2++)
  {
    uint flag=0;
    if (*key1 || *key2)
    {
      if (*key1 && !(*key1)->simple_key())
	flag|=CLONE_KEY1_MAYBE;
      if (*key2 && !(*key2)->simple_key())
	flag|=CLONE_KEY2_MAYBE;
      *key1=key_and(*key1,*key2,flag);
4136
      if (*key1 && (*key1)->type == SEL_ARG::IMPOSSIBLE)
unknown's avatar
unknown committed
4137 4138
      {
	tree1->type= SEL_TREE::IMPOSSIBLE;
unknown's avatar
unknown committed
4139
        DBUG_RETURN(tree1);
unknown's avatar
unknown committed
4140
      }
unknown's avatar
unknown committed
4141
      result_keys.set_bit(key1 - tree1->keys);
unknown's avatar
unknown committed
4142
#ifdef EXTRA_DEBUG
4143 4144
      if (*key1)
        (*key1)->test_use_count(*key1);
unknown's avatar
unknown committed
4145 4146 4147
#endif
    }
  }
unknown's avatar
unknown committed
4148 4149
  tree1->keys_map= result_keys;
  /* dispose index_merge if there is a "range" option */
unknown's avatar
unknown committed
4150
  if (!result_keys.is_clear_all())
unknown's avatar
unknown committed
4151 4152 4153 4154 4155 4156 4157
  {
    tree1->merges.empty();
    DBUG_RETURN(tree1);
  }

  /* ok, both trees are index_merge trees */
  imerge_list_and_list(&tree1->merges, &tree2->merges);
unknown's avatar
unknown committed
4158 4159 4160 4161
  DBUG_RETURN(tree1);
}


unknown's avatar
unknown committed
4162
/*
unknown's avatar
unknown committed
4163 4164
  Check if two SEL_TREES can be combined into one (i.e. a single key range
  read can be constructed for "cond_of_tree1 OR cond_of_tree2" ) without
4165
  using index_merge.
unknown's avatar
unknown committed
4166 4167 4168 4169
*/

bool sel_trees_can_be_ored(SEL_TREE *tree1, SEL_TREE *tree2, PARAM* param)
{
unknown's avatar
unknown committed
4170
  key_map common_keys= tree1->keys_map;
unknown's avatar
unknown committed
4171
  DBUG_ENTER("sel_trees_can_be_ored");
4172
  common_keys.intersect(tree2->keys_map);
unknown's avatar
unknown committed
4173

unknown's avatar
unknown committed
4174
  if (common_keys.is_clear_all())
unknown's avatar
unknown committed
4175
    DBUG_RETURN(FALSE);
unknown's avatar
unknown committed
4176 4177

  /* trees have a common key, check if they refer to same key part */
unknown's avatar
unknown committed
4178
  SEL_ARG **key1,**key2;
unknown's avatar
unknown committed
4179
  for (uint key_no=0; key_no < param->keys; key_no++)
unknown's avatar
unknown committed
4180
  {
unknown's avatar
unknown committed
4181
    if (common_keys.is_set(key_no))
unknown's avatar
unknown committed
4182 4183 4184 4185 4186
    {
      key1= tree1->keys + key_no;
      key2= tree2->keys + key_no;
      if ((*key1)->part == (*key2)->part)
      {
unknown's avatar
unknown committed
4187
        DBUG_RETURN(TRUE);
unknown's avatar
unknown committed
4188 4189 4190
      }
    }
  }
unknown's avatar
unknown committed
4191
  DBUG_RETURN(FALSE);
unknown's avatar
unknown committed
4192
}
unknown's avatar
unknown committed
4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208

static SEL_TREE *
tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
{
  DBUG_ENTER("tree_or");
  if (!tree1 || !tree2)
    DBUG_RETURN(0);
  if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
    DBUG_RETURN(tree2);
  if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
    DBUG_RETURN(tree1);
  if (tree1->type == SEL_TREE::MAYBE)
    DBUG_RETURN(tree1);				// Can't use this
  if (tree2->type == SEL_TREE::MAYBE)
    DBUG_RETURN(tree2);

unknown's avatar
unknown committed
4209
  SEL_TREE *result= 0;
unknown's avatar
unknown committed
4210 4211
  key_map  result_keys;
  result_keys.clear_all();
unknown's avatar
unknown committed
4212
  if (sel_trees_can_be_ored(tree1, tree2, param))
unknown's avatar
unknown committed
4213
  {
unknown's avatar
unknown committed
4214 4215 4216 4217
    /* Join the trees key per key */
    SEL_ARG **key1,**key2,**end;
    for (key1= tree1->keys,key2= tree2->keys,end= key1+param->keys ;
         key1 != end ; key1++,key2++)
unknown's avatar
unknown committed
4218
    {
unknown's avatar
unknown committed
4219 4220 4221 4222
      *key1=key_or(*key1,*key2);
      if (*key1)
      {
        result=tree1;				// Added to tree1
unknown's avatar
unknown committed
4223
        result_keys.set_bit(key1 - tree1->keys);
unknown's avatar
unknown committed
4224
#ifdef EXTRA_DEBUG
unknown's avatar
unknown committed
4225
        (*key1)->test_use_count(*key1);
unknown's avatar
unknown committed
4226
#endif
unknown's avatar
unknown committed
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
      }
    }
    if (result)
      result->keys_map= result_keys;
  }
  else
  {
    /* ok, two trees have KEY type but cannot be used without index merge */
    if (tree1->merges.is_empty() && tree2->merges.is_empty())
    {
      SEL_IMERGE *merge;
      /* both trees are "range" trees, produce new index merge structure */
      if (!(result= new SEL_TREE()) || !(merge= new SEL_IMERGE()) ||
          (result->merges.push_back(merge)) ||
          (merge->or_sel_tree(param, tree1)) ||
          (merge->or_sel_tree(param, tree2)))
        result= NULL;
      else
        result->type= tree1->type;
    }
    else if (!tree1->merges.is_empty() && !tree2->merges.is_empty())
    {
      if (imerge_list_or_list(param, &tree1->merges, &tree2->merges))
        result= new SEL_TREE(SEL_TREE::ALWAYS);
      else
        result= tree1;
    }
    else
    {
      /* one tree is index merge tree and another is range tree */
      if (tree1->merges.is_empty())
unknown's avatar
unknown committed
4258
        swap_variables(SEL_TREE*, tree1, tree2);
unknown's avatar
unknown committed
4259 4260 4261 4262 4263 4264

      /* add tree2 to tree1->merges, checking if it collapses to ALWAYS */
      if (imerge_list_or_tree(param, &tree1->merges, tree2))
        result= new SEL_TREE(SEL_TREE::ALWAYS);
      else
        result= tree1;
unknown's avatar
unknown committed
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
    }
  }
  DBUG_RETURN(result);
}


/* And key trees where key1->part < key2 -> part */

static SEL_ARG *
and_all_keys(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag)
{
  SEL_ARG *next;
  ulong use_count=key1->use_count;

  if (key1->elements != 1)
  {
    key2->use_count+=key1->elements-1;
    key2->increment_use_count((int) key1->elements-1);
  }
  if (key1->type == SEL_ARG::MAYBE_KEY)
  {
4286 4287
    key1->right= key1->left= &null_element;
    key1->next= key1->prev= 0;
unknown's avatar
unknown committed
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
  }
  for (next=key1->first(); next ; next=next->next)
  {
    if (next->next_key_part)
    {
      SEL_ARG *tmp=key_and(next->next_key_part,key2,clone_flag);
      if (tmp && tmp->type == SEL_ARG::IMPOSSIBLE)
      {
	key1=key1->tree_delete(next);
	continue;
      }
      next->next_key_part=tmp;
      if (use_count)
	next->increment_use_count(use_count);
    }
    else
      next->next_key_part=key2;
  }
  if (!key1)
    return &null_element;			// Impossible ranges
  key1->use_count++;
  return key1;
}


static SEL_ARG *
key_and(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag)
{
  if (!key1)
    return key2;
  if (!key2)
    return key1;
  if (key1->part != key2->part)
  {
    if (key1->part > key2->part)
    {
4324
      swap_variables(SEL_ARG *, key1, key2);
unknown's avatar
unknown committed
4325 4326 4327 4328 4329
      clone_flag=swap_clone_flag(clone_flag);
    }
    // key1->part < key2->part
    key1->use_count--;
    if (key1->use_count > 0)
4330 4331
      if (!(key1= key1->clone_tree()))
	return 0;				// OOM
unknown's avatar
unknown committed
4332 4333 4334 4335
    return and_all_keys(key1,key2,clone_flag);
  }

  if (((clone_flag & CLONE_KEY2_MAYBE) &&
4336 4337
       !(clone_flag & CLONE_KEY1_MAYBE) &&
       key2->type != SEL_ARG::MAYBE_KEY) ||
unknown's avatar
unknown committed
4338 4339
      key1->type == SEL_ARG::MAYBE_KEY)
  {						// Put simple key in key2
4340
    swap_variables(SEL_ARG *, key1, key2);
unknown's avatar
unknown committed
4341 4342 4343
    clone_flag=swap_clone_flag(clone_flag);
  }

unknown's avatar
unknown committed
4344
  /* If one of the key is MAYBE_KEY then the found region may be smaller */
unknown's avatar
unknown committed
4345 4346 4347 4348 4349
  if (key2->type == SEL_ARG::MAYBE_KEY)
  {
    if (key1->use_count > 1)
    {
      key1->use_count--;
4350 4351
      if (!(key1=key1->clone_tree()))
	return 0;				// OOM
unknown's avatar
unknown committed
4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
      key1->use_count++;
    }
    if (key1->type == SEL_ARG::MAYBE_KEY)
    {						// Both are maybe key
      key1->next_key_part=key_and(key1->next_key_part,key2->next_key_part,
				 clone_flag);
      if (key1->next_key_part &&
	  key1->next_key_part->type == SEL_ARG::IMPOSSIBLE)
	return key1;
    }
    else
    {
      key1->maybe_smaller();
      if (key2->next_key_part)
4366 4367
      {
	key1->use_count--;			// Incremented in and_all_keys
unknown's avatar
unknown committed
4368
	return and_all_keys(key1,key2,clone_flag);
4369
      }
unknown's avatar
unknown committed
4370 4371 4372 4373 4374
      key2->use_count--;			// Key2 doesn't have a tree
    }
    return key1;
  }

4375 4376 4377 4378 4379 4380 4381
  if ((key1->min_flag | key2->min_flag) & GEOM_FLAG)
  {
    key1->free_tree();
    key2->free_tree();
    return 0;					// Can't optimize this
  }

4382 4383 4384
  if ((key1->min_flag | key2->min_flag) & GEOM_FLAG)
  {
    key1->free_tree();
4385 4386 4387 4388
    key2->free_tree();
    return 0;					// Can't optimize this
  }

unknown's avatar
unknown committed
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408
  key1->use_count--;
  key2->use_count--;
  SEL_ARG *e1=key1->first(), *e2=key2->first(), *new_tree=0;

  while (e1 && e2)
  {
    int cmp=e1->cmp_min_to_min(e2);
    if (cmp < 0)
    {
      if (get_range(&e1,&e2,key1))
	continue;
    }
    else if (get_range(&e2,&e1,key2))
      continue;
    SEL_ARG *next=key_and(e1->next_key_part,e2->next_key_part,clone_flag);
    e1->increment_use_count(1);
    e2->increment_use_count(1);
    if (!next || next->type != SEL_ARG::IMPOSSIBLE)
    {
      SEL_ARG *new_arg= e1->clone_and(e2);
4409 4410
      if (!new_arg)
	return &null_element;			// End of memory
unknown's avatar
unknown committed
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
      new_arg->next_key_part=next;
      if (!new_tree)
      {
	new_tree=new_arg;
      }
      else
	new_tree=new_tree->insert(new_arg);
    }
    if (e1->cmp_max_to_max(e2) < 0)
      e1=e1->next;				// e1 can't overlapp next e2
    else
      e2=e2->next;
  }
  key1->free_tree();
  key2->free_tree();
  if (!new_tree)
    return &null_element;			// Impossible range
  return new_tree;
}


static bool
get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1)
{
  (*e1)=root1->find_range(*e2);			// first e1->min < e2->min
  if ((*e1)->cmp_max_to_min(*e2) < 0)
  {
    if (!((*e1)=(*e1)->next))
      return 1;
    if ((*e1)->cmp_min_to_max(*e2) > 0)
    {
      (*e2)=(*e2)->next;
      return 1;
    }
  }
  return 0;
}


static SEL_ARG *
key_or(SEL_ARG *key1,SEL_ARG *key2)
{
  if (!key1)
  {
    if (key2)
    {
      key2->use_count--;
      key2->free_tree();
    }
    return 0;
  }
4462
  if (!key2)
unknown's avatar
unknown committed
4463 4464 4465 4466 4467 4468 4469 4470
  {
    key1->use_count--;
    key1->free_tree();
    return 0;
  }
  key1->use_count--;
  key2->use_count--;

4471 4472
  if (key1->part != key2->part || 
      (key1->min_flag | key2->min_flag) & GEOM_FLAG)
unknown's avatar
unknown committed
4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496
  {
    key1->free_tree();
    key2->free_tree();
    return 0;					// Can't optimize this
  }

  // If one of the key is MAYBE_KEY then the found region may be bigger
  if (key1->type == SEL_ARG::MAYBE_KEY)
  {
    key2->free_tree();
    key1->use_count++;
    return key1;
  }
  if (key2->type == SEL_ARG::MAYBE_KEY)
  {
    key1->free_tree();
    key2->use_count++;
    return key2;
  }

  if (key1->use_count > 0)
  {
    if (key2->use_count == 0 || key1->elements > key2->elements)
    {
4497
      swap_variables(SEL_ARG *,key1,key2);
unknown's avatar
unknown committed
4498
    }
4499
    if (key1->use_count > 0 || !(key1=key1->clone_tree()))
4500
      return 0;					// OOM
unknown's avatar
unknown committed
4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525
  }

  // Add tree at key2 to tree at key1
  bool key2_shared=key2->use_count != 0;
  key1->maybe_flag|=key2->maybe_flag;

  for (key2=key2->first(); key2; )
  {
    SEL_ARG *tmp=key1->find_range(key2);	// Find key1.min <= key2.min
    int cmp;

    if (!tmp)
    {
      tmp=key1->first();			// tmp.min > key2.min
      cmp= -1;
    }
    else if ((cmp=tmp->cmp_max_to_min(key2)) < 0)
    {						// Found tmp.max < key2.min
      SEL_ARG *next=tmp->next;
      if (cmp == -2 && eq_tree(tmp->next_key_part,key2->next_key_part))
      {
	// Join near ranges like tmp.max < 0 and key2.min >= 0
	SEL_ARG *key2_next=key2->next;
	if (key2_shared)
	{
unknown's avatar
unknown committed
4526
	  if (!(key2=new SEL_ARG(*key2)))
4527
	    return 0;		// out of memory
unknown's avatar
unknown committed
4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
	  key2->increment_use_count(key1->use_count+1);
	  key2->next=key2_next;			// New copy of key2
	}
	key2->copy_min(tmp);
	if (!(key1=key1->tree_delete(tmp)))
	{					// Only one key in tree
	  key1=key2;
	  key1->make_root();
	  key2=key2_next;
	  break;
	}
      }
      if (!(tmp=next))				// tmp.min > key2.min
	break;					// Copy rest of key2
    }
    if (cmp < 0)
    {						// tmp.min > key2.min
      int tmp_cmp;
      if ((tmp_cmp=tmp->cmp_min_to_max(key2)) > 0) // if tmp.min > key2.max
      {
	if (tmp_cmp == 2 && eq_tree(tmp->next_key_part,key2->next_key_part))
	{					// ranges are connected
	  tmp->copy_min_to_min(key2);
	  key1->merge_flags(key2);
	  if (tmp->min_flag & NO_MIN_RANGE &&
	      tmp->max_flag & NO_MAX_RANGE)
	  {
	    if (key1->maybe_flag)
	      return new SEL_ARG(SEL_ARG::MAYBE_KEY);
	    return 0;
	  }
	  key2->increment_use_count(-1);	// Free not used tree
	  key2=key2->next;
	  continue;
	}
	else
	{
	  SEL_ARG *next=key2->next;		// Keys are not overlapping
	  if (key2_shared)
	  {
4568 4569
	    SEL_ARG *cpy= new SEL_ARG(*key2);	// Must make copy
	    if (!cpy)
4570
	      return 0;				// OOM
4571
	    key1=key1->insert(cpy);
unknown's avatar
unknown committed
4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
	    key2->increment_use_count(key1->use_count+1);
	  }
	  else
	    key1=key1->insert(key2);		// Will destroy key2_root
	  key2=next;
	  continue;
	}
      }
    }

    // tmp.max >= key2.min && tmp.min <= key.max  (overlapping ranges)
    if (eq_tree(tmp->next_key_part,key2->next_key_part))
    {
      if (tmp->is_same(key2))
      {
	tmp->merge_flags(key2);			// Copy maybe flags
	key2->increment_use_count(-1);		// Free not used tree
      }
      else
      {
	SEL_ARG *last=tmp;
	while (last->next && last->next->cmp_min_to_max(key2) <= 0 &&
	       eq_tree(last->next->next_key_part,key2->next_key_part))
	{
	  SEL_ARG *save=last;
	  last=last->next;
	  key1=key1->tree_delete(save);
	}
unknown's avatar
unknown committed
4600
        last->copy_min(tmp);
unknown's avatar
unknown committed
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
	if (last->copy_min(key2) || last->copy_max(key2))
	{					// Full range
	  key1->free_tree();
	  for (; key2 ; key2=key2->next)
	    key2->increment_use_count(-1);	// Free not used tree
	  if (key1->maybe_flag)
	    return new SEL_ARG(SEL_ARG::MAYBE_KEY);
	  return 0;
	}
      }
      key2=key2->next;
      continue;
    }

    if (cmp >= 0 && tmp->cmp_min_to_min(key2) < 0)
    {						// tmp.min <= x < key2.min
      SEL_ARG *new_arg=tmp->clone_first(key2);
4618 4619
      if (!new_arg)
	return 0;				// OOM
unknown's avatar
unknown committed
4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
      if ((new_arg->next_key_part= key1->next_key_part))
	new_arg->increment_use_count(key1->use_count+1);
      tmp->copy_min_to_min(key2);
      key1=key1->insert(new_arg);
    }

    // tmp.min >= key2.min && tmp.min <= key2.max
    SEL_ARG key(*key2);				// Get copy we can modify
    for (;;)
    {
      if (tmp->cmp_min_to_min(&key) > 0)
      {						// key.min <= x < tmp.min
	SEL_ARG *new_arg=key.clone_first(tmp);
4633 4634
	if (!new_arg)
	  return 0;				// OOM
unknown's avatar
unknown committed
4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
	if ((new_arg->next_key_part=key.next_key_part))
	  new_arg->increment_use_count(key1->use_count+1);
	key1=key1->insert(new_arg);
      }
      if ((cmp=tmp->cmp_max_to_max(&key)) <= 0)
      {						// tmp.min. <= x <= tmp.max
	tmp->maybe_flag|= key.maybe_flag;
	key.increment_use_count(key1->use_count+1);
	tmp->next_key_part=key_or(tmp->next_key_part,key.next_key_part);
	if (!cmp)				// Key2 is ready
	  break;
	key.copy_max_to_min(tmp);
	if (!(tmp=tmp->next))
	{
4649 4650 4651 4652
	  SEL_ARG *tmp2= new SEL_ARG(key);
	  if (!tmp2)
	    return 0;				// OOM
	  key1=key1->insert(tmp2);
unknown's avatar
unknown committed
4653 4654 4655 4656 4657
	  key2=key2->next;
	  goto end;
	}
	if (tmp->cmp_min_to_max(&key) > 0)
	{
4658 4659 4660 4661
	  SEL_ARG *tmp2= new SEL_ARG(key);
	  if (!tmp2)
	    return 0;				// OOM
	  key1=key1->insert(tmp2);
unknown's avatar
unknown committed
4662 4663 4664 4665 4666 4667
	  break;
	}
      }
      else
      {
	SEL_ARG *new_arg=tmp->clone_last(&key); // tmp.min <= x <= key.max
4668 4669
	if (!new_arg)
	  return 0;				// OOM
unknown's avatar
unknown committed
4670 4671
	tmp->copy_max_to_min(&key);
	tmp->increment_use_count(key1->use_count+1);
4672 4673
	/* Increment key count as it may be used for next loop */
	key.increment_use_count(1);
unknown's avatar
unknown committed
4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687
	new_arg->next_key_part=key_or(tmp->next_key_part,key.next_key_part);
	key1=key1->insert(new_arg);
	break;
      }
    }
    key2=key2->next;
  }

end:
  while (key2)
  {
    SEL_ARG *next=key2->next;
    if (key2_shared)
    {
4688 4689 4690
      SEL_ARG *tmp=new SEL_ARG(*key2);		// Must make copy
      if (!tmp)
	return 0;
unknown's avatar
unknown committed
4691
      key2->increment_use_count(key1->use_count+1);
4692
      key1=key1->insert(tmp);
unknown's avatar
unknown committed
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739
    }
    else
      key1=key1->insert(key2);			// Will destroy key2_root
    key2=next;
  }
  key1->use_count++;
  return key1;
}


/* Compare if two trees are equal */

static bool eq_tree(SEL_ARG* a,SEL_ARG *b)
{
  if (a == b)
    return 1;
  if (!a || !b || !a->is_same(b))
    return 0;
  if (a->left != &null_element && b->left != &null_element)
  {
    if (!eq_tree(a->left,b->left))
      return 0;
  }
  else if (a->left != &null_element || b->left != &null_element)
    return 0;
  if (a->right != &null_element && b->right != &null_element)
  {
    if (!eq_tree(a->right,b->right))
      return 0;
  }
  else if (a->right != &null_element || b->right != &null_element)
    return 0;
  if (a->next_key_part != b->next_key_part)
  {						// Sub range
    if (!a->next_key_part != !b->next_key_part ||
	!eq_tree(a->next_key_part, b->next_key_part))
      return 0;
  }
  return 1;
}


SEL_ARG *
SEL_ARG::insert(SEL_ARG *key)
{
  SEL_ARG *element,**par,*last_element;
  LINT_INIT(par); LINT_INIT(last_element);
unknown's avatar
unknown committed
4740

unknown's avatar
unknown committed
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807
  for (element= this; element != &null_element ; )
  {
    last_element=element;
    if (key->cmp_min_to_min(element) > 0)
    {
      par= &element->right; element= element->right;
    }
    else
    {
      par = &element->left; element= element->left;
    }
  }
  *par=key;
  key->parent=last_element;
	/* Link in list */
  if (par == &last_element->left)
  {
    key->next=last_element;
    if ((key->prev=last_element->prev))
      key->prev->next=key;
    last_element->prev=key;
  }
  else
  {
    if ((key->next=last_element->next))
      key->next->prev=key;
    key->prev=last_element;
    last_element->next=key;
  }
  key->left=key->right= &null_element;
  SEL_ARG *root=rb_insert(key);			// rebalance tree
  root->use_count=this->use_count;		// copy root info
  root->elements= this->elements+1;
  root->maybe_flag=this->maybe_flag;
  return root;
}


/*
** Find best key with min <= given key
** Because the call context this should never return 0 to get_range
*/

SEL_ARG *
SEL_ARG::find_range(SEL_ARG *key)
{
  SEL_ARG *element=this,*found=0;

  for (;;)
  {
    if (element == &null_element)
      return found;
    int cmp=element->cmp_min_to_min(key);
    if (cmp == 0)
      return element;
    if (cmp < 0)
    {
      found=element;
      element=element->right;
    }
    else
      element=element->left;
  }
}


