e1000_phy.c 52.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
/*******************************************************************************

  This software program is available to you under a choice of one of two
  licenses. You may choose to be licensed under either the GNU General Public
  License (GPL) Version 2, June 1991, available at
  http://www.fsf.org/copyleft/gpl.html, or the Intel BSD + Patent License, the
  text of which follows:
  
  Recipient has requested a license and Intel Corporation ("Intel") is willing
  to grant a license for the software entitled Linux Base Driver for the
  Intel(R) PRO/1000 Family of Adapters (e1000) (the "Software") being provided
  by Intel Corporation. The following definitions apply to this license:
  
  "Licensed Patents" means patent claims licensable by Intel Corporation which
  are necessarily infringed by the use of sale of the Software alone or when
  combined with the operating system referred to below.
  
  "Recipient" means the party to whom Intel delivers this Software.
  
  "Licensee" means Recipient and those third parties that receive a license to
  any operating system available under the GNU Public License version 2.0 or
  later.
  
  Copyright (c) 1999 - 2002 Intel Corporation.
  All rights reserved.
  
  The license is provided to Recipient and Recipient's Licensees under the
  following terms.
  
  Redistribution and use in source and binary forms of the Software, with or
  without modification, are permitted provided that the following conditions
  are met:
  
  Redistributions of source code of the Software may retain the above
  copyright notice, this list of conditions and the following disclaimer.
  
  Redistributions in binary form of the Software may reproduce the above
  copyright notice, this list of conditions and the following disclaimer in
  the documentation and/or materials provided with the distribution.
  
  Neither the name of Intel Corporation nor the names of its contributors
  shall be used to endorse or promote products derived from this Software
  without specific prior written permission.
  
  Intel hereby grants Recipient and Licensees a non-exclusive, worldwide,
  royalty-free patent license under Licensed Patents to make, use, sell, offer
  to sell, import and otherwise transfer the Software, if any, in source code
  and object code form. This license shall include changes to the Software
  that are error corrections or other minor changes to the Software that do
  not add functionality or features when the Software is incorporated in any
  version of an operating system that has been distributed under the GNU
  General Public License 2.0 or later. This patent license shall apply to the
  combination of the Software and any operating system licensed under the GNU
  Public License version 2.0 or later if, at the time Intel provides the
  Software to Recipient, such addition of the Software to the then publicly
  available versions of such operating systems available under the GNU Public
  License version 2.0 or later (whether in gold, beta or alpha form) causes
  such combination to be covered by the Licensed Patents. The patent license
  shall not apply to any other combinations which include the Software. NO
  hardware per se is licensed hereunder.
  
  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  IMPLIED WARRANTIES OF MECHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR IT CONTRIBUTORS BE LIABLE FOR ANY
  DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  (INCLUDING, BUT NOT LIMITED, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  ANY LOSS OF USE; DATA, OR PROFITS; OR BUSINESS INTERUPTION) HOWEVER CAUSED
  AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR
  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*******************************************************************************/

/* e1000_phy.c
 * Shared functions for accessing and configuring the PHY
 */

#include "e1000_mac.h"
#include "e1000_phy.h"

/******************************************************************************
* Raises the Management Data Clock
*
* shared - Struct containing variables accessed by shared code
* ctrl_reg - Device control register's current value
******************************************************************************/
static void
e1000_raise_mdc(struct e1000_shared_adapter *shared,
                uint32_t *ctrl_reg)
{
    /* Raise the clock input to the Management Data Clock (by setting
     * the MDC bit), and then delay 2 microseconds.
     */
    E1000_WRITE_REG(shared, CTRL, (*ctrl_reg | E1000_CTRL_MDC));
    usec_delay(2);
    return;
}

/******************************************************************************
* Lowers the Management Data Clock
*
* shared - Struct containing variables accessed by shared code
* ctrl_reg - Device control register's current value
******************************************************************************/
static void
e1000_lower_mdc(struct e1000_shared_adapter *shared,
                uint32_t *ctrl_reg)
{
    /* Lower the clock input to the Management Data Clock (by clearing
     * the MDC bit), and then delay 2 microseconds.
     */
    E1000_WRITE_REG(shared, CTRL, (*ctrl_reg & ~E1000_CTRL_MDC));
    usec_delay(2);
    return;
}

/******************************************************************************
* Shifts data bits out to the PHY
*
* shared - Struct containing variables accessed by shared code
* data - Data to send out to the PHY
* count - Number of bits to shift out
*
* Bits are shifted out in MSB to LSB order.
******************************************************************************/
static void
e1000_phy_shift_out(struct e1000_shared_adapter *shared,
                    uint32_t data,
                    uint16_t count)
{
    uint32_t ctrl_reg;
    uint32_t mask;

    ASSERT(count <= 32);

    /* We need to shift "count" number of bits out to the PHY.  So, the
     * value in the "Data" parameter will be shifted out to the PHY
     * one bit at a time.  In order to do this, "Data" must be broken
     * down into bits, which is what the "while" logic does below.
     */
    mask = 0x01;
    mask <<= (count - 1);

    ctrl_reg = E1000_READ_REG(shared, CTRL);

    /* Set MDIO_DIR (SWDPIO1) and MDC_DIR (SWDPIO2) direction bits to
     * be used as output pins.
     */
    ctrl_reg |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);

    while(mask) {
        /* A "1" is shifted out to the PHY by setting the MDIO bit to
         * "1" and then raising and lowering the Management Data Clock
         * (MDC).  A "0" is shifted out to the PHY by setting the MDIO
         * bit to "0" and then raising and lowering the clock.
         */
        if(data & mask)
            ctrl_reg |= E1000_CTRL_MDIO;
        else
            ctrl_reg &= ~E1000_CTRL_MDIO;

        E1000_WRITE_REG(shared, CTRL, ctrl_reg);

        usec_delay(2);

        e1000_raise_mdc(shared, &ctrl_reg);
        e1000_lower_mdc(shared, &ctrl_reg);

        mask = mask >> 1;
    }

    /* Clear the data bit just before leaving this routine. */
    ctrl_reg &= ~E1000_CTRL_MDIO;
    return;
}

/******************************************************************************
* Shifts data bits in from the PHY
*
* shared - Struct containing variables accessed by shared code
*
* Bits are shifted in in MSB to LSB order. 
******************************************************************************/
static uint16_t
e1000_phy_shift_in(struct e1000_shared_adapter *shared)
{
    uint32_t ctrl_reg;
    uint16_t data = 0;
    uint8_t i;

