perf_event.c 46.5 KB
Newer Older
1
/*
2
 * Performance events x86 architecture code
3
 *
4 5 6 7 8
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2009 Jaswinder Singh Rajput
 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9
 *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10
 *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11 12 13 14
 *
 *  For licencing details see kernel-base/COPYING
 */

15
#include <linux/perf_event.h>
16 17 18 19
#include <linux/capability.h>
#include <linux/notifier.h>
#include <linux/hardirq.h>
#include <linux/kprobes.h>
20
#include <linux/module.h>
21 22
#include <linux/kdebug.h>
#include <linux/sched.h>
23
#include <linux/uaccess.h>
24
#include <linux/slab.h>
25
#include <linux/cpu.h>
26
#include <linux/bitops.h>
27
#include <linux/device.h>
28 29

#include <asm/apic.h>
30
#include <asm/stacktrace.h>
31
#include <asm/nmi.h>
32
#include <asm/smp.h>
33
#include <asm/alternative.h>
34
#include <asm/timer.h>
35 36
#include <asm/desc.h>
#include <asm/ldt.h>
37

38 39 40
#include "perf_event.h"

struct x86_pmu x86_pmu __read_mostly;
41

42
DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
43 44
	.enabled = 1,
};
45

46
u64 __read_mostly hw_cache_event_ids
47 48 49
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX];
50
u64 __read_mostly hw_cache_extra_regs
51 52 53
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX];
54

55
/*
56 57
 * Propagate event elapsed time into the generic event.
 * Can only be executed on the CPU where the event is active.
58 59
 * Returns the delta events processed.
 */
60
u64 x86_perf_event_update(struct perf_event *event)
61
{
62
	struct hw_perf_event *hwc = &event->hw;
63
	int shift = 64 - x86_pmu.cntval_bits;
64
	u64 prev_raw_count, new_raw_count;
65
	int idx = hwc->idx;
66
	s64 delta;
67

68
	if (idx == INTEL_PMC_IDX_FIXED_BTS)
69 70
		return 0;

71
	/*
72
	 * Careful: an NMI might modify the previous event value.
73 74 75
	 *
	 * Our tactic to handle this is to first atomically read and
	 * exchange a new raw count - then add that new-prev delta
76
	 * count to the generic event atomically:
77 78
	 */
again:
79
	prev_raw_count = local64_read(&hwc->prev_count);
80
	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
81

82
	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
83 84 85 86 87 88
					new_raw_count) != prev_raw_count)
		goto again;

	/*
	 * Now we have the new raw value and have updated the prev
	 * timestamp already. We can now calculate the elapsed delta
89
	 * (event-)time and add that to the generic event.
90 91
	 *
	 * Careful, not all hw sign-extends above the physical width
92
	 * of the count.
93
	 */
94 95
	delta = (new_raw_count << shift) - (prev_raw_count << shift);
	delta >>= shift;
96

97 98
	local64_add(delta, &event->count);
	local64_sub(delta, &hwc->period_left);
99 100

	return new_raw_count;
101 102
}

103 104 105 106 107
/*
 * Find and validate any extra registers to set up.
 */
static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
{
108
	struct hw_perf_event_extra *reg;
109 110
	struct extra_reg *er;

111
	reg = &event->hw.extra_reg;
112 113 114 115 116 117 118 119 120

	if (!x86_pmu.extra_regs)
		return 0;

	for (er = x86_pmu.extra_regs; er->msr; er++) {
		if (er->event != (config & er->config_mask))
			continue;
		if (event->attr.config1 & ~er->valid_mask)
			return -EINVAL;
121 122 123 124

		reg->idx = er->idx;
		reg->config = event->attr.config1;
		reg->reg = er->msr;
125 126 127 128 129
		break;
	}
	return 0;
}

130
static atomic_t active_events;
131 132
static DEFINE_MUTEX(pmc_reserve_mutex);

133 134
#ifdef CONFIG_X86_LOCAL_APIC

135 136 137 138
static bool reserve_pmc_hardware(void)
{
	int i;

139
	for (i = 0; i < x86_pmu.num_counters; i++) {
140
		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
141 142 143
			goto perfctr_fail;
	}

144
	for (i = 0; i < x86_pmu.num_counters; i++) {
145
		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
146 147 148 149 150 151 152
			goto eventsel_fail;
	}

	return true;

eventsel_fail:
	for (i--; i >= 0; i--)
153
		release_evntsel_nmi(x86_pmu_config_addr(i));
154

155
	i = x86_pmu.num_counters;
156 157 158

perfctr_fail:
	for (i--; i >= 0; i--)
159
		release_perfctr_nmi(x86_pmu_event_addr(i));
160 161 162 163 164 165 166 167

	return false;
}

static void release_pmc_hardware(void)
{
	int i;

168
	for (i = 0; i < x86_pmu.num_counters; i++) {
169 170
		release_perfctr_nmi(x86_pmu_event_addr(i));
		release_evntsel_nmi(x86_pmu_config_addr(i));
171 172 173
	}
}

174 175 176 177 178 179 180
#else

static bool reserve_pmc_hardware(void) { return true; }
static void release_pmc_hardware(void) {}

#endif

181 182
static bool check_hw_exists(void)
{
183
	u64 val, val_new = ~0;
184
	int i, reg, ret = 0;
185

186 187 188 189 190
	/*
	 * Check to see if the BIOS enabled any of the counters, if so
	 * complain and bail.
	 */
	for (i = 0; i < x86_pmu.num_counters; i++) {
191
		reg = x86_pmu_config_addr(i);
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
		ret = rdmsrl_safe(reg, &val);
		if (ret)
			goto msr_fail;
		if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
			goto bios_fail;
	}

	if (x86_pmu.num_counters_fixed) {
		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
		ret = rdmsrl_safe(reg, &val);
		if (ret)
			goto msr_fail;
		for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
			if (val & (0x03 << i*4))
				goto bios_fail;
		}
	}

	/*
211 212 213
	 * Read the current value, change it and read it back to see if it
	 * matches, this is needed to detect certain hardware emulators
	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
214
	 */
215
	reg = x86_pmu_event_addr(0);
216 217 218
	if (rdmsrl_safe(reg, &val))
		goto msr_fail;
	val ^= 0xffffUL;
219 220
	ret = wrmsrl_safe(reg, val);
	ret |= rdmsrl_safe(reg, &val_new);
221
	if (ret || val != val_new)
222
		goto msr_fail;
223 224

	return true;
225 226

bios_fail:
227 228 229 230
	/*
	 * We still allow the PMU driver to operate:
	 */
	printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
231
	printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
232 233

	return true;
234 235 236

msr_fail:
	printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
237
	printk(KERN_ERR "Failed to access perfctr msr (MSR %x is %Lx)\n", reg, val_new);
238

239
	return false;
240 241
}

242
static void hw_perf_event_destroy(struct perf_event *event)
243
{
244
	if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
245
		release_pmc_hardware();
246
		release_ds_buffers();
247 248 249 250
		mutex_unlock(&pmc_reserve_mutex);
	}
}

251 252 253 254 255
static inline int x86_pmu_initialized(void)
{
	return x86_pmu.handle_irq != NULL;
}

