ib_srp.c 97.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/*
 * Copyright (c) 2005 Cisco Systems.  All rights reserved.
 *
 * This software is available to you under a choice of one of two
 * licenses.  You may choose to be licensed under the terms of the GNU
 * General Public License (GPL) Version 2, available from the file
 * COPYING in the main directory of this source tree, or the
 * OpenIB.org BSD license below:
 *
 *     Redistribution and use in source and binary forms, with or
 *     without modification, are permitted provided that the following
 *     conditions are met:
 *
 *      - Redistributions of source code must retain the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer.
 *
 *      - Redistributions in binary form must reproduce the above
 *        copyright notice, this list of conditions and the following
 *        disclaimer in the documentation and/or other materials
 *        provided with the distribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

33
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34

35 36 37 38 39 40 41
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/string.h>
#include <linux/parser.h>
#include <linux/random.h>
42
#include <linux/jiffies.h>
43
#include <rdma/ib_cache.h>
44

Arun Sharma's avatar
Arun Sharma committed
45
#include <linux/atomic.h>
46 47 48 49

#include <scsi/scsi.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_dbg.h>
50
#include <scsi/scsi_tcq.h>
51
#include <scsi/srp.h>
52
#include <scsi/scsi_transport_srp.h>
53 54 55 56 57

#include "ib_srp.h"

#define DRV_NAME	"ib_srp"
#define PFX		DRV_NAME ": "
58 59
#define DRV_VERSION	"2.0"
#define DRV_RELDATE	"July 26, 2015"
60 61

MODULE_AUTHOR("Roland Dreier");
62
MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol initiator");
63
MODULE_LICENSE("Dual BSD/GPL");
64 65
MODULE_VERSION(DRV_VERSION);
MODULE_INFO(release_date, DRV_RELDATE);
66

67 68
static unsigned int srp_sg_tablesize;
static unsigned int cmd_sg_entries;
69 70
static unsigned int indirect_sg_entries;
static bool allow_ext_sg;
71 72
static bool prefer_fr = true;
static bool register_always = true;
73
static bool never_register;
74
static int topspin_workarounds = 1;
75

76 77
module_param(srp_sg_tablesize, uint, 0444);
MODULE_PARM_DESC(srp_sg_tablesize, "Deprecated name for cmd_sg_entries");
78

79 80 81
module_param(cmd_sg_entries, uint, 0444);
MODULE_PARM_DESC(cmd_sg_entries,
		 "Default number of gather/scatter entries in the SRP command (default is 12, max 255)");
82

83 84
module_param(indirect_sg_entries, uint, 0444);
MODULE_PARM_DESC(indirect_sg_entries,
85
		 "Default max number of gather/scatter entries (default is 12, max is " __stringify(SG_MAX_SEGMENTS) ")");
86 87 88 89 90

module_param(allow_ext_sg, bool, 0444);
MODULE_PARM_DESC(allow_ext_sg,
		  "Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails the request when false (default false)");

91 92 93 94
module_param(topspin_workarounds, int, 0444);
MODULE_PARM_DESC(topspin_workarounds,
		 "Enable workarounds for Topspin/Cisco SRP target bugs if != 0");

95 96 97 98
module_param(prefer_fr, bool, 0444);
MODULE_PARM_DESC(prefer_fr,
"Whether to use fast registration if both FMR and fast registration are supported");

99 100 101 102
module_param(register_always, bool, 0444);
MODULE_PARM_DESC(register_always,
		 "Use memory registration even for contiguous memory regions");

103 104 105
module_param(never_register, bool, 0444);
MODULE_PARM_DESC(never_register, "Never register memory");

106
static const struct kernel_param_ops srp_tmo_ops;
107

108 109 110 111 112
static int srp_reconnect_delay = 10;
module_param_cb(reconnect_delay, &srp_tmo_ops, &srp_reconnect_delay,
		S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(reconnect_delay, "Time between successive reconnect attempts");

113 114 115 116 117 118 119 120
static int srp_fast_io_fail_tmo = 15;
module_param_cb(fast_io_fail_tmo, &srp_tmo_ops, &srp_fast_io_fail_tmo,
		S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(fast_io_fail_tmo,
		 "Number of seconds between the observation of a transport"
		 " layer error and failing all I/O. \"off\" means that this"
		 " functionality is disabled.");

121
static int srp_dev_loss_tmo = 600;
122 123 124 125 126 127 128 129 130 131
module_param_cb(dev_loss_tmo, &srp_tmo_ops, &srp_dev_loss_tmo,
		S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(dev_loss_tmo,
		 "Maximum number of seconds that the SRP transport should"
		 " insulate transport layer errors. After this time has been"
		 " exceeded the SCSI host is removed. Should be"
		 " between 1 and " __stringify(SCSI_DEVICE_BLOCK_MAX_TIMEOUT)
		 " if fast_io_fail_tmo has not been set. \"off\" means that"
		 " this functionality is disabled.");

132 133 134 135 136
static unsigned ch_count;
module_param(ch_count, uint, 0444);
MODULE_PARM_DESC(ch_count,
		 "Number of RDMA channels to use for communication with an SRP target. Using more than one channel improves performance if the HCA supports multiple completion vectors. The default value is the minimum of four times the number of online CPU sockets and the number of completion vectors supported by the HCA.");

137
static void srp_add_one(struct ib_device *device);
138
static void srp_remove_one(struct ib_device *device, void *client_data);
139 140 141
static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc);
static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc,
		const char *opname);
142 143
static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event);

144
static struct scsi_transport_template *ib_srp_transport_template;
145
static struct workqueue_struct *srp_remove_wq;
146

147 148 149 150 151 152
static struct ib_client srp_client = {
	.name   = "srp",
	.add    = srp_add_one,
	.remove = srp_remove_one
};

153 154
static struct ib_sa_client srp_sa_client;

155 156 157 158 159 160 161 162 163 164 165 166 167 168
static int srp_tmo_get(char *buffer, const struct kernel_param *kp)
{
	int tmo = *(int *)kp->arg;

	if (tmo >= 0)
		return sprintf(buffer, "%d", tmo);
	else
		return sprintf(buffer, "off");
}

static int srp_tmo_set(const char *val, const struct kernel_param *kp)
{
	int tmo, res;

169 170 171 172
	res = srp_parse_tmo(&tmo, val);
	if (res)
		goto out;

173 174 175 176 177
	if (kp->arg == &srp_reconnect_delay)
		res = srp_tmo_valid(tmo, srp_fast_io_fail_tmo,
				    srp_dev_loss_tmo);
	else if (kp->arg == &srp_fast_io_fail_tmo)
		res = srp_tmo_valid(srp_reconnect_delay, tmo, srp_dev_loss_tmo);
178
	else
179 180
		res = srp_tmo_valid(srp_reconnect_delay, srp_fast_io_fail_tmo,
				    tmo);
181 182 183 184 185 186 187 188
	if (res)
		goto out;
	*(int *)kp->arg = tmo;

out:
	return res;
}

189
static const struct kernel_param_ops srp_tmo_ops = {
190 191 192 193
	.get = srp_tmo_get,
	.set = srp_tmo_set,
};

194 195 196 197 198 199 200 201 202 203
static inline struct srp_target_port *host_to_target(struct Scsi_Host *host)
{
	return (struct srp_target_port *) host->hostdata;
}

static const char *srp_target_info(struct Scsi_Host *host)
{
	return host_to_target(host)->target_name;
}

204 205 206
static int srp_target_is_topspin(struct srp_target_port *target)
{
	static const u8 topspin_oui[3] = { 0x00, 0x05, 0xad };
207
	static const u8 cisco_oui[3]   = { 0x00, 0x1b, 0x0d };
208 209

	return topspin_workarounds &&
210 211
		(!memcmp(&target->ioc_guid, topspin_oui, sizeof topspin_oui) ||
		 !memcmp(&target->ioc_guid, cisco_oui, sizeof cisco_oui));
212 213
}

214 215 216 217 218 219 220 221 222 223 224 225 226 227
static struct srp_iu *srp_alloc_iu(struct srp_host *host, size_t size,
				   gfp_t gfp_mask,
				   enum dma_data_direction direction)
{
	struct srp_iu *iu;

	iu = kmalloc(sizeof *iu, gfp_mask);
	if (!iu)
		goto out;

	iu->buf = kzalloc(size, gfp_mask);
	if (!iu->buf)
		goto out_free_iu;

228 229 230
	iu->dma = ib_dma_map_single(host->srp_dev->dev, iu->buf, size,
				    direction);
	if (ib_dma_mapping_error(host->srp_dev->dev, iu->dma))
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
		goto out_free_buf;

	iu->size      = size;
	iu->direction = direction;

	return iu;

out_free_buf:
	kfree(iu->buf);
out_free_iu:
	kfree(iu);
out:
	return NULL;
}

static void srp_free_iu(struct srp_host *host, struct srp_iu *iu)
{
	if (!iu)
		return;

251 252
	ib_dma_unmap_single(host->srp_dev->dev, iu->dma, iu->size,
			    iu->direction);
253 254 255 256 257 258
	kfree(iu->buf);
	kfree(iu);
}

static void srp_qp_event(struct ib_event *event, void *context)
{
259 260
	pr_debug("QP event %s (%d)\n",
		 ib_event_msg(event->event), event->event);
261 262 263 264 265 266 267 268 269 270 271 272
}

static int srp_init_qp(struct srp_target_port *target,
		       struct ib_qp *qp)
{
	struct ib_qp_attr *attr;
	int ret;

	attr = kmalloc(sizeof *attr, GFP_KERNEL);
	if (!attr)
		return -ENOMEM;

273 274 275 276
	ret = ib_find_cached_pkey(target->srp_host->srp_dev->dev,
				  target->srp_host->port,
				  be16_to_cpu(target->pkey),
				  &attr->pkey_index);
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
	if (ret)
		goto out;

	attr->qp_state        = IB_QPS_INIT;
	attr->qp_access_flags = (IB_ACCESS_REMOTE_READ |
				    IB_ACCESS_REMOTE_WRITE);
	attr->port_num        = target->srp_host->port;

	ret = ib_modify_qp(qp, attr,
			   IB_QP_STATE		|
			   IB_QP_PKEY_INDEX	|
			   IB_QP_ACCESS_FLAGS	|
			   IB_QP_PORT);

out:
	kfree(attr);
	return ret;
}

296
static int srp_new_cm_id(struct srp_rdma_ch *ch)
297
{
298
	struct srp_target_port *target = ch->target;
299 300
	struct ib_cm_id *new_cm_id;

301
	new_cm_id = ib_create_cm_id(target->srp_host->srp_dev->dev,
302
				    srp_cm_handler, ch);
303 304 305
	if (IS_ERR(new_cm_id))
		return PTR_ERR(new_cm_id);

306 307 308 309 310 311 312
	if (ch->cm_id)
		ib_destroy_cm_id(ch->cm_id);
	ch->cm_id = new_cm_id;
	ch->path.sgid = target->sgid;
	ch->path.dgid = target->orig_dgid;
	ch->path.pkey = target->pkey;
	ch->path.service_id = target->service_id;
313 314 315 316

	return 0;
}

317 318 319 320 321 322
static struct ib_fmr_pool *srp_alloc_fmr_pool(struct srp_target_port *target)
{
	struct srp_device *dev = target->srp_host->srp_dev;
	struct ib_fmr_pool_param fmr_param;

	memset(&fmr_param, 0, sizeof(fmr_param));
323
	fmr_param.pool_size	    = target->mr_pool_size;
324 325
	fmr_param.dirty_watermark   = fmr_param.pool_size / 4;
	fmr_param.cache		    = 1;
326 327
	fmr_param.max_pages_per_fmr = dev->max_pages_per_mr;
	fmr_param.page_shift	    = ilog2(dev->mr_page_size);
328 329 330 331 332 333 334
	fmr_param.access	    = (IB_ACCESS_LOCAL_WRITE |
				       IB_ACCESS_REMOTE_WRITE |
				       IB_ACCESS_REMOTE_READ);

	return ib_create_fmr_pool(dev->pd, &fmr_param);
}

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
/**
 * srp_destroy_fr_pool() - free the resources owned by a pool
 * @pool: Fast registration pool to be destroyed.
 */
static void srp_destroy_fr_pool(struct srp_fr_pool *pool)
{
	int i;
	struct srp_fr_desc *d;

	if (!pool)
		return;

	for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
		if (d->mr)
			ib_dereg_mr(d->mr);
	}
	kfree(pool);
}

/**
 * srp_create_fr_pool() - allocate and initialize a pool for fast registration
 * @device:            IB device to allocate fast registration descriptors for.
 * @pd:                Protection domain associated with the FR descriptors.
 * @pool_size:         Number of descriptors to allocate.
 * @max_page_list_len: Maximum fast registration work request page list length.
 */
static struct srp_fr_pool *srp_create_fr_pool(struct ib_device *device,
					      struct ib_pd *pd, int pool_size,
					      int max_page_list_len)
{
	struct srp_fr_pool *pool;
	struct srp_fr_desc *d;
	struct ib_mr *mr;
	int i, ret = -EINVAL;

	if (pool_size <= 0)
		goto err;
	ret = -ENOMEM;
	pool = kzalloc(sizeof(struct srp_fr_pool) +
		       pool_size * sizeof(struct srp_fr_desc), GFP_KERNEL);
	if (!pool)
		goto err;
	pool->size = pool_size;
	pool->max_page_list_len = max_page_list_len;
	spin_lock_init(&pool->lock);
	INIT_LIST_HEAD(&pool->free_list);

	for (i = 0, d = &pool->desc[0]; i < pool->size; i++, d++) {
383 384
		mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG,
				 max_page_list_len);
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
		if (IS_ERR(mr)) {
			ret = PTR_ERR(mr);
			goto destroy_pool;
		}
		d->mr = mr;
		list_add_tail(&d->entry, &pool->free_list);
	}

out:
	return pool;

destroy_pool:
	srp_destroy_fr_pool(pool);

err:
	pool = ERR_PTR(ret);
	goto out;
}

/**
 * srp_fr_pool_get() - obtain a descriptor suitable for fast registration
 * @pool: Pool to obtain descriptor from.
 */
static struct srp_fr_desc *srp_fr_pool_get(struct srp_fr_pool *pool)
{
	struct srp_fr_desc *d = NULL;
	unsigned long flags;

	spin_lock_irqsave(&pool->lock, flags);
	if (!list_empty(&pool->free_list)) {
		d = list_first_entry(&pool->free_list, typeof(*d), entry);
		list_del(&d->entry);
	}
	spin_unlock_irqrestore(&pool->lock, flags);

	return d;
}

/**
 * srp_fr_pool_put() - put an FR descriptor back in the free list
 * @pool: Pool the descriptor was allocated from.
 * @desc: Pointer to an array of fast registration descriptor pointers.
 * @n:    Number of descriptors to put back.
 *
 * Note: The caller must already have queued an invalidation request for
 * desc->mr->rkey before calling this function.
 */
static void srp_fr_pool_put(struct srp_fr_pool *pool, struct srp_fr_desc **desc,
			    int n)
{
	unsigned long flags;
	int i;

	spin_lock_irqsave(&pool->lock, flags);
	for (i = 0; i < n; i++)
		list_add(&desc[i]->entry, &pool->free_list);
	spin_unlock_irqrestore(&pool->lock, flags);
}

static struct srp_fr_pool *srp_alloc_fr_pool(struct srp_target_port *target)
{
	struct srp_device *dev = target->srp_host->srp_dev;

448
	return srp_create_fr_pool(dev->dev, dev->pd, target->mr_pool_size,
449 450 451
				  dev->max_pages_per_mr);
}

452 453
/**
 * srp_destroy_qp() - destroy an RDMA queue pair
454
 * @qp: RDMA queue pair.
455
 *
Steve Wise's avatar
Steve Wise committed
456 457
 * Drain the qp before destroying it.  This avoids that the receive
 * completion handler can access the queue pair while it is
458 459
 * being destroyed.
 */
460
static void srp_destroy_qp(struct ib_qp *qp)
461
{
462 463
	ib_drain_rq(qp);
	ib_destroy_qp(qp);
464 465
}

466
static int srp_create_ch_ib(struct srp_rdma_ch *ch)
467
{
468
	struct srp_target_port *target = ch->target;
469
	struct srp_device *dev = target->srp_host->srp_dev;
470
	struct ib_qp_init_attr *init_attr;
471 472
	struct ib_cq *recv_cq, *send_cq;
	struct ib_qp *qp;
473
	struct ib_fmr_pool *fmr_pool = NULL;
474
	struct srp_fr_pool *fr_pool = NULL;
475
	const int m = 1 + dev->use_fast_reg * target->mr_per_cmd * 2;
476 477 478 479 480 481
	int ret;

	init_attr = kzalloc(sizeof *init_attr, GFP_KERNEL);
	if (!init_attr)
		return -ENOMEM;

Steve Wise's avatar
Steve Wise committed
482
	/* queue_size + 1 for ib_drain_rq() */
483 484
	recv_cq = ib_alloc_cq(dev->dev, ch, target->queue_size + 1,
				ch->comp_vector, IB_POLL_SOFTIRQ);
485 486
	if (IS_ERR(recv_cq)) {
		ret = PTR_ERR(recv_cq);
487
		goto err;
488 489
	}

490 491
	send_cq = ib_alloc_cq(dev->dev, ch, m * target->queue_size,
				ch->comp_vector, IB_POLL_DIRECT);
492 493
	if (IS_ERR(send_cq)) {
		ret = PTR_ERR(send_cq);
494
		goto err_recv_cq;
495 496
	}

497
	init_attr->event_handler       = srp_qp_event;
498
	init_attr->cap.max_send_wr     = m * target->queue_size;
499
	init_attr->cap.max_recv_wr     = target->queue_size + 1;
500 501
	init_attr->cap.max_recv_sge    = 1;
	init_attr->cap.max_send_sge    = 1;
502
	init_attr->sq_sig_type         = IB_SIGNAL_REQ_WR;
503
	init_attr->qp_type             = IB_QPT_RC;
504 505
	init_attr->send_cq             = send_cq;
	init_attr->recv_cq             = recv_cq;
506

507
	qp = ib_create_qp(dev->pd, init_attr);
508 509
	if (IS_ERR(qp)) {
		ret = PTR_ERR(qp);
510
		goto err_send_cq;
511 512
	}

