kaslr.c 23.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * kaslr.c
 *
 * This contains the routines needed to generate a reasonable level of
 * entropy to choose a randomized kernel base address offset in support
 * of Kernel Address Space Layout Randomization (KASLR). Additionally
 * handles walking the physical memory maps (and tracking memory regions
 * to avoid) in order to select a physical memory location that can
 * contain the entire properly aligned running kernel image.
 *
 */
13 14 15 16 17 18 19 20 21

/*
 * isspace() in linux/ctype.h is expected by next_args() to filter
 * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
 * since isdigit() is implemented in both of them. Hence disable it
 * here.
 */
#define BOOT_CTYPE_H

22
#include "misc.h"
23
#include "error.h"
24
#include "../string.h"
25

26 27 28 29
#include <generated/compile.h>
#include <linux/module.h>
#include <linux/uts.h>
#include <linux/utsname.h>
30
#include <linux/ctype.h>
31
#include <linux/efi.h>
32
#include <generated/utsrelease.h>
33
#include <asm/efi.h>
34

35 36 37 38
/* Macros used by the included decompressor code below. */
#define STATIC
#include <linux/decompress/mm.h>

39 40 41 42
#define _SETUP
#include <asm/setup.h>	/* For COMMAND_LINE_SIZE */
#undef _SETUP

43 44
extern unsigned long get_cmd_line_ptr(void);

45
/* Simplified build-specific string for starting entropy. */
46
static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
		LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;

static unsigned long rotate_xor(unsigned long hash, const void *area,
				size_t size)
{
	size_t i;
	unsigned long *ptr = (unsigned long *)area;

	for (i = 0; i < size / sizeof(hash); i++) {
		/* Rotate by odd number of bits and XOR. */
		hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
		hash ^= ptr[i];
	}

	return hash;
}

/* Attempt to create a simple but unpredictable starting entropy. */
65
static unsigned long get_boot_seed(void)
66 67 68 69
{
	unsigned long hash = 0;

	hash = rotate_xor(hash, build_str, sizeof(build_str));
70
	hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
71 72 73 74

	return hash;
}

75 76
#define KASLR_COMPRESSED_BOOT
#include "../../lib/kaslr.c"
77

78

79 80 81 82 83
/* Only supporting at most 4 unusable memmap regions with kaslr */
#define MAX_MEMMAP_REGIONS	4

static bool memmap_too_large;

84

85 86 87 88
/*
 * Store memory limit: MAXMEM on 64-bit and KERNEL_IMAGE_SIZE on 32-bit.
 * It may be reduced by "mem=nn[KMG]" or "memmap=nn[KMG]" command line options.
 */
89
static u64 mem_limit;
90

91 92
/* Number of immovable memory regions */
static int num_immovable_mem;
93

94 95 96 97 98
enum mem_avoid_index {
	MEM_AVOID_ZO_RANGE = 0,
	MEM_AVOID_INITRD,
	MEM_AVOID_CMDLINE,
	MEM_AVOID_BOOTPARAMS,
99 100
	MEM_AVOID_MEMMAP_BEGIN,
	MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
101 102 103
	MEM_AVOID_MAX,
};

104
static struct mem_vector mem_avoid[MEM_AVOID_MAX];
105 106 107 108 109 110 111 112 113 114 115 116

static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
{
	/* Item one is entirely before item two. */
	if (one->start + one->size <= two->start)
		return false;
	/* Item one is entirely after item two. */
	if (one->start >= two->start + two->size)
		return false;
	return true;
}

117
char *skip_spaces(const char *str)
118
{
119 120 121
	while (isspace(*str))
		++str;
	return (char *)str;
122
}
123 124
#include "../../../../lib/ctype.c"
#include "../../../../lib/cmdline.c"
125

126 127 128 129 130
enum parse_mode {
	PARSE_MEMMAP,
	PARSE_EFI,
};

131
static int
132
parse_memmap(char *p, u64 *start, u64 *size, enum parse_mode mode)
133 134 135 136 137 138 139 140 141 142 143
{
	char *oldp;

	if (!p)
		return -EINVAL;

