builtin-timechart.c 23.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * builtin-timechart.c - make an svg timechart of system activity
 *
 * (C) Copyright 2009 Intel Corporation
 *
 * Authors:
 *     Arjan van de Ven <arjan@linux.intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

#include "builtin.h"

#include "util/util.h"

#include "util/color.h"
#include <linux/list.h>
#include "util/cache.h"
#include <linux/rbtree.h>
#include "util/symbol.h"
#include "util/string.h"
#include "util/callchain.h"
#include "util/strlist.h"

#include "perf.h"
#include "util/header.h"
#include "util/parse-options.h"
#include "util/parse-events.h"
32
#include "util/event.h"
33
#include "util/session.h"
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#include "util/svghelper.h"

static char		const *input_name = "perf.data";
static char		const *output_name = "output.svg";


static u64		sample_type;

static unsigned int	numcpus;
static u64		min_freq;	/* Lowest CPU frequency seen */
static u64		max_freq;	/* Highest CPU frequency seen */
static u64		turbo_frequency;

static u64		first_time, last_time;

49 50
static int		power_only;

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

struct per_pid;
struct per_pidcomm;

struct cpu_sample;
struct power_event;
struct wake_event;

struct sample_wrapper;

/*
 * Datastructure layout:
 * We keep an list of "pid"s, matching the kernels notion of a task struct.
 * Each "pid" entry, has a list of "comm"s.
 *	this is because we want to track different programs different, while
 *	exec will reuse the original pid (by design).
 * Each comm has a list of samples that will be used to draw
 * final graph.
 */

struct per_pid {
	struct per_pid *next;

	int		pid;
	int		ppid;

	u64		start_time;
	u64		end_time;
	u64		total_time;
	int		display;

	struct per_pidcomm *all;
	struct per_pidcomm *current;

	int painted;
};


struct per_pidcomm {
	struct per_pidcomm *next;

	u64		start_time;
	u64		end_time;
	u64		total_time;

	int		Y;
	int		display;

	long		state;
	u64		state_since;

	char		*comm;

	struct cpu_sample *samples;
};

struct sample_wrapper {
	struct sample_wrapper *next;

	u64		timestamp;
	unsigned char	data[0];
};

#define TYPE_NONE	0
#define TYPE_RUNNING	1
#define TYPE_WAITING	2
#define TYPE_BLOCKED	3

struct cpu_sample {
	struct cpu_sample *next;

	u64 start_time;
	u64 end_time;
	int type;
	int cpu;
};

static struct per_pid *all_data;

#define CSTATE 1
#define PSTATE 2

struct power_event {
	struct power_event *next;
	int type;
	int state;
	u64 start_time;
	u64 end_time;
	int cpu;
};

struct wake_event {
	struct wake_event *next;
	int waker;
	int wakee;
	u64 time;
};

static struct power_event    *power_events;
static struct wake_event     *wake_events;

struct sample_wrapper *all_samples;

154 155 156

struct process_filter;
struct process_filter {
157 158 159
	char			*name;
	int			pid;
	struct process_filter	*next;
160 161 162 163 164
};

static struct process_filter *process_filter;


165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
static struct per_pid *find_create_pid(int pid)
{
	struct per_pid *cursor = all_data;

	while (cursor) {
		if (cursor->pid == pid)
			return cursor;
		cursor = cursor->next;
	}
	cursor = malloc(sizeof(struct per_pid));
	assert(cursor != NULL);
	memset(cursor, 0, sizeof(struct per_pid));
	cursor->pid = pid;
	cursor->next = all_data;
	all_data = cursor;
	return cursor;
}

static void pid_set_comm(int pid, char *comm)
{
	struct per_pid *p;
	struct per_pidcomm *c;
	p = find_create_pid(pid);
	c = p->all;
	while (c) {
		if (c->comm && strcmp(c->comm, comm) == 0) {
			p->current = c;
			return;
		}
		if (!c->comm) {
			c->comm = strdup(comm);
			p->current = c;
			return;
		}
		c = c->next;
	}
	c = malloc(sizeof(struct per_pidcomm));
	assert(c != NULL);
	memset(c, 0, sizeof(struct per_pidcomm));
	c->comm = strdup(comm);
	p->current = c;
	c->next = p->all;
	p->all = c;
}