513
	ret = srp_init_qp(target, qp);
514 515
	if (ret)
		goto err_qp;
516

517
	if (dev->use_fast_reg) {
518 519 520 521 522 523 524
		fr_pool = srp_alloc_fr_pool(target);
		if (IS_ERR(fr_pool)) {
			ret = PTR_ERR(fr_pool);
			shost_printk(KERN_WARNING, target->scsi_host, PFX
				     "FR pool allocation failed (%d)\n", ret);
			goto err_qp;
		}
525
	} else if (dev->use_fmr) {
526 527 528 529 530 531 532 533 534
		fmr_pool = srp_alloc_fmr_pool(target);
		if (IS_ERR(fmr_pool)) {
			ret = PTR_ERR(fmr_pool);
			shost_printk(KERN_WARNING, target->scsi_host, PFX
				     "FMR pool allocation failed (%d)\n", ret);
			goto err_qp;
		}
	}

535
	if (ch->qp)
536
		srp_destroy_qp(ch->qp);
537
	if (ch->recv_cq)
538
		ib_free_cq(ch->recv_cq);
539
	if (ch->send_cq)
540
		ib_free_cq(ch->send_cq);
541

542 543 544
	ch->qp = qp;
	ch->recv_cq = recv_cq;
	ch->send_cq = send_cq;
545

546 547 548 549 550 551 552 553 554 555
	if (dev->use_fast_reg) {
		if (ch->fr_pool)
			srp_destroy_fr_pool(ch->fr_pool);
		ch->fr_pool = fr_pool;
	} else if (dev->use_fmr) {
		if (ch->fmr_pool)
			ib_destroy_fmr_pool(ch->fmr_pool);
		ch->fmr_pool = fmr_pool;
	}

556 557 558 559
	kfree(init_attr);
	return 0;

err_qp:
560
	srp_destroy_qp(qp);
561 562

err_send_cq:
563
	ib_free_cq(send_cq);
564 565

err_recv_cq:
566
	ib_free_cq(recv_cq);
567 568

err:
569 570 571 572
	kfree(init_attr);
	return ret;
}

573 574
/*
 * Note: this function may be called without srp_alloc_iu_bufs() having been
575
 * invoked. Hence the ch->[rt]x_ring checks.
576
 */
577 578
static void srp_free_ch_ib(struct srp_target_port *target,
			   struct srp_rdma_ch *ch)
579
{
580
	struct srp_device *dev = target->srp_host->srp_dev;
581 582
	int i;

583 584 585
	if (!ch->target)
		return;

586 587 588
	if (ch->cm_id) {
		ib_destroy_cm_id(ch->cm_id);
		ch->cm_id = NULL;
589 590
	}

591 592 593 594
	/* If srp_new_cm_id() succeeded but srp_create_ch_ib() not, return. */
	if (!ch->qp)
		return;

595
	if (dev->use_fast_reg) {
596 597
		if (ch->fr_pool)
			srp_destroy_fr_pool(ch->fr_pool);
598
	} else if (dev->use_fmr) {
599 600
		if (ch->fmr_pool)
			ib_destroy_fmr_pool(ch->fmr_pool);
601
	}
602

603
	srp_destroy_qp(ch->qp);
604 605
	ib_free_cq(ch->send_cq);
	ib_free_cq(ch->recv_cq);
606

607 608 609 610 611 612 613 614
	/*
	 * Avoid that the SCSI error handler tries to use this channel after
	 * it has been freed. The SCSI error handler can namely continue
	 * trying to perform recovery actions after scsi_remove_host()
	 * returned.
	 */
	ch->target = NULL;

615 616
	ch->qp = NULL;
	ch->send_cq = ch->recv_cq = NULL;
617

618
	if (ch->rx_ring) {
619
		for (i = 0; i < target->queue_size; ++i)
620 621 622
			srp_free_iu(target->srp_host, ch->rx_ring[i]);
		kfree(ch->rx_ring);
		ch->rx_ring = NULL;
623
	}
624
	if (ch->tx_ring) {
625
		for (i = 0; i < target->queue_size; ++i)
626 627 628
			srp_free_iu(target->srp_host, ch->tx_ring[i]);
		kfree(ch->tx_ring);
		ch->tx_ring = NULL;
629
	}
630 631 632 633
}

static void srp_path_rec_completion(int status,
				    struct ib_sa_path_rec *pathrec,
634
				    void *ch_ptr)
635
{
636 637
	struct srp_rdma_ch *ch = ch_ptr;
	struct srp_target_port *target = ch->target;
638

639
	ch->status = status;
640
	if (status)
641 642
		shost_printk(KERN_ERR, target->scsi_host,
			     PFX "Got failed path rec status %d\n", status);
643
	else
644 645
		ch->path = *pathrec;
	complete(&ch->done);
646 647
}

648
static int srp_lookup_path(struct srp_rdma_ch *ch)
649
{
650
	struct srp_target_port *target = ch->target;
651 652
	int ret;

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
	ch->path.numb_path = 1;

	init_completion(&ch->done);

	ch->path_query_id = ib_sa_path_rec_get(&srp_sa_client,
					       target->srp_host->srp_dev->dev,
					       target->srp_host->port,
					       &ch->path,
					       IB_SA_PATH_REC_SERVICE_ID |
					       IB_SA_PATH_REC_DGID	 |
					       IB_SA_PATH_REC_SGID	 |
					       IB_SA_PATH_REC_NUMB_PATH	 |
					       IB_SA_PATH_REC_PKEY,
					       SRP_PATH_REC_TIMEOUT_MS,
					       GFP_KERNEL,
					       srp_path_rec_completion,
					       ch, &ch->path_query);
	if (ch->path_query_id < 0)
		return ch->path_query_id;

	ret = wait_for_completion_interruptible(&ch->done);
674 675
	if (ret < 0)
		return ret;
676

677
	if (ch->status < 0)
678 679
		shost_printk(KERN_WARNING, target->scsi_host,
			     PFX "Path record query failed\n");
680

681
	return ch->status;
682 683
}

684
static int srp_send_req(struct srp_rdma_ch *ch, bool multich)
685
{
686
	struct srp_target_port *target = ch->target;
687 688 689 690 691 692 693 694 695 696
	struct {
		struct ib_cm_req_param param;
		struct srp_login_req   priv;
	} *req = NULL;
	int status;

	req = kzalloc(sizeof *req, GFP_KERNEL);
	if (!req)
		return -ENOMEM;

697
	req->param.primary_path		      = &ch->path;
698 699
	req->param.alternate_path 	      = NULL;
	req->param.service_id 		      = target->service_id;
700 701
	req->param.qp_num		      = ch->qp->qp_num;
	req->param.qp_type		      = ch->qp->qp_type;
702 703 704 705 706 707 708 709 710 711 712 713 714 715
	req->param.private_data 	      = &req->priv;
	req->param.private_data_len 	      = sizeof req->priv;
	req->param.flow_control 	      = 1;

	get_random_bytes(&req->param.starting_psn, 4);
	req->param.starting_psn 	     &= 0xffffff;

	/*
	 * Pick some arbitrary defaults here; we could make these
	 * module parameters if anyone cared about setting them.
	 */
	req->param.responder_resources	      = 4;
	req->param.remote_cm_response_timeout = 20;
	req->param.local_cm_response_timeout  = 20;
716
	req->param.retry_count                = target->tl_retry_count;
717 718 719 720 721
	req->param.rnr_retry_count 	      = 7;
	req->param.max_cm_retries 	      = 15;

	req->priv.opcode     	= SRP_LOGIN_REQ;
	req->priv.tag        	= 0;
722
	req->priv.req_it_iu_len = cpu_to_be32(target->max_iu_len);
723 724
	req->priv.req_buf_fmt 	= cpu_to_be16(SRP_BUF_FORMAT_DIRECT |
					      SRP_BUF_FORMAT_INDIRECT);
725 726
	req->priv.req_flags	= (multich ? SRP_MULTICHAN_MULTI :
				   SRP_MULTICHAN_SINGLE);
727
	/*
Roland Dreier's avatar
Roland Dreier committed
728
	 * In the published SRP specification (draft rev. 16a), the
729 730 731 732 733 734 735 736 737
	 * port identifier format is 8 bytes of ID extension followed
	 * by 8 bytes of GUID.  Older drafts put the two halves in the
	 * opposite order, so that the GUID comes first.
	 *
	 * Targets conforming to these obsolete drafts can be
	 * recognized by the I/O Class they report.
	 */
	if (target->io_class == SRP_REV10_IB_IO_CLASS) {
		memcpy(req->priv.initiator_port_id,
738
		       &target->sgid.global.interface_id, 8);
739
		memcpy(req->priv.initiator_port_id + 8,
740
		       &target->initiator_ext, 8);
741 742 743 744
		memcpy(req->priv.target_port_id,     &target->ioc_guid, 8);
		memcpy(req->priv.target_port_id + 8, &target->id_ext, 8);
	} else {
		memcpy(req->priv.initiator_port_id,
745 746
		       &target->initiator_ext, 8);
		memcpy(req->priv.initiator_port_id + 8,
747
		       &target->sgid.global.interface_id, 8);
748 749 750 751
		memcpy(req->priv.target_port_id,     &target->id_ext, 8);
		memcpy(req->priv.target_port_id + 8, &target->ioc_guid, 8);
	}

752 753
	/*
	 * Topspin/Cisco SRP targets will reject our login unless we
754 755
	 * zero out the first 8 bytes of our initiator port ID and set
	 * the second 8 bytes to the local node GUID.
756
	 */
757
	if (srp_target_is_topspin(target)) {
758 759 760
		shost_printk(KERN_DEBUG, target->scsi_host,
			     PFX "Topspin/Cisco initiator port ID workaround "
			     "activated for target GUID %016llx\n",
761
			     be64_to_cpu(target->ioc_guid));
762
		memset(req->priv.initiator_port_id, 0, 8);
763
		memcpy(req->priv.initiator_port_id + 8,
764
		       &target->srp_host->srp_dev->dev->node_guid, 8);
765 766
	}

767
	status = ib_send_cm_req(ch->cm_id, &req->param);
768 769 770 771 772 773

	kfree(req);

	return status;
}

774 775 776 777 778 779 780 781 782 783 784 785
static bool srp_queue_remove_work(struct srp_target_port *target)
{
	bool changed = false;

	spin_lock_irq(&target->lock);
	if (target->state != SRP_TARGET_REMOVED) {
		target->state = SRP_TARGET_REMOVED;
		changed = true;
	}
	spin_unlock_irq(&target->lock);

	if (changed)
786
		queue_work(srp_remove_wq, &target->remove_work);
787 788 789 790

	return changed;
}

791 792
static void srp_disconnect_target(struct srp_target_port *target)
{
793 794
	struct srp_rdma_ch *ch;
	int i;
795

796
	/* XXX should send SRP_I_LOGOUT request */
797

798 799 800 801 802 803
	for (i = 0; i < target->ch_count; i++) {
		ch = &target->ch[i];
		ch->connected = false;
		if (ch->cm_id && ib_send_cm_dreq(ch->cm_id, NULL, 0)) {
			shost_printk(KERN_DEBUG, target->scsi_host,
				     PFX "Sending CM DREQ failed\n");
804
		}
805
	}
806 807
}

808 809
static void srp_free_req_data(struct srp_target_port *target,
			      struct srp_rdma_ch *ch)
810
{
811 812
	struct srp_device *dev = target->srp_host->srp_dev;
	struct ib_device *ibdev = dev->dev;
813 814 815
	struct srp_request *req;
	int i;

816
	if (!ch->req_ring)
817 818 819
		return;

	for (i = 0; i < target->req_ring_size; ++i) {
820
		req = &ch->req_ring[i];
821
		if (dev->use_fast_reg) {
822
			kfree(req->fr_list);
823
		} else {
824
			kfree(req->fmr_list);
825 826
			kfree(req->map_page);
		}
827 828 829 830 831 832
		if (req->indirect_dma_addr) {
			ib_dma_unmap_single(ibdev, req->indirect_dma_addr,
					    target->indirect_size,
					    DMA_TO_DEVICE);
		}
		kfree(req->indirect_desc);
833
	}
834

835 836
	kfree(ch->req_ring);
	ch->req_ring = NULL;
837 838
}

839
static int srp_alloc_req_data(struct srp_rdma_ch *ch)
840
{
841
	struct srp_target_port *target = ch->target;
842 843 844
	struct srp_device *srp_dev = target->srp_host->srp_dev;
	struct ib_device *ibdev = srp_dev->dev;
	struct srp_request *req;
845
	void *mr_list;
846 847 848
	dma_addr_t dma_addr;
	int i, ret = -ENOMEM;

849 850 851
	ch->req_ring = kcalloc(target->req_ring_size, sizeof(*ch->req_ring),
			       GFP_KERNEL);
	if (!ch->req_ring)
852 853 854
		goto out;

	for (i = 0; i < target->req_ring_size; ++i) {
855
		req = &ch->req_ring[i];
856
		mr_list = kmalloc(target->mr_per_cmd * sizeof(void *),
857 858 859
				  GFP_KERNEL);
		if (!mr_list)
			goto out;
860
		if (srp_dev->use_fast_reg) {
861
			req->fr_list = mr_list;
862
		} else {
863
			req->fmr_list = mr_list;
864 865 866 867 868
			req->map_page = kmalloc(srp_dev->max_pages_per_mr *
						sizeof(void *), GFP_KERNEL);
			if (!req->map_page)
				goto out;
		}
869
		req->indirect_desc = kmalloc(target->indirect_size, GFP_KERNEL);
870
		if (!req->indirect_desc)
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
			goto out;

		dma_addr = ib_dma_map_single(ibdev, req->indirect_desc,
					     target->indirect_size,
					     DMA_TO_DEVICE);
		if (ib_dma_mapping_error(ibdev, dma_addr))
			goto out;

		req->indirect_dma_addr = dma_addr;
	}
	ret = 0;

out:
	return ret;
}

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
/**
 * srp_del_scsi_host_attr() - Remove attributes defined in the host template.
 * @shost: SCSI host whose attributes to remove from sysfs.
 *
 * Note: Any attributes defined in the host template and that did not exist
 * before invocation of this function will be ignored.
 */
static void srp_del_scsi_host_attr(struct Scsi_Host *shost)
{
	struct device_attribute **attr;

	for (attr = shost->hostt->shost_attrs; attr && *attr; ++attr)
		device_remove_file(&shost->shost_dev, *attr);
}

902 903
static void srp_remove_target(struct srp_target_port *target)
{
904 905
	struct srp_rdma_ch *ch;
	int i;
906

907 908
	WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);

909
	srp_del_scsi_host_attr(target->scsi_host);
910
	srp_rport_get(target->rport);
911 912
	srp_remove_host(target->scsi_host);
	scsi_remove_host(target->scsi_host);
913
	srp_stop_rport_timers(target->rport);
914
	srp_disconnect_target(target);
915 916 917 918
	for (i = 0; i < target->ch_count; i++) {
		ch = &target->ch[i];
		srp_free_ch_ib(target, ch);
	}
919
	cancel_work_sync(&target->tl_err_work);
920
	srp_rport_put(target->rport);
921 922 923 924 925 926
	for (i = 0; i < target->ch_count; i++) {
		ch = &target->ch[i];
		srp_free_req_data(target, ch);
	}
	kfree(target->ch);
	target->ch = NULL;
927 928 929 930 931

	spin_lock(&target->srp_host->target_lock);
	list_del(&target->list);
	spin_unlock(&target->srp_host->target_lock);

932 933 934
	scsi_host_put(target->scsi_host);
}

935
static void srp_remove_work(struct work_struct *work)
936
{
937
	struct srp_target_port *target =
938
		container_of(work, struct srp_target_port, remove_work);
939

940
	WARN_ON_ONCE(target->state != SRP_TARGET_REMOVED);
941

942
	srp_remove_target(target);
943 944
}

945 946 947 948 949 950 951
static void srp_rport_delete(struct srp_rport *rport)
{
	struct srp_target_port *target = rport->lld_data;

	srp_queue_remove_work(target);
}

952 953 954 955 956 957 958 959 960 961 962 963 964 965
/**
 * srp_connected_ch() - number of connected channels
 * @target: SRP target port.
 */
static int srp_connected_ch(struct srp_target_port *target)
{
	int i, c = 0;

	for (i = 0; i < target->ch_count; i++)
		c += target->ch[i].connected;

	return c;
}

966
static int srp_connect_ch(struct srp_rdma_ch *ch, bool multich)
967
{
968
	struct srp_target_port *target = ch->target;
969 970
	int ret;

971
	WARN_ON_ONCE(!multich && srp_connected_ch(target) > 0);
972

973
	ret = srp_lookup_path(ch);
974
	if (ret)
975
		goto out;
976 977

	while (1) {
978
		init_completion(&ch->done);
979
		ret = srp_send_req(ch, multich);
980
		if (ret)
981
			goto out;
982
		ret = wait_for_completion_interruptible(&ch->done);
983
		if (ret < 0)
984
			goto out;
985 986 987 988 989 990 991

		/*
		 * The CM event handling code will set status to
		 * SRP_PORT_REDIRECT if we get a port redirect REJ
		 * back, or SRP_DLID_REDIRECT if we get a lid/qp
		 * redirect REJ back.
		 */
992 993
		ret = ch->status;
		switch (ret) {
994
		case 0:
995
			ch->connected = true;
996
			goto out;
997 998

		case SRP_PORT_REDIRECT:
999
			ret = srp_lookup_path(ch);
1000
			if (ret)
1001
				goto out;
1002 1003 1004 1005 1006
			break;

		case SRP_DLID_REDIRECT:
			break;

1007 1008
		case SRP_STALE_CONN:
			shost_printk(KERN_ERR, target->scsi_host, PFX
1009
				     "giving up on stale connection\n");
1010 1011
			ret = -ECONNRESET;
			goto out;
1012

1013
		default:
1014
			goto out;
1015 1016
		}
	}
1017 1018 1019

out:
	return ret <= 0 ? ret : -ENODEV;
1020 1021
}

1022 1023 1024 1025 1026 1027 1028
static void srp_inv_rkey_err_done(struct ib_cq *cq, struct ib_wc *wc)
{
	srp_handle_qp_err(cq, wc, "INV RKEY");
}

static int srp_inv_rkey(struct srp_request *req, struct srp_rdma_ch *ch,
		u32 rkey)
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
{
	struct ib_send_wr *bad_wr;
	struct ib_send_wr wr = {
		.opcode		    = IB_WR_LOCAL_INV,
		.next		    = NULL,
		.num_sge	    = 0,
		.send_flags	    = 0,
		.ex.invalidate_rkey = rkey,
	};