	/* We don't care about this option here */
	if (!strncmp(p, "exactmap", 8))
		return -EINVAL;

	oldp = p;
144
	*size = memparse(p, &p);
145 146 147 148 149 150 151
	if (p == oldp)
		return -EINVAL;

	switch (*p) {
	case '#':
	case '$':
	case '!':
152
		*start = memparse(p + 1, &p);
153
		return 0;
154
	case '@':
155 156 157 158 159 160 161
		if (mode == PARSE_MEMMAP) {
			/*
			 * memmap=nn@ss specifies usable region, should
			 * be skipped
			 */
			*size = 0;
		} else {
162
			u64 flags;
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

			/*
			 * efi_fake_mem=nn@ss:attr the attr specifies
			 * flags that might imply a soft-reservation.
			 */
			*start = memparse(p + 1, &p);
			if (p && *p == ':') {
				p++;
				if (kstrtoull(p, 0, &flags) < 0)
					*size = 0;
				else if (flags & EFI_MEMORY_SP)
					return 0;
			}
			*size = 0;
		}
178
		fallthrough;
179 180 181 182 183 184 185
	default:
		/*
		 * If w/o offset, only size specified, memmap=nn[KMG] has the
		 * same behaviour as mem=nn[KMG]. It limits the max address
		 * system can use. Region above the limit should be avoided.
		 */
		*start = 0;
186 187 188 189 190 191
		return 0;
	}

	return -EINVAL;
}

192
static void mem_avoid_memmap(enum parse_mode mode, char *str)
193
{
194
	static int i;
195

196
	if (i >= MAX_MEMMAP_REGIONS)
197 198 199 200
		return;

	while (str && (i < MAX_MEMMAP_REGIONS)) {
		int rc;
201
		u64 start, size;
202 203 204 205 206
		char *k = strchr(str, ',');

		if (k)
			*k++ = 0;

207
		rc = parse_memmap(str, &start, &size, mode);
208 209 210
		if (rc < 0)
			break;
		str = k;
211 212 213

		if (start == 0) {
			/* Store the specified memory limit if size > 0 */
214
			if (size > 0 && size < mem_limit)
215 216
				mem_limit = size;

217
			continue;
218
		}
219 220 221 222 223 224 225 226 227 228 229

		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
		mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
		i++;
	}

	/* More than 4 memmaps, fail kaslr */
	if ((i >= MAX_MEMMAP_REGIONS) && str)
		memmap_too_large = true;
}

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
/* Store the number of 1GB huge pages which users specified: */
static unsigned long max_gb_huge_pages;

static void parse_gb_huge_pages(char *param, char *val)
{
	static bool gbpage_sz;
	char *p;

	if (!strcmp(param, "hugepagesz")) {
		p = val;
		if (memparse(p, &p) != PUD_SIZE) {
			gbpage_sz = false;
			return;
		}

		if (gbpage_sz)
			warn("Repeatedly set hugeTLB page size of 1G!\n");
		gbpage_sz = true;
		return;
	}

	if (!strcmp(param, "hugepages") && gbpage_sz) {
		p = val;
		max_gb_huge_pages = simple_strtoull(p, &p, 0);
		return;
	}
}

258
static void handle_mem_options(void)
259 260
{
	char *args = (char *)get_cmd_line_ptr();
261
	size_t len;
262 263
	char *tmp_cmdline;
	char *param, *val;
264
	u64 mem_size;
265

266
	if (!args)
267
		return;
268

269
	len = strnlen(args, COMMAND_LINE_SIZE-1);
270
	tmp_cmdline = malloc(len + 1);
271
	if (!tmp_cmdline)
272 273 274 275 276 277 278 279 280 281 282 283
		error("Failed to allocate space for tmp_cmdline");

	memcpy(tmp_cmdline, args, len);
	tmp_cmdline[len] = 0;
	args = tmp_cmdline;

	/* Chew leading spaces */
	args = skip_spaces(args);

	while (*args) {
		args = next_arg(args, &param, &val);
		/* Stop at -- */
284 285
		if (!val && strcmp(param, "--") == 0)
			break;
286