256
static inline int
257
set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
258
{
259
	struct perf_event_attr *attr = &event->attr;
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	unsigned int cache_type, cache_op, cache_result;
	u64 config, val;

	config = attr->config;

	cache_type = (config >>  0) & 0xff;
	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
		return -EINVAL;

	cache_op = (config >>  8) & 0xff;
	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
		return -EINVAL;

	cache_result = (config >> 16) & 0xff;
	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
		return -EINVAL;

	val = hw_cache_event_ids[cache_type][cache_op][cache_result];

	if (val == 0)
		return -ENOENT;

	if (val == -1)
		return -EINVAL;

	hwc->config |= val;
286 287
	attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
	return x86_pmu_extra_regs(val, event);
288 289
}

290
int x86_setup_perfctr(struct perf_event *event)
291 292 293 294 295
{
	struct perf_event_attr *attr = &event->attr;
	struct hw_perf_event *hwc = &event->hw;
	u64 config;

296
	if (!is_sampling_event(event)) {
297 298
		hwc->sample_period = x86_pmu.max_period;
		hwc->last_period = hwc->sample_period;
299
		local64_set(&hwc->period_left, hwc->sample_period);
300 301 302 303 304 305 306 307 308 309 310 311
	} else {
		/*
		 * If we have a PMU initialized but no APIC
		 * interrupts, we cannot sample hardware
		 * events (user-space has to fall back and
		 * sample via a hrtimer based software event):
		 */
		if (!x86_pmu.apic)
			return -EOPNOTSUPP;
	}

	if (attr->type == PERF_TYPE_RAW)
312
		return x86_pmu_extra_regs(event->attr.config, event);
313 314

	if (attr->type == PERF_TYPE_HW_CACHE)
315
		return set_ext_hw_attr(hwc, event);
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

	if (attr->config >= x86_pmu.max_events)
		return -EINVAL;

	/*
	 * The generic map:
	 */
	config = x86_pmu.event_map(attr->config);

	if (config == 0)
		return -ENOENT;

	if (config == -1LL)
		return -EINVAL;

	/*
	 * Branch tracing:
	 */
334 335
	if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
	    !attr->freq && hwc->sample_period == 1) {
336
		/* BTS is not supported by this architecture. */
337
		if (!x86_pmu.bts_active)
338 339 340 341 342 343 344 345 346 347 348
			return -EOPNOTSUPP;

		/* BTS is currently only allowed for user-mode. */
		if (!attr->exclude_kernel)
			return -EOPNOTSUPP;
	}

	hwc->config |= config;

	return 0;
}
349

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
/*
 * check that branch_sample_type is compatible with
 * settings needed for precise_ip > 1 which implies
 * using the LBR to capture ALL taken branches at the
 * priv levels of the measurement
 */
static inline int precise_br_compat(struct perf_event *event)
{
	u64 m = event->attr.branch_sample_type;
	u64 b = 0;

	/* must capture all branches */
	if (!(m & PERF_SAMPLE_BRANCH_ANY))
		return 0;

	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;

	if (!event->attr.exclude_user)
		b |= PERF_SAMPLE_BRANCH_USER;

	if (!event->attr.exclude_kernel)
		b |= PERF_SAMPLE_BRANCH_KERNEL;

	/*
	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
	 */

	return m == b;
}

380
int x86_pmu_hw_config(struct perf_event *event)
381
{
382 383 384 385
	if (event->attr.precise_ip) {
		int precise = 0;

		/* Support for constant skid */
386
		if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
387 388
			precise++;

389 390 391 392
			/* Support for IP fixup */
			if (x86_pmu.lbr_nr)
				precise++;
		}
393 394 395

		if (event->attr.precise_ip > precise)
			return -EOPNOTSUPP;
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
		/*
		 * check that PEBS LBR correction does not conflict with
		 * whatever the user is asking with attr->branch_sample_type
		 */
		if (event->attr.precise_ip > 1) {
			u64 *br_type = &event->attr.branch_sample_type;

			if (has_branch_stack(event)) {
				if (!precise_br_compat(event))
					return -EOPNOTSUPP;

				/* branch_sample_type is compatible */

			} else {
				/*
				 * user did not specify  branch_sample_type
				 *
				 * For PEBS fixups, we capture all
				 * the branches at the priv level of the
				 * event.
				 */
				*br_type = PERF_SAMPLE_BRANCH_ANY;

				if (!event->attr.exclude_user)
					*br_type |= PERF_SAMPLE_BRANCH_USER;

				if (!event->attr.exclude_kernel)
					*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
			}
		}
426 427
	}

428 429 430 431
	/*
	 * Generate PMC IRQs:
	 * (keep 'enabled' bit clear for now)
	 */
432
	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
433 434 435 436

	/*
	 * Count user and OS events unless requested not to
	 */
437 438 439 440
	if (!event->attr.exclude_user)
		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
	if (!event->attr.exclude_kernel)
		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
441

442 443
	if (event->attr.type == PERF_TYPE_RAW)
		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
444

445
	return x86_setup_perfctr(event);
446 447
}

448
/*
449
 * Setup the hardware configuration for a given attr_type
450
 */
451
static int __x86_pmu_event_init(struct perf_event *event)
452
{
453
	int err;
454

455 456
	if (!x86_pmu_initialized())
		return -ENODEV;
457

458
	err = 0;
459
	if (!atomic_inc_not_zero(&active_events)) {
460
		mutex_lock(&pmc_reserve_mutex);
461
		if (atomic_read(&active_events) == 0) {
462 463
			if (!reserve_pmc_hardware())
				err = -EBUSY;
464 465
			else
				reserve_ds_buffers();
466 467
		}
		if (!err)
468
			atomic_inc(&active_events);
469 470 471 472 473
		mutex_unlock(&pmc_reserve_mutex);
	}
	if (err)
		return err;

474
	event->destroy = hw_perf_event_destroy;
475

476 477 478
	event->hw.idx = -1;
	event->hw.last_cpu = -1;
	event->hw.last_tag = ~0ULL;
479

480 481
	/* mark unused */
	event->hw.extra_reg.idx = EXTRA_REG_NONE;
482 483
	event->hw.branch_reg.idx = EXTRA_REG_NONE;

484
	return x86_pmu.hw_config(event);
485 486
}

487
void x86_pmu_disable_all(void)
488
{
489
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
490 491
	int idx;

492
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
493 494
		u64 val;

495
		if (!test_bit(idx, cpuc->active_mask))
496
			continue;
497
		rdmsrl(x86_pmu_config_addr(idx), val);
498
		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
499
			continue;
500
		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
501
		wrmsrl(x86_pmu_config_addr(idx), val);
502 503 504
	}
}

505
static void x86_pmu_disable(struct pmu *pmu)
506
{
507 508
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);

509
	if (!x86_pmu_initialized())
510
		return;
511

512 513 514 515 516 517
	if (!cpuc->enabled)
		return;

	cpuc->n_added = 0;
	cpuc->enabled = 0;
	barrier();
518 519

	x86_pmu.disable_all();
520
}
521

522
void x86_pmu_enable_all(int added)
523
{
524
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
525 526
	int idx;

527
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
528
		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
529

530
		if (!test_bit(idx, cpuc->active_mask))
531
			continue;
532

533
		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
534 535 536
	}
}

Peter Zijlstra's avatar
Peter Zijlstra committed
537
static struct pmu pmu;
538 539 540 541 542 543

static inline int is_x86_event(struct perf_event *event)
{
	return event->pmu == &pmu;
}

