Kconfig 12.2 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2 3 4 5 6 7 8 9 10 11
#
# Cryptographic API Configuration
#

menu "Cryptographic options"

config CRYPTO
	bool "Cryptographic API"
	help
	  This option provides the core Cryptographic API.

12 13 14 15 16 17 18
if CRYPTO

config CRYPTO_ALGAPI
	tristate
	help
	  This option provides the API for cryptographic algorithms.

19 20 21 22
config CRYPTO_BLKCIPHER
	tristate
	select CRYPTO_ALGAPI

23 24 25 26
config CRYPTO_HASH
	tristate
	select CRYPTO_ALGAPI

Herbert Xu's avatar
Herbert Xu committed
27 28 29 30 31 32 33
config CRYPTO_MANAGER
	tristate "Cryptographic algorithm manager"
	select CRYPTO_ALGAPI
	help
	  Create default cryptographic template instantiations such as
	  cbc(aes).

Linus Torvalds's avatar
Linus Torvalds committed
34
config CRYPTO_HMAC
35
	tristate "HMAC support"
36
	select CRYPTO_HASH
37
	select CRYPTO_MANAGER
Linus Torvalds's avatar
Linus Torvalds committed
38 39 40 41
	help
	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
	  This is required for IPSec.

42 43 44 45 46 47 48 49 50 51 52
config CRYPTO_XCBC
	tristate "XCBC support"
	depends on EXPERIMENTAL
	select CRYPTO_HASH
	select CRYPTO_MANAGER
	help
	  XCBC: Keyed-Hashing with encryption algorithm
		http://www.ietf.org/rfc/rfc3566.txt
		http://csrc.nist.gov/encryption/modes/proposedmodes/
		 xcbc-mac/xcbc-mac-spec.pdf

Linus Torvalds's avatar
Linus Torvalds committed
53 54
config CRYPTO_NULL
	tristate "Null algorithms"
55
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
56 57 58 59 60
	help
	  These are 'Null' algorithms, used by IPsec, which do nothing.

config CRYPTO_MD4
	tristate "MD4 digest algorithm"
61
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
62 63 64 65 66
	help
	  MD4 message digest algorithm (RFC1320).

config CRYPTO_MD5
	tristate "MD5 digest algorithm"
67
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
68 69 70 71 72
	help
	  MD5 message digest algorithm (RFC1321).

config CRYPTO_SHA1
	tristate "SHA1 digest algorithm"
73
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
74 75 76 77 78
	help
	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).

config CRYPTO_SHA256
	tristate "SHA256 digest algorithm"
79
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
80 81 82 83 84 85 86 87
	help
	  SHA256 secure hash standard (DFIPS 180-2).
	  
	  This version of SHA implements a 256 bit hash with 128 bits of
	  security against collision attacks.

config CRYPTO_SHA512
	tristate "SHA384 and SHA512 digest algorithms"
88
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
89 90 91 92 93 94 95 96 97 98 99
	help
	  SHA512 secure hash standard (DFIPS 180-2).
	  
	  This version of SHA implements a 512 bit hash with 256 bits of
	  security against collision attacks.

	  This code also includes SHA-384, a 384 bit hash with 192 bits
	  of security against collision attacks.

config CRYPTO_WP512
	tristate "Whirlpool digest algorithms"
100
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
101 102 103 104 105 106 107 108 109 110 111
	help
	  Whirlpool hash algorithm 512, 384 and 256-bit hashes

	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard

	  See also:
	  <http://planeta.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html>

config CRYPTO_TGR192
	tristate "Tiger digest algorithms"
112
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
113 114 115 116 117 118 119 120 121 122
	help
	  Tiger hash algorithm 192, 160 and 128-bit hashes

	  Tiger is a hash function optimized for 64-bit processors while
	  still having decent performance on 32-bit processors.
	  Tiger was developed by Ross Anderson and Eli Biham.

	  See also:
	  <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.

123 124 125 126 127 128 129 130 131 132
config CRYPTO_GF128MUL
	tristate "GF(2^128) multiplication functions (EXPERIMENTAL)"
	depends on EXPERIMENTAL
	help
	  Efficient table driven implementation of multiplications in the
	  field GF(2^128).  This is needed by some cypher modes. This
	  option will be selected automatically if you select such a
	  cipher mode.  Only select this option by hand if you expect to load
	  an external module that requires these functions.

133 134 135
config CRYPTO_ECB
	tristate "ECB support"
	select CRYPTO_BLKCIPHER
136
	select CRYPTO_MANAGER
137 138 139 140 141 142 143 144 145
	default m
	help
	  ECB: Electronic CodeBook mode
	  This is the simplest block cipher algorithm.  It simply encrypts
	  the input block by block.

config CRYPTO_CBC
	tristate "CBC support"
	select CRYPTO_BLKCIPHER
146
	select CRYPTO_MANAGER
147 148 149 150 151
	default m
	help
	  CBC: Cipher Block Chaining mode
	  This block cipher algorithm is required for IPSec.