    /* In order to read a register from the PHY, we need to shift in a
     * total of 18 bits from the PHY.  The first two bit (TurnAround)
     * times are used to avoid contention on the MDIO pin when a read
     * operation is performed.  These two bits are ignored by us and
     * thrown away.  Bits are "shifted in" by raising the clock input
     * to the Management Data Clock (setting the MDC bit), and then
     * reading the value of the MDIO bit.
     */ 
    ctrl_reg = E1000_READ_REG(shared, CTRL);

    /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
     * input.
     */ 
    ctrl_reg &= ~E1000_CTRL_MDIO_DIR;
    ctrl_reg &= ~E1000_CTRL_MDIO;

    E1000_WRITE_REG(shared, CTRL, ctrl_reg);

    /* Raise and Lower the clock before reading in the data.  This
     * accounts for the TurnAround bits.  The first clock occurred
     * when we clocked out the last bit of the Register Address.
     */
    e1000_raise_mdc(shared, &ctrl_reg);
    e1000_lower_mdc(shared, &ctrl_reg);

    for(data = 0, i = 0; i < 16; i++) {
        data = data << 1;
        e1000_raise_mdc(shared, &ctrl_reg);

        ctrl_reg = E1000_READ_REG(shared, CTRL);

        /* Check to see if we shifted in a "1". */
        if(ctrl_reg & E1000_CTRL_MDIO)
            data |= 1;

        e1000_lower_mdc(shared, &ctrl_reg);
    }

    e1000_raise_mdc(shared, &ctrl_reg);
    e1000_lower_mdc(shared, &ctrl_reg);

    /* Clear the MDIO bit just before leaving this routine. */
    ctrl_reg &= ~E1000_CTRL_MDIO;

    return (data);
}

/******************************************************************************
* Force PHY speed and duplex settings to shared->forced_speed_duplex
*
* shared - Struct containing variables accessed by shared code
******************************************************************************/
static void
e1000_phy_force_speed_duplex(struct e1000_shared_adapter *shared)
{
    uint32_t tctl_reg;
    uint32_t ctrl_reg;
    uint32_t shift;
    uint16_t mii_ctrl_reg;
    uint16_t mii_status_reg;
    uint16_t phy_data;
    uint16_t i;

    DEBUGFUNC("e1000_phy_force_speed_duplex");

    /* Turn off Flow control if we are forcing speed and duplex. */
    shared->fc = e1000_fc_none;

    DEBUGOUT1("shared->fc = %d\n", shared->fc);

    /* Read the Device Control Register. */
    ctrl_reg = E1000_READ_REG(shared, CTRL);

    /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
    ctrl_reg |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
    ctrl_reg &= ~(DEVICE_SPEED_MASK);

    /* Clear the Auto Speed Detect Enable bit. */
    ctrl_reg &= ~E1000_CTRL_ASDE;

    /* Read the MII Control Register. */
    mii_ctrl_reg = e1000_read_phy_reg(shared, PHY_CTRL);

    /* We need to disable autoneg in order to force link and duplex. */

    mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;

    /* Are we forcing Full or Half Duplex? */
    if(shared->forced_speed_duplex == e1000_100_full ||
       shared->forced_speed_duplex == e1000_10_full) {

        /* We want to force full duplex so we SET the full duplex bits
         * in the Device and MII Control Registers.
         */
        ctrl_reg |= E1000_CTRL_FD;
        mii_ctrl_reg |= MII_CR_FULL_DUPLEX;

        DEBUGOUT("Full Duplex\n");
    } else {

        /* We want to force half duplex so we CLEAR the full duplex
         * bits in the Device and MII Control Registers.
         */
        ctrl_reg &= ~E1000_CTRL_FD;
        mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;    /* Do this implies HALF */

        DEBUGOUT("Half Duplex\n");
    }

    /* Are we forcing 100Mbps??? */
    if(shared->forced_speed_duplex == e1000_100_full ||
       shared->forced_speed_duplex == e1000_100_half) {

        /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
        ctrl_reg |= E1000_CTRL_SPD_100;
        mii_ctrl_reg |= MII_CR_SPEED_100;
        mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);

        DEBUGOUT("Forcing 100mb ");
    } else {                    /* Force 10MB Full or Half */

        /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
        ctrl_reg &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
        mii_ctrl_reg |= MII_CR_SPEED_10;
        mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);

        DEBUGOUT("Forcing 10mb ");
    }

    /* Now we need to configure the Collision Distance.  We need to read
     * the Transmit Control Register to do this.
     * Note: This must be done for both Half or Full Duplex.
     */
    tctl_reg = E1000_READ_REG(shared, TCTL);
    DEBUGOUT1("tctl_reg = %x\n", tctl_reg);

    if(!(mii_ctrl_reg & MII_CR_FULL_DUPLEX)) {

       /* We are in Half Duplex mode so we need to set up our collision
        * distance for 10/100.
        */
        tctl_reg &= ~E1000_TCTL_COLD;
        shift = E1000_HDX_COLLISION_DISTANCE;
        shift <<= E1000_COLD_SHIFT;
        tctl_reg |= shift;
    } else {
        /* We are in Full Duplex mode.  We have the same collision
         * distance regardless of speed.
         */
        tctl_reg &= ~E1000_TCTL_COLD;
        shift = E1000_FDX_COLLISION_DISTANCE;
        shift <<= E1000_COLD_SHIFT;
        tctl_reg |= shift;
    }

    /* Write the configured values back to the Transmit Control Reg. */
    E1000_WRITE_REG(shared, TCTL, tctl_reg);

    /* Write the configured values back to the Device Control Reg. */
    E1000_WRITE_REG(shared, CTRL, ctrl_reg);

    /* Write the MII Control Register with the new PHY configuration. */
    phy_data = e1000_read_phy_reg(shared, M88E1000_PHY_SPEC_CTRL);

    /* Clear Auto-Crossover to force MDI manually.
     * M88E1000 requires MDI forced whenever speed/duplex is forced
     */
    phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;

    e1000_write_phy_reg(shared, M88E1000_PHY_SPEC_CTRL, phy_data);

    DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);

    /* Need to reset the PHY or these bits will get ignored. */
    mii_ctrl_reg |= MII_CR_RESET;

    e1000_write_phy_reg(shared, PHY_CTRL, mii_ctrl_reg);

    /* The wait_autoneg_complete flag may be a little misleading here.
     * Since we are forcing speed and duplex, Auto-Neg is not enabled.
     * But we do want to delay for a period while forcing only so we
     * don't generate false No Link messages.  So we will wait here
     * only if the user has set wait_autoneg_complete to 1, which is
     * the default.
     */
    if(shared->wait_autoneg_complete) {
        /* We will wait for autoneg to complete. */
        DEBUGOUT("Waiting for forced speed/duplex link.\n");
        mii_status_reg = 0;