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
/*
 * Event scheduler state:
 *
 * Assign events iterating over all events and counters, beginning
 * with events with least weights first. Keep the current iterator
 * state in struct sched_state.
 */
struct sched_state {
	int	weight;
	int	event;		/* event index */
	int	counter;	/* counter index */
	int	unassigned;	/* number of events to be assigned left */
	unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
};

559 560 561
/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
#define	SCHED_STATES_MAX	2

562 563 564 565 566
struct perf_sched {
	int			max_weight;
	int			max_events;
	struct event_constraint	**constraints;
	struct sched_state	state;
567 568
	int			saved_states;
	struct sched_state	saved[SCHED_STATES_MAX];
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
};

/*
 * Initialize interator that runs through all events and counters.
 */
static void perf_sched_init(struct perf_sched *sched, struct event_constraint **c,
			    int num, int wmin, int wmax)
{
	int idx;

	memset(sched, 0, sizeof(*sched));
	sched->max_events	= num;
	sched->max_weight	= wmax;
	sched->constraints	= c;

	for (idx = 0; idx < num; idx++) {
		if (c[idx]->weight == wmin)
			break;
	}

	sched->state.event	= idx;		/* start with min weight */
	sched->state.weight	= wmin;
	sched->state.unassigned	= num;
}

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
static void perf_sched_save_state(struct perf_sched *sched)
{
	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
		return;

	sched->saved[sched->saved_states] = sched->state;
	sched->saved_states++;
}

static bool perf_sched_restore_state(struct perf_sched *sched)
{
	if (!sched->saved_states)
		return false;

	sched->saved_states--;
	sched->state = sched->saved[sched->saved_states];

	/* continue with next counter: */
	clear_bit(sched->state.counter++, sched->state.used);

	return true;
}

617 618 619 620
/*
 * Select a counter for the current event to schedule. Return true on
 * success.
 */
621
static bool __perf_sched_find_counter(struct perf_sched *sched)
622 623 624 625 626 627 628 629 630 631 632 633
{
	struct event_constraint *c;
	int idx;

	if (!sched->state.unassigned)
		return false;

	if (sched->state.event >= sched->max_events)
		return false;

	c = sched->constraints[sched->state.event];

634
	/* Prefer fixed purpose counters */
635 636
	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
		idx = INTEL_PMC_IDX_FIXED;
637
		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
638 639 640 641
			if (!__test_and_set_bit(idx, sched->state.used))
				goto done;
		}
	}
642 643
	/* Grab the first unused counter starting with idx */
	idx = sched->state.counter;
644
	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
645
		if (!__test_and_set_bit(idx, sched->state.used))
646
			goto done;
647 648
	}

649 650 651 652
	return false;

done:
	sched->state.counter = idx;
653

654 655 656 657 658 659 660 661 662 663 664 665 666
	if (c->overlap)
		perf_sched_save_state(sched);

	return true;
}

static bool perf_sched_find_counter(struct perf_sched *sched)
{
	while (!__perf_sched_find_counter(sched)) {
		if (!perf_sched_restore_state(sched))
			return false;
	}

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
	return true;
}

/*
 * Go through all unassigned events and find the next one to schedule.
 * Take events with the least weight first. Return true on success.
 */
static bool perf_sched_next_event(struct perf_sched *sched)
{
	struct event_constraint *c;

	if (!sched->state.unassigned || !--sched->state.unassigned)
		return false;

	do {
		/* next event */
		sched->state.event++;
		if (sched->state.event >= sched->max_events) {
			/* next weight */
			sched->state.event = 0;
			sched->state.weight++;
			if (sched->state.weight > sched->max_weight)
				return false;
		}
		c = sched->constraints[sched->state.event];
	} while (c->weight != sched->state.weight);

	sched->state.counter = 0;	/* start with first counter */

	return true;
}

/*
 * Assign a counter for each event.
 */
702 703
int perf_assign_events(struct event_constraint **constraints, int n,
			int wmin, int wmax, int *assign)
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
{
	struct perf_sched sched;

	perf_sched_init(&sched, constraints, n, wmin, wmax);

	do {
		if (!perf_sched_find_counter(&sched))
			break;	/* failed */
		if (assign)
			assign[sched.state.event] = sched.state.counter;
	} while (perf_sched_next_event(&sched));

	return sched.state.unassigned;
}

719
int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
720
{
721
	struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
722
	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
723
	int i, wmin, wmax, num = 0;
724 725 726 727
	struct hw_perf_event *hwc;

	bitmap_zero(used_mask, X86_PMC_IDX_MAX);

728
	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
729 730
		c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
		constraints[i] = c;
731 732
		wmin = min(wmin, c->weight);
		wmax = max(wmax, c->weight);
733 734
	}

735 736 737
	/*
	 * fastpath, try to reuse previous register
	 */
738
	for (i = 0; i < n; i++) {
739
		hwc = &cpuc->event_list[i]->hw;
740
		c = constraints[i];
741 742 743 744 745 746

		/* never assigned */
		if (hwc->idx == -1)
			break;

		/* constraint still honored */
747
		if (!test_bit(hwc->idx, c->idxmsk))
748 749 750 751 752 753
			break;

		/* not already used */
		if (test_bit(hwc->idx, used_mask))
			break;

754
		__set_bit(hwc->idx, used_mask);
755 756 757 758
		if (assign)
			assign[i] = hwc->idx;
	}

759 760 761
	/* slow path */
	if (i != n)
		num = perf_assign_events(constraints, n, wmin, wmax, assign);
762

763 764 765 766 767 768 769 770 771 772
	/*
	 * scheduling failed or is just a simulation,
	 * free resources if necessary
	 */
	if (!assign || num) {
		for (i = 0; i < n; i++) {
			if (x86_pmu.put_event_constraints)
				x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
		}
	}
773
	return num ? -EINVAL : 0;
774 775 776 777 778 779 780 781 782 783 784
}

/*
 * dogrp: true if must collect siblings events (group)
 * returns total number of events and error code
 */
static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
{
	struct perf_event *event;
	int n, max_count;

785
	max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
786 787 788 789 790 791

	/* current number of events already accepted */
	n = cpuc->n_events;

	if (is_x86_event(leader)) {
		if (n >= max_count)
792
			return -EINVAL;
793 794 795 796 797 798 799 800
		cpuc->event_list[n] = leader;
		n++;
	}
	if (!dogrp)
		return n;

	list_for_each_entry(event, &leader->sibling_list, group_entry) {
		if (!is_x86_event(event) ||
801
		    event->state <= PERF_EVENT_STATE_OFF)
802 803 804
			continue;

		if (n >= max_count)
805
			return -EINVAL;
806 807 808 809 810 811 812 813

		cpuc->event_list[n] = event;
		n++;
	}
	return n;
}

static inline void x86_assign_hw_event(struct perf_event *event,
814
				struct cpu_hw_events *cpuc, int i)
815
{
816 817 818 819 820
	struct hw_perf_event *hwc = &event->hw;

	hwc->idx = cpuc->assign[i];
	hwc->last_cpu = smp_processor_id();
	hwc->last_tag = ++cpuc->tags[i];
821