287
		if (!strcmp(param, "memmap")) {
288
			mem_avoid_memmap(PARSE_MEMMAP, val);
289
		} else if (IS_ENABLED(CONFIG_X86_64) && strstr(param, "hugepages")) {
290
			parse_gb_huge_pages(param, val);
291 292 293 294 295 296
		} else if (!strcmp(param, "mem")) {
			char *p = val;

			if (!strcmp(p, "nopentium"))
				continue;
			mem_size = memparse(p, &p);
297
			if (mem_size == 0)
298
				break;
299

300 301
			if (mem_size < mem_limit)
				mem_limit = mem_size;
302 303
		} else if (!strcmp(param, "efi_fake_mem")) {
			mem_avoid_memmap(PARSE_EFI, val);
304
		}
305 306 307
	}

	free(tmp_cmdline);
308
	return;
309 310
}

311
/*
312 313 314
 * In theory, KASLR can put the kernel anywhere in the range of [16M, MAXMEM)
 * on 64-bit, and [16M, KERNEL_IMAGE_SIZE) on 32-bit.
 *
315 316
 * The mem_avoid array is used to store the ranges that need to be avoided
 * when KASLR searches for an appropriate random address. We must avoid any
317
 * regions that are unsafe to overlap with during decompression, and other
318 319 320 321 322
 * things like the initrd, cmdline and boot_params. This comment seeks to
 * explain mem_avoid as clearly as possible since incorrect mem_avoid
 * memory ranges lead to really hard to debug boot failures.
 *
 * The initrd, cmdline, and boot_params are trivial to identify for
323
 * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
 * MEM_AVOID_BOOTPARAMS respectively below.
 *
 * What is not obvious how to avoid is the range of memory that is used
 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
 * the compressed kernel (ZO) and its run space, which is used to extract
 * the uncompressed kernel (VO) and relocs.
 *
 * ZO's full run size sits against the end of the decompression buffer, so
 * we can calculate where text, data, bss, etc of ZO are positioned more
 * easily.
 *
 * For additional background, the decompression calculations can be found
 * in header.S, and the memory diagram is based on the one found in misc.c.
 *
 * The following conditions are already enforced by the image layouts and
 * associated code:
 *  - input + input_size >= output + output_size
 *  - kernel_total_size <= init_size
 *  - kernel_total_size <= output_size (see Note below)
 *  - output + init_size >= output + output_size
344
 *
345 346 347 348 349
 * (Note that kernel_total_size and output_size have no fundamental
 * relationship, but output_size is passed to choose_random_location
 * as a maximum of the two. The diagram is showing a case where
 * kernel_total_size is larger than output_size, but this case is
 * handled by bumping output_size.)
350
 *
351
 * The above conditions can be illustrated by a diagram:
352
 *
353 354 355 356 357 358 359
 * 0   output            input            input+input_size    output+init_size
 * |     |                 |                             |             |
 * |     |                 |                             |             |
 * |-----|--------|--------|--------------|-----------|--|-------------|
 *                |                       |           |
 *                |                       |           |
 * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
360
 *
361 362
 * [output, output+init_size) is the entire memory range used for
 * extracting the compressed image.
363
 *
364 365
 * [output, output+kernel_total_size) is the range needed for the
 * uncompressed kernel (VO) and its run size (bss, brk, etc).
366
 *
367 368 369
 * [output, output+output_size) is VO plus relocs (i.e. the entire
 * uncompressed payload contained by ZO). This is the area of the buffer
 * written to during decompression.
370
 *
371 372 373
 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
 * range of the copied ZO and decompression code. (i.e. the range
 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
374
 *
375 376 377
 * [input, input+input_size) is the original copied compressed image (ZO)
 * (i.e. it does not include its run size). This range must be avoided
 * because it contains the data used for decompression.
378
 *
379 380 381
 * [input+input_size, output+init_size) is [_text, _end) for ZO. This
 * range includes ZO's heap and stack, and must be avoided since it
 * performs the decompression.
382
 *
383 384 385
 * Since the above two ranges need to be avoided and they are adjacent,
 * they can be merged, resulting in: [input, output+init_size) which
 * becomes the MEM_AVOID_ZO_RANGE below.
386
 */
387
static void mem_avoid_init(unsigned long input, unsigned long input_size,
388
			   unsigned long output)
389
{
390
	unsigned long init_size = boot_params->hdr.init_size;
391
	u64 initrd_start, initrd_size;
392
	unsigned long cmd_line, cmd_line_size;
393 394 395