        /* We will wait for autoneg to complete or 4.5 seconds to expire. */
        for(i = PHY_FORCE_TIME; i > 0; i--) {
            /* Read the MII Status Register and wait for Auto-Neg
             * Complete bit to be set.
             */
            mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);
            mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);

            if(mii_status_reg & MII_SR_LINK_STATUS)
                break;

            msec_delay(100);
        }                       /* end for loop */

        if(i == 0) {            /* We didn't get link   */

            /* Reset the DSP and wait again for link.   */
            e1000_phy_reset_dsp(shared);
        }

        /* This loop will early-out if the link condition has been met.  */
        for(i = PHY_FORCE_TIME; i > 0; i--) {
            if(mii_status_reg & MII_SR_LINK_STATUS)
                break;

            msec_delay(100);
            /* Read the MII Status Register and wait for Auto-Neg
             * Complete bit to be set.
             */
            mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);
            mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);

        }                       /* end for loop */
    }    /* end if wait_autoneg_complete */
    /*
     * Because we reset the PHY above, we need to re-force TX_CLK in the
     * Extended PHY Specific Control Register to 25MHz clock.  This
     * value defaults back to a 2.5MHz clock when the PHY is reset.
     */
    phy_data = e1000_read_phy_reg(shared, M88E1000_EXT_PHY_SPEC_CTRL);

    phy_data |= M88E1000_EPSCR_TX_CLK_25;

    e1000_write_phy_reg(shared, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);

    /* In addition, because of the s/w reset above, we need to enable
     * CRS on TX.  This must be set for both full and half duplex
     * operation.
     */
    phy_data = e1000_read_phy_reg(shared, M88E1000_PHY_SPEC_CTRL);

    phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;

    e1000_write_phy_reg(shared, M88E1000_PHY_SPEC_CTRL, phy_data);
    DEBUGOUT1("M88E1000 Phy Specific Ctrl Reg = %4x\r\n", phy_data);

    return;
}

/*****************************************************************************
* Reads the value from a PHY register
*
* shared - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to read
******************************************************************************/
uint16_t
e1000_read_phy_reg(struct e1000_shared_adapter *shared,
                   uint32_t reg_addr)
{
    uint32_t i;
    uint32_t data = 0;
    uint32_t command = 0;

    ASSERT(reg_addr <= MAX_PHY_REG_ADDRESS);

    if(shared->mac_type > e1000_82543) {
        /* Set up Op-code, Phy Address, and
         * register address in the MDI Control register.  The MAC will
         * take care of interfacing with the PHY to retrieve the
         * desired data.
         */
        command = ((reg_addr << E1000_MDIC_REG_SHIFT) |
                   (shared->phy_addr << E1000_MDIC_PHY_SHIFT) | 
                   (E1000_MDIC_OP_READ));

        E1000_WRITE_REG(shared, MDIC, command);

        /* Check every 10 usec to see if the read completed.  The read
         * may take as long as 64 usecs (we'll wait 100 usecs max)
         * from the CPU Write to the Ready bit assertion.
         */
        for(i = 0; i < 64; i++) {
            usec_delay(10);

            data = E1000_READ_REG(shared, MDIC);

            if(data & E1000_MDIC_READY)
                break;
        }
    } else {
        /* We must first send a preamble through the MDIO pin to signal the
         * beginning of an MII instruction.  This is done by sending 32
         * consecutive "1" bits.
         */
        e1000_phy_shift_out(shared, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);

        /* Now combine the next few fields that are required for a read
         * operation.  We use this method instead of calling the
         * e1000_phy_shift_out routine five different times.  The format of
         * a MII read instruction consists of a shift out of 14 bits and is
         * defined as follows:
         *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
         * followed by a shift in of 18 bits.  This first two bits shifted
         * in are TurnAround bits used to avoid contention on the MDIO pin
         * when a READ operation is performed.  These two bits are thrown
         * away followed by a shift in of 16 bits which contains the
         * desired data.
         */
        command = ((reg_addr) |
                   (shared->phy_addr << 5) |
                   (PHY_OP_READ << 10) | (PHY_SOF << 12));

        e1000_phy_shift_out(shared, command, 14);

        /* Now that we've shifted out the read command to the MII, we need
         * to "shift in" the 16-bit value (18 total bits) of the requested
         * PHY register address.
         */
        data = (uint32_t) e1000_phy_shift_in(shared);
    }

    ASSERT(!(data & E1000_MDIC_ERROR));

    return ((uint16_t) data);
}

/******************************************************************************
* Writes a value to a PHY register
*
* shared - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to write
* data - data to write to the PHY
******************************************************************************/
void
e1000_write_phy_reg(struct e1000_shared_adapter *shared,
                    uint32_t reg_addr,
                    uint16_t data)
{
    uint32_t i;
    uint32_t command = 0;
    uint32_t mdic_reg;

    ASSERT(reg_addr <= MAX_PHY_REG_ADDRESS);

    if(shared->mac_type > e1000_82543) {
        /* Set up Op-code, Phy Address, register
         * address, and data intended for the PHY register in the MDI
         * Control register.  The MAC will take care of interfacing
         * with the PHY to send the desired data.
         */
        command = (((uint32_t) data) |
                   (reg_addr << E1000_MDIC_REG_SHIFT) |
                   (shared->phy_addr << E1000_MDIC_PHY_SHIFT) | 
                   (E1000_MDIC_OP_WRITE));

        E1000_WRITE_REG(shared, MDIC, command);

        /* Check every 10 usec to see if the read completed.  The read
         * may take as long as 64 usecs (we'll wait 100 usecs max)
         * from the CPU Write to the Ready bit assertion.
         */
        for(i = 0; i < 10; i++) {
            usec_delay(10);

            mdic_reg = E1000_READ_REG(shared, MDIC);

            if(mdic_reg & E1000_MDIC_READY)
                break;
        }
    } else {
        /* We'll need to use the SW defined pins to shift the write command
         *  out to the PHY. We first send a preamble to the PHY to signal the
         * beginning of the MII instruction.  This is done by sending 32 
         * consecutive "1" bits.
         */
        e1000_phy_shift_out(shared, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);