1039 1040
	wr.wr_cqe = &req->reg_cqe;
	req->reg_cqe.done = srp_inv_rkey_err_done;
1041
	return ib_post_send(ch->qp, &wr, &bad_wr);
1042 1043
}

1044
static void srp_unmap_data(struct scsi_cmnd *scmnd,
1045
			   struct srp_rdma_ch *ch,
1046 1047
			   struct srp_request *req)
{
1048
	struct srp_target_port *target = ch->target;
1049 1050 1051
	struct srp_device *dev = target->srp_host->srp_dev;
	struct ib_device *ibdev = dev->dev;
	int i, res;
1052

1053
	if (!scsi_sglist(scmnd) ||
1054 1055 1056 1057
	    (scmnd->sc_data_direction != DMA_TO_DEVICE &&
	     scmnd->sc_data_direction != DMA_FROM_DEVICE))
		return;

1058 1059 1060 1061
	if (dev->use_fast_reg) {
		struct srp_fr_desc **pfr;

		for (i = req->nmdesc, pfr = req->fr_list; i > 0; i--, pfr++) {
1062
			res = srp_inv_rkey(req, ch, (*pfr)->mr->rkey);
1063 1064 1065 1066 1067 1068 1069 1070 1071
			if (res < 0) {
				shost_printk(KERN_ERR, target->scsi_host, PFX
				  "Queueing INV WR for rkey %#x failed (%d)\n",
				  (*pfr)->mr->rkey, res);
				queue_work(system_long_wq,
					   &target->tl_err_work);
			}
		}
		if (req->nmdesc)
1072
			srp_fr_pool_put(ch->fr_pool, req->fr_list,
1073
					req->nmdesc);
1074
	} else if (dev->use_fmr) {
1075 1076 1077 1078 1079
		struct ib_pool_fmr **pfmr;

		for (i = req->nmdesc, pfmr = req->fmr_list; i > 0; i--, pfmr++)
			ib_fmr_pool_unmap(*pfmr);
	}
1080

1081 1082
	ib_dma_unmap_sg(ibdev, scsi_sglist(scmnd), scsi_sg_count(scmnd),
			scmnd->sc_data_direction);
1083 1084
}

1085 1086
/**
 * srp_claim_req - Take ownership of the scmnd associated with a request.
1087
 * @ch: SRP RDMA channel.
1088
 * @req: SRP request.
1089
 * @sdev: If not NULL, only take ownership for this SCSI device.
1090 1091 1092 1093 1094 1095
 * @scmnd: If NULL, take ownership of @req->scmnd. If not NULL, only take
 *         ownership of @req->scmnd if it equals @scmnd.
 *
 * Return value:
 * Either NULL or a pointer to the SCSI command the caller became owner of.
 */
1096
static struct scsi_cmnd *srp_claim_req(struct srp_rdma_ch *ch,
1097
				       struct srp_request *req,
1098
				       struct scsi_device *sdev,
1099 1100 1101 1102
				       struct scsi_cmnd *scmnd)
{
	unsigned long flags;

1103
	spin_lock_irqsave(&ch->lock, flags);
1104 1105 1106
	if (req->scmnd &&
	    (!sdev || req->scmnd->device == sdev) &&
	    (!scmnd || req->scmnd == scmnd)) {
1107 1108 1109 1110 1111
		scmnd = req->scmnd;
		req->scmnd = NULL;
	} else {
		scmnd = NULL;
	}
1112
	spin_unlock_irqrestore(&ch->lock, flags);
1113 1114 1115 1116 1117

	return scmnd;
}

/**
Bart Van Assche's avatar
Bart Van Assche committed
1118
 * srp_free_req() - Unmap data and adjust ch->req_lim.
1119
 * @ch:     SRP RDMA channel.
1120 1121 1122
 * @req:    Request to be freed.
 * @scmnd:  SCSI command associated with @req.
 * @req_lim_delta: Amount to be added to @target->req_lim.
1123
 */
1124 1125
static void srp_free_req(struct srp_rdma_ch *ch, struct srp_request *req,
			 struct scsi_cmnd *scmnd, s32 req_lim_delta)
1126
{
1127 1128
	unsigned long flags;

1129
	srp_unmap_data(scmnd, ch, req);
1130

1131 1132 1133
	spin_lock_irqsave(&ch->lock, flags);
	ch->req_lim += req_lim_delta;
	spin_unlock_irqrestore(&ch->lock, flags);
1134 1135
}

1136 1137
static void srp_finish_req(struct srp_rdma_ch *ch, struct srp_request *req,
			   struct scsi_device *sdev, int result)
1138
{
1139
	struct scsi_cmnd *scmnd = srp_claim_req(ch, req, sdev, NULL);
1140 1141

	if (scmnd) {
1142
		srp_free_req(ch, req, scmnd, 0);
1143
		scmnd->result = result;
1144 1145
		scmnd->scsi_done(scmnd);
	}
1146 1147
}

1148
static void srp_terminate_io(struct srp_rport *rport)
1149
{
1150
	struct srp_target_port *target = rport->lld_data;
1151
	struct srp_rdma_ch *ch;
1152 1153
	struct Scsi_Host *shost = target->scsi_host;
	struct scsi_device *sdev;
1154
	int i, j;
1155

1156 1157 1158 1159 1160 1161 1162
	/*
	 * Invoking srp_terminate_io() while srp_queuecommand() is running
	 * is not safe. Hence the warning statement below.
	 */
	shost_for_each_device(sdev, shost)
		WARN_ON_ONCE(sdev->request_queue->request_fn_active);

1163 1164
	for (i = 0; i < target->ch_count; i++) {
		ch = &target->ch[i];
1165

1166 1167 1168 1169 1170 1171
		for (j = 0; j < target->req_ring_size; ++j) {
			struct srp_request *req = &ch->req_ring[j];

			srp_finish_req(ch, req, NULL,
				       DID_TRANSPORT_FAILFAST << 16);
		}
1172 1173
	}
}
1174

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
/*
 * It is up to the caller to ensure that srp_rport_reconnect() calls are
 * serialized and that no concurrent srp_queuecommand(), srp_abort(),
 * srp_reset_device() or srp_reset_host() calls will occur while this function
 * is in progress. One way to realize that is not to call this function
 * directly but to call srp_reconnect_rport() instead since that last function
 * serializes calls of this function via rport->mutex and also blocks
 * srp_queuecommand() calls before invoking this function.
 */
static int srp_rport_reconnect(struct srp_rport *rport)
{
	struct srp_target_port *target = rport->lld_data;
1187 1188 1189
	struct srp_rdma_ch *ch;
	int i, j, ret = 0;
	bool multich = false;
1190

1191
	srp_disconnect_target(target);
1192 1193 1194 1195

	if (target->state == SRP_TARGET_SCANNING)
		return -ENODEV;

1196
	/*
1197 1198 1199
	 * Now get a new local CM ID so that we avoid confusing the target in
	 * case things are really fouled up. Doing so also ensures that all CM
	 * callbacks will have finished before a new QP is allocated.
1200
	 */
1201 1202 1203
	for (i = 0; i < target->ch_count; i++) {
		ch = &target->ch[i];
		ret += srp_new_cm_id(ch);
1204
	}
1205 1206 1207 1208
	for (i = 0; i < target->ch_count; i++) {
		ch = &target->ch[i];
		for (j = 0; j < target->req_ring_size; ++j) {
			struct srp_request *req = &ch->req_ring[j];
1209

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
			srp_finish_req(ch, req, NULL, DID_RESET << 16);
		}
	}
	for (i = 0; i < target->ch_count; i++) {
		ch = &target->ch[i];
		/*
		 * Whether or not creating a new CM ID succeeded, create a new
		 * QP. This guarantees that all completion callback function
		 * invocations have finished before request resetting starts.
		 */
		ret += srp_create_ch_ib(ch);
1221

1222 1223 1224 1225
		INIT_LIST_HEAD(&ch->free_tx);
		for (j = 0; j < target->queue_size; ++j)
			list_add(&ch->tx_ring[j]->list, &ch->free_tx);
	}
1226 1227 1228

	target->qp_in_error = false;

1229 1230
	for (i = 0; i < target->ch_count; i++) {
		ch = &target->ch[i];
1231
		if (ret)
1232 1233 1234 1235
			break;
		ret = srp_connect_ch(ch, multich);
		multich = true;
	}
1236

1237 1238 1239
	if (ret == 0)
		shost_printk(KERN_INFO, target->scsi_host,
			     PFX "reconnect succeeded\n");
1240 1241 1242 1243

	return ret;
}

1244 1245
static void srp_map_desc(struct srp_map_state *state, dma_addr_t dma_addr,
			 unsigned int dma_len, u32 rkey)
1246
{
1247
	struct srp_direct_buf *desc = state->desc;
1248

1249 1250
	WARN_ON_ONCE(!dma_len);

1251 1252 1253
	desc->va = cpu_to_be64(dma_addr);
	desc->key = cpu_to_be32(rkey);
	desc->len = cpu_to_be32(dma_len);
1254

1255 1256 1257 1258
	state->total_len += dma_len;
	state->desc++;
	state->ndesc++;
}
1259

1260
static int srp_map_finish_fmr(struct srp_map_state *state,
1261
			      struct srp_rdma_ch *ch)
1262
{
1263 1264
	struct srp_target_port *target = ch->target;
	struct srp_device *dev = target->srp_host->srp_dev;
1265
	struct ib_pd *pd = target->pd;
1266 1267
	struct ib_pool_fmr *fmr;
	u64 io_addr = 0;
1268

1269 1270 1271
	if (state->fmr.next >= state->fmr.end)
		return -ENOMEM;

Sagi Grimberg's avatar
Sagi Grimberg committed
1272 1273 1274 1275 1276
	WARN_ON_ONCE(!dev->use_fmr);

	if (state->npages == 0)
		return 0;

1277
	if (state->npages == 1 && (pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)) {
Sagi Grimberg's avatar
Sagi Grimberg committed
1278
		srp_map_desc(state, state->base_dma_addr, state->dma_len,
1279
			     pd->unsafe_global_rkey);
Sagi Grimberg's avatar
Sagi Grimberg committed
1280 1281 1282
		goto reset_state;
	}

1283
	fmr = ib_fmr_pool_map_phys(ch->fmr_pool, state->pages,
1284 1285 1286
				   state->npages, io_addr);
	if (IS_ERR(fmr))
		return PTR_ERR(fmr);
1287

1288
	*state->fmr.next++ = fmr;
1289
	state->nmdesc++;
1290

1291 1292
	srp_map_desc(state, state->base_dma_addr & ~dev->mr_page_mask,
		     state->dma_len, fmr->fmr->rkey);
1293

Sagi Grimberg's avatar
Sagi Grimberg committed
1294 1295 1296 1297
reset_state:
	state->npages = 0;
	state->dma_len = 0;

1298 1299 1300
	return 0;
}

1301 1302 1303 1304 1305
static void srp_reg_mr_err_done(struct ib_cq *cq, struct ib_wc *wc)
{
	srp_handle_qp_err(cq, wc, "FAST REG");
}

1306 1307 1308 1309 1310 1311
/*
 * Map up to sg_nents elements of state->sg where *sg_offset_p is the offset
 * where to start in the first element. If sg_offset_p != NULL then
 * *sg_offset_p is updated to the offset in state->sg[retval] of the first
 * byte that has not yet been mapped.
 */
1312
static int srp_map_finish_fr(struct srp_map_state *state,
1313
			     struct srp_request *req,
1314 1315
			     struct srp_rdma_ch *ch, int sg_nents,
			     unsigned int *sg_offset_p)
1316
{
1317
	struct srp_target_port *target = ch->target;
1318
	struct srp_device *dev = target->srp_host->srp_dev;
1319
	struct ib_pd *pd = target->pd;
1320
	struct ib_send_wr *bad_wr;
1321
	struct ib_reg_wr wr;
1322 1323
	struct srp_fr_desc *desc;
	u32 rkey;
1324
	int n, err;
1325

1326 1327 1328
	if (state->fr.next >= state->fr.end)
		return -ENOMEM;

Sagi Grimberg's avatar
Sagi Grimberg committed
1329 1330
	WARN_ON_ONCE(!dev->use_fast_reg);

1331
	if (sg_nents == 1 && (pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)) {
1332 1333 1334 1335
		unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;

		srp_map_desc(state, sg_dma_address(state->sg) + sg_offset,
			     sg_dma_len(state->sg) - sg_offset,
1336
			     pd->unsafe_global_rkey);
1337 1338
		if (sg_offset_p)
			*sg_offset_p = 0;
1339
		return 1;
Sagi Grimberg's avatar
Sagi Grimberg committed
1340 1341
	}

1342
	desc = srp_fr_pool_get(ch->fr_pool);
1343 1344 1345 1346 1347 1348
	if (!desc)
		return -ENOMEM;

	rkey = ib_inc_rkey(desc->mr->rkey);
	ib_update_fast_reg_key(desc->mr, rkey);

1349 1350
	n = ib_map_mr_sg(desc->mr, state->sg, sg_nents, sg_offset_p,
			 dev->mr_page_size);
1351 1352
	if (unlikely(n < 0)) {
		srp_fr_pool_put(ch->fr_pool, &desc, 1);
1353
		pr_debug("%s: ib_map_mr_sg(%d, %d) returned %d.\n",
1354
			 dev_name(&req->scmnd->device->sdev_gendev), sg_nents,
1355
			 sg_offset_p ? *sg_offset_p : -1, n);
1356
		return n;
1357
	}
1358

1359
	WARN_ON_ONCE(desc->mr->length == 0);
1360

1361 1362
	req->reg_cqe.done = srp_reg_mr_err_done;

1363 1364
	wr.wr.next = NULL;
	wr.wr.opcode = IB_WR_REG_MR;
1365
	wr.wr.wr_cqe = &req->reg_cqe;
1366 1367 1368 1369 1370 1371 1372
	wr.wr.num_sge = 0;
	wr.wr.send_flags = 0;
	wr.mr = desc->mr;
	wr.key = desc->mr->rkey;
	wr.access = (IB_ACCESS_LOCAL_WRITE |
		     IB_ACCESS_REMOTE_READ |
		     IB_ACCESS_REMOTE_WRITE);
1373

1374
	*state->fr.next++ = desc;
1375 1376
	state->nmdesc++;

1377 1378
	srp_map_desc(state, desc->mr->iova,
		     desc->mr->length, desc->mr->rkey);
1379

Sagi Grimberg's avatar
Sagi Grimberg committed
1380
	err = ib_post_send(ch->qp, &wr.wr, &bad_wr);
1381 1382
	if (unlikely(err)) {
		WARN_ON_ONCE(err == -ENOMEM);
Sagi Grimberg's avatar
Sagi Grimberg committed
1383
		return err;
1384
	}
Sagi Grimberg's avatar
Sagi Grimberg committed
1385

1386
	return n;
1387 1388
}

1389
static int srp_map_sg_entry(struct srp_map_state *state,
1390
			    struct srp_rdma_ch *ch,
1391
			    struct scatterlist *sg, int sg_index)
1392
{
1393
	struct srp_target_port *target = ch->target;
1394 1395 1396 1397
	struct srp_device *dev = target->srp_host->srp_dev;
	struct ib_device *ibdev = dev->dev;
	dma_addr_t dma_addr = ib_sg_dma_address(ibdev, sg);
	unsigned int dma_len = ib_sg_dma_len(ibdev, sg);
1398
	unsigned int len = 0;
1399 1400
	int ret;

1401
	WARN_ON_ONCE(!dma_len);
1402

1403
	while (dma_len) {
1404 1405
		unsigned offset = dma_addr & ~dev->mr_page_mask;
		if (state->npages == dev->max_pages_per_mr || offset != 0) {
1406
			ret = srp_map_finish_fmr(state, ch);
1407 1408 1409 1410
			if (ret)
				return ret;
		}

1411
		len = min_t(unsigned int, dma_len, dev->mr_page_size - offset);
1412

1413 1414
		if (!state->npages)
			state->base_dma_addr = dma_addr;
1415
		state->pages[state->npages++] = dma_addr & dev->mr_page_mask;
1416
		state->dma_len += len;
1417 1418 1419 1420
		dma_addr += len;
		dma_len -= len;
	}

1421 1422
	/*
	 * If the last entry of the MR wasn't a full page, then we need to
1423
	 * close it out and start a new one -- we can only merge at page
1424
	 * boundaries.
1425 1426
	 */
	ret = 0;
1427
	if (len != dev->mr_page_size)
1428
		ret = srp_map_finish_fmr(state, ch);
1429 1430 1431
	return ret;
}

Sagi Grimberg's avatar
Sagi Grimberg committed
1432 1433 1434
static int srp_map_sg_fmr(struct srp_map_state *state, struct srp_rdma_ch *ch,
			  struct srp_request *req, struct scatterlist *scat,
			  int count)
1435 1436
{
	struct scatterlist *sg;
1437
	int i, ret;
1438

Sagi Grimberg's avatar
Sagi Grimberg committed
1439 1440
	state->pages = req->map_page;
	state->fmr.next = req->fmr_list;
1441
	state->fmr.end = req->fmr_list + ch->target->mr_per_cmd;
Sagi Grimberg's avatar
Sagi Grimberg committed
1442 1443 1444 1445 1446

	for_each_sg(scat, sg, count, i) {
		ret = srp_map_sg_entry(state, ch, sg, i);
		if (ret)
			return ret;
1447
	}
1448

1449
	ret = srp_map_finish_fmr(state, ch);
Sagi Grimberg's avatar
Sagi Grimberg committed
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
	if (ret)
		return ret;

	return 0;
}

static int srp_map_sg_fr(struct srp_map_state *state, struct srp_rdma_ch *ch,
			 struct srp_request *req, struct scatterlist *scat,
			 int count)
{
1460 1461
	unsigned int sg_offset = 0;

1462
	state->fr.next = req->fr_list;
1463
	state->fr.end = req->fr_list + ch->target->mr_per_cmd;
1464
	state->sg = scat;
Sagi Grimberg's avatar
Sagi Grimberg committed
1465

1466 1467 1468
	if (count == 0)
		return 0;

1469
	while (count) {
1470
		int i, n;
Sagi Grimberg's avatar
Sagi Grimberg committed
1471

1472
		n = srp_map_finish_fr(state, req, ch, count, &sg_offset);
1473 1474 1475
		if (unlikely(n < 0))
			return n;

