input.c 60.4 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * The input core
 *
 * Copyright (c) 1999-2002 Vojtech Pavlik
 */

/*
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 */

13 14
#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt

Linus Torvalds's avatar
Linus Torvalds committed
15
#include <linux/init.h>
16
#include <linux/types.h>
17
#include <linux/idr.h>
18
#include <linux/input/mt.h>
Linus Torvalds's avatar
Linus Torvalds committed
19
#include <linux/module.h>
20
#include <linux/slab.h>
Linus Torvalds's avatar
Linus Torvalds committed
21 22 23
#include <linux/random.h>
#include <linux/major.h>
#include <linux/proc_fs.h>
24
#include <linux/sched.h>
25
#include <linux/seq_file.h>
Linus Torvalds's avatar
Linus Torvalds committed
26 27
#include <linux/poll.h>
#include <linux/device.h>
28
#include <linux/mutex.h>
29
#include <linux/rcupdate.h>
30
#include "input-compat.h"
Linus Torvalds's avatar
Linus Torvalds committed
31 32 33 34 35

MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
MODULE_DESCRIPTION("Input core");
MODULE_LICENSE("GPL");

36 37 38
#define INPUT_MAX_CHAR_DEVICES		1024
#define INPUT_FIRST_DYNAMIC_DEV		256
static DEFINE_IDA(input_ida);
Linus Torvalds's avatar
Linus Torvalds committed
39 40 41 42

static LIST_HEAD(input_dev_list);
static LIST_HEAD(input_handler_list);

43 44 45 46 47 48 49 50
/*
 * input_mutex protects access to both input_dev_list and input_handler_list.
 * This also causes input_[un]register_device and input_[un]register_handler
 * be mutually exclusive which simplifies locking in drivers implementing
 * input handlers.
 */
static DEFINE_MUTEX(input_mutex);

51 52
static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };

53 54
static inline int is_event_supported(unsigned int code,
				     unsigned long *bm, unsigned int max)
Linus Torvalds's avatar
Linus Torvalds committed
55
{
56 57
	return code <= max && test_bit(code, bm);
}
Linus Torvalds's avatar
Linus Torvalds committed
58

59 60 61 62 63
static int input_defuzz_abs_event(int value, int old_val, int fuzz)
{
	if (fuzz) {
		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
			return old_val;
Linus Torvalds's avatar
Linus Torvalds committed
64

65 66
		if (value > old_val - fuzz && value < old_val + fuzz)
			return (old_val * 3 + value) / 4;
Linus Torvalds's avatar
Linus Torvalds committed
67

68 69 70
		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
			return (old_val + value) / 2;
	}
Linus Torvalds's avatar
Linus Torvalds committed
71

72 73
	return value;
}
Linus Torvalds's avatar
Linus Torvalds committed
74

75 76 77 78
static void input_start_autorepeat(struct input_dev *dev, int code)
{
	if (test_bit(EV_REP, dev->evbit) &&
	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
79
	    dev->timer.function) {
80 81 82 83 84 85 86 87 88 89 90
		dev->repeat_key = code;
		mod_timer(&dev->timer,
			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
	}
}

static void input_stop_autorepeat(struct input_dev *dev)
{
	del_timer(&dev->timer);
}

91
/*
92 93
 * Pass event first through all filters and then, if event has not been
 * filtered out, through all open handles. This function is called with
Dmitry Torokhov's avatar
Dmitry Torokhov committed
94
 * dev->event_lock held and interrupts disabled.
95
 */
96 97
static unsigned int input_to_handler(struct input_handle *handle,
			struct input_value *vals, unsigned int count)
98
{
99 100 101
	struct input_handler *handler = handle->handler;
	struct input_value *end = vals;
	struct input_value *v;
Dmitry Torokhov's avatar
Dmitry Torokhov committed
102

103 104 105 106 107 108 109 110 111
	if (handler->filter) {
		for (v = vals; v != vals + count; v++) {
			if (handler->filter(handle, v->type, v->code, v->value))
				continue;
			if (end != v)
				*end = *v;
			end++;
		}
		count = end - vals;
112
	}
Linus Torvalds's avatar
Linus Torvalds committed
113

114 115
	if (!count)
		return 0;
116

117 118 119
	if (handler->events)
		handler->events(handle, vals, count);
	else if (handler->event)
120
		for (v = vals; v != vals + count; v++)
121
			handler->event(handle, v->type, v->code, v->value);
122

123 124
	return count;
}
125

126 127 128 129 130 131 132
/*
 * Pass values first through all filters and then, if event has not been
 * filtered out, through all open handles. This function is called with
 * dev->event_lock held and interrupts disabled.
 */
static void input_pass_values(struct input_dev *dev,
			      struct input_value *vals, unsigned int count)
133
{
Dmitry Torokhov's avatar
Dmitry Torokhov committed
134
	struct input_handle *handle;
135
	struct input_value *v;
136

137 138
	if (!count)
		return;
Dmitry Torokhov's avatar
Dmitry Torokhov committed
139 140

	rcu_read_lock();
Linus Torvalds's avatar
Linus Torvalds committed
141

Dmitry Torokhov's avatar
Dmitry Torokhov committed
142
	handle = rcu_dereference(dev->grab);
143 144 145 146
	if (handle) {
		count = input_to_handler(handle, vals, count);
	} else {
		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
147
			if (handle->open) {
148
				count = input_to_handler(handle, vals, count);
149 150 151
				if (!count)
					break;
			}
152 153
	}

Dmitry Torokhov's avatar
Dmitry Torokhov committed
154
	rcu_read_unlock();
155

156
	/* trigger auto repeat for key events */
157 158 159 160 161 162 163 164
	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
		for (v = vals; v != vals + count; v++) {
			if (v->type == EV_KEY && v->value != 2) {
				if (v->value)
					input_start_autorepeat(dev, v->code);
				else
					input_stop_autorepeat(dev);
			}
165 166
		}
	}
167
}
168

169 170 171 172 173 174
static void input_pass_event(struct input_dev *dev,
			     unsigned int type, unsigned int code, int value)
{
	struct input_value vals[] = { { type, code, value } };

	input_pass_values(dev, vals, ARRAY_SIZE(vals));
175
}
Linus Torvalds's avatar
Linus Torvalds committed
176

177 178 179 180 181
/*
 * Generate software autorepeat event. Note that we take
 * dev->event_lock here to avoid racing with input_event
 * which may cause keys get "stuck".
 */
182
static void input_repeat_key(struct timer_list *t)
183
{
184
	struct input_dev *dev = from_timer(dev, t, timer);
185
	unsigned long flags;
Linus Torvalds's avatar
Linus Torvalds committed
186

187
	spin_lock_irqsave(&dev->event_lock, flags);
Linus Torvalds's avatar
Linus Torvalds committed
188

189 190
	if (test_bit(dev->repeat_key, dev->key) &&
	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
191 192 193 194
		struct input_value vals[] =  {
			{ EV_KEY, dev->repeat_key, 2 },
			input_value_sync
		};
Linus Torvalds's avatar
Linus Torvalds committed
195

196
		input_pass_values(dev, vals, ARRAY_SIZE(vals));
197

198 199 200 201
		if (dev->rep[REP_PERIOD])
			mod_timer(&dev->timer, jiffies +
					msecs_to_jiffies(dev->rep[REP_PERIOD]));
	}
202

203 204
	spin_unlock_irqrestore(&dev->event_lock, flags);
}
205

206 207 208
#define INPUT_IGNORE_EVENT	0
#define INPUT_PASS_TO_HANDLERS	1
#define INPUT_PASS_TO_DEVICE	2
209 210
#define INPUT_SLOT		4
#define INPUT_FLUSH		8
211
#define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
Linus Torvalds's avatar
Linus Torvalds committed
212

213 214 215
static int input_handle_abs_event(struct input_dev *dev,
				  unsigned int code, int *pval)
{
Henrik Rydberg's avatar
Henrik Rydberg committed
216
	struct input_mt *mt = dev->mt;
217 218 219 220 221 222
	bool is_mt_event;
	int *pold;

	if (code == ABS_MT_SLOT) {
		/*
		 * "Stage" the event; we'll flush it later, when we
Dmitry Torokhov's avatar
Dmitry Torokhov committed
223
		 * get actual touch data.
224
		 */
Henrik Rydberg's avatar
Henrik Rydberg committed
225 226
		if (mt && *pval >= 0 && *pval < mt->num_slots)
			mt->slot = *pval;
227 228 229 230

		return INPUT_IGNORE_EVENT;
	}

231
	is_mt_event = input_is_mt_value(code);
232 233

	if (!is_mt_event) {
234
		pold = &dev->absinfo[code].value;
Henrik Rydberg's avatar
Henrik Rydberg committed
235 236
	} else if (mt) {
		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
237 238
	} else {
		/*
Dmitry Torokhov's avatar
Dmitry Torokhov committed
239
		 * Bypass filtering for multi-touch events when
240 241 242 243 244 245 246
		 * not employing slots.
		 */
		pold = NULL;
	}

	if (pold) {
		*pval = input_defuzz_abs_event(*pval, *pold,
247
						dev->absinfo[code].fuzz);
248 249 250 251 252 253 254
		if (*pold == *pval)
			return INPUT_IGNORE_EVENT;

		*pold = *pval;
	}

	/* Flush pending "slot" event */
Henrik Rydberg's avatar
Henrik Rydberg committed
255 256
	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
257
		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
258 259 260 261 262
	}

	return INPUT_PASS_TO_HANDLERS;
}

263
static int input_get_disposition(struct input_dev *dev,
Dmitry Torokhov's avatar
Dmitry Torokhov committed
264
			  unsigned int type, unsigned int code, int *pval)
265 266
{
	int disposition = INPUT_IGNORE_EVENT;
Dmitry Torokhov's avatar
Dmitry Torokhov committed
267
	int value = *pval;
Linus Torvalds's avatar
Linus Torvalds committed
268

269
	switch (type) {
Linus Torvalds's avatar
Linus Torvalds committed
270

271 272 273 274 275
	case EV_SYN:
		switch (code) {
		case SYN_CONFIG:
			disposition = INPUT_PASS_TO_ALL;
			break;
Linus Torvalds's avatar
Linus Torvalds committed
276