822
	if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
823 824
		hwc->config_base = 0;
		hwc->event_base	= 0;
825
	} else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
826
		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
827 828
		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
		hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
829
	} else {
830 831
		hwc->config_base = x86_pmu_config_addr(hwc->idx);
		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
832
		hwc->event_base_rdpmc = hwc->idx;
833 834 835
	}
}

836 837 838 839 840 841 842 843 844
static inline int match_prev_assignment(struct hw_perf_event *hwc,
					struct cpu_hw_events *cpuc,
					int i)
{
	return hwc->idx == cpuc->assign[i] &&
		hwc->last_cpu == smp_processor_id() &&
		hwc->last_tag == cpuc->tags[i];
}

845
static void x86_pmu_start(struct perf_event *event, int flags);
846

847
static void x86_pmu_enable(struct pmu *pmu)
848
{
849 850 851
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	struct perf_event *event;
	struct hw_perf_event *hwc;
852
	int i, added = cpuc->n_added;
853

854
	if (!x86_pmu_initialized())
855
		return;
856 857 858 859

	if (cpuc->enabled)
		return;

860
	if (cpuc->n_added) {
861
		int n_running = cpuc->n_events - cpuc->n_added;
862 863 864 865 866 867 868
		/*
		 * apply assignment obtained either from
		 * hw_perf_group_sched_in() or x86_pmu_enable()
		 *
		 * step1: save events moving to new counters
		 * step2: reprogram moved events into new counters
		 */
869
		for (i = 0; i < n_running; i++) {
870 871 872
			event = cpuc->event_list[i];
			hwc = &event->hw;

873 874 875 876 877 878 879 880
			/*
			 * we can avoid reprogramming counter if:
			 * - assigned same counter as last time
			 * - running on same CPU as last time
			 * - no other event has used the counter since
			 */
			if (hwc->idx == -1 ||
			    match_prev_assignment(hwc, cpuc, i))
881 882
				continue;

883 884 885 886 887 888 889 890
			/*
			 * Ensure we don't accidentally enable a stopped
			 * counter simply because we rescheduled.
			 */
			if (hwc->state & PERF_HES_STOPPED)
				hwc->state |= PERF_HES_ARCH;

			x86_pmu_stop(event, PERF_EF_UPDATE);
891 892 893 894 895 896
		}

		for (i = 0; i < cpuc->n_events; i++) {
			event = cpuc->event_list[i];
			hwc = &event->hw;

897
			if (!match_prev_assignment(hwc, cpuc, i))
898
				x86_assign_hw_event(event, cpuc, i);
899 900
			else if (i < n_running)
				continue;
901

902 903 904 905
			if (hwc->state & PERF_HES_ARCH)
				continue;

			x86_pmu_start(event, PERF_EF_RELOAD);
906 907 908 909
		}
		cpuc->n_added = 0;
		perf_events_lapic_init();
	}
910 911 912 913

	cpuc->enabled = 1;
	barrier();

914
	x86_pmu.enable_all(added);
915 916
}

917
static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
918

919 920
/*
 * Set the next IRQ period, based on the hwc->period_left value.
921
 * To be called with the event disabled in hw:
922
 */
923
int x86_perf_event_set_period(struct perf_event *event)
924
{
925
	struct hw_perf_event *hwc = &event->hw;
926
	s64 left = local64_read(&hwc->period_left);
927
	s64 period = hwc->sample_period;
928
	int ret = 0, idx = hwc->idx;
929

930
	if (idx == INTEL_PMC_IDX_FIXED_BTS)
931 932
		return 0;

933
	/*
934
	 * If we are way outside a reasonable range then just skip forward:
935 936 937
	 */
	if (unlikely(left <= -period)) {
		left = period;
938
		local64_set(&hwc->period_left, left);
939
		hwc->last_period = period;
940
		ret = 1;
941 942 943 944
	}

	if (unlikely(left <= 0)) {
		left += period;
945
		local64_set(&hwc->period_left, left);
946
		hwc->last_period = period;
947
		ret = 1;
948
	}
949
	/*
950
	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
951 952 953
	 */
	if (unlikely(left < 2))
		left = 2;
954

955 956 957
	if (left > x86_pmu.max_period)
		left = x86_pmu.max_period;

958
	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
959 960

	/*
961
	 * The hw event starts counting from this event offset,
962 963
	 * mark it to be able to extra future deltas:
	 */
964
	local64_set(&hwc->prev_count, (u64)-left);
965

966
	wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
967 968 969 970 971 972 973

	/*
	 * Due to erratum on certan cpu we need
	 * a second write to be sure the register
	 * is updated properly
	 */
	if (x86_pmu.perfctr_second_write) {
974
		wrmsrl(hwc->event_base,
975
			(u64)(-left) & x86_pmu.cntval_mask);
976
	}
977

978
	perf_event_update_userpage(event);
979

980
	return ret;
981 982
}

983
void x86_pmu_enable_event(struct perf_event *event)
984
{
985
	if (__this_cpu_read(cpu_hw_events.enabled))
986 987
		__x86_pmu_enable_event(&event->hw,
				       ARCH_PERFMON_EVENTSEL_ENABLE);
988 989
}

990
/*
991
 * Add a single event to the PMU.
992 993 994
 *
 * The event is added to the group of enabled events
 * but only if it can be scehduled with existing events.
995
 */
996
static int x86_pmu_add(struct perf_event *event, int flags)
997 998
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
999 1000 1001
	struct hw_perf_event *hwc;
	int assign[X86_PMC_IDX_MAX];
	int n, n0, ret;
1002

1003
	hwc = &event->hw;
1004

Peter Zijlstra's avatar
Peter Zijlstra committed
1005
	perf_pmu_disable(event->pmu);
1006
	n0 = cpuc->n_events;
1007 1008 1009
	ret = n = collect_events(cpuc, event, false);
	if (ret < 0)
		goto out;
1010

1011 1012 1013 1014
	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
	if (!(flags & PERF_EF_START))
		hwc->state |= PERF_HES_ARCH;

1015 1016
	/*
	 * If group events scheduling transaction was started,
1017
	 * skip the schedulability test here, it will be performed
1018
	 * at commit time (->commit_txn) as a whole
1019
	 */
1020
	if (cpuc->group_flag & PERF_EVENT_TXN)
1021
		goto done_collect;
1022

1023
	ret = x86_pmu.schedule_events(cpuc, n, assign);
1024
	if (ret)
1025
		goto out;
1026 1027 1028 1029 1030
	/*
	 * copy new assignment, now we know it is possible
	 * will be used by hw_perf_enable()
	 */
	memcpy(cpuc->assign, assign, n*sizeof(int));
1031

1032
done_collect:
1033
	cpuc->n_events = n;
1034
	cpuc->n_added += n - n0;
1035
	cpuc->n_txn += n - n0;
1036

1037 1038
	ret = 0;
out:
Peter Zijlstra's avatar
Peter Zijlstra committed
1039
	perf_pmu_enable(event->pmu);
1040
	return ret;
1041 1042
}

1043
static void x86_pmu_start(struct perf_event *event, int flags)
1044
{
1045 1046 1047
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int idx = event->hw.idx;