152 153 154 155 156 157 158 159 160 161 162 163 164
config CRYPTO_LRW
	tristate "LRW support (EXPERIMENTAL)"
	depends on EXPERIMENTAL
	select CRYPTO_BLKCIPHER
	select CRYPTO_MANAGER
	select CRYPTO_GF128MUL
	help
	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
	  narrow block cipher mode for dm-crypt.  Use it with cipher
	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
	  The first 128, 192 or 256 bits in the key are used for AES and the
	  rest is used to tie each cipher block to its logical position.

Linus Torvalds's avatar
Linus Torvalds committed
165 166
config CRYPTO_DES
	tristate "DES and Triple DES EDE cipher algorithms"
167
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
168 169 170 171 172
	help
	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).

config CRYPTO_BLOWFISH
	tristate "Blowfish cipher algorithm"
173
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
174 175 176 177 178 179 180 181 182 183 184 185
	help
	  Blowfish cipher algorithm, by Bruce Schneier.
	  
	  This is a variable key length cipher which can use keys from 32
	  bits to 448 bits in length.  It's fast, simple and specifically
	  designed for use on "large microprocessors".
	  
	  See also:
	  <http://www.schneier.com/blowfish.html>

config CRYPTO_TWOFISH
	tristate "Twofish cipher algorithm"
186
	select CRYPTO_ALGAPI
187
	select CRYPTO_TWOFISH_COMMON
Linus Torvalds's avatar
Linus Torvalds committed
188 189 190 191 192 193 194 195 196 197 198
	help
	  Twofish cipher algorithm.
	  
	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.
	  
	  See also:
	  <http://www.schneier.com/twofish.html>

199 200 201 202 203 204
config CRYPTO_TWOFISH_COMMON
	tristate
	help
	  Common parts of the Twofish cipher algorithm shared by the
	  generic c and the assembler implementations.

205 206
config CRYPTO_TWOFISH_586
	tristate "Twofish cipher algorithms (i586)"
207 208
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
209 210 211 212 213 214 215 216 217 218 219 220
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm.

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

221 222
config CRYPTO_TWOFISH_X86_64
	tristate "Twofish cipher algorithm (x86_64)"
223 224
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_ALGAPI
225 226 227 228 229 230 231 232 233 234 235 236
	select CRYPTO_TWOFISH_COMMON
	help
	  Twofish cipher algorithm (x86_64).

	  Twofish was submitted as an AES (Advanced Encryption Standard)
	  candidate cipher by researchers at CounterPane Systems.  It is a
	  16 round block cipher supporting key sizes of 128, 192, and 256
	  bits.

	  See also:
	  <http://www.schneier.com/twofish.html>

Linus Torvalds's avatar
Linus Torvalds committed
237 238
config CRYPTO_SERPENT
	tristate "Serpent cipher algorithm"
239
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
240 241 242 243 244 245 246 247 248 249 250 251
	help
	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.

	  Keys are allowed to be from 0 to 256 bits in length, in steps
	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
	  variant of Serpent for compatibility with old kerneli code.

	  See also:
	  <http://www.cl.cam.ac.uk/~rja14/serpent.html>

config CRYPTO_AES
	tristate "AES cipher algorithms"
252
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
	help
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael 
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing 
	  environments regardless of its use in feedback or non-feedback 
	  modes. Its key setup time is excellent, and its key agility is 
	  good. Rijndael's very low memory requirements make it very well 
	  suited for restricted-space environments, in which it also 
	  demonstrates excellent performance. Rijndael's operations are 
	  among the easiest to defend against power and timing attacks.	

	  The AES specifies three key sizes: 128, 192 and 256 bits	  

	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.

config CRYPTO_AES_586
	tristate "AES cipher algorithms (i586)"
272 273
	depends on (X86 || UML_X86) && !64BIT
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
274 275 276 277 278 279 280 281 282 283 284 285 286 287
	help
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael 
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing 
	  environments regardless of its use in feedback or non-feedback 
	  modes. Its key setup time is excellent, and its key agility is 
	  good. Rijndael's very low memory requirements make it very well 
	  suited for restricted-space environments, in which it also 
	  demonstrates excellent performance. Rijndael's operations are 
	  among the easiest to defend against power and timing attacks.	

	  The AES specifies three key sizes: 128, 192 and 256 bits	  
288 289 290 291 292

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_AES_X86_64
	tristate "AES cipher algorithms (x86_64)"
293 294
	depends on (X86 || UML_X86) && 64BIT
	select CRYPTO_ALGAPI
295 296 297 298 299 300 301 302 303 304 305 306 307 308
	help
	  AES cipher algorithms (FIPS-197). AES uses the Rijndael 
	  algorithm.

