urb.c 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#include <linux/config.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/init.h>

#ifdef CONFIG_USB_DEBUG
	#define DEBUG
#else
	#undef DEBUG
#endif
#include <linux/usb.h>
#include "hcd.h"

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
/**
 * usb_init_urb - initializes a urb so that it can be used by a USB driver
 * @urb: pointer to the urb to initialize
 *
 * Initializes a urb so that the USB subsystem can use it properly.
 *
 * If a urb is created with a call to usb_alloc_urb() it is not
 * necessary to call this function.  Only use this if you allocate the
 * space for a struct urb on your own.  If you call this function, be
 * careful when freeing the memory for your urb that it is no longer in
 * use by the USB core.
 *
 * Only use this function if you _really_ understand what you are doing.
 */
void usb_init_urb(struct urb *urb)
{
	if (urb) {
		memset(urb, 0, sizeof(*urb));
		urb->count = (atomic_t)ATOMIC_INIT(1);
		spin_lock_init(&urb->lock);
	}
}

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
/**
 * usb_alloc_urb - creates a new urb for a USB driver to use
 * @iso_packets: number of iso packets for this urb
 * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
 *	valid options for this.
 *
 * Creates an urb for the USB driver to use, initializes a few internal
 * structures, incrementes the usage counter, and returns a pointer to it.
 *
 * If no memory is available, NULL is returned.
 *
 * If the driver want to use this urb for interrupt, control, or bulk
 * endpoints, pass '0' as the number of iso packets.
 *
 * The driver must call usb_free_urb() when it is finished with the urb.
 */
struct urb *usb_alloc_urb(int iso_packets, int mem_flags)
{
	struct urb *urb;

	urb = (struct urb *)kmalloc(sizeof(struct urb) + 
		iso_packets * sizeof(struct usb_iso_packet_descriptor),
		mem_flags);
	if (!urb) {
		err("alloc_urb: kmalloc failed");
		return NULL;
	}
66
	usb_init_urb(urb);
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
	return urb;
}

/**
 * usb_free_urb - frees the memory used by a urb when all users of it are finished
 * @urb: pointer to the urb to free
 *
 * Must be called when a user of a urb is finished with it.  When the last user
 * of the urb calls this function, the memory of the urb is freed.
 *
 * Note: The transfer buffer associated with the urb is not freed, that must be
 * done elsewhere.
 */
void usb_free_urb(struct urb *urb)
{
	if (urb)
		if (atomic_dec_and_test(&urb->count))
			kfree(urb);
}

/**
 * usb_get_urb - increments the reference count of the urb
 * @urb: pointer to the urb to modify
 *
91
 * This must be  called whenever a urb is transferred from a device driver to a
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
 * host controller driver.  This allows proper reference counting to happen
 * for urbs.
 *
 * A pointer to the urb with the incremented reference counter is returned.
 */
struct urb * usb_get_urb(struct urb *urb)
{
	if (urb) {
		atomic_inc(&urb->count);
		return urb;
	} else
		return NULL;
}
		