        /* Now combine the remaining required fields that will indicate
         * a write operation.  We use this method instead of calling the
         * e1000_phy_shift_out routine for each field in the command.  The
         * format of a MII write instruction is as follows:
         * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
         */
        command = ((PHY_TURNAROUND) |
                   (reg_addr << 2) |
                   (shared->phy_addr << 7) |
                   (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
        command <<= 16;
        command |= ((uint32_t) data);

        e1000_phy_shift_out(shared, command, 32);
    }
    return;
}

/******************************************************************************
* Returns the PHY to the power-on reset state
*
* shared - Struct containing variables accessed by shared code
******************************************************************************/
void
e1000_phy_hw_reset(struct e1000_shared_adapter *shared)
{
    uint32_t ctrl_reg;
    uint32_t ctrl_ext_reg;

    DEBUGFUNC("e1000_phy_hw_reset");

    DEBUGOUT("Resetting Phy...\n");

    if(shared->mac_type > e1000_82543) {
        /* Read the device control register and assert the
         * E1000_CTRL_PHY_RST bit.  Hold for 20ms and then take it out
         * of reset.
         */
        ctrl_reg = E1000_READ_REG(shared, CTRL);

        ctrl_reg |= E1000_CTRL_PHY_RST;

        E1000_WRITE_REG(shared, CTRL, ctrl_reg);

        msec_delay(20);

        ctrl_reg &= ~E1000_CTRL_PHY_RST;

        E1000_WRITE_REG(shared, CTRL, ctrl_reg);

        msec_delay(20);
    } else {
        /* Read the Extended Device Control Register, assert the
         * PHY_RESET_DIR bit.  Then clock it out to the PHY.
         */
        ctrl_ext_reg = E1000_READ_REG(shared, CTRL_EXT);

        ctrl_ext_reg |= E1000_CTRL_PHY_RESET_DIR4;

        E1000_WRITE_REG(shared, CTRL_EXT, ctrl_ext_reg);

        msec_delay(20);

        /* Set the reset bit in the device control register and clock
         * it out to the PHY.
         */
        ctrl_ext_reg = E1000_READ_REG(shared, CTRL_EXT);

        ctrl_ext_reg &= ~E1000_CTRL_PHY_RESET4;

        E1000_WRITE_REG(shared, CTRL_EXT, ctrl_ext_reg);

        msec_delay(20);

        ctrl_ext_reg = E1000_READ_REG(shared, CTRL_EXT);

        ctrl_ext_reg |= E1000_CTRL_PHY_RESET4;

        E1000_WRITE_REG(shared, CTRL_EXT, ctrl_ext_reg);

        msec_delay(20);
    }
    return;
}

/******************************************************************************
* Resets the PHY
*
* shared - Struct containing variables accessed by shared code
*
* Sets bit 15 of the MII Control regiser
******************************************************************************/
boolean_t
e1000_phy_reset(struct e1000_shared_adapter *shared)
{
    uint16_t reg_data;
    uint16_t i;

    DEBUGFUNC("e1000_phy_reset");

    /* Read the MII control register, set the reset bit and write the
     * value back by clocking it out to the PHY.
     */
    reg_data = e1000_read_phy_reg(shared, PHY_CTRL);

    reg_data |= MII_CR_RESET;

    e1000_write_phy_reg(shared, PHY_CTRL, reg_data);

    /* Wait for bit 15 of the MII Control Register to be cleared
     * indicating the PHY has been reset.
     */
    i = 0;
    while((reg_data & MII_CR_RESET) && i++ < 500) {
        reg_data = e1000_read_phy_reg(shared, PHY_CTRL);
        usec_delay(1);
    }

    if(i >= 500) {
        DEBUGOUT("Timeout waiting for PHY to reset.\n");
        return FALSE;
    }
    return TRUE;
}

/******************************************************************************
* Detects which PHY is present and the speed and duplex
*
* shared - Struct containing variables accessed by shared code
* ctrl_reg - current value of the device control register
******************************************************************************/
boolean_t
e1000_phy_setup(struct e1000_shared_adapter *shared,
                uint32_t ctrl_reg)
{
    uint16_t mii_ctrl_reg;
    uint16_t mii_status_reg;
    uint16_t phy_specific_ctrl_reg;
    uint16_t mii_autoneg_adv_reg;
    uint16_t mii_1000t_ctrl_reg;
    uint16_t i;
    uint16_t data;
    uint16_t autoneg_hw_setting;
    uint16_t autoneg_fc_setting;
    boolean_t restart_autoneg = FALSE;
    boolean_t force_autoneg_restart = FALSE;

    DEBUGFUNC("e1000_phy_setup");

    /* We want to enable the Auto-Speed Detection bit in the Device
     * Control Register.  When set to 1, the MAC automatically detects
     * the resolved speed of the link and self-configures appropriately.
     * The Set Link Up bit must also be set for this behavior work
     * properly.
     */
    /* Nothing but 82543 and newer */
    ASSERT(shared->mac_type >= e1000_82543);

    /* With 82543, we need to force speed/duplex
     * on the MAC equal to what the PHY speed/duplex configuration is.
     * In addition, on 82543, we need to perform a hardware reset
     * on the PHY to take it out of reset.
     */
    if(shared->mac_type >= e1000_82544) {
        ctrl_reg |= E1000_CTRL_SLU;
        E1000_WRITE_REG(shared, CTRL, ctrl_reg);
    } else {
        ctrl_reg |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
        E1000_WRITE_REG(shared, CTRL, ctrl_reg);

        if(shared->mac_type == e1000_82543)
            e1000_phy_hw_reset(shared);
    }

    if(!e1000_detect_gig_phy(shared)) {
        /* No PHY detected, return FALSE */
        DEBUGOUT("PhySetup failure, did not detect valid phy.\n");
        return (FALSE);
    }

    DEBUGOUT1("Phy ID = %x \n", shared->phy_id);

    /* Read the MII Control Register. */
    mii_ctrl_reg = e1000_read_phy_reg(shared, PHY_CTRL);

    DEBUGOUT1("MII Ctrl Reg contents = %x\n", mii_ctrl_reg);

    /* Check to see if the Auto Neg Enable bit is set in the MII Control
     * Register.  If not, we could be in a situation where a driver was
     * loaded previously and was forcing speed and duplex.  Then the
     * driver was unloaded but a e1000_phy_hw_reset was not performed, so
     * link was still being forced and link was still achieved.  Then
     * the driver was reloaded with the intention to auto-negotiate, but
     * since link is already established we end up not restarting
     * auto-neg.  So if the auto-neg bit is not enabled and the driver
     * is being loaded with the desire to auto-neg, we set this flag to
     * to ensure the restart of the auto-neg engine later in the logic.
     */
    if(!(mii_ctrl_reg & MII_CR_AUTO_NEG_EN))
        force_autoneg_restart = TRUE;