/*
4808 4809 4810 4811 4812
  Remove a element from the tree

  SYNOPSIS
    tree_delete()
    key		Key that is to be deleted from tree (this)
unknown's avatar
unknown committed
4813

4814 4815 4816 4817 4818
  NOTE
    This also frees all sub trees that is used by the element

  RETURN
    root of new tree (with key deleted)
unknown's avatar
unknown committed
4819 4820 4821 4822 4823 4824 4825
*/

SEL_ARG *
SEL_ARG::tree_delete(SEL_ARG *key)
{
  enum leaf_color remove_color;
  SEL_ARG *root,*nod,**par,*fix_par;
4826 4827 4828 4829
  DBUG_ENTER("tree_delete");

  root=this;
  this->parent= 0;
unknown's avatar
unknown committed
4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875

  /* Unlink from list */
  if (key->prev)
    key->prev->next=key->next;
  if (key->next)
    key->next->prev=key->prev;
  key->increment_use_count(-1);
  if (!key->parent)
    par= &root;
  else
    par=key->parent_ptr();

  if (key->left == &null_element)
  {
    *par=nod=key->right;
    fix_par=key->parent;
    if (nod != &null_element)
      nod->parent=fix_par;
    remove_color= key->color;
  }
  else if (key->right == &null_element)
  {
    *par= nod=key->left;
    nod->parent=fix_par=key->parent;
    remove_color= key->color;
  }
  else
  {
    SEL_ARG *tmp=key->next;			// next bigger key (exist!)
    nod= *tmp->parent_ptr()= tmp->right;	// unlink tmp from tree
    fix_par=tmp->parent;
    if (nod != &null_element)
      nod->parent=fix_par;
    remove_color= tmp->color;

    tmp->parent=key->parent;			// Move node in place of key
    (tmp->left=key->left)->parent=tmp;
    if ((tmp->right=key->right) != &null_element)
      tmp->right->parent=tmp;
    tmp->color=key->color;
    *par=tmp;
    if (fix_par == key)				// key->right == key->next
      fix_par=tmp;				// new parent of nod
  }

  if (root == &null_element)
4876
    DBUG_RETURN(0);				// Maybe root later
unknown's avatar
unknown committed
4877 4878 4879 4880 4881 4882 4883
  if (remove_color == BLACK)
    root=rb_delete_fixup(root,nod,fix_par);
  test_rb_tree(root,root->parent);

  root->use_count=this->use_count;		// Fix root counters
  root->elements=this->elements-1;
  root->maybe_flag=this->maybe_flag;
4884
  DBUG_RETURN(root);
unknown's avatar
unknown committed
4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
}


	/* Functions to fix up the tree after insert and delete */

static void left_rotate(SEL_ARG **root,SEL_ARG *leaf)
{
  SEL_ARG *y=leaf->right;
  leaf->right=y->left;
  if (y->left != &null_element)
    y->left->parent=leaf;
  if (!(y->parent=leaf->parent))
    *root=y;
  else
    *leaf->parent_ptr()=y;
  y->left=leaf;
  leaf->parent=y;
}

static void right_rotate(SEL_ARG **root,SEL_ARG *leaf)
{
  SEL_ARG *y=leaf->left;
  leaf->left=y->right;
  if (y->right != &null_element)
    y->right->parent=leaf;
  if (!(y->parent=leaf->parent))
    *root=y;
  else
    *leaf->parent_ptr()=y;
  y->right=leaf;
  leaf->parent=y;
}


SEL_ARG *
SEL_ARG::rb_insert(SEL_ARG *leaf)
{
  SEL_ARG *y,*par,*par2,*root;
  root= this; root->parent= 0;

  leaf->color=RED;
  while (leaf != root && (par= leaf->parent)->color == RED)
  {					// This can't be root or 1 level under
    if (par == (par2= leaf->parent->parent)->left)
    {
      y= par2->right;
      if (y->color == RED)
      {
	par->color=BLACK;
	y->color=BLACK;
	leaf=par2;
	leaf->color=RED;		/* And the loop continues */
      }
      else
      {
	if (leaf == par->right)
	{
	  left_rotate(&root,leaf->parent);
	  par=leaf;			/* leaf is now parent to old leaf */
	}
	par->color=BLACK;
	par2->color=RED;
	right_rotate(&root,par2);
	break;
      }
    }
    else
    {
      y= par2->left;
      if (y->color == RED)
      {
	par->color=BLACK;
	y->color=BLACK;
	leaf=par2;
	leaf->color=RED;		/* And the loop continues */
      }
      else
      {
	if (leaf == par->left)
	{
	  right_rotate(&root,par);
	  par=leaf;
	}
	par->color=BLACK;
	par2->color=RED;
	left_rotate(&root,par2);
	break;
      }
    }
  }
  root->color=BLACK;
  test_rb_tree(root,root->parent);
  return root;
}


SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key,SEL_ARG *par)
{
  SEL_ARG *x,*w;
  root->parent=0;

  x= key;
  while (x != root && x->color == SEL_ARG::BLACK)
  {
    if (x == par->left)
    {
      w=par->right;
      if (w->color == SEL_ARG::RED)
      {
	w->color=SEL_ARG::BLACK;
	par->color=SEL_ARG::RED;
	left_rotate(&root,par);
	w=par->right;
      }
      if (w->left->color == SEL_ARG::BLACK && w->right->color == SEL_ARG::BLACK)
      {
	w->color=SEL_ARG::RED;
	x=par;
      }
      else
      {
	if (w->right->color == SEL_ARG::BLACK)
	{
	  w->left->color=SEL_ARG::BLACK;
	  w->color=SEL_ARG::RED;
	  right_rotate(&root,w);
	  w=par->right;
	}
	w->color=par->color;
	par->color=SEL_ARG::BLACK;
	w->right->color=SEL_ARG::BLACK;
	left_rotate(&root,par);
	x=root;
	break;
      }
    }
    else
    {
      w=par->left;
      if (w->color == SEL_ARG::RED)
      {
	w->color=SEL_ARG::BLACK;
	par->color=SEL_ARG::RED;
	right_rotate(&root,par);
	w=par->left;
      }
      if (w->right->color == SEL_ARG::BLACK && w->left->color == SEL_ARG::BLACK)
      {
	w->color=SEL_ARG::RED;
	x=par;
      }
      else
      {
	if (w->left->color == SEL_ARG::BLACK)
	{
	  w->right->color=SEL_ARG::BLACK;
	  w->color=SEL_ARG::RED;
	  left_rotate(&root,w);
	  w=par->left;
	}
	w->color=par->color;
	par->color=SEL_ARG::BLACK;
	w->left->color=SEL_ARG::BLACK;
	right_rotate(&root,par);
	x=root;
	break;
      }
    }
    par=x->parent;
  }
  x->color=SEL_ARG::BLACK;
  return root;
}


5060
	/* Test that the properties for a red-black tree hold */
unknown's avatar
unknown committed
5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116

#ifdef EXTRA_DEBUG
int test_rb_tree(SEL_ARG *element,SEL_ARG *parent)
{
  int count_l,count_r;

  if (element == &null_element)
    return 0;					// Found end of tree
  if (element->parent != parent)
  {
    sql_print_error("Wrong tree: Parent doesn't point at parent");
    return -1;
  }
  if (element->color == SEL_ARG::RED &&
      (element->left->color == SEL_ARG::RED ||
       element->right->color == SEL_ARG::RED))
  {
    sql_print_error("Wrong tree: Found two red in a row");
    return -1;
  }
  if (element->left == element->right && element->left != &null_element)
  {						// Dummy test
    sql_print_error("Wrong tree: Found right == left");
    return -1;
  }
  count_l=test_rb_tree(element->left,element);
  count_r=test_rb_tree(element->right,element);
  if (count_l >= 0 && count_r >= 0)
  {
    if (count_l == count_r)
      return count_l+(element->color == SEL_ARG::BLACK);
    sql_print_error("Wrong tree: Incorrect black-count: %d - %d",
	    count_l,count_r);
  }
  return -1;					// Error, no more warnings
}

static ulong count_key_part_usage(SEL_ARG *root, SEL_ARG *key)
{
  ulong count= 0;
  for (root=root->first(); root ; root=root->next)
  {
    if (root->next_key_part)
    {
      if (root->next_key_part == key)
	count++;
      if (root->next_key_part->part < key->part)
	count+=count_key_part_usage(root->next_key_part,key);
    }
  }
  return count;
}


void SEL_ARG::test_use_count(SEL_ARG *root)
{
5117
  uint e_count=0;
unknown's avatar
unknown committed
5118 5119
  if (this == root && use_count != 1)
  {
unknown's avatar
unknown committed
5120
    sql_print_information("Use_count: Wrong count %lu for root",use_count);
unknown's avatar
unknown committed
5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
    return;
  }
  if (this->type != SEL_ARG::KEY_RANGE)
    return;
  for (SEL_ARG *pos=first(); pos ; pos=pos->next)
  {
    e_count++;
    if (pos->next_key_part)
    {
      ulong count=count_key_part_usage(root,pos->next_key_part);
      if (count > pos->next_key_part->use_count)
      {
unknown's avatar
unknown committed
5133
	sql_print_information("Use_count: Wrong count for key at 0x%lx, %lu should be %lu",
unknown's avatar
unknown committed
5134 5135 5136 5137 5138 5139 5140
			pos,pos->next_key_part->use_count,count);
	return;
      }
      pos->next_key_part->test_use_count(root);
    }
  }
  if (e_count != elements)
unknown's avatar
unknown committed
5141
    sql_print_warning("Wrong use count: %u (should be %u) for tree at 0x%lx",
5142
		    e_count, elements, (gptr) this);
unknown's avatar
unknown committed
5143 5144 5145 5146 5147
}

#endif


5148 5149 5150 5151 5152 5153 5154 5155 5156 5157
/*
  Calculate estimate of number records that will be retrieved by a range
  scan on given index using given SEL_ARG intervals tree.
  SYNOPSIS
    check_quick_select
      param  Parameter from test_quick_select
      idx    Number of index to use in PARAM::key SEL_TREE::key
      tree   Transformed selection condition, tree->key[idx] holds intervals
             tree to be used for scanning.
  NOTES
unknown's avatar
unknown committed
5158
    param->is_ror_scan is set to reflect if the key scan is a ROR (see
5159
    is_key_scan_ror function for more info)
unknown's avatar
unknown committed
5160
    param->table->quick_*, param->range_count (and maybe others) are
5161
    updated with data of given key scan, see check_quick_keys for details.
unknown's avatar
unknown committed
5162 5163

  RETURN
5164
    Estimate # of records to be retrieved.
unknown's avatar
unknown committed
5165
    HA_POS_ERROR if estimate calculation failed due to table handler problems.
unknown's avatar
unknown committed
5166

5167
*/
unknown's avatar
unknown committed
5168 5169 5170 5171 5172

static ha_rows
check_quick_select(PARAM *param,uint idx,SEL_ARG *tree)
{
  ha_rows records;
5173 5174
  bool    cpk_scan;
  uint key;
unknown's avatar
unknown committed
5175
  DBUG_ENTER("check_quick_select");
unknown's avatar
unknown committed
5176

unknown's avatar
unknown committed
5177
  param->is_ror_scan= FALSE;
unknown's avatar
unknown committed
5178

unknown's avatar
unknown committed
5179 5180
  if (!tree)
    DBUG_RETURN(HA_POS_ERROR);			// Can't use it
unknown's avatar
unknown committed
5181 5182
  param->max_key_part=0;
  param->range_count=0;
5183 5184
  key= param->real_keynr[idx];

unknown's avatar
unknown committed
5185 5186 5187 5188
  if (tree->type == SEL_ARG::IMPOSSIBLE)
    DBUG_RETURN(0L);				// Impossible select. return
  if (tree->type != SEL_ARG::KEY_RANGE || tree->part != 0)
    DBUG_RETURN(HA_POS_ERROR);				// Don't use tree
5189 5190 5191 5192 5193

  enum ha_key_alg key_alg= param->table->key_info[key].algorithm;
  if ((key_alg != HA_KEY_ALG_BTREE) && (key_alg!= HA_KEY_ALG_UNDEF))
  {
    /* Records are not ordered by rowid for other types of indexes. */
unknown's avatar
unknown committed
5194
    cpk_scan= FALSE;
5195 5196 5197 5198 5199 5200 5201
  }
  else
  {
    /*
      Clustered PK scan is a special case, check_quick_keys doesn't recognize
      CPK scans as ROR scans (while actually any CPK scan is a ROR scan).
    */
5202 5203
    cpk_scan= ((param->table->s->primary_key == param->real_keynr[idx]) &&
               param->table->file->primary_key_is_clustered());
unknown's avatar
unknown committed
5204
    param->is_ror_scan= !cpk_scan;
5205 5206
  }

unknown's avatar
unknown committed
5207 5208
  records=check_quick_keys(param,idx,tree,param->min_key,0,param->max_key,0);
  if (records != HA_POS_ERROR)
unknown's avatar
unknown committed
5209
  {
5210
    param->table->quick_keys.set_bit(key);
unknown's avatar
unknown committed
5211 5212
    param->table->quick_rows[key]=records;
    param->table->quick_key_parts[key]=param->max_key_part+1;
unknown's avatar
unknown committed
5213

5214
    if (cpk_scan)
unknown's avatar
unknown committed
5215
      param->is_ror_scan= TRUE;
unknown's avatar
unknown committed
5216
  }
5217 5218
  if (param->table->file->index_flags(key, 0, TRUE) & HA_KEY_SCAN_NOT_ROR)
    param->is_ror_scan= FALSE;
5219
  DBUG_PRINT("exit", ("Records: %lu", (ulong) records));
unknown's avatar
unknown committed
5220 5221 5222 5223
  DBUG_RETURN(records);
}


5224
/*
unknown's avatar
unknown committed
5225 5226
  Recursively calculate estimate of # rows that will be retrieved by
  key scan on key idx.
5227 5228
  SYNOPSIS
    check_quick_keys()
5229
      param         Parameter from test_quick select function.
unknown's avatar
unknown committed
5230
      idx           Number of key to use in PARAM::keys in list of used keys
5231 5232 5233
                    (param->real_keynr[idx] holds the key number in table)
      key_tree      SEL_ARG tree being examined.
      min_key       Buffer with partial min key value tuple
unknown's avatar
unknown committed
5234
      min_key_flag
5235
      max_key       Buffer with partial max key value tuple
5236 5237
      max_key_flag

5238
  NOTES
unknown's avatar
unknown committed
5239 5240
    The function does the recursive descent on the tree via SEL_ARG::left,
    SEL_ARG::right, and SEL_ARG::next_key_part edges. The #rows estimates
5241 5242
    are calculated using records_in_range calls at the leaf nodes and then
    summed.
5243

5244 5245
    param->min_key and param->max_key are used to hold prefixes of key value
    tuples.
5246 5247

    The side effects are:
unknown's avatar
unknown committed
5248

5249 5250
    param->max_key_part is updated to hold the maximum number of key parts used
      in scan minus 1.
unknown's avatar
unknown committed
5251 5252

    param->range_count is incremented if the function finds a range that
5253
      wasn't counted by the caller.
unknown's avatar
unknown committed
5254

5255 5256 5257
    param->is_ror_scan is cleared if the function detects that the key scan is
      not a Rowid-Ordered Retrieval scan ( see comments for is_key_scan_ror
      function for description of which key scans are ROR scans)
5258 5259
*/

unknown's avatar
unknown committed
5260 5261 5262 5263 5264
static ha_rows
check_quick_keys(PARAM *param,uint idx,SEL_ARG *key_tree,
		 char *min_key,uint min_key_flag, char *max_key,
		 uint max_key_flag)
{
unknown's avatar
unknown committed
5265 5266 5267
  ha_rows records=0, tmp;
  uint tmp_min_flag, tmp_max_flag, keynr, min_key_length, max_key_length;
  char *tmp_min_key, *tmp_max_key;
unknown's avatar
unknown committed
5268 5269 5270 5271

  param->max_key_part=max(param->max_key_part,key_tree->part);
  if (key_tree->left != &null_element)
  {
5272 5273 5274 5275 5276 5277
    /*
      There are at least two intervals for current key part, i.e. condition
      was converted to something like
        (keyXpartY less/equals c1) OR (keyXpartY more/equals c2).
      This is not a ROR scan if the key is not Clustered Primary Key.
    */
unknown's avatar
unknown committed
5278
    param->is_ror_scan= FALSE;
unknown's avatar
unknown committed
5279 5280 5281 5282 5283 5284
    records=check_quick_keys(param,idx,key_tree->left,min_key,min_key_flag,
			     max_key,max_key_flag);
    if (records == HA_POS_ERROR)			// Impossible
      return records;
  }

unknown's avatar
unknown committed
5285 5286
  tmp_min_key= min_key;
  tmp_max_key= max_key;
unknown's avatar
unknown committed
5287
  key_tree->store(param->key[idx][key_tree->part].store_length,
unknown's avatar
unknown committed
5288
		  &tmp_min_key,min_key_flag,&tmp_max_key,max_key_flag);
unknown's avatar
unknown committed
5289 5290
  min_key_length= (uint) (tmp_min_key- param->min_key);
  max_key_length= (uint) (tmp_max_key- param->max_key);
unknown's avatar
unknown committed
5291

5292 5293
  if (param->is_ror_scan)
  {
unknown's avatar
unknown committed
5294
    /*
5295
      If the index doesn't cover entire key, mark the scan as non-ROR scan.
5296
      Actually we're cutting off some ROR scans here.
5297 5298 5299
    */
    uint16 fieldnr= param->table->key_info[param->real_keynr[idx]].
                    key_part[key_tree->part].fieldnr - 1;
unknown's avatar
unknown committed
5300
    if (param->table->field[fieldnr]->key_length() !=
5301
        param->key[idx][key_tree->part].length)
unknown's avatar
unknown committed
5302
      param->is_ror_scan= FALSE;
5303 5304
  }

unknown's avatar
unknown committed
5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317
  if (key_tree->next_key_part &&
      key_tree->next_key_part->part == key_tree->part+1 &&
      key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
  {						// const key as prefix
    if (min_key_length == max_key_length &&
	!memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) &&
	!key_tree->min_flag && !key_tree->max_flag)
    {
      tmp=check_quick_keys(param,idx,key_tree->next_key_part,
			   tmp_min_key, min_key_flag | key_tree->min_flag,
			   tmp_max_key, max_key_flag | key_tree->max_flag);
      goto end;					// Ugly, but efficient
    }
5318
    else
5319 5320
    {
      /* The interval for current key part is not c1 <= keyXpartY <= c1 */
unknown's avatar
unknown committed
5321
      param->is_ror_scan= FALSE;
5322
    }
5323

unknown's avatar
unknown committed
5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341
    tmp_min_flag=key_tree->min_flag;
    tmp_max_flag=key_tree->max_flag;
    if (!tmp_min_flag)
      key_tree->next_key_part->store_min_key(param->key[idx], &tmp_min_key,
					     &tmp_min_flag);
    if (!tmp_max_flag)
      key_tree->next_key_part->store_max_key(param->key[idx], &tmp_max_key,
					     &tmp_max_flag);
    min_key_length= (uint) (tmp_min_key- param->min_key);
    max_key_length= (uint) (tmp_max_key- param->max_key);
  }
  else
  {
    tmp_min_flag=min_key_flag | key_tree->min_flag;
    tmp_max_flag=max_key_flag | key_tree->max_flag;
  }

  keynr=param->real_keynr[idx];
unknown's avatar
unknown committed
5342
  param->range_count++;
unknown's avatar
unknown committed
5343 5344
  if (!tmp_min_flag && ! tmp_max_flag &&
      (uint) key_tree->part+1 == param->table->key_info[keynr].key_parts &&
5345 5346
      (param->table->key_info[keynr].flags & (HA_NOSAME | HA_END_SPACE_KEY)) ==
      HA_NOSAME &&
unknown's avatar
unknown committed
5347 5348 5349 5350
      min_key_length == max_key_length &&
      !memcmp(param->min_key,param->max_key,min_key_length))
    tmp=1;					// Max one record
  else
unknown's avatar
unknown committed
5351
  {
5352 5353
    if (param->is_ror_scan)
    {
5354 5355 5356 5357 5358 5359 5360 5361 5362
      /*
        If we get here, the condition on the key was converted to form
        "(keyXpart1 = c1) AND ... AND (keyXpart{key_tree->part - 1} = cN) AND
          somecond(keyXpart{key_tree->part})"
        Check if
          somecond is "keyXpart{key_tree->part} = const" and
          uncovered "tail" of KeyX parts is either empty or is identical to
          first members of clustered primary key.
      */
5363 5364
      if (!(min_key_length == max_key_length &&
            !memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) &&
unknown's avatar
unknown committed
5365
            !key_tree->min_flag && !key_tree->max_flag &&
5366
            is_key_scan_ror(param, keynr, key_tree->part + 1)))
unknown's avatar
unknown committed
5367
        param->is_ror_scan= FALSE;
5368 5369
    }

unknown's avatar
unknown committed
5370
    if (tmp_min_flag & GEOM_FLAG)
unknown's avatar
unknown committed
5371
    {
unknown's avatar
unknown committed
5372 5373 5374 5375 5376 5377 5378 5379
      key_range min_range;
      min_range.key=    (byte*) param->min_key;
      min_range.length= min_key_length;
      /* In this case tmp_min_flag contains the handler-read-function */
      min_range.flag=   (ha_rkey_function) (tmp_min_flag ^ GEOM_FLAG);

      tmp= param->table->file->records_in_range(keynr, &min_range,
                                                (key_range*) 0);
unknown's avatar
unknown committed
5380 5381 5382
    }
    else
    {
unknown's avatar
unknown committed
5383 5384 5385 5386 5387 5388
      key_range min_range, max_range;

      min_range.key=    (byte*) param->min_key;
      min_range.length= min_key_length;
      min_range.flag=   (tmp_min_flag & NEAR_MIN ? HA_READ_AFTER_KEY :
                         HA_READ_KEY_EXACT);
unknown's avatar
unknown committed
5389
      max_range.key=    (byte*) param->max_key;
unknown's avatar
unknown committed
5390 5391 5392 5393 5394 5395 5396 5397
      max_range.length= max_key_length;
      max_range.flag=   (tmp_max_flag & NEAR_MAX ?
                         HA_READ_BEFORE_KEY : HA_READ_AFTER_KEY);
      tmp=param->table->file->records_in_range(keynr,
                                               (min_key_length ? &min_range :
                                                (key_range*) 0),
                                               (max_key_length ? &max_range :
                                                (key_range*) 0));
unknown's avatar
unknown committed
5398 5399
    }
  }
unknown's avatar
unknown committed
5400 5401 5402 5403 5404 5405
 end:
  if (tmp == HA_POS_ERROR)			// Impossible range
    return tmp;
  records+=tmp;
  if (key_tree->right != &null_element)
  {
5406 5407 5408 5409 5410 5411
    /*
      There are at least two intervals for current key part, i.e. condition
      was converted to something like
        (keyXpartY less/equals c1) OR (keyXpartY more/equals c2).
      This is not a ROR scan if the key is not Clustered Primary Key.
    */
unknown's avatar
unknown committed
5412
    param->is_ror_scan= FALSE;
unknown's avatar
unknown committed
5413 5414 5415 5416 5417 5418 5419 5420 5421
    tmp=check_quick_keys(param,idx,key_tree->right,min_key,min_key_flag,
			 max_key,max_key_flag);
    if (tmp == HA_POS_ERROR)
      return tmp;
    records+=tmp;
  }
  return records;
}

5422

5423
/*
unknown's avatar
unknown committed
5424
  Check if key scan on given index with equality conditions on first n key
5425 5426 5427 5428
  parts is a ROR scan.

