Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
dream
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
1
Issues
1
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
nexedi
dream
Commits
42bbf2b9
Commit
42bbf2b9
authored
Nov 03, 2015
by
Georgios Dagkakis
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
ACO details to be outputted in Excel. Draft, we may discuss on format
parent
26361c3a
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
47 additions
and
20 deletions
+47
-20
dream/plugins/Batches/BatchesStochasticACO.py
dream/plugins/Batches/BatchesStochasticACO.py
+47
-20
No files found.
dream/plugins/Batches/BatchesStochasticACO.py
View file @
42bbf2b9
...
...
@@ -64,6 +64,12 @@ class BatchesStochasticACO(BatchesACO):
#id the class is Exit get the unitsThroughput
if
element_family
==
'Exit'
:
unitsThroughput
=
element
[
'results'
].
get
(
'unitsThroughput'
,
None
)
self
.
outputSheet
.
write
(
self
.
rowIndex
,
2
,
'Units Throughput Per Replication'
)
col
=
3
for
element
in
unitsThroughput
:
self
.
outputSheet
.
write
(
self
.
rowIndex
,
col
,
element
)
col
+=
1
self
.
rowIndex
+=
1
averageUnitsThroughput
=
sum
(
unitsThroughput
)
/
float
(
len
(
unitsThroughput
))
# return the negative value since they are ranked this way. XXX discuss this
return
-
averageUnitsThroughput
...
...
@@ -71,11 +77,10 @@ class BatchesStochasticACO(BatchesACO):
def
run
(
self
,
data
):
"""Preprocess the data.
"""
outputFile
=
xlwt
.
Workbook
()
outputSheet
=
outputFile
.
add_sheet
(
'ACO Results'
,
cell_overwrite_ok
=
True
)
rowIndex
=
0
columnIndex
=
0
outputSheet
.
write
(
rowIndex
,
columnIndex
,
'Test'
)
self
.
outputFile
=
xlwt
.
Workbook
()
self
.
outputSheet
=
self
.
outputFile
.
add_sheet
(
'ACO Results'
,
cell_overwrite_ok
=
True
)
self
.
rowIndex
=
0
self
.
columnIndex
=
0
distributor_url
=
data
[
'general'
].
get
(
'distributorURL'
)
distributor
=
None
...
...
@@ -117,7 +122,8 @@ class BatchesStochasticACO(BatchesACO):
# generation can have more than 1 ant)
seedPlus
=
0
for
i
in
range
(
int
(
data
[
"general"
][
"numberOfGenerations"
])):
print
'Generation'
,
i
+
1
self
.
outputSheet
.
write
(
self
.
rowIndex
,
0
,
'Generation '
+
str
(
i
+
1
))
self
.
rowIndex
+=
1
antsInCurrentGeneration
=
[]
scenario_list
=
[]
# for the distributor
# number of ants created per generation
...
...
@@ -136,24 +142,29 @@ class BatchesStochasticACO(BatchesACO):
# TODO: function to calculate ant id. Store ant id in ant dict
ant_key
=
repr
(
ant
)
# if the ant was not already tested, only then test it
print
'ants created'
if
ant_key
not
in
tested_ants
:
tested_ants
.
add
(
ant_key
)
ant_data
=
deepcopy
(
self
.
createAntData
(
data
,
ant
))
ant
[
'key'
]
=
ant_key
ant
[
'input'
]
=
ant_data
scenario_list
.
append
(
ant
)
print
ant
[
'key'
]
# run the deterministic ants
for
ant
in
scenario_list
:
print
'running deterministic'
print
ant
[
'key'
]
self
.
outputSheet
.
write
(
self
.
rowIndex
,
1
,
'running deterministic'
)
self
.
outputSheet
.
write
(
self
.
rowIndex
,
2
,
ant
[
'key'
])
self
.
rowIndex
+=
1
ant
[
'result'
]
=
self
.
runOneScenario
(
ant
[
'input'
])[
'result'
]
ant
[
'score'
]
=
self
.
_calculateAntScore
(
ant
)
self
.
outputSheet
.
write
(
self
.
rowIndex
,
2
,
'Units Throughput'
)
self
.
outputSheet
.
write
(
self
.
rowIndex
,
3
,
-
ant
[
'score'
])
self
.
rowIndex
+=
1
for
ant
in
scenario_list
:
ant
[
'score'
]
=
self
.
_calculateAntScore
(
ant
)
# for ant in scenario_list:
# ant['score'] = self._calculateAntScore(ant)
# self.outputSheet.write(self.rowIndex,0,'Units Throughput')
# self.outputSheet.write(self.rowIndex,1,-ant['score'])
# self.rowIndex+=1
ants
.
extend
(
scenario_list
)
antsInCurrentGeneration
.
extend
(
scenario_list
)
...
...