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
		return;

	if (WARN_ON_ONCE(idx == -1))
		return;

	if (flags & PERF_EF_RELOAD) {
		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
		x86_perf_event_set_period(event);
	}

	event->hw.state = 0;
1060

1061 1062
	cpuc->events[idx] = event;
	__set_bit(idx, cpuc->active_mask);
1063
	__set_bit(idx, cpuc->running);
1064
	x86_pmu.enable(event);
1065
	perf_event_update_userpage(event);
1066 1067
}

1068
void perf_event_print_debug(void)
1069
{
1070
	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1071
	u64 pebs;
1072
	struct cpu_hw_events *cpuc;
1073
	unsigned long flags;
1074 1075
	int cpu, idx;

1076
	if (!x86_pmu.num_counters)
1077
		return;
1078

1079
	local_irq_save(flags);
1080 1081

	cpu = smp_processor_id();
1082
	cpuc = &per_cpu(cpu_hw_events, cpu);
1083

1084
	if (x86_pmu.version >= 2) {
1085 1086 1087 1088
		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1089
		rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1090 1091 1092 1093 1094 1095

		pr_info("\n");
		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1096
		pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1097
	}
1098
	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1099

1100
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1101 1102
		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1103

1104
		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1105

1106
		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1107
			cpu, idx, pmc_ctrl);
1108
		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1109
			cpu, idx, pmc_count);
1110
		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1111
			cpu, idx, prev_left);
1112
	}
1113
	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1114 1115
		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);

1116
		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1117 1118
			cpu, idx, pmc_count);
	}
1119
	local_irq_restore(flags);
1120 1121
}

1122
void x86_pmu_stop(struct perf_event *event, int flags)
1123
{
1124
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1125
	struct hw_perf_event *hwc = &event->hw;
1126

1127 1128 1129 1130 1131 1132
	if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
		x86_pmu.disable(event);
		cpuc->events[hwc->idx] = NULL;
		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
		hwc->state |= PERF_HES_STOPPED;
	}
1133

1134 1135 1136 1137 1138 1139 1140 1141
	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
		/*
		 * Drain the remaining delta count out of a event
		 * that we are disabling:
		 */
		x86_perf_event_update(event);
		hwc->state |= PERF_HES_UPTODATE;
	}
1142 1143
}

1144
static void x86_pmu_del(struct perf_event *event, int flags)
1145 1146 1147 1148
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int i;

1149 1150 1151 1152 1153
	/*
	 * If we're called during a txn, we don't need to do anything.
	 * The events never got scheduled and ->cancel_txn will truncate
	 * the event_list.
	 */
1154
	if (cpuc->group_flag & PERF_EVENT_TXN)
1155 1156
		return;

1157
	x86_pmu_stop(event, PERF_EF_UPDATE);
1158

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
	for (i = 0; i < cpuc->n_events; i++) {
		if (event == cpuc->event_list[i]) {

			if (x86_pmu.put_event_constraints)
				x86_pmu.put_event_constraints(cpuc, event);

			while (++i < cpuc->n_events)
				cpuc->event_list[i-1] = cpuc->event_list[i];

			--cpuc->n_events;
1169
			break;
1170 1171
		}
	}
1172
	perf_event_update_userpage(event);
1173 1174
}

1175
int x86_pmu_handle_irq(struct pt_regs *regs)
1176
{
1177
	struct perf_sample_data data;
1178 1179
	struct cpu_hw_events *cpuc;
	struct perf_event *event;
1180
	int idx, handled = 0;
1181 1182
	u64 val;

1183
	cpuc = &__get_cpu_var(cpu_hw_events);
1184

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
	/*
	 * Some chipsets need to unmask the LVTPC in a particular spot
	 * inside the nmi handler.  As a result, the unmasking was pushed
	 * into all the nmi handlers.
	 *
	 * This generic handler doesn't seem to have any issues where the
	 * unmasking occurs so it was left at the top.
	 */
	apic_write(APIC_LVTPC, APIC_DM_NMI);

1195
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1196 1197 1198 1199 1200 1201 1202 1203
		if (!test_bit(idx, cpuc->active_mask)) {
			/*
			 * Though we deactivated the counter some cpus
			 * might still deliver spurious interrupts still
			 * in flight. Catch them:
			 */
			if (__test_and_clear_bit(idx, cpuc->running))
				handled++;
1204
			continue;
1205
		}
1206

1207
		event = cpuc->events[idx];
1208

1209
		val = x86_perf_event_update(event);
1210
		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1211
			continue;
1212

1213
		/*
1214
		 * event overflow
1215
		 */
1216
		handled++;
1217
		perf_sample_data_init(&data, 0, event->hw.last_period);
1218

1219
		if (!x86_perf_event_set_period(event))
1220 1221
			continue;

1222
		if (perf_event_overflow(event, &data, regs))
1223
			x86_pmu_stop(event, 0);
1224
	}
1225

1226 1227 1228
	if (handled)
		inc_irq_stat(apic_perf_irqs);

1229 1230
	return handled;
}
1231

1232
void perf_events_lapic_init(void)
1233
{
1234
	if (!x86_pmu.apic || !x86_pmu_initialized())
1235
		return;
1236

1237
	/*
1238
	 * Always use NMI for PMU
1239
	 */
1240
	apic_write(APIC_LVTPC, APIC_DM_NMI);
1241 1242 1243
}

static int __kprobes
1244
perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1245
{
1246
	if (!atomic_read(&active_events))
1247
		return NMI_DONE;
1248

1249
	return x86_pmu.handle_irq(regs);
1250 1251
}

1252 1253
struct event_constraint emptyconstraint;
struct event_constraint unconstrained;
1254

1255 1256 1257 1258
static int __cpuinit
x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;
1259
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1260
	int ret = NOTIFY_OK;
1261 1262 1263

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_UP_PREPARE:
1264
		cpuc->kfree_on_online = NULL;
1265
		if (x86_pmu.cpu_prepare)
1266
			ret = x86_pmu.cpu_prepare(cpu);
1267 1268 1269
		break;

	case CPU_STARTING:
1270 1271
		if (x86_pmu.attr_rdpmc)
			set_in_cr4(X86_CR4_PCE);
1272 1273 1274 1275
		if (x86_pmu.cpu_starting)
			x86_pmu.cpu_starting(cpu);
		break;

1276 1277 1278 1279
	case CPU_ONLINE:
		kfree(cpuc->kfree_on_online);
		break;

1280 1281 1282 1283 1284
	case CPU_DYING:
		if (x86_pmu.cpu_dying)
			x86_pmu.cpu_dying(cpu);
		break;

1285
	case CPU_UP_CANCELED:
1286 1287 1288 1289 1290 1291 1292 1293 1294
	case CPU_DEAD:
		if (x86_pmu.cpu_dead)
			x86_pmu.cpu_dead(cpu);
		break;

	default:
		break;
	}

1295
	return ret;
1296 1297
}

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
static void __init pmu_check_apic(void)
{
	if (cpu_has_apic)
		return;

	x86_pmu.apic = 0;
	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
	pr_info("no hardware sampling interrupt available.\n");
}

1308 1309 1310 1311 1312
static struct attribute_group x86_pmu_format_group = {
	.name = "format",
	.attrs = NULL,
};

1313 1314 1315 1316 1317
struct perf_pmu_events_attr {
	struct device_attribute attr;
	u64 id;
};