  SYNOPSIS
    is_key_scan_ror()
unknown's avatar
unknown committed
5429
      param  Parameter from test_quick_select
5430 5431 5432 5433
      keynr  Number of key in the table. The key must not be a clustered
             primary key.
      nparts Number of first key parts for which equality conditions
             are present.
unknown's avatar
unknown committed
5434

5435 5436 5437
  NOTES
    ROR (Rowid Ordered Retrieval) key scan is a key scan that produces
    ordered sequence of rowids (ha_xxx::cmp_ref is the comparison function)
unknown's avatar
unknown committed
5438

5439 5440 5441
    An index scan is a ROR scan if it is done using a condition in form

        "key1_1=c_1 AND ... AND key1_n=c_n"  (1)
unknown's avatar
unknown committed
5442

5443 5444
    where the index is defined on (key1_1, ..., key1_N [,a_1, ..., a_n])

unknown's avatar
unknown committed
5445
    and the table has a clustered Primary Key
5446

unknown's avatar
unknown committed
5447
    PRIMARY KEY(a_1, ..., a_n, b1, ..., b_k) with first key parts being
5448
    identical to uncovered parts ot the key being scanned (2)
unknown's avatar
unknown committed
5449 5450

    Scans on HASH indexes are not ROR scans,
5451 5452 5453 5454 5455 5456
    any range scan on clustered primary key is ROR scan  (3)

    Check (1) is made in check_quick_keys()
    Check (3) is made check_quick_select()
    Check (2) is made by this function.

unknown's avatar
unknown committed
5457
  RETURN
unknown's avatar
unknown committed
5458 5459
    TRUE  If the scan is ROR-scan
    FALSE otherwise
5460
*/
5461

5462 5463 5464 5465
static bool is_key_scan_ror(PARAM *param, uint keynr, uint8 nparts)
{
  KEY *table_key= param->table->key_info + keynr;
  KEY_PART_INFO *key_part= table_key->key_part + nparts;
5466 5467 5468
  KEY_PART_INFO *key_part_end= (table_key->key_part +
                                table_key->key_parts);
  uint pk_number;
unknown's avatar
unknown committed
5469

5470
  if (key_part == key_part_end)
unknown's avatar
unknown committed
5471
    return TRUE;
5472
  pk_number= param->table->s->primary_key;
5473
  if (!param->table->file->primary_key_is_clustered() || pk_number == MAX_KEY)
unknown's avatar
unknown committed
5474
    return FALSE;
5475 5476

  KEY_PART_INFO *pk_part= param->table->key_info[pk_number].key_part;
unknown's avatar
unknown committed
5477
  KEY_PART_INFO *pk_part_end= pk_part +
5478
                              param->table->key_info[pk_number].key_parts;
unknown's avatar
unknown committed
5479 5480
  for (;(key_part!=key_part_end) && (pk_part != pk_part_end);
       ++key_part, ++pk_part)
5481
  {
unknown's avatar
unknown committed
5482
    if ((key_part->field != pk_part->field) ||
5483
        (key_part->length != pk_part->length))
unknown's avatar
unknown committed
5484
      return FALSE;
unknown's avatar
unknown committed
5485
  }
5486
  return (key_part == key_part_end);
unknown's avatar
unknown committed
5487 5488 5489
}


5490 5491
/*
  Create a QUICK_RANGE_SELECT from given key and SEL_ARG tree for that key.
unknown's avatar
unknown committed
5492

5493 5494
  SYNOPSIS
    get_quick_select()
unknown's avatar
unknown committed
5495
      param
5496
      idx          Index of used key in param->key.
unknown's avatar
unknown committed
5497 5498
      key_tree     SEL_ARG tree for the used key
      parent_alloc If not NULL, use it to allocate memory for
5499
                   quick select data. Otherwise use quick->alloc.
5500
  NOTES
5501
    The caller must call QUICK_SELECT::init for returned quick select
5502

5503
    CAUTION! This function may change thd->mem_root to a MEM_ROOT which will be
5504
    deallocated when the returned quick select is deleted.
5505 5506 5507 5508

  RETURN
    NULL on error
    otherwise created quick select
5509
*/
5510

unknown's avatar
unknown committed
5511 5512 5513
QUICK_RANGE_SELECT *
get_quick_select(PARAM *param,uint idx,SEL_ARG *key_tree,
                 MEM_ROOT *parent_alloc)
unknown's avatar
unknown committed
5514
{
unknown's avatar
unknown committed
5515
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
5516
  DBUG_ENTER("get_quick_select");
unknown's avatar
unknown committed
5517 5518 5519 5520 5521 5522 5523 5524 5525

  if (param->table->key_info[param->real_keynr[idx]].flags & HA_SPATIAL)
    quick=new QUICK_RANGE_SELECT_GEOM(param->thd, param->table,
                                      param->real_keynr[idx],
                                      test(parent_alloc),
                                      parent_alloc);
  else
    quick=new QUICK_RANGE_SELECT(param->thd, param->table,
                                 param->real_keynr[idx],
unknown's avatar
unknown committed
5526
                                 test(parent_alloc));
unknown's avatar
unknown committed
5527

unknown's avatar
unknown committed
5528
  if (quick)
unknown's avatar
unknown committed
5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539
  {
    if (quick->error ||
	get_quick_keys(param,quick,param->key[idx],key_tree,param->min_key,0,
		       param->max_key,0))
    {
      delete quick;
      quick=0;
    }
    else
    {
      quick->key_parts=(KEY_PART*)
unknown's avatar
unknown committed
5540 5541 5542 5543
        memdup_root(parent_alloc? parent_alloc : &quick->alloc,
                    (char*) param->key[idx],
                    sizeof(KEY_PART)*
                    param->table->key_info[param->real_keynr[idx]].key_parts);
unknown's avatar
unknown committed
5544
    }
unknown's avatar
unknown committed
5545
  }
unknown's avatar
unknown committed
5546 5547 5548 5549 5550 5551 5552
  DBUG_RETURN(quick);
}


/*
** Fix this to get all possible sub_ranges
*/
unknown's avatar
unknown committed
5553 5554
bool
get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key,
unknown's avatar
unknown committed
5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567
	       SEL_ARG *key_tree,char *min_key,uint min_key_flag,
	       char *max_key, uint max_key_flag)
{
  QUICK_RANGE *range;
  uint flag;

  if (key_tree->left != &null_element)
  {
    if (get_quick_keys(param,quick,key,key_tree->left,
		       min_key,min_key_flag, max_key, max_key_flag))
      return 1;
  }
  char *tmp_min_key=min_key,*tmp_max_key=max_key;
unknown's avatar
unknown committed
5568
  key_tree->store(key[key_tree->part].store_length,
unknown's avatar
unknown committed
5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596
		  &tmp_min_key,min_key_flag,&tmp_max_key,max_key_flag);

  if (key_tree->next_key_part &&
      key_tree->next_key_part->part == key_tree->part+1 &&
      key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
  {						  // const key as prefix
    if (!((tmp_min_key - min_key) != (tmp_max_key - max_key) ||
	  memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) ||
	  key_tree->min_flag || key_tree->max_flag))
    {
      if (get_quick_keys(param,quick,key,key_tree->next_key_part,
			 tmp_min_key, min_key_flag | key_tree->min_flag,
			 tmp_max_key, max_key_flag | key_tree->max_flag))
	return 1;
      goto end;					// Ugly, but efficient
    }
    {
      uint tmp_min_flag=key_tree->min_flag,tmp_max_flag=key_tree->max_flag;
      if (!tmp_min_flag)
	key_tree->next_key_part->store_min_key(key, &tmp_min_key,
					       &tmp_min_flag);
      if (!tmp_max_flag)
	key_tree->next_key_part->store_max_key(key, &tmp_max_key,
					       &tmp_max_flag);
      flag=tmp_min_flag | tmp_max_flag;
    }
  }
  else
unknown's avatar
unknown committed
5597 5598 5599 5600
  {
    flag = (key_tree->min_flag & GEOM_FLAG) ?
      key_tree->min_flag : key_tree->min_flag | key_tree->max_flag;
  }
unknown's avatar
unknown committed
5601

5602 5603 5604 5605 5606
  /*
    Ensure that some part of min_key and max_key are used.  If not,
    regard this as no lower/upper range
  */
  if ((flag & GEOM_FLAG) == 0)
unknown's avatar
unknown committed
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616
  {
    if (tmp_min_key != param->min_key)
      flag&= ~NO_MIN_RANGE;
    else
      flag|= NO_MIN_RANGE;
    if (tmp_max_key != param->max_key)
      flag&= ~NO_MAX_RANGE;
    else
      flag|= NO_MAX_RANGE;
  }
unknown's avatar
unknown committed
5617 5618 5619 5620 5621 5622 5623 5624
  if (flag == 0)
  {
    uint length= (uint) (tmp_min_key - param->min_key);
    if (length == (uint) (tmp_max_key - param->max_key) &&
	!memcmp(param->min_key,param->max_key,length))
    {
      KEY *table_key=quick->head->key_info+quick->index;
      flag=EQ_RANGE;
5625 5626
      if ((table_key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME &&
	  key->part == table_key->key_parts-1)
5627 5628 5629 5630 5631 5632 5633 5634 5635
      {
	if (!(table_key->flags & HA_NULL_PART_KEY) ||
	    !null_part_in_key(key,
			      param->min_key,
			      (uint) (tmp_min_key - param->min_key)))
	  flag|= UNIQUE_RANGE;
	else
	  flag|= NULL_RANGE;
      }
unknown's avatar
unknown committed
5636 5637 5638 5639
    }
  }

  /* Get range for retrieving rows in QUICK_SELECT::get_next */
5640
  if (!(range= new QUICK_RANGE((const char *) param->min_key,
5641
			       (uint) (tmp_min_key - param->min_key),
5642
			       (const char *) param->max_key,
5643 5644
			       (uint) (tmp_max_key - param->max_key),
			       flag)))
5645 5646
    return 1;			// out of memory

unknown's avatar
unknown committed
5647 5648
  set_if_bigger(quick->max_used_key_length,range->min_length);
  set_if_bigger(quick->max_used_key_length,range->max_length);
unknown's avatar
unknown committed
5649
  set_if_bigger(quick->used_key_parts, (uint) key_tree->part+1);
5650 5651 5652
  if (insert_dynamic(&quick->ranges, (gptr)&range))
    return 1;

unknown's avatar
unknown committed
5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664
 end:
  if (key_tree->right != &null_element)
    return get_quick_keys(param,quick,key,key_tree->right,
			  min_key,min_key_flag,
			  max_key,max_key_flag);
  return 0;
}

/*
  Return 1 if there is only one range and this uses the whole primary key
*/

unknown's avatar
unknown committed
5665
bool QUICK_RANGE_SELECT::unique_key_range()
unknown's avatar
unknown committed
5666 5667 5668
{
  if (ranges.elements == 1)
  {
5669 5670
    QUICK_RANGE *tmp= *((QUICK_RANGE**)ranges.buffer);
    if ((tmp->flag & (EQ_RANGE | NULL_RANGE)) == EQ_RANGE)
unknown's avatar
unknown committed
5671 5672
    {
      KEY *key=head->key_info+index;
5673
      return ((key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME &&
unknown's avatar
unknown committed
5674 5675 5676 5677 5678 5679
	      key->key_length == tmp->min_length);
    }
  }
  return 0;
}

5680

unknown's avatar
unknown committed
5681
/* Returns TRUE if any part of the key is NULL */
5682 5683 5684

static bool null_part_in_key(KEY_PART *key_part, const char *key, uint length)
{
unknown's avatar
unknown committed
5685
  for (const char *end=key+length ;
5686
       key < end;
unknown's avatar
unknown committed
5687
       key+= key_part++->store_length)
5688
  {
unknown's avatar
unknown committed
5689 5690
    if (key_part->null_bit && *key)
      return 1;
5691 5692 5693 5694
  }
  return 0;
}

unknown's avatar
unknown committed
5695

5696 5697
bool QUICK_SELECT_I::check_if_keys_used(List<Item> *fields)
{
unknown's avatar
unknown committed
5698
  return check_if_key_used(head, index, *fields);
5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736
}

bool QUICK_INDEX_MERGE_SELECT::check_if_keys_used(List<Item> *fields)
{
  QUICK_RANGE_SELECT *quick;
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  while ((quick= it++))
  {
    if (check_if_key_used(head, quick->index, *fields))
      return 1;
  }
  return 0;
}

bool QUICK_ROR_INTERSECT_SELECT::check_if_keys_used(List<Item> *fields)
{
  QUICK_RANGE_SELECT *quick;
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  while ((quick= it++))
  {
    if (check_if_key_used(head, quick->index, *fields))
      return 1;
  }
  return 0;
}

bool QUICK_ROR_UNION_SELECT::check_if_keys_used(List<Item> *fields)
{
  QUICK_SELECT_I *quick;
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  while ((quick= it++))
  {
    if (quick->check_if_keys_used(fields))
      return 1;
  }
  return 0;
}

unknown's avatar
unknown committed
5737

unknown's avatar
unknown committed
5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754
/*
  Create quick select from ref/ref_or_null scan.
  SYNOPSIS
    get_quick_select_for_ref()
      thd      Thread handle
      table    Table to access
      ref      ref[_or_null] scan parameters
      records  Estimate of number of records (needed only to construct 
               quick select)
  NOTES
    This allocates things in a new memory root, as this may be called many
    times during a query.
  
  RETURN 
    Quick select that retrieves the same rows as passed ref scan
    NULL on error.
*/
unknown's avatar
unknown committed
5755

unknown's avatar
unknown committed
5756
QUICK_RANGE_SELECT *get_quick_select_for_ref(THD *thd, TABLE *table,
unknown's avatar
unknown committed
5757
                                             TABLE_REF *ref, ha_rows records)
unknown's avatar
unknown committed
5758
{
5759 5760
  MEM_ROOT *old_root= thd->mem_root;
  /* The following call may change thd->mem_root */
unknown's avatar
unknown committed
5761
  QUICK_RANGE_SELECT *quick= new QUICK_RANGE_SELECT(thd, table, ref->key, 0);
unknown's avatar
unknown committed
5762 5763
  KEY *key_info = &table->key_info[ref->key];
  KEY_PART *key_part;
unknown's avatar
unknown committed
5764
  QUICK_RANGE *range;
unknown's avatar
unknown committed
5765 5766 5767
  uint part;

  if (!quick)
5768
    return 0;			/* no ranges found */
unknown's avatar
unknown committed
5769
  if (quick->init())
unknown's avatar
unknown committed
5770 5771
  {
    delete quick;
unknown's avatar
unknown committed
5772
    goto err;
unknown's avatar
unknown committed
5773
  }
unknown's avatar
unknown committed
5774
  quick->records= records;
5775

unknown's avatar
unknown committed
5776
  if (cp_buffer_from_ref(thd,ref) && thd->is_fatal_error ||
unknown's avatar
unknown committed
5777 5778
      !(range= new QUICK_RANGE()))
    goto err;                                   // out of memory
5779

unknown's avatar
unknown committed
5780 5781 5782
  range->min_key=range->max_key=(char*) ref->key_buff;
  range->min_length=range->max_length=ref->key_length;
  range->flag= ((ref->key_length == key_info->key_length &&
5783 5784
		 (key_info->flags & (HA_NOSAME | HA_END_SPACE_KEY)) ==
		 HA_NOSAME) ? EQ_RANGE : 0);
unknown's avatar
unknown committed
5785 5786

  if (!(quick->key_parts=key_part=(KEY_PART *)
5787
	alloc_root(&quick->alloc,sizeof(KEY_PART)*ref->key_parts)))
unknown's avatar
unknown committed
5788 5789 5790 5791 5792 5793
    goto err;

  for (part=0 ; part < ref->key_parts ;part++,key_part++)
  {
    key_part->part=part;
    key_part->field=        key_info->key_part[part].field;
unknown's avatar
unknown committed
5794 5795
    key_part->length=  	    key_info->key_part[part].length;
    key_part->store_length= key_info->key_part[part].store_length;
unknown's avatar
unknown committed
5796 5797
    key_part->null_bit=     key_info->key_part[part].null_bit;
  }
unknown's avatar
unknown committed
5798
  if (insert_dynamic(&quick->ranges,(gptr)&range))
5799 5800
    goto err;

unknown's avatar
unknown committed
5801
  /*
5802 5803 5804 5805 5806
     Add a NULL range if REF_OR_NULL optimization is used.
     For example:
       if we have "WHERE A=2 OR A IS NULL" we created the (A=2) range above
       and have ref->null_ref_key set. Will create a new NULL range here.
  */
5807 5808 5809 5810 5811
  if (ref->null_ref_key)
  {
    QUICK_RANGE *null_range;

    *ref->null_ref_key= 1;		// Set null byte then create a range
unknown's avatar
unknown committed
5812 5813
    if (!(null_range= new QUICK_RANGE((char*)ref->key_buff, ref->key_length,
				      (char*)ref->key_buff, ref->key_length,
5814 5815 5816
				      EQ_RANGE)))
      goto err;
    *ref->null_ref_key= 0;		// Clear null byte
unknown's avatar
unknown committed
5817
    if (insert_dynamic(&quick->ranges,(gptr)&null_range))
5818 5819 5820
      goto err;
  }

5821
  thd->mem_root= old_root;
5822
  return quick;
unknown's avatar
unknown committed
5823 5824

err:
5825
  thd->mem_root= old_root;
unknown's avatar
unknown committed
5826 5827 5828 5829
  delete quick;
  return 0;
}

unknown's avatar
unknown committed
5830 5831

/*
unknown's avatar
unknown committed
5832 5833 5834 5835 5836 5837
  Perform key scans for all used indexes (except CPK), get rowids and merge 
  them into an ordered non-recurrent sequence of rowids.
  
  The merge/duplicate removal is performed using Unique class. We put all
  rowids into Unique, get the sorted sequence and destroy the Unique.
  
unknown's avatar
unknown committed
5838
  If table has a clustered primary key that covers all rows (TRUE for bdb
5839
     and innodb currently) and one of the index_merge scans is a scan on PK,
unknown's avatar
unknown committed
5840
  then
unknown's avatar
unknown committed
5841 5842
    rows that will be retrieved by PK scan are not put into Unique and 
    primary key scan is not performed here, it is performed later separately.
unknown's avatar
unknown committed
5843

5844 5845 5846
  RETURN
    0     OK
    other error
unknown's avatar
unknown committed
5847
*/
5848

unknown's avatar
unknown committed
5849
int QUICK_INDEX_MERGE_SELECT::read_keys_and_merge()
unknown's avatar
unknown committed
5850
{
unknown's avatar
unknown committed
5851 5852
  List_iterator_fast<QUICK_RANGE_SELECT> cur_quick_it(quick_selects);
  QUICK_RANGE_SELECT* cur_quick;
5853
  int result;
unknown's avatar
unknown committed
5854
  Unique *unique;
5855
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::prepare_unique");
unknown's avatar
unknown committed
5856

5857
  /* We're going to just read rowids. */
5858 5859
  if (head->file->extra(HA_EXTRA_KEYREAD))
    DBUG_RETURN(1);
5860

unknown's avatar
unknown committed
5861 5862
  /*
    Make innodb retrieve all PK member fields, so
5863
     * ha_innobase::position (which uses them) call works.
5864
     * We can filter out rows that will be retrieved by clustered PK.
5865
    (This also creates a deficiency - it is possible that we will retrieve
5866
     parts of key that are not used by current query at all.)
5867
  */
5868 5869
  if (head->file->extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY))
    DBUG_RETURN(1);
5870

unknown's avatar
unknown committed
5871 5872
  cur_quick_it.rewind();
  cur_quick= cur_quick_it++;
5873
  DBUG_ASSERT(cur_quick != 0);
unknown's avatar
unknown committed
5874 5875 5876 5877 5878
  
  /*
    We reuse the same instance of handler so we need to call both init and 
    reset here.
  */
unknown's avatar
unknown committed
5879
  if (cur_quick->init() || cur_quick->reset())
unknown's avatar
unknown committed
5880
    DBUG_RETURN(1);
5881

5882
  unique= new Unique(refpos_order_cmp, (void *)head->file,
5883
                     head->file->ref_length,
5884
                     thd->variables.sortbuff_size);
5885 5886
  if (!unique)
    DBUG_RETURN(1);
unknown's avatar
unknown committed
5887
  for (;;)
5888
  {
unknown's avatar
unknown committed
5889
    while ((result= cur_quick->get_next()) == HA_ERR_END_OF_FILE)
5890
    {
unknown's avatar
unknown committed
5891 5892 5893
      cur_quick->range_end();
      cur_quick= cur_quick_it++;
      if (!cur_quick)
unknown's avatar
unknown committed
5894
        break;
5895

unknown's avatar
unknown committed
5896 5897
      if (cur_quick->file->inited != handler::NONE) 
        cur_quick->file->ha_index_end();
unknown's avatar
unknown committed
5898
      if (cur_quick->init() || cur_quick->reset())
5899
        DBUG_RETURN(1);
unknown's avatar
unknown committed
5900 5901 5902
    }

    if (result)
unknown's avatar
unknown committed
5903
    {
5904
      if (result != HA_ERR_END_OF_FILE)
unknown's avatar
unknown committed
5905 5906
      {
        cur_quick->range_end();
5907
        DBUG_RETURN(result);
unknown's avatar
unknown committed
5908
      }
5909
      break;
unknown's avatar
unknown committed
5910
    }
unknown's avatar
unknown committed
5911

5912 5913
    if (thd->killed)
      DBUG_RETURN(1);
unknown's avatar
unknown committed
5914

5915
    /* skip row if it will be retrieved by clustered PK scan */
5916 5917
    if (pk_quick_select && pk_quick_select->row_in_ranges())
      continue;
5918

unknown's avatar
unknown committed
5919 5920
    cur_quick->file->position(cur_quick->record);
    result= unique->unique_add((char*)cur_quick->file->ref);
5921
    if (result)
5922 5923
      DBUG_RETURN(1);

unknown's avatar
unknown committed
5924
  }
unknown's avatar
unknown committed
5925

5926 5927
  /* ok, all row ids are in Unique */
  result= unique->get(head);
unknown's avatar
unknown committed
5928
  delete unique;
unknown's avatar
unknown committed
5929
  doing_pk_scan= FALSE;
unknown's avatar
unknown committed
5930 5931
  /* start table scan */
  init_read_record(&read_record, thd, head, (SQL_SELECT*) 0, 1, 1);
5932 5933
  /* index_merge currently doesn't support "using index" at all */
  head->file->extra(HA_EXTRA_NO_KEYREAD);
5934

5935 5936 5937
  DBUG_RETURN(result);
}

5938

5939 5940 5941
/*
  Get next row for index_merge.
  NOTES
5942 5943 5944 5945
    The rows are read from
      1. rowids stored in Unique.
      2. QUICK_RANGE_SELECT with clustered primary key (if any).
    The sets of rows retrieved in 1) and 2) are guaranteed to be disjoint.
5946
*/
5947

5948 5949
int QUICK_INDEX_MERGE_SELECT::get_next()
{
5950
  int result;
5951
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::get_next");
unknown's avatar
unknown committed
5952

5953 5954 5955 5956 5957 5958 5959 5960 5961
  if (doing_pk_scan)
    DBUG_RETURN(pk_quick_select->get_next());

  result= read_record.read_record(&read_record);

  if (result == -1)
  {
    result= HA_ERR_END_OF_FILE;
    end_read_record(&read_record);
5962
    /* All rows from Unique have been retrieved, do a clustered PK scan */
unknown's avatar
unknown committed
5963
    if (pk_quick_select)
5964
    {
unknown's avatar
unknown committed
5965
      doing_pk_scan= TRUE;
unknown's avatar
unknown committed
5966
      if ((result= pk_quick_select->init()) || (result= pk_quick_select->reset()))
5967 5968 5969 5970 5971 5972
        DBUG_RETURN(result);
      DBUG_RETURN(pk_quick_select->get_next());
    }
  }

  DBUG_RETURN(result);
unknown's avatar
unknown committed
5973 5974
}

5975 5976

/*
unknown's avatar
unknown committed
5977
  Retrieve next record.
5978
  SYNOPSIS
unknown's avatar
unknown committed
5979 5980
     QUICK_ROR_INTERSECT_SELECT::get_next()

5981
  NOTES
5982 5983
    Invariant on enter/exit: all intersected selects have retrieved all index
    records with rowid <= some_rowid_val and no intersected select has
5984 5985 5986 5987
    retrieved any index records with rowid > some_rowid_val.
    We start fresh and loop until we have retrieved the same rowid in each of
    the key scans or we got an error.

unknown's avatar
unknown committed
5988
    If a Clustered PK scan is present, it is used only to check if row
5989 5990 5991 5992 5993
    satisfies its condition (and never used for row retrieval).