static void pid_fork(int pid, int ppid, u64 timestamp)
{
	struct per_pid *p, *pp;
	p = find_create_pid(pid);
	pp = find_create_pid(ppid);
	p->ppid = ppid;
	if (pp->current && pp->current->comm && !p->current)
		pid_set_comm(pid, pp->current->comm);

	p->start_time = timestamp;
	if (p->current) {
		p->current->start_time = timestamp;
		p->current->state_since = timestamp;
	}
}

static void pid_exit(int pid, u64 timestamp)
{
	struct per_pid *p;
	p = find_create_pid(pid);
	p->end_time = timestamp;
	if (p->current)
		p->current->end_time = timestamp;
}

static void
pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
{
	struct per_pid *p;
	struct per_pidcomm *c;
	struct cpu_sample *sample;

	p = find_create_pid(pid);
	c = p->current;
	if (!c) {
		c = malloc(sizeof(struct per_pidcomm));
		assert(c != NULL);
		memset(c, 0, sizeof(struct per_pidcomm));
		p->current = c;
		c->next = p->all;
		p->all = c;
	}

	sample = malloc(sizeof(struct cpu_sample));
	assert(sample != NULL);
	memset(sample, 0, sizeof(struct cpu_sample));
	sample->start_time = start;
	sample->end_time = end;
	sample->type = type;
	sample->next = c->samples;
	sample->cpu = cpu;
	c->samples = sample;

	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
		c->total_time += (end-start);
		p->total_time += (end-start);
	}

	if (c->start_time == 0 || c->start_time > start)
		c->start_time = start;
	if (p->start_time == 0 || p->start_time > start)
		p->start_time = start;

	if (cpu > numcpus)
		numcpus = cpu;
}

#define MAX_CPUS 4096

static u64 cpus_cstate_start_times[MAX_CPUS];
static int cpus_cstate_state[MAX_CPUS];
static u64 cpus_pstate_start_times[MAX_CPUS];
static u64 cpus_pstate_state[MAX_CPUS];

284
static int process_comm_event(event_t *event, struct perf_session *session __used)
285 286 287 288
{
	pid_set_comm(event->comm.pid, event->comm.comm);
	return 0;
}
289 290

static int process_fork_event(event_t *event, struct perf_session *session __used)
291 292 293 294 295
{
	pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
	return 0;
}

296
static int process_exit_event(event_t *event, struct perf_session *session __used)
297 298 299 300 301 302 303 304 305 306
{
	pid_exit(event->fork.pid, event->fork.time);
	return 0;
}

struct trace_entry {
	unsigned short		type;
	unsigned char		flags;
	unsigned char		preempt_count;
	int			pid;
307
	int			lock_depth;
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
};

struct power_entry {
	struct trace_entry te;
	s64	type;
	s64	value;
};

#define TASK_COMM_LEN 16
struct wakeup_entry {
	struct trace_entry te;
	char comm[TASK_COMM_LEN];
	int   pid;
	int   prio;
	int   success;
};

/*
 * trace_flag_type is an enumeration that holds different
 * states when a trace occurs. These are:
 *  IRQS_OFF            - interrupts were disabled
 *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags
 *  NEED_RESCED         - reschedule is requested
 *  HARDIRQ             - inside an interrupt handler
 *  SOFTIRQ             - inside a softirq handler
 */
enum trace_flag_type {
	TRACE_FLAG_IRQS_OFF		= 0x01,
	TRACE_FLAG_IRQS_NOSUPPORT	= 0x02,
	TRACE_FLAG_NEED_RESCHED		= 0x04,
	TRACE_FLAG_HARDIRQ		= 0x08,
	TRACE_FLAG_SOFTIRQ		= 0x10,
};



struct sched_switch {
	struct trace_entry te;
	char prev_comm[TASK_COMM_LEN];
	int  prev_pid;
	int  prev_prio;
	long prev_state; /* Arjan weeps. */
	char next_comm[TASK_COMM_LEN];
	int  next_pid;
	int  next_prio;
};