1476
		count -= n;
1477 1478 1479
		for (i = 0; i < n; i++)
			state->sg = sg_next(state->sg);
	}
Sagi Grimberg's avatar
Sagi Grimberg committed
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

	return 0;
}

static int srp_map_sg_dma(struct srp_map_state *state, struct srp_rdma_ch *ch,
			  struct srp_request *req, struct scatterlist *scat,
			  int count)
{
	struct srp_target_port *target = ch->target;
	struct srp_device *dev = target->srp_host->srp_dev;
	struct scatterlist *sg;
	int i;

	for_each_sg(scat, sg, count, i) {
		srp_map_desc(state, ib_sg_dma_address(dev->dev, sg),
			     ib_sg_dma_len(dev->dev, sg),
1496
			     target->pd->unsafe_global_rkey);
1497
	}
1498

Sagi Grimberg's avatar
Sagi Grimberg committed
1499
	return 0;
1500 1501
}

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
/*
 * Register the indirect data buffer descriptor with the HCA.
 *
 * Note: since the indirect data buffer descriptor has been allocated with
 * kmalloc() it is guaranteed that this buffer is a physically contiguous
 * memory buffer.
 */
static int srp_map_idb(struct srp_rdma_ch *ch, struct srp_request *req,
		       void **next_mr, void **end_mr, u32 idb_len,
		       __be32 *idb_rkey)
{
	struct srp_target_port *target = ch->target;
	struct srp_device *dev = target->srp_host->srp_dev;
	struct srp_map_state state;
	struct srp_direct_buf idb_desc;
	u64 idb_pages[1];
1518
	struct scatterlist idb_sg[1];
1519 1520 1521 1522 1523 1524 1525 1526 1527
	int ret;

	memset(&state, 0, sizeof(state));
	memset(&idb_desc, 0, sizeof(idb_desc));
	state.gen.next = next_mr;
	state.gen.end = end_mr;
	state.desc = &idb_desc;
	state.base_dma_addr = req->indirect_dma_addr;
	state.dma_len = idb_len;
1528 1529 1530

	if (dev->use_fast_reg) {
		state.sg = idb_sg;
1531
		sg_init_one(idb_sg, req->indirect_desc, idb_len);
1532
		idb_sg->dma_address = req->indirect_dma_addr; /* hack! */
1533 1534 1535
#ifdef CONFIG_NEED_SG_DMA_LENGTH
		idb_sg->dma_length = idb_sg->length;	      /* hack^2 */
#endif
1536
		ret = srp_map_finish_fr(&state, req, ch, 1, NULL);
1537 1538
		if (ret < 0)
			return ret;
1539
		WARN_ON_ONCE(ret < 1);
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
	} else if (dev->use_fmr) {
		state.pages = idb_pages;
		state.pages[0] = (req->indirect_dma_addr &
				  dev->mr_page_mask);
		state.npages = 1;
		ret = srp_map_finish_fmr(&state, ch);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}
1551 1552 1553

	*idb_rkey = idb_desc.key;

1554
	return 0;
1555 1556
}

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
#if defined(DYNAMIC_DATA_DEBUG)
static void srp_check_mapping(struct srp_map_state *state,
			      struct srp_rdma_ch *ch, struct srp_request *req,
			      struct scatterlist *scat, int count)
{
	struct srp_device *dev = ch->target->srp_host->srp_dev;
	struct srp_fr_desc **pfr;
	u64 desc_len = 0, mr_len = 0;
	int i;

	for (i = 0; i < state->ndesc; i++)
		desc_len += be32_to_cpu(req->indirect_desc[i].len);
	if (dev->use_fast_reg)
		for (i = 0, pfr = req->fr_list; i < state->nmdesc; i++, pfr++)
			mr_len += (*pfr)->mr->length;
	else if (dev->use_fmr)
		for (i = 0; i < state->nmdesc; i++)
			mr_len += be32_to_cpu(req->indirect_desc[i].len);
	if (desc_len != scsi_bufflen(req->scmnd) ||
	    mr_len > scsi_bufflen(req->scmnd))
		pr_err("Inconsistent: scsi len %d <> desc len %lld <> mr len %lld; ndesc %d; nmdesc = %d\n",
		       scsi_bufflen(req->scmnd), desc_len, mr_len,
		       state->ndesc, state->nmdesc);
}
#endif

1583 1584 1585 1586 1587 1588 1589 1590 1591
/**
 * srp_map_data() - map SCSI data buffer onto an SRP request
 * @scmnd: SCSI command to map
 * @ch: SRP RDMA channel
 * @req: SRP request
 *
 * Returns the length in bytes of the SRP_CMD IU or a negative value if
 * mapping failed.
 */
1592
static int srp_map_data(struct scsi_cmnd *scmnd, struct srp_rdma_ch *ch,
1593 1594
			struct srp_request *req)
{
1595
	struct srp_target_port *target = ch->target;
1596
	struct ib_pd *pd = target->pd;
1597
	struct scatterlist *scat;
1598
	struct srp_cmd *cmd = req->cmd->buf;
1599
	int len, nents, count, ret;
1600 1601
	struct srp_device *dev;
	struct ib_device *ibdev;
1602 1603
	struct srp_map_state state;
	struct srp_indirect_buf *indirect_hdr;
1604 1605
	u32 idb_len, table_len;
	__be32 idb_rkey;
1606
	u8 fmt;
1607

1608
	if (!scsi_sglist(scmnd) || scmnd->sc_data_direction == DMA_NONE)
1609 1610 1611 1612
		return sizeof (struct srp_cmd);

	if (scmnd->sc_data_direction != DMA_FROM_DEVICE &&
	    scmnd->sc_data_direction != DMA_TO_DEVICE) {
1613 1614 1615
		shost_printk(KERN_WARNING, target->scsi_host,
			     PFX "Unhandled data direction %d\n",
			     scmnd->sc_data_direction);
1616 1617 1618
		return -EINVAL;
	}

1619 1620
	nents = scsi_sg_count(scmnd);
	scat  = scsi_sglist(scmnd);
1621

1622
	dev = target->srp_host->srp_dev;
1623 1624 1625
	ibdev = dev->dev;

	count = ib_dma_map_sg(ibdev, scat, nents, scmnd->sc_data_direction);
1626 1627
	if (unlikely(count == 0))
		return -EIO;
1628 1629 1630

	fmt = SRP_DATA_DESC_DIRECT;
	len = sizeof (struct srp_cmd) +	sizeof (struct srp_direct_buf);
1631

1632
	if (count == 1 && (pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)) {
1633 1634 1635 1636 1637 1638
		/*
		 * The midlayer only generated a single gather/scatter
		 * entry, or DMA mapping coalesced everything to a
		 * single entry.  So a direct descriptor along with
		 * the DMA MR suffices.
		 */
1639
		struct srp_direct_buf *buf = (void *) cmd->add_data;
1640

1641
		buf->va  = cpu_to_be64(ib_sg_dma_address(ibdev, scat));
1642
		buf->key = cpu_to_be32(pd->unsafe_global_rkey);
1643
		buf->len = cpu_to_be32(ib_sg_dma_len(ibdev, scat));
1644

1645
		req->nmdesc = 0;
1646 1647 1648
		goto map_complete;
	}

1649 1650 1651
	/*
	 * We have more than one scatter/gather entry, so build our indirect
	 * descriptor table, trying to merge as many entries as we can.
1652 1653 1654
	 */
	indirect_hdr = (void *) cmd->add_data;

1655 1656 1657
	ib_dma_sync_single_for_cpu(ibdev, req->indirect_dma_addr,
				   target->indirect_size, DMA_TO_DEVICE);

1658
	memset(&state, 0, sizeof(state));
1659
	state.desc = req->indirect_desc;
Sagi Grimberg's avatar
Sagi Grimberg committed
1660
	if (dev->use_fast_reg)
1661
		ret = srp_map_sg_fr(&state, ch, req, scat, count);
Sagi Grimberg's avatar
Sagi Grimberg committed
1662
	else if (dev->use_fmr)
1663
		ret = srp_map_sg_fmr(&state, ch, req, scat, count);
Sagi Grimberg's avatar
Sagi Grimberg committed
1664
	else
1665 1666 1667 1668
		ret = srp_map_sg_dma(&state, ch, req, scat, count);
	req->nmdesc = state.nmdesc;
	if (ret < 0)
		goto unmap;
1669

1670 1671 1672 1673 1674 1675 1676 1677
#if defined(DYNAMIC_DEBUG)
	{
		DEFINE_DYNAMIC_DEBUG_METADATA(ddm,
			"Memory mapping consistency check");
		if (unlikely(ddm.flags & _DPRINTK_FLAGS_PRINT))
			srp_check_mapping(&state, ch, req, scat, count);
	}
#endif
1678

1679 1680 1681 1682 1683
	/* We've mapped the request, now pull as much of the indirect
	 * descriptor table as we can into the command buffer. If this
	 * target is not using an external indirect table, we are
	 * guaranteed to fit into the command, as the SCSI layer won't
	 * give us more S/G entries than we allow.
1684 1685
	 */
	if (state.ndesc == 1) {
1686 1687
		/*
		 * Memory registration collapsed the sg-list into one entry,
1688 1689 1690
		 * so use a direct descriptor.
		 */
		struct srp_direct_buf *buf = (void *) cmd->add_data;
1691

1692
		*buf = req->indirect_desc[0];
1693
		goto map_complete;
1694 1695
	}

1696 1697 1698 1699
	if (unlikely(target->cmd_sg_cnt < state.ndesc &&
						!target->allow_ext_sg)) {
		shost_printk(KERN_ERR, target->scsi_host,
			     "Could not fit S/G list into SRP_CMD\n");
1700 1701
		ret = -EIO;
		goto unmap;
1702 1703 1704
	}

	count = min(state.ndesc, target->cmd_sg_cnt);
1705
	table_len = state.ndesc * sizeof (struct srp_direct_buf);
1706
	idb_len = sizeof(struct srp_indirect_buf) + table_len;
1707 1708 1709

	fmt = SRP_DATA_DESC_INDIRECT;
	len = sizeof(struct srp_cmd) + sizeof (struct srp_indirect_buf);
1710
	len += count * sizeof (struct srp_direct_buf);
1711

1712 1713
	memcpy(indirect_hdr->desc_list, req->indirect_desc,
	       count * sizeof (struct srp_direct_buf));
1714

1715
	if (!(pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)) {
1716 1717 1718
		ret = srp_map_idb(ch, req, state.gen.next, state.gen.end,
				  idb_len, &idb_rkey);
		if (ret < 0)
1719
			goto unmap;
1720 1721
		req->nmdesc++;
	} else {
1722
		idb_rkey = cpu_to_be32(pd->unsafe_global_rkey);
1723 1724
	}

1725
	indirect_hdr->table_desc.va = cpu_to_be64(req->indirect_dma_addr);
1726
	indirect_hdr->table_desc.key = idb_rkey;
1727 1728 1729 1730
	indirect_hdr->table_desc.len = cpu_to_be32(table_len);
	indirect_hdr->len = cpu_to_be32(state.total_len);

	if (scmnd->sc_data_direction == DMA_TO_DEVICE)
1731
		cmd->data_out_desc_cnt = count;
1732
	else
1733 1734 1735 1736
		cmd->data_in_desc_cnt = count;

	ib_dma_sync_single_for_device(ibdev, req->indirect_dma_addr, table_len,
				      DMA_TO_DEVICE);
1737 1738

map_complete:
1739 1740 1741 1742 1743 1744
	if (scmnd->sc_data_direction == DMA_TO_DEVICE)
		cmd->buf_fmt = fmt << 4;
	else
		cmd->buf_fmt = fmt;

	return len;
1745 1746 1747

unmap:
	srp_unmap_data(scmnd, ch, req);
1748 1749
	if (ret == -ENOMEM && req->nmdesc >= target->mr_pool_size)
		ret = -E2BIG;
1750
	return ret;
1751 1752
}

1753 1754 1755
/*
 * Return an IU and possible credit to the free pool
 */
1756
static void srp_put_tx_iu(struct srp_rdma_ch *ch, struct srp_iu *iu,
1757 1758 1759 1760
			  enum srp_iu_type iu_type)
{
	unsigned long flags;

1761 1762
	spin_lock_irqsave(&ch->lock, flags);
	list_add(&iu->list, &ch->free_tx);
1763
	if (iu_type != SRP_IU_RSP)
1764 1765
		++ch->req_lim;
	spin_unlock_irqrestore(&ch->lock, flags);
1766 1767
}

1768
/*
1769
 * Must be called with ch->lock held to protect req_lim and free_tx.
1770
 * If IU is not sent, it must be returned using srp_put_tx_iu().
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
 *
 * Note:
 * An upper limit for the number of allocated information units for each
 * request type is:
 * - SRP_IU_CMD: SRP_CMD_SQ_SIZE, since the SCSI mid-layer never queues
 *   more than Scsi_Host.can_queue requests.
 * - SRP_IU_TSK_MGMT: SRP_TSK_MGMT_SQ_SIZE.
 * - SRP_IU_RSP: 1, since a conforming SRP target never sends more than
 *   one unanswered SRP request to an initiator.
 */
1781
static struct srp_iu *__srp_get_tx_iu(struct srp_rdma_ch *ch,
1782 1783
				      enum srp_iu_type iu_type)
{
1784
	struct srp_target_port *target = ch->target;
1785 1786 1787
	s32 rsv = (iu_type == SRP_IU_TSK_MGMT) ? 0 : SRP_TSK_MGMT_SQ_SIZE;
	struct srp_iu *iu;

1788
	ib_process_cq_direct(ch->send_cq, -1);
1789

1790
	if (list_empty(&ch->free_tx))
1791 1792 1793
		return NULL;

	/* Initiator responses to target requests do not consume credits */
1794
	if (iu_type != SRP_IU_RSP) {
1795
		if (ch->req_lim <= rsv) {
1796 1797 1798 1799
			++target->zero_req_lim;
			return NULL;
		}

1800
		--ch->req_lim;
1801 1802
	}

1803
	iu = list_first_entry(&ch->free_tx, struct srp_iu, list);
1804
	list_del(&iu->list);
1805 1806 1807
	return iu;
}

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
static void srp_send_done(struct ib_cq *cq, struct ib_wc *wc)
{
	struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe);
	struct srp_rdma_ch *ch = cq->cq_context;

	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		srp_handle_qp_err(cq, wc, "SEND");
		return;
	}

	list_add(&iu->list, &ch->free_tx);
}

1821
static int srp_post_send(struct srp_rdma_ch *ch, struct srp_iu *iu, int len)
1822
{
1823
	struct srp_target_port *target = ch->target;
1824 1825 1826 1827 1828
	struct ib_sge list;
	struct ib_send_wr wr, *bad_wr;

	list.addr   = iu->dma;
	list.length = len;
1829
	list.lkey   = target->lkey;
1830

1831 1832
	iu->cqe.done = srp_send_done;

1833
	wr.next       = NULL;
1834
	wr.wr_cqe     = &iu->cqe;
1835 1836 1837 1838 1839
	wr.sg_list    = &list;
	wr.num_sge    = 1;
	wr.opcode     = IB_WR_SEND;
	wr.send_flags = IB_SEND_SIGNALED;

1840
	return ib_post_send(ch->qp, &wr, &bad_wr);
1841 1842
}

1843
static int srp_post_recv(struct srp_rdma_ch *ch, struct srp_iu *iu)
1844
{
1845
	struct srp_target_port *target = ch->target;
1846
	struct ib_recv_wr wr, *bad_wr;
1847
	struct ib_sge list;
1848 1849 1850

	list.addr   = iu->dma;
	list.length = iu->size;
1851
	list.lkey   = target->lkey;
1852

1853 1854
	iu->cqe.done = srp_recv_done;

1855
	wr.next     = NULL;
1856
	wr.wr_cqe   = &iu->cqe;
1857 1858 1859
	wr.sg_list  = &list;
	wr.num_sge  = 1;

1860
	return ib_post_recv(ch->qp, &wr, &bad_wr);
1861 1862
}

1863
static void srp_process_rsp(struct srp_rdma_ch *ch, struct srp_rsp *rsp)
1864
{
1865
	struct srp_target_port *target = ch->target;
1866 1867 1868 1869 1870
	struct srp_request *req;
	struct scsi_cmnd *scmnd;
	unsigned long flags;

	if (unlikely(rsp->tag & SRP_TAG_TSK_MGMT)) {
1871 1872 1873
		spin_lock_irqsave(&ch->lock, flags);
		ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
		spin_unlock_irqrestore(&ch->lock, flags);
1874

1875
		ch->tsk_mgmt_status = -1;
1876
		if (be32_to_cpu(rsp->resp_data_len) >= 4)
1877 1878
			ch->tsk_mgmt_status = rsp->data[3];
		complete(&ch->tsk_mgmt_done);
1879
	} else {
1880 1881 1882 1883 1884
		scmnd = scsi_host_find_tag(target->scsi_host, rsp->tag);
		if (scmnd) {
			req = (void *)scmnd->host_scribble;
			scmnd = srp_claim_req(ch, req, NULL, scmnd);
		}
1885
		if (!scmnd) {
1886
			shost_printk(KERN_ERR, target->scsi_host,
1887 1888
				     "Null scmnd for RSP w/tag %#016llx received on ch %td / QP %#x\n",
				     rsp->tag, ch - target->ch, ch->qp->qp_num);
1889

1890 1891 1892
			spin_lock_irqsave(&ch->lock, flags);
			ch->req_lim += be32_to_cpu(rsp->req_lim_delta);
			spin_unlock_irqrestore(&ch->lock, flags);
1893 1894 1895

			return;
		}
1896 1897 1898 1899 1900 1901 1902 1903 1904
		scmnd->result = rsp->status;

		if (rsp->flags & SRP_RSP_FLAG_SNSVALID) {
			memcpy(scmnd->sense_buffer, rsp->data +
			       be32_to_cpu(rsp->resp_data_len),
			       min_t(int, be32_to_cpu(rsp->sense_data_len),
				     SCSI_SENSE_BUFFERSIZE));
		}

1905
		if (unlikely(rsp->flags & SRP_RSP_FLAG_DIUNDER))
1906
			scsi_set_resid(scmnd, be32_to_cpu(rsp->data_in_res_cnt));
1907 1908 1909 1910 1911 1912
		else if (unlikely(rsp->flags & SRP_RSP_FLAG_DIOVER))
			scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_in_res_cnt));
		else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOUNDER))
			scsi_set_resid(scmnd, be32_to_cpu(rsp->data_out_res_cnt));
		else if (unlikely(rsp->flags & SRP_RSP_FLAG_DOOVER))
			scsi_set_resid(scmnd, -be32_to_cpu(rsp->data_out_res_cnt));
1913