  RETURN
   0     - Ok
   other - Error code if any error occurred.
5994 5995 5996 5997 5998 5999 6000 6001 6002
*/

int QUICK_ROR_INTERSECT_SELECT::get_next()
{
  List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
  QUICK_RANGE_SELECT* quick;
  int error, cmp;
  uint last_rowid_count=0;
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::get_next");
unknown's avatar
unknown committed
6003

6004 6005 6006 6007 6008 6009 6010 6011 6012 6013
  /* Get a rowid for first quick and save it as a 'candidate' */
  quick= quick_it++;
  if (cpk_quick)
  {
    do {
      error= quick->get_next();
    }while (!error && !cpk_quick->row_in_ranges());
  }
  else
    error= quick->get_next();
unknown's avatar
unknown committed
6014

6015 6016 6017 6018 6019 6020
  if (error)
    DBUG_RETURN(error);

  quick->file->position(quick->record);
  memcpy(last_rowid, quick->file->ref, head->file->ref_length);
  last_rowid_count= 1;
unknown's avatar
unknown committed
6021

6022 6023 6024 6025 6026 6027 6028
  while (last_rowid_count < quick_selects.elements)
  {
    if (!(quick= quick_it++))
    {
      quick_it.rewind();
      quick= quick_it++;
    }
unknown's avatar
unknown committed
6029

6030 6031 6032 6033
    do {
      if ((error= quick->get_next()))
        DBUG_RETURN(error);
      quick->file->position(quick->record);
unknown's avatar
unknown committed
6034
      cmp= head->file->cmp_ref(quick->file->ref, last_rowid);
6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049
    } while (cmp < 0);

    /* Ok, current select 'caught up' and returned ref >= cur_ref */
    if (cmp > 0)
    {
      /* Found a row with ref > cur_ref. Make it a new 'candidate' */
      if (cpk_quick)
      {
        while (!cpk_quick->row_in_ranges())
        {
          if ((error= quick->get_next()))
            DBUG_RETURN(error);
        }
      }
      memcpy(last_rowid, quick->file->ref, head->file->ref_length);
unknown's avatar
unknown committed
6050
      last_rowid_count= 1;
6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065
    }
    else
    {
      /* current 'candidate' row confirmed by this select */
      last_rowid_count++;
    }
  }

  /* We get here iff we got the same row ref in all scans. */
  if (need_to_fetch_row)
    error= head->file->rnd_pos(head->record[0], last_rowid);
  DBUG_RETURN(error);
}


unknown's avatar
unknown committed
6066 6067
/*
  Retrieve next record.
6068 6069
  SYNOPSIS
    QUICK_ROR_UNION_SELECT::get_next()
unknown's avatar
unknown committed
6070

6071
  NOTES
unknown's avatar
unknown committed
6072 6073
    Enter/exit invariant:
    For each quick select in the queue a {key,rowid} tuple has been
6074
    retrieved but the corresponding row hasn't been passed to output.
6075

unknown's avatar
unknown committed
6076
  RETURN
6077 6078
   0     - Ok
   other - Error code if any error occurred.
6079 6080 6081 6082 6083 6084 6085 6086
*/

int QUICK_ROR_UNION_SELECT::get_next()
{
  int error, dup_row;
  QUICK_SELECT_I *quick;
  byte *tmp;
  DBUG_ENTER("QUICK_ROR_UNION_SELECT::get_next");
unknown's avatar
unknown committed
6087

6088 6089 6090 6091
  do
  {
    if (!queue.elements)
      DBUG_RETURN(HA_ERR_END_OF_FILE);
6092
    /* Ok, we have a queue with >= 1 scans */
6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108

    quick= (QUICK_SELECT_I*)queue_top(&queue);
    memcpy(cur_rowid, quick->last_rowid, rowid_length);

    /* put into queue rowid from the same stream as top element */
    if ((error= quick->get_next()))
    {
      if (error != HA_ERR_END_OF_FILE)
        DBUG_RETURN(error);
      queue_remove(&queue, 0);
    }
    else
    {
      quick->save_last_pos();
      queue_replaced(&queue);
    }
unknown's avatar
unknown committed
6109

6110 6111 6112
    if (!have_prev_rowid)
    {
      /* No rows have been returned yet */
unknown's avatar
unknown committed
6113 6114
      dup_row= FALSE;
      have_prev_rowid= TRUE;
6115 6116 6117 6118
    }
    else
      dup_row= !head->file->cmp_ref(cur_rowid, prev_rowid);
  }while (dup_row);
unknown's avatar
unknown committed
6119

6120 6121 6122 6123 6124 6125 6126 6127
  tmp= cur_rowid;
  cur_rowid= prev_rowid;
  prev_rowid= tmp;

  error= head->file->rnd_pos(quick->record, prev_rowid);
  DBUG_RETURN(error);
}

unknown's avatar
unknown committed
6128
int QUICK_RANGE_SELECT::reset()
unknown's avatar
unknown committed
6129 6130 6131
{
  uint  mrange_bufsiz;
  byte  *mrange_buff;
unknown's avatar
unknown committed
6132 6133 6134
  DBUG_ENTER("QUICK_RANGE_SELECT::reset");
  next=0;
  range= NULL;
6135
  in_range= FALSE;
unknown's avatar
unknown committed
6136
  cur_range= (QUICK_RANGE**) ranges.buffer;
unknown's avatar
unknown committed
6137 6138

  if (file->inited == handler::NONE && (error= file->ha_index_init(index)))
unknown's avatar
unknown committed
6139
    DBUG_RETURN(error);
unknown's avatar
unknown committed
6140
 
unknown's avatar
unknown committed
6141 6142 6143 6144 6145 6146 6147
  /* Do not allocate the buffers twice. */
  if (multi_range_length)
  {
    DBUG_ASSERT(multi_range_length == min(multi_range_count, ranges.elements));
    DBUG_RETURN(0);
  }

unknown's avatar
unknown committed
6148 6149
  /* Allocate the ranges array. */
  DBUG_ASSERT(ranges.elements);
unknown's avatar
unknown committed
6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165
  multi_range_length= min(multi_range_count, ranges.elements);
  DBUG_ASSERT(multi_range_length > 0);
  while (multi_range_length && ! (multi_range= (KEY_MULTI_RANGE*)
                                  my_malloc(multi_range_length *
                                            sizeof(KEY_MULTI_RANGE),
                                            MYF(MY_WME))))
  {
    /* Try to shrink the buffers until it is 0. */
    multi_range_length/= 2;
  }
  if (! multi_range)
  {
    multi_range_length= 0;
    DBUG_RETURN(HA_ERR_OUT_OF_MEM);
  }

unknown's avatar
unknown committed
6166
  /* Allocate the handler buffer if necessary.  */
unknown's avatar
unknown committed
6167 6168 6169
  if (file->table_flags() & HA_NEED_READ_RANGE_BUFFER)
  {
    mrange_bufsiz= min(multi_range_bufsiz,
unknown's avatar
merge  
unknown committed
6170
                       (QUICK_SELECT_I::records + 1)* head->s->reclength);
unknown's avatar
unknown committed
6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211

    while (mrange_bufsiz &&
           ! my_multi_malloc(MYF(MY_WME),
                             &multi_range_buff, sizeof(*multi_range_buff),
                             &mrange_buff, mrange_bufsiz,
                             NullS))
    {
      /* Try to shrink the buffers until both are 0. */
      mrange_bufsiz/= 2;
    }
    if (! multi_range_buff)
    {
      my_free((char*) multi_range, MYF(0));
      multi_range= NULL;
      multi_range_length= 0;
      DBUG_RETURN(HA_ERR_OUT_OF_MEM);
    }

    /* Initialize the handler buffer. */
    multi_range_buff->buffer= mrange_buff;
    multi_range_buff->buffer_end= mrange_buff + mrange_bufsiz;
    multi_range_buff->end_of_used_area= mrange_buff;
  }
  DBUG_RETURN(0);
}


/*
  Get next possible record using quick-struct.

  SYNOPSIS
    QUICK_RANGE_SELECT::get_next()

  NOTES
    Record is read into table->record[0]

  RETURN
    0			Found row
    HA_ERR_END_OF_FILE	No (more) rows in range
    #			Error code
*/
unknown's avatar
unknown committed
6212

unknown's avatar
unknown committed
6213
int QUICK_RANGE_SELECT::get_next()
unknown's avatar
unknown committed
6214
{
unknown's avatar
unknown committed
6215 6216 6217 6218
  int             result;
  KEY_MULTI_RANGE *mrange;
  key_range       *start_key;
  key_range       *end_key;
unknown's avatar
unknown committed
6219
  DBUG_ENTER("QUICK_RANGE_SELECT::get_next");
unknown's avatar
unknown committed
6220 6221 6222
  DBUG_ASSERT(multi_range_length && multi_range &&
              (cur_range >= (QUICK_RANGE**) ranges.buffer) &&
              (cur_range <= (QUICK_RANGE**) ranges.buffer + ranges.elements));
unknown's avatar
unknown committed
6223 6224 6225

  for (;;)
  {
unknown's avatar
unknown committed
6226
    if (in_range)
unknown's avatar
unknown committed
6227
    {
unknown's avatar
unknown committed
6228 6229
      /* We did already start to read this key. */
      result= file->read_multi_range_next(&mrange);
unknown's avatar
unknown committed
6230
      if (result != HA_ERR_END_OF_FILE)
unknown's avatar
unknown committed
6231 6232
      {
        in_range= ! result;
6233
	DBUG_RETURN(result);
unknown's avatar
unknown committed
6234
      }
unknown's avatar
unknown committed
6235
    }
unknown's avatar
unknown committed
6236

unknown's avatar
unknown committed
6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266
    uint count= min(multi_range_length, ranges.elements -
                    (cur_range - (QUICK_RANGE**) ranges.buffer));
    if (count == 0)
    {
      /* Ranges have already been used up before. None is left for read. */
      in_range= FALSE;
      DBUG_RETURN(HA_ERR_END_OF_FILE);
    }
    KEY_MULTI_RANGE *mrange_slot, *mrange_end;
    for (mrange_slot= multi_range, mrange_end= mrange_slot+count;
         mrange_slot < mrange_end;
         mrange_slot++)
    {
      start_key= &mrange_slot->start_key;
      end_key= &mrange_slot->end_key;
      range= *(cur_range++);

      start_key->key=    (const byte*) range->min_key;
      start_key->length= range->min_length;
      start_key->flag=   ((range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY :
                          (range->flag & EQ_RANGE) ?
                          HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT);
      end_key->key=      (const byte*) range->max_key;
      end_key->length=   range->max_length;
      /*
        We use HA_READ_AFTER_KEY here because if we are reading on a key
        prefix. We want to find all keys with this prefix.
      */
      end_key->flag=     (range->flag & NEAR_MAX ? HA_READ_BEFORE_KEY :
                          HA_READ_AFTER_KEY);
unknown's avatar
unknown committed
6267

unknown's avatar
unknown committed
6268 6269
      mrange_slot->range_flag= range->flag;
    }
unknown's avatar
unknown committed
6270

unknown's avatar
unknown committed
6271 6272
    result= file->read_multi_range_first(&mrange, multi_range, count,
                                         sorted, multi_range_buff);
unknown's avatar
unknown committed
6273
    if (result != HA_ERR_END_OF_FILE)
unknown's avatar
unknown committed
6274 6275
    {
      in_range= ! result;
unknown's avatar
unknown committed
6276
      DBUG_RETURN(result);
unknown's avatar
unknown committed
6277 6278
    }
    in_range= FALSE; /* No matching rows; go to next set of ranges. */
unknown's avatar
unknown committed
6279 6280 6281
  }
}

6282

6283 6284 6285 6286 6287 6288
/*
  Get the next record with a different prefix.

  SYNOPSIS
    QUICK_RANGE_SELECT::get_next_prefix()
    prefix_length  length of cur_prefix
6289
    cur_prefix     prefix of a key to be searched for
6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321

  DESCRIPTION
    Each subsequent call to the method retrieves the first record that has a
    prefix with length prefix_length different from cur_prefix, such that the
    record with the new prefix is within the ranges described by
    this->ranges. The record found is stored into the buffer pointed by
    this->record.
    The method is useful for GROUP-BY queries with range conditions to
    discover the prefix of the next group that satisfies the range conditions.

  TODO
    This method is a modified copy of QUICK_RANGE_SELECT::get_next(), so both
    methods should be unified into a more general one to reduce code
    duplication.

  RETURN
    0                  on success
    HA_ERR_END_OF_FILE if returned all keys
    other              if some error occurred
*/

int QUICK_RANGE_SELECT::get_next_prefix(uint prefix_length, byte *cur_prefix)
{
  DBUG_ENTER("QUICK_RANGE_SELECT::get_next_prefix");

  for (;;)
  {
    int result;
    key_range start_key, end_key;
    if (range)
    {
      /* Read the next record in the same range with prefix after cur_prefix. */
6322
      DBUG_ASSERT(cur_prefix != 0);
6323 6324 6325 6326 6327 6328
      result= file->index_read(record, cur_prefix, prefix_length,
                               HA_READ_AFTER_KEY);
      if (result || (file->compare_key(file->end_range) <= 0))
        DBUG_RETURN(result);
    }

unknown's avatar
unknown committed
6329 6330 6331 6332 6333 6334 6335 6336
    uint count= ranges.elements - (cur_range - (QUICK_RANGE**) ranges.buffer);
    if (count == 0)
    {
      /* Ranges have already been used up before. None is left for read. */
      range= 0;
      DBUG_RETURN(HA_ERR_END_OF_FILE);
    }
    range= *(cur_range++);
6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365

    start_key.key=    (const byte*) range->min_key;
    start_key.length= min(range->min_length, prefix_length);
    start_key.flag=   ((range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY :
		       (range->flag & EQ_RANGE) ?
		       HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT);
    end_key.key=      (const byte*) range->max_key;
    end_key.length=   min(range->max_length, prefix_length);
    /*
      We use READ_AFTER_KEY here because if we are reading on a key
      prefix we want to find all keys with this prefix
    */
    end_key.flag=     (range->flag & NEAR_MAX ? HA_READ_BEFORE_KEY :
		       HA_READ_AFTER_KEY);

    result= file->read_range_first(range->min_length ? &start_key : 0,
				   range->max_length ? &end_key : 0,
                                   test(range->flag & EQ_RANGE),
				   sorted);
    if (range->flag == (UNIQUE_RANGE | EQ_RANGE))
      range=0;				// Stop searching

    if (result != HA_ERR_END_OF_FILE)
      DBUG_RETURN(result);
    range=0;				// No matching rows; go to next range
  }
}


unknown's avatar
unknown committed
6366
/* Get next for geometrical indexes */
unknown's avatar
unknown committed
6367

unknown's avatar
unknown committed
6368
int QUICK_RANGE_SELECT_GEOM::get_next()
unknown's avatar
unknown committed
6369
{
unknown's avatar
unknown committed
6370
  DBUG_ENTER("QUICK_RANGE_SELECT_GEOM::get_next");
unknown's avatar
unknown committed
6371

unknown's avatar
unknown committed
6372
  for (;;)
unknown's avatar
unknown committed
6373
  {
unknown's avatar
unknown committed
6374 6375
    int result;
    if (range)
unknown's avatar
unknown committed
6376
    {
unknown's avatar
unknown committed
6377 6378 6379 6380 6381
      // Already read through key
      result= file->index_next_same(record, (byte*) range->min_key,
				    range->min_length);
      if (result != HA_ERR_END_OF_FILE)
	DBUG_RETURN(result);
unknown's avatar
unknown committed
6382
    }
unknown's avatar
unknown committed
6383

unknown's avatar
unknown committed
6384 6385 6386 6387 6388 6389 6390 6391
    uint count= ranges.elements - (cur_range - (QUICK_RANGE**) ranges.buffer);
    if (count == 0)
    {
      /* Ranges have already been used up before. None is left for read. */
      range= 0;
      DBUG_RETURN(HA_ERR_END_OF_FILE);
    }
    range= *(cur_range++);
unknown's avatar
unknown committed
6392 6393 6394 6395 6396 6397 6398 6399

    result= file->index_read(record,
			     (byte*) range->min_key,
			     range->min_length,
			     (ha_rkey_function)(range->flag ^ GEOM_FLAG));
    if (result != HA_ERR_KEY_NOT_FOUND)
      DBUG_RETURN(result);
    range=0;				// Not found, to next range
unknown's avatar
unknown committed
6400 6401 6402
  }
}

unknown's avatar
unknown committed
6403

6404 6405 6406 6407
/*
  Check if current row will be retrieved by this QUICK_RANGE_SELECT

  NOTES
unknown's avatar
unknown committed
6408 6409
    It is assumed that currently a scan is being done on another index
    which reads all necessary parts of the index that is scanned by this
6410
    quick select.
unknown's avatar
unknown committed
6411
    The implementation does a binary search on sorted array of disjoint
6412 6413
    ranges, without taking size of range into account.

unknown's avatar
unknown committed
6414
    This function is used to filter out clustered PK scan rows in
6415 6416
    index_merge quick select.

6417
  RETURN
unknown's avatar
unknown committed
6418 6419
    TRUE  if current row will be retrieved by this quick select
    FALSE if not
6420 6421 6422 6423 6424 6425 6426 6427 6428 6429
*/

bool QUICK_RANGE_SELECT::row_in_ranges()
{
  QUICK_RANGE *range;
  uint min= 0;
  uint max= ranges.elements - 1;
  uint mid= (max + min)/2;

  while (min != max)
unknown's avatar
unknown committed
6430
  {
6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443
    if (cmp_next(*(QUICK_RANGE**)dynamic_array_ptr(&ranges, mid)))
    {
      /* current row value > mid->max */
      min= mid + 1;
    }
    else
      max= mid;
    mid= (min + max) / 2;
  }
  range= *(QUICK_RANGE**)dynamic_array_ptr(&ranges, mid);
  return (!cmp_next(range) && !cmp_prev(range));
}

6444
/*
6445 6446 6447 6448 6449 6450 6451
  This is a hack: we inherit from QUICK_SELECT so that we can use the
  get_next() interface, but we have to hold a pointer to the original
  QUICK_SELECT because its data are used all over the place.  What
  should be done is to factor out the data that is needed into a base
  class (QUICK_SELECT), and then have two subclasses (_ASC and _DESC)
  which handle the ranges and implement the get_next() function.  But
  for now, this seems to work right at least.
6452
 */
unknown's avatar
unknown committed
6453

unknown's avatar
unknown committed
6454
QUICK_SELECT_DESC::QUICK_SELECT_DESC(QUICK_RANGE_SELECT *q,
unknown's avatar
unknown committed
6455 6456
                                     uint used_key_parts)
 : QUICK_RANGE_SELECT(*q), rev_it(rev_ranges)
6457
{
unknown's avatar
unknown committed
6458
  QUICK_RANGE *r;
unknown's avatar
unknown committed
6459

6460 6461
  QUICK_RANGE **pr= (QUICK_RANGE**)ranges.buffer;
  QUICK_RANGE **last_range= pr + ranges.elements;
unknown's avatar
unknown committed
6462 6463
  for (; pr!=last_range; pr++)
    rev_ranges.push_front(*pr);
unknown's avatar
unknown committed
6464

unknown's avatar
unknown committed
6465
  /* Remove EQ_RANGE flag for keys that are not using the full key */
unknown's avatar
unknown committed
6466
  for (r = rev_it++; r; r = rev_it++)
unknown's avatar
unknown committed
6467 6468 6469 6470 6471 6472 6473 6474
  {
    if ((r->flag & EQ_RANGE) &&
	head->key_info[index].key_length != r->max_length)
      r->flag&= ~EQ_RANGE;
  }
  rev_it.rewind();
  q->dont_free=1;				// Don't free shared mem
  delete q;
6475 6476
}

unknown's avatar
unknown committed
6477

6478 6479 6480 6481 6482 6483
int QUICK_SELECT_DESC::get_next()
{
  DBUG_ENTER("QUICK_SELECT_DESC::get_next");

  /* The max key is handled as follows:
   *   - if there is NO_MAX_RANGE, start at the end and move backwards
unknown's avatar
unknown committed
6484 6485
   *   - if it is an EQ_RANGE, which means that max key covers the entire
   *     key, go directly to the key and read through it (sorting backwards is
6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497
   *     same as sorting forwards)
   *   - if it is NEAR_MAX, go to the key or next, step back once, and
   *     move backwards
   *   - otherwise (not NEAR_MAX == include the key), go after the key,
   *     step back once, and move backwards
   */

  for (;;)
  {
    int result;
    if (range)
    {						// Already read through key
unknown's avatar
unknown committed
6498 6499 6500
      result = ((range->flag & EQ_RANGE)
		? file->index_next_same(record, (byte*) range->min_key,
					range->min_length) :
6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515
		file->index_prev(record));
      if (!result)
      {
	if (cmp_prev(*rev_it.ref()) == 0)
	  DBUG_RETURN(0);
      }
      else if (result != HA_ERR_END_OF_FILE)
	DBUG_RETURN(result);
    }

    if (!(range=rev_it++))
      DBUG_RETURN(HA_ERR_END_OF_FILE);		// All ranges used

    if (range->flag & NO_MAX_RANGE)		// Read last record
    {
6516 6517 6518
      int local_error;
      if ((local_error=file->index_last(record)))
	DBUG_RETURN(local_error);		// Empty table
6519 6520 6521 6522 6523 6524
      if (cmp_prev(range) == 0)
	DBUG_RETURN(0);
      range=0;			// No matching records; go to next range
      continue;
    }

unknown's avatar
unknown committed
6525
    if (range->flag & EQ_RANGE)
6526 6527 6528 6529 6530 6531
    {
      result = file->index_read(record, (byte*) range->max_key,
				range->max_length, HA_READ_KEY_EXACT);
    }
    else
    {
6532 6533 6534 6535 6536
      DBUG_ASSERT(range->flag & NEAR_MAX || range_reads_after_key(range));
      result=file->index_read(record, (byte*) range->max_key,
			      range->max_length,
			      ((range->flag & NEAR_MAX) ?
			       HA_READ_BEFORE_KEY : HA_READ_PREFIX_LAST_OR_PREV));
6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554
    }
    if (result)
    {
      if (result != HA_ERR_KEY_NOT_FOUND)
	DBUG_RETURN(result);
      range=0;					// Not found, to next range
      continue;
    }
    if (cmp_prev(range) == 0)
    {
      if (range->flag == (UNIQUE_RANGE | EQ_RANGE))
	range = 0;				// Stop searching
      DBUG_RETURN(0);				// Found key is in range
    }
    range = 0;					// To next range
  }
}