		
/*-------------------------------------------------------------------*/

/**
110
 * usb_submit_urb - issue an asynchronous transfer request for an endpoint
111 112 113 114 115 116
 * @urb: pointer to the urb describing the request
 * @mem_flags: the type of memory to allocate, see kmalloc() for a list
 *	of valid options for this.
 *
 * This submits a transfer request, and transfers control of the URB
 * describing that request to the USB subsystem.  Request completion will
117 118 119 120
 * be indicated later, asynchronously, by calling the completion handler.
 * The three types of completion are success, error, and unlink
 * (also called "request cancellation").
 * URBs may be submitted in interrupt context.
121 122 123 124 125 126 127 128
 *
 * The caller must have correctly initialized the URB before submitting
 * it.  Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
 * available to ensure that most fields are correctly initialized, for
 * the particular kind of transfer, although they will not initialize
 * any transfer flags.
 *
 * Successful submissions return 0; otherwise this routine returns a
129
 * negative error number.  If the submission is successful, the complete()
130 131
 * callback from the urb will be called exactly once, when the USB core and
 * host controller driver are finished with the urb.  When the completion
132 133 134 135 136 137
 * function is called, control of the URB is returned to the device
 * driver which issued the request.  The completion handler may then
 * immediately free or reuse that URB.
 *
 * For control endpoints, the synchronous usb_control_msg() call is
 * often used (in non-interrupt context) instead of this call.
138 139 140
 * That is often used through convenience wrappers, for the requests
 * that are standardized in the USB 2.0 specification.  For bulk
 * endpoints, a synchronous usb_bulk_msg() call is available.
141
 *
142 143 144 145 146 147 148 149 150
 * Request Queuing:
 *
 * URBs may be submitted to endpoints before previous ones complete, to
 * minimize the impact of interrupt latencies and system overhead on data
 * throughput.  This is required for continuous isochronous data streams,
 * and may also be required for some kinds of interrupt transfers. Such
 * queueing also maximizes bandwidth utilization by letting USB controllers
 * start work on later requests before driver software has finished the
 * completion processing for earlier requests.
151
 *
152 153 154
 * Bulk and Isochronous URBs may always be queued.  At this writing, all
 * mainstream host controller drivers support queueing for control and
 * interrupt transfer requests.
155
 *
156
 * Reserved Bandwidth Transfers:
157
 *
158 159 160 161 162
 * Periodic transfers (interrupt or isochronous) are performed repeatedly,
 * using the interval specified in the urb.  Submitting the first urb to
 * the endpoint reserves the bandwidth necessary to make those transfers.
 * If the USB subsystem can't allocate sufficient bandwidth to perform
 * the periodic request, submitting such a periodic request should fail.
163
 *
164 165 166 167 168 169 170
 * Device drivers must explicitly request that repetition, by ensuring that
 * some URB is always on the endpoint's queue (except possibly for short
 * periods during completion callacks).  When there is no longer an urb
 * queued, the endpoint's bandwidth reservation is canceled.  This means
 * drivers can use their completion handlers to ensure they keep bandwidth
 * they need, by reinitializing and resubmitting the just-completed urb
 * until the driver longer needs that periodic bandwidth.
171 172 173
 *
 * Memory Flags:
 *
174 175
 * The general rules for how to decide which mem_flags to use
 * are the same as for kmalloc.  There are four
176 177 178 179 180
 * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
 * GFP_ATOMIC.
 *
 * GFP_NOFS is not ever used, as it has not been implemented yet.
 *
181 182 183 184 185 186
 * GFP_ATOMIC is used when
 *   (a) you are inside a completion handler, an interrupt, bottom half,
 *       tasklet or timer, or
 *   (b) you are holding a spinlock or rwlock (does not apply to
 *       semaphores), or
 *   (c) current->state != TASK_RUNNING, this is the case only after
187 188 189 190 191 192 193
 *       you've changed it.
 * 
 * GFP_NOIO is used in the block io path and error handling of storage
 * devices.
 *
 * All other situations use GFP_KERNEL.
 *
194 195 196 197 198 199 200 201 202 203 204
 * Some more specific rules for mem_flags can be inferred, such as
 *  (1) start_xmit, timeout, and receive methods of network drivers must
 *      use GFP_ATOMIC (they are called with a spinlock held);
 *  (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
 *      called with a spinlock held);
 *  (3) If you use a kernel thread with a network driver you must use
 *      GFP_NOIO, unless (b) or (c) apply;
 *  (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
 *      apply or your are in a storage driver's block io path;
 *  (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
 *  (6) changing firmware on a running storage or net device uses
205 206 207 208 209
 *      GFP_NOIO, unless b) or c) apply
 *
 */
int usb_submit_urb(struct urb *urb, int mem_flags)
{
210 211 212 213
	int			pipe, temp, max;
	struct usb_device	*dev;
	struct usb_operations	*op;
	int			is_out;
214