	/*
	 * Avoid the region that is unsafe to overlap during
396
	 * decompression.
397
	 */
398 399
	mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
	mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
400 401

	/* Avoid initrd. */
402 403 404 405
	initrd_start  = (u64)boot_params->ext_ramdisk_image << 32;
	initrd_start |= boot_params->hdr.ramdisk_image;
	initrd_size  = (u64)boot_params->ext_ramdisk_size << 32;
	initrd_size |= boot_params->hdr.ramdisk_size;
406 407
	mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
	mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
408
	/* No need to set mapping for initrd, it will be handled in VO. */
409 410

	/* Avoid kernel command line. */
411
	cmd_line = get_cmd_line_ptr();
412
	/* Calculate size of cmd_line. */
413
	if (cmd_line) {
414
		cmd_line_size = strnlen((char *)cmd_line, COMMAND_LINE_SIZE-1) + 1;
415 416 417
		mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
		mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
	}
418

419 420 421
	/* Avoid boot parameters. */
	mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
	mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
422 423 424

	/* We don't need to set a mapping for setup_data. */

425
	/* Mark the memmap regions we need to avoid */
426
	handle_mem_options();
427

428 429
	/* Enumerate the immovable memory regions */
	num_immovable_mem = count_immovable_mem_regions();
430 431
}

432 433 434 435 436 437
/*
 * Does this memory vector overlap a known avoided area? If so, record the
 * overlap region with the lowest address.
 */
static bool mem_avoid_overlap(struct mem_vector *img,
			      struct mem_vector *overlap)
438 439
{
	int i;
440
	struct setup_data *ptr;
441
	u64 earliest = img->start + img->size;
442
	bool is_overlapping = false;
443 444

	for (i = 0; i < MEM_AVOID_MAX; i++) {
445 446 447
		if (mem_overlaps(img, &mem_avoid[i]) &&
		    mem_avoid[i].start < earliest) {
			*overlap = mem_avoid[i];
448
			earliest = overlap->start;
449 450
			is_overlapping = true;
		}
451 452
	}

453
	/* Avoid all entries in the setup_data linked list. */
454
	ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
455 456 457
	while (ptr) {
		struct mem_vector avoid;

458
		avoid.start = (unsigned long)ptr;
459 460
		avoid.size = sizeof(*ptr) + ptr->len;

461 462
		if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
			*overlap = avoid;
463
			earliest = overlap->start;
464 465
			is_overlapping = true;
		}
466

467 468 469 470 471 472 473 474 475 476 477 478
		if (ptr->type == SETUP_INDIRECT &&
		    ((struct setup_indirect *)ptr->data)->type != SETUP_INDIRECT) {
			avoid.start = ((struct setup_indirect *)ptr->data)->addr;
			avoid.size = ((struct setup_indirect *)ptr->data)->len;

			if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
				*overlap = avoid;
				earliest = overlap->start;
				is_overlapping = true;
			}
		}

479 480 481
		ptr = (struct setup_data *)(unsigned long)ptr->next;
	}

482
	return is_overlapping;
483 484
}

485
struct slot_area {
486
	u64 addr;
487
	unsigned long num;
488 489 490 491 492
};

#define MAX_SLOT_AREA 100

static struct slot_area slot_areas[MAX_SLOT_AREA];
493
static unsigned int slot_area_index;
494
static unsigned long slot_max;
495