static void c_state_start(int cpu, u64 timestamp, int state)
{
	cpus_cstate_start_times[cpu] = timestamp;
	cpus_cstate_state[cpu] = state;
}

static void c_state_end(int cpu, u64 timestamp)
{
	struct power_event *pwr;
	pwr = malloc(sizeof(struct power_event));
	if (!pwr)
		return;
	memset(pwr, 0, sizeof(struct power_event));

	pwr->state = cpus_cstate_state[cpu];
	pwr->start_time = cpus_cstate_start_times[cpu];
	pwr->end_time = timestamp;
	pwr->cpu = cpu;
	pwr->type = CSTATE;
	pwr->next = power_events;

	power_events = pwr;
}

static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
{
	struct power_event *pwr;
	pwr = malloc(sizeof(struct power_event));

	if (new_freq > 8000000) /* detect invalid data */
		return;

	if (!pwr)
		return;
	memset(pwr, 0, sizeof(struct power_event));

	pwr->state = cpus_pstate_state[cpu];
	pwr->start_time = cpus_pstate_start_times[cpu];
	pwr->end_time = timestamp;
	pwr->cpu = cpu;
	pwr->type = PSTATE;
	pwr->next = power_events;

	if (!pwr->start_time)
		pwr->start_time = first_time;

	power_events = pwr;

	cpus_pstate_state[cpu] = new_freq;
	cpus_pstate_start_times[cpu] = timestamp;

	if ((u64)new_freq > max_freq)
		max_freq = new_freq;

	if (new_freq < min_freq || min_freq == 0)
		min_freq = new_freq;

	if (new_freq == max_freq - 1000)
			turbo_frequency = max_freq;
}

static void
sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
{
	struct wake_event *we;
	struct per_pid *p;
	struct wakeup_entry *wake = (void *)te;

	we = malloc(sizeof(struct wake_event));
	if (!we)
		return;

	memset(we, 0, sizeof(struct wake_event));
	we->time = timestamp;
	we->waker = pid;

	if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
		we->waker = -1;

	we->wakee = wake->pid;
	we->next = wake_events;
	wake_events = we;
	p = find_create_pid(we->wakee);

	if (p && p->current && p->current->state == TYPE_NONE) {
		p->current->state_since = timestamp;
		p->current->state = TYPE_WAITING;
	}
	if (p && p->current && p->current->state == TYPE_BLOCKED) {
		pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
		p->current->state_since = timestamp;
		p->current->state = TYPE_WAITING;
	}
}

static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
{
	struct per_pid *p = NULL, *prev_p;
	struct sched_switch *sw = (void *)te;


	prev_p = find_create_pid(sw->prev_pid);

	p = find_create_pid(sw->next_pid);

	if (prev_p->current && prev_p->current->state != TYPE_NONE)
		pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
	if (p && p->current) {
		if (p->current->state != TYPE_NONE)
			pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);

			p->current->state_since = timestamp;
			p->current->state = TYPE_RUNNING;
	}

	if (prev_p->current) {
		prev_p->current->state = TYPE_NONE;
		prev_p->current->state_since = timestamp;
		if (sw->prev_state & 2)
			prev_p->current->state = TYPE_BLOCKED;
		if (sw->prev_state == 0)
			prev_p->current->state = TYPE_WAITING;
	}
}


static int
process_sample_event(event_t *event)
{
484
	struct sample_data data;
485 486
	struct trace_entry *te;