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
/*
 * Remove all undefined events (x86_pmu.event_map(id) == 0)
 * out of events_attr attributes.
 */
static void __init filter_events(struct attribute **attrs)
{
	int i, j;

	for (i = 0; attrs[i]; i++) {
		if (x86_pmu.event_map(i))
			continue;

		for (j = i; attrs[j]; j++)
			attrs[j] = attrs[j + 1];

		/* Check the shifted attr. */
		i--;
	}
}

Peter Huewe's avatar
Peter Huewe committed
1338
static ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
			  char *page)
{
	struct perf_pmu_events_attr *pmu_attr = \
		container_of(attr, struct perf_pmu_events_attr, attr);

	u64 config = x86_pmu.event_map(pmu_attr->id);
	return x86_pmu.events_sysfs_show(page, config);
}

#define EVENT_VAR(_id)  event_attr_##_id
#define EVENT_PTR(_id) &event_attr_##_id.attr.attr

#define EVENT_ATTR(_name, _id)					\
static struct perf_pmu_events_attr EVENT_VAR(_id) = {		\
	.attr = __ATTR(_name, 0444, events_sysfs_show, NULL),	\
	.id   =  PERF_COUNT_HW_##_id,				\
};

EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
EVENT_ATTR(instructions,		INSTRUCTIONS		);
EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);

static struct attribute *empty_attrs;

Peter Huewe's avatar
Peter Huewe committed
1370
static struct attribute *events_attr[] = {
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	EVENT_PTR(CPU_CYCLES),
	EVENT_PTR(INSTRUCTIONS),
	EVENT_PTR(CACHE_REFERENCES),
	EVENT_PTR(CACHE_MISSES),
	EVENT_PTR(BRANCH_INSTRUCTIONS),
	EVENT_PTR(BRANCH_MISSES),
	EVENT_PTR(BUS_CYCLES),
	EVENT_PTR(STALLED_CYCLES_FRONTEND),
	EVENT_PTR(STALLED_CYCLES_BACKEND),
	EVENT_PTR(REF_CPU_CYCLES),
	NULL,
};

static struct attribute_group x86_pmu_events_group = {
	.name = "events",
	.attrs = events_attr,
};

1389
ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
{
	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
	ssize_t ret;

	/*
	* We have whole page size to spend and just little data
	* to write, so we can safely use sprintf.
	*/
	ret = sprintf(page, "event=0x%02llx", event);

	if (umask)
		ret += sprintf(page + ret, ",umask=0x%02llx", umask);

	if (edge)
		ret += sprintf(page + ret, ",edge");

	if (pc)
		ret += sprintf(page + ret, ",pc");

	if (any)
		ret += sprintf(page + ret, ",any");

	if (inv)
		ret += sprintf(page + ret, ",inv");

	if (cmask)
		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);

	ret += sprintf(page + ret, "\n");

	return ret;
}

1428
static int __init init_hw_perf_events(void)
1429
{
1430
	struct x86_pmu_quirk *quirk;
1431 1432
	int err;

1433
	pr_info("Performance Events: ");
1434

1435 1436
	switch (boot_cpu_data.x86_vendor) {
	case X86_VENDOR_INTEL:
1437
		err = intel_pmu_init();
1438
		break;
1439
	case X86_VENDOR_AMD:
1440
		err = amd_pmu_init();
1441
		break;
1442
	default:
1443
		return 0;
1444
	}
1445
	if (err != 0) {
1446
		pr_cont("no PMU driver, software events only.\n");
1447
		return 0;
1448
	}
1449

1450 1451
	pmu_check_apic();

1452
	/* sanity check that the hardware exists or is emulated */
1453
	if (!check_hw_exists())
1454
		return 0;
1455

1456
	pr_cont("%s PMU driver.\n", x86_pmu.name);
1457

1458 1459
	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
		quirk->func();
1460

1461 1462
	if (!x86_pmu.intel_ctrl)
		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1463

1464
	perf_events_lapic_init();
1465
	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1466

1467
	unconstrained = (struct event_constraint)
1468
		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1469
				   0, x86_pmu.num_counters, 0);
1470

1471
	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1472
	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1473

1474 1475
	if (!x86_pmu.events_sysfs_show)
		x86_pmu_events_group.attrs = &empty_attrs;
1476 1477
	else
		filter_events(x86_pmu_events_group.attrs);
1478

1479
	pr_info("... version:                %d\n",     x86_pmu.version);
1480 1481 1482
	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
	pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1483
	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1484
	pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1485
	pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1486

Peter Zijlstra's avatar
Peter Zijlstra committed
1487
	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1488
	perf_cpu_notifier(x86_pmu_notifier);
1489 1490

	return 0;
1491
}
1492
early_initcall(init_hw_perf_events);
Ingo Molnar's avatar
Ingo Molnar committed
1493

1494
static inline void x86_pmu_read(struct perf_event *event)
1495
{
1496
	x86_perf_event_update(event);
1497 1498
}

1499 1500 1501 1502 1503
/*
 * Start group events scheduling transaction
 * Set the flag to make pmu::enable() not perform the
 * schedulability test, it will be performed at commit time
 */
Peter Zijlstra's avatar
Peter Zijlstra committed
1504
static void x86_pmu_start_txn(struct pmu *pmu)
1505
{
Peter Zijlstra's avatar
Peter Zijlstra committed
1506
	perf_pmu_disable(pmu);
1507 1508
	__this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
	__this_cpu_write(cpu_hw_events.n_txn, 0);
1509 1510 1511 1512 1513 1514 1515
}

/*
 * Stop group events scheduling transaction
 * Clear the flag and pmu::enable() will perform the
 * schedulability test.
 */
Peter Zijlstra's avatar
Peter Zijlstra committed
1516
static void x86_pmu_cancel_txn(struct pmu *pmu)
1517
{
1518
	__this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1519 1520 1521
	/*
	 * Truncate the collected events.
	 */
1522 1523
	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
Peter Zijlstra's avatar
Peter Zijlstra committed
1524
	perf_pmu_enable(pmu);
1525 1526 1527 1528 1529 1530 1531
}

/*
 * Commit group events scheduling transaction
 * Perform the group schedulability test as a whole
 * Return 0 if success
 */
Peter Zijlstra's avatar
Peter Zijlstra committed
1532
static int x86_pmu_commit_txn(struct pmu *pmu)
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
{
	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
	int assign[X86_PMC_IDX_MAX];
	int n, ret;

	n = cpuc->n_events;

	if (!x86_pmu_initialized())
		return -EAGAIN;

	ret = x86_pmu.schedule_events(cpuc, n, assign);
	if (ret)
		return ret;

	/*
	 * copy new assignment, now we know it is possible
	 * will be used by hw_perf_enable()
	 */
	memcpy(cpuc->assign, assign, n*sizeof(int));

1553
	cpuc->group_flag &= ~PERF_EVENT_TXN;
Peter Zijlstra's avatar
Peter Zijlstra committed
1554
	perf_pmu_enable(pmu);
1555 1556
	return 0;
}
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
/*
 * a fake_cpuc is used to validate event groups. Due to
 * the extra reg logic, we need to also allocate a fake
 * per_core and per_cpu structure. Otherwise, group events
 * using extra reg may conflict without the kernel being
 * able to catch this when the last event gets added to
 * the group.
 */
static void free_fake_cpuc(struct cpu_hw_events *cpuc)
{
	kfree(cpuc->shared_regs);
	kfree(cpuc);
}

static struct cpu_hw_events *allocate_fake_cpuc(void)
{
	struct cpu_hw_events *cpuc;
	int cpu = raw_smp_processor_id();