1914
		srp_free_req(ch, req, scmnd,
1915 1916
			     be32_to_cpu(rsp->req_lim_delta));

1917 1918
		scmnd->host_scribble = NULL;
		scmnd->scsi_done(scmnd);
1919 1920 1921
	}
}

1922
static int srp_response_common(struct srp_rdma_ch *ch, s32 req_delta,
1923 1924
			       void *rsp, int len)
{
1925
	struct srp_target_port *target = ch->target;
1926
	struct ib_device *dev = target->srp_host->srp_dev->dev;
1927 1928
	unsigned long flags;
	struct srp_iu *iu;
1929
	int err;
1930

1931 1932 1933 1934
	spin_lock_irqsave(&ch->lock, flags);
	ch->req_lim += req_delta;
	iu = __srp_get_tx_iu(ch, SRP_IU_RSP);
	spin_unlock_irqrestore(&ch->lock, flags);
1935

1936 1937 1938
	if (!iu) {
		shost_printk(KERN_ERR, target->scsi_host, PFX
			     "no IU available to send response\n");
1939
		return 1;
1940 1941 1942 1943 1944 1945
	}

	ib_dma_sync_single_for_cpu(dev, iu->dma, len, DMA_TO_DEVICE);
	memcpy(iu->buf, rsp, len);
	ib_dma_sync_single_for_device(dev, iu->dma, len, DMA_TO_DEVICE);

1946
	err = srp_post_send(ch, iu, len);
1947
	if (err) {
1948 1949
		shost_printk(KERN_ERR, target->scsi_host, PFX
			     "unable to post response: %d\n", err);
1950
		srp_put_tx_iu(ch, iu, SRP_IU_RSP);
1951
	}
1952 1953 1954 1955

	return err;
}

1956
static void srp_process_cred_req(struct srp_rdma_ch *ch,
1957 1958 1959 1960 1961 1962 1963 1964
				 struct srp_cred_req *req)
{
	struct srp_cred_rsp rsp = {
		.opcode = SRP_CRED_RSP,
		.tag = req->tag,
	};
	s32 delta = be32_to_cpu(req->req_lim_delta);

1965 1966
	if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
		shost_printk(KERN_ERR, ch->target->scsi_host, PFX
1967 1968 1969
			     "problems processing SRP_CRED_REQ\n");
}

1970
static void srp_process_aer_req(struct srp_rdma_ch *ch,
1971 1972
				struct srp_aer_req *req)
{
1973
	struct srp_target_port *target = ch->target;
1974 1975 1976 1977 1978 1979 1980
	struct srp_aer_rsp rsp = {
		.opcode = SRP_AER_RSP,
		.tag = req->tag,
	};
	s32 delta = be32_to_cpu(req->req_lim_delta);

	shost_printk(KERN_ERR, target->scsi_host, PFX
1981
		     "ignoring AER for LUN %llu\n", scsilun_to_int(&req->lun));
1982

1983
	if (srp_response_common(ch, delta, &rsp, sizeof(rsp)))
1984 1985 1986 1987
		shost_printk(KERN_ERR, target->scsi_host, PFX
			     "problems processing SRP_AER_REQ\n");
}

1988
static void srp_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1989
{
1990 1991
	struct srp_iu *iu = container_of(wc->wr_cqe, struct srp_iu, cqe);
	struct srp_rdma_ch *ch = cq->cq_context;
1992
	struct srp_target_port *target = ch->target;
1993
	struct ib_device *dev = target->srp_host->srp_dev->dev;
1994
	int res;
1995 1996
	u8 opcode;

1997 1998 1999 2000 2001
	if (unlikely(wc->status != IB_WC_SUCCESS)) {
		srp_handle_qp_err(cq, wc, "RECV");
		return;
	}

2002
	ib_dma_sync_single_for_cpu(dev, iu->dma, ch->max_ti_iu_len,
2003
				   DMA_FROM_DEVICE);
2004 2005 2006 2007

	opcode = *(u8 *) iu->buf;

	if (0) {
2008 2009
		shost_printk(KERN_ERR, target->scsi_host,
			     PFX "recv completion, opcode 0x%02x\n", opcode);
2010 2011
		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 8, 1,
			       iu->buf, wc->byte_len, true);
2012 2013 2014 2015
	}

	switch (opcode) {
	case SRP_RSP:
2016
		srp_process_rsp(ch, iu->buf);
2017 2018
		break;

2019
	case SRP_CRED_REQ:
2020
		srp_process_cred_req(ch, iu->buf);
2021 2022 2023
		break;

	case SRP_AER_REQ:
2024
		srp_process_aer_req(ch, iu->buf);
2025 2026
		break;

2027 2028
	case SRP_T_LOGOUT:
		/* XXX Handle target logout */
2029 2030
		shost_printk(KERN_WARNING, target->scsi_host,
			     PFX "Got target logout request\n");
2031 2032 2033
		break;

	default:
2034 2035
		shost_printk(KERN_WARNING, target->scsi_host,
			     PFX "Unhandled SRP opcode 0x%02x\n", opcode);
2036 2037 2038
		break;
	}

2039
	ib_dma_sync_single_for_device(dev, iu->dma, ch->max_ti_iu_len,
2040
				      DMA_FROM_DEVICE);
2041

2042
	res = srp_post_recv(ch, iu);
2043 2044 2045
	if (res != 0)
		shost_printk(KERN_ERR, target->scsi_host,
			     PFX "Recv failed with error code %d\n", res);
2046 2047
}

2048 2049
/**
 * srp_tl_err_work() - handle a transport layer error
2050
 * @work: Work structure embedded in an SRP target port.
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
 *
 * Note: This function may get invoked before the rport has been created,
 * hence the target->rport test.
 */
static void srp_tl_err_work(struct work_struct *work)
{
	struct srp_target_port *target;

	target = container_of(work, struct srp_target_port, tl_err_work);
	if (target->rport)
		srp_start_tl_fail_timers(target->rport);
}

2064 2065
static void srp_handle_qp_err(struct ib_cq *cq, struct ib_wc *wc,
		const char *opname)
2066
{
2067
	struct srp_rdma_ch *ch = cq->cq_context;
2068 2069
	struct srp_target_port *target = ch->target;

2070
	if (ch->connected && !target->qp_in_error) {
2071 2072 2073 2074
		shost_printk(KERN_ERR, target->scsi_host,
			     PFX "failed %s status %s (%d) for CQE %p\n",
			     opname, ib_wc_status_msg(wc->status), wc->status,
			     wc->wr_cqe);
2075
		queue_work(system_long_wq, &target->tl_err_work);
2076
	}
2077 2078 2079
	target->qp_in_error = true;
}

2080
static int srp_queuecommand(struct Scsi_Host *shost, struct scsi_cmnd *scmnd)
2081
{
2082
	struct srp_target_port *target = host_to_target(shost);
2083
	struct srp_rport *rport = target->rport;
2084
	struct srp_rdma_ch *ch;
2085 2086 2087
	struct srp_request *req;
	struct srp_iu *iu;
	struct srp_cmd *cmd;
2088
	struct ib_device *dev;
2089
	unsigned long flags;
2090 2091
	u32 tag;
	u16 idx;
2092
	int len, ret;
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
	const bool in_scsi_eh = !in_interrupt() && current == shost->ehandler;

	/*
	 * The SCSI EH thread is the only context from which srp_queuecommand()
	 * can get invoked for blocked devices (SDEV_BLOCK /
	 * SDEV_CREATED_BLOCK). Avoid racing with srp_reconnect_rport() by
	 * locking the rport mutex if invoked from inside the SCSI EH.
	 */
	if (in_scsi_eh)
		mutex_lock(&rport->mutex);
2103

2104 2105 2106
	scmnd->result = srp_chkready(target->rport);
	if (unlikely(scmnd->result))
		goto err;
2107

2108 2109
	WARN_ON_ONCE(scmnd->request->tag < 0);
	tag = blk_mq_unique_tag(scmnd->request);
2110
	ch = &target->ch[blk_mq_unique_tag_to_hwq(tag)];
2111 2112 2113 2114
	idx = blk_mq_unique_tag_to_tag(tag);
	WARN_ONCE(idx >= target->req_ring_size, "%s: tag %#x: idx %d >= %d\n",
		  dev_name(&shost->shost_gendev), tag, idx,
		  target->req_ring_size);
2115 2116 2117 2118

	spin_lock_irqsave(&ch->lock, flags);
	iu = __srp_get_tx_iu(ch, SRP_IU_CMD);
	spin_unlock_irqrestore(&ch->lock, flags);
2119

2120 2121 2122 2123
	if (!iu)
		goto err;

	req = &ch->req_ring[idx];
2124
	dev = target->srp_host->srp_dev->dev;
2125
	ib_dma_sync_single_for_cpu(dev, iu->dma, target->max_iu_len,
2126
				   DMA_TO_DEVICE);
2127

2128
	scmnd->host_scribble = (void *) req;
2129 2130 2131 2132 2133

	cmd = iu->buf;
	memset(cmd, 0, sizeof *cmd);

	cmd->opcode = SRP_CMD;
2134
	int_to_scsilun(scmnd->device->lun, &cmd->lun);
2135
	cmd->tag    = tag;
2136 2137 2138 2139 2140
	memcpy(cmd->cdb, scmnd->cmnd, scmnd->cmd_len);

	req->scmnd    = scmnd;
	req->cmd      = iu;

2141
	len = srp_map_data(scmnd, ch, req);
2142
	if (len < 0) {
2143
		shost_printk(KERN_ERR, target->scsi_host,
2144 2145 2146 2147
			     PFX "Failed to map data (%d)\n", len);
		/*
		 * If we ran out of memory descriptors (-ENOMEM) because an
		 * application is queuing many requests with more than
2148
		 * max_pages_per_mr sg-list elements, tell the SCSI mid-layer
2149 2150 2151 2152
		 * to reduce queue depth temporarily.
		 */
		scmnd->result = len == -ENOMEM ?
			DID_OK << 16 | QUEUE_FULL << 1 : DID_ERROR << 16;
2153
		goto err_iu;
2154 2155
	}

2156
	ib_dma_sync_single_for_device(dev, iu->dma, target->max_iu_len,
2157
				      DMA_TO_DEVICE);
2158

2159
	if (srp_post_send(ch, iu, len)) {
2160
		shost_printk(KERN_ERR, target->scsi_host, PFX "Send failed\n");
2161 2162 2163
		goto err_unmap;
	}

2164 2165
	ret = 0;

2166 2167 2168 2169
unlock_rport:
	if (in_scsi_eh)
		mutex_unlock(&rport->mutex);

2170
	return ret;
2171 2172

err_unmap:
2173
	srp_unmap_data(scmnd, ch, req);
2174

2175
err_iu:
2176
	srp_put_tx_iu(ch, iu, SRP_IU_CMD);
2177

2178 2179 2180 2181 2182 2183
	/*
	 * Avoid that the loops that iterate over the request ring can
	 * encounter a dangling SCSI command pointer.
	 */
	req->scmnd = NULL;

2184 2185 2186 2187 2188 2189 2190
err:
	if (scmnd->result) {
		scmnd->scsi_done(scmnd);
		ret = 0;
	} else {
		ret = SCSI_MLQUEUE_HOST_BUSY;
	}
2191

2192
	goto unlock_rport;
2193 2194
}

2195 2196
/*
 * Note: the resources allocated in this function are freed in
2197
 * srp_free_ch_ib().
2198
 */
2199
static int srp_alloc_iu_bufs(struct srp_rdma_ch *ch)
2200
{
2201
	struct srp_target_port *target = ch->target;
2202 2203
	int i;

2204 2205 2206
	ch->rx_ring = kcalloc(target->queue_size, sizeof(*ch->rx_ring),
			      GFP_KERNEL);
	if (!ch->rx_ring)
2207
		goto err_no_ring;
2208 2209 2210
	ch->tx_ring = kcalloc(target->queue_size, sizeof(*ch->tx_ring),
			      GFP_KERNEL);
	if (!ch->tx_ring)
2211 2212 2213
		goto err_no_ring;

	for (i = 0; i < target->queue_size; ++i) {
2214 2215 2216 2217
		ch->rx_ring[i] = srp_alloc_iu(target->srp_host,
					      ch->max_ti_iu_len,
					      GFP_KERNEL, DMA_FROM_DEVICE);
		if (!ch->rx_ring[i])
2218 2219 2220
			goto err;
	}

2221
	for (i = 0; i < target->queue_size; ++i) {
2222 2223 2224 2225
		ch->tx_ring[i] = srp_alloc_iu(target->srp_host,
					      target->max_iu_len,
					      GFP_KERNEL, DMA_TO_DEVICE);
		if (!ch->tx_ring[i])
2226
			goto err;
2227

2228
		list_add(&ch->tx_ring[i]->list, &ch->free_tx);
2229 2230 2231 2232 2233
	}

	return 0;

err:
2234
	for (i = 0; i < target->queue_size; ++i) {
2235 2236
		srp_free_iu(target->srp_host, ch->rx_ring[i]);
		srp_free_iu(target->srp_host, ch->tx_ring[i]);
2237 2238
	}

2239 2240

err_no_ring:
2241 2242 2243 2244
	kfree(ch->tx_ring);
	ch->tx_ring = NULL;
	kfree(ch->rx_ring);
	ch->rx_ring = NULL;
2245

2246 2247 2248
	return -ENOMEM;
}

2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
static uint32_t srp_compute_rq_tmo(struct ib_qp_attr *qp_attr, int attr_mask)
{
	uint64_t T_tr_ns, max_compl_time_ms;
	uint32_t rq_tmo_jiffies;

	/*
	 * According to section 11.2.4.2 in the IBTA spec (Modify Queue Pair,
	 * table 91), both the QP timeout and the retry count have to be set
	 * for RC QP's during the RTR to RTS transition.
	 */
	WARN_ON_ONCE((attr_mask & (IB_QP_TIMEOUT | IB_QP_RETRY_CNT)) !=
		     (IB_QP_TIMEOUT | IB_QP_RETRY_CNT));

	/*
	 * Set target->rq_tmo_jiffies to one second more than the largest time
	 * it can take before an error completion is generated. See also
	 * C9-140..142 in the IBTA spec for more information about how to
	 * convert the QP Local ACK Timeout value to nanoseconds.
	 */
	T_tr_ns = 4096 * (1ULL << qp_attr->timeout);
	max_compl_time_ms = qp_attr->retry_cnt * 4 * T_tr_ns;
	do_div(max_compl_time_ms, NSEC_PER_MSEC);
	rq_tmo_jiffies = msecs_to_jiffies(max_compl_time_ms + 1000);

	return rq_tmo_jiffies;
}

2276
static void srp_cm_rep_handler(struct ib_cm_id *cm_id,
2277
			       const struct srp_login_rsp *lrsp,
2278
			       struct srp_rdma_ch *ch)
2279
{
2280
	struct srp_target_port *target = ch->target;
2281 2282 2283 2284 2285 2286
	struct ib_qp_attr *qp_attr = NULL;
	int attr_mask = 0;
	int ret;
	int i;

	if (lrsp->opcode == SRP_LOGIN_RSP) {
2287 2288
		ch->max_ti_iu_len = be32_to_cpu(lrsp->max_ti_iu_len);
		ch->req_lim       = be32_to_cpu(lrsp->req_lim_delta);
2289 2290 2291 2292 2293 2294

		/*
		 * Reserve credits for task management so we don't
		 * bounce requests back to the SCSI mid-layer.
		 */
		target->scsi_host->can_queue
2295
			= min(ch->req_lim - SRP_TSK_MGMT_SQ_SIZE,
2296
			      target->scsi_host->can_queue);
2297 2298 2299
		target->scsi_host->cmd_per_lun
			= min_t(int, target->scsi_host->can_queue,
				target->scsi_host->cmd_per_lun);
2300 2301 2302 2303 2304 2305 2306
	} else {
		shost_printk(KERN_WARNING, target->scsi_host,
			     PFX "Unhandled RSP opcode %#x\n", lrsp->opcode);
		ret = -ECONNRESET;
		goto error;
	}

2307 2308
	if (!ch->rx_ring) {
		ret = srp_alloc_iu_bufs(ch);
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
		if (ret)
			goto error;
	}

	ret = -ENOMEM;
	qp_attr = kmalloc(sizeof *qp_attr, GFP_KERNEL);
	if (!qp_attr)
		goto error;

	qp_attr->qp_state = IB_QPS_RTR;
	ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
	if (ret)
		goto error_free;

2323
	ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2324 2325 2326
	if (ret)
		goto error_free;

2327
	for (i = 0; i < target->queue_size; i++) {
2328 2329 2330
		struct srp_iu *iu = ch->rx_ring[i];

		ret = srp_post_recv(ch, iu);
2331 2332 2333 2334 2335 2336 2337 2338 2339
		if (ret)
			goto error_free;
	}

	qp_attr->qp_state = IB_QPS_RTS;
	ret = ib_cm_init_qp_attr(cm_id, qp_attr, &attr_mask);
	if (ret)
		goto error_free;

2340 2341
	target->rq_tmo_jiffies = srp_compute_rq_tmo(qp_attr, attr_mask);

2342
	ret = ib_modify_qp(ch->qp, qp_attr, attr_mask);
2343 2344 2345 2346 2347 2348 2349 2350 2351
	if (ret)
		goto error_free;

	ret = ib_send_cm_rtu(cm_id, NULL, 0);

error_free:
	kfree(qp_attr);

error:
2352
	ch->status = ret;
2353 2354
}

2355 2356
static void srp_cm_rej_handler(struct ib_cm_id *cm_id,
			       struct ib_cm_event *event,
2357
			       struct srp_rdma_ch *ch)
2358
{
2359
	struct srp_target_port *target = ch->target;
2360
	struct Scsi_Host *shost = target->scsi_host;
2361 2362 2363 2364 2365 2366
	struct ib_class_port_info *cpi;
	int opcode;

	switch (event->param.rej_rcvd.reason) {
	case IB_CM_REJ_PORT_CM_REDIRECT:
		cpi = event->param.rej_rcvd.ari;
2367 2368
		ch->path.dlid = cpi->redirect_lid;
		ch->path.pkey = cpi->redirect_pkey;
2369
		cm_id->remote_cm_qpn = be32_to_cpu(cpi->redirect_qp) & 0x00ffffff;
2370
		memcpy(ch->path.dgid.raw, cpi->redirect_gid, 16);
2371