487
	memset(&data, 0, sizeof(data));
488

489
	event__parse_sample(event, sample_type, &data);
490

491 492 493 494 495
	if (sample_type & PERF_SAMPLE_TIME) {
		if (!first_time || first_time > data.time)
			first_time = data.time;
		if (last_time < data.time)
			last_time = data.time;
496
	}
497 498 499

	te = (void *)data.raw_data;
	if (sample_type & PERF_SAMPLE_RAW && data.raw_size > 0) {
500 501 502 503 504 505 506 507 508 509 510
		char *event_str;
		struct power_entry *pe;

		pe = (void *)te;

		event_str = perf_header__find_event(te->type);

		if (!event_str)
			return 0;

		if (strcmp(event_str, "power:power_start") == 0)
511
			c_state_start(data.cpu, data.time, pe->value);
512 513

		if (strcmp(event_str, "power:power_end") == 0)
514
			c_state_end(data.cpu, data.time);
515 516

		if (strcmp(event_str, "power:power_frequency") == 0)
517
			p_state_change(data.cpu, data.time, pe->value);
518 519

		if (strcmp(event_str, "sched:sched_wakeup") == 0)
520
			sched_wakeup(data.cpu, data.time, data.pid, te);
521 522

		if (strcmp(event_str, "sched:sched_switch") == 0)
523
			sched_switch(data.cpu, data.time, te);
524 525 526 527 528 529 530 531 532 533 534 535 536
	}
	return 0;
}

/*
 * After the last sample we need to wrap up the current C/P state
 * and close out each CPU for these.
 */
static void end_sample_processing(void)
{
	u64 cpu;
	struct power_event *pwr;

537
	for (cpu = 0; cpu <= numcpus; cpu++) {
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
		pwr = malloc(sizeof(struct power_event));
		if (!pwr)
			return;
		memset(pwr, 0, sizeof(struct power_event));

		/* C state */
#if 0
		pwr->state = cpus_cstate_state[cpu];
		pwr->start_time = cpus_cstate_start_times[cpu];
		pwr->end_time = last_time;
		pwr->cpu = cpu;
		pwr->type = CSTATE;
		pwr->next = power_events;

		power_events = pwr;
#endif
		/* P state */

		pwr = malloc(sizeof(struct power_event));
		if (!pwr)
			return;
		memset(pwr, 0, sizeof(struct power_event));

		pwr->state = cpus_pstate_state[cpu];
		pwr->start_time = cpus_pstate_start_times[cpu];
		pwr->end_time = last_time;
		pwr->cpu = cpu;
		pwr->type = PSTATE;
		pwr->next = power_events;

		if (!pwr->start_time)
			pwr->start_time = first_time;
		if (!pwr->state)
			pwr->state = min_freq;
		power_events = pwr;
	}
}

static u64 sample_time(event_t *event)
{
	int cursor;

	cursor = 0;
	if (sample_type & PERF_SAMPLE_IP)
		cursor++;
	if (sample_type & PERF_SAMPLE_TID)
		cursor++;
	if (sample_type & PERF_SAMPLE_TIME)
		return event->sample.array[cursor];
	return 0;
}


/*
 * We first queue all events, sorted backwards by insertion.
 * The order will get flipped later.
 */
595
static int queue_sample_event(event_t *event, struct perf_session *session __used)
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
{
	struct sample_wrapper *copy, *prev;
	int size;

	size = event->sample.header.size + sizeof(struct sample_wrapper) + 8;

	copy = malloc(size);
	if (!copy)
		return 1;

	memset(copy, 0, size);

	copy->next = NULL;
	copy->timestamp = sample_time(event);

	memcpy(&copy->data, event, event->sample.header.size);

	/* insert in the right place in the list */

	if (!all_samples) {
		/* first sample ever */
		all_samples = copy;
		return 0;
	}

	if (all_samples->timestamp < copy->timestamp) {
		/* insert at the head of the list */
		copy->next = all_samples;
		all_samples = copy;
		return 0;
	}

	prev = all_samples;
	while (prev->next) {
		if (prev->next->timestamp < copy->timestamp) {
			copy->next = prev->next;
			prev->next = copy;
			return 0;
		}
		prev = prev->next;
	}
	/* insert at the end of the list */
	prev->next = copy;

	return 0;
}

static void sort_queued_samples(void)
{
	struct sample_wrapper *cursor, *next;

	cursor = all_samples;
	all_samples = NULL;

	while (cursor) {
		next = cursor->next;
		cursor->next = all_samples;
		all_samples = cursor;
		cursor = next;
	}
}