	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
	if (!cpuc)
		return ERR_PTR(-ENOMEM);

	/* only needed, if we have extra_regs */
	if (x86_pmu.extra_regs) {
		cpuc->shared_regs = allocate_shared_regs(cpu);
		if (!cpuc->shared_regs)
			goto error;
	}
1586
	cpuc->is_fake = 1;
1587 1588 1589 1590 1591
	return cpuc;
error:
	free_fake_cpuc(cpuc);
	return ERR_PTR(-ENOMEM);
}
1592

1593 1594 1595 1596 1597 1598 1599 1600 1601
/*
 * validate that we can schedule this event
 */
static int validate_event(struct perf_event *event)
{
	struct cpu_hw_events *fake_cpuc;
	struct event_constraint *c;
	int ret = 0;

1602 1603 1604
	fake_cpuc = allocate_fake_cpuc();
	if (IS_ERR(fake_cpuc))
		return PTR_ERR(fake_cpuc);
1605 1606 1607 1608

	c = x86_pmu.get_event_constraints(fake_cpuc, event);

	if (!c || !c->weight)
1609
		ret = -EINVAL;
1610 1611 1612 1613

	if (x86_pmu.put_event_constraints)
		x86_pmu.put_event_constraints(fake_cpuc, event);

1614
	free_fake_cpuc(fake_cpuc);
1615 1616 1617 1618

	return ret;
}

1619 1620 1621 1622
/*
 * validate a single event group
 *
 * validation include:
1623 1624 1625
 *	- check events are compatible which each other
 *	- events do not compete for the same counter
 *	- number of events <= number of counters
1626 1627 1628 1629
 *
 * validation ensures the group can be loaded onto the
 * PMU if it was the only group available.
 */
1630 1631
static int validate_group(struct perf_event *event)
{
1632
	struct perf_event *leader = event->group_leader;
1633
	struct cpu_hw_events *fake_cpuc;
1634
	int ret = -EINVAL, n;
1635

1636 1637 1638
	fake_cpuc = allocate_fake_cpuc();
	if (IS_ERR(fake_cpuc))
		return PTR_ERR(fake_cpuc);
1639 1640 1641 1642 1643 1644
	/*
	 * the event is not yet connected with its
	 * siblings therefore we must first collect
	 * existing siblings, then add the new event
	 * before we can simulate the scheduling
	 */
1645
	n = collect_events(fake_cpuc, leader, true);
1646
	if (n < 0)
1647
		goto out;
1648

1649 1650
	fake_cpuc->n_events = n;
	n = collect_events(fake_cpuc, event, false);
1651
	if (n < 0)
1652
		goto out;
1653

1654
	fake_cpuc->n_events = n;
1655

1656
	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1657 1658

out:
1659
	free_fake_cpuc(fake_cpuc);
1660
	return ret;
1661 1662
}

1663
static int x86_pmu_event_init(struct perf_event *event)
Ingo Molnar's avatar
Ingo Molnar committed
1664
{
Peter Zijlstra's avatar
Peter Zijlstra committed
1665
	struct pmu *tmp;
Ingo Molnar's avatar
Ingo Molnar committed
1666 1667
	int err;

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	switch (event->attr.type) {
	case PERF_TYPE_RAW:
	case PERF_TYPE_HARDWARE:
	case PERF_TYPE_HW_CACHE:
		break;

	default:
		return -ENOENT;
	}

	err = __x86_pmu_event_init(event);
1679
	if (!err) {
1680 1681 1682 1683 1684 1685 1686 1687
		/*
		 * we temporarily connect event to its pmu
		 * such that validate_group() can classify
		 * it as an x86 event using is_x86_event()
		 */
		tmp = event->pmu;
		event->pmu = &pmu;

1688 1689
		if (event->group_leader != event)
			err = validate_group(event);
1690 1691
		else
			err = validate_event(event);
1692 1693

		event->pmu = tmp;
1694
	}
1695
	if (err) {
1696 1697
		if (event->destroy)
			event->destroy(event);
1698
	}
Ingo Molnar's avatar
Ingo Molnar committed
1699

1700
	return err;
Ingo Molnar's avatar
Ingo Molnar committed
1701
}
1702

1703 1704 1705 1706
static int x86_pmu_event_idx(struct perf_event *event)
{
	int idx = event->hw.idx;

1707 1708 1709
	if (!x86_pmu.attr_rdpmc)
		return 0;

1710 1711
	if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
		idx -= INTEL_PMC_IDX_FIXED;
1712 1713 1714 1715 1716 1717
		idx |= 1 << 30;
	}

	return idx + 1;
}

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
static ssize_t get_attr_rdpmc(struct device *cdev,
			      struct device_attribute *attr,
			      char *buf)
{
	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
}

static void change_rdpmc(void *info)
{
	bool enable = !!(unsigned long)info;

	if (enable)
		set_in_cr4(X86_CR4_PCE);
	else
		clear_in_cr4(X86_CR4_PCE);
}

static ssize_t set_attr_rdpmc(struct device *cdev,
			      struct device_attribute *attr,
			      const char *buf, size_t count)
{
1739 1740 1741 1742 1743 1744
	unsigned long val;
	ssize_t ret;

	ret = kstrtoul(buf, 0, &val);
	if (ret)
		return ret;
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766

	if (!!val != !!x86_pmu.attr_rdpmc) {
		x86_pmu.attr_rdpmc = !!val;
		smp_call_function(change_rdpmc, (void *)val, 1);
	}

	return count;
}

static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);

static struct attribute *x86_pmu_attrs[] = {
	&dev_attr_rdpmc.attr,
	NULL,
};

static struct attribute_group x86_pmu_attr_group = {
	.attrs = x86_pmu_attrs,
};

static const struct attribute_group *x86_pmu_attr_groups[] = {
	&x86_pmu_attr_group,
1767
	&x86_pmu_format_group,
1768
	&x86_pmu_events_group,
1769 1770 1771
	NULL,
};

1772 1773 1774 1775 1776 1777
static void x86_pmu_flush_branch_stack(void)
{
	if (x86_pmu.flush_branch_stack)
		x86_pmu.flush_branch_stack();
}

1778 1779 1780 1781 1782 1783 1784
void perf_check_microcode(void)
{
	if (x86_pmu.check_microcode)
		x86_pmu.check_microcode();
}
EXPORT_SYMBOL_GPL(perf_check_microcode);

1785
static struct pmu pmu = {
1786 1787
	.pmu_enable		= x86_pmu_enable,
	.pmu_disable		= x86_pmu_disable,
1788

1789
	.attr_groups		= x86_pmu_attr_groups,
1790

1791
	.event_init		= x86_pmu_event_init,
1792

1793 1794 1795 1796 1797
	.add			= x86_pmu_add,
	.del			= x86_pmu_del,
	.start			= x86_pmu_start,
	.stop			= x86_pmu_stop,
	.read			= x86_pmu_read,
1798

1799 1800 1801
	.start_txn		= x86_pmu_start_txn,
	.cancel_txn		= x86_pmu_cancel_txn,
	.commit_txn		= x86_pmu_commit_txn,
1802