2372
		ch->status = ch->path.dlid ?
2373 2374 2375 2376
			SRP_DLID_REDIRECT : SRP_PORT_REDIRECT;
		break;

	case IB_CM_REJ_PORT_REDIRECT:
2377
		if (srp_target_is_topspin(target)) {
2378 2379 2380 2381 2382
			/*
			 * Topspin/Cisco SRP gateways incorrectly send
			 * reject reason code 25 when they mean 24
			 * (port redirect).
			 */
2383
			memcpy(ch->path.dgid.raw,
2384 2385
			       event->param.rej_rcvd.ari, 16);

2386 2387
			shost_printk(KERN_DEBUG, shost,
				     PFX "Topspin/Cisco redirect to target port GID %016llx%016llx\n",
2388 2389
				     be64_to_cpu(ch->path.dgid.global.subnet_prefix),
				     be64_to_cpu(ch->path.dgid.global.interface_id));
2390

2391
			ch->status = SRP_PORT_REDIRECT;
2392
		} else {
2393 2394
			shost_printk(KERN_WARNING, shost,
				     "  REJ reason: IB_CM_REJ_PORT_REDIRECT\n");
2395
			ch->status = -ECONNRESET;
2396 2397 2398 2399
		}
		break;

	case IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID:
2400 2401
		shost_printk(KERN_WARNING, shost,
			    "  REJ reason: IB_CM_REJ_DUPLICATE_LOCAL_COMM_ID\n");
2402
		ch->status = -ECONNRESET;
2403 2404 2405 2406 2407 2408 2409 2410 2411
		break;

	case IB_CM_REJ_CONSUMER_DEFINED:
		opcode = *(u8 *) event->private_data;
		if (opcode == SRP_LOGIN_REJ) {
			struct srp_login_rej *rej = event->private_data;
			u32 reason = be32_to_cpu(rej->reason);

			if (reason == SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE)
2412 2413
				shost_printk(KERN_WARNING, shost,
					     PFX "SRP_LOGIN_REJ: requested max_it_iu_len too large\n");
2414
			else
Bart Van Assche's avatar
Bart Van Assche committed
2415 2416
				shost_printk(KERN_WARNING, shost, PFX
					     "SRP LOGIN from %pI6 to %pI6 REJECTED, reason 0x%08x\n",
2417 2418
					     target->sgid.raw,
					     target->orig_dgid.raw, reason);
2419
		} else
2420 2421 2422
			shost_printk(KERN_WARNING, shost,
				     "  REJ reason: IB_CM_REJ_CONSUMER_DEFINED,"
				     " opcode 0x%02x\n", opcode);
2423
		ch->status = -ECONNRESET;
2424 2425
		break;

2426 2427
	case IB_CM_REJ_STALE_CONN:
		shost_printk(KERN_WARNING, shost, "  REJ reason: stale connection\n");
2428
		ch->status = SRP_STALE_CONN;
2429 2430
		break;

2431
	default:
2432 2433
		shost_printk(KERN_WARNING, shost, "  REJ reason 0x%x\n",
			     event->param.rej_rcvd.reason);
2434
		ch->status = -ECONNRESET;
2435 2436 2437 2438 2439
	}
}

static int srp_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
{
2440 2441
	struct srp_rdma_ch *ch = cm_id->context;
	struct srp_target_port *target = ch->target;
2442 2443 2444 2445
	int comp = 0;

	switch (event->event) {
	case IB_CM_REQ_ERROR:
2446 2447
		shost_printk(KERN_DEBUG, target->scsi_host,
			     PFX "Sending CM REQ failed\n");
2448
		comp = 1;
2449
		ch->status = -ECONNRESET;
2450 2451 2452 2453
		break;

	case IB_CM_REP_RECEIVED:
		comp = 1;
2454
		srp_cm_rep_handler(cm_id, event->private_data, ch);
2455 2456 2457
		break;

	case IB_CM_REJ_RECEIVED:
2458
		shost_printk(KERN_DEBUG, target->scsi_host, PFX "REJ received\n");
2459 2460
		comp = 1;

2461
		srp_cm_rej_handler(cm_id, event, ch);
2462 2463
		break;

2464
	case IB_CM_DREQ_RECEIVED:
2465 2466
		shost_printk(KERN_WARNING, target->scsi_host,
			     PFX "DREQ received - connection closed\n");
2467
		ch->connected = false;
2468
		if (ib_send_cm_drep(cm_id, NULL, 0))
2469 2470
			shost_printk(KERN_ERR, target->scsi_host,
				     PFX "Sending CM DREP failed\n");
2471
		queue_work(system_long_wq, &target->tl_err_work);
2472 2473 2474
		break;

	case IB_CM_TIMEWAIT_EXIT:
2475 2476
		shost_printk(KERN_ERR, target->scsi_host,
			     PFX "connection closed\n");
2477
		comp = 1;
2478

2479
		ch->status = 0;
2480 2481
		break;

2482 2483 2484 2485 2486
	case IB_CM_MRA_RECEIVED:
	case IB_CM_DREQ_ERROR:
	case IB_CM_DREP_RECEIVED:
		break;

2487
	default:
2488 2489
		shost_printk(KERN_WARNING, target->scsi_host,
			     PFX "Unhandled CM event %d\n", event->event);
2490 2491 2492 2493
		break;
	}

	if (comp)
2494
		complete(&ch->done);
2495 2496 2497 2498

	return 0;
}

2499 2500 2501 2502 2503 2504 2505 2506
/**
 * srp_change_queue_depth - setting device queue depth
 * @sdev: scsi device struct
 * @qdepth: requested queue depth
 *
 * Returns queue depth.
 */
static int
2507
srp_change_queue_depth(struct scsi_device *sdev, int qdepth)
2508
{
2509
	if (!sdev->tagged_supported)
2510
		qdepth = 1;
2511
	return scsi_change_queue_depth(sdev, qdepth);
2512 2513
}

2514 2515
static int srp_send_tsk_mgmt(struct srp_rdma_ch *ch, u64 req_tag, u64 lun,
			     u8 func)
2516
{
2517
	struct srp_target_port *target = ch->target;
2518
	struct srp_rport *rport = target->rport;
2519
	struct ib_device *dev = target->srp_host->srp_dev->dev;
2520 2521 2522
	struct srp_iu *iu;
	struct srp_tsk_mgmt *tsk_mgmt;

2523
	if (!ch->connected || target->qp_in_error)
2524 2525
		return -1;

2526
	init_completion(&ch->tsk_mgmt_done);
2527

2528
	/*
2529
	 * Lock the rport mutex to avoid that srp_create_ch_ib() is
2530 2531 2532
	 * invoked while a task management function is being sent.
	 */
	mutex_lock(&rport->mutex);
2533 2534 2535
	spin_lock_irq(&ch->lock);
	iu = __srp_get_tx_iu(ch, SRP_IU_TSK_MGMT);
	spin_unlock_irq(&ch->lock);
2536

2537 2538 2539
	if (!iu) {
		mutex_unlock(&rport->mutex);

2540
		return -1;
2541
	}
2542

2543 2544
	ib_dma_sync_single_for_cpu(dev, iu->dma, sizeof *tsk_mgmt,
				   DMA_TO_DEVICE);
2545 2546 2547 2548
	tsk_mgmt = iu->buf;
	memset(tsk_mgmt, 0, sizeof *tsk_mgmt);

	tsk_mgmt->opcode 	= SRP_TSK_MGMT;
2549
	int_to_scsilun(lun, &tsk_mgmt->lun);
2550
	tsk_mgmt->tag		= req_tag | SRP_TAG_TSK_MGMT;
2551
	tsk_mgmt->tsk_mgmt_func = func;
2552
	tsk_mgmt->task_tag	= req_tag;
2553

2554 2555
	ib_dma_sync_single_for_device(dev, iu->dma, sizeof *tsk_mgmt,
				      DMA_TO_DEVICE);
2556 2557
	if (srp_post_send(ch, iu, sizeof(*tsk_mgmt))) {
		srp_put_tx_iu(ch, iu, SRP_IU_TSK_MGMT);
2558 2559
		mutex_unlock(&rport->mutex);

2560 2561
		return -1;
	}
2562
	mutex_unlock(&rport->mutex);
2563

2564
	if (!wait_for_completion_timeout(&ch->tsk_mgmt_done,
2565
					 msecs_to_jiffies(SRP_ABORT_TIMEOUT_MS)))
2566
		return -1;
2567

2568 2569 2570
	return 0;
}

2571 2572
static int srp_abort(struct scsi_cmnd *scmnd)
{
2573
	struct srp_target_port *target = host_to_target(scmnd->device->host);
2574
	struct srp_request *req = (struct srp_request *) scmnd->host_scribble;
2575
	u32 tag;
2576
	u16 ch_idx;
2577
	struct srp_rdma_ch *ch;
2578
	int ret;
2579

2580
	shost_printk(KERN_ERR, target->scsi_host, "SRP abort called\n");
2581

2582
	if (!req)
2583
		return SUCCESS;
2584
	tag = blk_mq_unique_tag(scmnd->request);
2585 2586 2587 2588 2589 2590 2591 2592
	ch_idx = blk_mq_unique_tag_to_hwq(tag);
	if (WARN_ON_ONCE(ch_idx >= target->ch_count))
		return SUCCESS;
	ch = &target->ch[ch_idx];
	if (!srp_claim_req(ch, req, NULL, scmnd))
		return SUCCESS;
	shost_printk(KERN_ERR, target->scsi_host,
		     "Sending SRP abort for tag %#x\n", tag);
2593
	if (srp_send_tsk_mgmt(ch, tag, scmnd->device->lun,
2594
			      SRP_TSK_ABORT_TASK) == 0)
2595
		ret = SUCCESS;
2596
	else if (target->rport->state == SRP_RPORT_LOST)
2597
		ret = FAST_IO_FAIL;
2598 2599
	else
		ret = FAILED;
2600
	srp_free_req(ch, req, scmnd, 0);
2601
	scmnd->result = DID_ABORT << 16;
2602
	scmnd->scsi_done(scmnd);
2603

2604
	return ret;
2605 2606 2607 2608
}

static int srp_reset_device(struct scsi_cmnd *scmnd)
{
2609
	struct srp_target_port *target = host_to_target(scmnd->device->host);
2610
	struct srp_rdma_ch *ch;
2611
	int i;
2612

2613
	shost_printk(KERN_ERR, target->scsi_host, "SRP reset_device called\n");
2614

2615
	ch = &target->ch[0];
2616
	if (srp_send_tsk_mgmt(ch, SRP_TAG_NO_REQ, scmnd->device->lun,
2617
			      SRP_TSK_LUN_RESET))
2618
		return FAILED;
2619
	if (ch->tsk_mgmt_status)
2620 2621
		return FAILED;

2622 2623 2624 2625
	for (i = 0; i < target->ch_count; i++) {
		ch = &target->ch[i];
		for (i = 0; i < target->req_ring_size; ++i) {
			struct srp_request *req = &ch->req_ring[i];
2626

2627 2628
			srp_finish_req(ch, req, scmnd->device, DID_RESET << 16);
		}
2629
	}
2630 2631

	return SUCCESS;
2632 2633 2634 2635 2636 2637
}

static int srp_reset_host(struct scsi_cmnd *scmnd)
{
	struct srp_target_port *target = host_to_target(scmnd->device->host);

2638
	shost_printk(KERN_ERR, target->scsi_host, PFX "SRP reset_host called\n");
2639

2640
	return srp_reconnect_rport(target->rport) == 0 ? SUCCESS : FAILED;
2641 2642
}

2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
static int srp_slave_alloc(struct scsi_device *sdev)
{
	struct Scsi_Host *shost = sdev->host;
	struct srp_target_port *target = host_to_target(shost);
	struct srp_device *srp_dev = target->srp_host->srp_dev;
	struct ib_device *ibdev = srp_dev->dev;

	if (!(ibdev->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG))
		blk_queue_virt_boundary(sdev->request_queue,
					~srp_dev->mr_page_mask);

	return 0;
}

2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
static int srp_slave_configure(struct scsi_device *sdev)
{
	struct Scsi_Host *shost = sdev->host;
	struct srp_target_port *target = host_to_target(shost);
	struct request_queue *q = sdev->request_queue;
	unsigned long timeout;

	if (sdev->type == TYPE_DISK) {
		timeout = max_t(unsigned, 30 * HZ, target->rq_tmo_jiffies);
		blk_queue_rq_timeout(q, timeout);
	}

	return 0;
}

2672 2673
static ssize_t show_id_ext(struct device *dev, struct device_attribute *attr,
			   char *buf)
2674
{
2675
	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2676

2677
	return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->id_ext));
2678 2679
}

2680 2681
static ssize_t show_ioc_guid(struct device *dev, struct device_attribute *attr,
			     char *buf)
2682
{
2683
	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2684

2685
	return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->ioc_guid));
2686 2687
}

2688 2689
static ssize_t show_service_id(struct device *dev,
			       struct device_attribute *attr, char *buf)
2690
{
2691
	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2692

2693
	return sprintf(buf, "0x%016llx\n", be64_to_cpu(target->service_id));
2694 2695
}

2696 2697
static ssize_t show_pkey(struct device *dev, struct device_attribute *attr,
			 char *buf)
2698
{
2699
	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2700

2701
	return sprintf(buf, "0x%04x\n", be16_to_cpu(target->pkey));
2702 2703
}

2704 2705 2706 2707 2708
static ssize_t show_sgid(struct device *dev, struct device_attribute *attr,
			 char *buf)
{
	struct srp_target_port *target = host_to_target(class_to_shost(dev));

2709
	return sprintf(buf, "%pI6\n", target->sgid.raw);
2710 2711
}

2712 2713
static ssize_t show_dgid(struct device *dev, struct device_attribute *attr,
			 char *buf)
2714
{
2715
	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2716
	struct srp_rdma_ch *ch = &target->ch[0];
2717

2718
	return sprintf(buf, "%pI6\n", ch->path.dgid.raw);
2719 2720
}

2721 2722
static ssize_t show_orig_dgid(struct device *dev,
			      struct device_attribute *attr, char *buf)
2723
{
2724
	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2725

2726
	return sprintf(buf, "%pI6\n", target->orig_dgid.raw);
2727 2728
}

2729 2730 2731 2732
static ssize_t show_req_lim(struct device *dev,
			    struct device_attribute *attr, char *buf)
{
	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2733 2734
	struct srp_rdma_ch *ch;
	int i, req_lim = INT_MAX;
2735

2736 2737 2738 2739 2740
	for (i = 0; i < target->ch_count; i++) {
		ch = &target->ch[i];
		req_lim = min(req_lim, ch->req_lim);
	}
	return sprintf(buf, "%d\n", req_lim);
2741 2742
}

2743 2744
static ssize_t show_zero_req_lim(struct device *dev,
				 struct device_attribute *attr, char *buf)
2745
{
2746
	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2747 2748 2749 2750

	return sprintf(buf, "%d\n", target->zero_req_lim);
}

2751 2752
static ssize_t show_local_ib_port(struct device *dev,
				  struct device_attribute *attr, char *buf)
2753
{
2754
	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2755 2756 2757 2758

	return sprintf(buf, "%d\n", target->srp_host->port);
}

2759 2760
static ssize_t show_local_ib_device(struct device *dev,
				    struct device_attribute *attr, char *buf)
2761
{
2762
	struct srp_target_port *target = host_to_target(class_to_shost(dev));
2763

2764
	return sprintf(buf, "%s\n", target->srp_host->srp_dev->dev->name);
2765 2766
}

2767 2768 2769 2770 2771 2772 2773 2774
static ssize_t show_ch_count(struct device *dev, struct device_attribute *attr,
			     char *buf)
{
	struct srp_target_port *target = host_to_target(class_to_shost(dev));

	return sprintf(buf, "%d\n", target->ch_count);
}

2775 2776 2777 2778 2779 2780 2781 2782
static ssize_t show_comp_vector(struct device *dev,
				struct device_attribute *attr, char *buf)
{
	struct srp_target_port *target = host_to_target(class_to_shost(dev));

	return sprintf(buf, "%d\n", target->comp_vector);
}

2783 2784 2785 2786 2787 2788 2789 2790
static ssize_t show_tl_retry_count(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct srp_target_port *target = host_to_target(class_to_shost(dev));

	return sprintf(buf, "%d\n", target->tl_retry_count);
}

2791 2792 2793 2794 2795 2796 2797 2798
static ssize_t show_cmd_sg_entries(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct srp_target_port *target = host_to_target(class_to_shost(dev));

	return sprintf(buf, "%u\n", target->cmd_sg_cnt);
}

2799 2800 2801 2802 2803 2804 2805 2806
static ssize_t show_allow_ext_sg(struct device *dev,
				 struct device_attribute *attr, char *buf)
{
	struct srp_target_port *target = host_to_target(class_to_shost(dev));

	return sprintf(buf, "%s\n", target->allow_ext_sg ? "true" : "false");
}

2807 2808 2809 2810
static DEVICE_ATTR(id_ext,	    S_IRUGO, show_id_ext,	   NULL);
static DEVICE_ATTR(ioc_guid,	    S_IRUGO, show_ioc_guid,	   NULL);
static DEVICE_ATTR(service_id,	    S_IRUGO, show_service_id,	   NULL);
static DEVICE_ATTR(pkey,	    S_IRUGO, show_pkey,		   NULL);
2811
static DEVICE_ATTR(sgid,	    S_IRUGO, show_sgid,		   NULL);
2812 2813
static DEVICE_ATTR(dgid,	    S_IRUGO, show_dgid,		   NULL);
static DEVICE_ATTR(orig_dgid,	    S_IRUGO, show_orig_dgid,	   NULL);
2814
static DEVICE_ATTR(req_lim,         S_IRUGO, show_req_lim,         NULL);
2815 2816 2817
static DEVICE_ATTR(zero_req_lim,    S_IRUGO, show_zero_req_lim,	   NULL);
static DEVICE_ATTR(local_ib_port,   S_IRUGO, show_local_ib_port,   NULL);
static DEVICE_ATTR(local_ib_device, S_IRUGO, show_local_ib_device, NULL);
2818
static DEVICE_ATTR(ch_count,        S_IRUGO, show_ch_count,        NULL);
2819
static DEVICE_ATTR(comp_vector,     S_IRUGO, show_comp_vector,     NULL);
2820
static DEVICE_ATTR(tl_retry_count,  S_IRUGO, show_tl_retry_count,  NULL);
2821
static DEVICE_ATTR(cmd_sg_entries,  S_IRUGO, show_cmd_sg_entries,  NULL);
2822
static DEVICE_ATTR(allow_ext_sg,    S_IRUGO, show_allow_ext_sg,    NULL);
2823 2824 2825 2826 2827 2828

static struct device_attribute *srp_host_attrs[] = {
	&dev_attr_id_ext,
	&dev_attr_ioc_guid,
	&dev_attr_service_id,
	&dev_attr_pkey,
2829
	&dev_attr_sgid,
2830 2831
	&dev_attr_dgid,
	&dev_attr_orig_dgid,
2832
	&dev_attr_req_lim,
2833 2834 2835
	&dev_attr_zero_req_lim,
	&dev_attr_local_ib_port,
	&dev_attr_local_ib_device,
2836
	&dev_attr_ch_count,
2837
	&dev_attr_comp_vector,
2838
	&dev_attr_tl_retry_count,
2839
	&dev_attr_cmd_sg_entries,
2840
	&dev_attr_allow_ext_sg,
2841 2842 2843
	NULL
};