/*
 * Sort the pid datastructure
 */
static void sort_pids(void)
{
	struct per_pid *new_list, *p, *cursor, *prev;
	/* sort by ppid first, then by pid, lowest to highest */

	new_list = NULL;

	while (all_data) {
		p = all_data;
		all_data = p->next;
		p->next = NULL;

		if (new_list == NULL) {
			new_list = p;
			p->next = NULL;
			continue;
		}
		prev = NULL;
		cursor = new_list;
		while (cursor) {
			if (cursor->ppid > p->ppid ||
				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
				/* must insert before */
				if (prev) {
					p->next = prev->next;
					prev->next = p;
					cursor = NULL;
					continue;
				} else {
					p->next = new_list;
					new_list = p;
					cursor = NULL;
					continue;
				}
			}

			prev = cursor;
			cursor = cursor->next;
			if (!cursor)
				prev->next = p;
		}
	}
	all_data = new_list;
}


static void draw_c_p_states(void)
{
	struct power_event *pwr;
	pwr = power_events;

	/*
	 * two pass drawing so that the P state bars are on top of the C state blocks
	 */
	while (pwr) {
		if (pwr->type == CSTATE)
			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
		pwr = pwr->next;
	}

	pwr = power_events;
	while (pwr) {
		if (pwr->type == PSTATE) {
			if (!pwr->state)
				pwr->state = min_freq;
			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
		}
		pwr = pwr->next;
	}
}

static void draw_wakeups(void)
{
	struct wake_event *we;
	struct per_pid *p;
	struct per_pidcomm *c;

	we = wake_events;
	while (we) {
		int from = 0, to = 0;
741
		char *task_from = NULL, *task_to = NULL;
742 743 744 745 746 747 748 749

		/* locate the column of the waker and wakee */
		p = all_data;
		while (p) {
			if (p->pid == we->waker || p->pid == we->wakee) {
				c = p->all;
				while (c) {
					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
750
						if (p->pid == we->waker && !from) {
751
							from = c->Y;
752
							task_from = strdup(c->comm);
753
						}
754
						if (p->pid == we->wakee && !to) {
755
							to = c->Y;
756
							task_to = strdup(c->comm);
757
						}
758 759 760
					}
					c = c->next;
				}
761 762 763 764 765 766 767 768 769 770 771 772
				c = p->all;
				while (c) {
					if (p->pid == we->waker && !from) {
						from = c->Y;
						task_from = strdup(c->comm);
					}
					if (p->pid == we->wakee && !to) {
						to = c->Y;
						task_to = strdup(c->comm);
					}
					c = c->next;
				}
773 774 775 776
			}
			p = p->next;
		}

777 778 779 780 781 782 783 784 785
		if (!task_from) {
			task_from = malloc(40);
			sprintf(task_from, "[%i]", we->waker);
		}
		if (!task_to) {
			task_to = malloc(40);
			sprintf(task_to, "[%i]", we->wakee);
		}

786 787 788 789 790
		if (we->waker == -1)
			svg_interrupt(we->time, to);
		else if (from && to && abs(from - to) == 1)
			svg_wakeline(we->time, from, to);
		else
791
			svg_partial_wakeline(we->time, from, task_from, to, task_to);
792
		we = we->next;
793 794 795

		free(task_from);
		free(task_to);
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
	}
}

static void draw_cpu_usage(void)
{
	struct per_pid *p;
	struct per_pidcomm *c;
	struct cpu_sample *sample;
	p = all_data;
	while (p) {
		c = p->all;
		while (c) {
			sample = c->samples;
			while (sample) {
				if (sample->type == TYPE_RUNNING)
					svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);

				sample = sample->next;
			}
			c = c->next;
		}
		p = p->next;
	}
}

static void draw_process_bars(void)
{
	struct per_pid *p;
	struct per_pidcomm *c;
	struct cpu_sample *sample;
	int Y = 0;

	Y = 2 * numcpus + 2;

	p = all_data;
	while (p) {
		c = p->all;
		while (c) {
			if (!c->display) {
				c->Y = 0;
				c = c->next;
				continue;
			}