277
		case SYN_REPORT:
278
			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
Linus Torvalds's avatar
Linus Torvalds committed
279
			break;
280 281 282
		case SYN_MT_REPORT:
			disposition = INPUT_PASS_TO_HANDLERS;
			break;
283 284
		}
		break;
Linus Torvalds's avatar
Linus Torvalds committed
285

286
	case EV_KEY:
287
		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
Linus Torvalds's avatar
Linus Torvalds committed
288

289 290 291 292
			/* auto-repeat bypasses state updates */
			if (value == 2) {
				disposition = INPUT_PASS_TO_HANDLERS;
				break;
293
			}
Linus Torvalds's avatar
Linus Torvalds committed
294

295
			if (!!test_bit(code, dev->key) != !!value) {
Linus Torvalds's avatar
Linus Torvalds committed
296

297
				__change_bit(code, dev->key);
298
				disposition = INPUT_PASS_TO_HANDLERS;
299 300 301
			}
		}
		break;
Linus Torvalds's avatar
Linus Torvalds committed
302

303 304
	case EV_SW:
		if (is_event_supported(code, dev->swbit, SW_MAX) &&
305
		    !!test_bit(code, dev->sw) != !!value) {
Linus Torvalds's avatar
Linus Torvalds committed
306

307 308 309 310
			__change_bit(code, dev->sw);
			disposition = INPUT_PASS_TO_HANDLERS;
		}
		break;
Linus Torvalds's avatar
Linus Torvalds committed
311

312
	case EV_ABS:
313
		if (is_event_supported(code, dev->absbit, ABS_MAX))
314
			disposition = input_handle_abs_event(dev, code, &value);
315

316
		break;
Linus Torvalds's avatar
Linus Torvalds committed
317

318 319 320
	case EV_REL:
		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
			disposition = INPUT_PASS_TO_HANDLERS;
Linus Torvalds's avatar
Linus Torvalds committed
321

322
		break;
323

324 325 326
	case EV_MSC:
		if (is_event_supported(code, dev->mscbit, MSC_MAX))
			disposition = INPUT_PASS_TO_ALL;
Linus Torvalds's avatar
Linus Torvalds committed
327

328
		break;
Linus Torvalds's avatar
Linus Torvalds committed
329

330 331
	case EV_LED:
		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
332
		    !!test_bit(code, dev->led) != !!value) {
Linus Torvalds's avatar
Linus Torvalds committed
333

334 335 336 337 338 339 340
			__change_bit(code, dev->led);
			disposition = INPUT_PASS_TO_ALL;
		}
		break;

	case EV_SND:
		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
Linus Torvalds's avatar
Linus Torvalds committed
341

342
			if (!!test_bit(code, dev->snd) != !!value)
343 344 345 346
				__change_bit(code, dev->snd);
			disposition = INPUT_PASS_TO_ALL;
		}
		break;
347

348 349 350 351 352 353
	case EV_REP:
		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
			dev->rep[code] = value;
			disposition = INPUT_PASS_TO_ALL;
		}
		break;
Linus Torvalds's avatar
Linus Torvalds committed
354

355 356 357 358
	case EV_FF:
		if (value >= 0)
			disposition = INPUT_PASS_TO_ALL;
		break;
359 360 361 362

	case EV_PWR:
		disposition = INPUT_PASS_TO_ALL;
		break;
363
	}
Linus Torvalds's avatar
Linus Torvalds committed
364

Dmitry Torokhov's avatar
Dmitry Torokhov committed
365
	*pval = value;
366 367 368 369 370 371
	return disposition;
}

static void input_handle_event(struct input_dev *dev,
			       unsigned int type, unsigned int code, int value)
{
372
	int disposition = input_get_disposition(dev, type, code, &value);
373

374 375
	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
		add_input_randomness(type, code, value);
Linus Torvalds's avatar
Linus Torvalds committed
376

377 378
	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
		dev->event(dev, type, code, value);
Linus Torvalds's avatar
Linus Torvalds committed
379

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
	if (!dev->vals)
		return;

	if (disposition & INPUT_PASS_TO_HANDLERS) {
		struct input_value *v;

		if (disposition & INPUT_SLOT) {
			v = &dev->vals[dev->num_vals++];
			v->type = EV_ABS;
			v->code = ABS_MT_SLOT;
			v->value = dev->mt->slot;
		}

		v = &dev->vals[dev->num_vals++];
		v->type = type;
		v->code = code;
		v->value = value;
	}

	if (disposition & INPUT_FLUSH) {
		if (dev->num_vals >= 2)
			input_pass_values(dev, dev->vals, dev->num_vals);
		dev->num_vals = 0;
	} else if (dev->num_vals >= dev->max_vals - 2) {
		dev->vals[dev->num_vals++] = input_value_sync;
		input_pass_values(dev, dev->vals, dev->num_vals);
		dev->num_vals = 0;
	}

409
}
Linus Torvalds's avatar
Linus Torvalds committed
410

411 412 413 414 415 416 417 418
/**
 * input_event() - report new input event
 * @dev: device that generated the event
 * @type: type of the event
 * @code: event code
 * @value: value of the event
 *
 * This function should be used by drivers implementing various input
419 420 421 422 423 424 425 426
 * devices to report input events. See also input_inject_event().
 *
 * NOTE: input_event() may be safely used right after input device was
 * allocated with input_allocate_device(), even before it is registered
 * with input_register_device(), but the event will not reach any of the
 * input handlers. Such early invocation of input_event() may be used
 * to 'seed' initial state of a switch or initial position of absolute
 * axis, etc.
427 428 429 430 431
 */
void input_event(struct input_dev *dev,
		 unsigned int type, unsigned int code, int value)
{
	unsigned long flags;
432

433
	if (is_event_supported(type, dev->evbit, EV_MAX)) {
434

435
		spin_lock_irqsave(&dev->event_lock, flags);
436
		input_handle_event(dev, type, code, value);
437
		spin_unlock_irqrestore(&dev->event_lock, flags);
Linus Torvalds's avatar
Linus Torvalds committed
438 439
	}
}
Dmitry Torokhov's avatar
Dmitry Torokhov committed
440
EXPORT_SYMBOL(input_event);
Linus Torvalds's avatar
Linus Torvalds committed
441

442 443 444 445 446 447 448
/**
 * input_inject_event() - send input event from input handler
 * @handle: input handle to send event through
 * @type: type of the event
 * @code: event code
 * @value: value of the event
 *
449 450 451
 * Similar to input_event() but will ignore event if device is
 * "grabbed" and handle injecting event is not the one that owns
 * the device.
452
 */
453 454
void input_inject_event(struct input_handle *handle,
			unsigned int type, unsigned int code, int value)
Linus Torvalds's avatar
Linus Torvalds committed
455
{
456 457 458
	struct input_dev *dev = handle->dev;
	struct input_handle *grab;
	unsigned long flags;
Linus Torvalds's avatar
Linus Torvalds committed
459

460 461
	if (is_event_supported(type, dev->evbit, EV_MAX)) {
		spin_lock_irqsave(&dev->event_lock, flags);
Linus Torvalds's avatar
Linus Torvalds committed
462

Dmitry Torokhov's avatar
Dmitry Torokhov committed
463
		rcu_read_lock();
464 465
		grab = rcu_dereference(dev->grab);
		if (!grab || grab == handle)
466
			input_handle_event(dev, type, code, value);
Dmitry Torokhov's avatar
Dmitry Torokhov committed
467
		rcu_read_unlock();
Linus Torvalds's avatar
Linus Torvalds committed
468

469 470
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}
Linus Torvalds's avatar
Linus Torvalds committed
471
}
472
EXPORT_SYMBOL(input_inject_event);
Linus Torvalds's avatar
Linus Torvalds committed
473

474 475 476 477 478 479 480 481 482 483
/**
 * input_alloc_absinfo - allocates array of input_absinfo structs
 * @dev: the input device emitting absolute events
 *
 * If the absinfo struct the caller asked for is already allocated, this
 * functions will not do anything.
 */
void input_alloc_absinfo(struct input_dev *dev)
{
	if (!dev->absinfo)
484
		dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo),
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
					GFP_KERNEL);

	WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
}
EXPORT_SYMBOL(input_alloc_absinfo);

void input_set_abs_params(struct input_dev *dev, unsigned int axis,
			  int min, int max, int fuzz, int flat)
{
	struct input_absinfo *absinfo;

	input_alloc_absinfo(dev);
	if (!dev->absinfo)
		return;

	absinfo = &dev->absinfo[axis];
	absinfo->minimum = min;
	absinfo->maximum = max;
	absinfo->fuzz = fuzz;
	absinfo->flat = flat;

506 507
	__set_bit(EV_ABS, dev->evbit);
	__set_bit(axis, dev->absbit);
508 509 510 511
}
EXPORT_SYMBOL(input_set_abs_params);


512 513 514 515 516 517 518 519
/**
 * input_grab_device - grabs device for exclusive use
 * @handle: input handle that wants to own the device
 *
 * When a device is grabbed by an input handle all events generated by
 * the device are delivered only to this handle. Also events injected
 * by other input handles are ignored while device is grabbed.
 */
Linus Torvalds's avatar
Linus Torvalds committed
520 521
int input_grab_device(struct input_handle *handle)
{
522 523
	struct input_dev *dev = handle->dev;
	int retval;
Linus Torvalds's avatar
Linus Torvalds committed
524

525 526 527 528 529 530 531 532 533 534 535 536 537 538
	retval = mutex_lock_interruptible(&dev->mutex);
	if (retval)
		return retval;

	if (dev->grab) {
		retval = -EBUSY;
		goto out;
	}

	rcu_assign_pointer(dev->grab, handle);

 out:
	mutex_unlock(&dev->mutex);
	return retval;
Linus Torvalds's avatar
Linus Torvalds committed
539
}
Dmitry Torokhov's avatar
Dmitry Torokhov committed
540
EXPORT_SYMBOL(input_grab_device);
Linus Torvalds's avatar
Linus Torvalds committed
541