    /* Clear the isolate bit for normal operation and write it back to
     * the MII Control Reg.  Although the spec says this doesn't need
     * to be done when the PHY address is not equal to zero, we do it
     * anyway just to be safe.
     */
    mii_ctrl_reg &= ~(MII_CR_ISOLATE);

    e1000_write_phy_reg(shared, PHY_CTRL, mii_ctrl_reg);

    data = e1000_read_phy_reg(shared, M88E1000_PHY_SPEC_CTRL);

    /* Enable CRS on TX.  This must be set for half-duplex operation. */
    data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;

    DEBUGOUT1("M88E1000 PSCR: %x \n", data);

    e1000_write_phy_reg(shared, M88E1000_PHY_SPEC_CTRL, data);

    data = e1000_read_phy_reg(shared, M88E1000_EXT_PHY_SPEC_CTRL);

    /* Force TX_CLK in the Extended PHY Specific Control Register
     * to 25MHz clock.
     */
    data |= M88E1000_EPSCR_TX_CLK_25;

    e1000_write_phy_reg(shared, M88E1000_EXT_PHY_SPEC_CTRL, data);

    /* Certain PHYs will set the default of MII register 4 differently.
     * We need to check this against our fc value.  If it is
     * different, we need to setup up register 4 correctly and restart
     * autonegotiation.
     */
    /* Read the MII Auto-Neg Advertisement Register (Address 4). */
    mii_autoneg_adv_reg = e1000_read_phy_reg(shared, PHY_AUTONEG_ADV);

    /* Shift right to put 10T-Half bit in bit 0
     * Isolate the four bits for 100/10 Full/Half.
     */ 
    autoneg_hw_setting = (mii_autoneg_adv_reg >> 5) & 0xF;

    /* Get the 1000T settings. */
    mii_1000t_ctrl_reg = e1000_read_phy_reg(shared, PHY_1000T_CTRL);

    /* Isolate and OR in the 1000T settings. */
    autoneg_hw_setting |= ((mii_1000t_ctrl_reg & 0x0300) >> 4);

    /* mask all bits in the MII Auto-Neg Advertisement Register
     * except for ASM_DIR and PAUSE and shift.  This value
     * will be used later to see if we need to restart Auto-Negotiation.
     */
    autoneg_fc_setting = ((mii_autoneg_adv_reg & 0x0C00) >> 10);

    /* Perform some bounds checking on the shared->autoneg_advertised
     * parameter.  If this variable is zero, then set it to the default.
     */
    shared->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;

    /* If autoneg_advertised is zero, we assume it was not defaulted
     * by the calling code so we set to advertise full capability.
     */
    if(shared->autoneg_advertised == 0)
        shared->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;

    /* We could be in the situation where Auto-Neg has already completed
     * and the user has not indicated any overrides.  In this case we
     * simply need to call e1000_get_speed_and_duplex to obtain the Auto-
     * Negotiated speed and duplex, then return.
     */
    if(!force_autoneg_restart && shared->autoneg &&
       (shared->autoneg_advertised == autoneg_hw_setting) &&
       (shared->fc == autoneg_fc_setting)) {

        DEBUGOUT("No overrides - Reading MII Status Reg..\n");

        /* Read the MII Status Register.  We read this twice because
         * certain bits are "sticky" and need to be read twice.
         */
        mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);
        mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);

        DEBUGOUT1("MII Status Reg contents = %x\n", mii_status_reg);

        /* Do we have link now? (if so, auto-neg has completed) */
        if(mii_status_reg & MII_SR_LINK_STATUS) {
            data = e1000_read_phy_reg(shared, M88E1000_PHY_SPEC_STATUS);
            DEBUGOUT1("M88E1000 Phy Specific Status Reg contents = %x\n", data);

            /* We have link, so we need to finish the config process:
             *   1) Set up the MAC to the current PHY speed/duplex
             *      if we are on 82543.  If we
             *      are on newer silicon, we only need to configure
             *      collision distance in the Transmit Control Register.
             *   2) Set up flow control on the MAC to that established
             *      with the link partner.
             */
            if(shared->mac_type >= e1000_82544)
                e1000_config_collision_dist(shared);
            else
                e1000_config_mac_to_phy(shared, data);

            e1000_config_fc_after_link_up(shared);

            return (TRUE);
        }
    }

    /* Options:
     *   MDI/MDI-X = 0 (default)
     *   0 - Auto for all speeds
     *   1 - MDI mode
     *   2 - MDI-X mode
     *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
     */
    phy_specific_ctrl_reg = e1000_read_phy_reg(shared, M88E1000_PHY_SPEC_CTRL);

    phy_specific_ctrl_reg &= ~M88E1000_PSCR_AUTO_X_MODE;

    switch (shared->mdix) {
    case 1:
        phy_specific_ctrl_reg |= M88E1000_PSCR_MDI_MANUAL_MODE;
        break;
    case 2:
        phy_specific_ctrl_reg |= M88E1000_PSCR_MDIX_MANUAL_MODE;
        break;
    case 3:
        phy_specific_ctrl_reg |= M88E1000_PSCR_AUTO_X_1000T;
        break;
    case 0:
    default:
        phy_specific_ctrl_reg |= M88E1000_PSCR_AUTO_X_MODE;
        break;
    }

    e1000_write_phy_reg(shared, M88E1000_PHY_SPEC_CTRL, phy_specific_ctrl_reg);

    /* Options:
     *   disable_polarity_correction = 0 (default)
     *       Automatic Correction for Reversed Cable Polarity
     *   0 - Disabled
     *   1 - Enabled
     */
    phy_specific_ctrl_reg = e1000_read_phy_reg(shared, M88E1000_PHY_SPEC_CTRL);

    phy_specific_ctrl_reg &= ~M88E1000_PSCR_POLARITY_REVERSAL;

    if(shared->disable_polarity_correction == 1)
        phy_specific_ctrl_reg |= M88E1000_PSCR_POLARITY_REVERSAL;

    e1000_write_phy_reg(shared, M88E1000_PHY_SPEC_CTRL, phy_specific_ctrl_reg);

    /* Options:
     *   autoneg = 1 (default)
     *      PHY will advertise value(s) parsed from
     *      autoneg_advertised and fc
     *   autoneg = 0
     *      PHY will be set to 10H, 10F, 100H, or 100F
     *      depending on value parsed from forced_speed_duplex.
     */