6555

unknown's avatar
unknown committed
6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596
/*
  Compare if found key is over max-value
  Returns 0 if key <= range->max_key
*/

int QUICK_RANGE_SELECT::cmp_next(QUICK_RANGE *range_arg)
{
  if (range_arg->flag & NO_MAX_RANGE)
    return 0;                                   /* key can't be to large */

  KEY_PART *key_part=key_parts;
  uint store_length;

  for (char *key=range_arg->max_key, *end=key+range_arg->max_length;
       key < end;
       key+= store_length, key_part++)
  {
    int cmp;
    store_length= key_part->store_length;
    if (key_part->null_bit)
    {
      if (*key)
      {
        if (!key_part->field->is_null())
          return 1;
        continue;
      }
      else if (key_part->field->is_null())
        return 0;
      key++;					// Skip null byte
      store_length--;
    }
    if ((cmp=key_part->field->key_cmp((byte*) key, key_part->length)) < 0)
      return 0;
    if (cmp > 0)
      return 1;
  }
  return (range_arg->flag & NEAR_MAX) ? 1 : 0;          // Exact match
}


6597
/*
6598 6599 6600
  Returns 0 if found key is inside range (found key >= range->min_key).
*/

6601
int QUICK_RANGE_SELECT::cmp_prev(QUICK_RANGE *range_arg)
6602
{
unknown's avatar
unknown committed
6603
  int cmp;
6604
  if (range_arg->flag & NO_MIN_RANGE)
unknown's avatar
unknown committed
6605
    return 0;					/* key can't be to small */
6606

unknown's avatar
unknown committed
6607 6608
  cmp= key_cmp(key_part_info, (byte*) range_arg->min_key,
               range_arg->min_length);
unknown's avatar
unknown committed
6609 6610 6611
  if (cmp > 0 || cmp == 0 && !(range_arg->flag & NEAR_MIN))
    return 0;
  return 1;                                     // outside of range
6612 6613
}

6614

6615
/*
unknown's avatar
unknown committed
6616
 * TRUE if this range will require using HA_READ_AFTER_KEY
unknown's avatar
unknown committed
6617
   See comment in get_next() about this
6618
 */
unknown's avatar
unknown committed
6619

6620
bool QUICK_SELECT_DESC::range_reads_after_key(QUICK_RANGE *range_arg)
6621
{
unknown's avatar
unknown committed
6622
  return ((range_arg->flag & (NO_MAX_RANGE | NEAR_MAX)) ||
6623
	  !(range_arg->flag & EQ_RANGE) ||
unknown's avatar
unknown committed
6624
	  head->key_info[index].key_length != range_arg->max_length) ? 1 : 0;
6625 6626
}

6627

unknown's avatar
unknown committed
6628
/* TRUE if we are reading over a key that may have a NULL value */
unknown's avatar
unknown committed
6629

unknown's avatar
unknown committed
6630
#ifdef NOT_USED
6631
bool QUICK_SELECT_DESC::test_if_null_range(QUICK_RANGE *range_arg,
unknown's avatar
unknown committed
6632 6633
					   uint used_key_parts)
{
unknown's avatar
unknown committed
6634
  uint offset, end;
unknown's avatar
unknown committed
6635 6636 6637
  KEY_PART *key_part = key_parts,
           *key_part_end= key_part+used_key_parts;

6638
  for (offset= 0,  end = min(range_arg->min_length, range_arg->max_length) ;
unknown's avatar
unknown committed
6639
       offset < end && key_part != key_part_end ;
unknown's avatar
unknown committed
6640
       offset+= key_part++->store_length)
unknown's avatar
unknown committed
6641
  {
6642 6643
    if (!memcmp((char*) range_arg->min_key+offset,
		(char*) range_arg->max_key+offset,
unknown's avatar
unknown committed
6644
		key_part->store_length))
unknown's avatar
unknown committed
6645
      continue;
unknown's avatar
unknown committed
6646 6647

    if (key_part->null_bit && range_arg->min_key[offset])
unknown's avatar
unknown committed
6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659
      return 1;				// min_key is null and max_key isn't
    // Range doesn't cover NULL. This is ok if there is no more null parts
    break;
  }
  /*
    If the next min_range is > NULL, then we can use this, even if
    it's a NULL key
    Example:  SELECT * FROM t1 WHERE a = 2 AND b >0 ORDER BY a DESC,b DESC;

  */
  if (key_part != key_part_end && key_part->null_bit)
  {
6660
    if (offset >= range_arg->min_length || range_arg->min_key[offset])
unknown's avatar
unknown committed
6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672
      return 1;					// Could be null
    key_part++;
  }
  /*
    If any of the key parts used in the ORDER BY could be NULL, we can't
    use the key to sort the data.
  */
  for (; key_part != key_part_end ; key_part++)
    if (key_part->null_bit)
      return 1;					// Covers null part
  return 0;
}
unknown's avatar
unknown committed
6673
#endif
unknown's avatar
unknown committed
6674 6675


6676 6677 6678 6679 6680 6681 6682 6683 6684
void QUICK_RANGE_SELECT::add_info_string(String *str)
{
  KEY *key_info= head->key_info + index;
  str->append(key_info->name);
}

void QUICK_INDEX_MERGE_SELECT::add_info_string(String *str)
{
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
6685
  bool first= TRUE;
6686 6687 6688 6689 6690 6691 6692
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  str->append("sort_union(");
  while ((quick= it++))
  {
    if (!first)
      str->append(',');
    else
unknown's avatar
unknown committed
6693
      first= FALSE;
6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705
    quick->add_info_string(str);
  }
  if (pk_quick_select)
  {
    str->append(',');
    pk_quick_select->add_info_string(str);
  }
  str->append(')');
}

void QUICK_ROR_INTERSECT_SELECT::add_info_string(String *str)
{
unknown's avatar
unknown committed
6706
  bool first= TRUE;
6707 6708 6709 6710 6711 6712 6713 6714
  QUICK_RANGE_SELECT *quick;
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  str->append("intersect(");
  while ((quick= it++))
  {
    KEY *key_info= head->key_info + quick->index;
    if (!first)
      str->append(',');
unknown's avatar
unknown committed
6715
    else
unknown's avatar
unknown committed
6716
      first= FALSE;
6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729
    str->append(key_info->name);
  }
  if (cpk_quick)
  {
    KEY *key_info= head->key_info + cpk_quick->index;
    str->append(',');
    str->append(key_info->name);
  }
  str->append(')');
}

void QUICK_ROR_UNION_SELECT::add_info_string(String *str)
{
unknown's avatar
unknown committed
6730
  bool first= TRUE;
6731 6732 6733 6734 6735 6736 6737 6738
  QUICK_SELECT_I *quick;
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  str->append("union(");
  while ((quick= it++))
  {
    if (!first)
      str->append(',');
    else
unknown's avatar
unknown committed
6739
      first= FALSE;
6740 6741 6742 6743 6744 6745
    quick->add_info_string(str);
  }
  str->append(')');
}


unknown's avatar
unknown committed
6746
void QUICK_RANGE_SELECT::add_keys_and_lengths(String *key_names,
6747
                                              String *used_lengths)
6748 6749 6750 6751 6752 6753 6754 6755 6756
{
  char buf[64];
  uint length;
  KEY *key_info= head->key_info + index;
  key_names->append(key_info->name);
  length= longlong2str(max_used_key_length, buf, 10) - buf;
  used_lengths->append(buf, length);
}

6757 6758
void QUICK_INDEX_MERGE_SELECT::add_keys_and_lengths(String *key_names,
                                                    String *used_lengths)
6759 6760 6761
{
  char buf[64];
  uint length;
unknown's avatar
unknown committed
6762
  bool first= TRUE;
6763
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
6764

6765 6766 6767
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  while ((quick= it++))
  {
6768
    if (first)
unknown's avatar
unknown committed
6769
      first= FALSE;
6770 6771
    else
    {
6772 6773
      key_names->append(',');
      used_lengths->append(',');
6774
    }
unknown's avatar
unknown committed
6775

6776 6777
    KEY *key_info= head->key_info + quick->index;
    key_names->append(key_info->name);
6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791
    length= longlong2str(quick->max_used_key_length, buf, 10) - buf;
    used_lengths->append(buf, length);
  }
  if (pk_quick_select)
  {
    KEY *key_info= head->key_info + pk_quick_select->index;
    key_names->append(',');
    key_names->append(key_info->name);
    length= longlong2str(pk_quick_select->max_used_key_length, buf, 10) - buf;
    used_lengths->append(',');
    used_lengths->append(buf, length);
  }
}

6792 6793
void QUICK_ROR_INTERSECT_SELECT::add_keys_and_lengths(String *key_names,
                                                      String *used_lengths)
6794 6795 6796
{
  char buf[64];
  uint length;
unknown's avatar
unknown committed
6797
  bool first= TRUE;
6798 6799 6800 6801 6802 6803
  QUICK_RANGE_SELECT *quick;
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  while ((quick= it++))
  {
    KEY *key_info= head->key_info + quick->index;
    if (first)
unknown's avatar
unknown committed
6804
      first= FALSE;
6805
    else
6806 6807
    {
      key_names->append(',');
6808
      used_lengths->append(',');
6809 6810
    }
    key_names->append(key_info->name);
6811 6812 6813
    length= longlong2str(quick->max_used_key_length, buf, 10) - buf;
    used_lengths->append(buf, length);
  }
unknown's avatar
unknown committed
6814

6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825
  if (cpk_quick)
  {
    KEY *key_info= head->key_info + cpk_quick->index;
    key_names->append(',');
    key_names->append(key_info->name);
    length= longlong2str(cpk_quick->max_used_key_length, buf, 10) - buf;
    used_lengths->append(',');
    used_lengths->append(buf, length);
  }
}

6826 6827
void QUICK_ROR_UNION_SELECT::add_keys_and_lengths(String *key_names,
                                                  String *used_lengths)
6828
{
unknown's avatar
unknown committed
6829
  bool first= TRUE;
6830 6831 6832 6833 6834
  QUICK_SELECT_I *quick;
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  while ((quick= it++))
  {
    if (first)
unknown's avatar
unknown committed
6835
      first= FALSE;
6836
    else
unknown's avatar
unknown committed
6837
    {
6838 6839 6840
      used_lengths->append(',');
      key_names->append(',');
    }
6841
    quick->add_keys_and_lengths(key_names, used_lengths);
6842 6843 6844
  }
}

6845 6846 6847 6848 6849 6850 6851 6852 6853

/*******************************************************************************
* Implementation of QUICK_GROUP_MIN_MAX_SELECT
*******************************************************************************/

static inline uint get_field_keypart(KEY *index, Field *field);
static inline SEL_ARG * get_index_range_tree(uint index, SEL_TREE* range_tree,
                                             PARAM *param, uint *param_idx);
static bool
6854
get_constant_key_infix(KEY *index_info, SEL_ARG *index_range_tree,
6855
                       KEY_PART_INFO *first_non_group_part,
6856 6857 6858 6859
                       KEY_PART_INFO *min_max_arg_part,
                       KEY_PART_INFO *last_part, THD *thd,
                       byte *key_infix, uint *key_infix_len,
                       KEY_PART_INFO **first_non_infix_part);
6860
static bool
6861 6862
check_group_min_max_predicates(COND *cond, Item_field *min_max_arg_item,
                               Field::imagetype image_type);
6863

6864 6865 6866 6867 6868 6869
static void
cost_group_min_max(TABLE* table, KEY *index_info, uint used_key_parts,
                   uint group_key_parts, SEL_TREE *range_tree,
                   SEL_ARG *index_tree, ha_rows quick_prefix_records,
                   bool have_min, bool have_max,
                   double *read_cost, ha_rows *records);
6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895

/*
  Test if this access method is applicable to a GROUP query with MIN/MAX
  functions, and if so, construct a new TRP object.

  SYNOPSIS
    get_best_group_min_max()
    param    Parameter from test_quick_select
    sel_tree Range tree generated by get_mm_tree

  DESCRIPTION
    Test whether a query can be computed via a QUICK_GROUP_MIN_MAX_SELECT.
    Queries computable via a QUICK_GROUP_MIN_MAX_SELECT must satisfy the
    following conditions:
    A) Table T has at least one compound index I of the form:
       I = <A_1, ...,A_k, [B_1,..., B_m], C, [D_1,...,D_n]>
    B) Query conditions:
    B0. Q is over a single table T.
    B1. The attributes referenced by Q are a subset of the attributes of I.
    B2. All attributes QA in Q can be divided into 3 overlapping groups:
        - SA = {S_1, ..., S_l, [C]} - from the SELECT clause, where C is
          referenced by any number of MIN and/or MAX functions if present.
        - WA = {W_1, ..., W_p} - from the WHERE clause
        - GA = <G_1, ..., G_k> - from the GROUP BY clause (if any)
             = SA              - if Q is a DISTINCT query (based on the
                                 equivalence of DISTINCT and GROUP queries.
unknown's avatar
unknown committed
6896 6897
        - NGA = QA - (GA union C) = {NG_1, ..., NG_m} - the ones not in
          GROUP BY and not referenced by MIN/MAX functions.
6898
        with the following properties specified below.
6899 6900
    B3. If Q has a GROUP BY WITH ROLLUP clause the access method is not 
        applicable.
6901 6902 6903 6904 6905 6906 6907 6908 6909 6910

    SA1. There is at most one attribute in SA referenced by any number of
         MIN and/or MAX functions which, which if present, is denoted as C.
    SA2. The position of the C attribute in the index is after the last A_k.
    SA3. The attribute C can be referenced in the WHERE clause only in
         predicates of the forms:
         - (C {< | <= | > | >= | =} const)
         - (const {< | <= | > | >= | =} C)
         - (C between const_i and const_j)
         - C IS NULL
6911 6912
         - C IS NOT NULL
         - C != const
6913 6914 6915
    SA4. If Q has a GROUP BY clause, there are no other aggregate functions
         except MIN and MAX. For queries with DISTINCT, aggregate functions
         are allowed.
6916
    SA5. The select list in DISTINCT queries should not contain expressions.
6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945
    GA1. If Q has a GROUP BY clause, then GA is a prefix of I. That is, if
         G_i = A_j => i = j.
    GA2. If Q has a DISTINCT clause, then there is a permutation of SA that
         forms a prefix of I. This permutation is used as the GROUP clause
         when the DISTINCT query is converted to a GROUP query.
    GA3. The attributes in GA may participate in arbitrary predicates, divided
         into two groups:
         - RNG(G_1,...,G_q ; where q <= k) is a range condition over the
           attributes of a prefix of GA
         - PA(G_i1,...G_iq) is an arbitrary predicate over an arbitrary subset
           of GA. Since P is applied to only GROUP attributes it filters some
           groups, and thus can be applied after the grouping.
    GA4. There are no expressions among G_i, just direct column references.
    NGA1.If in the index I there is a gap between the last GROUP attribute G_k,
         and the MIN/MAX attribute C, then NGA must consist of exactly the index
         attributes that constitute the gap. As a result there is a permutation
         of NGA that coincides with the gap in the index <B_1, ..., B_m>.
    NGA2.If BA <> {}, then the WHERE clause must contain a conjunction EQ of
         equality conditions for all NG_i of the form (NG_i = const) or
         (const = NG_i), such that each NG_i is referenced in exactly one
         conjunct. Informally, the predicates provide constants to fill the
         gap in the index.
    WA1. There are no other attributes in the WHERE clause except the ones
         referenced in predicates RNG, PA, PC, EQ defined above. Therefore
         WA is subset of (GA union NGA union C) for GA,NGA,C that pass the above
         tests. By transitivity then it also follows that each WA_i participates
         in the index I (if this was already tested for GA, NGA and C).

    C) Overall query form:
6946 6947 6948 6949
       SELECT EXPR([A_1,...,A_k], [B_1,...,B_m], [MIN(C)], [MAX(C)])
         FROM T
        WHERE [RNG(A_1,...,A_p ; where p <= k)]
         [AND EQ(B_1,...,B_m)]
6950 6951
         [AND PC(C)]
         [AND PA(A_i1,...,A_iq)]
6952 6953 6954 6955
       GROUP BY A_1,...,A_k
       [HAVING PH(A_1, ..., B_1,..., C)]
    where EXPR(...) is an arbitrary expression over some or all SELECT fields,
    or:
6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984
       SELECT DISTINCT A_i1,...,A_ik
         FROM T
        WHERE [RNG(A_1,...,A_p ; where p <= k)]
         [AND PA(A_i1,...,A_iq)];

  NOTES
    If the current query satisfies the conditions above, and if
    (mem_root! = NULL), then the function constructs and returns a new TRP
    object, that is later used to construct a new QUICK_GROUP_MIN_MAX_SELECT.
    If (mem_root == NULL), then the function only tests whether the current
    query satisfies the conditions above, and, if so, sets
    is_applicable = TRUE.

    Queries with DISTINCT for which index access can be used are transformed
    into equivalent group-by queries of the form:

    SELECT A_1,...,A_k FROM T
     WHERE [RNG(A_1,...,A_p ; where p <= k)]
      [AND PA(A_i1,...,A_iq)]
    GROUP BY A_1,...,A_k;

    The group-by list is a permutation of the select attributes, according
    to their order in the index.

  TODO
  - What happens if the query groups by the MIN/MAX field, and there is no
    other field as in: "select min(a) from t1 group by a" ?
  - We assume that the general correctness of the GROUP-BY query was checked
    before this point. Is this correct, or do we have to check it completely?
6985 6986
  - Lift the limitation in condition (B3), that is, make this access method 
    applicable to ROLLUP queries.
6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025

  RETURN
    If mem_root != NULL
    - valid TRP_GROUP_MIN_MAX object if this QUICK class can be used for
      the query
    -  NULL o/w.
    If mem_root == NULL
    - NULL
*/

static TRP_GROUP_MIN_MAX *
get_best_group_min_max(PARAM *param, SEL_TREE *tree)
{
  THD *thd= param->thd;
  JOIN *join= thd->lex->select_lex.join;
  TABLE *table= param->table;
  bool have_min= FALSE;              /* TRUE if there is a MIN function. */
  bool have_max= FALSE;              /* TRUE if there is a MAX function. */
  Item_field *min_max_arg_item= NULL;/* The argument of all MIN/MAX functions.*/
  KEY_PART_INFO *min_max_arg_part= NULL; /* The corresponding keypart. */
  uint group_prefix_len= 0; /* Length (in bytes) of the key prefix. */
  KEY *index_info= NULL;    /* The index chosen for data access. */
  uint index= 0;            /* The id of the chosen index. */
  uint group_key_parts= 0;  /* Number of index key parts in the group prefix. */
  uint used_key_parts= 0;   /* Number of index key parts used for access. */
  byte key_infix[MAX_KEY_LENGTH]; /* Constants from equality predicates.*/
  uint key_infix_len= 0;          /* Length of key_infix. */
  TRP_GROUP_MIN_MAX *read_plan= NULL; /* The eventually constructed TRP. */
  uint key_part_nr;
  ORDER *tmp_group;
  Item *item;
  Item_field *item_field;
  DBUG_ENTER("get_best_group_min_max");

  /* Perform few 'cheap' tests whether this access method is applicable. */
  if (!join || (thd->lex->sql_command != SQLCOM_SELECT))
    DBUG_RETURN(NULL);        /* This is not a select statement. */
  if ((join->tables != 1) ||  /* The query must reference one table. */
      ((!join->group_list) && /* Neither GROUP BY nor a DISTINCT query. */
7026 7027
       (!join->select_distinct)) ||
      (thd->lex->select_lex.olap == ROLLUP_TYPE)) /* Check (B3) for ROLLUP */
7028
    DBUG_RETURN(NULL);
7029
  if (table->s->keys == 0)        /* There are no indexes to use. */
7030 7031 7032
    DBUG_RETURN(NULL);

  /* Analyze the query in more detail. */
7033
  List_iterator<Item> select_items_it(join->fields_list);
7034

7035
  /* Check (SA1,SA4) and store the only MIN/MAX argument - the C attribute.*/
unknown's avatar
unknown committed
7036
  if (join->make_sum_func_list(join->all_fields, join->fields_list, 1))
7037 7038
    DBUG_RETURN(NULL);
  if (join->sum_funcs[0])
7039
  {
7040 7041 7042
    Item_sum *min_max_item;
    Item_sum **func_ptr= join->sum_funcs;
    while ((min_max_item= *(func_ptr++)))
7043
    {
7044 7045 7046 7047 7048
      if (min_max_item->sum_func() == Item_sum::MIN_FUNC)
        have_min= TRUE;
      else if (min_max_item->sum_func() == Item_sum::MAX_FUNC)
        have_max= TRUE;
      else
7049 7050
        DBUG_RETURN(NULL);

7051 7052
      Item *expr= min_max_item->args[0];    /* The argument of MIN/MAX. */
      if (expr->type() == Item::FIELD_ITEM) /* Is it an attribute? */
7053
      {
7054 7055 7056 7057
        if (! min_max_arg_item)
          min_max_arg_item= (Item_field*) expr;
        else if (! min_max_arg_item->eq(expr, 1))
          DBUG_RETURN(NULL);
7058
      }
7059 7060
      else
        DBUG_RETURN(NULL);
7061
    }
7062
  }
7063

7064 7065 7066 7067
  /* Check (SA5). */
  if (join->select_distinct)
  {
    while ((item= select_items_it++))
7068
    {
7069 7070
      if (item->type() != Item::FIELD_ITEM)
        DBUG_RETURN(NULL);
7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086
    }
  }

  /* Check (GA4) - that there are no expressions among the group attributes. */
  for (tmp_group= join->group_list; tmp_group; tmp_group= tmp_group->next)
  {
    if ((*tmp_group->item)->type() != Item::FIELD_ITEM)
      DBUG_RETURN(NULL);
  }

  /*
    Check that table has at least one compound index such that the conditions
    (GA1,GA2) are all TRUE. If there is more than one such index, select the
    first one. Here we set the variables: group_prefix_len and index_info.
  */
  KEY *cur_index_info= table->key_info;
7087
  KEY *cur_index_info_end= cur_index_info + table->s->keys;
7088
  KEY_PART_INFO *cur_part= NULL;
7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107
  KEY_PART_INFO *end_part; /* Last part for loops. */
  /* Last index part. */
  KEY_PART_INFO *last_part= NULL;
  KEY_PART_INFO *first_non_group_part= NULL;
  KEY_PART_INFO *first_non_infix_part= NULL;
  uint key_infix_parts= 0;
  uint cur_group_key_parts= 0;
  uint cur_group_prefix_len= 0;
  /* Cost-related variables for the best index so far. */
  double best_read_cost= DBL_MAX;
  ha_rows best_records= 0;
  SEL_ARG *best_index_tree= NULL;
  ha_rows best_quick_prefix_records= 0;
  uint best_param_idx= 0;
  double cur_read_cost= DBL_MAX;
  ha_rows cur_records;
  SEL_ARG *cur_index_tree= NULL;
  ha_rows cur_quick_prefix_records= 0;
  uint cur_param_idx;
unknown's avatar
unknown committed
7108
  key_map cur_used_key_parts;
unknown's avatar
unknown committed
7109
  uint pk= param->table->s->primary_key;
7110 7111 7112 7113 7114 7115 7116

  for (uint cur_index= 0 ; cur_index_info != cur_index_info_end ;
       cur_index_info++, cur_index++)
  {
    /* Check (B1) - if current index is covering. */
    if (!table->used_keys.is_set(cur_index))
      goto next_index;
7117

unknown's avatar
unknown committed
7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141
    /*
      If the current storage manager is such that it appends the primary key to
      each index, then the above condition is insufficient to check if the
      index is covering. In such cases it may happen that some fields are
      covered by the PK index, but not by the current index. Since we can't
      use the concatenation of both indexes for index lookup, such an index
      does not qualify as covering in our case. If this is the case, below
      we check that all query fields are indeed covered by 'cur_index'.
    */
    if (pk < MAX_KEY && cur_index != pk &&
        (table->file->table_flags() & HA_PRIMARY_KEY_IN_READ_INDEX))
    {
      /* For each table field */
      for (uint i= 0; i < table->s->fields; i++)
      {
        Field *cur_field= table->field[i];
        /*
          If the field is used in the current query, check that the
          field is covered by some keypart of the current index.
        */
        if (thd->query_id == cur_field->query_id)
        {
          KEY_PART_INFO *key_part= cur_index_info->key_part;
          KEY_PART_INFO *key_part_end= key_part + cur_index_info->key_parts;
7142
          for (;;)
unknown's avatar
unknown committed
7143 7144 7145
          {
            if (key_part->field == cur_field)
              break;
7146 7147
            if (++key_part == key_part_end)
              goto next_index;                  // Field was not part of key
unknown's avatar
unknown committed
7148 7149 7150 7151 7152
          }
        }
      }
    }