496 497 498 499 500 501 502 503
static void store_slot_info(struct mem_vector *region, unsigned long image_size)
{
	struct slot_area slot_area;

	if (slot_area_index == MAX_SLOT_AREA)
		return;

	slot_area.addr = region->start;
504
	slot_area.num = 1 + (region->size - image_size) / CONFIG_PHYSICAL_ALIGN;
505

506 507
	slot_areas[slot_area_index++] = slot_area;
	slot_max += slot_area.num;
508 509
}

510 511 512 513 514 515 516
/*
 * Skip as many 1GB huge pages as possible in the passed region
 * according to the number which users specified:
 */
static void
process_gb_huge_pages(struct mem_vector *region, unsigned long image_size)
{
517 518
	u64 pud_start, pud_end;
	unsigned long gb_huge_pages;
519 520
	struct mem_vector tmp;

521
	if (!IS_ENABLED(CONFIG_X86_64) || !max_gb_huge_pages) {
522 523 524 525
		store_slot_info(region, image_size);
		return;
	}

526 527 528
	/* Are there any 1GB pages in the region? */
	pud_start = ALIGN(region->start, PUD_SIZE);
	pud_end = ALIGN_DOWN(region->start + region->size, PUD_SIZE);
529 530

	/* No good 1GB huge pages found: */
531
	if (pud_start >= pud_end) {
532 533 534 535
		store_slot_info(region, image_size);
		return;
	}

536 537
	/* Check if the head part of the region is usable. */
	if (pud_start >= region->start + image_size) {
538
		tmp.start = region->start;
539
		tmp.size = pud_start - region->start;
540 541 542
		store_slot_info(&tmp, image_size);
	}

543 544 545 546 547 548 549 550 551 552 553 554 555
	/* Skip the good 1GB pages. */
	gb_huge_pages = (pud_end - pud_start) >> PUD_SHIFT;
	if (gb_huge_pages > max_gb_huge_pages) {
		pud_end = pud_start + (max_gb_huge_pages << PUD_SHIFT);
		max_gb_huge_pages = 0;
	} else {
		max_gb_huge_pages -= gb_huge_pages;
	}

	/* Check if the tail part of the region is usable. */
	if (region->start + region->size >= pud_end + image_size) {
		tmp.start = pud_end;
		tmp.size = region->start + region->size - pud_end;
556 557 558 559
		store_slot_info(&tmp, image_size);
	}
}

560
static u64 slots_fetch_random(void)
561
{
562
	unsigned long slot;
563
	unsigned int i;
564

565 566 567 568
	/* Handle case of no slots stored. */
	if (slot_max == 0)
		return 0;

569
	slot = kaslr_get_random_long("Physical") % slot_max;
570 571 572 573 574 575

	for (i = 0; i < slot_area_index; i++) {
		if (slot >= slot_areas[i].num) {
			slot -= slot_areas[i].num;
			continue;
		}
576
		return slot_areas[i].addr + ((u64)slot * CONFIG_PHYSICAL_ALIGN);
577 578 579 580 581
	}

	if (i == slot_area_index)
		debug_putstr("slots_fetch_random() failed!?\n");
	return 0;
582 583
}

584 585 586
static void __process_mem_region(struct mem_vector *entry,
				 unsigned long minimum,
				 unsigned long image_size)
587
{
588
	struct mem_vector region, overlap;
589
	u64 region_end;
590

591
	/* Enforce minimum and memory limit. */
592
	region.start = max_t(u64, entry->start, minimum);
593
	region_end = min(entry->start + entry->size, mem_limit);
594

595 596 597 598
	/* Give up if slot area array is full. */
	while (slot_area_index < MAX_SLOT_AREA) {
		/* Potentially raise address to meet alignment needs. */
		region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
599

600
		/* Did we raise the address above the passed in memory entry? */
601
		if (region.start > region_end)
602
			return;
603

604
		/* Reduce size by any delta from the original address. */
605
		region.size = region_end - region.start;
606 607 608 609 610 611 612

		/* Return if region can't contain decompressed kernel */
		if (region.size < image_size)
			return;

		/* If nothing overlaps, store the region and return. */
		if (!mem_avoid_overlap(&region, &overlap)) {
613
			process_gb_huge_pages(&region, image_size);
614 615 616 617
			return;
		}