    /* Is autoneg enabled?  This is enabled by default or by software override.
     * If so, call e1000_phy_setup_autoneg routine to parse the
     * autoneg_advertised and fc options. If autoneg is NOT enabled, then the
     * user should have provided a speed/duplex override.  If so, then call
     * e1000_phy_force_speed_duplex to parse and set this up.  Otherwise,
     * we are in an error situation and need to bail.
     */
    if(shared->autoneg) {
        DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
        restart_autoneg = e1000_phy_setup_autoneg(shared);
    } else {
        DEBUGOUT("Forcing speed and duplex\n");
        e1000_phy_force_speed_duplex(shared);
    }

    /* Based on information parsed above, check the flag to indicate
     * whether we need to restart Auto-Neg.
     */
    if(restart_autoneg) {
        DEBUGOUT("Restarting Auto-Neg\n");

        /* Read the MII Control Register. */
        mii_ctrl_reg = e1000_read_phy_reg(shared, PHY_CTRL);

        /* Restart auto-negotiation by setting the Auto Neg Enable bit and
         * the Auto Neg Restart bit.
         */
        mii_ctrl_reg |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);

        e1000_write_phy_reg(shared, PHY_CTRL, mii_ctrl_reg);

        /* Does the user want to wait for Auto-Neg to complete here, or
         * check at a later time (for example, callback routine).
         */
        if(shared->wait_autoneg_complete)
            e1000_wait_autoneg(shared);
    } /* end if restart_autoneg */

    /* Read the MII Status Register. */
    mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);
    mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);

    DEBUGOUT1("Checking for link status - MII Status Reg contents = %x\n",
              mii_status_reg);

    /* Check link status.  Wait up to 100 microseconds for link to
     * become valid.
     */
    for(i = 0; i < 10; i++) {
        if(mii_status_reg & MII_SR_LINK_STATUS)
            break;
        usec_delay(10);
        DEBUGOUT(". ");

        mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);
        mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);
    }

    if(mii_status_reg & MII_SR_LINK_STATUS) {
        /* Yes, so configure MAC to PHY settings as well as flow control
         * registers.
         */
        data = e1000_read_phy_reg(shared, M88E1000_PHY_SPEC_STATUS);

        DEBUGOUT1("M88E1000 Phy Specific Status Reg contents = %x\n", data);

        /* We have link, so we need to finish the config process:
         *   1) Set up the MAC to the current PHY speed/duplex
         *      if we are on 82543.  If we
         *      are on newer silicon, we only need to configure
         *      collision distance in the Transmit Control Register.
         *   2) Set up flow control on the MAC to that established with
         *      the link partner.
         */
        if(shared->mac_type >= e1000_82544)
            e1000_config_collision_dist(shared);
        else
            e1000_config_mac_to_phy(shared, data);

        e1000_config_fc_after_link_up(shared);

        DEBUGOUT("Valid link established!!!\n");
    } else {
        DEBUGOUT("Unable to establish link!!!\n");
    }

    return (TRUE);
}

/******************************************************************************
* Configures PHY autoneg and flow control advertisement settings
*
* shared - Struct containing variables accessed by shared code
******************************************************************************/
boolean_t
e1000_phy_setup_autoneg(struct e1000_shared_adapter *shared)
{
    uint16_t mii_autoneg_adv_reg;
    uint16_t mii_1000t_ctrl_reg;

    DEBUGFUNC("e1000_phy_setup_autoneg");

    /* Read the MII Auto-Neg Advertisement Register (Address 4). */
    mii_autoneg_adv_reg = e1000_read_phy_reg(shared, PHY_AUTONEG_ADV);

    /* Read the MII 1000Base-T Control Register (Address 9). */
    mii_1000t_ctrl_reg = e1000_read_phy_reg(shared, PHY_1000T_CTRL);

    /* Need to parse both autoneg_advertised and fc and set up
     * the appropriate PHY registers.  First we will parse for
     * autoneg_advertised software override.  Since we can advertise
     * a plethora of combinations, we need to check each bit
     * individually.
     */

    /* First we clear all the 10/100 mb speed bits in the Auto-Neg
     * Advertisement Register (Address 4) and the 1000 mb speed bits in
     * the  1000Base-T Control Register (Address 9).
     */
    mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
    mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;

    DEBUGOUT1("autoneg_advertised %x\n", shared->autoneg_advertised);

    /* Do we want to advertise 10 Mb Half Duplex? */
    if(shared->autoneg_advertised & ADVERTISE_10_HALF) {
        DEBUGOUT("Advertise 10mb Half duplex\n");
        mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
    }

    /* Do we want to advertise 10 Mb Full Duplex? */
    if(shared->autoneg_advertised & ADVERTISE_10_FULL) {
        DEBUGOUT("Advertise 10mb Full duplex\n");
        mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
    }

    /* Do we want to advertise 100 Mb Half Duplex? */
    if(shared->autoneg_advertised & ADVERTISE_100_HALF) {
        DEBUGOUT("Advertise 100mb Half duplex\n");
        mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
    }

    /* Do we want to advertise 100 Mb Full Duplex? */
    if(shared->autoneg_advertised & ADVERTISE_100_FULL) {
        DEBUGOUT("Advertise 100mb Full duplex\n");
        mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
    }

    /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
    if(shared->autoneg_advertised & ADVERTISE_1000_HALF) {
        DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
    }

    /* Do we want to advertise 1000 Mb Full Duplex? */
    if(shared->autoneg_advertised & ADVERTISE_1000_FULL) {
        DEBUGOUT("Advertise 1000mb Full duplex\n");
        mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
    }

    /* Check for a software override of the flow control settings, and
     * setup the PHY advertisement registers accordingly.  If
     * auto-negotiation is enabled, then software will have to set the
     * "PAUSE" bits to the correct value in the Auto-Negotiation
     * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
     *
     * The possible values of the "fc" parameter are:
     *      0:  Flow control is completely disabled
     *      1:  Rx flow control is enabled (we can receive pause frames
     *          but not send pause frames).
     *      2:  Tx flow control is enabled (we can send pause frames
     *          but we do not support receiving pause frames).
     *      3:  Both Rx and TX flow control (symmetric) are enabled.
     *  other:  No software override.  The flow control configuration
     *          in the EEPROM is used.
     */
    switch (shared->fc) {
    case e1000_fc_none:        /* 0 */
            /* Flow control (RX & TX) is completely disabled by a
             * software over-ride.
             */
        mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
        break;
    case e1000_fc_rx_pause:    /* 1 */
            /* RX Flow control is enabled, and TX Flow control is
             * disabled, by a software over-ride.
             */