7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173
    /*
      Check (GA1) for GROUP BY queries.
    */
    if (join->group_list)
    {
      cur_part= cur_index_info->key_part;
      end_part= cur_part + cur_index_info->key_parts;
      /* Iterate in parallel over the GROUP list and the index parts. */
      for (tmp_group= join->group_list; tmp_group && (cur_part != end_part);
           tmp_group= tmp_group->next, cur_part++)
      {
        /*
          TODO:
          tmp_group::item is an array of Item, is it OK to consider only the
          first Item? If so, then why? What is the array for?
        */
        /* Above we already checked that all group items are fields. */
        DBUG_ASSERT((*tmp_group->item)->type() == Item::FIELD_ITEM);
        Item_field *group_field= (Item_field *) (*tmp_group->item);
        if (group_field->field->eq(cur_part->field))
        {
7174 7175
          cur_group_prefix_len+= cur_part->store_length;
          ++cur_group_key_parts;
7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190
        }
        else
          goto next_index;
      }
    }
    /*
      Check (GA2) if this is a DISTINCT query.
      If GA2, then Store a new ORDER object in group_fields_array at the
      position of the key part of item_field->field. Thus we get the ORDER
      objects for each field ordered as the corresponding key parts.
      Later group_fields_array of ORDER objects is used to convert the query
      to a GROUP query.
    */
    else if (join->select_distinct)
    {
7191
      select_items_it.rewind();
unknown's avatar
unknown committed
7192
      cur_used_key_parts.clear_all();
7193
      while ((item= select_items_it++))
7194
      {
7195
        item_field= (Item_field*) item; /* (SA5) already checked above. */
7196 7197
        /* Find the order of the key part in the index. */
        key_part_nr= get_field_keypart(cur_index_info, item_field->field);
unknown's avatar
unknown committed
7198 7199 7200 7201 7202 7203
        /*
          Check if this attribute was already present in the select list.
          If it was present, then its corresponding key part was alredy used.
        */
        if (cur_used_key_parts.is_set(key_part_nr))
          continue;
7204
        if (key_part_nr < 1 || key_part_nr > join->fields_list.elements)
7205 7206
          goto next_index;
        cur_part= cur_index_info->key_part + key_part_nr - 1;
7207
        cur_group_prefix_len+= cur_part->store_length;
unknown's avatar
unknown committed
7208 7209
        cur_used_key_parts.set_bit(key_part_nr);
        ++cur_group_key_parts;
7210 7211 7212 7213 7214 7215 7216 7217 7218
      }
    }
    else
      DBUG_ASSERT(FALSE);

    /* Check (SA2). */
    if (min_max_arg_item)
    {
      key_part_nr= get_field_keypart(cur_index_info, min_max_arg_item->field);
7219
      if (key_part_nr <= cur_group_key_parts)
7220 7221 7222 7223 7224 7225 7226 7227
        goto next_index;
      min_max_arg_part= cur_index_info->key_part + key_part_nr - 1;
    }

    /*
      Check (NGA1, NGA2) and extract a sequence of constants to be used as part
      of all search keys.
    */
7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249

    /*
      If there is MIN/MAX, each keypart between the last group part and the
      MIN/MAX part must participate in one equality with constants, and all
      keyparts after the MIN/MAX part must not be referenced in the query.

      If there is no MIN/MAX, the keyparts after the last group part can be
      referenced only in equalities with constants, and the referenced keyparts
      must form a sequence without any gaps that starts immediately after the
      last group keypart.
    */
    last_part= cur_index_info->key_part + cur_index_info->key_parts;
    first_non_group_part= (cur_group_key_parts < cur_index_info->key_parts) ?
                          cur_index_info->key_part + cur_group_key_parts :
                          NULL;
    first_non_infix_part= min_max_arg_part ?
                          (min_max_arg_part < last_part) ?
                             min_max_arg_part + 1 :
                             NULL :
                           NULL;
    if (first_non_group_part &&
        (!min_max_arg_part || (min_max_arg_part - first_non_group_part > 0)))
7250
    {
7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267
      if (tree)
      {
        uint dummy;
        SEL_ARG *index_range_tree= get_index_range_tree(cur_index, tree, param,
                                                        &dummy);
        if (!get_constant_key_infix(cur_index_info, index_range_tree,
                                    first_non_group_part, min_max_arg_part,
                                    last_part, thd, key_infix, &key_infix_len,
                                    &first_non_infix_part))
          goto next_index;
      }
      else if (min_max_arg_part &&
               (min_max_arg_part - first_non_group_part > 0))
        /*
          There is a gap but no range tree, thus no predicates at all for the
          non-group keyparts.
        */
7268 7269 7270
        goto next_index;
    }

7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283
    /*
      Test (WA1) partially - that no other keypart after the last infix part is
      referenced in the query.
    */
    if (first_non_infix_part)
    {
      for (cur_part= first_non_infix_part; cur_part != last_part; cur_part++)
      {
        if (cur_part->field->query_id == thd->query_id)
          goto next_index;
      }
    }

7284
    /* If we got to this point, cur_index_info passes the test. */
7285 7286 7287
    key_infix_parts= key_infix_len ?
                     (first_non_infix_part - first_non_group_part) : 0;
    used_key_parts= cur_group_key_parts + key_infix_parts;
7288

7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302
    /* Compute the cost of using this index. */
    if (tree)
    {
      /* Find the SEL_ARG sub-tree that corresponds to the chosen index. */
      cur_index_tree= get_index_range_tree(cur_index, tree, param,
                                           &cur_param_idx);
      /* Check if this range tree can be used for prefix retrieval. */
      cur_quick_prefix_records= check_quick_select(param, cur_param_idx,
                                                    cur_index_tree);
    }
    cost_group_min_max(table, cur_index_info, used_key_parts,
                       cur_group_key_parts, tree, cur_index_tree,
                       cur_quick_prefix_records, have_min, have_max,
                       &cur_read_cost, &cur_records);
unknown's avatar
unknown committed
7303 7304 7305 7306 7307 7308
    /*
      If cur_read_cost is lower than best_read_cost use cur_index.
      Do not compare doubles directly because they may have different
      representations (64 vs. 80 bits).
    */
    if (cur_read_cost < best_read_cost - (DBL_EPSILON * cur_read_cost))
7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319
    {
      index_info= cur_index_info;
      index= cur_index;
      best_read_cost= cur_read_cost;
      best_records= cur_records;
      best_index_tree= cur_index_tree;
      best_quick_prefix_records= cur_quick_prefix_records;
      best_param_idx= cur_param_idx;
      group_key_parts= cur_group_key_parts;
      group_prefix_len= cur_group_prefix_len;
    }
7320 7321

  next_index:
7322 7323
    cur_group_key_parts= 0;
    cur_group_prefix_len= 0;
7324 7325 7326 7327
  }
  if (!index_info) /* No usable index found. */
    DBUG_RETURN(NULL);

7328 7329 7330
  /* Check (SA3) for the where clause. */
  if (join->conds && min_max_arg_item &&
      !check_group_min_max_predicates(join->conds, min_max_arg_item,
7331 7332
                                      (index_info->flags & HA_SPATIAL) ?
                                      Field::itMBR : Field::itRAW))
7333 7334 7335 7336
    DBUG_RETURN(NULL);

  /* The query passes all tests, so construct a new TRP object. */
  read_plan= new (param->mem_root)
7337 7338 7339 7340
                 TRP_GROUP_MIN_MAX(have_min, have_max, min_max_arg_part,
                                   group_prefix_len, used_key_parts,
                                   group_key_parts, index_info, index,
                                   key_infix_len,
7341
                                   (key_infix_len > 0) ? key_infix : NULL,
7342
                                   tree, best_index_tree, best_param_idx,
7343
                                   best_quick_prefix_records);
7344 7345 7346 7347 7348
  if (read_plan)
  {
    if (tree && read_plan->quick_prefix_records == 0)
      DBUG_RETURN(NULL);

7349 7350 7351
    read_plan->read_cost= best_read_cost;
    read_plan->records=   best_records;

7352 7353 7354 7355 7356 7357 7358 7359 7360 7361
    DBUG_PRINT("info",
               ("Returning group min/max plan: cost: %g, records: %lu",
                read_plan->read_cost, (ulong) read_plan->records));
  }

  DBUG_RETURN(read_plan);
}


/*
7362 7363
  Check that the MIN/MAX attribute participates only in range predicates
  with constants.
7364 7365 7366 7367 7368 7369

  SYNOPSIS
    check_group_min_max_predicates()
    cond              tree (or subtree) describing all or part of the WHERE
                      clause being analyzed
    min_max_arg_item  the field referenced by the MIN/MAX function(s)
7370
    min_max_arg_part  the keypart of the MIN/MAX argument if any
7371 7372 7373

  DESCRIPTION
    The function walks recursively over the cond tree representing a WHERE
7374
    clause, and checks condition (SA3) - if a field is referenced by a MIN/MAX
7375 7376
    aggregate function, it is referenced only by one of the following
    predicates: {=, !=, <, <=, >, >=, between, is null, is not null}.
7377 7378 7379 7380 7381 7382 7383

  RETURN
    TRUE  if cond passes the test
    FALSE o/w
*/

static bool
7384 7385
check_group_min_max_predicates(COND *cond, Item_field *min_max_arg_item,
                               Field::imagetype image_type)
7386 7387
{
  DBUG_ENTER("check_group_min_max_predicates");
7388
  DBUG_ASSERT(cond && min_max_arg_item);
7389 7390 7391 7392 7393 7394 7395 7396 7397

  Item::Type cond_type= cond->type();
  if (cond_type == Item::COND_ITEM) /* 'AND' or 'OR' */
  {
    DBUG_PRINT("info", ("Analyzing: %s", ((Item_func*) cond)->func_name()));
    List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
    Item *and_or_arg;
    while ((and_or_arg= li++))
    {
unknown's avatar
unknown committed
7398
      if (!check_group_min_max_predicates(and_or_arg, min_max_arg_item,
7399
                                         image_type))
7400 7401 7402 7403 7404
        DBUG_RETURN(FALSE);
    }
    DBUG_RETURN(TRUE);
  }

7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417
  /*
    TODO:
    This is a very crude fix to handle sub-selects in the WHERE clause
    (Item_subselect objects). With the test below we rule out from the
    optimization all queries with subselects in the WHERE clause. What has to
    be done, is that here we should analyze whether the subselect references
    the MIN/MAX argument field, and disallow the optimization only if this is
    so.
  */
  if (cond_type == Item::SUBSELECT_ITEM)
    DBUG_RETURN(FALSE);
  
  /* We presume that at this point there are no other Items than functions. */
7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430
  DBUG_ASSERT(cond_type == Item::FUNC_ITEM);

  /* Test if cond references only group-by or non-group fields. */
  Item_func *pred= (Item_func*) cond;
  Item **arguments= pred->arguments();
  Item *cur_arg;
  DBUG_PRINT("info", ("Analyzing: %s", pred->func_name()));
  for (uint arg_idx= 0; arg_idx < pred->argument_count (); arg_idx++)
  {
    cur_arg= arguments[arg_idx];
    DBUG_PRINT("info", ("cur_arg: %s", cur_arg->full_name()));
    if (cur_arg->type() == Item::FIELD_ITEM)
    {
7431
      if (min_max_arg_item->eq(cur_arg, 1)) 
7432 7433 7434
      {
       /*
         If pred references the MIN/MAX argument, check whether pred is a range
7435
         condition that compares the MIN/MAX argument with a constant.
7436 7437
       */
        Item_func::Functype pred_type= pred->functype();
7438 7439 7440 7441 7442 7443 7444 7445 7446 7447
        if (pred_type != Item_func::EQUAL_FUNC     &&
            pred_type != Item_func::LT_FUNC        &&
            pred_type != Item_func::LE_FUNC        &&
            pred_type != Item_func::GT_FUNC        &&
            pred_type != Item_func::GE_FUNC        &&
            pred_type != Item_func::BETWEEN        &&
            pred_type != Item_func::ISNULL_FUNC    &&
            pred_type != Item_func::ISNOTNULL_FUNC &&
            pred_type != Item_func::EQ_FUNC        &&
            pred_type != Item_func::NE_FUNC)
7448 7449 7450 7451
          DBUG_RETURN(FALSE);

        /* Check that pred compares min_max_arg_item with a constant. */
        Item *args[3];
7452
        bzero(args, 3 * sizeof(Item*));
7453 7454 7455 7456
        bool inv;
        /* Test if this is a comparison of a field and a constant. */
        if (!simple_pred(pred, args, &inv))
          DBUG_RETURN(FALSE);
7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475

        /* Check for compatible string comparisons - similar to get_mm_leaf. */
        if (args[0] && args[1] && !args[2] && // this is a binary function
            min_max_arg_item->result_type() == STRING_RESULT &&
            /*
              Don't use an index when comparing strings of different collations.
            */
            ((args[1]->result_type() == STRING_RESULT &&
              image_type == Field::itRAW &&
              ((Field_str*) min_max_arg_item->field)->charset() !=
              pred->compare_collation())
             ||
             /*
               We can't always use indexes when comparing a string index to a
               number.
             */
             (args[1]->result_type() != STRING_RESULT &&
              min_max_arg_item->field->cmp_type() != args[1]->result_type())))
          DBUG_RETURN(FALSE);
7476 7477 7478 7479
      }
    }
    else if (cur_arg->type() == Item::FUNC_ITEM)
    {
unknown's avatar
unknown committed
7480
      if (!check_group_min_max_predicates(cur_arg, min_max_arg_item,
7481
                                         image_type))
7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500
        DBUG_RETURN(FALSE);
    }
    else if (cur_arg->const_item())
    {
      DBUG_RETURN(TRUE);
    }
    else
      DBUG_RETURN(FALSE);
  }

  DBUG_RETURN(TRUE);
}


/*
  Extract a sequence of constants from a conjunction of equality predicates.

  SYNOPSIS
    get_constant_key_infix()
7501 7502 7503 7504 7505 7506 7507 7508 7509
    index_info             [in]  Descriptor of the chosen index.
    index_range_tree       [in]  Range tree for the chosen index
    first_non_group_part   [in]  First index part after group attribute parts
    min_max_arg_part       [in]  The keypart of the MIN/MAX argument if any
    last_part              [in]  Last keypart of the index
    thd                    [in]  Current thread
    key_infix              [out] Infix of constants to be used for index lookup
    key_infix_len          [out] Lenghth of the infix
    first_non_infix_part   [out] The first keypart after the infix (if any)
7510 7511 7512
    
  DESCRIPTION
    Test conditions (NGA1, NGA2) from get_best_group_min_max(). Namely,
unknown's avatar
unknown committed
7513 7514
    for each keypart field NGF_i not in GROUP-BY, check that there is a
    constant equality predicate among conds with the form (NGF_i = const_ci) or
7515 7516
    (const_ci = NGF_i).
    Thus all the NGF_i attributes must fill the 'gap' between the last group-by
7517 7518 7519 7520 7521 7522
    attribute and the MIN/MAX attribute in the index (if present). If these
    conditions hold, copy each constant from its corresponding predicate into
    key_infix, in the order its NG_i attribute appears in the index, and update
    key_infix_len with the total length of the key parts in key_infix.

  RETURN
7523
    TRUE  if the index passes the test
7524 7525 7526 7527
    FALSE o/w
*/

static bool
7528
get_constant_key_infix(KEY *index_info, SEL_ARG *index_range_tree,
7529
                       KEY_PART_INFO *first_non_group_part,
7530 7531 7532 7533
                       KEY_PART_INFO *min_max_arg_part,
                       KEY_PART_INFO *last_part, THD *thd,
                       byte *key_infix, uint *key_infix_len,
                       KEY_PART_INFO **first_non_infix_part)
7534 7535 7536
{
  SEL_ARG       *cur_range;
  KEY_PART_INFO *cur_part;
7537 7538
  /* End part for the first loop below. */
  KEY_PART_INFO *end_part= min_max_arg_part ? min_max_arg_part : last_part;
7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555

  *key_infix_len= 0;
  byte *key_ptr= key_infix;
  for (cur_part= first_non_group_part; cur_part != end_part; cur_part++)
  {
    /*
      Find the range tree for the current keypart. We assume that
      index_range_tree points to the leftmost keypart in the index.
    */
    for (cur_range= index_range_tree; cur_range;
         cur_range= cur_range->next_key_part)
    {
      if (cur_range->field->eq(cur_part->field))
        break;
    }
    if (!cur_range)
    {
7556 7557 7558 7559 7560 7561 7562
      if (min_max_arg_part)
        return FALSE; /* The current keypart has no range predicates at all. */
      else
      {
        *first_non_infix_part= cur_part;
        return TRUE;
      }
7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586
    }

    /* Check that the current range tree is a single point interval. */
    if (cur_range->prev || cur_range->next)
      return FALSE; /* This is not the only range predicate for the field. */
    if ((cur_range->min_flag & NO_MIN_RANGE) ||
        (cur_range->max_flag & NO_MAX_RANGE) ||
        (cur_range->min_flag & NEAR_MIN) || (cur_range->max_flag & NEAR_MAX))
      return FALSE;

    uint field_length= cur_part->store_length;
    if ((cur_range->maybe_null &&
         cur_range->min_value[0] && cur_range->max_value[0])
        ||
        (memcmp(cur_range->min_value, cur_range->max_value, field_length) == 0))
    { /* cur_range specifies 'IS NULL' or an equality condition. */
      memcpy(key_ptr, cur_range->min_value, field_length);
      key_ptr+= field_length;
      *key_infix_len+= field_length;
    }
    else
      return FALSE;
  }

7587 7588 7589
  if (!min_max_arg_part && (cur_part == last_part))
    *first_non_infix_part= last_part;

7590 7591 7592 7593
  return TRUE;
}


7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613
/*
  Find the key part referenced by a field.

  SYNOPSIS
    get_field_keypart()
    index  descriptor of an index
    field  field that possibly references some key part in index

  NOTES
    The return value can be used to get a KEY_PART_INFO pointer by
    part= index->key_part + get_field_keypart(...) - 1;

  RETURN
    Positive number which is the consecutive number of the key part, or
    0 if field does not reference any index field.
*/

static inline uint
get_field_keypart(KEY *index, Field *field)
{
7614
  KEY_PART_INFO *part, *end;
7615

7616
  for (part= index->key_part, end= part + index->key_parts; part < end; part++)
7617 7618
  {
    if (field->eq(part->field))
unknown's avatar
unknown committed
7619
      return part - index->key_part + 1;
7620
  }
7621
  return 0;
7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662
}


/*
  Find the SEL_ARG sub-tree that corresponds to the chosen index.

  SYNOPSIS
    get_index_range_tree()
    index     [in]  The ID of the index being looked for
    range_tree[in]  Tree of ranges being searched
    param     [in]  PARAM from SQL_SELECT::test_quick_select
    param_idx [out] Index in the array PARAM::key that corresponds to 'index'

  DESCRIPTION

    A SEL_TREE contains range trees for all usable indexes. This procedure
    finds the SEL_ARG sub-tree for 'index'. The members of a SEL_TREE are
    ordered in the same way as the members of PARAM::key, thus we first find
    the corresponding index in the array PARAM::key. This index is returned
    through the variable param_idx, to be used later as argument of
    check_quick_select().

  RETURN
    Pointer to the SEL_ARG subtree that corresponds to index.
*/

SEL_ARG * get_index_range_tree(uint index, SEL_TREE* range_tree, PARAM *param,
                               uint *param_idx)
{
  uint idx= 0; /* Index nr in param->key_parts */
  while (idx < param->keys)
  {
    if (index == param->real_keynr[idx])
      break;
    idx++;
  }
  *param_idx= idx;
  return(range_tree->keys[idx]);
}


7663
/*
7664
  Compute the cost of a quick_group_min_max_select for a particular index.
7665 7666

  SYNOPSIS
7667 7668 7669 7670 7671 7672 7673
    cost_group_min_max()
    table                [in] The table being accessed
    index_info           [in] The index used to access the table
    used_key_parts       [in] Number of key parts used to access the index
    group_key_parts      [in] Number of index key parts in the group prefix
    range_tree           [in] Tree of ranges for all indexes
    index_tree           [in] The range tree for the current index
unknown's avatar
unknown committed
7674 7675
    quick_prefix_records [in] Number of records retrieved by the internally
			      used quick range select if any
7676 7677 7678 7679
    have_min             [in] True if there is a MIN function
    have_max             [in] True if there is a MAX function
    read_cost           [out] The cost to retrieve rows via this quick select
    records             [out] The number of rows retrieved
7680 7681

  DESCRIPTION
unknown's avatar
unknown committed
7682 7683
    This method computes the access cost of a TRP_GROUP_MIN_MAX instance and
    the number of rows returned. It updates this->read_cost and this->records.
7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722

  NOTES
    The cost computation distinguishes several cases:
    1) No equality predicates over non-group attributes (thus no key_infix).
       If groups are bigger than blocks on the average, then we assume that it
       is very unlikely that block ends are aligned with group ends, thus even
       if we look for both MIN and MAX keys, all pairs of neighbor MIN/MAX
       keys, except for the first MIN and the last MAX keys, will be in the
       same block.  If groups are smaller than blocks, then we are going to
       read all blocks.
    2) There are equality predicates over non-group attributes.
       In this case the group prefix is extended by additional constants, and
       as a result the min/max values are inside sub-groups of the original
       groups. The number of blocks that will be read depends on whether the
       ends of these sub-groups will be contained in the same or in different
       blocks. We compute the probability for the two ends of a subgroup to be
       in two different blocks as the ratio of:
       - the number of positions of the left-end of a subgroup inside a group,
         such that the right end of the subgroup is past the end of the buffer
         containing the left-end, and
       - the total number of possible positions for the left-end of the
         subgroup, which is the number of keys in the containing group.
       We assume it is very unlikely that two ends of subsequent subgroups are
       in the same block.
    3) The are range predicates over the group attributes.
       Then some groups may be filtered by the range predicates. We use the
       selectivity of the range predicates to decide how many groups will be
       filtered.

  TODO
     - Take into account the optional range predicates over the MIN/MAX
       argument.
     - Check if we have a PK index and we use all cols - then each key is a
       group, and it will be better to use an index scan.