		/* Store beginning of region if holds at least image_size. */
618
		if (overlap.start >= region.start + image_size) {
619 620
			region.size = overlap.start - region.start;
			process_gb_huge_pages(&region, image_size);
621 622 623 624
		}

		/* Clip off the overlapping region and start over. */
		region.start = overlap.start + overlap.size;
625 626 627
	}
}

628
static bool process_mem_region(struct mem_vector *region,
629 630
			       unsigned long minimum,
			       unsigned long image_size)
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
{
	int i;
	/*
	 * If no immovable memory found, or MEMORY_HOTREMOVE disabled,
	 * use @region directly.
	 */
	if (!num_immovable_mem) {
		__process_mem_region(region, minimum, image_size);

		if (slot_area_index == MAX_SLOT_AREA) {
			debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n");
			return 1;
		}
		return 0;
	}

647
#if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI)
648 649 650 651 652
	/*
	 * If immovable memory found, filter the intersection between
	 * immovable memory and @region.
	 */
	for (i = 0; i < num_immovable_mem; i++) {
653
		u64 start, end, entry_end, region_end;
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
		struct mem_vector entry;

		if (!mem_overlaps(region, &immovable_mem[i]))
			continue;

		start = immovable_mem[i].start;
		end = start + immovable_mem[i].size;
		region_end = region->start + region->size;

		entry.start = clamp(region->start, start, end);
		entry_end = clamp(region_end, start, end);
		entry.size = entry_end - entry.start;

		__process_mem_region(&entry, minimum, image_size);

		if (slot_area_index == MAX_SLOT_AREA) {
			debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n");
			return 1;
		}
	}
#endif
675
	return 0;
676 677
}

678 679
#ifdef CONFIG_EFI
/*
680 681
 * Returns true if we processed the EFI memmap, which we prefer over the E820
 * table if it is available.
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
 */
static bool
process_efi_entries(unsigned long minimum, unsigned long image_size)
{
	struct efi_info *e = &boot_params->efi_info;
	bool efi_mirror_found = false;
	struct mem_vector region;
	efi_memory_desc_t *md;
	unsigned long pmap;
	char *signature;
	u32 nr_desc;
	int i;

	signature = (char *)&e->efi_loader_signature;
	if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
	    strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
		return false;

#ifdef CONFIG_X86_32
	/* Can't handle data above 4GB at this time */
	if (e->efi_memmap_hi) {
		warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
		return false;
	}
	pmap =  e->efi_memmap;
#else
	pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
#endif

	nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
	for (i = 0; i < nr_desc; i++) {
		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
			efi_mirror_found = true;
716
			break;
717 718 719
		}
	}

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
	for (i = 0; i < nr_desc; i++) {
		md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);

		/*
		 * Here we are more conservative in picking free memory than
		 * the EFI spec allows:
		 *
		 * According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also
		 * free memory and thus available to place the kernel image into,
		 * but in practice there's firmware where using that memory leads
		 * to crashes.
		 *
		 * Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free.
		 */
		if (md->type != EFI_CONVENTIONAL_MEMORY)
			continue;

737 738 739 740
		if (efi_soft_reserve_enabled() &&
		    (md->attribute & EFI_MEMORY_SP))
			continue;

741 742 743 744 745 746
		if (efi_mirror_found &&
		    !(md->attribute & EFI_MEMORY_MORE_RELIABLE))
			continue;

		region.start = md->phys_addr;
		region.size = md->num_pages << EFI_PAGE_SHIFT;
747
		if (process_mem_region(&region, minimum, image_size))
748 749 750
			break;
	}
	return true;
751 752 753 754 755 756 757 758 759
}
#else
static inline bool
process_efi_entries(unsigned long minimum, unsigned long image_size)
{
	return false;
}
#endif

760 761
static void process_e820_entries(unsigned long minimum,
				 unsigned long image_size)
762 763
{
	int i;
764
	struct mem_vector region;
765 766 767 768 769 770 771 772
	struct boot_e820_entry *entry;