215 216
	if (!urb || urb->hcpriv || !urb->complete)
		return -EINVAL;
217 218 219
	if (!(dev = urb->dev) ||
	    (dev->state < USB_STATE_DEFAULT) ||
	    (!dev->bus) || (dev->devnum <= 0))
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
		return -ENODEV;
	if (!(op = dev->bus->op) || !op->submit_urb)
		return -ENODEV;

	urb->status = -EINPROGRESS;
	urb->actual_length = 0;
	urb->bandwidth = 0;

	/* Lots of sanity checks, so HCDs can rely on clean data
	 * and don't need to duplicate tests
	 */
	pipe = urb->pipe;
	temp = usb_pipetype (pipe);
	is_out = usb_pipeout (pipe);

235 236 237
	if (!usb_pipecontrol (pipe) && dev->state < USB_STATE_CONFIGURED)
		return -ENODEV;

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
	/* (actually HCDs may need to duplicate this, endpoint might yet
	 * stall due to queued bulk/intr transactions that complete after
	 * we check)
	 */
	if (usb_endpoint_halted (dev, usb_pipeendpoint (pipe), is_out))
		return -EPIPE;

	/* FIXME there should be a sharable lock protecting us against
	 * config/altsetting changes and disconnects, kicking in here.
	 * (here == before maxpacket, and eventually endpoint type,
	 * checks get made.)
	 */

	max = usb_maxpacket (dev, pipe, is_out);
	if (max <= 0) {
		dbg ("%s: bogus endpoint %d-%s on usb-%s-%s (bad maxpacket %d)",
			__FUNCTION__,
			usb_pipeendpoint (pipe), is_out ? "OUT" : "IN",
			dev->bus->bus_name, dev->devpath,
			max);
		return -EMSGSIZE;
	}

261 262 263 264 265 266 267 268 269 270
	/* periodic transfers limit size per frame/uframe,
	 * but drivers only control those sizes for ISO.
	 * while we're checking, initialize return status.
	 */
	if (temp == PIPE_ISOCHRONOUS) {
		int	n, len;

		/* "high bandwidth" mode, 1-3 packets/uframe? */
		if (dev->speed == USB_SPEED_HIGH) {
			int	mult = 1 + ((max >> 11) & 0x03);
271 272 273 274 275 276 277 278 279 280
			max &= 0x03ff;
			max *= mult;
		}

		if (urb->number_of_packets <= 0)		    
			return -EINVAL;
		for (n = 0; n < urb->number_of_packets; n++) {
			len = urb->iso_frame_desc [n].length;
			if (len < 0 || len > max) 
				return -EMSGSIZE;
281 282
			urb->iso_frame_desc [n].status = -EXDEV;
			urb->iso_frame_desc [n].actual_length = 0;
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
		}
	}

	/* the I/O buffer must be mapped/unmapped, except when length=0 */
	if (urb->transfer_buffer_length < 0)
		return -EMSGSIZE;

#ifdef DEBUG
	/* stuff that drivers shouldn't do, but which shouldn't
	 * cause problems in HCDs if they get it wrong.
	 */
	{
	unsigned int	orig_flags = urb->transfer_flags;
	unsigned int	allowed;

	/* enforce simple/standard policy */
299
	allowed = URB_ASYNC_UNLINK;	// affects later unlinks
300
	allowed |= (URB_NO_TRANSFER_DMA_MAP | URB_NO_SETUP_DMA_MAP);
301
	allowed |= URB_NO_INTERRUPT;
302 303
	switch (temp) {
	case PIPE_BULK:
304
		if (is_out)
305
			allowed |= URB_ZERO_PACKET;
306 307
		/* FALLTHROUGH */
	case PIPE_CONTROL:
308
		allowed |= URB_NO_FSBR;	/* only affects UHCI */
309 310 311 312
		/* FALLTHROUGH */
	default:			/* all non-iso endpoints */
		if (!is_out)
			allowed |= URB_SHORT_NOT_OK;
313 314
		break;
	case PIPE_ISOCHRONOUS:
315
		allowed |= URB_ISO_ASAP;
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
		break;
	}
	urb->transfer_flags &= allowed;