            /* Since there really isn't a way to advertise that we are
             * capable of RX Pause ONLY, we will advertise that we
             * support both symmetric and asymmetric RX PAUSE.  Later
             * (in e1000_config_fc_after_link_up) we will disable the
             *shared's ability to send PAUSE frames.
             */
        mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
        break;
    case e1000_fc_tx_pause:    /* 2 */
            /* TX Flow control is enabled, and RX Flow control is
             * disabled, by a software over-ride.
             */
        mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
        mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
        break;
    case e1000_fc_full:        /* 3 */
            /* Flow control (both RX and TX) is enabled by a software
             * over-ride.
             */
        mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
        break;
    default:
            /* We should never get here.  The value should be 0-3. */
        DEBUGOUT("Flow control param set incorrectly\n");
        ASSERT(0);
        break;
    }

    /* Write the MII Auto-Neg Advertisement Register (Address 4). */
    e1000_write_phy_reg(shared, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);

    DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);

    /* Write the MII 1000Base-T Control Register (Address 9). */
    e1000_write_phy_reg(shared, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
    return (TRUE);
}

/******************************************************************************
* Sets MAC speed and duplex settings to reflect the those in the PHY
*
* shared - Struct containing variables accessed by shared code
* mii_reg - data to write to the MII control register
*
* The contents of the PHY register containing the needed information need to
* be passed in.
******************************************************************************/
void
e1000_config_mac_to_phy(struct e1000_shared_adapter *shared,
                        uint16_t mii_reg)
{
    uint32_t ctrl_reg;
    uint32_t tctl_reg;
    uint32_t shift;

    DEBUGFUNC("e1000_config_mac_to_phy");

    /* We need to read the Transmit Control register to configure the
     * collision distance.
     * Note: This must be done for both Half or Full Duplex.
     */
    tctl_reg = E1000_READ_REG(shared, TCTL);
    DEBUGOUT1("tctl_reg = %x\n", tctl_reg);

    /* Read the Device Control Register and set the bits to Force Speed
     * and Duplex.
     */
    ctrl_reg = E1000_READ_REG(shared, CTRL);

    ctrl_reg |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
    ctrl_reg &= ~(DEVICE_SPEED_MASK);

    DEBUGOUT1("MII Register Data = %x\r\n", mii_reg);

    /* Clear the ILOS bit. */
    ctrl_reg &= ~E1000_CTRL_ILOS;

    /* Set up duplex in the Device Control and Transmit Control
     * registers depending on negotiated values.
     */
    if(mii_reg & M88E1000_PSSR_DPLX) {
        ctrl_reg |= E1000_CTRL_FD;

        /* We are in Full Duplex mode.  We have the same collision
         * distance regardless of speed.
         */
        tctl_reg &= ~E1000_TCTL_COLD;
        shift = E1000_FDX_COLLISION_DISTANCE;
        shift <<= E1000_COLD_SHIFT;
        tctl_reg |= shift;
    } else {
        ctrl_reg &= ~E1000_CTRL_FD;

        /* We are in Half Duplex mode.  Our Half Duplex collision
         * distance is different for Gigabit than for 10/100 so we will
         * set accordingly.
         */
        if((mii_reg & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { 
            /* 1000Mbs HDX */
            tctl_reg &= ~E1000_TCTL_COLD;
            shift = E1000_GB_HDX_COLLISION_DISTANCE;
            shift <<= E1000_COLD_SHIFT;
            tctl_reg |= shift;
            tctl_reg |= E1000_TCTL_PBE; /* Enable Packet Bursting */
        } else {
            /* 10/100Mbs HDX */
            tctl_reg &= ~E1000_TCTL_COLD;
            shift = E1000_HDX_COLLISION_DISTANCE;
            shift <<= E1000_COLD_SHIFT;
            tctl_reg |= shift;
        }
    }

    /* Set up speed in the Device Control register depending on
     * negotiated values.
     */
    if((mii_reg & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
        ctrl_reg |= E1000_CTRL_SPD_1000;
    else if((mii_reg & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
        ctrl_reg |= E1000_CTRL_SPD_100;
    else
        ctrl_reg &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);

    /* Write the configured values back to the Transmit Control Reg. */
    E1000_WRITE_REG(shared, TCTL, tctl_reg);

    /* Write the configured values back to the Device Control Reg. */
    E1000_WRITE_REG(shared, CTRL, ctrl_reg);

    return;
}

/******************************************************************************
* Sets the collision distance in the Transmit Control register
*
* shared - Struct containing variables accessed by shared code
*
* Link should have been established previously. Reads the speed and duplex
* information from the Device Status register.
******************************************************************************/
void
e1000_config_collision_dist(struct e1000_shared_adapter *shared)
{
    uint32_t tctl_reg;
    uint16_t speed;
    uint16_t duplex;
    uint32_t shift;

    DEBUGFUNC("e1000_config_collision_dist");

    /* Get our current speed and duplex from the Device Status Register. */
    e1000_get_speed_and_duplex(shared, &speed, &duplex);

    /* We need to configure the Collision Distance for both Full or
     * Half Duplex.
     */
    tctl_reg = E1000_READ_REG(shared, TCTL);
    DEBUGOUT1("tctl_reg = %x\n", tctl_reg);

    /* mask the Collision Distance bits in the Transmit Control Reg. */
    tctl_reg &= ~E1000_TCTL_COLD;

    if(duplex == FULL_DUPLEX) {
        /* We are in Full Duplex mode.  Therefore, the collision distance
         * is the same regardless of speed.
         */
        shift = E1000_FDX_COLLISION_DISTANCE;
        shift <<= E1000_COLD_SHIFT;
        tctl_reg |= shift;
    } else {
        /* We are in Half Duplex mode.  Half Duplex collision distance is
         * different for Gigabit vs. 10/100, so we will set accordingly.
         */
        if(speed == SPEED_1000) {       /* 1000Mbs HDX */
            shift = E1000_GB_HDX_COLLISION_DISTANCE;
            shift <<= E1000_COLD_SHIFT;
            tctl_reg |= shift;
            tctl_reg |= E1000_TCTL_PBE; /* Enable Packet Bursting */
        } else {                /* 10/100Mbs HDX */
            shift = E1000_HDX_COLLISION_DISTANCE;
            shift <<= E1000_COLD_SHIFT;
            tctl_reg |= shift;
        }
    }

    /* Write the configured values back to the Transmit Control Reg. */
    E1000_WRITE_REG(shared, TCTL, tctl_reg);

    return;
}

/******************************************************************************
* Probes the expected PHY address for known PHY IDs
*
* shared - Struct containing variables accessed by shared code
******************************************************************************/
boolean_t
e1000_detect_gig_phy(struct e1000_shared_adapter *shared)
{
    uint32_t phy_id_high;
    uint16_t phy_id_low;