	  Rijndael appears to be consistently a very good performer in
	  both hardware and software across a wide range of computing 
	  environments regardless of its use in feedback or non-feedback 
	  modes. Its key setup time is excellent, and its key agility is 
	  good. Rijndael's very low memory requirements make it very well 
	  suited for restricted-space environments, in which it also 
	  demonstrates excellent performance. Rijndael's operations are 
	  among the easiest to defend against power and timing attacks.	

	  The AES specifies three key sizes: 128, 192 and 256 bits	  
Linus Torvalds's avatar
Linus Torvalds committed
309 310 311 312 313

	  See <http://csrc.nist.gov/encryption/aes/> for more information.

config CRYPTO_CAST5
	tristate "CAST5 (CAST-128) cipher algorithm"
314
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
315 316 317 318 319 320
	help
	  The CAST5 encryption algorithm (synonymous with CAST-128) is
	  described in RFC2144.

config CRYPTO_CAST6
	tristate "CAST6 (CAST-256) cipher algorithm"
321
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
322 323 324 325 326
	help
	  The CAST6 encryption algorithm (synonymous with CAST-256) is
	  described in RFC2612.

config CRYPTO_TEA
327
	tristate "TEA, XTEA and XETA cipher algorithms"
328
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
329 330 331 332 333 334 335 336 337 338 339
	help
	  TEA cipher algorithm.

	  Tiny Encryption Algorithm is a simple cipher that uses
	  many rounds for security.  It is very fast and uses
	  little memory.

	  Xtendend Tiny Encryption Algorithm is a modification to
	  the TEA algorithm to address a potential key weakness
	  in the TEA algorithm.

340 341 342
	  Xtendend Encryption Tiny Algorithm is a mis-implementation 
	  of the XTEA algorithm for compatibility purposes.

Linus Torvalds's avatar
Linus Torvalds committed
343 344
config CRYPTO_ARC4
	tristate "ARC4 cipher algorithm"
345
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
346 347 348 349 350 351 352 353 354 355
	help
	  ARC4 cipher algorithm.

	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
	  bits in length.  This algorithm is required for driver-based 
	  WEP, but it should not be for other purposes because of the
	  weakness of the algorithm.

config CRYPTO_KHAZAD
	tristate "Khazad cipher algorithm"
356
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
357 358 359 360 361 362 363 364 365 366 367 368
	help
	  Khazad cipher algorithm.

	  Khazad was a finalist in the initial NESSIE competition.  It is
	  an algorithm optimized for 64-bit processors with good performance
	  on 32-bit processors.  Khazad uses an 128 bit key size.

	  See also:
	  <http://planeta.terra.com.br/informatica/paulobarreto/KhazadPage.html>

config CRYPTO_ANUBIS
	tristate "Anubis cipher algorithm"
369
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
370 371 372 373 374 375 376 377 378 379 380 381 382 383
	help
	  Anubis cipher algorithm.

	  Anubis is a variable key length cipher which can use keys from 
	  128 bits to 320 bits in length.  It was evaluated as a entrant
	  in the NESSIE competition.
	  
	  See also:
	  <https://www.cosic.esat.kuleuven.ac.be/nessie/reports/>
	  <http://planeta.terra.com.br/informatica/paulobarreto/AnubisPage.html>


config CRYPTO_DEFLATE
	tristate "Deflate compression algorithm"
384
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
385 386 387 388 389 390 391 392 393 394
	select ZLIB_INFLATE
	select ZLIB_DEFLATE
	help
	  This is the Deflate algorithm (RFC1951), specified for use in
	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
	  
	  You will most probably want this if using IPSec.

config CRYPTO_MICHAEL_MIC
	tristate "Michael MIC keyed digest algorithm"
395
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
396 397 398 399 400 401 402 403
	help
	  Michael MIC is used for message integrity protection in TKIP
	  (IEEE 802.11i). This algorithm is required for TKIP, but it
	  should not be used for other purposes because of the weakness
	  of the algorithm.

config CRYPTO_CRC32C
	tristate "CRC32c CRC algorithm"
404
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
405 406 407 408 409 410 411 412 413
	select LIBCRC32C
	help
	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
	  by iSCSI for header and data digests and by others.
	  See Castagnoli93.  This implementation uses lib/libcrc32c.
          Module will be crc32c.

config CRYPTO_TEST
	tristate "Testing module"
414 415
	depends on m
	select CRYPTO_ALGAPI
Linus Torvalds's avatar
Linus Torvalds committed
416 417 418 419 420
	help
	  Quick & dirty crypto test module.

source "drivers/crypto/Kconfig"

421 422 423
endif	# if CRYPTO

endmenu