542
static void __input_release_device(struct input_handle *handle)
Linus Torvalds's avatar
Linus Torvalds committed
543
{
544
	struct input_dev *dev = handle->dev;
545
	struct input_handle *grabber;
546

547 548 549
	grabber = rcu_dereference_protected(dev->grab,
					    lockdep_is_held(&dev->mutex));
	if (grabber == handle) {
550 551
		rcu_assign_pointer(dev->grab, NULL);
		/* Make sure input_pass_event() notices that grab is gone */
Dmitry Torokhov's avatar
Dmitry Torokhov committed
552
		synchronize_rcu();
553 554

		list_for_each_entry(handle, &dev->h_list, d_node)
555
			if (handle->open && handle->handler->start)
556 557
				handle->handler->start(handle);
	}
Linus Torvalds's avatar
Linus Torvalds committed
558
}
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576

/**
 * input_release_device - release previously grabbed device
 * @handle: input handle that owns the device
 *
 * Releases previously grabbed device so that other input handles can
 * start receiving input events. Upon release all handlers attached
 * to the device have their start() method called so they have a change
 * to synchronize device state with the rest of the system.
 */
void input_release_device(struct input_handle *handle)
{
	struct input_dev *dev = handle->dev;

	mutex_lock(&dev->mutex);
	__input_release_device(handle);
	mutex_unlock(&dev->mutex);
}
Dmitry Torokhov's avatar
Dmitry Torokhov committed
577
EXPORT_SYMBOL(input_release_device);
Linus Torvalds's avatar
Linus Torvalds committed
578

579 580 581 582 583 584 585
/**
 * input_open_device - open input device
 * @handle: handle through which device is being accessed
 *
 * This function should be called by input handlers when they
 * want to start receive events from given input device.
 */
Linus Torvalds's avatar
Linus Torvalds committed
586 587
int input_open_device(struct input_handle *handle)
{
588
	struct input_dev *dev = handle->dev;
589
	int retval;
590

591 592 593 594 595 596 597 598
	retval = mutex_lock_interruptible(&dev->mutex);
	if (retval)
		return retval;

	if (dev->going_away) {
		retval = -ENODEV;
		goto out;
	}
599

Linus Torvalds's avatar
Linus Torvalds committed
600
	handle->open++;
601 602

	if (!dev->users++ && dev->open)
603 604 605 606 607 608 609 610 611
		retval = dev->open(dev);

	if (retval) {
		dev->users--;
		if (!--handle->open) {
			/*
			 * Make sure we are not delivering any more events
			 * through this handle
			 */
Dmitry Torokhov's avatar
Dmitry Torokhov committed
612
			synchronize_rcu();
613 614
		}
	}
615

616
 out:
617
	mutex_unlock(&dev->mutex);
618
	return retval;
Linus Torvalds's avatar
Linus Torvalds committed
619
}
Dmitry Torokhov's avatar
Dmitry Torokhov committed
620
EXPORT_SYMBOL(input_open_device);
Linus Torvalds's avatar
Linus Torvalds committed
621

622
int input_flush_device(struct input_handle *handle, struct file *file)
Linus Torvalds's avatar
Linus Torvalds committed
623
{
624 625
	struct input_dev *dev = handle->dev;
	int retval;
Linus Torvalds's avatar
Linus Torvalds committed
626

627 628 629 630 631 632 633 634 635
	retval = mutex_lock_interruptible(&dev->mutex);
	if (retval)
		return retval;

	if (dev->flush)
		retval = dev->flush(dev, file);

	mutex_unlock(&dev->mutex);
	return retval;
Linus Torvalds's avatar
Linus Torvalds committed
636
}
Dmitry Torokhov's avatar
Dmitry Torokhov committed
637
EXPORT_SYMBOL(input_flush_device);
Linus Torvalds's avatar
Linus Torvalds committed
638

639 640 641 642 643 644 645
/**
 * input_close_device - close input device
 * @handle: handle through which device is being accessed
 *
 * This function should be called by input handlers when they
 * want to stop receive events from given input device.
 */
Linus Torvalds's avatar
Linus Torvalds committed
646 647
void input_close_device(struct input_handle *handle)
{
648 649
	struct input_dev *dev = handle->dev;

650
	mutex_lock(&dev->mutex);
651

652 653
	__input_release_device(handle);

654 655
	if (!--dev->users && dev->close)
		dev->close(dev);
656 657 658

	if (!--handle->open) {
		/*
Dmitry Torokhov's avatar
Dmitry Torokhov committed
659
		 * synchronize_rcu() makes sure that input_pass_event()
660 661 662
		 * completed and that no more input events are delivered
		 * through this handle
		 */
Dmitry Torokhov's avatar
Dmitry Torokhov committed
663
		synchronize_rcu();
664
	}
665

666
	mutex_unlock(&dev->mutex);
Linus Torvalds's avatar
Linus Torvalds committed
667
}
Dmitry Torokhov's avatar
Dmitry Torokhov committed
668
EXPORT_SYMBOL(input_close_device);
Linus Torvalds's avatar
Linus Torvalds committed
669

670 671 672 673 674 675
/*
 * Simulate keyup events for all keys that are marked as pressed.
 * The function must be called with dev->event_lock held.
 */
static void input_dev_release_keys(struct input_dev *dev)
{
676
	bool need_sync = false;
677 678 679
	int code;

	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
680
		for_each_set_bit(code, dev->key, KEY_CNT) {
681
			input_pass_event(dev, EV_KEY, code, 0);
682 683 684 685 686 687
			need_sync = true;
		}

		if (need_sync)
			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);

688
		memset(dev->key, 0, sizeof(dev->key));
689 690 691
	}
}

692 693 694 695 696 697 698 699 700 701 702 703 704
/*
 * Prepare device for unregistering
 */
static void input_disconnect_device(struct input_dev *dev)
{
	struct input_handle *handle;

	/*
	 * Mark device as going away. Note that we take dev->mutex here
	 * not to protect access to dev->going_away but rather to ensure
	 * that there are no threads in the middle of input_open_device()
	 */
	mutex_lock(&dev->mutex);
705
	dev->going_away = true;
706 707 708 709 710 711 712 713 714 715
	mutex_unlock(&dev->mutex);

	spin_lock_irq(&dev->event_lock);

	/*
	 * Simulate keyup events for all pressed keys so that handlers
	 * are not left with "stuck" keys. The driver may continue
	 * generate events even after we done here but they will not
	 * reach any handlers.
	 */
716
	input_dev_release_keys(dev);
717 718 719 720 721 722 723

	list_for_each_entry(handle, &dev->h_list, d_node)
		handle->open = 0;

	spin_unlock_irq(&dev->event_lock);
}

724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
/**
 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
 * @ke: keymap entry containing scancode to be converted.
 * @scancode: pointer to the location where converted scancode should
 *	be stored.
 *
 * This function is used to convert scancode stored in &struct keymap_entry
 * into scalar form understood by legacy keymap handling methods. These
 * methods expect scancodes to be represented as 'unsigned int'.
 */
int input_scancode_to_scalar(const struct input_keymap_entry *ke,
			     unsigned int *scancode)
{
	switch (ke->len) {
	case 1:
		*scancode = *((u8 *)ke->scancode);
		break;

	case 2:
		*scancode = *((u16 *)ke->scancode);
		break;

	case 4:
		*scancode = *((u32 *)ke->scancode);
		break;

	default:
		return -EINVAL;
	}

	return 0;
}
EXPORT_SYMBOL(input_scancode_to_scalar);

/*
 * Those routines handle the default case where no [gs]etkeycode() is
 * defined. In this case, an array indexed by the scancode is used.
 */

static unsigned int input_fetch_keycode(struct input_dev *dev,
					unsigned int index)
765 766
{
	switch (dev->keycodesize) {
767 768
	case 1:
		return ((u8 *)dev->keycode)[index];
769

770 771
	case 2:
		return ((u16 *)dev->keycode)[index];
772

773 774
	default:
		return ((u32 *)dev->keycode)[index];
775 776 777 778
	}
}

static int input_default_getkeycode(struct input_dev *dev,
779
				    struct input_keymap_entry *ke)
780
{
781 782 783
	unsigned int index;
	int error;

784 785 786
	if (!dev->keycodesize)
		return -EINVAL;

787 788 789 790 791 792 793 794 795
	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
		index = ke->index;
	else {
		error = input_scancode_to_scalar(ke, &index);
		if (error)
			return error;
	}

	if (index >= dev->keycodemax)
796 797
		return -EINVAL;

798 799 800 801
	ke->keycode = input_fetch_keycode(dev, index);
	ke->index = index;
	ke->len = sizeof(index);
	memcpy(ke->scancode, &index, sizeof(index));
802 803 804 805 806

	return 0;
}

static int input_default_setkeycode(struct input_dev *dev,
807 808
				    const struct input_keymap_entry *ke,
				    unsigned int *old_keycode)
809
{
810 811
	unsigned int index;
	int error;
812 813
	int i;

814
	if (!dev->keycodesize)
815 816
		return -EINVAL;

817 818 819 820 821 822 823 824 825
	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
		index = ke->index;
	} else {
		error = input_scancode_to_scalar(ke, &index);
		if (error)
			return error;
	}

	if (index >= dev->keycodemax)
826 827
		return -EINVAL;

828
	if (dev->keycodesize < sizeof(ke->keycode) &&
829
			(ke->keycode >> (dev->keycodesize * 8)))
830 831 832 833 834
		return -EINVAL;

	switch (dev->keycodesize) {
		case 1: {
			u8 *k = (u8 *)dev->keycode;
835 836
			*old_keycode = k[index];
			k[index] = ke->keycode;
837 838 839 840
			break;
		}
		case 2: {
			u16 *k = (u16 *)dev->keycode;
841 842
			*old_keycode = k[index];
			k[index] = ke->keycode;
843 844 845 846
			break;
		}
		default: {
			u32 *k = (u32 *)dev->keycode;
847 848
			*old_keycode = k[index];
			k[index] = ke->keycode;
849 850 851 852
			break;
		}
	}