	/* fail if submitter gave bogus flags */
	if (urb->transfer_flags != orig_flags) {
		err ("BOGUS urb flags, %x --> %x",
			orig_flags, urb->transfer_flags);
		return -EINVAL;
	}
	}
#endif
	/*
	 * Force periodic transfer intervals to be legal values that are
	 * a power of two (so HCDs don't need to).
	 *
	 * FIXME want bus->{intr,iso}_sched_horizon values here.  Each HC
	 * supports different values... this uses EHCI/UHCI defaults (and
	 * EHCI can use smaller non-default values).
	 */
	switch (temp) {
	case PIPE_ISOCHRONOUS:
	case PIPE_INTERRUPT:
		/* too small? */
		if (urb->interval <= 0)
			return -EINVAL;
		/* too big? */
		switch (dev->speed) {
		case USB_SPEED_HIGH:	/* units are microframes */
			// NOTE usb handles 2^15
			if (urb->interval > (1024 * 8))
				urb->interval = 1024 * 8;
			temp = 1024 * 8;
			break;
		case USB_SPEED_FULL:	/* units are frames/msec */
		case USB_SPEED_LOW:
			if (temp == PIPE_INTERRUPT) {
				if (urb->interval > 255)
					return -EINVAL;
				// NOTE ohci only handles up to 32
				temp = 128;
			} else {
				if (urb->interval > 1024)
					urb->interval = 1024;
				// NOTE usb and ohci handle up to 2^15
				temp = 1024;
			}
			break;
		default:
			return -EINVAL;
366
		}
367 368 369 370
		/* power of two? */
		while (temp > urb->interval)
			temp >>= 1;
		urb->interval = temp;
371
	}
372 373

	return op->submit_urb (urb, mem_flags);
374 375 376 377 378 379 380 381
}

/*-------------------------------------------------------------------*/

/**
 * usb_unlink_urb - abort/cancel a transfer request for an endpoint
 * @urb: pointer to urb describing a previously submitted request
 *
382 383 384 385 386 387
 * This routine cancels an in-progress request.  URBs complete only
 * once per submission, and may be canceled only once per submission.
 * Successful cancelation means the requests's completion handler will
 * be called with a status code indicating that the request has been
 * canceled (rather than any other code) and will quickly be removed
 * from host controller data structures.
388
 *
389
 * When the URB_ASYNC_UNLINK transfer flag for the URB is clear, this
390
 * request is synchronous.  Success is indicated by returning zero,
391 392 393 394 395
 * at which time the urb will have been unlinked and its completion
 * handler will have been called with urb->status -ENOENT.  Failure is
 * indicated by any other return value.
 *
 * The synchronous cancelation mode may not be used
396
 * when unlinking an urb from an interrupt context, such as a bottom
397 398
 * half or a completion handler; or when holding a spinlock; or in
 * other cases when the caller can't schedule().
399
 *
400
 * When the URB_ASYNC_UNLINK transfer flag for the URB is set, this
401
 * request is asynchronous.  Success is indicated by returning -EINPROGRESS,
402 403 404
 * at which time the urb will normally not have been unlinked.
 * The completion function will see urb->status -ECONNRESET.  Failure
 * is indicated by any other return value.
405 406 407
 */
int usb_unlink_urb(struct urb *urb)
{
408
	if (urb && urb->dev && urb->dev->bus && urb->dev->bus->op)
409 410 411 412 413
		return urb->dev->bus->op->unlink_urb(urb);
	else
		return -ENODEV;
}

414
EXPORT_SYMBOL(usb_init_urb);
415 416 417 418 419 420
EXPORT_SYMBOL(usb_alloc_urb);
EXPORT_SYMBOL(usb_free_urb);
EXPORT_SYMBOL(usb_get_urb);
EXPORT_SYMBOL(usb_submit_urb);
EXPORT_SYMBOL(usb_unlink_urb);