840
			svg_box(Y, c->start_time, c->end_time, "process");
841 842 843
			sample = c->samples;
			while (sample) {
				if (sample->type == TYPE_RUNNING)
844
					svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
845 846 847
				if (sample->type == TYPE_BLOCKED)
					svg_box(Y, sample->start_time, sample->end_time, "blocked");
				if (sample->type == TYPE_WAITING)
848
					svg_waiting(Y, sample->start_time, sample->end_time);
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
				sample = sample->next;
			}

			if (c->comm) {
				char comm[256];
				if (c->total_time > 5000000000) /* 5 seconds */
					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
				else
					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);

				svg_text(Y, c->start_time, comm);
			}
			c->Y = Y;
			Y++;
			c = c->next;
		}
		p = p->next;
	}
}

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
static void add_process_filter(const char *string)
{
	struct process_filter *filt;
	int pid;

	pid = strtoull(string, NULL, 10);
	filt = malloc(sizeof(struct process_filter));
	if (!filt)
		return;

	filt->name = strdup(string);
	filt->pid  = pid;
	filt->next = process_filter;

	process_filter = filt;
}

static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
{
	struct process_filter *filt;
	if (!process_filter)
		return 1;

	filt = process_filter;
	while (filt) {
		if (filt->pid && p->pid == filt->pid)
			return 1;
		if (strcmp(filt->name, c->comm) == 0)
			return 1;
		filt = filt->next;
	}
	return 0;
}

static int determine_display_tasks_filtered(void)
{
	struct per_pid *p;
	struct per_pidcomm *c;
	int count = 0;

	p = all_data;
	while (p) {
		p->display = 0;
		if (p->start_time == 1)
			p->start_time = first_time;

		/* no exit marker, task kept running to the end */
		if (p->end_time == 0)
			p->end_time = last_time;

		c = p->all;

		while (c) {
			c->display = 0;

			if (c->start_time == 1)
				c->start_time = first_time;

			if (passes_filter(p, c)) {
				c->display = 1;
				p->display = 1;
				count++;
			}

			if (c->end_time == 0)
				c->end_time = last_time;

			c = c->next;
		}
		p = p->next;
	}
	return count;
}

943 944 945 946 947 948
static int determine_display_tasks(u64 threshold)
{
	struct per_pid *p;
	struct per_pidcomm *c;
	int count = 0;

949 950 951
	if (process_filter)
		return determine_display_tasks_filtered();

952 953 954 955 956 957 958 959 960
	p = all_data;
	while (p) {
		p->display = 0;
		if (p->start_time == 1)
			p->start_time = first_time;

		/* no exit marker, task kept running to the end */
		if (p->end_time == 0)
			p->end_time = last_time;
961
		if (p->total_time >= threshold && !power_only)
962 963 964 965 966 967 968 969 970 971
			p->display = 1;

		c = p->all;

		while (c) {
			c->display = 0;

			if (c->start_time == 1)
				c->start_time = first_time;

972
			if (c->total_time >= threshold && !power_only) {
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
				c->display = 1;
				count++;
			}

			if (c->end_time == 0)
				c->end_time = last_time;

			c = c->next;
		}
		p = p->next;
	}
	return count;
}



#define TIME_THRESH 10000000

static void write_svg_file(const char *filename)
{
	u64 i;
	int count;

	numcpus++;


	count = determine_display_tasks(TIME_THRESH);

	/* We'd like to show at least 15 tasks; be less picky if we have fewer */
	if (count < 15)
		count = determine_display_tasks(TIME_THRESH / 10);

1005
	open_svg(filename, numcpus, count, first_time, last_time);
1006

1007
	svg_time_grid();
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	svg_legenda();

	for (i = 0; i < numcpus; i++)
		svg_cpu_box(i, max_freq, turbo_frequency);

	draw_cpu_usage();
	draw_process_bars();
	draw_c_p_states();
	draw_wakeups();

	svg_close();
}

static void process_samples(void)
{
	struct sample_wrapper *cursor;
	event_t *event;

	sort_queued_samples();

	cursor = all_samples;
	while (cursor) {
		event = (void *)&cursor->data;
		cursor = cursor->next;
		process_sample_event(event);
	}
}