853 854
	__clear_bit(*old_keycode, dev->keybit);
	__set_bit(ke->keycode, dev->keybit);
855 856

	for (i = 0; i < dev->keycodemax; i++) {
857 858
		if (input_fetch_keycode(dev, i) == *old_keycode) {
			__set_bit(*old_keycode, dev->keybit);
859 860 861 862 863 864 865
			break; /* Setting the bit twice is useless, so break */
		}
	}

	return 0;
}

866 867 868
/**
 * input_get_keycode - retrieve keycode currently mapped to a given scancode
 * @dev: input device which keymap is being queried
869
 * @ke: keymap entry
870 871
 *
 * This function should be called by anyone interested in retrieving current
872
 * keymap. Presently evdev handlers use it.
873
 */
874
int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
875
{
876 877 878 879
	unsigned long flags;
	int retval;

	spin_lock_irqsave(&dev->event_lock, flags);
880
	retval = dev->getkeycode(dev, ke);
881
	spin_unlock_irqrestore(&dev->event_lock, flags);
882

883
	return retval;
884 885 886 887
}
EXPORT_SYMBOL(input_get_keycode);

/**
888
 * input_set_keycode - attribute a keycode to a given scancode
889
 * @dev: input device which keymap is being updated
890
 * @ke: new keymap entry
891 892 893 894
 *
 * This function should be called by anyone needing to update current
 * keymap. Presently keyboard and evdev handlers use it.
 */
895
int input_set_keycode(struct input_dev *dev,
896
		      const struct input_keymap_entry *ke)
897 898
{
	unsigned long flags;
899
	unsigned int old_keycode;
900 901
	int retval;

902
	if (ke->keycode > KEY_MAX)
903 904 905 906
		return -EINVAL;

	spin_lock_irqsave(&dev->event_lock, flags);

907
	retval = dev->setkeycode(dev, ke, &old_keycode);
908 909 910
	if (retval)
		goto out;

911 912 913
	/* Make sure KEY_RESERVED did not get enabled. */
	__clear_bit(KEY_RESERVED, dev->keybit);

914 915 916 917 918 919 920
	/*
	 * Simulate keyup event if keycode is not present
	 * in the keymap anymore
	 */
	if (test_bit(EV_KEY, dev->evbit) &&
	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
	    __test_and_clear_bit(old_keycode, dev->key)) {
921 922 923 924
		struct input_value vals[] =  {
			{ EV_KEY, old_keycode, 0 },
			input_value_sync
		};
925

926
		input_pass_values(dev, vals, ARRAY_SIZE(vals));
927 928 929 930 931 932 933 934
	}

 out:
	spin_unlock_irqrestore(&dev->event_lock, flags);

	return retval;
}
EXPORT_SYMBOL(input_set_keycode);
935

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
bool input_match_device_id(const struct input_dev *dev,
			   const struct input_device_id *id)
{
	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
		if (id->bustype != dev->id.bustype)
			return false;

	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
		if (id->vendor != dev->id.vendor)
			return false;

	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
		if (id->product != dev->id.product)
			return false;

	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
		if (id->version != dev->id.version)
			return false;

	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
963 964
	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
965 966 967 968 969 970 971
		return false;
	}

	return true;
}
EXPORT_SYMBOL(input_match_device_id);

972
static const struct input_device_id *input_match_device(struct input_handler *handler,
Dmitry Torokhov's avatar
Dmitry Torokhov committed
973
							struct input_dev *dev)
Linus Torvalds's avatar
Linus Torvalds committed
974
{
975
	const struct input_device_id *id;
Linus Torvalds's avatar
Linus Torvalds committed
976

977
	for (id = handler->id_table; id->flags || id->driver_info; id++) {
978 979
		if (input_match_device_id(dev, id) &&
		    (!handler->match || handler->match(handler, dev))) {
980
			return id;
981
		}
Linus Torvalds's avatar
Linus Torvalds committed
982 983 984 985 986
	}

	return NULL;
}

987 988 989 990 991
static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
{
	const struct input_device_id *id;
	int error;

992
	id = input_match_device(handler, dev);
993 994 995 996 997
	if (!id)
		return -ENODEV;

	error = handler->connect(handler, dev, id);
	if (error && error != -ENODEV)
998 999
		pr_err("failed to attach handler %s to device %s, error: %d\n",
		       handler->name, kobject_name(&dev->dev.kobj), error);
1000 1001 1002 1003

	return error;
}

1004 1005 1006 1007 1008 1009 1010
#ifdef CONFIG_COMPAT

static int input_bits_to_string(char *buf, int buf_size,
				unsigned long bits, bool skip_empty)
{
	int len = 0;

1011
	if (in_compat_syscall()) {
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		u32 dword = bits >> 32;
		if (dword || !skip_empty)
			len += snprintf(buf, buf_size, "%x ", dword);

		dword = bits & 0xffffffffUL;
		if (dword || !skip_empty || len)
			len += snprintf(buf + len, max(buf_size - len, 0),
					"%x", dword);
	} else {
		if (bits || !skip_empty)
			len += snprintf(buf, buf_size, "%lx", bits);
	}

	return len;
}

#else /* !CONFIG_COMPAT */

static int input_bits_to_string(char *buf, int buf_size,
				unsigned long bits, bool skip_empty)
{
	return bits || !skip_empty ?
		snprintf(buf, buf_size, "%lx", bits) : 0;
}

#endif
1038

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
#ifdef CONFIG_PROC_FS

static struct proc_dir_entry *proc_bus_input_dir;
static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
static int input_devices_state;

static inline void input_wakeup_procfs_readers(void)
{
	input_devices_state++;
	wake_up(&input_devices_poll_wait);
}

1051
static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1052 1053
{
	poll_wait(file, &input_devices_poll_wait, wait);
1054 1055
	if (file->f_version != input_devices_state) {
		file->f_version = input_devices_state;
1056
		return EPOLLIN | EPOLLRDNORM;
1057
	}
1058

1059 1060 1061
	return 0;
}

1062 1063 1064 1065 1066 1067 1068 1069
union input_seq_state {
	struct {
		unsigned short pos;
		bool mutex_acquired;
	};
	void *p;
};

1070 1071
static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
{
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	union input_seq_state *state = (union input_seq_state *)&seq->private;
	int error;

	/* We need to fit into seq->private pointer */
	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));

	error = mutex_lock_interruptible(&input_mutex);
	if (error) {
		state->mutex_acquired = false;
		return ERR_PTR(error);
	}

	state->mutex_acquired = true;
1085

1086
	return seq_list_start(&input_dev_list, *pos);
1087
}
1088

1089 1090
static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
1091
	return seq_list_next(v, &input_dev_list, pos);
1092
}
1093

1094
static void input_seq_stop(struct seq_file *seq, void *v)
1095
{
1096 1097 1098 1099
	union input_seq_state *state = (union input_seq_state *)&seq->private;

	if (state->mutex_acquired)
		mutex_unlock(&input_mutex);
1100
}
1101

1102 1103 1104 1105
static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
				   unsigned long *bitmap, int max)
{
	int i;
1106 1107
	bool skip_empty = true;
	char buf[18];
1108

1109
	seq_printf(seq, "B: %s=", name);
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
		if (input_bits_to_string(buf, sizeof(buf),
					 bitmap[i], skip_empty)) {
			skip_empty = false;
			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
		}
	}

	/*
	 * If no output was produced print a single 0.
	 */
	if (skip_empty)
1123
		seq_putc(seq, '0');
1124

1125 1126
	seq_putc(seq, '\n');
}
1127

1128 1129 1130
static int input_devices_seq_show(struct seq_file *seq, void *v)
{
	struct input_dev *dev = container_of(v, struct input_dev, node);
1131
	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1132 1133 1134 1135 1136 1137 1138 1139
	struct input_handle *handle;

	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);

	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1140
	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1141
	seq_puts(seq, "H: Handlers=");
1142 1143 1144 1145 1146

	list_for_each_entry(handle, &dev->h_list, d_node)
		seq_printf(seq, "%s ", handle->name);
	seq_putc(seq, '\n');

1147 1148
	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
	if (test_bit(EV_KEY, dev->evbit))
		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
	if (test_bit(EV_REL, dev->evbit))
		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
	if (test_bit(EV_ABS, dev->evbit))
		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
	if (test_bit(EV_MSC, dev->evbit))
		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
	if (test_bit(EV_LED, dev->evbit))
		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
	if (test_bit(EV_SND, dev->evbit))
		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
	if (test_bit(EV_FF, dev->evbit))
		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
	if (test_bit(EV_SW, dev->evbit))
		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);

	seq_putc(seq, '\n');

	kfree(path);
	return 0;
1171 1172
}

1173
static const struct seq_operations input_devices_seq_ops = {
1174 1175
	.start	= input_devices_seq_start,
	.next	= input_devices_seq_next,
1176
	.stop	= input_seq_stop,
1177 1178 1179 1180
	.show	= input_devices_seq_show,
};

static int input_proc_devices_open(struct inode *inode, struct file *file)
1181
{
1182 1183 1184
	return seq_open(file, &input_devices_seq_ops);
}

1185
static const struct file_operations input_devices_fileops = {
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	.owner		= THIS_MODULE,
	.open		= input_proc_devices_open,
	.poll		= input_proc_devices_poll,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
{
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	union input_seq_state *state = (union input_seq_state *)&seq->private;
	int error;

	/* We need to fit into seq->private pointer */
	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));

	error = mutex_lock_interruptible(&input_mutex);
	if (error) {
		state->mutex_acquired = false;
		return ERR_PTR(error);
	}

	state->mutex_acquired = true;
	state->pos = *pos;
1210

1211
	return seq_list_start(&input_handler_list, *pos);
1212
}
1213

1214 1215
static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
1216
	union input_seq_state *state = (union input_seq_state *)&seq->private;
1217

1218 1219
	state->pos = *pos + 1;
	return seq_list_next(v, &input_handler_list, pos);
1220 1221 1222 1223 1224
}

static int input_handlers_seq_show(struct seq_file *seq, void *v)
{
	struct input_handler *handler = container_of(v, struct input_handler, node);
1225
	union input_seq_state *state = (union input_seq_state *)&seq->private;
1226