2844 2845
static struct scsi_host_template srp_template = {
	.module				= THIS_MODULE,
Roland Dreier's avatar
Roland Dreier committed
2846 2847
	.name				= "InfiniBand SRP initiator",
	.proc_name			= DRV_NAME,
2848
	.slave_alloc			= srp_slave_alloc,
2849
	.slave_configure		= srp_slave_configure,
2850 2851
	.info				= srp_target_info,
	.queuecommand			= srp_queuecommand,
2852
	.change_queue_depth             = srp_change_queue_depth,
2853 2854 2855
	.eh_abort_handler		= srp_abort,
	.eh_device_reset_handler	= srp_reset_device,
	.eh_host_reset_handler		= srp_reset_host,
2856
	.skip_settle_delay		= true,
2857
	.sg_tablesize			= SRP_DEF_SG_TABLESIZE,
2858
	.can_queue			= SRP_DEFAULT_CMD_SQ_SIZE,
2859
	.this_id			= -1,
2860
	.cmd_per_lun			= SRP_DEFAULT_CMD_SQ_SIZE,
2861
	.use_clustering			= ENABLE_CLUSTERING,
2862
	.shost_attrs			= srp_host_attrs,
2863
	.track_queue_depth		= 1,
2864 2865
};

2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
static int srp_sdev_count(struct Scsi_Host *host)
{
	struct scsi_device *sdev;
	int c = 0;

	shost_for_each_device(sdev, host)
		c++;

	return c;
}

2877 2878 2879 2880 2881 2882 2883
/*
 * Return values:
 * < 0 upon failure. Caller is responsible for SRP target port cleanup.
 * 0 and target->state == SRP_TARGET_REMOVED if asynchronous target port
 *    removal has been scheduled.
 * 0 and target->state != SRP_TARGET_REMOVED upon success.
 */
2884 2885
static int srp_add_target(struct srp_host *host, struct srp_target_port *target)
{
2886 2887 2888
	struct srp_rport_identifiers ids;
	struct srp_rport *rport;

2889
	target->state = SRP_TARGET_SCANNING;
2890
	sprintf(target->target_name, "SRP.T10:%016llX",
2891
		be64_to_cpu(target->id_ext));
2892

2893
	if (scsi_add_host(target->scsi_host, host->srp_dev->dev->dma_device))
2894 2895
		return -ENODEV;

2896 2897
	memcpy(ids.port_id, &target->id_ext, 8);
	memcpy(ids.port_id + 8, &target->ioc_guid, 8);
2898
	ids.roles = SRP_RPORT_ROLE_TARGET;
2899 2900 2901 2902 2903 2904
	rport = srp_rport_add(target->scsi_host, &ids);
	if (IS_ERR(rport)) {
		scsi_remove_host(target->scsi_host);
		return PTR_ERR(rport);
	}

2905
	rport->lld_data = target;
2906
	target->rport = rport;
2907

2908
	spin_lock(&host->target_lock);
2909
	list_add_tail(&target->list, &host->target_list);
2910
	spin_unlock(&host->target_lock);
2911 2912

	scsi_scan_target(&target->scsi_host->shost_gendev,
2913
			 0, target->scsi_id, SCAN_WILD_CARD, SCSI_SCAN_INITIAL);
2914

2915 2916
	if (srp_connected_ch(target) < target->ch_count ||
	    target->qp_in_error) {
2917 2918 2919 2920 2921 2922
		shost_printk(KERN_INFO, target->scsi_host,
			     PFX "SCSI scan failed - removing SCSI host\n");
		srp_queue_remove_work(target);
		goto out;
	}

2923
	pr_debug("%s: SCSI scan succeeded - detected %d LUNs\n",
2924 2925 2926 2927 2928 2929 2930 2931 2932
		 dev_name(&target->scsi_host->shost_gendev),
		 srp_sdev_count(target->scsi_host));

	spin_lock_irq(&target->lock);
	if (target->state == SRP_TARGET_SCANNING)
		target->state = SRP_TARGET_LIVE;
	spin_unlock_irq(&target->lock);

out:
2933 2934 2935
	return 0;
}

2936
static void srp_release_dev(struct device *dev)
2937 2938
{
	struct srp_host *host =
2939
		container_of(dev, struct srp_host, dev);
2940 2941 2942 2943 2944 2945

	complete(&host->released);
}

static struct class srp_class = {
	.name    = "infiniband_srp",
2946
	.dev_release = srp_release_dev
2947 2948
};

2949 2950
/**
 * srp_conn_unique() - check whether the connection to a target is unique
2951 2952
 * @host:   SRP host.
 * @target: SRP target port.
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
 */
static bool srp_conn_unique(struct srp_host *host,
			    struct srp_target_port *target)
{
	struct srp_target_port *t;
	bool ret = false;

	if (target->state == SRP_TARGET_REMOVED)
		goto out;

	ret = true;

	spin_lock(&host->target_lock);
	list_for_each_entry(t, &host->target_list, list) {
		if (t != target &&
		    target->id_ext == t->id_ext &&
		    target->ioc_guid == t->ioc_guid &&
		    target->initiator_ext == t->initiator_ext) {
			ret = false;
			break;
		}
	}
	spin_unlock(&host->target_lock);

out:
	return ret;
}

2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
/*
 * Target ports are added by writing
 *
 *     id_ext=<SRP ID ext>,ioc_guid=<SRP IOC GUID>,dgid=<dest GID>,
 *     pkey=<P_Key>,service_id=<service ID>
 *
 * to the add_target sysfs attribute.
 */
enum {
	SRP_OPT_ERR		= 0,
	SRP_OPT_ID_EXT		= 1 << 0,
	SRP_OPT_IOC_GUID	= 1 << 1,
	SRP_OPT_DGID		= 1 << 2,
	SRP_OPT_PKEY		= 1 << 3,
	SRP_OPT_SERVICE_ID	= 1 << 4,
	SRP_OPT_MAX_SECT	= 1 << 5,
2997
	SRP_OPT_MAX_CMD_PER_LUN	= 1 << 6,
2998
	SRP_OPT_IO_CLASS	= 1 << 7,
2999
	SRP_OPT_INITIATOR_EXT	= 1 << 8,
3000
	SRP_OPT_CMD_SG_ENTRIES	= 1 << 9,
3001 3002
	SRP_OPT_ALLOW_EXT_SG	= 1 << 10,
	SRP_OPT_SG_TABLESIZE	= 1 << 11,
3003
	SRP_OPT_COMP_VECTOR	= 1 << 12,
3004
	SRP_OPT_TL_RETRY_COUNT	= 1 << 13,
3005
	SRP_OPT_QUEUE_SIZE	= 1 << 14,
3006 3007 3008 3009 3010 3011 3012
	SRP_OPT_ALL		= (SRP_OPT_ID_EXT	|
				   SRP_OPT_IOC_GUID	|
				   SRP_OPT_DGID		|
				   SRP_OPT_PKEY		|
				   SRP_OPT_SERVICE_ID),
};

3013
static const match_table_t srp_opt_tokens = {
3014 3015 3016 3017 3018 3019 3020
	{ SRP_OPT_ID_EXT,		"id_ext=%s" 		},
	{ SRP_OPT_IOC_GUID,		"ioc_guid=%s" 		},
	{ SRP_OPT_DGID,			"dgid=%s" 		},
	{ SRP_OPT_PKEY,			"pkey=%x" 		},
	{ SRP_OPT_SERVICE_ID,		"service_id=%s"		},
	{ SRP_OPT_MAX_SECT,		"max_sect=%d" 		},
	{ SRP_OPT_MAX_CMD_PER_LUN,	"max_cmd_per_lun=%d" 	},
3021
	{ SRP_OPT_IO_CLASS,		"io_class=%x"		},
3022
	{ SRP_OPT_INITIATOR_EXT,	"initiator_ext=%s"	},
3023
	{ SRP_OPT_CMD_SG_ENTRIES,	"cmd_sg_entries=%u"	},
3024 3025
	{ SRP_OPT_ALLOW_EXT_SG,		"allow_ext_sg=%u"	},
	{ SRP_OPT_SG_TABLESIZE,		"sg_tablesize=%u"	},
3026
	{ SRP_OPT_COMP_VECTOR,		"comp_vector=%u"	},
3027
	{ SRP_OPT_TL_RETRY_COUNT,	"tl_retry_count=%u"	},
3028
	{ SRP_OPT_QUEUE_SIZE,		"queue_size=%d"		},
3029
	{ SRP_OPT_ERR,			NULL 			}
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
};

static int srp_parse_options(const char *buf, struct srp_target_port *target)
{
	char *options, *sep_opt;
	char *p;
	char dgid[3];
	substring_t args[MAX_OPT_ARGS];
	int opt_mask = 0;
	int token;
	int ret = -EINVAL;
	int i;

	options = kstrdup(buf, GFP_KERNEL);
	if (!options)
		return -ENOMEM;

	sep_opt = options;
3048
	while ((p = strsep(&sep_opt, ",\n")) != NULL) {
3049 3050 3051 3052 3053 3054 3055 3056 3057
		if (!*p)
			continue;

		token = match_token(p, srp_opt_tokens, args);
		opt_mask |= token;

		switch (token) {
		case SRP_OPT_ID_EXT:
			p = match_strdup(args);
3058 3059 3060 3061
			if (!p) {
				ret = -ENOMEM;
				goto out;
			}
3062 3063 3064 3065 3066 3067
			target->id_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
			kfree(p);
			break;

		case SRP_OPT_IOC_GUID:
			p = match_strdup(args);
3068 3069 3070 3071
			if (!p) {
				ret = -ENOMEM;
				goto out;
			}
3072 3073 3074 3075 3076 3077
			target->ioc_guid = cpu_to_be64(simple_strtoull(p, NULL, 16));
			kfree(p);
			break;

		case SRP_OPT_DGID:
			p = match_strdup(args);
3078 3079 3080 3081
			if (!p) {
				ret = -ENOMEM;
				goto out;
			}
3082
			if (strlen(p) != 32) {
3083
				pr_warn("bad dest GID parameter '%s'\n", p);
3084
				kfree(p);
3085 3086 3087 3088
				goto out;
			}

			for (i = 0; i < 16; ++i) {
3089 3090 3091 3092 3093 3094 3095
				strlcpy(dgid, p + i * 2, sizeof(dgid));
				if (sscanf(dgid, "%hhx",
					   &target->orig_dgid.raw[i]) < 1) {
					ret = -EINVAL;
					kfree(p);
					goto out;
				}
3096
			}
3097
			kfree(p);
3098 3099 3100 3101
			break;

		case SRP_OPT_PKEY:
			if (match_hex(args, &token)) {
3102
				pr_warn("bad P_Key parameter '%s'\n", p);
3103 3104
				goto out;
			}
3105
			target->pkey = cpu_to_be16(token);
3106 3107 3108 3109
			break;

		case SRP_OPT_SERVICE_ID:
			p = match_strdup(args);
3110 3111 3112 3113
			if (!p) {
				ret = -ENOMEM;
				goto out;
			}
3114 3115 3116 3117 3118 3119
			target->service_id = cpu_to_be64(simple_strtoull(p, NULL, 16));
			kfree(p);
			break;

		case SRP_OPT_MAX_SECT:
			if (match_int(args, &token)) {
3120
				pr_warn("bad max sect parameter '%s'\n", p);
3121 3122 3123 3124 3125
				goto out;
			}
			target->scsi_host->max_sectors = token;
			break;

3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
		case SRP_OPT_QUEUE_SIZE:
			if (match_int(args, &token) || token < 1) {
				pr_warn("bad queue_size parameter '%s'\n", p);
				goto out;
			}
			target->scsi_host->can_queue = token;
			target->queue_size = token + SRP_RSP_SQ_SIZE +
					     SRP_TSK_MGMT_SQ_SIZE;
			if (!(opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
				target->scsi_host->cmd_per_lun = token;
			break;

3138
		case SRP_OPT_MAX_CMD_PER_LUN:
3139
			if (match_int(args, &token) || token < 1) {
3140 3141
				pr_warn("bad max cmd_per_lun parameter '%s'\n",
					p);
3142 3143
				goto out;
			}
3144
			target->scsi_host->cmd_per_lun = token;
3145 3146
			break;

3147 3148
		case SRP_OPT_IO_CLASS:
			if (match_hex(args, &token)) {
3149
				pr_warn("bad IO class parameter '%s'\n", p);
3150 3151 3152 3153
				goto out;
			}
			if (token != SRP_REV10_IB_IO_CLASS &&
			    token != SRP_REV16A_IB_IO_CLASS) {
3154 3155 3156
				pr_warn("unknown IO class parameter value %x specified (use %x or %x).\n",
					token, SRP_REV10_IB_IO_CLASS,
					SRP_REV16A_IB_IO_CLASS);
3157 3158 3159 3160 3161
				goto out;
			}
			target->io_class = token;
			break;

3162 3163
		case SRP_OPT_INITIATOR_EXT:
			p = match_strdup(args);
3164 3165 3166 3167
			if (!p) {
				ret = -ENOMEM;
				goto out;
			}
3168 3169 3170 3171
			target->initiator_ext = cpu_to_be64(simple_strtoull(p, NULL, 16));
			kfree(p);
			break;

3172 3173
		case SRP_OPT_CMD_SG_ENTRIES:
			if (match_int(args, &token) || token < 1 || token > 255) {
3174 3175
				pr_warn("bad max cmd_sg_entries parameter '%s'\n",
					p);
3176 3177 3178 3179 3180
				goto out;
			}
			target->cmd_sg_cnt = token;
			break;

3181 3182
		case SRP_OPT_ALLOW_EXT_SG:
			if (match_int(args, &token)) {
3183
				pr_warn("bad allow_ext_sg parameter '%s'\n", p);
3184 3185 3186 3187 3188 3189 3190
				goto out;
			}
			target->allow_ext_sg = !!token;
			break;

		case SRP_OPT_SG_TABLESIZE:
			if (match_int(args, &token) || token < 1 ||
3191
					token > SG_MAX_SEGMENTS) {
3192 3193
				pr_warn("bad max sg_tablesize parameter '%s'\n",
					p);
3194 3195 3196 3197 3198
				goto out;
			}
			target->sg_tablesize = token;
			break;

3199 3200 3201 3202 3203 3204 3205 3206
		case SRP_OPT_COMP_VECTOR:
			if (match_int(args, &token) || token < 0) {
				pr_warn("bad comp_vector parameter '%s'\n", p);
				goto out;
			}
			target->comp_vector = token;
			break;

3207 3208 3209 3210 3211 3212 3213 3214 3215
		case SRP_OPT_TL_RETRY_COUNT:
			if (match_int(args, &token) || token < 2 || token > 7) {
				pr_warn("bad tl_retry_count parameter '%s' (must be a number between 2 and 7)\n",
					p);
				goto out;
			}
			target->tl_retry_count = token;
			break;

3216
		default:
3217 3218
			pr_warn("unknown parameter or missing value '%s' in target creation request\n",
				p);
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
			goto out;
		}
	}

	if ((opt_mask & SRP_OPT_ALL) == SRP_OPT_ALL)
		ret = 0;
	else
		for (i = 0; i < ARRAY_SIZE(srp_opt_tokens); ++i)
			if ((srp_opt_tokens[i].token & SRP_OPT_ALL) &&
			    !(srp_opt_tokens[i].token & opt_mask))
3229 3230
				pr_warn("target creation request is missing parameter '%s'\n",
					srp_opt_tokens[i].pattern);
3231

3232 3233 3234 3235 3236 3237
	if (target->scsi_host->cmd_per_lun > target->scsi_host->can_queue
	    && (opt_mask & SRP_OPT_MAX_CMD_PER_LUN))
		pr_warn("cmd_per_lun = %d > queue_size = %d\n",
			target->scsi_host->cmd_per_lun,
			target->scsi_host->can_queue);

3238 3239 3240 3241 3242
out:
	kfree(options);
	return ret;
}

3243 3244
static ssize_t srp_create_target(struct device *dev,
				 struct device_attribute *attr,
3245 3246 3247
				 const char *buf, size_t count)
{
	struct srp_host *host =
3248
		container_of(dev, struct srp_host, dev);
3249 3250
	struct Scsi_Host *target_host;
	struct srp_target_port *target;
3251
	struct srp_rdma_ch *ch;
3252 3253
	struct srp_device *srp_dev = host->srp_dev;
	struct ib_device *ibdev = srp_dev->dev;
3254
	int ret, node_idx, node, cpu, i;
3255
	unsigned int max_sectors_per_mr, mr_per_cmd = 0;
3256
	bool multich = false;
3257 3258 3259 3260 3261 3262

	target_host = scsi_host_alloc(&srp_template,
				      sizeof (struct srp_target_port));
	if (!target_host)
		return -ENOMEM;

3263
	target_host->transportt  = ib_srp_transport_template;
3264 3265
	target_host->max_channel = 0;
	target_host->max_id      = 1;
3266
	target_host->max_lun     = -1LL;
3267
	target_host->max_cmd_len = sizeof ((struct srp_cmd *) (void *) 0L)->cdb;
Roland Dreier's avatar
Roland Dreier committed
3268

3269 3270
	target = host_to_target(target_host);

3271 3272 3273
	target->io_class	= SRP_REV16A_IB_IO_CLASS;
	target->scsi_host	= target_host;
	target->srp_host	= host;
3274
	target->pd		= host->srp_dev->pd;
3275
	target->lkey		= host->srp_dev->pd->local_dma_lkey;
3276
	target->cmd_sg_cnt	= cmd_sg_entries;
3277 3278
	target->sg_tablesize	= indirect_sg_entries ? : cmd_sg_entries;
	target->allow_ext_sg	= allow_ext_sg;
3279
	target->tl_retry_count	= 7;
3280
	target->queue_size	= SRP_DEFAULT_QUEUE_SIZE;
3281