1036
static int sample_type_check(u64 type, struct perf_session *session __used)
1037
{
1038
	sample_type = type;
1039

1040 1041 1042 1043
	if (!(sample_type & PERF_SAMPLE_RAW)) {
		fprintf(stderr, "No trace samples found in the file.\n"
				"Have you used 'perf timechart record' to record it?\n");
		return -1;
1044 1045
	}

1046 1047
	return 0;
}
1048

1049
static struct perf_event_ops event_ops = {
1050 1051 1052 1053 1054 1055
	.process_comm_event	= process_comm_event,
	.process_fork_event	= process_fork_event,
	.process_exit_event	= process_exit_event,
	.process_sample_event	= queue_sample_event,
	.sample_type_check	= sample_type_check,
};
1056

1057 1058
static int __cmd_timechart(void)
{
1059 1060
	struct perf_session *session = perf_session__new(input_name, O_RDONLY,
							 0, NULL);
1061
	int ret;
1062

1063 1064 1065
	if (session == NULL)
		return -ENOMEM;

1066
	ret = perf_session__process_events(session, &event_ops);
1067
	if (ret)
1068
		goto out_delete;
1069 1070 1071 1072 1073 1074 1075 1076 1077

	process_samples();

	end_sample_processing();

	sort_pids();

	write_svg_file(output_name);

1078 1079
	pr_info("Written %2.1f seconds of trace to %s.\n",
		(last_time - first_time) / 1000000000.0, output_name);
1080 1081 1082
out_delete:
	perf_session__delete(session);
	return ret;
1083 1084
}

1085 1086
static const char * const timechart_usage[] = {
	"perf timechart [<options>] {record}",
1087 1088 1089
	NULL
};

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
static const char *record_args[] = {
	"record",
	"-a",
	"-R",
	"-M",
	"-f",
	"-c", "1",
	"-e", "power:power_start",
	"-e", "power:power_end",
	"-e", "power:power_frequency",
	"-e", "sched:sched_wakeup",
	"-e", "sched:sched_switch",
};

static int __cmd_record(int argc, const char **argv)
{
	unsigned int rec_argc, i, j;
	const char **rec_argv;

	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
	rec_argv = calloc(rec_argc + 1, sizeof(char *));

	for (i = 0; i < ARRAY_SIZE(record_args); i++)
		rec_argv[i] = strdup(record_args[i]);

	for (j = 1; j < (unsigned int)argc; j++, i++)
		rec_argv[i] = argv[j];

	return cmd_record(i, rec_argv, NULL);
}

1121 1122 1123 1124 1125 1126 1127 1128
static int
parse_process(const struct option *opt __used, const char *arg, int __used unset)
{
	if (arg)
		add_process_filter(arg);
	return 0;
}

1129 1130 1131 1132 1133
static const struct option options[] = {
	OPT_STRING('i', "input", &input_name, "file",
		    "input file name"),
	OPT_STRING('o', "output", &output_name, "file",
		    "output file name"),
1134 1135
	OPT_INTEGER('w', "width", &svg_page_width,
		    "page width"),
1136
	OPT_BOOLEAN('P', "power-only", &power_only,
1137
		    "output power data only"),
1138 1139 1140
	OPT_CALLBACK('p', "process", NULL, "process",
		      "process selector. Pass a pid or process name.",
		       parse_process),
1141 1142 1143 1144 1145 1146
	OPT_END()
};


int cmd_timechart(int argc, const char **argv, const char *prefix __used)
{
1147
	symbol__init(0);
1148

1149 1150
	argc = parse_options(argc, argv, options, timechart_usage,
			PARSE_OPT_STOP_AT_NON_OPTION);
1151

1152 1153 1154 1155
	if (argc && !strncmp(argv[0], "rec", 3))
		return __cmd_record(argc, argv);
	else if (argc)
		usage_with_options(timechart_usage, options);
1156 1157 1158 1159 1160

	setup_pager();

	return __cmd_timechart();
}