1227
	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1228 1229
	if (handler->filter)
		seq_puts(seq, " (filter)");
1230
	if (handler->legacy_minors)
1231 1232 1233 1234 1235
		seq_printf(seq, " Minor=%d", handler->minor);
	seq_putc(seq, '\n');

	return 0;
}
1236

1237
static const struct seq_operations input_handlers_seq_ops = {
1238 1239
	.start	= input_handlers_seq_start,
	.next	= input_handlers_seq_next,
1240
	.stop	= input_seq_stop,
1241 1242 1243 1244 1245 1246 1247 1248
	.show	= input_handlers_seq_show,
};

static int input_proc_handlers_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &input_handlers_seq_ops);
}

1249
static const struct file_operations input_handlers_fileops = {
1250 1251 1252 1253 1254 1255
	.owner		= THIS_MODULE,
	.open		= input_proc_handlers_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};
1256 1257 1258 1259 1260

static int __init input_proc_init(void)
{
	struct proc_dir_entry *entry;

Alexey Dobriyan's avatar
Alexey Dobriyan committed
1261
	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1262 1263 1264
	if (!proc_bus_input_dir)
		return -ENOMEM;

1265 1266
	entry = proc_create("devices", 0, proc_bus_input_dir,
			    &input_devices_fileops);
1267 1268 1269
	if (!entry)
		goto fail1;

1270 1271
	entry = proc_create("handlers", 0, proc_bus_input_dir,
			    &input_handlers_fileops);
1272 1273 1274 1275 1276 1277
	if (!entry)
		goto fail2;

	return 0;

 fail2:	remove_proc_entry("devices", proc_bus_input_dir);
Alexey Dobriyan's avatar
Alexey Dobriyan committed
1278
 fail1: remove_proc_entry("bus/input", NULL);
1279 1280 1281
	return -ENOMEM;
}

1282
static void input_proc_exit(void)
1283 1284 1285
{
	remove_proc_entry("devices", proc_bus_input_dir);
	remove_proc_entry("handlers", proc_bus_input_dir);
Alexey Dobriyan's avatar
Alexey Dobriyan committed
1286
	remove_proc_entry("bus/input", NULL);
1287 1288 1289 1290 1291 1292 1293 1294
}

#else /* !CONFIG_PROC_FS */
static inline void input_wakeup_procfs_readers(void) { }
static inline int input_proc_init(void) { return 0; }
static inline void input_proc_exit(void) { }
#endif

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
#define INPUT_DEV_STRING_ATTR_SHOW(name)				\
static ssize_t input_dev_show_##name(struct device *dev,		\
				     struct device_attribute *attr,	\
				     char *buf)				\
{									\
	struct input_dev *input_dev = to_input_dev(dev);		\
									\
	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
			 input_dev->name ? input_dev->name : "");	\
}									\
static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1306 1307 1308 1309 1310

INPUT_DEV_STRING_ATTR_SHOW(name);
INPUT_DEV_STRING_ATTR_SHOW(phys);
INPUT_DEV_STRING_ATTR_SHOW(uniq);

1311 1312 1313
static int input_print_modalias_bits(char *buf, int size,
				     char name, unsigned long *bm,
				     unsigned int min_bit, unsigned int max_bit)
1314
{
1315
	int len = 0, i;
1316

1317 1318
	len += snprintf(buf, max(size, 0), "%c", name);
	for (i = min_bit; i < max_bit; i++)
1319
		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1320
			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1321 1322 1323
	return len;
}

1324 1325
static int input_print_modalias(char *buf, int size, struct input_dev *id,
				int add_cr)
1326
{
1327
	int len;
1328

1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
	len = snprintf(buf, max(size, 0),
		       "input:b%04Xv%04Xp%04Xe%04X-",
		       id->id.bustype, id->id.vendor,
		       id->id.product, id->id.version);

	len += input_print_modalias_bits(buf + len, size - len,
				'e', id->evbit, 0, EV_MAX);
	len += input_print_modalias_bits(buf + len, size - len,
				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
	len += input_print_modalias_bits(buf + len, size - len,
				'r', id->relbit, 0, REL_MAX);
	len += input_print_modalias_bits(buf + len, size - len,
				'a', id->absbit, 0, ABS_MAX);
	len += input_print_modalias_bits(buf + len, size - len,
				'm', id->mscbit, 0, MSC_MAX);
	len += input_print_modalias_bits(buf + len, size - len,
				'l', id->ledbit, 0, LED_MAX);
	len += input_print_modalias_bits(buf + len, size - len,
				's', id->sndbit, 0, SND_MAX);
	len += input_print_modalias_bits(buf + len, size - len,
				'f', id->ffbit, 0, FF_MAX);
	len += input_print_modalias_bits(buf + len, size - len,
				'w', id->swbit, 0, SW_MAX);
1352 1353

	if (add_cr)
1354
		len += snprintf(buf + len, max(size - len, 0), "\n");
1355

1356 1357 1358
	return len;
}

1359 1360 1361
static ssize_t input_dev_show_modalias(struct device *dev,
				       struct device_attribute *attr,
				       char *buf)
1362 1363 1364 1365
{
	struct input_dev *id = to_input_dev(dev);
	ssize_t len;

1366 1367
	len = input_print_modalias(buf, PAGE_SIZE, id, 1);

1368
	return min_t(int, len, PAGE_SIZE);
1369
}
1370
static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1371

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
			      int max, int add_cr);

static ssize_t input_dev_show_properties(struct device *dev,
					 struct device_attribute *attr,
					 char *buf)
{
	struct input_dev *input_dev = to_input_dev(dev);
	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
				     INPUT_PROP_MAX, true);
	return min_t(int, len, PAGE_SIZE);
}
static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);

1386
static struct attribute *input_dev_attrs[] = {
1387 1388 1389 1390
	&dev_attr_name.attr,
	&dev_attr_phys.attr,
	&dev_attr_uniq.attr,
	&dev_attr_modalias.attr,
1391
	&dev_attr_properties.attr,
1392 1393 1394
	NULL
};

1395
static const struct attribute_group input_dev_attr_group = {
1396
	.attrs	= input_dev_attrs,
1397 1398
};

1399 1400 1401 1402 1403 1404 1405 1406 1407
#define INPUT_DEV_ID_ATTR(name)						\
static ssize_t input_dev_show_id_##name(struct device *dev,		\
					struct device_attribute *attr,	\
					char *buf)			\
{									\
	struct input_dev *input_dev = to_input_dev(dev);		\
	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
}									\
static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1408 1409 1410 1411 1412 1413 1414

INPUT_DEV_ID_ATTR(bustype);
INPUT_DEV_ID_ATTR(vendor);
INPUT_DEV_ID_ATTR(product);
INPUT_DEV_ID_ATTR(version);

static struct attribute *input_dev_id_attrs[] = {
1415 1416 1417 1418
	&dev_attr_bustype.attr,
	&dev_attr_vendor.attr,
	&dev_attr_product.attr,
	&dev_attr_version.attr,
1419 1420 1421
	NULL
};

1422
static const struct attribute_group input_dev_id_attr_group = {
1423 1424 1425 1426
	.name	= "id",
	.attrs	= input_dev_id_attrs,
};

1427 1428 1429 1430 1431
static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
			      int max, int add_cr)
{
	int i;
	int len = 0;
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
	bool skip_empty = true;

	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
					    bitmap[i], skip_empty);
		if (len) {
			skip_empty = false;
			if (i > 0)
				len += snprintf(buf + len, max(buf_size - len, 0), " ");
		}
	}
1443

1444 1445 1446 1447 1448
	/*
	 * If no output was produced print a single 0.
	 */
	if (len == 0)
		len = snprintf(buf, buf_size, "%d", 0);
1449 1450 1451 1452 1453 1454 1455

	if (add_cr)
		len += snprintf(buf + len, max(buf_size - len, 0), "\n");

	return len;
}

1456 1457 1458 1459 1460 1461 1462
#define INPUT_DEV_CAP_ATTR(ev, bm)					\
static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
				       struct device_attribute *attr,	\
				       char *buf)			\
{									\
	struct input_dev *input_dev = to_input_dev(dev);		\
	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1463 1464
				     input_dev->bm##bit, ev##_MAX,	\
				     true);				\
1465 1466 1467
	return min_t(int, len, PAGE_SIZE);				\
}									\
static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479

INPUT_DEV_CAP_ATTR(EV, ev);
INPUT_DEV_CAP_ATTR(KEY, key);
INPUT_DEV_CAP_ATTR(REL, rel);
INPUT_DEV_CAP_ATTR(ABS, abs);
INPUT_DEV_CAP_ATTR(MSC, msc);
INPUT_DEV_CAP_ATTR(LED, led);
INPUT_DEV_CAP_ATTR(SND, snd);
INPUT_DEV_CAP_ATTR(FF, ff);
INPUT_DEV_CAP_ATTR(SW, sw);

static struct attribute *input_dev_caps_attrs[] = {
1480 1481 1482 1483 1484 1485 1486 1487 1488
	&dev_attr_ev.attr,
	&dev_attr_key.attr,
	&dev_attr_rel.attr,
	&dev_attr_abs.attr,
	&dev_attr_msc.attr,
	&dev_attr_led.attr,
	&dev_attr_snd.attr,
	&dev_attr_ff.attr,
	&dev_attr_sw.attr,
1489 1490 1491
	NULL
};

1492
static const struct attribute_group input_dev_caps_attr_group = {
1493 1494 1495 1496
	.name	= "capabilities",
	.attrs	= input_dev_caps_attrs,
};

1497
static const struct attribute_group *input_dev_attr_groups[] = {
1498 1499 1500 1501 1502 1503
	&input_dev_attr_group,
	&input_dev_id_attr_group,
	&input_dev_caps_attr_group,
	NULL
};

1504
static void input_dev_release(struct device *device)
1505
{
1506
	struct input_dev *dev = to_input_dev(device);
1507

1508
	input_ff_destroy(dev);
1509
	input_mt_destroy_slots(dev);
1510
	kfree(dev->absinfo);
1511
	kfree(dev->vals);
1512
	kfree(dev);
1513