3282 3283 3284 3285 3286 3287
	/*
	 * Avoid that the SCSI host can be removed by srp_remove_target()
	 * before this function returns.
	 */
	scsi_host_get(target->scsi_host);

3288 3289
	mutex_lock(&host->add_target_mutex);

3290 3291
	ret = srp_parse_options(buf, target);
	if (ret)
3292
		goto out;
3293

3294 3295
	target->req_ring_size = target->queue_size - SRP_TSK_MGMT_SQ_SIZE;

3296 3297 3298 3299 3300 3301 3302
	if (!srp_conn_unique(target->srp_host, target)) {
		shost_printk(KERN_INFO, target->scsi_host,
			     PFX "Already connected to target port with id_ext=%016llx;ioc_guid=%016llx;initiator_ext=%016llx\n",
			     be64_to_cpu(target->id_ext),
			     be64_to_cpu(target->ioc_guid),
			     be64_to_cpu(target->initiator_ext));
		ret = -EEXIST;
3303
		goto out;
3304 3305
	}

3306
	if (!srp_dev->has_fmr && !srp_dev->has_fr && !target->allow_ext_sg &&
3307
	    target->cmd_sg_cnt < target->sg_tablesize) {
3308
		pr_warn("No MR pool and no external indirect descriptors, limiting sg_tablesize to cmd_sg_cnt\n");
3309 3310 3311
		target->sg_tablesize = target->cmd_sg_cnt;
	}

3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
	if (srp_dev->use_fast_reg || srp_dev->use_fmr) {
		/*
		 * FR and FMR can only map one HCA page per entry. If the
		 * start address is not aligned on a HCA page boundary two
		 * entries will be used for the head and the tail although
		 * these two entries combined contain at most one HCA page of
		 * data. Hence the "+ 1" in the calculation below.
		 *
		 * The indirect data buffer descriptor is contiguous so the
		 * memory for that buffer will only be registered if
		 * register_always is true. Hence add one to mr_per_cmd if
		 * register_always has been set.
		 */
		max_sectors_per_mr = srp_dev->max_pages_per_mr <<
				  (ilog2(srp_dev->mr_page_size) - 9);
		mr_per_cmd = register_always +
			(target->scsi_host->max_sectors + 1 +
			 max_sectors_per_mr - 1) / max_sectors_per_mr;
		pr_debug("max_sectors = %u; max_pages_per_mr = %u; mr_page_size = %u; max_sectors_per_mr = %u; mr_per_cmd = %u\n",
			 target->scsi_host->max_sectors,
			 srp_dev->max_pages_per_mr, srp_dev->mr_page_size,
			 max_sectors_per_mr, mr_per_cmd);
	}

3336
	target_host->sg_tablesize = target->sg_tablesize;
3337 3338
	target->mr_pool_size = target->scsi_host->can_queue * mr_per_cmd;
	target->mr_per_cmd = mr_per_cmd;
3339 3340
	target->indirect_size = target->sg_tablesize *
				sizeof (struct srp_direct_buf);
3341 3342 3343 3344
	target->max_iu_len = sizeof (struct srp_cmd) +
			     sizeof (struct srp_indirect_buf) +
			     target->cmd_sg_cnt * sizeof (struct srp_direct_buf);

3345
	INIT_WORK(&target->tl_err_work, srp_tl_err_work);
3346
	INIT_WORK(&target->remove_work, srp_remove_work);
3347
	spin_lock_init(&target->lock);
3348
	ret = ib_query_gid(ibdev, host->port, 0, &target->sgid, NULL);
3349
	if (ret)
3350
		goto out;
3351

3352 3353 3354 3355 3356 3357 3358 3359 3360
	ret = -ENOMEM;
	target->ch_count = max_t(unsigned, num_online_nodes(),
				 min(ch_count ? :
				     min(4 * num_online_nodes(),
					 ibdev->num_comp_vectors),
				     num_online_cpus()));
	target->ch = kcalloc(target->ch_count, sizeof(*target->ch),
			     GFP_KERNEL);
	if (!target->ch)
3361
		goto out;
3362

3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
	node_idx = 0;
	for_each_online_node(node) {
		const int ch_start = (node_idx * target->ch_count /
				      num_online_nodes());
		const int ch_end = ((node_idx + 1) * target->ch_count /
				    num_online_nodes());
		const int cv_start = (node_idx * ibdev->num_comp_vectors /
				      num_online_nodes() + target->comp_vector)
				     % ibdev->num_comp_vectors;
		const int cv_end = ((node_idx + 1) * ibdev->num_comp_vectors /
				    num_online_nodes() + target->comp_vector)
				   % ibdev->num_comp_vectors;
		int cpu_idx = 0;

		for_each_online_cpu(cpu) {
			if (cpu_to_node(cpu) != node)
				continue;
			if (ch_start + cpu_idx >= ch_end)
				continue;
			ch = &target->ch[ch_start + cpu_idx];
			ch->target = target;
			ch->comp_vector = cv_start == cv_end ? cv_start :
				cv_start + cpu_idx % (cv_end - cv_start);
			spin_lock_init(&ch->lock);
			INIT_LIST_HEAD(&ch->free_tx);
			ret = srp_new_cm_id(ch);
			if (ret)
				goto err_disconnect;
3391

3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
			ret = srp_create_ch_ib(ch);
			if (ret)
				goto err_disconnect;

			ret = srp_alloc_req_data(ch);
			if (ret)
				goto err_disconnect;

			ret = srp_connect_ch(ch, multich);
			if (ret) {
				shost_printk(KERN_ERR, target->scsi_host,
					     PFX "Connection %d/%d failed\n",
					     ch_start + cpu_idx,
					     target->ch_count);
				if (node_idx == 0 && cpu_idx == 0) {
					goto err_disconnect;
				} else {
					srp_free_ch_ib(target, ch);
					srp_free_req_data(target, ch);
					target->ch_count = ch - target->ch;
3412
					goto connected;
3413 3414 3415 3416 3417 3418 3419
				}
			}

			multich = true;
			cpu_idx++;
		}
		node_idx++;
3420 3421
	}

3422
connected:
3423 3424
	target->scsi_host->nr_hw_queues = target->ch_count;

3425 3426 3427 3428
	ret = srp_add_target(host, target);
	if (ret)
		goto err_disconnect;

3429 3430 3431 3432 3433
	if (target->state != SRP_TARGET_REMOVED) {
		shost_printk(KERN_DEBUG, target->scsi_host, PFX
			     "new target: id_ext %016llx ioc_guid %016llx pkey %04x service_id %016llx sgid %pI6 dgid %pI6\n",
			     be64_to_cpu(target->id_ext),
			     be64_to_cpu(target->ioc_guid),
3434
			     be16_to_cpu(target->pkey),
3435
			     be64_to_cpu(target->service_id),
3436
			     target->sgid.raw, target->orig_dgid.raw);
3437
	}
Bart Van Assche's avatar
Bart Van Assche committed
3438

3439 3440 3441 3442
	ret = count;

out:
	mutex_unlock(&host->add_target_mutex);
3443 3444

	scsi_host_put(target->scsi_host);
3445 3446
	if (ret < 0)
		scsi_host_put(target->scsi_host);
3447

3448
	return ret;
3449 3450 3451 3452

err_disconnect:
	srp_disconnect_target(target);

3453 3454 3455 3456 3457
	for (i = 0; i < target->ch_count; i++) {
		ch = &target->ch[i];
		srp_free_ch_ib(target, ch);
		srp_free_req_data(target, ch);
	}
3458

3459
	kfree(target->ch);
3460
	goto out;
3461 3462
}

3463
static DEVICE_ATTR(add_target, S_IWUSR, NULL, srp_create_target);
3464

3465 3466
static ssize_t show_ibdev(struct device *dev, struct device_attribute *attr,
			  char *buf)
3467
{
3468
	struct srp_host *host = container_of(dev, struct srp_host, dev);
3469

3470
	return sprintf(buf, "%s\n", host->srp_dev->dev->name);
3471 3472
}

3473
static DEVICE_ATTR(ibdev, S_IRUGO, show_ibdev, NULL);
3474

3475 3476
static ssize_t show_port(struct device *dev, struct device_attribute *attr,
			 char *buf)
3477
{
3478
	struct srp_host *host = container_of(dev, struct srp_host, dev);
3479 3480 3481 3482

	return sprintf(buf, "%d\n", host->port);
}

3483
static DEVICE_ATTR(port, S_IRUGO, show_port, NULL);
3484

3485
static struct srp_host *srp_add_port(struct srp_device *device, u8 port)
3486 3487 3488 3489 3490 3491 3492 3493
{
	struct srp_host *host;

	host = kzalloc(sizeof *host, GFP_KERNEL);
	if (!host)
		return NULL;

	INIT_LIST_HEAD(&host->target_list);
3494
	spin_lock_init(&host->target_lock);
3495
	init_completion(&host->released);
3496
	mutex_init(&host->add_target_mutex);
3497
	host->srp_dev = device;
3498 3499
	host->port = port;

3500 3501
	host->dev.class = &srp_class;
	host->dev.parent = device->dev->dma_device;
3502
	dev_set_name(&host->dev, "srp-%s-%d", device->dev->name, port);
3503

3504
	if (device_register(&host->dev))
3505
		goto free_host;
3506
	if (device_create_file(&host->dev, &dev_attr_add_target))
3507
		goto err_class;
3508
	if (device_create_file(&host->dev, &dev_attr_ibdev))
3509
		goto err_class;
3510
	if (device_create_file(&host->dev, &dev_attr_port))
3511 3512 3513 3514 3515
		goto err_class;

	return host;

err_class:
3516
	device_unregister(&host->dev);
3517

3518
free_host:
3519 3520 3521 3522 3523 3524 3525
	kfree(host);

	return NULL;
}

static void srp_add_one(struct ib_device *device)
{
3526
	struct srp_device *srp_dev;
3527
	struct srp_host *host;
3528
	int mr_page_shift, p;
3529
	u64 max_pages_per_mr;
3530
	unsigned int flags = 0;
3531

3532
	srp_dev = kzalloc(sizeof(*srp_dev), GFP_KERNEL);
3533
	if (!srp_dev)
3534
		return;
3535 3536 3537

	/*
	 * Use the smallest page size supported by the HCA, down to a
3538 3539
	 * minimum of 4096 bytes. We're unlikely to build large sglists
	 * out of smaller entries.
3540
	 */
3541
	mr_page_shift		= max(12, ffs(device->attrs.page_size_cap) - 1);
3542 3543
	srp_dev->mr_page_size	= 1 << mr_page_shift;
	srp_dev->mr_page_mask	= ~((u64) srp_dev->mr_page_size - 1);
3544
	max_pages_per_mr	= device->attrs.max_mr_size;
3545
	do_div(max_pages_per_mr, srp_dev->mr_page_size);
3546 3547 3548
	pr_debug("%s: %llu / %u = %llu <> %u\n", __func__,
		 device->attrs.max_mr_size, srp_dev->mr_page_size,
		 max_pages_per_mr, SRP_MAX_PAGES_PER_MR);
3549 3550
	srp_dev->max_pages_per_mr = min_t(u64, SRP_MAX_PAGES_PER_MR,
					  max_pages_per_mr);
3551 3552 3553 3554 3555

	srp_dev->has_fmr = (device->alloc_fmr && device->dealloc_fmr &&
			    device->map_phys_fmr && device->unmap_fmr);
	srp_dev->has_fr = (device->attrs.device_cap_flags &
			   IB_DEVICE_MEM_MGT_EXTENSIONS);
3556
	if (!never_register && !srp_dev->has_fmr && !srp_dev->has_fr) {
3557
		dev_warn(&device->dev, "neither FMR nor FR is supported\n");
3558 3559
	} else if (!never_register &&
		   device->attrs.max_mr_size >= 2 * srp_dev->mr_page_size) {
3560 3561 3562 3563
		srp_dev->use_fast_reg = (srp_dev->has_fr &&
					 (!srp_dev->has_fmr || prefer_fr));
		srp_dev->use_fmr = !srp_dev->use_fast_reg && srp_dev->has_fmr;
	}
3564

3565 3566 3567 3568
	if (never_register || !register_always ||
	    (!srp_dev->has_fmr && !srp_dev->has_fr))
		flags |= IB_PD_UNSAFE_GLOBAL_RKEY;

3569 3570 3571
	if (srp_dev->use_fast_reg) {
		srp_dev->max_pages_per_mr =
			min_t(u32, srp_dev->max_pages_per_mr,
3572
			      device->attrs.max_fast_reg_page_list_len);
3573
	}
3574 3575
	srp_dev->mr_max_size	= srp_dev->mr_page_size *
				   srp_dev->max_pages_per_mr;
3576 3577 3578
	pr_debug("%s: mr_page_shift = %d, device->max_mr_size = %#llx, device->max_fast_reg_page_list_len = %u, max_pages_per_mr = %d, mr_max_size = %#x\n",
		 device->name, mr_page_shift, device->attrs.max_mr_size,
		 device->attrs.max_fast_reg_page_list_len,
3579
		 srp_dev->max_pages_per_mr, srp_dev->mr_max_size);
3580 3581 3582 3583

	INIT_LIST_HEAD(&srp_dev->dev_list);

	srp_dev->dev = device;
3584
	srp_dev->pd  = ib_alloc_pd(device, flags);
3585 3586 3587 3588
	if (IS_ERR(srp_dev->pd))
		goto free_dev;


3589
	for (p = rdma_start_port(device); p <= rdma_end_port(device); ++p) {
3590
		host = srp_add_port(srp_dev, p);
3591
		if (host)
3592
			list_add_tail(&host->list, &srp_dev->dev_list);
3593 3594
	}

3595
	ib_set_client_data(device, &srp_client, srp_dev);
3596
	return;
3597 3598 3599

free_dev:
	kfree(srp_dev);
3600 3601
}

3602
static void srp_remove_one(struct ib_device *device, void *client_data)
3603
{
3604
	struct srp_device *srp_dev;
3605
	struct srp_host *host, *tmp_host;
3606
	struct srp_target_port *target;
3607

3608
	srp_dev = client_data;
3609 3610
	if (!srp_dev)
		return;
3611

3612
	list_for_each_entry_safe(host, tmp_host, &srp_dev->dev_list, list) {
3613
		device_unregister(&host->dev);
3614 3615 3616 3617 3618 3619 3620
		/*
		 * Wait for the sysfs entry to go away, so that no new
		 * target ports can be created.
		 */
		wait_for_completion(&host->released);

		/*
3621
		 * Remove all target ports.
3622
		 */
3623
		spin_lock(&host->target_lock);
3624 3625
		list_for_each_entry(target, &host->target_list, list)
			srp_queue_remove_work(target);
3626
		spin_unlock(&host->target_lock);
3627 3628

		/*
3629
		 * Wait for tl_err and target port removal tasks.
3630
		 */
3631
		flush_workqueue(system_long_wq);
3632
		flush_workqueue(srp_remove_wq);
3633 3634 3635 3636

		kfree(host);
	}

3637 3638 3639
	ib_dealloc_pd(srp_dev->pd);

	kfree(srp_dev);
3640 3641
}

3642
static struct srp_function_template ib_srp_transport_functions = {
3643 3644
	.has_rport_state	 = true,
	.reset_timer_if_blocked	 = true,
3645
	.reconnect_delay	 = &srp_reconnect_delay,
3646 3647 3648
	.fast_io_fail_tmo	 = &srp_fast_io_fail_tmo,
	.dev_loss_tmo		 = &srp_dev_loss_tmo,
	.reconnect		 = srp_rport_reconnect,
3649
	.rport_delete		 = srp_rport_delete,
3650
	.terminate_rport_io	 = srp_terminate_io,
3651 3652
};

3653 3654 3655 3656
static int __init srp_init_module(void)
{
	int ret;

3657
	if (srp_sg_tablesize) {
3658
		pr_warn("srp_sg_tablesize is deprecated, please use cmd_sg_entries\n");
3659 3660 3661 3662 3663 3664 3665 3666
		if (!cmd_sg_entries)
			cmd_sg_entries = srp_sg_tablesize;
	}

	if (!cmd_sg_entries)
		cmd_sg_entries = SRP_DEF_SG_TABLESIZE;

	if (cmd_sg_entries > 255) {
3667
		pr_warn("Clamping cmd_sg_entries to 255\n");
3668
		cmd_sg_entries = 255;
3669 3670
	}

3671 3672 3673
	if (!indirect_sg_entries)
		indirect_sg_entries = cmd_sg_entries;
	else if (indirect_sg_entries < cmd_sg_entries) {
3674 3675
		pr_warn("Bumping up indirect_sg_entries to match cmd_sg_entries (%u)\n",
			cmd_sg_entries);
3676 3677 3678
		indirect_sg_entries = cmd_sg_entries;
	}

3679
	srp_remove_wq = create_workqueue("srp_remove");
3680 3681
	if (!srp_remove_wq) {
		ret = -ENOMEM;
3682 3683 3684 3685
		goto out;
	}

	ret = -ENOMEM;
3686 3687 3688
	ib_srp_transport_template =
		srp_attach_transport(&ib_srp_transport_functions);
	if (!ib_srp_transport_template)
3689
		goto destroy_wq;
3690

3691 3692
	ret = class_register(&srp_class);
	if (ret) {
3693
		pr_err("couldn't register class infiniband_srp\n");
3694
		goto release_tr;
3695 3696
	}

3697 3698
	ib_sa_register_client(&srp_sa_client);

3699 3700
	ret = ib_register_client(&srp_client);
	if (ret) {
3701
		pr_err("couldn't register IB client\n");
3702
		goto unreg_sa;
3703 3704
	}

3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
out:
	return ret;

unreg_sa:
	ib_sa_unregister_client(&srp_sa_client);
	class_unregister(&srp_class);

release_tr:
	srp_release_transport(ib_srp_transport_template);

destroy_wq:
	destroy_workqueue(srp_remove_wq);
	goto out;
3718 3719 3720 3721 3722
}

static void __exit srp_cleanup_module(void)
{
	ib_unregister_client(&srp_client);
3723
	ib_sa_unregister_client(&srp_sa_client);
3724
	class_unregister(&srp_class);
3725
	srp_release_transport(ib_srp_transport_template);
3726
	destroy_workqueue(srp_remove_wq);
3727 3728 3729 3730
}

module_init(srp_init_module);
module_exit(srp_cleanup_module);