	/* Verify potential e820 positions, appending to slots list. */
	for (i = 0; i < boot_params->e820_entries; i++) {
		entry = &boot_params->e820_table[i];
		/* Skip non-RAM entries. */
		if (entry->type != E820_TYPE_RAM)
			continue;
773 774
		region.start = entry->addr;
		region.size = entry->size;
775
		if (process_mem_region(&region, minimum, image_size))
776 777 778
			break;
	}
}
779

780 781 782
static unsigned long find_random_phys_addr(unsigned long minimum,
					   unsigned long image_size)
{
783 784
	u64 phys_addr;

785 786 787 788
	/* Bail out early if it's impossible to succeed. */
	if (minimum + image_size > mem_limit)
		return 0;

789 790
	/* Check if we had too many memmaps. */
	if (memmap_too_large) {
791
		debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
792 793 794
		return 0;
	}

795 796
	if (!process_efi_entries(minimum, image_size))
		process_e820_entries(minimum, image_size);
797

798
	phys_addr = slots_fetch_random();
799

800 801 802 803 804 805 806
	/* Perform a final check to make sure the address is in range. */
	if (phys_addr < minimum || phys_addr + image_size > mem_limit) {
		warn("Invalid physical address chosen!\n");
		return 0;
	}

	return (unsigned long)phys_addr;
807 808
}

809 810 811 812 813 814 815 816 817 818
static unsigned long find_random_virt_addr(unsigned long minimum,
					   unsigned long image_size)
{
	unsigned long slots, random_addr;

	/*
	 * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
	 * that can hold image_size within the range of minimum to
	 * KERNEL_IMAGE_SIZE?
	 */
819
	slots = 1 + (KERNEL_IMAGE_SIZE - minimum - image_size) / CONFIG_PHYSICAL_ALIGN;
820

821
	random_addr = kaslr_get_random_long("Virtual") % slots;
822 823 824 825

	return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
}

826 827 828 829
/*
 * Since this function examines addresses much more numerically,
 * it takes the input and output pointers as 'unsigned long'.
 */
830 831 832 833 834
void choose_random_location(unsigned long input,
			    unsigned long input_size,
			    unsigned long *output,
			    unsigned long output_size,
			    unsigned long *virt_addr)
835
{
836
	unsigned long random_addr, min_addr;
837 838

	if (cmdline_find_option_bool("nokaslr")) {
839
		warn("KASLR disabled: 'nokaslr' on cmdline.");
840
		return;
841 842
	}

843 844
#ifdef CONFIG_X86_5LEVEL
	if (__read_cr4() & X86_CR4_LA57) {
845
		__pgtable_l5_enabled = 1;
846 847
		pgdir_shift = 48;
		ptrs_per_p4d = 512;
848 849 850
	}
#endif

851
	boot_params->hdr.loadflags |= KASLR_FLAG;
852

853 854 855 856 857
	if (IS_ENABLED(CONFIG_X86_32))
		mem_limit = KERNEL_IMAGE_SIZE;
	else
		mem_limit = MAXMEM;

858
	/* Record the various known unsafe memory ranges. */
859
	mem_avoid_init(input, input_size, *output);
860

861 862 863 864 865 866
	/*
	 * Low end of the randomization range should be the
	 * smaller of 512M or the initial kernel image
	 * location:
	 */
	min_addr = min(*output, 512UL << 20);
867 868
	/* Make sure minimum is aligned. */
	min_addr = ALIGN(min_addr, CONFIG_PHYSICAL_ALIGN);
869

870
	/* Walk available memory entries to find a random address. */
871
	random_addr = find_random_phys_addr(min_addr, output_size);
872
	if (!random_addr) {
873
		warn("Physical KASLR disabled: no suitable memory region!");
874 875
	} else {
		/* Update the new physical address location. */
876
		if (*output != random_addr)
877
			*output = random_addr;
878 879
	}

880 881 882 883 884

	/* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
	if (IS_ENABLED(CONFIG_X86_64))
		random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
	*virt_addr = random_addr;
885
}