1514 1515 1516
	module_put(THIS_MODULE);
}

1517
/*
1518
 * Input uevent interface - loading event handlers based on
1519 1520
 * device bitfields.
 */
1521
static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1522
				   const char *name, unsigned long *bitmap, int max)
1523
{
1524
	int len;
1525

1526
	if (add_uevent_var(env, "%s", name))
1527 1528
		return -ENOMEM;

1529 1530
	len = input_print_bitmap(&env->buf[env->buflen - 1],
				 sizeof(env->buf) - env->buflen,
1531
				 bitmap, max, false);
1532
	if (len >= (sizeof(env->buf) - env->buflen))
1533 1534
		return -ENOMEM;

1535
	env->buflen += len;
1536 1537 1538
	return 0;
}

1539
static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1540 1541
					 struct input_dev *dev)
{
1542
	int len;
1543

1544
	if (add_uevent_var(env, "MODALIAS="))
1545 1546
		return -ENOMEM;

1547 1548 1549 1550
	len = input_print_modalias(&env->buf[env->buflen - 1],
				   sizeof(env->buf) - env->buflen,
				   dev, 0);
	if (len >= (sizeof(env->buf) - env->buflen))
1551 1552
		return -ENOMEM;

1553
	env->buflen += len;
1554 1555 1556
	return 0;
}

1557 1558
#define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
	do {								\
1559
		int err = add_uevent_var(env, fmt, val);		\
1560 1561 1562 1563 1564 1565
		if (err)						\
			return err;					\
	} while (0)

#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
	do {								\
1566
		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1567 1568 1569 1570
		if (err)						\
			return err;					\
	} while (0)

1571 1572
#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
	do {								\
1573
		int err = input_add_uevent_modalias_var(env, dev);	\
1574 1575 1576 1577
		if (err)						\
			return err;					\
	} while (0)

1578
static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1579
{
1580
	struct input_dev *dev = to_input_dev(device);
1581 1582 1583 1584 1585 1586 1587 1588

	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
				dev->id.bustype, dev->id.vendor,
				dev->id.product, dev->id.version);
	if (dev->name)
		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
	if (dev->phys)
		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1589
	if (dev->uniq)
1590 1591
		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);

1592 1593
	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
	if (test_bit(EV_KEY, dev->evbit))
		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
	if (test_bit(EV_REL, dev->evbit))
		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
	if (test_bit(EV_ABS, dev->evbit))
		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
	if (test_bit(EV_MSC, dev->evbit))
		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
	if (test_bit(EV_LED, dev->evbit))
		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
	if (test_bit(EV_SND, dev->evbit))
		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
	if (test_bit(EV_FF, dev->evbit))
		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
	if (test_bit(EV_SW, dev->evbit))
		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);

1612
	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1613 1614 1615 1616

	return 0;
}

1617 1618 1619 1620 1621 1622 1623 1624
#define INPUT_DO_TOGGLE(dev, type, bits, on)				\
	do {								\
		int i;							\
		bool active;						\
									\
		if (!test_bit(EV_##type, dev->evbit))			\
			break;						\
									\
1625
		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1626 1627 1628 1629 1630 1631
			active = test_bit(i, dev->bits);		\
			if (!active && !on)				\
				continue;				\
									\
			dev->event(dev, EV_##type, i, on ? active : 0);	\
		}							\
1632 1633
	} while (0)

1634
static void input_dev_toggle(struct input_dev *dev, bool activate)
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
{
	if (!dev->event)
		return;

	INPUT_DO_TOGGLE(dev, LED, led, activate);
	INPUT_DO_TOGGLE(dev, SND, snd, activate);

	if (activate && test_bit(EV_REP, dev->evbit)) {
		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
	}
}

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
/**
 * input_reset_device() - reset/restore the state of input device
 * @dev: input device whose state needs to be reset
 *
 * This function tries to reset the state of an opened input device and
 * bring internal state and state if the hardware in sync with each other.
 * We mark all keys as released, restore LED state, repeat rate, etc.
 */
void input_reset_device(struct input_dev *dev)
{
1658
	unsigned long flags;
1659

1660 1661
	mutex_lock(&dev->mutex);
	spin_lock_irqsave(&dev->event_lock, flags);
1662

1663 1664
	input_dev_toggle(dev, true);
	input_dev_release_keys(dev);
1665

1666
	spin_unlock_irqrestore(&dev->event_lock, flags);
1667 1668 1669 1670
	mutex_unlock(&dev->mutex);
}
EXPORT_SYMBOL(input_reset_device);

1671
#ifdef CONFIG_PM_SLEEP
1672 1673 1674 1675
static int input_dev_suspend(struct device *dev)
{
	struct input_dev *input_dev = to_input_dev(dev);

1676
	spin_lock_irq(&input_dev->event_lock);
1677

1678 1679 1680 1681 1682
	/*
	 * Keys that are pressed now are unlikely to be
	 * still pressed when we resume.
	 */
	input_dev_release_keys(input_dev);
1683

1684 1685 1686 1687
	/* Turn off LEDs and sounds, if any are active. */
	input_dev_toggle(input_dev, false);

	spin_unlock_irq(&input_dev->event_lock);
1688 1689 1690 1691 1692 1693 1694 1695

	return 0;
}

static int input_dev_resume(struct device *dev)
{
	struct input_dev *input_dev = to_input_dev(dev);

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	spin_lock_irq(&input_dev->event_lock);

	/* Restore state of LEDs and sounds, if any were active. */
	input_dev_toggle(input_dev, true);

	spin_unlock_irq(&input_dev->event_lock);

	return 0;
}

static int input_dev_freeze(struct device *dev)
{
	struct input_dev *input_dev = to_input_dev(dev);

	spin_lock_irq(&input_dev->event_lock);

	/*
	 * Keys that are pressed now are unlikely to be
	 * still pressed when we resume.
	 */
	input_dev_release_keys(input_dev);

	spin_unlock_irq(&input_dev->event_lock);

	return 0;
}

static int input_dev_poweroff(struct device *dev)
{
	struct input_dev *input_dev = to_input_dev(dev);

	spin_lock_irq(&input_dev->event_lock);

	/* Turn off LEDs and sounds, if any are active. */
	input_dev_toggle(input_dev, false);

	spin_unlock_irq(&input_dev->event_lock);
1733 1734 1735 1736 1737 1738 1739

	return 0;
}

static const struct dev_pm_ops input_dev_pm_ops = {
	.suspend	= input_dev_suspend,
	.resume		= input_dev_resume,
1740 1741
	.freeze		= input_dev_freeze,
	.poweroff	= input_dev_poweroff,
1742 1743 1744 1745
	.restore	= input_dev_resume,
};
#endif /* CONFIG_PM */

1746
static const struct device_type input_dev_type = {
1747 1748 1749
	.groups		= input_dev_attr_groups,
	.release	= input_dev_release,
	.uevent		= input_dev_uevent,
1750
#ifdef CONFIG_PM_SLEEP
1751 1752
	.pm		= &input_dev_pm_ops,
#endif
1753 1754
};

1755
static char *input_devnode(struct device *dev, umode_t *mode)
1756 1757 1758 1759
{
	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
}

1760
struct class input_class = {
1761
	.name		= "input",
1762
	.devnode	= input_devnode,
1763
};
Dmitry Torokhov's avatar
Dmitry Torokhov committed
1764
EXPORT_SYMBOL_GPL(input_class);
1765

1766 1767 1768
/**
 * input_allocate_device - allocate memory for new input device
 *
1769
 * Returns prepared struct input_dev or %NULL.
1770 1771 1772 1773 1774
 *
 * NOTE: Use input_free_device() to free devices that have not been
 * registered; input_unregister_device() should be used for already
 * registered devices.
 */
1775 1776
struct input_dev *input_allocate_device(void)
{
1777
	static atomic_t input_no = ATOMIC_INIT(-1);
1778 1779
	struct input_dev *dev;

1780
	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1781
	if (dev) {
1782 1783 1784
		dev->dev.type = &input_dev_type;
		dev->dev.class = &input_class;
		device_initialize(&dev->dev);
1785
		mutex_init(&dev->mutex);
1786
		spin_lock_init(&dev->event_lock);
1787
		timer_setup(&dev->timer, NULL, 0);
1788 1789
		INIT_LIST_HEAD(&dev->h_list);
		INIT_LIST_HEAD(&dev->node);
1790

1791
		dev_set_name(&dev->dev, "input%lu",
1792
			     (unsigned long)atomic_inc_return(&input_no));
1793

1794
		__module_get(THIS_MODULE);
1795 1796 1797 1798
	}

	return dev;
}
Dmitry Torokhov's avatar
Dmitry Torokhov committed
1799
EXPORT_SYMBOL(input_allocate_device);
1800

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
struct input_devres {
	struct input_dev *input;
};

static int devm_input_device_match(struct device *dev, void *res, void *data)
{
	struct input_devres *devres = res;

	return devres->input == data;
}

static void devm_input_device_release(struct device *dev, void *res)
{
	struct input_devres *devres = res;
	struct input_dev *input = devres->input;

	dev_dbg(dev, "%s: dropping reference to %s\n",
		__func__, dev_name(&input->dev));
	input_put_device(input);
}

/**
 * devm_input_allocate_device - allocate managed input device
 * @dev: device owning the input device being created
 *
 * Returns prepared struct input_dev or %NULL.
 *
 * Managed input devices do not need to be explicitly unregistered or
 * freed as it will be done automatically when owner device unbinds from
 * its driver (or binding fails). Once managed input device is allocated,
 * it is ready to be set up and registered in the same fashion as regular
 * input device. There are no special devm_input_device_[un]register()
1833 1834 1835
 * variants, regular ones work with both managed and unmanaged devices,
 * should you need them. In most cases however, managed input device need
 * not be explicitly unregistered or freed.
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
 *
 * NOTE: the owner device is set up as parent of input device and users
 * should not override it.
 */
struct input_dev *devm_input_allocate_device(struct device *dev)
{
	struct input_dev *input;
	struct input_devres *devres;

	devres = devres_alloc(devm_input_device_release,
1846
			      sizeof(*devres), GFP_KERNEL);
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	if (!devres)
		return NULL;

	input = input_allocate_device();
	if (!input) {
		devres_free(devres);
		return NULL;
	}

	input->dev.parent = dev;
	input->devres_managed = true;

	devres->input = input;
	devres_add(dev, devres);

	return input;
}
EXPORT_SYMBOL(devm_input_allocate_device);