1803
	.event_idx		= x86_pmu_event_idx,
1804
	.flush_branch_stack	= x86_pmu_flush_branch_stack,
1805 1806
};

1807
void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
1808
{
1809 1810 1811 1812
	userpg->cap_usr_time = 0;
	userpg->cap_usr_rdpmc = x86_pmu.attr_rdpmc;
	userpg->pmc_width = x86_pmu.cntval_bits;

1813 1814 1815 1816 1817 1818
	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
		return;

	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
		return;

1819
	userpg->cap_usr_time = 1;
1820 1821 1822 1823 1824
	userpg->time_mult = this_cpu_read(cyc2ns);
	userpg->time_shift = CYC2NS_SCALE_FACTOR;
	userpg->time_offset = this_cpu_read(cyc2ns_offset) - now;
}

1825 1826 1827 1828 1829 1830
/*
 * callchain support
 */

static int backtrace_stack(void *data, char *name)
{
1831
	return 0;
1832 1833 1834 1835 1836 1837
}

static void backtrace_address(void *data, unsigned long addr, int reliable)
{
	struct perf_callchain_entry *entry = data;

1838
	perf_callchain_store(entry, addr);
1839 1840 1841 1842 1843
}

static const struct stacktrace_ops backtrace_ops = {
	.stack			= backtrace_stack,
	.address		= backtrace_address,
1844
	.walk_stack		= print_context_stack_bp,
1845 1846
};

1847 1848
void
perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1849
{
1850 1851
	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
		/* TODO: We don't support guest os callchain now */
1852
		return;
1853 1854
	}

1855
	perf_callchain_store(entry, regs->ip);
1856

1857
	dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1858 1859
}

1860 1861 1862 1863 1864 1865
static inline int
valid_user_frame(const void __user *fp, unsigned long size)
{
	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
}

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
static unsigned long get_segment_base(unsigned int segment)
{
	struct desc_struct *desc;
	int idx = segment >> 3;

	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
		if (idx > LDT_ENTRIES)
			return 0;

		if (idx > current->active_mm->context.size)
			return 0;

		desc = current->active_mm->context.ldt;
	} else {
		if (idx > GDT_ENTRIES)
			return 0;

		desc = __this_cpu_ptr(&gdt_page.gdt[0]);
	}

	return get_desc_base(desc + idx);
}

1889
#ifdef CONFIG_COMPAT
1890 1891 1892

#include <asm/compat.h>

1893 1894
static inline int
perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1895
{
1896
	/* 32-bit process in 64-bit kernel. */
1897
	unsigned long ss_base, cs_base;
1898 1899
	struct stack_frame_ia32 frame;
	const void __user *fp;
1900

1901 1902 1903
	if (!test_thread_flag(TIF_IA32))
		return 0;

1904 1905 1906 1907
	cs_base = get_segment_base(regs->cs);
	ss_base = get_segment_base(regs->ss);

	fp = compat_ptr(ss_base + regs->bp);
1908 1909 1910 1911 1912 1913 1914 1915
	while (entry->nr < PERF_MAX_STACK_DEPTH) {
		unsigned long bytes;
		frame.next_frame     = 0;
		frame.return_address = 0;

		bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
		if (bytes != sizeof(frame))
			break;
1916

1917 1918 1919
		if (!valid_user_frame(fp, sizeof(frame)))
			break;

1920 1921
		perf_callchain_store(entry, cs_base + frame.return_address);
		fp = compat_ptr(ss_base + frame.next_frame);
1922 1923
	}
	return 1;
1924
}
1925 1926 1927 1928 1929 1930 1931
#else
static inline int
perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
{
    return 0;
}
#endif
1932

1933 1934
void
perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1935 1936 1937 1938
{
	struct stack_frame frame;
	const void __user *fp;

1939 1940
	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
		/* TODO: We don't support guest os callchain now */
1941
		return;
1942
	}
1943

1944 1945 1946 1947 1948 1949
	/*
	 * We don't know what to do with VM86 stacks.. ignore them for now.
	 */
	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
		return;

1950
	fp = (void __user *)regs->bp;
1951

1952
	perf_callchain_store(entry, regs->ip);
1953

1954 1955 1956
	if (!current->mm)
		return;

1957 1958 1959
	if (perf_callchain_user32(regs, entry))
		return;

1960
	while (entry->nr < PERF_MAX_STACK_DEPTH) {
1961
		unsigned long bytes;
1962
		frame.next_frame	     = NULL;
1963 1964
		frame.return_address = 0;

1965 1966
		bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
		if (bytes != sizeof(frame))
1967 1968
			break;

1969 1970 1971
		if (!valid_user_frame(fp, sizeof(frame)))
			break;

1972
		perf_callchain_store(entry, frame.return_address);
1973
		fp = frame.next_frame;
1974 1975 1976
	}
}

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
/*
 * Deal with code segment offsets for the various execution modes:
 *
 *   VM86 - the good olde 16 bit days, where the linear address is
 *          20 bits and we use regs->ip + 0x10 * regs->cs.
 *
 *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
 *          to figure out what the 32bit base address is.
 *
 *    X32 - has TIF_X32 set, but is running in x86_64
 *
 * X86_64 - CS,DS,SS,ES are all zero based.
 */
static unsigned long code_segment_base(struct pt_regs *regs)
1991
{
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
	/*
	 * If we are in VM86 mode, add the segment offset to convert to a
	 * linear address.
	 */
	if (regs->flags & X86_VM_MASK)
		return 0x10 * regs->cs;

	/*
	 * For IA32 we look at the GDT/LDT segment base to convert the
	 * effective IP to a linear address.
	 */
#ifdef CONFIG_X86_32
	if (user_mode(regs) && regs->cs != __USER_CS)
		return get_segment_base(regs->cs);
#else
	if (test_thread_flag(TIF_IA32)) {
		if (user_mode(regs) && regs->cs != __USER32_CS)
			return get_segment_base(regs->cs);
	}
#endif
	return 0;
}
2014

2015 2016
unsigned long perf_instruction_pointer(struct pt_regs *regs)
{
2017
	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2018
		return perf_guest_cbs->get_guest_ip();
2019

2020
	return regs->ip + code_segment_base(regs);
2021 2022 2023 2024 2025
}

unsigned long perf_misc_flags(struct pt_regs *regs)
{
	int misc = 0;
2026

2027
	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2028 2029 2030 2031 2032
		if (perf_guest_cbs->is_user_mode())
			misc |= PERF_RECORD_MISC_GUEST_USER;
		else
			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
	} else {
2033
		if (user_mode(regs))
2034 2035 2036 2037 2038
			misc |= PERF_RECORD_MISC_USER;
		else
			misc |= PERF_RECORD_MISC_KERNEL;
	}

2039
	if (regs->flags & PERF_EFLAGS_EXACT)
2040
		misc |= PERF_RECORD_MISC_EXACT_IP;
2041 2042 2043

	return misc;
}
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055

void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
{
	cap->version		= x86_pmu.version;
	cap->num_counters_gp	= x86_pmu.num_counters;
	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
	cap->bit_width_gp	= x86_pmu.cntval_bits;
	cap->bit_width_fixed	= x86_pmu.cntval_bits;
	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
	cap->events_mask_len	= x86_pmu.events_mask_len;
}
EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);