  RETURN
    None
*/

7723 7724 7725 7726 7727
void cost_group_min_max(TABLE* table, KEY *index_info, uint used_key_parts,
                        uint group_key_parts, SEL_TREE *range_tree,
                        SEL_ARG *index_tree, ha_rows quick_prefix_records,
                        bool have_min, bool have_max,
                        double *read_cost, ha_rows *records)
7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739
{
  uint table_records;
  uint num_groups;
  uint num_blocks;
  uint keys_per_block;
  uint keys_per_group;
  uint keys_per_subgroup; /* Average number of keys in sub-groups */
                          /* formed by a key infix. */
  double p_overlap; /* Probability that a sub-group overlaps two blocks. */
  double quick_prefix_selectivity;
  double io_cost;
  double cpu_cost= 0; /* TODO: CPU cost of index_read calls? */
unknown's avatar
unknown committed
7740
  DBUG_ENTER("cost_group_min_max");
unknown's avatar
unknown committed
7741

7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759
  table_records= table->file->records;
  keys_per_block= (table->file->block_size / 2 /
                   (index_info->key_length + table->file->ref_length)
                        + 1);
  num_blocks= (table_records / keys_per_block) + 1;

  /* Compute the number of keys in a group. */
  keys_per_group= index_info->rec_per_key[group_key_parts - 1];
  if (keys_per_group == 0) /* If there is no statistics try to guess */
    /* each group contains 10% of all records */
    keys_per_group= (table_records / 10) + 1;
  num_groups= (table_records / keys_per_group) + 1;

  /* Apply the selectivity of the quick select for group prefixes. */
  if (range_tree && (quick_prefix_records != HA_POS_ERROR))
  {
    quick_prefix_selectivity= (double) quick_prefix_records /
                              (double) table_records;
unknown's avatar
unknown committed
7760
    num_groups= (uint) rint(num_groups * quick_prefix_selectivity);
7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791
  }

  if (used_key_parts > group_key_parts)
  { /*
      Compute the probability that two ends of a subgroup are inside
      different blocks.
    */
    keys_per_subgroup= index_info->rec_per_key[used_key_parts - 1];
    if (keys_per_subgroup >= keys_per_block) /* If a subgroup is bigger than */
      p_overlap= 1.0;       /* a block, it will overlap at least two blocks. */
    else
    {
      double blocks_per_group= (double) num_blocks / (double) num_groups;
      p_overlap= (blocks_per_group * (keys_per_subgroup - 1)) / keys_per_group;
      p_overlap= min(p_overlap, 1.0);
    }
    io_cost= (double) min(num_groups * (1 + p_overlap), num_blocks);
  }
  else
    io_cost= (keys_per_group > keys_per_block) ?
             (have_min && have_max) ? (double) (num_groups + 1) :
                                      (double) num_groups :
             (double) num_blocks;

  /*
    TODO: If there is no WHERE clause and no other expressions, there should be
    no CPU cost. We leave it here to make this cost comparable to that of index
    scan as computed in SQL_SELECT::test_quick_select().
  */
  cpu_cost= (double) num_groups / TIME_FOR_COMPARE;

7792
  *read_cost= io_cost + cpu_cost;
7793
  *records= num_groups;
7794 7795

  DBUG_PRINT("info",
7796 7797
             ("table rows=%u, keys/block=%u, keys/group=%u, result rows=%u, blocks=%u",
              table_records, keys_per_block, keys_per_group, *records,
7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830
              num_blocks));
  DBUG_VOID_RETURN;
}


/*
  Construct a new quick select object for queries with group by with min/max.

  SYNOPSIS
    TRP_GROUP_MIN_MAX::make_quick()
    param              Parameter from test_quick_select
    retrieve_full_rows ignored
    parent_alloc       Memory pool to use, if any.

  NOTES
    Make_quick ignores the retrieve_full_rows parameter because
    QUICK_GROUP_MIN_MAX_SELECT always performs 'index only' scans.
    The other parameter are ignored as well because all necessary
    data to create the QUICK object is computed at this TRP creation
    time.

  RETURN
    New QUICK_GROUP_MIN_MAX_SELECT object if successfully created,
    NULL o/w.
*/

QUICK_SELECT_I *
TRP_GROUP_MIN_MAX::make_quick(PARAM *param, bool retrieve_full_rows,
                              MEM_ROOT *parent_alloc)
{
  QUICK_GROUP_MIN_MAX_SELECT *quick;
  DBUG_ENTER("TRP_GROUP_MIN_MAX::make_quick");

7831 7832 7833 7834 7835
  quick= new QUICK_GROUP_MIN_MAX_SELECT(param->table,
                                        param->thd->lex->select_lex.join,
                                        have_min, have_max, min_max_arg_part,
                                        group_prefix_len, used_key_parts,
                                        index_info, index, read_cost, records,
unknown's avatar
unknown committed
7836 7837
                                        key_infix_len, key_infix,
                                        parent_alloc);
7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853
  if (!quick)
    DBUG_RETURN(NULL);

  if (quick->init())
  {
    delete quick;
    DBUG_RETURN(NULL);
  }

  if (range_tree)
  {
    DBUG_ASSERT(quick_prefix_records > 0);
    if (quick_prefix_records == HA_POS_ERROR)
      quick->quick_prefix_select= NULL; /* Can't construct a quick select. */
    else
      /* Make a QUICK_RANGE_SELECT to be used for group prefix retrieval. */
7854 7855
      quick->quick_prefix_select= get_quick_select(param, param_idx,
                                                   index_tree,
7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877
                                                   &quick->alloc);

    /*
      Extract the SEL_ARG subtree that contains only ranges for the MIN/MAX
      attribute, and create an array of QUICK_RANGES to be used by the
      new quick select.
    */
    if (min_max_arg_part)
    {
      SEL_ARG *min_max_range= index_tree;
      while (min_max_range) /* Find the tree for the MIN/MAX key part. */
      {
        if (min_max_range->field->eq(min_max_arg_part->field))
          break;
        min_max_range= min_max_range->next_key_part;
      }
      /* Scroll to the leftmost interval for the MIN/MAX argument. */
      while (min_max_range && min_max_range->prev)
        min_max_range= min_max_range->prev;
      /* Create an array of QUICK_RANGEs for the MIN/MAX argument. */
      while (min_max_range)
      {
7878
        if (quick->add_range(min_max_range))
7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920
        {
          delete quick;
          quick= NULL;
          DBUG_RETURN(NULL);
        }
        min_max_range= min_max_range->next;
      }
    }
  }
  else
    quick->quick_prefix_select= NULL;

  quick->update_key_stat();

  DBUG_RETURN(quick);
}


/*
  Construct new quick select for group queries with min/max.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::QUICK_GROUP_MIN_MAX_SELECT()
    table             The table being accessed
    join              Descriptor of the current query
    have_min          TRUE if the query selects a MIN function
    have_max          TRUE if the query selects a MAX function
    min_max_arg_part  The only argument field of all MIN/MAX functions
    group_prefix_len  Length of all key parts in the group prefix
    prefix_key_parts  All key parts in the group prefix
    index_info        The index chosen for data access
    use_index         The id of index_info
    read_cost         Cost of this access method
    records           Number of records returned
    key_infix_len     Length of the key infix appended to the group prefix
    key_infix         Infix of constants from equality predicates
    parent_alloc      Memory pool for this and quick_prefix_select data

  RETURN
    None
*/

unknown's avatar
unknown committed
7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933
QUICK_GROUP_MIN_MAX_SELECT::
QUICK_GROUP_MIN_MAX_SELECT(TABLE *table, JOIN *join_arg, bool have_min_arg,
                           bool have_max_arg,
                           KEY_PART_INFO *min_max_arg_part_arg,
                           uint group_prefix_len_arg,
                           uint used_key_parts_arg, KEY *index_info_arg,
                           uint use_index, double read_cost_arg,
                           ha_rows records_arg, uint key_infix_len_arg,
                           byte *key_infix_arg, MEM_ROOT *parent_alloc)
  :join(join_arg), index_info(index_info_arg),
   group_prefix_len(group_prefix_len_arg), have_min(have_min_arg),
   have_max(have_max_arg), seen_first_key(FALSE),
   min_max_arg_part(min_max_arg_part_arg), key_infix(key_infix_arg),
7934 7935
   key_infix_len(key_infix_len_arg), min_functions_it(NULL),
   max_functions_it(NULL)
7936 7937 7938 7939 7940 7941
{
  head=       table;
  file=       head->file;
  index=      use_index;
  record=     head->record[0];
  tmp_record= head->record[1];
7942 7943 7944
  read_time= read_cost_arg;
  records= records_arg;
  used_key_parts= used_key_parts_arg;
7945 7946 7947
  real_prefix_len= group_prefix_len + key_infix_len;
  group_prefix= NULL;
  min_max_arg_len= min_max_arg_part ? min_max_arg_part->store_length : 0;
unknown's avatar
unknown committed
7948 7949 7950 7951 7952 7953

  /*
    We can't have parent_alloc set as the init function can't handle this case
    yet.
  */
  DBUG_ASSERT(!parent_alloc);
7954 7955 7956
  if (!parent_alloc)
  {
    init_sql_alloc(&alloc, join->thd->variables.range_alloc_block_size, 0);
unknown's avatar
unknown committed
7957
    join->thd->mem_root= &alloc;
7958 7959
  }
  else
7960
    bzero(&alloc, sizeof(MEM_ROOT));            // ensure that it's not used
7961 7962 7963 7964 7965 7966 7967 7968 7969
}


/*
  Do post-constructor initialization.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::init()
  
7970 7971 7972 7973 7974 7975
  DESCRIPTION
    The method performs initialization that cannot be done in the constructor
    such as memory allocations that may fail. It allocates memory for the
    group prefix and inifix buffers, and for the lists of MIN/MAX item to be
    updated during execution.

7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010
  RETURN
    0      OK
    other  Error code
*/

int QUICK_GROUP_MIN_MAX_SELECT::init()
{
  if (group_prefix) /* Already initialized. */
    return 0;

  if (!(last_prefix= (byte*) alloc_root(&alloc, group_prefix_len)))
      return 1;
  /*
    We may use group_prefix to store keys with all select fields, so allocate
    enough space for it.
  */
  if (!(group_prefix= (byte*) alloc_root(&alloc,
                                         real_prefix_len + min_max_arg_len)))
    return 1;

  if (key_infix_len > 0)
  {
    /*
      The memory location pointed to by key_infix will be deleted soon, so
      allocate a new buffer and copy the key_infix into it.
    */
    byte *tmp_key_infix= (byte*) alloc_root(&alloc, key_infix_len);
    if (!tmp_key_infix)
      return 1;
    memcpy(tmp_key_infix, this->key_infix, key_infix_len);
    this->key_infix= tmp_key_infix;
  }

  if (min_max_arg_part)
  {
unknown's avatar
unknown committed
8011
    if (my_init_dynamic_array(&min_max_ranges, sizeof(QUICK_RANGE*), 16, 16))
8012 8013
      return 1;

8014 8015
    if (have_min)
    {
unknown's avatar
unknown committed
8016
      if (!(min_functions= new List<Item_sum>))
8017 8018 8019 8020 8021 8022
        return 1;
    }
    else
      min_functions= NULL;
    if (have_max)
    {
unknown's avatar
unknown committed
8023
      if (!(max_functions= new List<Item_sum>))
8024 8025 8026 8027
        return 1;
    }
    else
      max_functions= NULL;
8028

8029 8030 8031
    Item_sum *min_max_item;
    Item_sum **func_ptr= join->sum_funcs;
    while ((min_max_item= *(func_ptr++)))
8032
    {
8033 8034 8035 8036
      if (have_min && (min_max_item->sum_func() == Item_sum::MIN_FUNC))
        min_functions->push_back(min_max_item);
      else if (have_max && (min_max_item->sum_func() == Item_sum::MAX_FUNC))
        max_functions->push_back(min_max_item);
8037 8038
    }

8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049
    if (have_min)
    {
      if (!(min_functions_it= new List_iterator<Item_sum>(*min_functions)))
        return 1;
    }

    if (have_max)
    {
      if (!(max_functions_it= new List_iterator<Item_sum>(*max_functions)))
        return 1;
    }
8050
  }
unknown's avatar
unknown committed
8051 8052
  else
    min_max_ranges.elements= 0;
8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065

  return 0;
}


QUICK_GROUP_MIN_MAX_SELECT::~QUICK_GROUP_MIN_MAX_SELECT()
{
  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::~QUICK_GROUP_MIN_MAX_SELECT");
  if (file->inited != handler::NONE) 
    file->ha_index_end();
  if (min_max_arg_part)
    delete_dynamic(&min_max_ranges);
  free_root(&alloc,MYF(0));
8066 8067
  delete min_functions_it;
  delete max_functions_it;
8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086
  delete quick_prefix_select;
  DBUG_VOID_RETURN; 
}


/*
  Eventually create and add a new quick range object.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::add_range()
    sel_range  Range object from which a 

  NOTES
    Construct a new QUICK_RANGE object from a SEL_ARG object, and
    add it to the array min_max_ranges. If sel_arg is an infinite
    range, e.g. (x < 5 or x > 4), then skip it and do not construct
    a quick range.

  RETURN
8087 8088
    FALSE on success
    TRUE  otherwise
8089 8090 8091 8092 8093 8094 8095 8096
*/

bool QUICK_GROUP_MIN_MAX_SELECT::add_range(SEL_ARG *sel_range)
{
  QUICK_RANGE *range;
  uint range_flag= sel_range->min_flag | sel_range->max_flag;

  /* Skip (-inf,+inf) ranges, e.g. (x < 5 or x > 4). */
unknown's avatar
unknown committed
8097
  if ((range_flag & NO_MIN_RANGE) && (range_flag & NO_MAX_RANGE))
8098
    return FALSE;
8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113

  if (!(sel_range->min_flag & NO_MIN_RANGE) &&
      !(sel_range->max_flag & NO_MAX_RANGE))
  {
    if (sel_range->maybe_null &&
        sel_range->min_value[0] && sel_range->max_value[0])
      range_flag|= NULL_RANGE; /* IS NULL condition */
    else if (memcmp(sel_range->min_value, sel_range->max_value,
                    min_max_arg_len) == 0)
      range_flag|= EQ_RANGE;  /* equality condition */
  }
  range= new QUICK_RANGE(sel_range->min_value, min_max_arg_len,
                         sel_range->max_value, min_max_arg_len,
                         range_flag);
  if (!range)
8114
    return TRUE;
8115
  if (insert_dynamic(&min_max_ranges, (gptr)&range))
8116 8117
    return TRUE;
  return FALSE;
8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146
}


/*
  Determine the total number and length of the keys that will be used for
  index lookup.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::update_key_stat()

  DESCRIPTION
    The total length of the keys used for index lookup depends on whether
    there are any predicates referencing the min/max argument, and/or if
    the min/max argument field can be NULL.
    This function does an optimistic analysis whether the search key might
    be extended by a constant for the min/max keypart. It is 'optimistic'
    because during actual execution it may happen that a particular range
    is skipped, and then a shorter key will be used. However this is data
    dependent and can't be easily estimated here.

  RETURN
    None
*/

void QUICK_GROUP_MIN_MAX_SELECT::update_key_stat()
{
  max_used_key_length= real_prefix_len;
  if (min_max_ranges.elements > 0)
  {
8147
    QUICK_RANGE *cur_range;
8148 8149 8150 8151 8152 8153 8154
    if (have_min)
    { /* Check if the right-most range has a lower boundary. */
      get_dynamic(&min_max_ranges, (gptr)&cur_range,
                  min_max_ranges.elements - 1);
      if (!(cur_range->flag & NO_MIN_RANGE))
      {
        max_used_key_length+= min_max_arg_len;
8155
        used_key_parts++;
8156 8157 8158 8159 8160 8161 8162 8163 8164
        return;
      }
    }
    if (have_max)
    { /* Check if the left-most range has an upper boundary. */
      get_dynamic(&min_max_ranges, (gptr)&cur_range, 0);
      if (!(cur_range->flag & NO_MAX_RANGE))
      {
        max_used_key_length+= min_max_arg_len;
8165
        used_key_parts++;
8166 8167 8168 8169
        return;
      }
    }
  }
8170 8171
  else if (have_min && min_max_arg_part &&
           min_max_arg_part->field->real_maybe_null())
8172
  {
8173 8174 8175 8176 8177 8178 8179 8180
    /*
      If a MIN/MAX argument value is NULL, we can quickly determine
      that we're in the beginning of the next group, because NULLs
      are always < any other value. This allows us to quickly
      determine the end of the current group and jump to the next
      group (see next_min()) and thus effectively increases the
      usable key length.
    */
8181
    max_used_key_length+= min_max_arg_len;
8182
    used_key_parts++;
8183 8184 8185 8186 8187 8188 8189 8190 8191 8192
  }
}


/*
  Initialize a quick group min/max select for key retrieval.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::reset()

8193 8194 8195 8196
  DESCRIPTION
    Initialize the index chosen for access and find and store the prefix
    of the last group. The method is expensive since it performs disk access.

8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209
  RETURN
    0      OK
    other  Error code
*/

int QUICK_GROUP_MIN_MAX_SELECT::reset(void)
{
  int result;
  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::reset");

  file->extra(HA_EXTRA_KEYREAD); /* We need only the key attributes */
  result= file->ha_index_init(index);
  result= file->index_last(record);
unknown's avatar
unknown committed
8210 8211
  if (result == HA_ERR_END_OF_FILE)
    DBUG_RETURN(0);
8212 8213
  if (result)
    DBUG_RETURN(result);
unknown's avatar
unknown committed
8214 8215
  if (quick_prefix_select && quick_prefix_select->reset())
    DBUG_RETURN(1);
8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254
  /* Save the prefix of the last group. */
  key_copy(last_prefix, record, index_info, group_prefix_len);

  DBUG_RETURN(0);
}



/* 
  Get the next key containing the MIN and/or MAX key for the next group.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::get_next()

  DESCRIPTION
    The method finds the next subsequent group of records that satisfies the
    query conditions and finds the keys that contain the MIN/MAX values for
    the key part referenced by the MIN/MAX function(s). Once a group and its
    MIN/MAX values are found, store these values in the Item_sum objects for
    the MIN/MAX functions. The rest of the values in the result row are stored
    in the Item_field::result_field of each select field. If the query does
    not contain MIN and/or MAX functions, then the function only finds the
    group prefix, which is a query answer itself.

  NOTES
    If both MIN and MAX are computed, then we use the fact that if there is
    no MIN key, there can't be a MAX key as well, so we can skip looking
    for a MAX key in this case.

  RETURN
    0                  on success
    HA_ERR_END_OF_FILE if returned all keys
    other              if some error occurred
*/

int QUICK_GROUP_MIN_MAX_SELECT::get_next()
{
  int min_res= 0;
  int max_res= 0;
unknown's avatar
unknown committed
8255 8256 8257 8258 8259 8260 8261
#ifdef HPUX11
  /*
    volatile is required by a bug in the HP compiler due to which the
    last test of result fails.
  */
  volatile int result;
#else
8262
  int result;
unknown's avatar
unknown committed
8263
#endif
8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303
  int is_last_prefix;

  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::get_next");

  /*
    Loop until a group is found that satisfies all query conditions or the last
    group is reached.
  */
  do
  {
    result= next_prefix();
    /*
      Check if this is the last group prefix. Notice that at this point
      this->record contains the current prefix in record format.
    */
    is_last_prefix= key_cmp(index_info->key_part, last_prefix,
                            group_prefix_len);
    DBUG_ASSERT(is_last_prefix <= 0);
    if (result == HA_ERR_KEY_NOT_FOUND)
      continue;
    else if (result)
      break;

    if (have_min)
    {
      min_res= next_min();
      if (min_res == 0)
        update_min_result();
    }
    /* If there is no MIN in the group, there is no MAX either. */
    if ((have_max && !have_min) ||
        (have_max && have_min && (min_res == 0)))
    {
      max_res= next_max();
      if (max_res == 0)
        update_max_result();
      /* If a MIN was found, a MAX must have been found as well. */
      DBUG_ASSERT((have_max && !have_min) ||
                  (have_max && have_min && (max_res == 0)));
    }
8304
    /*
unknown's avatar
unknown committed
8305
      If this is just a GROUP BY or DISTINCT without MIN or MAX and there
8306 8307 8308 8309 8310 8311 8312
      are equality predicates for the key parts after the group, find the
      first sub-group with the extended prefix.
    */
    if (!have_min && !have_max && key_infix_len > 0)
      result= file->index_read(record, group_prefix, real_prefix_len,
                               HA_READ_KEY_EXACT);

8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338
    result= have_min ? min_res : have_max ? max_res : result;
  }
  while (result == HA_ERR_KEY_NOT_FOUND && is_last_prefix != 0);

  if (result == 0)
    /*
      Partially mimic the behavior of end_select_send. Copy the
      field data from Item_field::field into Item_field::result_field
      of each non-aggregated field (the group fields, and optionally
      other fields in non-ANSI SQL mode).
    */
    copy_fields(&join->tmp_table_param);
  else if (result == HA_ERR_KEY_NOT_FOUND)
    result= HA_ERR_END_OF_FILE;

  DBUG_RETURN(result);
}


/*
  Retrieve the minimal key in the next group.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_min()

  DESCRIPTION
8339 8340
    Find the minimal key within this group such that the key satisfies the query
    conditions and NULL semantics. The found key is loaded into this->record.
8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366

  IMPLEMENTATION
    Depending on the values of min_max_ranges.elements, key_infix_len, and
    whether there is a  NULL in the MIN field, this function may directly
    return without any data access. In this case we use the key loaded into
    this->record by the call to this->next_prefix() just before this call.

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if no MIN key was found that fulfills all conditions.
    other                if some error occurred
*/

int QUICK_GROUP_MIN_MAX_SELECT::next_min()
{
  int result= 0;
  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_min");

  /* Find the MIN key using the eventually extended group prefix. */
  if (min_max_ranges.elements > 0)
  {
    if ((result= next_min_in_range()))
      DBUG_RETURN(result);
  }
  else
  {
unknown's avatar
unknown committed
8367
    /* Apply the constant equality conditions to the non-group select fields */
8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400
    if (key_infix_len > 0)
    {
      if ((result= file->index_read(record, group_prefix, real_prefix_len,
                                    HA_READ_KEY_EXACT)))
        DBUG_RETURN(result);
    }

    /*
      If the min/max argument field is NULL, skip subsequent rows in the same
      group with NULL in it. Notice that:
      - if the first row in a group doesn't have a NULL in the field, no row
      in the same group has (because NULL < any other value),
      - min_max_arg_part->field->ptr points to some place in 'record'.
    */
    if (min_max_arg_part && min_max_arg_part->field->is_null())
    {
      /* Find the first subsequent record without NULL in the MIN/MAX field. */
      key_copy(tmp_record, record, index_info, 0);
      result= file->index_read(record, tmp_record,
                               real_prefix_len + min_max_arg_len,
                               HA_READ_AFTER_KEY);
      /*
        Check if the new record belongs to the current group by comparing its
        prefix with the group's prefix. If it is from the next group, then the
        whole group has NULLs in the MIN/MAX field, so use the first record in
        the group as a result.
        TODO:
        It is possible to reuse this new record as the result candidate for the
        next call to next_min(), and to save one lookup in the next call. For
        this add a new member 'this->next_group_prefix'.
      */
      if (!result)
      {
unknown's avatar
unknown committed
8401
        if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
8402
          key_restore(record, tmp_record, index_info, 0);
unknown's avatar
unknown committed
8403 8404
      }
      else if (result == HA_ERR_KEY_NOT_FOUND) 
8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423
        result= 0; /* There is a result in any case. */
    }
  }

  /*
    If the MIN attribute is non-nullable, this->record already contains the
    MIN key in the group, so just return.
  */
  DBUG_RETURN(result);
}


/* 
  Retrieve the maximal key in the next group.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_max()

  DESCRIPTION
8424
    Lookup the maximal key of the group, and store it into this->record.
8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if no MAX key was found that fulfills all conditions.
    other                if some error occurred
*/

int QUICK_GROUP_MIN_MAX_SELECT::next_max()
{
  int result;

  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_max");

  /* Get the last key in the (possibly extended) group. */
  if (min_max_ranges.elements > 0)
    result= next_max_in_range();
  else
    result= file->index_read(record, group_prefix, real_prefix_len,
                             HA_READ_PREFIX_LAST);
  DBUG_RETURN(result);
}


/*
  Determine the prefix of the next group.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_prefix()

  DESCRIPTION
    Determine the prefix of the next group that satisfies the query conditions.
    If there is a range condition referencing the group attributes, use a
    QUICK_RANGE_SELECT object to retrieve the *first* key that satisfies the
    condition. If there is a key infix of constants, append this infix
    immediately after the group attributes. The possibly extended prefix is
    stored in this->group_prefix. The first key of the found group is stored in
    this->record, on which relies this->next_min().