1866 1867 1868 1869 1870 1871 1872
/**
 * input_free_device - free memory occupied by input_dev structure
 * @dev: input device to free
 *
 * This function should only be used if input_register_device()
 * was not called yet or if it failed. Once device was registered
 * use input_unregister_device() and memory will be freed once last
1873
 * reference to the device is dropped.
1874 1875 1876 1877 1878 1879
 *
 * Device should be allocated by input_allocate_device().
 *
 * NOTE: If there are references to the input device then memory
 * will not be freed until last reference is dropped.
 */
1880 1881
void input_free_device(struct input_dev *dev)
{
1882 1883 1884 1885 1886 1887
	if (dev) {
		if (dev->devres_managed)
			WARN_ON(devres_destroy(dev->dev.parent,
						devm_input_device_release,
						devm_input_device_match,
						dev));
1888
		input_put_device(dev);
1889
	}
1890
}
Dmitry Torokhov's avatar
Dmitry Torokhov committed
1891
EXPORT_SYMBOL(input_free_device);
1892

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
/**
 * input_set_capability - mark device as capable of a certain event
 * @dev: device that is capable of emitting or accepting event
 * @type: type of the event (EV_KEY, EV_REL, etc...)
 * @code: event code
 *
 * In addition to setting up corresponding bit in appropriate capability
 * bitmap the function also adjusts dev->evbit.
 */
void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
{
	switch (type) {
	case EV_KEY:
		__set_bit(code, dev->keybit);
		break;

	case EV_REL:
		__set_bit(code, dev->relbit);
		break;

	case EV_ABS:
1914 1915 1916 1917
		input_alloc_absinfo(dev);
		if (!dev->absinfo)
			return;

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
		__set_bit(code, dev->absbit);
		break;

	case EV_MSC:
		__set_bit(code, dev->mscbit);
		break;

	case EV_SW:
		__set_bit(code, dev->swbit);
		break;

	case EV_LED:
		__set_bit(code, dev->ledbit);
		break;

	case EV_SND:
		__set_bit(code, dev->sndbit);
		break;

	case EV_FF:
		__set_bit(code, dev->ffbit);
		break;

1941 1942 1943 1944
	case EV_PWR:
		/* do nothing */
		break;

1945
	default:
1946
		pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
1947 1948 1949 1950 1951 1952 1953 1954
		dump_stack();
		return;
	}

	__set_bit(type, dev->evbit);
}
EXPORT_SYMBOL(input_set_capability);

1955 1956 1957 1958 1959 1960
static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
{
	int mt_slots;
	int i;
	unsigned int events;

Henrik Rydberg's avatar
Henrik Rydberg committed
1961 1962
	if (dev->mt) {
		mt_slots = dev->mt->num_slots;
1963 1964 1965
	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1966
		mt_slots = clamp(mt_slots, 2, 32);
1967 1968 1969 1970 1971 1972 1973 1974
	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
		mt_slots = 2;
	} else {
		mt_slots = 0;
	}

	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */

1975 1976 1977
	if (test_bit(EV_ABS, dev->evbit))
		for_each_set_bit(i, dev->absbit, ABS_CNT)
			events += input_is_mt_axis(i) ? mt_slots : 1;
1978

1979 1980
	if (test_bit(EV_REL, dev->evbit))
		events += bitmap_weight(dev->relbit, REL_CNT);
1981

1982 1983 1984
	/* Make room for KEY and MSC events */
	events += 7;

1985 1986 1987
	return events;
}

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
#define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
	do {								\
		if (!test_bit(EV_##type, dev->evbit))			\
			memset(dev->bits##bit, 0,			\
				sizeof(dev->bits##bit));		\
	} while (0)

static void input_cleanse_bitmasks(struct input_dev *dev)
{
	INPUT_CLEANSE_BITMASK(dev, KEY, key);
	INPUT_CLEANSE_BITMASK(dev, REL, rel);
	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
	INPUT_CLEANSE_BITMASK(dev, LED, led);
	INPUT_CLEANSE_BITMASK(dev, SND, snd);
	INPUT_CLEANSE_BITMASK(dev, FF, ff);
	INPUT_CLEANSE_BITMASK(dev, SW, sw);
}

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
static void __input_unregister_device(struct input_dev *dev)
{
	struct input_handle *handle, *next;

	input_disconnect_device(dev);

	mutex_lock(&input_mutex);

	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
		handle->handler->disconnect(handle);
	WARN_ON(!list_empty(&dev->h_list));

	del_timer_sync(&dev->timer);
	list_del_init(&dev->node);

	input_wakeup_procfs_readers();

	mutex_unlock(&input_mutex);

	device_del(&dev->dev);
}

static void devm_input_device_unregister(struct device *dev, void *res)
{
	struct input_devres *devres = res;
	struct input_dev *input = devres->input;

	dev_dbg(dev, "%s: unregistering device %s\n",
		__func__, dev_name(&input->dev));
	__input_unregister_device(input);
}

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
/**
 * input_enable_softrepeat - enable software autorepeat
 * @dev: input device
 * @delay: repeat delay
 * @period: repeat period
 *
 * Enable software autorepeat on the input device.
 */
void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
{
2049
	dev->timer.function = input_repeat_key;
2050 2051 2052 2053 2054
	dev->rep[REP_DELAY] = delay;
	dev->rep[REP_PERIOD] = period;
}
EXPORT_SYMBOL(input_enable_softrepeat);

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
/**
 * input_register_device - register device with input core
 * @dev: device to be registered
 *
 * This function registers device with input core. The device must be
 * allocated with input_allocate_device() and all it's capabilities
 * set up before registering.
 * If function fails the device must be freed with input_free_device().
 * Once device has been successfully registered it can be unregistered
 * with input_unregister_device(); input_free_device() should not be
 * called in this case.
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
 *
 * Note that this function is also used to register managed input devices
 * (ones allocated with devm_input_allocate_device()). Such managed input
 * devices need not be explicitly unregistered or freed, their tear down
 * is controlled by the devres infrastructure. It is also worth noting
 * that tear down of managed input devices is internally a 2-step process:
 * registered managed input device is first unregistered, but stays in
 * memory and can still handle input_event() calls (although events will
 * not be delivered anywhere). The freeing of managed input device will
 * happen later, when devres stack is unwound to the point where device
 * allocation was made.
2077
 */
2078
int input_register_device(struct input_dev *dev)
Linus Torvalds's avatar
Linus Torvalds committed
2079
{
2080
	struct input_devres *devres = NULL;
Linus Torvalds's avatar
Linus Torvalds committed
2081
	struct input_handler *handler;
2082
	unsigned int packet_size;
2083 2084
	const char *path;
	int error;
Linus Torvalds's avatar
Linus Torvalds committed
2085

2086 2087 2088 2089 2090 2091
	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
		dev_err(&dev->dev,
			"Absolute device without dev->absinfo, refusing to register\n");
		return -EINVAL;
	}

2092 2093
	if (dev->devres_managed) {
		devres = devres_alloc(devm_input_device_unregister,
2094
				      sizeof(*devres), GFP_KERNEL);
2095 2096 2097 2098 2099 2100
		if (!devres)
			return -ENOMEM;

		devres->input = dev;
	}

2101
	/* Every input device generates EV_SYN/SYN_REPORT events. */
2102
	__set_bit(EV_SYN, dev->evbit);
2103

2104 2105 2106
	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
	__clear_bit(KEY_RESERVED, dev->keybit);

2107 2108 2109
	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
	input_cleanse_bitmasks(dev);

2110 2111 2112
	packet_size = input_estimate_events_per_packet(dev);
	if (dev->hint_events_per_packet < packet_size)
		dev->hint_events_per_packet = packet_size;
2113

2114
	dev->max_vals = dev->hint_events_per_packet + 2;
2115
	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2116 2117 2118 2119
	if (!dev->vals) {
		error = -ENOMEM;
		goto err_devres_free;
	}
2120

Linus Torvalds's avatar
Linus Torvalds committed
2121 2122 2123 2124
	/*
	 * If delay and period are pre-set by the driver, then autorepeating
	 * is handled by the driver itself and we don't do it in input.c.
	 */
2125 2126
	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
		input_enable_softrepeat(dev, 250, 33);
Linus Torvalds's avatar
Linus Torvalds committed
2127

2128 2129
	if (!dev->getkeycode)
		dev->getkeycode = input_default_getkeycode;
2130

2131 2132
	if (!dev->setkeycode)
		dev->setkeycode = input_default_setkeycode;
2133

2134
	error = device_add(&dev->dev);
2135
	if (error)
2136
		goto err_free_vals;
2137

2138
	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2139 2140 2141
	pr_info("%s as %s\n",
		dev->name ? dev->name : "Unspecified device",
		path ? path : "N/A");
2142
	kfree(path);
2143

2144
	error = mutex_lock_interruptible(&input_mutex);
2145 2146
	if (error)
		goto err_device_del;
2147 2148 2149

	list_add_tail(&dev->node, &input_dev_list);

Linus Torvalds's avatar
Linus Torvalds committed
2150
	list_for_each_entry(handler, &input_handler_list, node)
2151
		input_attach_handler(dev, handler);
Linus Torvalds's avatar
Linus Torvalds committed
2152

2153
	input_wakeup_procfs_readers();
2154

2155 2156
	mutex_unlock(&input_mutex);

2157 2158 2159 2160 2161
	if (dev->devres_managed) {
		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
			__func__, dev_name(&dev->dev));
		devres_add(dev->dev.parent, devres);
	}
2162
	return 0;
2163 2164 2165 2166 2167 2168 2169 2170 2171

err_device_del:
	device_del(&dev->dev);
err_free_vals:
	kfree(dev->vals);
	dev->vals = NULL;
err_devres_free:
	devres_free(devres);
	return error;
Linus Torvalds's avatar
Linus Torvalds committed
2172
}
Dmitry Torokhov's avatar
Dmitry Torokhov committed
2173
EXPORT_SYMBOL(input_register_device);
Linus Torvalds's avatar
Linus Torvalds committed
2174