    DEBUGFUNC("e1000_detect_gig_phy");

    /* Read the PHY ID Registers to identify which PHY is onboard. */
    shared->phy_addr = 1;

    phy_id_high = e1000_read_phy_reg(shared, PHY_ID1);

    usec_delay(2);

    phy_id_low = e1000_read_phy_reg(shared, PHY_ID2);

    shared->phy_id = (phy_id_low | (phy_id_high << 16)) & PHY_REVISION_MASK;

    if(shared->phy_id == M88E1000_12_PHY_ID ||
       shared->phy_id == M88E1000_14_PHY_ID ||
       shared->phy_id == M88E1000_I_PHY_ID) {

        DEBUGOUT2("phy_id 0x%x detected at address 0x%x\n",
                  shared->phy_id, shared->phy_addr);
        return (TRUE);
    } else {
        DEBUGOUT("Could not auto-detect Phy!\n");
        return (FALSE);
    }
}

/******************************************************************************
* Resets the PHY's DSP
*
* shared - Struct containing variables accessed by shared code
******************************************************************************/
void
e1000_phy_reset_dsp(struct e1000_shared_adapter *shared)
{
    e1000_write_phy_reg(shared, 29, 0x1d);
    e1000_write_phy_reg(shared, 30, 0xc1);
    e1000_write_phy_reg(shared, 30, 0x00);
    return;
}

/******************************************************************************
* Blocks until autoneg completes or times out (~4.5 seconds)
*
* shared - Struct containing variables accessed by shared code
******************************************************************************/
boolean_t
e1000_wait_autoneg(struct e1000_shared_adapter *shared)
{
    uint16_t i;
    uint16_t mii_status_reg;
    boolean_t autoneg_complete = FALSE;

    DEBUGFUNC("e1000_wait_autoneg");

    /* We will wait for autoneg to complete. */
    DEBUGOUT("Waiting for Auto-Neg to complete.\n");
    mii_status_reg = 0;

    /* We will wait for autoneg to complete or 4.5 seconds to expire. */

    for(i = PHY_AUTO_NEG_TIME; i > 0; i--) {
        /* Read the MII Status Register and wait for Auto-Neg
         * Complete bit to be set.
         */
        mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);
        mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);

        if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
            autoneg_complete = TRUE;
            break;
        }

        msec_delay(100);
    }

    return (autoneg_complete);
}

/******************************************************************************
* Get PHY information from various PHY registers
*
* shared - Struct containing variables accessed by shared code
* phy_status_info - PHY information structure
******************************************************************************/
boolean_t
e1000_phy_get_info(struct e1000_shared_adapter *shared,
                   struct e1000_phy_info *phy_status_info)
{
    uint16_t phy_mii_status_reg;
    uint16_t phy_specific_ctrl_reg;
    uint16_t phy_specific_status_reg;
    uint16_t phy_specific_ext_ctrl_reg;
    uint16_t phy_1000t_stat_reg;

    phy_status_info->cable_length = e1000_cable_length_undefined;
    phy_status_info->extended_10bt_distance =
        e1000_10bt_ext_dist_enable_undefined;
    phy_status_info->cable_polarity = e1000_rev_polarity_undefined;
    phy_status_info->polarity_correction = e1000_polarity_reversal_undefined;
    phy_status_info->link_reset = e1000_down_no_idle_undefined;
    phy_status_info->mdix_mode = e1000_auto_x_mode_undefined;
    phy_status_info->local_rx = e1000_1000t_rx_status_undefined;
    phy_status_info->remote_rx = e1000_1000t_rx_status_undefined;

    /* PHY info only valid for copper media. */
    if(shared == NULL || shared->media_type != e1000_media_type_copper)
        return FALSE;

    /* PHY info only valid for LINK UP.  Read MII status reg 
     * back-to-back to get link status.
     */
    phy_mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);
    phy_mii_status_reg = e1000_read_phy_reg(shared, PHY_STATUS);
    if((phy_mii_status_reg & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS)
        return FALSE;

    /* Read various PHY registers to get the PHY info. */
    phy_specific_ctrl_reg = e1000_read_phy_reg(shared, M88E1000_PHY_SPEC_CTRL);
    phy_specific_status_reg =
        e1000_read_phy_reg(shared, M88E1000_PHY_SPEC_STATUS);
    phy_specific_ext_ctrl_reg =
        e1000_read_phy_reg(shared, M88E1000_EXT_PHY_SPEC_CTRL);
    phy_1000t_stat_reg = e1000_read_phy_reg(shared, PHY_1000T_STATUS);

    phy_status_info->cable_length =
        ((phy_specific_status_reg & M88E1000_PSSR_CABLE_LENGTH) >>
         M88E1000_PSSR_CABLE_LENGTH_SHIFT);

    phy_status_info->extended_10bt_distance =
        (phy_specific_ctrl_reg & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
        M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT;

    phy_status_info->cable_polarity =
        (phy_specific_status_reg & M88E1000_PSSR_REV_POLARITY) >>
        M88E1000_PSSR_REV_POLARITY_SHIFT;

    phy_status_info->polarity_correction =
        (phy_specific_ctrl_reg & M88E1000_PSCR_POLARITY_REVERSAL) >>
        M88E1000_PSCR_POLARITY_REVERSAL_SHIFT;

    phy_status_info->link_reset =
        (phy_specific_ext_ctrl_reg & M88E1000_EPSCR_DOWN_NO_IDLE) >>
        M88E1000_EPSCR_DOWN_NO_IDLE_SHIFT;

    phy_status_info->mdix_mode =
        (phy_specific_status_reg & M88E1000_PSSR_MDIX) >>
        M88E1000_PSSR_MDIX_SHIFT;

    phy_status_info->local_rx =
        (phy_1000t_stat_reg & SR_1000T_LOCAL_RX_STATUS) >>
        SR_1000T_LOCAL_RX_STATUS_SHIFT;

    phy_status_info->remote_rx =
        (phy_1000t_stat_reg & SR_1000T_REMOTE_RX_STATUS) >>
        SR_1000T_REMOTE_RX_STATUS_SHIFT;

    return TRUE;
}

boolean_t
e1000_validate_mdi_setting(struct e1000_shared_adapter *shared)
{
    if(!shared->autoneg && (shared->mdix == 0 || shared->mdix == 3)) {
        shared->mdix = 1;
        return FALSE;
    }
    return TRUE;
}