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if there is no key with the formed prefix
    HA_ERR_END_OF_FILE   if there are no more keys
    other                if some error occurred
*/
int QUICK_GROUP_MIN_MAX_SELECT::next_prefix()
{
  int result;
  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_prefix");

  if (quick_prefix_select)
  {
    byte *cur_prefix= seen_first_key ? group_prefix : NULL;
    if ((result= quick_prefix_select->get_next_prefix(group_prefix_len,
                                                      cur_prefix)))
      DBUG_RETURN(result);
    seen_first_key= TRUE;
  }
  else
  {
    if (!seen_first_key)
    {
      result= file->index_first(record);
      if (result)
        DBUG_RETURN(result);
      seen_first_key= TRUE;
    }
    else
    {
      /* Load the first key in this group into record. */
      result= file->index_read(record, group_prefix, group_prefix_len,
                               HA_READ_AFTER_KEY);
      if (result)
        DBUG_RETURN(result);
    }
  }

  /* Save the prefix of this group for subsequent calls. */
  key_copy(group_prefix, record, index_info, group_prefix_len);
  /* Append key_infix to group_prefix. */
  if (key_infix_len > 0)
    memcpy(group_prefix + group_prefix_len,
           key_infix, key_infix_len);

  DBUG_RETURN(0);
}


/*
  Find the minimal key in a group that satisfies some range conditions for the
  min/max argument field.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_min_in_range()

  DESCRIPTION
    Given the sequence of ranges min_max_ranges, find the minimal key that is
    in the left-most possible range. If there is no such key, then the current
    group does not have a MIN key that satisfies the WHERE clause. If a key is
    found, its value is stored in this->record.

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if there is no key with the given prefix in any of
                         the ranges
    other                if some error
*/

int QUICK_GROUP_MIN_MAX_SELECT::next_min_in_range()
{
  ha_rkey_function find_flag;
  uint search_prefix_len;
  QUICK_RANGE *cur_range;
  bool found_null= FALSE;
  int result= HA_ERR_KEY_NOT_FOUND;

  DBUG_ASSERT(min_max_ranges.elements > 0);

  for (uint range_idx= 0; range_idx < min_max_ranges.elements; range_idx++)
  { /* Search from the left-most range to the right. */
    get_dynamic(&min_max_ranges, (gptr)&cur_range, range_idx);

    /*
      If the current value for the min/max argument is bigger than the right
      boundary of cur_range, there is no need to check this range.
    */
    if (range_idx != 0 && !(cur_range->flag & NO_MAX_RANGE) &&
8551
        (key_cmp(min_max_arg_part, (const byte*) cur_range->max_key,
8552
                 min_max_arg_len) == 1))
8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576
      continue;

    if (cur_range->flag & NO_MIN_RANGE)
    {
      find_flag= HA_READ_KEY_EXACT;
      search_prefix_len= real_prefix_len;
    }
    else
    {
      /* Extend the search key with the lower boundary for this range. */
      memcpy(group_prefix + real_prefix_len, cur_range->min_key,
             cur_range->min_length);
      search_prefix_len= real_prefix_len + min_max_arg_len;
      find_flag= (cur_range->flag & (EQ_RANGE | NULL_RANGE)) ?
                 HA_READ_KEY_EXACT : (cur_range->flag & NEAR_MIN) ?
                 HA_READ_AFTER_KEY : HA_READ_KEY_OR_NEXT;
    }

    result= file->index_read(record, group_prefix, search_prefix_len,
                             find_flag);
    if ((result == HA_ERR_KEY_NOT_FOUND) &&
        (cur_range->flag & (EQ_RANGE | NULL_RANGE)))
        continue; /* Check the next range. */
    else if (result)
8577 8578 8579 8580 8581 8582
    {
      /*
        In all other cases (HA_ERR_*, HA_READ_KEY_EXACT with NO_MIN_RANGE,
        HA_READ_AFTER_KEY, HA_READ_KEY_OR_NEXT) if the lookup failed for this
        range, it can't succeed for any other subsequent range.
      */
8583
      break;
8584
    }
8585 8586 8587 8588 8589 8590

    /* A key was found. */
    if (cur_range->flag & EQ_RANGE)
      break; /* No need to perform the checks below for equal keys. */

    if (cur_range->flag & NULL_RANGE)
8591 8592 8593 8594 8595 8596
    {
      /*
        Remember this key, and continue looking for a non-NULL key that
        satisfies some other condition.
      */
      memcpy(tmp_record, record, head->s->rec_buff_length);
8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636
      found_null= TRUE;
      continue;
    }

    /* Check if record belongs to the current group. */
    if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
    {
      result = HA_ERR_KEY_NOT_FOUND;
      continue;
    }

    /* If there is an upper limit, check if the found key is in the range. */
    if ( !(cur_range->flag & NO_MAX_RANGE) )
    {
      /* Compose the MAX key for the range. */
      byte *max_key= (byte*) my_alloca(real_prefix_len + min_max_arg_len);
      memcpy(max_key, group_prefix, real_prefix_len);
      memcpy(max_key + real_prefix_len, cur_range->max_key,
             cur_range->max_length);
      /* Compare the found key with max_key. */
      int cmp_res= key_cmp(index_info->key_part, max_key,
                           real_prefix_len + min_max_arg_len);
      if (!((cur_range->flag & NEAR_MAX) && (cmp_res == -1) ||
            (cmp_res <= 0)))
      {
        result = HA_ERR_KEY_NOT_FOUND;
        continue;
      }
    }
    /* If we got to this point, the current key qualifies as MIN. */
    DBUG_ASSERT(result == 0);
    break;
  }
  /*
    If there was a key with NULL in the MIN/MAX field, and there was no other
    key without NULL from the same group that satisfies some other condition,
    then use the key with the NULL.
  */
  if (found_null && result)
  {
8637
    memcpy(record, tmp_record, head->s->rec_buff_length);
8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682
    result= 0;
  }
  return result;
}


/*
  Find the maximal key in a group that satisfies some range conditions for the
  min/max argument field.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_max_in_range()

  DESCRIPTION
    Given the sequence of ranges min_max_ranges, find the maximal key that is
    in the right-most possible range. If there is no such key, then the current
    group does not have a MAX key that satisfies the WHERE clause. If a key is
    found, its value is stored in this->record.

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if there is no key with the given prefix in any of
                         the ranges
    other                if some error
*/

int QUICK_GROUP_MIN_MAX_SELECT::next_max_in_range()
{
  ha_rkey_function find_flag;
  uint search_prefix_len;
  QUICK_RANGE *cur_range;
  int result;

  DBUG_ASSERT(min_max_ranges.elements > 0);

  for (uint range_idx= min_max_ranges.elements; range_idx > 0; range_idx--)
  { /* Search from the right-most range to the left. */
    get_dynamic(&min_max_ranges, (gptr)&cur_range, range_idx - 1);

    /*
      If the current value for the min/max argument is smaller than the left
      boundary of cur_range, there is no need to check this range.
    */
    if (range_idx != min_max_ranges.elements &&
        !(cur_range->flag & NO_MIN_RANGE) &&
8683
        (key_cmp(min_max_arg_part, (const byte*) cur_range->min_key,
8684
                 min_max_arg_len) == -1))
8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707
      continue;

    if (cur_range->flag & NO_MAX_RANGE)
    {
      find_flag= HA_READ_PREFIX_LAST;
      search_prefix_len= real_prefix_len;
    }
    else
    {
      /* Extend the search key with the upper boundary for this range. */
      memcpy(group_prefix + real_prefix_len, cur_range->max_key,
             cur_range->max_length);
      search_prefix_len= real_prefix_len + min_max_arg_len;
      find_flag= (cur_range->flag & EQ_RANGE) ?
                 HA_READ_KEY_EXACT : (cur_range->flag & NEAR_MAX) ?
                 HA_READ_BEFORE_KEY : HA_READ_PREFIX_LAST_OR_PREV;
    }

    result= file->index_read(record, group_prefix, search_prefix_len,
                             find_flag);

    if ((result == HA_ERR_KEY_NOT_FOUND) && (cur_range->flag & EQ_RANGE))
      continue; /* Check the next range. */
unknown's avatar
unknown committed
8708 8709
    if (result)
    {
8710 8711 8712 8713 8714
      /*
        In no key was found with this upper bound, there certainly are no keys
        in the ranges to the left.
      */
      return result;
unknown's avatar
unknown committed
8715
    }
8716 8717
    /* A key was found. */
    if (cur_range->flag & EQ_RANGE)
unknown's avatar
unknown committed
8718
      return 0; /* No need to perform the checks below for equal keys. */
8719 8720 8721

    /* Check if record belongs to the current group. */
    if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
unknown's avatar
unknown committed
8722
      continue;                                 // Row not found
8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810

    /* If there is a lower limit, check if the found key is in the range. */
    if ( !(cur_range->flag & NO_MIN_RANGE) )
    {
      /* Compose the MIN key for the range. */
      byte *min_key= (byte*) my_alloca(real_prefix_len + min_max_arg_len);
      memcpy(min_key, group_prefix, real_prefix_len);
      memcpy(min_key + real_prefix_len, cur_range->min_key,
             cur_range->min_length);
      /* Compare the found key with min_key. */
      int cmp_res= key_cmp(index_info->key_part, min_key,
                           real_prefix_len + min_max_arg_len);
      if (!((cur_range->flag & NEAR_MIN) && (cmp_res == 1) ||
            (cmp_res >= 0)))
        continue;
    }
    /* If we got to this point, the current key qualifies as MAX. */
    return result;
  }
  return HA_ERR_KEY_NOT_FOUND;
}


/*
  Update all MIN function results with the newly found value.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::update_min_result()

  DESCRIPTION
    The method iterates through all MIN functions and updates the result value
    of each function by calling Item_sum::reset(), which in turn picks the new
    result value from this->head->record[0], previously updated by
    next_min(). The updated value is stored in a member variable of each of the
    Item_sum objects, depending on the value type.

  IMPLEMENTATION
    The update must be done separately for MIN and MAX, immediately after
    next_min() was called and before next_max() is called, because both MIN and
    MAX take their result value from the same buffer this->head->record[0]
    (i.e.  this->record).

  RETURN
    None
*/

void QUICK_GROUP_MIN_MAX_SELECT::update_min_result()
{
  Item_sum *min_func;

  min_functions_it->rewind();
  while ((min_func= (*min_functions_it)++))
    min_func->reset();
}


/*
  Update all MAX function results with the newly found value.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::update_max_result()

  DESCRIPTION
    The method iterates through all MAX functions and updates the result value
    of each function by calling Item_sum::reset(), which in turn picks the new
    result value from this->head->record[0], previously updated by
    next_max(). The updated value is stored in a member variable of each of the
    Item_sum objects, depending on the value type.

  IMPLEMENTATION
    The update must be done separately for MIN and MAX, immediately after
    next_max() was called, because both MIN and MAX take their result value
    from the same buffer this->head->record[0] (i.e.  this->record).

  RETURN
    None
*/

void QUICK_GROUP_MIN_MAX_SELECT::update_max_result()
{
  Item_sum *max_func;

  max_functions_it->rewind();
  while ((max_func= (*max_functions_it)++))
    max_func->reset();
}


8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825
/*
  Append comma-separated list of keys this quick select uses to key_names;
  append comma-separated list of corresponding used lengths to used_lengths.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::add_keys_and_lengths()
    key_names    [out] Names of used indexes
    used_lengths [out] Corresponding lengths of the index names

  DESCRIPTION
    This method is used by select_describe to extract the names of the
    indexes used by a quick select.

*/

8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836
void QUICK_GROUP_MIN_MAX_SELECT::add_keys_and_lengths(String *key_names,
                                                      String *used_lengths)
{
  char buf[64];
  uint length;
  key_names->append(index_info->name);
  length= longlong2str(max_used_key_length, buf, 10) - buf;
  used_lengths->append(buf, length);
}


8837
#ifndef DBUG_OFF
8838

8839 8840 8841 8842 8843 8844 8845 8846 8847
static void print_sel_tree(PARAM *param, SEL_TREE *tree, key_map *tree_map,
                           const char *msg)
{
  SEL_ARG **key,**end;
  int idx;
  char buff[1024];
  DBUG_ENTER("print_sel_tree");
  if (! _db_on_)
    DBUG_VOID_RETURN;
8848

8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864
  String tmp(buff,sizeof(buff),&my_charset_bin);
  tmp.length(0);
  for (idx= 0,key=tree->keys, end=key+param->keys ;
       key != end ;
       key++,idx++)
  {
    if (tree_map->is_set(idx))
    {
      uint keynr= param->real_keynr[idx];
      if (tmp.length())
        tmp.append(',');
      tmp.append(param->table->key_info[keynr].name);
    }
  }
  if (!tmp.length())
    tmp.append("(empty)");
8865

8866
  DBUG_PRINT("info", ("SEL_TREE %p (%s) scans:%s", tree, msg, tmp.ptr()));
8867

8868 8869
  DBUG_VOID_RETURN;
}
8870

8871 8872 8873 8874

static void print_ror_scans_arr(TABLE *table, const char *msg,
                                struct st_ror_scan_info **start,
                                struct st_ror_scan_info **end)
8875
{
8876 8877 8878 8879 8880 8881 8882
  DBUG_ENTER("print_ror_scans");
  if (! _db_on_)
    DBUG_VOID_RETURN;

  char buff[1024];
  String tmp(buff,sizeof(buff),&my_charset_bin);
  tmp.length(0);
unknown's avatar
unknown committed
8883
  for (;start != end; start++)
8884
  {
8885 8886 8887
    if (tmp.length())
      tmp.append(',');
    tmp.append(table->key_info[(*start)->keynr].name);
8888
  }
8889 8890 8891 8892
  if (!tmp.length())
    tmp.append("(empty)");
  DBUG_PRINT("info", ("ROR key scans (%s): %s", msg, tmp.ptr()));
  DBUG_VOID_RETURN;
8893 8894 8895
}


unknown's avatar
unknown committed
8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906
/*****************************************************************************
** Print a quick range for debugging
** TODO:
** This should be changed to use a String to store each row instead
** of locking the DEBUG stream !
*****************************************************************************/

static void
print_key(KEY_PART *key_part,const char *key,uint used_length)
{
  char buff[1024];
unknown's avatar
unknown committed
8907
  const char *key_end= key+used_length;
unknown's avatar
unknown committed
8908
  String tmp(buff,sizeof(buff),&my_charset_bin);
unknown's avatar
unknown committed
8909
  uint store_length;
unknown's avatar
unknown committed
8910

unknown's avatar
unknown committed
8911
  for (; key < key_end; key+=store_length, key_part++)
unknown's avatar
unknown committed
8912
  {
unknown's avatar
unknown committed
8913 8914 8915
    Field *field=      key_part->field;
    store_length= key_part->store_length;

unknown's avatar
unknown committed
8916 8917
    if (field->real_maybe_null())
    {
unknown's avatar
unknown committed
8918
      if (*key)
unknown's avatar
unknown committed
8919 8920 8921 8922
      {
	fwrite("NULL",sizeof(char),4,DBUG_FILE);
	continue;
      }
unknown's avatar
unknown committed
8923 8924
      key++;					// Skip null byte
      store_length--;
unknown's avatar
unknown committed
8925
    }
8926
    field->set_key_image((char*) key, key_part->length);
unknown's avatar
unknown committed
8927 8928 8929 8930
    if (field->type() == MYSQL_TYPE_BIT)
      (void) field->val_int_as_str(&tmp, 1);
    else
      field->val_str(&tmp);
unknown's avatar
unknown committed
8931
    fwrite(tmp.ptr(),sizeof(char),tmp.length(),DBUG_FILE);
unknown's avatar
unknown committed
8932 8933
    if (key+store_length < key_end)
      fputc('/',DBUG_FILE);
unknown's avatar
unknown committed
8934 8935 8936
  }
}

unknown's avatar
unknown committed
8937

8938
static void print_quick(QUICK_SELECT_I *quick, const key_map *needed_reg)
unknown's avatar
unknown committed
8939
{
8940
  char buf[MAX_KEY/8+1];
8941
  DBUG_ENTER("print_quick");
unknown's avatar
unknown committed
8942 8943
  if (! _db_on_ || !quick)
    DBUG_VOID_RETURN;
8944
  DBUG_LOCK_FILE;
unknown's avatar
unknown committed
8945

unknown's avatar
unknown committed
8946
  quick->dbug_dump(0, TRUE);
8947
  fprintf(DBUG_FILE,"other_keys: 0x%s:\n", needed_reg->print(buf));
unknown's avatar
unknown committed
8948

8949
  DBUG_UNLOCK_FILE;
unknown's avatar
unknown committed
8950 8951 8952
  DBUG_VOID_RETURN;
}

unknown's avatar
unknown committed
8953

8954
static void print_rowid(byte* val, int len)
unknown's avatar
unknown committed
8955
{
8956
  byte *pb;
unknown's avatar
unknown committed
8957
  DBUG_LOCK_FILE;
8958 8959 8960 8961 8962 8963 8964 8965 8966 8967
  fputc('\"', DBUG_FILE);
  for (pb= val; pb!= val + len; ++pb)
    fprintf(DBUG_FILE, "%c", *pb);
  fprintf(DBUG_FILE, "\", hex: ");

  for (pb= val; pb!= val + len; ++pb)
    fprintf(DBUG_FILE, "%x ", *pb);
  fputc('\n', DBUG_FILE);
  DBUG_UNLOCK_FILE;
}
8968

8969 8970 8971 8972
void QUICK_RANGE_SELECT::dbug_dump(int indent, bool verbose)
{
  fprintf(DBUG_FILE, "%*squick range select, key %s, length: %d\n",
	  indent, "", head->key_info[index].name, max_used_key_length);
unknown's avatar
unknown committed
8973

8974
  if (verbose)
unknown's avatar
unknown committed
8975
  {
8976 8977
    QUICK_RANGE *range;
    QUICK_RANGE **pr= (QUICK_RANGE**)ranges.buffer;
unknown's avatar
unknown committed
8978
    QUICK_RANGE **last_range= pr + ranges.elements;
8979
    for (; pr!=last_range; ++pr)
unknown's avatar
unknown committed
8980
    {
8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991
      fprintf(DBUG_FILE, "%*s", indent + 2, "");
      range= *pr;
      if (!(range->flag & NO_MIN_RANGE))
      {
        print_key(key_parts,range->min_key,range->min_length);
        if (range->flag & NEAR_MIN)
	  fputs(" < ",DBUG_FILE);
        else
	  fputs(" <= ",DBUG_FILE);
      }
      fputs("X",DBUG_FILE);
unknown's avatar
unknown committed
8992

8993 8994 8995 8996 8997 8998 8999 9000 9001
      if (!(range->flag & NO_MAX_RANGE))
      {
        if (range->flag & NEAR_MAX)
	  fputs(" < ",DBUG_FILE);
        else
	  fputs(" <= ",DBUG_FILE);
        print_key(key_parts,range->max_key,range->max_length);
      }
      fputs("\n",DBUG_FILE);
unknown's avatar
unknown committed
9002 9003
    }
  }
9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015
}

void QUICK_INDEX_MERGE_SELECT::dbug_dump(int indent, bool verbose)
{
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  QUICK_RANGE_SELECT *quick;
  fprintf(DBUG_FILE, "%*squick index_merge select\n", indent, "");
  fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
  while ((quick= it++))
    quick->dbug_dump(indent+2, verbose);
  if (pk_quick_select)
  {
unknown's avatar
unknown committed
9016
    fprintf(DBUG_FILE, "%*sclustered PK quick:\n", indent, "");
9017 9018 9019 9020 9021 9022 9023 9024 9025
    pk_quick_select->dbug_dump(indent+2, verbose);
  }
  fprintf(DBUG_FILE, "%*s}\n", indent, "");
}

void QUICK_ROR_INTERSECT_SELECT::dbug_dump(int indent, bool verbose)
{
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
9026
  fprintf(DBUG_FILE, "%*squick ROR-intersect select, %scovering\n",
9027 9028 9029
          indent, "", need_to_fetch_row? "":"non-");
  fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
  while ((quick= it++))
unknown's avatar
unknown committed
9030
    quick->dbug_dump(indent+2, verbose);
9031 9032
  if (cpk_quick)
  {
unknown's avatar
unknown committed
9033
    fprintf(DBUG_FILE, "%*sclustered PK quick:\n", indent, "");
9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047
    cpk_quick->dbug_dump(indent+2, verbose);
  }
  fprintf(DBUG_FILE, "%*s}\n", indent, "");
}

void QUICK_ROR_UNION_SELECT::dbug_dump(int indent, bool verbose)
{
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  QUICK_SELECT_I *quick;
  fprintf(DBUG_FILE, "%*squick ROR-union select\n", indent, "");
  fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
  while ((quick= it++))
    quick->dbug_dump(indent+2, verbose);
  fprintf(DBUG_FILE, "%*s}\n", indent, "");
unknown's avatar
unknown committed
9048 9049
}

9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093

/*
  Print quick select information to DBUG_FILE.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::dbug_dump()
    indent  Indentation offset
    verbose If TRUE show more detailed output.

  DESCRIPTION
    Print the contents of this quick select to DBUG_FILE. The method also
    calls dbug_dump() for the used quick select if any.

  IMPLEMENTATION
    Caller is responsible for locking DBUG_FILE before this call and unlocking
    it afterwards.

  RETURN
    None
*/

void QUICK_GROUP_MIN_MAX_SELECT::dbug_dump(int indent, bool verbose)
{
  fprintf(DBUG_FILE,
          "%*squick_group_min_max_select: index %s (%d), length: %d\n",
	  indent, "", index_info->name, index, max_used_key_length);
  if (key_infix_len > 0)
  {
    fprintf(DBUG_FILE, "%*susing key_infix with length %d:\n",
            indent, "", key_infix_len);
  }
  if (quick_prefix_select)
  {
    fprintf(DBUG_FILE, "%*susing quick_range_select:\n", indent, "");
    quick_prefix_select->dbug_dump(indent + 2, verbose);
  }
  if (min_max_ranges.elements > 0)
  {
    fprintf(DBUG_FILE, "%*susing %d quick_ranges for MIN/MAX:\n",
            indent, "", min_max_ranges.elements);
  }
}


unknown's avatar
unknown committed
9094
#endif /* NOT_USED */
unknown's avatar
unknown committed
9095 9096

/*****************************************************************************
9097
** Instantiate templates
unknown's avatar
unknown committed
9098 9099
*****************************************************************************/

9100
#ifdef HAVE_EXPLICIT_TEMPLATE_INSTANTIATION
unknown's avatar
unknown committed
9101 9102 9103
template class List<QUICK_RANGE>;
template class List_iterator<QUICK_RANGE>;
#endif