2175 2176 2177 2178 2179 2180 2181
/**
 * input_unregister_device - unregister previously registered device
 * @dev: device to be unregistered
 *
 * This function unregisters an input device. Once device is unregistered
 * the caller should not try to access it as it may get freed at any moment.
 */
Linus Torvalds's avatar
Linus Torvalds committed
2182 2183
void input_unregister_device(struct input_dev *dev)
{
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
	if (dev->devres_managed) {
		WARN_ON(devres_destroy(dev->dev.parent,
					devm_input_device_unregister,
					devm_input_device_match,
					dev));
		__input_unregister_device(dev);
		/*
		 * We do not do input_put_device() here because it will be done
		 * when 2nd devres fires up.
		 */
	} else {
		__input_unregister_device(dev);
		input_put_device(dev);
	}
Linus Torvalds's avatar
Linus Torvalds committed
2198
}
Dmitry Torokhov's avatar
Dmitry Torokhov committed
2199
EXPORT_SYMBOL(input_unregister_device);
Linus Torvalds's avatar
Linus Torvalds committed
2200

2201 2202 2203 2204 2205 2206 2207 2208
/**
 * input_register_handler - register a new input handler
 * @handler: handler to be registered
 *
 * This function registers a new input handler (interface) for input
 * devices in the system and attaches it to all input devices that
 * are compatible with the handler.
 */
2209
int input_register_handler(struct input_handler *handler)
Linus Torvalds's avatar
Linus Torvalds committed
2210 2211
{
	struct input_dev *dev;
2212
	int error;
2213

2214 2215 2216
	error = mutex_lock_interruptible(&input_mutex);
	if (error)
		return error;
Linus Torvalds's avatar
Linus Torvalds committed
2217 2218 2219 2220 2221 2222

	INIT_LIST_HEAD(&handler->h_list);

	list_add_tail(&handler->node, &input_handler_list);

	list_for_each_entry(dev, &input_dev_list, node)
2223
		input_attach_handler(dev, handler);
Linus Torvalds's avatar
Linus Torvalds committed
2224

2225
	input_wakeup_procfs_readers();
2226 2227

	mutex_unlock(&input_mutex);
2228
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
2229
}
Dmitry Torokhov's avatar
Dmitry Torokhov committed
2230
EXPORT_SYMBOL(input_register_handler);
Linus Torvalds's avatar
Linus Torvalds committed
2231

2232 2233 2234 2235 2236 2237 2238
/**
 * input_unregister_handler - unregisters an input handler
 * @handler: handler to be unregistered
 *
 * This function disconnects a handler from its input devices and
 * removes it from lists of known handlers.
 */
Linus Torvalds's avatar
Linus Torvalds committed
2239 2240
void input_unregister_handler(struct input_handler *handler)
{
2241
	struct input_handle *handle, *next;
Linus Torvalds's avatar
Linus Torvalds committed
2242

2243 2244
	mutex_lock(&input_mutex);

2245
	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
Linus Torvalds's avatar
Linus Torvalds committed
2246
		handler->disconnect(handle);
2247
	WARN_ON(!list_empty(&handler->h_list));
Linus Torvalds's avatar
Linus Torvalds committed
2248 2249 2250

	list_del_init(&handler->node);

2251
	input_wakeup_procfs_readers();
2252 2253

	mutex_unlock(&input_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
2254
}
Dmitry Torokhov's avatar
Dmitry Torokhov committed
2255
EXPORT_SYMBOL(input_unregister_handler);
Linus Torvalds's avatar
Linus Torvalds committed
2256

2257 2258 2259 2260 2261 2262 2263 2264
/**
 * input_handler_for_each_handle - handle iterator
 * @handler: input handler to iterate
 * @data: data for the callback
 * @fn: function to be called for each handle
 *
 * Iterate over @bus's list of devices, and call @fn for each, passing
 * it @data and stop when @fn returns a non-zero value. The function is
2265
 * using RCU to traverse the list and therefore may be using in atomic
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
 * contexts. The @fn callback is invoked from RCU critical section and
 * thus must not sleep.
 */
int input_handler_for_each_handle(struct input_handler *handler, void *data,
				  int (*fn)(struct input_handle *, void *))
{
	struct input_handle *handle;
	int retval = 0;

	rcu_read_lock();

	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
		retval = fn(handle, data);
		if (retval)
			break;
	}

	rcu_read_unlock();

	return retval;
}
EXPORT_SYMBOL(input_handler_for_each_handle);

2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
/**
 * input_register_handle - register a new input handle
 * @handle: handle to register
 *
 * This function puts a new input handle onto device's
 * and handler's lists so that events can flow through
 * it once it is opened using input_open_device().
 *
 * This function is supposed to be called from handler's
 * connect() method.
 */
2300 2301 2302
int input_register_handle(struct input_handle *handle)
{
	struct input_handler *handler = handle->handler;
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
	struct input_dev *dev = handle->dev;
	int error;

	/*
	 * We take dev->mutex here to prevent race with
	 * input_release_device().
	 */
	error = mutex_lock_interruptible(&dev->mutex);
	if (error)
		return error;
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322

	/*
	 * Filters go to the head of the list, normal handlers
	 * to the tail.
	 */
	if (handler->filter)
		list_add_rcu(&handle->d_node, &dev->h_list);
	else
		list_add_tail_rcu(&handle->d_node, &dev->h_list);

2323
	mutex_unlock(&dev->mutex);
2324

2325 2326 2327 2328 2329 2330
	/*
	 * Since we are supposed to be called from ->connect()
	 * which is mutually exclusive with ->disconnect()
	 * we can't be racing with input_unregister_handle()
	 * and so separate lock is not needed here.
	 */
2331
	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2332 2333 2334 2335 2336 2337 2338 2339

	if (handler->start)
		handler->start(handle);

	return 0;
}
EXPORT_SYMBOL(input_register_handle);

2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
/**
 * input_unregister_handle - unregister an input handle
 * @handle: handle to unregister
 *
 * This function removes input handle from device's
 * and handler's lists.
 *
 * This function is supposed to be called from handler's
 * disconnect() method.
 */
2350 2351
void input_unregister_handle(struct input_handle *handle)
{
2352 2353
	struct input_dev *dev = handle->dev;

2354
	list_del_rcu(&handle->h_node);
2355 2356 2357 2358 2359 2360 2361

	/*
	 * Take dev->mutex to prevent race with input_release_device().
	 */
	mutex_lock(&dev->mutex);
	list_del_rcu(&handle->d_node);
	mutex_unlock(&dev->mutex);
2362

Dmitry Torokhov's avatar
Dmitry Torokhov committed
2363
	synchronize_rcu();
2364 2365 2366
}
EXPORT_SYMBOL(input_unregister_handle);

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
/**
 * input_get_new_minor - allocates a new input minor number
 * @legacy_base: beginning or the legacy range to be searched
 * @legacy_num: size of legacy range
 * @allow_dynamic: whether we can also take ID from the dynamic range
 *
 * This function allocates a new device minor for from input major namespace.
 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
 * parameters and whether ID can be allocated from dynamic range if there are
 * no free IDs in legacy range.
 */
int input_get_new_minor(int legacy_base, unsigned int legacy_num,
			bool allow_dynamic)
Linus Torvalds's avatar
Linus Torvalds committed
2380 2381
{
	/*
2382 2383 2384
	 * This function should be called from input handler's ->connect()
	 * methods, which are serialized with input_mutex, so no additional
	 * locking is needed here.
Linus Torvalds's avatar
Linus Torvalds committed
2385
	 */
2386 2387 2388 2389 2390 2391 2392
	if (legacy_base >= 0) {
		int minor = ida_simple_get(&input_ida,
					   legacy_base,
					   legacy_base + legacy_num,
					   GFP_KERNEL);
		if (minor >= 0 || !allow_dynamic)
			return minor;
Linus Torvalds's avatar
Linus Torvalds committed
2393
	}
2394

2395 2396 2397
	return ida_simple_get(&input_ida,
			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
			      GFP_KERNEL);
Linus Torvalds's avatar
Linus Torvalds committed
2398
}
2399
EXPORT_SYMBOL(input_get_new_minor);
Linus Torvalds's avatar
Linus Torvalds committed
2400

2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
/**
 * input_free_minor - release previously allocated minor
 * @minor: minor to be released
 *
 * This function releases previously allocated input minor so that it can be
 * reused later.
 */
void input_free_minor(unsigned int minor)
{
	ida_simple_remove(&input_ida, minor);
}
EXPORT_SYMBOL(input_free_minor);
Linus Torvalds's avatar
Linus Torvalds committed
2413

2414
static int __init input_init(void)
Linus Torvalds's avatar
Linus Torvalds committed
2415
{
2416
	int err;
Linus Torvalds's avatar
Linus Torvalds committed
2417

2418
	err = class_register(&input_class);
2419
	if (err) {
2420
		pr_err("unable to register input_dev class\n");
2421 2422 2423
		return err;
	}

2424 2425
	err = input_proc_init();
	if (err)
2426
		goto fail1;
Linus Torvalds's avatar
Linus Torvalds committed
2427

2428 2429
	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
				     INPUT_MAX_CHAR_DEVICES, "input");
2430
	if (err) {
2431
		pr_err("unable to register char major %d", INPUT_MAJOR);
2432
		goto fail2;
Linus Torvalds's avatar
Linus Torvalds committed
2433
	}
2434

Linus Torvalds's avatar
Linus Torvalds committed
2435 2436
	return 0;

2437
 fail2:	input_proc_exit();
2438
 fail1:	class_unregister(&input_class);
2439
	return err;
Linus Torvalds's avatar
Linus Torvalds committed
2440 2441 2442 2443
}

static void __exit input_exit(void)
{
2444
	input_proc_exit();
2445 2446
	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
				 INPUT_MAX_CHAR_DEVICES);
2447
	class_unregister(&input_class);
Linus Torvalds's avatar
Linus Torvalds committed
2448 2449 2450 2451
}

subsys_initcall(input_init);
module_exit(input_exit);