@@ -177,10 +188,14 @@ class BatchesStochasticACO(BatchesACO):
for
ant
in
antsForStochasticEvaluationInGeneration
:
ant
[
'input'
]
=
self
.
createStochasticData
(
ant
[
'input'
])
ant
[
'input'
][
'general'
][
'numberOfReplications'
]
=
numberOfReplicationsInGeneration
print
'running stochastic for'
,
numberOfReplicationsInGeneration
,
'replications'
print
ant
[
'key'
]
self
.
outputSheet
.
write
(
self
.
rowIndex
,
1
,
'running stochastic for '
+
str
(
numberOfReplicationsInGeneration
)
+
' replications'
)
self
.
outputSheet
.
write
(
self
.
rowIndex
,
2
,
ant
[
'key'
])
self
.
rowIndex
+=
1
ant
[
'result'
]
=
self
.
runOneScenario
(
ant
[
'input'
])[
'result'
]
ant
[
'score'
]
=
self
.
calculateStochasticAntScore
(
ant
)
self
.
outputSheet
.
write
(
self
.
rowIndex
,
2
,
'Average Units Throughput'
)
self
.
outputSheet
.
write
(
self
.
rowIndex
,
3
,
-
ant
[
'score'
])
self
.
rowIndex
+=
1
# if we had stochastic evaluation keep only those ants in sorting
if
numberOfAntsForStochasticEvaluationInGeneration
:
...
...
@@ -194,7 +209,9 @@ class BatchesStochasticACO(BatchesACO):
key
=
operator
.
itemgetter
(
'score'
))[:
numberOfAntsForNextGeneration
]
for
l
in
antsForNextGeneration
:
print
l
[
'key'
],
'will carry pheromone next generation'
self
.
outputSheet
.
write
(
self
.
rowIndex
,
1
,
'Ant to carry pheromone to next generation'
)
self
.
outputSheet
.
write
(
self
.
rowIndex
,
2
,
ant
[
'key'
])
self
.
rowIndex
+=
1
# update the options list to ensure that good performing queue-rule
# combinations have increased representation and good chance of
# being selected in the next generation
...
...
@@ -204,7 +221,10 @@ class BatchesStochasticACO(BatchesACO):
# selected by the next ants.
collated
[
m
].
append
(
l
[
m
])
print
'ACO Ended, post processing to follow for '
,
numberOfAntsForStochasticEvaluationInTheEnd
,
'Ants'
self
.
rowIndex
+=
1
self
.
outputSheet
.
write
(
self
.
rowIndex
,
0
,
'ACO Ended, post processing to follow for '
+
str
(
numberOfAntsForStochasticEvaluationInTheEnd
)
+
' Ants'
)
self
.
rowIndex
+=
1
# from all the ants in the experiment remove ants that outputs the same schedules
# XXX we in fact remove ants that produce the same output json
uniqueAnts
=
dict
()
...
...
@@ -222,10 +242,14 @@ class BatchesStochasticACO(BatchesACO):
for
ant
in
ants
:
ant
[
'input'
]
=
self
.
createStochasticData
(
ant
[
'input'
])
ant
[
'input'
][
'general'
][
'numberOfReplications'
]
=
numberOfReplicationsInTheEnd
print
'running stochastic for'
,
numberOfReplicationsInTheEnd
,
'replications'
print
ant
[
'key'
]
self
.
outputSheet
.
write
(
self
.
rowIndex
,
1
,
'running stochastic for '
+
str
(
numberOfReplicationsInTheEnd
)
+
' replications'
)
self
.
outputSheet
.
write
(
self
.
rowIndex
,
2
,
ant
[
'key'
])
self
.
rowIndex
+=
1
ant
[
'result'
]
=
self
.
runOneScenario
(
ant
[
'input'
])[
'result'
]
ant
[
'score'
]
=
self
.
calculateStochasticAntScore
(
ant
)
self
.
outputSheet
.
write
(
self
.
rowIndex
,
2
,
'Average Units Throughput'
)
self
.
outputSheet
.
write
(
self
.
rowIndex
,
3
,
-
ant
[
'score'
])
self
.
rowIndex
+=
1
# The ants are ranked based on their scores and the
# best (max_results) are selected to be returned
...
...
@@ -239,9 +263,12 @@ class BatchesStochasticACO(BatchesACO):
result
[
'key'
]
=
ant
[
'key'
]
result_list
.
append
(
result
)
self
.
outputSheet
.
write
(
self
.
rowIndex
,
0
,
"Execution time %0.2fs"
%
(
time
.
time
()
-
start
))
self
.
rowIndex
+=
1
# return the workbook as encoded
outputStringIO
=
StringIO
.
StringIO
()
outputFile
.
save
(
outputStringIO
)
self
.
outputFile
.
save
(
outputStringIO
)
encodedOutputFile
=
outputStringIO
.
getvalue
().
encode
(
'base64'
)
data
[
'result'
][
'result_list'
][
-
1
][
'output_ACO_spreadsheet'
]
=
{
'name'
:
'ACO details.xls'
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment