slab.c 110 KB
Newer Older
Linus Torvalds's avatar
Linus Torvalds committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
Simon Arlott's avatar
Simon Arlott committed
29
 * slabs and you must pass objects with the same initializations to
Linus Torvalds's avatar
Linus Torvalds committed
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
Andrew Morton's avatar
Andrew Morton committed
53
 * The c_cpuarray may not be read with enabled local interrupts -
Linus Torvalds's avatar
Linus Torvalds committed
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
Linus Torvalds's avatar
Linus Torvalds committed
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
71
 *	The global cache-chain is protected by the mutex 'slab_mutex'.
Linus Torvalds's avatar
Linus Torvalds committed
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
Linus Torvalds's avatar
Linus Torvalds committed
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
Linus Torvalds's avatar
Linus Torvalds committed
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
Linus Torvalds's avatar
Linus Torvalds committed
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
Ingo Molnar's avatar
Ingo Molnar committed
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
Pekka Enberg's avatar
Pekka Enberg committed
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
118
#include	<linux/prefetch.h>
Linus Torvalds's avatar
Linus Torvalds committed
119

120 121
#include	<net/sock.h>

Linus Torvalds's avatar
Linus Torvalds committed
122 123 124 125
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

126 127
#include <trace/events/kmem.h>

128 129
#include	"internal.h"

130 131
#include	"slab.h"

Linus Torvalds's avatar
Linus Torvalds committed
132
/*
133
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
Linus Torvalds's avatar
Linus Torvalds committed
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
David Woodhouse's avatar
David Woodhouse committed
154
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
Linus Torvalds's avatar
Linus Torvalds committed
155 156 157 158 159

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

160 161 162 163 164 165 166 167 168
#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

169
#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
170

Linus Torvalds's avatar
Linus Torvalds committed
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
188
	void *entry[];	/*
Andrew Morton's avatar
Andrew Morton committed
189 190 191 192
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
Linus Torvalds's avatar
Linus Torvalds committed
193 194
};

Joonsoo Kim's avatar
Joonsoo Kim committed
195 196 197 198 199
struct alien_cache {
	spinlock_t lock;
	struct array_cache ac;
};

200 201 202
/*
 * Need this for bootstrapping a per node allocator.
 */
203
#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204
static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
205
#define	CACHE_CACHE 0
206
#define	SIZE_NODE (MAX_NUMNODES)
207

208
static int drain_freelist(struct kmem_cache *cache,
209
			struct kmem_cache_node *n, int tofree);
210
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
211 212
			int node, struct list_head *list);
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
213
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
214
static void cache_reap(struct work_struct *unused);
215

216 217 218 219 220
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list);
static inline void fixup_slab_list(struct kmem_cache *cachep,
				struct kmem_cache_node *n, struct page *page,
				void **list);
221 222
static int slab_early_init = 1;

223
#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
Linus Torvalds's avatar
Linus Torvalds committed
224

225
static void kmem_cache_node_init(struct kmem_cache_node *parent)
226 227 228 229
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
230
	parent->total_slabs = 0;
231
	parent->free_slabs = 0;
232 233
	parent->shared = NULL;
	parent->alien = NULL;
234
	parent->colour_next = 0;
235 236 237 238 239
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

Andrew Morton's avatar
Andrew Morton committed
240 241 242
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
243
		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
244 245
	} while (0)

Andrew Morton's avatar
Andrew Morton committed
246 247
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
248 249 250 251
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
252

253
#define CFLGS_OBJFREELIST_SLAB	(0x40000000UL)
Linus Torvalds's avatar
Linus Torvalds committed
254
#define CFLGS_OFF_SLAB		(0x80000000UL)
255
#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
Linus Torvalds's avatar
Linus Torvalds committed
256 257 258
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
Andrew Morton's avatar
Andrew Morton committed
259 260 261
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
Linus Torvalds's avatar
Linus Torvalds committed
262
 *
Adrian Bunk's avatar
Adrian Bunk committed
263
 * OTOH the cpuarrays can contain lots of objects,
Linus Torvalds's avatar
Linus Torvalds committed
264 265
 * which could lock up otherwise freeable slabs.
 */
266 267
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)
Linus Torvalds's avatar
Linus Torvalds committed
268 269 270 271 272 273

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
274
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
Andrew Morton's avatar
Andrew Morton committed
275 276 277 278 279
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
280 281
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
282
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
283
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
Andrew Morton's avatar
Andrew Morton committed
284 285 286 287 288
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
Linus Torvalds's avatar
Linus Torvalds committed
289 290 291 292 293 294 295 296 297
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
298
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
299 300 301
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
302
#define	STATS_INC_NODEFREES(x)	do { } while (0)
303
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
Andrew Morton's avatar
Andrew Morton committed
304
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
Linus Torvalds's avatar
Linus Torvalds committed
305 306 307 308 309 310 311 312
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

Andrew Morton's avatar
Andrew Morton committed
313 314
/*
 * memory layout of objects:
Linus Torvalds's avatar
Linus Torvalds committed
315
 * 0		: objp
316
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
Linus Torvalds's avatar
Linus Torvalds committed
317 318
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
319
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
Linus Torvalds's avatar
Linus Torvalds committed
320
 * 		redzone word.
321
 * cachep->obj_offset: The real object.
322 323
 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->size - 1* BYTES_PER_WORD: last caller address
Andrew Morton's avatar
Andrew Morton committed
324
 *					[BYTES_PER_WORD long]
Linus Torvalds's avatar
Linus Torvalds committed
325
 */
326
static int obj_offset(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
327
{
328
	return cachep->obj_offset;
Linus Torvalds's avatar
Linus Torvalds committed
329 330
}

331
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
332 333
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
334 335
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
336 337
}

338
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
339 340 341
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
342
		return (unsigned long long *)(objp + cachep->size -
343
					      sizeof(unsigned long long) -
David Woodhouse's avatar
David Woodhouse committed
344
					      REDZONE_ALIGN);
345
	return (unsigned long long *) (objp + cachep->size -
346
				       sizeof(unsigned long long));
Linus Torvalds's avatar
Linus Torvalds committed
347 348
}

349
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
350 351
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
352
	return (void **)(objp + cachep->size - BYTES_PER_WORD);
Linus Torvalds's avatar
Linus Torvalds committed
353 354 355 356
}

#else

357
#define obj_offset(x)			0
358 359
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
Linus Torvalds's avatar
Linus Torvalds committed
360 361 362 363
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

364 365
#ifdef CONFIG_DEBUG_SLAB_LEAK

366
static inline bool is_store_user_clean(struct kmem_cache *cachep)
367
{
368 369
	return atomic_read(&cachep->store_user_clean) == 1;
}
370

371 372 373 374
static inline void set_store_user_clean(struct kmem_cache *cachep)
{
	atomic_set(&cachep->store_user_clean, 1);
}
375

376 377 378 379
static inline void set_store_user_dirty(struct kmem_cache *cachep)
{
	if (is_store_user_clean(cachep))
		atomic_set(&cachep->store_user_clean, 0);
380 381 382
}

#else
383
static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
384 385 386

#endif

Linus Torvalds's avatar
Linus Torvalds committed
387
/*
388 389
 * Do not go above this order unless 0 objects fit into the slab or
 * overridden on the command line.
Linus Torvalds's avatar
Linus Torvalds committed
390
 */
391 392 393
#define	SLAB_MAX_ORDER_HI	1
#define	SLAB_MAX_ORDER_LO	0
static int slab_max_order = SLAB_MAX_ORDER_LO;
394
static bool slab_max_order_set __initdata;
Linus Torvalds's avatar
Linus Torvalds committed
395

396 397
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
398
	struct page *page = virt_to_head_page(obj);
399
	return page->slab_cache;
400 401
}

402
static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
403 404
				 unsigned int idx)
{
405
	return page->s_mem + cache->size * idx;
406 407
}

408
/*
409 410 411
 * We want to avoid an expensive divide : (offset / cache->size)
 *   Using the fact that size is a constant for a particular cache,
 *   we can replace (offset / cache->size) by
412 413 414
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
415
					const struct page *page, void *obj)
416
{
417
	u32 offset = (obj - page->s_mem);
418
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
419 420
}

421
#define BOOT_CPUCACHE_ENTRIES	1
Linus Torvalds's avatar
Linus Torvalds committed
422
/* internal cache of cache description objs */
423
static struct kmem_cache kmem_cache_boot = {
424 425 426
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
427
	.size = sizeof(struct kmem_cache),
428
	.name = "kmem_cache",
Linus Torvalds's avatar
Linus Torvalds committed
429 430
};

431
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
Linus Torvalds's avatar
Linus Torvalds committed
432

433
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
434
{
435
	return this_cpu_ptr(cachep->cpu_cache);
Linus Torvalds's avatar
Linus Torvalds committed
436 437
}

Andrew Morton's avatar
Andrew Morton committed
438 439 440
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
441 442
static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
		unsigned long flags, size_t *left_over)
443
{
444
	unsigned int num;
445
	size_t slab_size = PAGE_SIZE << gfporder;
Linus Torvalds's avatar
Linus Torvalds committed
446

447 448 449 450 451 452
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - @buffer_size bytes for each object
453 454 455 456 457
	 * - One freelist_idx_t for each object
	 *
	 * We don't need to consider alignment of freelist because
	 * freelist will be at the end of slab page. The objects will be
	 * at the correct alignment.
458 459 460 461 462 463
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
464
	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
465
		num = slab_size / buffer_size;
466
		*left_over = slab_size % buffer_size;
467
	} else {
468
		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
469 470
		*left_over = slab_size %
			(buffer_size + sizeof(freelist_idx_t));
471
	}
472 473

	return num;
Linus Torvalds's avatar
Linus Torvalds committed
474 475
}

476
#if DEBUG
477
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
Linus Torvalds's avatar
Linus Torvalds committed
478

Andrew Morton's avatar
Andrew Morton committed
479 480
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
Linus Torvalds's avatar
Linus Torvalds committed
481
{
482
	pr_err("slab error in %s(): cache `%s': %s\n",
483
	       function, cachep->name, msg);
Linus Torvalds's avatar
Linus Torvalds committed
484
	dump_stack();
485
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
Linus Torvalds's avatar
Linus Torvalds committed
486
}
487
#endif
Linus Torvalds's avatar
Linus Torvalds committed
488

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

505 506 507 508 509 510 511 512 513 514 515
static int __init slab_max_order_setup(char *str)
{
	get_option(&str, &slab_max_order);
	slab_max_order = slab_max_order < 0 ? 0 :
				min(slab_max_order, MAX_ORDER - 1);
	slab_max_order_set = true;

	return 1;
}
__setup("slab_max_order=", slab_max_order_setup);

516 517 518 519 520 521 522
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
523
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
524 525 526

static void init_reap_node(int cpu)
{
527 528
	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
						    node_online_map);
529 530 531 532
}

static void next_reap_node(void)
{
533
	int node = __this_cpu_read(slab_reap_node);
534

535
	node = next_node_in(node, node_online_map);
536
	__this_cpu_write(slab_reap_node, node);
537 538 539 540 541 542 543
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

Linus Torvalds's avatar
Linus Torvalds committed
544 545 546 547 548 549 550
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
551
static void start_cpu_timer(int cpu)
Linus Torvalds's avatar
Linus Torvalds committed
552
{
553
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
Linus Torvalds's avatar
Linus Torvalds committed
554

555
	if (reap_work->work.func == NULL) {
556
		init_reap_node(cpu);
557
		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
558 559
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
Linus Torvalds's avatar
Linus Torvalds committed
560 561 562
	}
}

563
static void init_arraycache(struct array_cache *ac, int limit, int batch)
Linus Torvalds's avatar
Linus Torvalds committed
564
{
565 566
	/*
	 * The array_cache structures contain pointers to free object.
Lucas De Marchi's avatar
Lucas De Marchi committed
567
	 * However, when such objects are allocated or transferred to another
568 569 570 571
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
572 573 574 575 576 577
	kmemleak_no_scan(ac);
	if (ac) {
		ac->avail = 0;
		ac->limit = limit;
		ac->batchcount = batch;
		ac->touched = 0;
Linus Torvalds's avatar
Linus Torvalds committed
578
	}
579 580 581 582 583
}

static struct array_cache *alloc_arraycache(int node, int entries,
					    int batchcount, gfp_t gfp)
{
584
	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
585 586 587 588 589
	struct array_cache *ac = NULL;

	ac = kmalloc_node(memsize, gfp, node);
	init_arraycache(ac, entries, batchcount);
	return ac;
Linus Torvalds's avatar
Linus Torvalds committed
590 591
}

592 593
static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
					struct page *page, void *objp)
594
{
595 596 597
	struct kmem_cache_node *n;
	int page_node;
	LIST_HEAD(list);
598

599 600
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
601

602 603 604
	spin_lock(&n->list_lock);
	free_block(cachep, &objp, 1, page_node, &list);
	spin_unlock(&n->list_lock);
605

606
	slabs_destroy(cachep, &list);
607 608
}

609 610 611 612 613 614 615 616 617 618
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
619
	int nr = min3(from->avail, max, to->limit - to->avail);
620 621 622 623 624 625 626 627 628 629 630 631

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

632 633 634
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
635
#define reap_alien(cachep, n) do { } while (0)
636

Joonsoo Kim's avatar
Joonsoo Kim committed
637 638
static inline struct alien_cache **alloc_alien_cache(int node,
						int limit, gfp_t gfp)
639
{
640
	return NULL;
641 642
}

Joonsoo Kim's avatar
Joonsoo Kim committed
643
static inline void free_alien_cache(struct alien_cache **ac_ptr)
644 645 646 647 648 649 650 651 652 653 654 655 656 657
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

658
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
659 660 661 662 663
		 gfp_t flags, int nodeid)
{
	return NULL;
}

David Rientjes's avatar
David Rientjes committed
664 665
static inline gfp_t gfp_exact_node(gfp_t flags)
{
666
	return flags & ~__GFP_NOFAIL;
David Rientjes's avatar
David Rientjes committed
667 668
}

669 670
#else	/* CONFIG_NUMA */

671
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
672
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
673

Joonsoo Kim's avatar
Joonsoo Kim committed
674 675 676
static struct alien_cache *__alloc_alien_cache(int node, int entries,
						int batch, gfp_t gfp)
{
677
	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
Joonsoo Kim's avatar
Joonsoo Kim committed
678 679 680 681
	struct alien_cache *alc = NULL;

	alc = kmalloc_node(memsize, gfp, node);
	init_arraycache(&alc->ac, entries, batch);
682
	spin_lock_init(&alc->lock);
Joonsoo Kim's avatar
Joonsoo Kim committed
683 684 685 686
	return alc;
}

static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
687
{
Joonsoo Kim's avatar
Joonsoo Kim committed
688
	struct alien_cache **alc_ptr;
689
	size_t memsize = sizeof(void *) * nr_node_ids;
690 691 692 693
	int i;

	if (limit > 1)
		limit = 12;
Joonsoo Kim's avatar
Joonsoo Kim committed
694 695 696 697 698 699 700 701 702 703 704 705 706
	alc_ptr = kzalloc_node(memsize, gfp, node);
	if (!alc_ptr)
		return NULL;

	for_each_node(i) {
		if (i == node || !node_online(i))
			continue;
		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
		if (!alc_ptr[i]) {
			for (i--; i >= 0; i--)
				kfree(alc_ptr[i]);
			kfree(alc_ptr);
			return NULL;
707 708
		}
	}
Joonsoo Kim's avatar
Joonsoo Kim committed
709
	return alc_ptr;
710 711
}

Joonsoo Kim's avatar
Joonsoo Kim committed
712
static void free_alien_cache(struct alien_cache **alc_ptr)
713 714 715
{
	int i;

Joonsoo Kim's avatar
Joonsoo Kim committed
716
	if (!alc_ptr)
717 718
		return;
	for_each_node(i)
Joonsoo Kim's avatar
Joonsoo Kim committed
719 720
	    kfree(alc_ptr[i]);
	kfree(alc_ptr);
721 722
}

723
static void __drain_alien_cache(struct kmem_cache *cachep,
724 725
				struct array_cache *ac, int node,
				struct list_head *list)
726
{
727
	struct kmem_cache_node *n = get_node(cachep, node);
728 729

	if (ac->avail) {
730
		spin_lock(&n->list_lock);
731 732 733 734 735
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
736 737
		if (n->shared)
			transfer_objects(n->shared, ac, ac->limit);
738

739
		free_block(cachep, ac->entry, ac->avail, node, list);
740
		ac->avail = 0;
741
		spin_unlock(&n->list_lock);
742 743 744
	}
}

745 746 747
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
748
static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
749
{
750
	int node = __this_cpu_read(slab_reap_node);
751

752
	if (n->alien) {
Joonsoo Kim's avatar
Joonsoo Kim committed
753 754 755 756 757
		struct alien_cache *alc = n->alien[node];
		struct array_cache *ac;

		if (alc) {
			ac = &alc->ac;
758
			if (ac->avail && spin_trylock_irq(&alc->lock)) {
759 760 761
				LIST_HEAD(list);

				__drain_alien_cache(cachep, ac, node, &list);
762
				spin_unlock_irq(&alc->lock);
763
				slabs_destroy(cachep, &list);
Joonsoo Kim's avatar
Joonsoo Kim committed
764
			}
765 766 767 768
		}
	}
}

Andrew Morton's avatar
Andrew Morton committed
769
static void drain_alien_cache(struct kmem_cache *cachep,
Joonsoo Kim's avatar
Joonsoo Kim committed
770
				struct alien_cache **alien)
771
{
772
	int i = 0;
Joonsoo Kim's avatar
Joonsoo Kim committed
773
	struct alien_cache *alc;
774 775 776 777
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
Joonsoo Kim's avatar
Joonsoo Kim committed
778 779
		alc = alien[i];
		if (alc) {
780 781
			LIST_HEAD(list);

Joonsoo Kim's avatar
Joonsoo Kim committed
782
			ac = &alc->ac;
783
			spin_lock_irqsave(&alc->lock, flags);
784
			__drain_alien_cache(cachep, ac, i, &list);
785
			spin_unlock_irqrestore(&alc->lock, flags);
786
			slabs_destroy(cachep, &list);
787 788 789
		}
	}
}
790

791 792
static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
				int node, int page_node)
793
{
794
	struct kmem_cache_node *n;
Joonsoo Kim's avatar
Joonsoo Kim committed
795 796
	struct alien_cache *alien = NULL;
	struct array_cache *ac;
797
	LIST_HEAD(list);
798

799
	n = get_node(cachep, node);
800
	STATS_INC_NODEFREES(cachep);
801 802
	if (n->alien && n->alien[page_node]) {
		alien = n->alien[page_node];
Joonsoo Kim's avatar
Joonsoo Kim committed
803
		ac = &alien->ac;
804
		spin_lock(&alien->lock);
Joonsoo Kim's avatar
Joonsoo Kim committed
805
		if (unlikely(ac->avail == ac->limit)) {
806
			STATS_INC_ACOVERFLOW(cachep);
807
			__drain_alien_cache(cachep, ac, page_node, &list);
808
		}
809
		ac->entry[ac->avail++] = objp;
810
		spin_unlock(&alien->lock);
811
		slabs_destroy(cachep, &list);
812
	} else {
813
		n = get_node(cachep, page_node);
814
		spin_lock(&n->list_lock);
815
		free_block(cachep, &objp, 1, page_node, &list);
816
		spin_unlock(&n->list_lock);
817
		slabs_destroy(cachep, &list);
818 819 820
	}
	return 1;
}
821 822 823 824 825 826 827 828 829 830 831 832 833 834

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	int page_node = page_to_nid(virt_to_page(objp));
	int node = numa_mem_id();
	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(node == page_node))
		return 0;

	return __cache_free_alien(cachep, objp, node, page_node);
}
David Rientjes's avatar
David Rientjes committed
835 836

/*
837 838
 * Construct gfp mask to allocate from a specific node but do not reclaim or
 * warn about failures.
David Rientjes's avatar
David Rientjes committed
839 840 841
 */
static inline gfp_t gfp_exact_node(gfp_t flags)
{
842
	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
David Rientjes's avatar
David Rientjes committed
843
}
844 845
#endif

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
{
	struct kmem_cache_node *n;

	/*
	 * Set up the kmem_cache_node for cpu before we can
	 * begin anything. Make sure some other cpu on this
	 * node has not already allocated this
	 */
	n = get_node(cachep, node);
	if (n) {
		spin_lock_irq(&n->list_lock);
		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
				cachep->num;
		spin_unlock_irq(&n->list_lock);

		return 0;
	}

	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
	if (!n)
		return -ENOMEM;

	kmem_cache_node_init(n);
	n->next_reap = jiffies + REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;

	n->free_limit =
		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;

	/*
	 * The kmem_cache_nodes don't come and go as CPUs
	 * come and go.  slab_mutex is sufficient
	 * protection here.
	 */
	cachep->node[node] = n;

	return 0;
}

886
#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
887
/*
888
 * Allocates and initializes node for a node on each slab cache, used for
889
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
890
 * will be allocated off-node since memory is not yet online for the new node.
891
 * When hotplugging memory or a cpu, existing node are not replaced if
892 893
 * already in use.
 *
894
 * Must hold slab_mutex.
895
 */
896
static int init_cache_node_node(int node)
897
{
898
	int ret;
899 900
	struct kmem_cache *cachep;

901
	list_for_each_entry(cachep, &slab_caches, list) {
902 903 904
		ret = init_cache_node(cachep, node, GFP_KERNEL);
		if (ret)
			return ret;
905
	}
906

907 908
	return 0;
}
909
#endif
910

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
static int setup_kmem_cache_node(struct kmem_cache *cachep,
				int node, gfp_t gfp, bool force_change)
{
	int ret = -ENOMEM;
	struct kmem_cache_node *n;
	struct array_cache *old_shared = NULL;
	struct array_cache *new_shared = NULL;
	struct alien_cache **new_alien = NULL;
	LIST_HEAD(list);

	if (use_alien_caches) {
		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
		if (!new_alien)
			goto fail;
	}

	if (cachep->shared) {
		new_shared = alloc_arraycache(node,
			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
		if (!new_shared)
			goto fail;
	}

	ret = init_cache_node(cachep, node, gfp);
	if (ret)
		goto fail;

	n = get_node(cachep, node);
	spin_lock_irq(&n->list_lock);
	if (n->shared && force_change) {
		free_block(cachep, n->shared->entry,
				n->shared->avail, node, &list);
		n->shared->avail = 0;
	}

	if (!n->shared || force_change) {
		old_shared = n->shared;
		n->shared = new_shared;
		new_shared = NULL;
	}

	if (!n->alien) {
		n->alien = new_alien;
		new_alien = NULL;
	}

	spin_unlock_irq(&n->list_lock);
	slabs_destroy(cachep, &list);

960 961 962 963 964 965
	/*
	 * To protect lockless access to n->shared during irq disabled context.
	 * If n->shared isn't NULL in irq disabled context, accessing to it is
	 * guaranteed to be valid until irq is re-enabled, because it will be
	 * freed after synchronize_sched().
	 */
966
	if (old_shared && force_change)
967 968
		synchronize_sched();

969 970 971 972 973 974 975 976
fail:
	kfree(old_shared);
	kfree(new_shared);
	free_alien_cache(new_alien);

	return ret;
}

977 978
#ifdef CONFIG_SMP

979
static void cpuup_canceled(long cpu)
980 981
{
	struct kmem_cache *cachep;
982
	struct kmem_cache_node *n = NULL;
983
	int node = cpu_to_mem(cpu);
984
	const struct cpumask *mask = cpumask_of_node(node);
985

986
	list_for_each_entry(cachep, &slab_caches, list) {
987 988
		struct array_cache *nc;
		struct array_cache *shared;
Joonsoo Kim's avatar
Joonsoo Kim committed
989
		struct alien_cache **alien;
990
		LIST_HEAD(list);
991

992
		n = get_node(cachep, node);
993
		if (!n)
994
			continue;
995

996
		spin_lock_irq(&n->list_lock);
997

998 999
		/* Free limit for this kmem_cache_node */
		n->free_limit -= cachep->batchcount;
1000 1001 1002 1003

		/* cpu is dead; no one can alloc from it. */
		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
		if (nc) {
1004
			free_block(cachep, nc->entry, nc->avail, node, &list);
1005 1006
			nc->avail = 0;
		}
1007

1008
		if (!cpumask_empty(mask)) {
1009
			spin_unlock_irq(&n->list_lock);
1010
			goto free_slab;
1011 1012
		}

1013
		shared = n->shared;
1014 1015
		if (shared) {
			free_block(cachep, shared->entry,
1016
				   shared->avail, node, &list);
1017
			n->shared = NULL;
1018 1019
		}

1020 1021
		alien = n->alien;
		n->alien = NULL;
1022

1023
		spin_unlock_irq(&n->list_lock);
1024 1025 1026 1027 1028 1029

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
1030 1031

free_slab:
1032
		slabs_destroy(cachep, &list);
1033 1034 1035 1036 1037 1038
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
1039
	list_for_each_entry(cachep, &slab_caches, list) {
1040
		n = get_node(cachep, node);
1041
		if (!n)
1042
			continue;
1043
		drain_freelist(cachep, n, INT_MAX);
1044 1045 1046
	}
}

1047
static int cpuup_prepare(long cpu)
Linus Torvalds's avatar
Linus Torvalds committed
1048
{
1049
	struct kmem_cache *cachep;
1050
	int node = cpu_to_mem(cpu);
1051
	int err;
Linus Torvalds's avatar
Linus Torvalds committed
1052

1053 1054 1055 1056
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
1057
	 * kmem_cache_node and not this cpu's kmem_cache_node
1058
	 */
1059
	err = init_cache_node_node(node);
1060 1061
	if (err < 0)
		goto bad;
1062 1063 1064 1065 1066

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
1067
	list_for_each_entry(cachep, &slab_caches, list) {
1068 1069 1070
		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
		if (err)
			goto bad;
1071
	}
1072

1073 1074
	return 0;
bad:
1075
	cpuup_canceled(cpu);
1076 1077 1078
	return -ENOMEM;
}

1079
int slab_prepare_cpu(unsigned int cpu)
1080
{
1081
	int err;
1082

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
	mutex_lock(&slab_mutex);
	err = cpuup_prepare(cpu);
	mutex_unlock(&slab_mutex);
	return err;
}

/*
 * This is called for a failed online attempt and for a successful
 * offline.
 *
 * Even if all the cpus of a node are down, we don't free the
 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
 * a kmalloc allocation from another cpu for memory from the node of
 * the cpu going down.  The list3 structure is usually allocated from
 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
 */
int slab_dead_cpu(unsigned int cpu)
{
	mutex_lock(&slab_mutex);
	cpuup_canceled(cpu);
	mutex_unlock(&slab_mutex);
	return 0;
}
1106
#endif
1107 1108 1109 1110 1111

static int slab_online_cpu(unsigned int cpu)
{
	start_cpu_timer(cpu);
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
1112 1113
}

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
static int slab_offline_cpu(unsigned int cpu)
{
	/*
	 * Shutdown cache reaper. Note that the slab_mutex is held so
	 * that if cache_reap() is invoked it cannot do anything
	 * expensive but will only modify reap_work and reschedule the
	 * timer.
	 */
	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
	/* Now the cache_reaper is guaranteed to be not running. */
	per_cpu(slab_reap_work, cpu).work.func = NULL;
	return 0;
}
Linus Torvalds's avatar
Linus Torvalds committed
1127

1128 1129 1130 1131 1132 1133
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
1134
 * Must hold slab_mutex.
1135
 */
1136
static int __meminit drain_cache_node_node(int node)
1137 1138 1139 1140
{
	struct kmem_cache *cachep;
	int ret = 0;

1141
	list_for_each_entry(cachep, &slab_caches, list) {
1142
		struct kmem_cache_node *n;
1143

1144
		n = get_node(cachep, node);
1145
		if (!n)
1146 1147
			continue;

1148
		drain_freelist(cachep, n, INT_MAX);
1149

1150 1151
		if (!list_empty(&n->slabs_full) ||
		    !list_empty(&n->slabs_partial)) {
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
1172
		mutex_lock(&slab_mutex);
1173
		ret = init_cache_node_node(nid);
1174
		mutex_unlock(&slab_mutex);
1175 1176
		break;
	case MEM_GOING_OFFLINE:
1177
		mutex_lock(&slab_mutex);
1178
		ret = drain_cache_node_node(nid);
1179
		mutex_unlock(&slab_mutex);
1180 1181 1182 1183 1184 1185 1186 1187
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1188
	return notifier_from_errno(ret);
1189 1190 1191
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1192
/*
1193
 * swap the static kmem_cache_node with kmalloced memory
1194
 */
1195
static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1196
				int nodeid)
1197
{
1198
	struct kmem_cache_node *ptr;
1199

1200
	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1201 1202
	BUG_ON(!ptr);

1203
	memcpy(ptr, list, sizeof(struct kmem_cache_node));
1204 1205 1206 1207 1208
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1209
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1210
	cachep->node[nodeid] = ptr;
1211 1212
}

1213
/*
1214 1215
 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
 * size of kmem_cache_node.
1216
 */
1217
static void __init set_up_node(struct kmem_cache *cachep, int index)
1218 1219 1220 1221
{
	int node;

	for_each_online_node(node) {
1222
		cachep->node[node] = &init_kmem_cache_node[index + node];
1223
		cachep->node[node]->next_reap = jiffies +
1224 1225
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1226 1227 1228
	}
}

Andrew Morton's avatar
Andrew Morton committed
1229 1230 1231
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
Linus Torvalds's avatar
Linus Torvalds committed
1232 1233 1234
 */
void __init kmem_cache_init(void)
{
1235 1236
	int i;

1237 1238
	BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
					sizeof(struct rcu_head));
1239 1240
	kmem_cache = &kmem_cache_boot;

1241
	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1242 1243
		use_alien_caches = 0;

Christoph Lameter's avatar
Christoph Lameter committed
1244
	for (i = 0; i < NUM_INIT_LISTS; i++)
1245
		kmem_cache_node_init(&init_kmem_cache_node[i]);
Christoph Lameter's avatar
Christoph Lameter committed
1246

Linus Torvalds's avatar
Linus Torvalds committed
1247 1248
	/*
	 * Fragmentation resistance on low memory - only use bigger
1249 1250
	 * page orders on machines with more than 32MB of memory if
	 * not overridden on the command line.
Linus Torvalds's avatar
Linus Torvalds committed
1251
	 */
1252
	if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1253
		slab_max_order = SLAB_MAX_ORDER_HI;
Linus Torvalds's avatar
Linus Torvalds committed
1254 1255 1256

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1257 1258 1259
	 * 1) initialize the kmem_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except kmem_cache itself:
	 *    kmem_cache is statically allocated.
1260
	 *    Initially an __init data area is used for the head array and the
1261
	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
1262
	 *    array at the end of the bootstrap.
Linus Torvalds's avatar
Linus Torvalds committed
1263
	 * 2) Create the first kmalloc cache.
1264
	 *    The struct kmem_cache for the new cache is allocated normally.
1265 1266 1267
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
1268
	 * 4) Replace the __init data head arrays for kmem_cache and the first
Linus Torvalds's avatar
Linus Torvalds committed
1269
	 *    kmalloc cache with kmalloc allocated arrays.
1270
	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1271 1272
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
Linus Torvalds's avatar
Linus Torvalds committed
1273 1274
	 */

1275
	/* 1) create the kmem_cache */
Linus Torvalds's avatar
Linus Torvalds committed
1276

Eric Dumazet's avatar
Eric Dumazet committed
1277
	/*
1278
	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
Eric Dumazet's avatar
Eric Dumazet committed
1279
	 */
1280
	create_boot_cache(kmem_cache, "kmem_cache",
1281
		offsetof(struct kmem_cache, node) +
1282
				  nr_node_ids * sizeof(struct kmem_cache_node *),
1283 1284
				  SLAB_HWCACHE_ALIGN);
	list_add(&kmem_cache->list, &slab_caches);
1285
	slab_state = PARTIAL;
Linus Torvalds's avatar
Linus Torvalds committed
1286

Andrew Morton's avatar
Andrew Morton committed
1287
	/*
1288 1289
	 * Initialize the caches that provide memory for the  kmem_cache_node
	 * structures first.  Without this, further allocations will bug.
1290
	 */
1291
	kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1292
				kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1293
	slab_state = PARTIAL_NODE;
1294
	setup_kmalloc_cache_index_table();
1295

1296 1297
	slab_early_init = 0;

1298
	/* 5) Replace the bootstrap kmem_cache_node */
1299
	{
1300 1301
		int nid;

1302
		for_each_online_node(nid) {
1303
			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1304

1305
			init_list(kmalloc_caches[INDEX_NODE],
1306
					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
1307 1308
		}
	}
Linus Torvalds's avatar
Linus Torvalds committed
1309

1310
	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1311 1312 1313 1314 1315 1316
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

1317
	slab_state = UP;
1318

1319
	/* 6) resize the head arrays to their final sizes */
1320 1321
	mutex_lock(&slab_mutex);
	list_for_each_entry(cachep, &slab_caches, list)
1322 1323
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
1324
	mutex_unlock(&slab_mutex);
1325

1326 1327 1328
	/* Done! */
	slab_state = FULL;

1329 1330 1331
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
1332
	 * node.
1333 1334 1335 1336
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

Andrew Morton's avatar
Andrew Morton committed
1337 1338 1339
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
Linus Torvalds's avatar
Linus Torvalds committed
1340 1341 1342 1343 1344
	 */
}

static int __init cpucache_init(void)
{
1345
	int ret;
Linus Torvalds's avatar
Linus Torvalds committed
1346

Andrew Morton's avatar
Andrew Morton committed
1347 1348
	/*
	 * Register the timers that return unneeded pages to the page allocator
Linus Torvalds's avatar
Linus Torvalds committed
1349
	 */
1350 1351 1352
	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
				slab_online_cpu, slab_offline_cpu);
	WARN_ON(ret < 0);
1353 1354

	/* Done! */
1355
	slab_state = FULL;
Linus Torvalds's avatar
Linus Torvalds committed
1356 1357 1358 1359
	return 0;
}
__initcall(cpucache_init);

1360 1361 1362
static noinline void
slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
{
1363
#if DEBUG
1364
	struct kmem_cache_node *n;
1365 1366
	unsigned long flags;
	int node;
1367 1368 1369 1370 1371
	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
		return;
1372

1373 1374 1375
	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nodeid, gfpflags, &gfpflags);
	pr_warn("  cache: %s, object size: %d, order: %d\n",
1376
		cachep->name, cachep->size, cachep->gfporder);
1377

1378
	for_each_kmem_cache_node(cachep, node, n) {
1379
		unsigned long total_slabs, free_slabs, free_objs;
1380

1381
		spin_lock_irqsave(&n->list_lock, flags);
1382 1383 1384
		total_slabs = n->total_slabs;
		free_slabs = n->free_slabs;
		free_objs = n->free_objects;
1385
		spin_unlock_irqrestore(&n->list_lock, flags);
1386

1387 1388 1389 1390
		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
			node, total_slabs - free_slabs, total_slabs,
			(total_slabs * cachep->num) - free_objs,
			total_slabs * cachep->num);
1391
	}
1392
#endif
1393 1394
}

Linus Torvalds's avatar
Linus Torvalds committed
1395
/*
Wang Sheng-Hui's avatar
Wang Sheng-Hui committed
1396 1397
 * Interface to system's page allocator. No need to hold the
 * kmem_cache_node ->list_lock.
Linus Torvalds's avatar
Linus Torvalds committed
1398 1399 1400 1401 1402
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1403 1404
static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
								int nodeid)
Linus Torvalds's avatar
Linus Torvalds committed
1405 1406
{
	struct page *page;
1407
	int nr_pages;
1408

1409
	flags |= cachep->allocflags;
1410 1411
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1412

1413
	page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1414
	if (!page) {
1415
		slab_out_of_memory(cachep, flags, nodeid);
Linus Torvalds's avatar
Linus Torvalds committed
1416
		return NULL;
1417
	}
Linus Torvalds's avatar
Linus Torvalds committed
1418

1419 1420 1421 1422 1423
	if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
		__free_pages(page, cachep->gfporder);
		return NULL;
	}

1424
	nr_pages = (1 << cachep->gfporder);
Linus Torvalds's avatar
Linus Torvalds committed
1425
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1426 1427 1428 1429 1430
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1431

1432
	__SetPageSlab(page);
1433 1434
	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
	if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1435
		SetPageSlabPfmemalloc(page);
1436

1437 1438 1439 1440 1441 1442 1443 1444
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
Pekka Enberg's avatar
Pekka Enberg committed
1445

1446
	return page;
Linus Torvalds's avatar
Linus Torvalds committed
1447 1448 1449 1450 1451
}

/*
 * Interface to system's page release.
 */
1452
static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
Linus Torvalds's avatar
Linus Torvalds committed
1453
{
1454 1455
	int order = cachep->gfporder;
	unsigned long nr_freed = (1 << order);
Linus Torvalds's avatar
Linus Torvalds committed
1456

1457
	kmemcheck_free_shadow(page, order);
Pekka Enberg's avatar
Pekka Enberg committed
1458

1459 1460 1461 1462 1463 1464
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
Joonsoo Kim's avatar
Joonsoo Kim committed
1465

1466
	BUG_ON(!PageSlab(page));
Joonsoo Kim's avatar
Joonsoo Kim committed
1467
	__ClearPageSlabPfmemalloc(page);
1468
	__ClearPageSlab(page);
1469 1470
	page_mapcount_reset(page);
	page->mapping = NULL;
Glauber Costa's avatar
Glauber Costa committed
1471

Linus Torvalds's avatar
Linus Torvalds committed
1472 1473
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
1474 1475
	memcg_uncharge_slab(page, order, cachep);
	__free_pages(page, order);
Linus Torvalds's avatar
Linus Torvalds committed
1476 1477 1478 1479
}

static void kmem_rcu_free(struct rcu_head *head)
{
1480 1481
	struct kmem_cache *cachep;
	struct page *page;
Linus Torvalds's avatar
Linus Torvalds committed
1482

1483 1484 1485 1486
	page = container_of(head, struct page, rcu_head);
	cachep = page->slab_cache;

	kmem_freepages(cachep, page);
Linus Torvalds's avatar
Linus Torvalds committed
1487 1488 1489
}

#if DEBUG
1490 1491 1492 1493 1494 1495 1496 1497
static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
{
	if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
		(cachep->size % PAGE_SIZE) == 0)
		return true;

	return false;
}
Linus Torvalds's avatar
Linus Torvalds committed
1498 1499

#ifdef CONFIG_DEBUG_PAGEALLOC
1500
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1501
			    unsigned long caller)
Linus Torvalds's avatar
Linus Torvalds committed
1502
{
1503
	int size = cachep->object_size;
Linus Torvalds's avatar
Linus Torvalds committed
1504

1505
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
Linus Torvalds's avatar
Linus Torvalds committed
1506

1507
	if (size < 5 * sizeof(unsigned long))
Linus Torvalds's avatar
Linus Torvalds committed
1508 1509
		return;

1510 1511 1512 1513
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
Linus Torvalds's avatar
Linus Torvalds committed
1514 1515 1516 1517 1518 1519 1520
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
1521
				*addr++ = svalue;
Linus Torvalds's avatar
Linus Torvalds committed
1522 1523 1524 1525 1526 1527 1528
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
1529
	*addr++ = 0x87654321;
Linus Torvalds's avatar
Linus Torvalds committed
1530
}
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547

static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller)
{
	if (!is_debug_pagealloc_cache(cachep))
		return;

	if (caller)
		store_stackinfo(cachep, objp, caller);

	kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
}

#else
static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
				int map, unsigned long caller) {}

Linus Torvalds's avatar
Linus Torvalds committed
1548 1549
#endif

1550
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
Linus Torvalds's avatar
Linus Torvalds committed
1551
{
1552
	int size = cachep->object_size;
1553
	addr = &((char *)addr)[obj_offset(cachep)];
Linus Torvalds's avatar
Linus Torvalds committed
1554 1555

	memset(addr, val, size);
1556
	*(unsigned char *)(addr + size - 1) = POISON_END;
Linus Torvalds's avatar
Linus Torvalds committed
1557 1558 1559 1560 1561
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
1562 1563 1564
	unsigned char error = 0;
	int bad_count = 0;

1565
	pr_err("%03x: ", offset);
1566 1567 1568 1569 1570 1571
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
	}
1572 1573
	print_hex_dump(KERN_CONT, "", 0, 16, 1,
			&data[offset], limit, 1);
1574 1575 1576 1577

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
1578
			pr_err("Single bit error detected. Probably bad RAM.\n");
1579
#ifdef CONFIG_X86
1580
			pr_err("Run memtest86+ or a similar memory test tool.\n");
1581
#else
1582
			pr_err("Run a memory test tool.\n");
1583 1584 1585
#endif
		}
	}
Linus Torvalds's avatar
Linus Torvalds committed
1586 1587 1588 1589 1590
}
#endif

#if DEBUG

1591
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
Linus Torvalds's avatar
Linus Torvalds committed
1592 1593 1594 1595 1596
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1597 1598 1599
		pr_err("Redzone: 0x%llx/0x%llx\n",
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
Linus Torvalds's avatar
Linus Torvalds committed
1600 1601 1602
	}

	if (cachep->flags & SLAB_STORE_USER) {
1603
		pr_err("Last user: [<%p>](%pSR)\n",
1604 1605
		       *dbg_userword(cachep, objp),
		       *dbg_userword(cachep, objp));
Linus Torvalds's avatar
Linus Torvalds committed
1606
	}
1607
	realobj = (char *)objp + obj_offset(cachep);
1608
	size = cachep->object_size;
1609
	for (i = 0; i < size && lines; i += 16, lines--) {
Linus Torvalds's avatar
Linus Torvalds committed
1610 1611
		int limit;
		limit = 16;
1612 1613
		if (i + limit > size)
			limit = size - i;
Linus Torvalds's avatar
Linus Torvalds committed
1614 1615 1616 1617
		dump_line(realobj, i, limit);
	}
}

1618
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
1619 1620 1621 1622 1623
{
	char *realobj;
	int size, i;
	int lines = 0;

1624 1625 1626
	if (is_debug_pagealloc_cache(cachep))
		return;

1627
	realobj = (char *)objp + obj_offset(cachep);
1628
	size = cachep->object_size;
Linus Torvalds's avatar
Linus Torvalds committed
1629

1630
	for (i = 0; i < size; i++) {
Linus Torvalds's avatar
Linus Torvalds committed
1631
		char exp = POISON_FREE;
1632
		if (i == size - 1)
Linus Torvalds's avatar
Linus Torvalds committed
1633 1634 1635 1636 1637 1638
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
1639 1640 1641
				pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
				       print_tainted(), cachep->name,
				       realobj, size);
Linus Torvalds's avatar
Linus Torvalds committed
1642 1643 1644
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
1645
			i = (i / 16) * 16;
Linus Torvalds's avatar
Linus Torvalds committed
1646
			limit = 16;
1647 1648
			if (i + limit > size)
				limit = size - i;
Linus Torvalds's avatar
Linus Torvalds committed
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1661
		struct page *page = virt_to_head_page(objp);
1662
		unsigned int objnr;
Linus Torvalds's avatar
Linus Torvalds committed
1663

1664
		objnr = obj_to_index(cachep, page, objp);
Linus Torvalds's avatar
Linus Torvalds committed
1665
		if (objnr) {
1666
			objp = index_to_obj(cachep, page, objnr - 1);
1667
			realobj = (char *)objp + obj_offset(cachep);
1668
			pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
Linus Torvalds's avatar
Linus Torvalds committed
1669 1670
			print_objinfo(cachep, objp, 2);
		}
1671
		if (objnr + 1 < cachep->num) {
1672
			objp = index_to_obj(cachep, page, objnr + 1);
1673
			realobj = (char *)objp + obj_offset(cachep);
1674
			pr_err("Next obj: start=%p, len=%d\n", realobj, size);
Linus Torvalds's avatar
Linus Torvalds committed
1675 1676 1677 1678 1679 1680
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1681
#if DEBUG
1682 1683
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
Linus Torvalds's avatar
Linus Torvalds committed
1684 1685
{
	int i;
1686 1687 1688 1689 1690 1691

	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
		poison_obj(cachep, page->freelist - obj_offset(cachep),
			POISON_FREE);
	}

Linus Torvalds's avatar
Linus Torvalds committed
1692
	for (i = 0; i < cachep->num; i++) {
1693
		void *objp = index_to_obj(cachep, page, i);
Linus Torvalds's avatar
Linus Torvalds committed
1694 1695 1696

		if (cachep->flags & SLAB_POISON) {
			check_poison_obj(cachep, objp);
1697
			slab_kernel_map(cachep, objp, 1, 0);
Linus Torvalds's avatar
Linus Torvalds committed
1698 1699 1700
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
Joe Perches's avatar
Joe Perches committed
1701
				slab_error(cachep, "start of a freed object was overwritten");
Linus Torvalds's avatar
Linus Torvalds committed
1702
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
Joe Perches's avatar
Joe Perches committed
1703
				slab_error(cachep, "end of a freed object was overwritten");
Linus Torvalds's avatar
Linus Torvalds committed
1704 1705
		}
	}
1706
}
Linus Torvalds's avatar
Linus Torvalds committed
1707
#else
1708 1709
static void slab_destroy_debugcheck(struct kmem_cache *cachep,
						struct page *page)
1710 1711
{
}
Linus Torvalds's avatar
Linus Torvalds committed
1712 1713
#endif

1714 1715 1716
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
1717
 * @page: page pointer being destroyed
1718
 *
Wang Sheng-Hui's avatar
Wang Sheng-Hui committed
1719 1720 1721
 * Destroy all the objs in a slab page, and release the mem back to the system.
 * Before calling the slab page must have been unlinked from the cache. The
 * kmem_cache_node ->list_lock is not held/needed.
1722
 */
1723
static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1724
{
1725
	void *freelist;
1726

1727 1728
	freelist = page->freelist;
	slab_destroy_debugcheck(cachep, page);
1729 1730 1731
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
		call_rcu(&page->rcu_head, kmem_rcu_free);
	else
1732
		kmem_freepages(cachep, page);
1733 1734

	/*
1735
	 * From now on, we don't use freelist
1736 1737 1738
	 * although actual page can be freed in rcu context
	 */
	if (OFF_SLAB(cachep))
1739
		kmem_cache_free(cachep->freelist_cache, freelist);
Linus Torvalds's avatar
Linus Torvalds committed
1740 1741
}

1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
{
	struct page *page, *n;

	list_for_each_entry_safe(page, n, list, lru) {
		list_del(&page->lru);
		slab_destroy(cachep, page);
	}
}

1752
/**
1753 1754 1755 1756 1757 1758
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1759 1760 1761 1762 1763
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
Andrew Morton's avatar
Andrew Morton committed
1764
static size_t calculate_slab_order(struct kmem_cache *cachep,
1765
				size_t size, unsigned long flags)
1766 1767
{
	size_t left_over = 0;
1768
	int gfporder;
1769

1770
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1771 1772 1773
		unsigned int num;
		size_t remainder;

1774
		num = cache_estimate(gfporder, size, flags, &remainder);
1775 1776
		if (!num)
			continue;
1777

1778 1779 1780 1781
		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

1782
		if (flags & CFLGS_OFF_SLAB) {
1783 1784 1785 1786 1787 1788 1789 1790
			struct kmem_cache *freelist_cache;
			size_t freelist_size;

			freelist_size = num * sizeof(freelist_idx_t);
			freelist_cache = kmalloc_slab(freelist_size, 0u);
			if (!freelist_cache)
				continue;

1791
			/*
1792
			 * Needed to avoid possible looping condition
1793
			 * in cache_grow_begin()
1794
			 */
1795 1796
			if (OFF_SLAB(freelist_cache))
				continue;
1797

1798 1799 1800
			/* check if off slab has enough benefit */
			if (freelist_cache->size > cachep->size / 2)
				continue;
1801
		}
1802

1803
		/* Found something acceptable - save it away */
1804
		cachep->num = num;
1805
		cachep->gfporder = gfporder;
1806 1807
		left_over = remainder;

1808 1809 1810 1811 1812 1813 1814 1815
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1816 1817 1818 1819
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1820
		if (gfporder >= slab_max_order)
1821 1822
			break;

1823 1824 1825
		/*
		 * Acceptable internal fragmentation?
		 */
Andrew Morton's avatar
Andrew Morton committed
1826
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1827 1828 1829 1830 1831
			break;
	}
	return left_over;
}

1832 1833 1834 1835 1836 1837 1838 1839
static struct array_cache __percpu *alloc_kmem_cache_cpus(
		struct kmem_cache *cachep, int entries, int batchcount)
{
	int cpu;
	size_t size;
	struct array_cache __percpu *cpu_cache;

	size = sizeof(void *) * entries + sizeof(struct array_cache);
1840
	cpu_cache = __alloc_percpu(size, sizeof(void *));
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852

	if (!cpu_cache)
		return NULL;

	for_each_possible_cpu(cpu) {
		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
				entries, batchcount);
	}

	return cpu_cache;
}

1853
static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1854
{
1855
	if (slab_state >= FULL)
1856
		return enable_cpucache(cachep, gfp);
1857

1858 1859 1860 1861
	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
	if (!cachep->cpu_cache)
		return 1;

1862
	if (slab_state == DOWN) {
1863 1864
		/* Creation of first cache (kmem_cache). */
		set_up_node(kmem_cache, CACHE_CACHE);
1865
	} else if (slab_state == PARTIAL) {
1866 1867
		/* For kmem_cache_node */
		set_up_node(cachep, SIZE_NODE);
1868
	} else {
1869
		int node;
1870

1871 1872 1873 1874 1875
		for_each_online_node(node) {
			cachep->node[node] = kmalloc_node(
				sizeof(struct kmem_cache_node), gfp, node);
			BUG_ON(!cachep->node[node]);
			kmem_cache_node_init(cachep->node[node]);
1876 1877
		}
	}
1878

1879
	cachep->node[numa_mem_id()]->next_reap =
1880 1881
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;
1882 1883 1884 1885 1886 1887 1888

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
1889
	return 0;
1890 1891
}

Joonsoo Kim's avatar
Joonsoo Kim committed
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
unsigned long kmem_cache_flags(unsigned long object_size,
	unsigned long flags, const char *name,
	void (*ctor)(void *))
{
	return flags;
}

struct kmem_cache *
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
{
	struct kmem_cache *cachep;

	cachep = find_mergeable(size, align, flags, name, ctor);
	if (cachep) {
		cachep->refcount++;

		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		cachep->object_size = max_t(int, cachep->object_size, size);
	}
	return cachep;
}

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	if (cachep->ctor || flags & SLAB_DESTROY_BY_RCU)
		return false;

	left = calculate_slab_order(cachep, size,
			flags | CFLGS_OBJFREELIST_SLAB);
	if (!cachep->num)
		return false;

	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

1941 1942 1943 1944 1945 1946 1947 1948
static bool set_off_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	/*
1949 1950
	 * Always use on-slab management when SLAB_NOLEAKTRACE
	 * to avoid recursive calls into kmemleak.
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
	 */
	if (flags & SLAB_NOLEAKTRACE)
		return false;

	/*
	 * Size is large, assume best to place the slab management obj
	 * off-slab (should allow better packing of objs).
	 */
	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
	if (!cachep->num)
		return false;

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (left >= cachep->num * sizeof(freelist_idx_t))
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

static bool set_on_slab_cache(struct kmem_cache *cachep,
			size_t size, unsigned long flags)
{
	size_t left;

	cachep->num = 0;

	left = calculate_slab_order(cachep, size, flags);
	if (!cachep->num)
		return false;

	cachep->colour = left / cachep->colour_off;

	return true;
}

Linus Torvalds's avatar
Linus Torvalds committed
1991
/**
1992
 * __kmem_cache_create - Create a cache.
1993
 * @cachep: cache management descriptor
Linus Torvalds's avatar
Linus Torvalds committed
1994 1995 1996 1997
 * @flags: SLAB flags
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
1998
 * The @ctor is run when new pages are allocated by the cache.
Linus Torvalds's avatar
Linus Torvalds committed
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
 *
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2012
int
2013
__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
Linus Torvalds's avatar
Linus Torvalds committed
2014
{
2015
	size_t ralign = BYTES_PER_WORD;
2016
	gfp_t gfp;
2017
	int err;
2018
	size_t size = cachep->size;
Linus Torvalds's avatar
Linus Torvalds committed
2019 2020 2021 2022 2023 2024 2025 2026 2027

#if DEBUG
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
David Woodhouse's avatar
David Woodhouse committed
2028 2029
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
2030
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
Linus Torvalds's avatar
Linus Torvalds committed
2031 2032 2033 2034 2035
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
#endif

Andrew Morton's avatar
Andrew Morton committed
2036 2037
	/*
	 * Check that size is in terms of words.  This is needed to avoid
Linus Torvalds's avatar
Linus Torvalds committed
2038 2039 2040
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
2041 2042 2043
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
Linus Torvalds's avatar
Linus Torvalds committed
2044 2045
	}

David Woodhouse's avatar
David Woodhouse committed
2046 2047 2048 2049 2050 2051 2052
	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2053

2054
	/* 3) caller mandated alignment */
2055 2056
	if (ralign < cachep->align) {
		ralign = cachep->align;
Linus Torvalds's avatar
Linus Torvalds committed
2057
	}
2058 2059
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2060
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
Andrew Morton's avatar
Andrew Morton committed
2061
	/*
2062
	 * 4) Store it.
Linus Torvalds's avatar
Linus Torvalds committed
2063
	 */
2064
	cachep->align = ralign;
2065 2066 2067 2068
	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < cachep->align)
		cachep->colour_off = cachep->align;
Linus Torvalds's avatar
Linus Torvalds committed
2069

2070 2071 2072 2073 2074
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

Linus Torvalds's avatar
Linus Torvalds committed
2075 2076
#if DEBUG

2077 2078 2079 2080
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
Linus Torvalds's avatar
Linus Torvalds committed
2081 2082
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2083 2084
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
Linus Torvalds's avatar
Linus Torvalds committed
2085 2086
	}
	if (flags & SLAB_STORE_USER) {
2087
		/* user store requires one word storage behind the end of
David Woodhouse's avatar
David Woodhouse committed
2088 2089
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
Linus Torvalds's avatar
Linus Torvalds committed
2090
		 */
David Woodhouse's avatar
David Woodhouse committed
2091 2092 2093 2094
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
Linus Torvalds's avatar
Linus Torvalds committed
2095
	}
2096 2097
#endif

2098 2099
	kasan_cache_create(cachep, &size, &flags);

2100 2101 2102 2103 2104 2105 2106 2107 2108
	size = ALIGN(size, cachep->align);
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);

#if DEBUG
2109 2110 2111 2112 2113 2114 2115
	/*
	 * To activate debug pagealloc, off-slab management is necessary
	 * requirement. In early phase of initialization, small sized slab
	 * doesn't get initialized so it would not be possible. So, we need
	 * to check size >= 256. It guarantees that all necessary small
	 * sized slab is initialized in current slab initialization sequence.
	 */
2116
	if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
		size >= 256 && cachep->object_size > cache_line_size()) {
		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
			size_t tmp_size = ALIGN(size, PAGE_SIZE);

			if (set_off_slab_cache(cachep, tmp_size, flags)) {
				flags |= CFLGS_OFF_SLAB;
				cachep->obj_offset += tmp_size - size;
				size = tmp_size;
				goto done;
			}
		}
Linus Torvalds's avatar
Linus Torvalds committed
2128 2129 2130
	}
#endif

2131 2132 2133 2134 2135
	if (set_objfreelist_slab_cache(cachep, size, flags)) {
		flags |= CFLGS_OBJFREELIST_SLAB;
		goto done;
	}

2136
	if (set_off_slab_cache(cachep, size, flags)) {
Linus Torvalds's avatar
Linus Torvalds committed
2137
		flags |= CFLGS_OFF_SLAB;
2138
		goto done;
2139
	}
Linus Torvalds's avatar
Linus Torvalds committed
2140

2141 2142
	if (set_on_slab_cache(cachep, size, flags))
		goto done;
Linus Torvalds's avatar
Linus Torvalds committed
2143

2144
	return -E2BIG;
Linus Torvalds's avatar
Linus Torvalds committed
2145

2146 2147
done:
	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
Linus Torvalds's avatar
Linus Torvalds committed
2148
	cachep->flags = flags;
2149
	cachep->allocflags = __GFP_COMP;
Yang Shi's avatar
Yang Shi committed
2150
	if (flags & SLAB_CACHE_DMA)
2151
		cachep->allocflags |= GFP_DMA;
2152
	cachep->size = size;
2153
	cachep->reciprocal_buffer_size = reciprocal_value(size);
Linus Torvalds's avatar
Linus Torvalds committed
2154

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
#if DEBUG
	/*
	 * If we're going to use the generic kernel_map_pages()
	 * poisoning, then it's going to smash the contents of
	 * the redzone and userword anyhow, so switch them off.
	 */
	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
		(cachep->flags & SLAB_POISON) &&
		is_debug_pagealloc_cache(cachep))
		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif

	if (OFF_SLAB(cachep)) {
2168 2169
		cachep->freelist_cache =
			kmalloc_slab(cachep->freelist_size, 0u);
2170
	}
Linus Torvalds's avatar
Linus Torvalds committed
2171

2172 2173
	err = setup_cpu_cache(cachep, gfp);
	if (err) {
2174
		__kmem_cache_release(cachep);
2175
		return err;
2176
	}
Linus Torvalds's avatar
Linus Torvalds committed
2177

2178
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
}

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2192 2193 2194 2195 2196
static void check_mutex_acquired(void)
{
	BUG_ON(!mutex_is_locked(&slab_mutex));
}

2197
static void check_spinlock_acquired(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
2198 2199 2200
{
#ifdef CONFIG_SMP
	check_irq_off();
2201
	assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
Linus Torvalds's avatar
Linus Torvalds committed
2202 2203
#endif
}
2204

2205
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2206 2207 2208
{
#ifdef CONFIG_SMP
	check_irq_off();
2209
	assert_spin_locked(&get_node(cachep, node)->list_lock);
2210 2211 2212
#endif
}

Linus Torvalds's avatar
Linus Torvalds committed
2213 2214 2215
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
2216
#define check_mutex_acquired()	do { } while(0)
Linus Torvalds's avatar
Linus Torvalds committed
2217
#define check_spinlock_acquired(x) do { } while(0)
2218
#define check_spinlock_acquired_node(x, y) do { } while(0)
Linus Torvalds's avatar
Linus Torvalds committed
2219 2220
#endif

2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
				int node, bool free_all, struct list_head *list)
{
	int tofree;

	if (!ac || !ac->avail)
		return;

	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
	if (tofree > ac->avail)
		tofree = (ac->avail + 1) / 2;

	free_block(cachep, ac->entry, tofree, node, list);
	ac->avail -= tofree;
	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
}
2237

Linus Torvalds's avatar
Linus Torvalds committed
2238 2239
static void do_drain(void *arg)
{
Andrew Morton's avatar
Andrew Morton committed
2240
	struct kmem_cache *cachep = arg;
Linus Torvalds's avatar
Linus Torvalds committed
2241
	struct array_cache *ac;
2242
	int node = numa_mem_id();
2243
	struct kmem_cache_node *n;
2244
	LIST_HEAD(list);
Linus Torvalds's avatar
Linus Torvalds committed
2245 2246

	check_irq_off();
2247
	ac = cpu_cache_get(cachep);
2248 2249
	n = get_node(cachep, node);
	spin_lock(&n->list_lock);
2250
	free_block(cachep, ac->entry, ac->avail, node, &list);
2251
	spin_unlock(&n->list_lock);
2252
	slabs_destroy(cachep, &list);
Linus Torvalds's avatar
Linus Torvalds committed
2253 2254 2255
	ac->avail = 0;
}

2256
static void drain_cpu_caches(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
2257
{
2258
	struct kmem_cache_node *n;
2259
	int node;
2260
	LIST_HEAD(list);
2261

2262
	on_each_cpu(do_drain, cachep, 1);
Linus Torvalds's avatar
Linus Torvalds committed
2263
	check_irq_on();
2264 2265
	for_each_kmem_cache_node(cachep, node, n)
		if (n->alien)
2266
			drain_alien_cache(cachep, n->alien);
2267

2268 2269 2270 2271 2272 2273 2274
	for_each_kmem_cache_node(cachep, node, n) {
		spin_lock_irq(&n->list_lock);
		drain_array_locked(cachep, n->shared, node, true, &list);
		spin_unlock_irq(&n->list_lock);

		slabs_destroy(cachep, &list);
	}
Linus Torvalds's avatar
Linus Torvalds committed
2275 2276
}

2277 2278 2279 2280 2281 2282 2283
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
2284
			struct kmem_cache_node *n, int tofree)
Linus Torvalds's avatar
Linus Torvalds committed
2285
{
2286 2287
	struct list_head *p;
	int nr_freed;
2288
	struct page *page;
Linus Torvalds's avatar
Linus Torvalds committed
2289

2290
	nr_freed = 0;
2291
	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
Linus Torvalds's avatar
Linus Torvalds committed
2292

2293 2294 2295 2296
		spin_lock_irq(&n->list_lock);
		p = n->slabs_free.prev;
		if (p == &n->slabs_free) {
			spin_unlock_irq(&n->list_lock);
2297 2298
			goto out;
		}
Linus Torvalds's avatar
Linus Torvalds committed
2299

2300 2301
		page = list_entry(p, struct page, lru);
		list_del(&page->lru);
2302
		n->free_slabs--;
2303
		n->total_slabs--;
2304 2305 2306 2307
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
2308 2309
		n->free_objects -= cache->num;
		spin_unlock_irq(&n->list_lock);
2310
		slab_destroy(cache, page);
2311
		nr_freed++;
Linus Torvalds's avatar
Linus Torvalds committed
2312
	}
2313 2314
out:
	return nr_freed;
Linus Torvalds's avatar
Linus Torvalds committed
2315 2316
}

2317
int __kmem_cache_shrink(struct kmem_cache *cachep)
2318
{
2319 2320
	int ret = 0;
	int node;
2321
	struct kmem_cache_node *n;
2322 2323 2324 2325

	drain_cpu_caches(cachep);

	check_irq_on();
2326
	for_each_kmem_cache_node(cachep, node, n) {
2327
		drain_freelist(cachep, n, INT_MAX);
2328

2329 2330
		ret += !list_empty(&n->slabs_full) ||
			!list_empty(&n->slabs_partial);
2331 2332 2333 2334
	}
	return (ret ? 1 : 0);
}

2335
int __kmem_cache_shutdown(struct kmem_cache *cachep)
2336
{
2337
	return __kmem_cache_shrink(cachep);
2338 2339 2340
}

void __kmem_cache_release(struct kmem_cache *cachep)
Linus Torvalds's avatar
Linus Torvalds committed
2341
{
2342
	int i;
2343
	struct kmem_cache_node *n;
Linus Torvalds's avatar
Linus Torvalds committed
2344

2345 2346
	cache_random_seq_destroy(cachep);

2347
	free_percpu(cachep->cpu_cache);
Linus Torvalds's avatar
Linus Torvalds committed
2348

2349
	/* NUMA: free the node structures */
2350 2351 2352 2353 2354
	for_each_kmem_cache_node(cachep, i, n) {
		kfree(n->shared);
		free_alien_cache(n->alien);
		kfree(n);
		cachep->node[i] = NULL;
2355
	}
Linus Torvalds's avatar
Linus Torvalds committed
2356 2357
}

2358 2359
/*
 * Get the memory for a slab management obj.
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
2371
 */
2372
static void *alloc_slabmgmt(struct kmem_cache *cachep,
2373 2374
				   struct page *page, int colour_off,
				   gfp_t local_flags, int nodeid)
Linus Torvalds's avatar
Linus Torvalds committed
2375
{
2376
	void *freelist;
2377
	void *addr = page_address(page);
2378

2379 2380 2381
	page->s_mem = addr + colour_off;
	page->active = 0;

2382 2383 2384
	if (OBJFREELIST_SLAB(cachep))
		freelist = NULL;
	else if (OFF_SLAB(cachep)) {
Linus Torvalds's avatar
Linus Torvalds committed
2385
		/* Slab management obj is off-slab. */
2386
		freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2387
					      local_flags, nodeid);
2388
		if (!freelist)
Linus Torvalds's avatar
Linus Torvalds committed
2389 2390
			return NULL;
	} else {
2391 2392 2393
		/* We will use last bytes at the slab for freelist */
		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
				cachep->freelist_size;
Linus Torvalds's avatar
Linus Torvalds committed
2394
	}
2395

2396
	return freelist;
Linus Torvalds's avatar
Linus Torvalds committed
2397 2398
}

2399
static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
Linus Torvalds's avatar
Linus Torvalds committed
2400
{
2401
	return ((freelist_idx_t *)page->freelist)[idx];
2402 2403 2404
}

static inline void set_free_obj(struct page *page,
2405
					unsigned int idx, freelist_idx_t val)
2406
{
2407
	((freelist_idx_t *)(page->freelist))[idx] = val;
Linus Torvalds's avatar
Linus Torvalds committed
2408 2409
}

2410
static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
Linus Torvalds's avatar
Linus Torvalds committed
2411
{
2412
#if DEBUG
Linus Torvalds's avatar
Linus Torvalds committed
2413 2414 2415
	int i;

	for (i = 0; i < cachep->num; i++) {
2416
		void *objp = index_to_obj(cachep, page, i);
2417

Linus Torvalds's avatar
Linus Torvalds committed
2418 2419 2420 2421 2422 2423 2424 2425
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
Andrew Morton's avatar
Andrew Morton committed
2426 2427 2428
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
Linus Torvalds's avatar
Linus Torvalds committed
2429
		 */
2430 2431 2432
		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
			kasan_unpoison_object_data(cachep,
						   objp + obj_offset(cachep));
2433
			cachep->ctor(objp + obj_offset(cachep));
2434 2435 2436
			kasan_poison_object_data(
				cachep, objp + obj_offset(cachep));
		}
Linus Torvalds's avatar
Linus Torvalds committed
2437 2438 2439

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
Joe Perches's avatar
Joe Perches committed
2440
				slab_error(cachep, "constructor overwrote the end of an object");
Linus Torvalds's avatar
Linus Torvalds committed
2441
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
Joe Perches's avatar
Joe Perches committed
2442
				slab_error(cachep, "constructor overwrote the start of an object");
Linus Torvalds's avatar
Linus Torvalds committed
2443
		}
2444 2445 2446 2447 2448
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON) {
			poison_obj(cachep, objp, POISON_FREE);
			slab_kernel_map(cachep, objp, 0, 0);
		}
2449
	}
Linus Torvalds's avatar
Linus Torvalds committed
2450
#endif
2451 2452
}

2453 2454 2455 2456 2457
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Hold information during a freelist initialization */
union freelist_init_state {
	struct {
		unsigned int pos;
2458
		unsigned int *list;
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
		unsigned int count;
		unsigned int rand;
	};
	struct rnd_state rnd_state;
};

/*
 * Initialize the state based on the randomization methode available.
 * return true if the pre-computed list is available, false otherwize.
 */
static bool freelist_state_initialize(union freelist_init_state *state,
				struct kmem_cache *cachep,
				unsigned int count)
{
	bool ret;
	unsigned int rand;

	/* Use best entropy available to define a random shift */
2477
	rand = get_random_int();
2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498

	/* Use a random state if the pre-computed list is not available */
	if (!cachep->random_seq) {
		prandom_seed_state(&state->rnd_state, rand);
		ret = false;
	} else {
		state->list = cachep->random_seq;
		state->count = count;
		state->pos = 0;
		state->rand = rand;
		ret = true;
	}
	return ret;
}

/* Get the next entry on the list and randomize it using a random shift */
static freelist_idx_t next_random_slot(union freelist_init_state *state)
{
	return (state->list[state->pos++] + state->rand) % state->count;
}

2499 2500 2501 2502 2503 2504 2505
/* Swap two freelist entries */
static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
{
	swap(((freelist_idx_t *)page->freelist)[a],
		((freelist_idx_t *)page->freelist)[b]);
}

2506 2507 2508 2509 2510 2511
/*
 * Shuffle the freelist initialization state based on pre-computed lists.
 * return true if the list was successfully shuffled, false otherwise.
 */
static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
{
2512
	unsigned int objfreelist = 0, i, rand, count = cachep->num;
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
	union freelist_init_state state;
	bool precomputed;

	if (count < 2)
		return false;

	precomputed = freelist_state_initialize(&state, cachep, count);

	/* Take a random entry as the objfreelist */
	if (OBJFREELIST_SLAB(cachep)) {
		if (!precomputed)
			objfreelist = count - 1;
		else
			objfreelist = next_random_slot(&state);
		page->freelist = index_to_obj(cachep, page, objfreelist) +
						obj_offset(cachep);
		count--;
	}

	/*
	 * On early boot, generate the list dynamically.
	 * Later use a pre-computed list for speed.
	 */
	if (!precomputed) {
2537 2538 2539 2540 2541 2542 2543 2544 2545
		for (i = 0; i < count; i++)
			set_free_obj(page, i, i);

		/* Fisher-Yates shuffle */
		for (i = count - 1; i > 0; i--) {
			rand = prandom_u32_state(&state.rnd_state);
			rand %= (i + 1);
			swap_free_obj(page, i, rand);
		}
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
	} else {
		for (i = 0; i < count; i++)
			set_free_obj(page, i, next_random_slot(&state));
	}

	if (OBJFREELIST_SLAB(cachep))
		set_free_obj(page, cachep->num - 1, objfreelist);

	return true;
}
#else
static inline bool shuffle_freelist(struct kmem_cache *cachep,
				struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

2564 2565 2566 2567
static void cache_init_objs(struct kmem_cache *cachep,
			    struct page *page)
{
	int i;
2568
	void *objp;
2569
	bool shuffled;
2570 2571 2572

	cache_init_objs_debug(cachep, page);

2573 2574 2575 2576
	/* Try to randomize the freelist if enabled */
	shuffled = shuffle_freelist(cachep, page);

	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2577 2578 2579 2580
		page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
						obj_offset(cachep);
	}

2581
	for (i = 0; i < cachep->num; i++) {
2582 2583 2584
		objp = index_to_obj(cachep, page, i);
		kasan_init_slab_obj(cachep, objp);

2585
		/* constructor could break poison info */
2586 2587 2588 2589 2590
		if (DEBUG == 0 && cachep->ctor) {
			kasan_unpoison_object_data(cachep, objp);
			cachep->ctor(objp);
			kasan_poison_object_data(cachep, objp);
		}
2591

2592 2593
		if (!shuffled)
			set_free_obj(page, i, i);
Linus Torvalds's avatar
Linus Torvalds committed
2594 2595 2596
	}
}

2597
static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2598
{
2599
	void *objp;
2600

2601
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2602
	page->active++;
2603

2604 2605 2606 2607 2608
#if DEBUG
	if (cachep->flags & SLAB_STORE_USER)
		set_store_user_dirty(cachep);
#endif

2609 2610 2611
	return objp;
}

2612 2613
static void slab_put_obj(struct kmem_cache *cachep,
			struct page *page, void *objp)
2614
{
2615
	unsigned int objnr = obj_to_index(cachep, page, objp);
2616
#if DEBUG
Joonsoo Kim's avatar
Joonsoo Kim committed
2617
	unsigned int i;
2618 2619

	/* Verify double free bug */
2620
	for (i = page->active; i < cachep->num; i++) {
2621
		if (get_free_obj(page, i) == objnr) {
2622
			pr_err("slab: double free detected in cache '%s', objp %p\n",
Joe Perches's avatar
Joe Perches committed
2623
			       cachep->name, objp);
2624 2625
			BUG();
		}
2626 2627
	}
#endif
2628
	page->active--;
2629 2630 2631
	if (!page->freelist)
		page->freelist = objp + obj_offset(cachep);

2632
	set_free_obj(page, page->active, objnr);
2633 2634
}

2635 2636 2637
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2638
 * virtual address for kfree, ksize, and slab debugging.
2639
 */
2640
static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2641
			   void *freelist)
Linus Torvalds's avatar
Linus Torvalds committed
2642
{
2643
	page->slab_cache = cache;
2644
	page->freelist = freelist;
Linus Torvalds's avatar
Linus Torvalds committed
2645 2646 2647 2648 2649 2650
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2651 2652
static struct page *cache_grow_begin(struct kmem_cache *cachep,
				gfp_t flags, int nodeid)
Linus Torvalds's avatar
Linus Torvalds committed
2653
{
2654
	void *freelist;
2655 2656
	size_t offset;
	gfp_t local_flags;
2657
	int page_node;
2658
	struct kmem_cache_node *n;
2659
	struct page *page;
Linus Torvalds's avatar
Linus Torvalds committed
2660

Andrew Morton's avatar
Andrew Morton committed
2661 2662 2663
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
Linus Torvalds's avatar
Linus Torvalds committed
2664
	 */
2665
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2666
		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2667 2668 2669 2670
		flags &= ~GFP_SLAB_BUG_MASK;
		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
				invalid_mask, &invalid_mask, flags, &flags);
		dump_stack();
2671
	}
Christoph Lameter's avatar
Christoph Lameter committed
2672
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
Linus Torvalds's avatar
Linus Torvalds committed
2673 2674

	check_irq_off();
2675
	if (gfpflags_allow_blocking(local_flags))
Linus Torvalds's avatar
Linus Torvalds committed
2676 2677
		local_irq_enable();

Andrew Morton's avatar
Andrew Morton committed
2678 2679 2680
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2681
	 */
2682
	page = kmem_getpages(cachep, local_flags, nodeid);
2683
	if (!page)
Linus Torvalds's avatar
Linus Torvalds committed
2684 2685
		goto failed;

2686 2687
	page_node = page_to_nid(page);
	n = get_node(cachep, page_node);
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699

	/* Get colour for the slab, and cal the next value. */
	n->colour_next++;
	if (n->colour_next >= cachep->colour)
		n->colour_next = 0;

	offset = n->colour_next;
	if (offset >= cachep->colour)
		offset = 0;

	offset *= cachep->colour_off;

Linus Torvalds's avatar
Linus Torvalds committed
2700
	/* Get slab management. */
2701
	freelist = alloc_slabmgmt(cachep, page, offset,
2702
			local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2703
	if (OFF_SLAB(cachep) && !freelist)
Linus Torvalds's avatar
Linus Torvalds committed
2704 2705
		goto opps1;

2706
	slab_map_pages(cachep, page, freelist);
Linus Torvalds's avatar
Linus Torvalds committed
2707

2708
	kasan_poison_slab(page);
2709
	cache_init_objs(cachep, page);
Linus Torvalds's avatar
Linus Torvalds committed
2710

2711
	if (gfpflags_allow_blocking(local_flags))
Linus Torvalds's avatar
Linus Torvalds committed
2712 2713
		local_irq_disable();

2714 2715
	return page;

Andrew Morton's avatar
Andrew Morton committed
2716
opps1:
2717
	kmem_freepages(cachep, page);
Andrew Morton's avatar
Andrew Morton committed
2718
failed:
2719
	if (gfpflags_allow_blocking(local_flags))
Linus Torvalds's avatar
Linus Torvalds committed
2720
		local_irq_disable();
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
	return NULL;
}

static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
{
	struct kmem_cache_node *n;
	void *list = NULL;

	check_irq_off();

	if (!page)
		return;

	INIT_LIST_HEAD(&page->lru);
	n = get_node(cachep, page_to_nid(page));

	spin_lock(&n->list_lock);
2738
	n->total_slabs++;
2739
	if (!page->active) {
2740
		list_add_tail(&page->lru, &(n->slabs_free));
2741
		n->free_slabs++;
2742
	} else
2743
		fixup_slab_list(cachep, n, page, &list);
2744

2745 2746 2747 2748 2749
	STATS_INC_GROWN(cachep);
	n->free_objects += cachep->num - page->active;
	spin_unlock(&n->list_lock);

	fixup_objfreelist_debug(cachep, &list);
Linus Torvalds's avatar
Linus Torvalds committed
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
2762
		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2763 2764
		       (unsigned long)objp);
		BUG();
Linus Torvalds's avatar
Linus Torvalds committed
2765 2766 2767
	}
}

2768 2769
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2770
	unsigned long long redzone1, redzone2;
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2786 2787
	pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
	       obj, redzone1, redzone2);
2788 2789
}

2790
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2791
				   unsigned long caller)
Linus Torvalds's avatar
Linus Torvalds committed
2792 2793
{
	unsigned int objnr;
2794
	struct page *page;
Linus Torvalds's avatar
Linus Torvalds committed
2795

2796 2797
	BUG_ON(virt_to_cache(objp) != cachep);

2798
	objp -= obj_offset(cachep);
Linus Torvalds's avatar
Linus Torvalds committed
2799
	kfree_debugcheck(objp);
2800
	page = virt_to_head_page(objp);
Linus Torvalds's avatar
Linus Torvalds committed
2801 2802

	if (cachep->flags & SLAB_RED_ZONE) {
2803
		verify_redzone_free(cachep, objp);
Linus Torvalds's avatar
Linus Torvalds committed
2804 2805 2806
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
2807 2808
	if (cachep->flags & SLAB_STORE_USER) {
		set_store_user_dirty(cachep);
2809
		*dbg_userword(cachep, objp) = (void *)caller;
2810
	}
Linus Torvalds's avatar
Linus Torvalds committed
2811

2812
	objnr = obj_to_index(cachep, page, objp);
Linus Torvalds's avatar
Linus Torvalds committed
2813 2814

	BUG_ON(objnr >= cachep->num);
2815
	BUG_ON(objp != index_to_obj(cachep, page, objnr));
Linus Torvalds's avatar
Linus Torvalds committed
2816 2817 2818

	if (cachep->flags & SLAB_POISON) {
		poison_obj(cachep, objp, POISON_FREE);
2819
		slab_kernel_map(cachep, objp, 0, caller);
Linus Torvalds's avatar
Linus Torvalds committed
2820 2821 2822 2823 2824 2825 2826 2827 2828
	}
	return objp;
}

#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#endif

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
						void **list)
{
#if DEBUG
	void *next = *list;
	void *objp;

	while (next) {
		objp = next - obj_offset(cachep);
		next = *(void **)next;
		poison_obj(cachep, objp, POISON_FREE);
	}
#endif
}

2844
static inline void fixup_slab_list(struct kmem_cache *cachep,
2845 2846
				struct kmem_cache_node *n, struct page *page,
				void **list)
2847 2848 2849
{
	/* move slabp to correct slabp list: */
	list_del(&page->lru);
2850
	if (page->active == cachep->num) {
2851
		list_add(&page->lru, &n->slabs_full);
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
		if (OBJFREELIST_SLAB(cachep)) {
#if DEBUG
			/* Poisoning will be done without holding the lock */
			if (cachep->flags & SLAB_POISON) {
				void **objp = page->freelist;

				*objp = *list;
				*list = objp;
			}
#endif
			page->freelist = NULL;
		}
	} else
2865 2866 2867
		list_add(&page->lru, &n->slabs_partial);
}

2868 2869
/* Try to find non-pfmemalloc slab if needed */
static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2870
					struct page *page, bool pfmemalloc)
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
{
	if (!page)
		return NULL;

	if (pfmemalloc)
		return page;

	if (!PageSlabPfmemalloc(page))
		return page;

	/* No need to keep pfmemalloc slab if we have enough free objects */
	if (n->free_objects > n->free_limit) {
		ClearPageSlabPfmemalloc(page);
		return page;
	}

	/* Move pfmemalloc slab to the end of list to speed up next search */
	list_del(&page->lru);
2889
	if (!page->active) {
2890
		list_add_tail(&page->lru, &n->slabs_free);
2891
		n->free_slabs++;
2892
	} else
2893 2894 2895 2896 2897 2898 2899
		list_add_tail(&page->lru, &n->slabs_partial);

	list_for_each_entry(page, &n->slabs_partial, lru) {
		if (!PageSlabPfmemalloc(page))
			return page;
	}

2900
	n->free_touched = 1;
2901
	list_for_each_entry(page, &n->slabs_free, lru) {
2902
		if (!PageSlabPfmemalloc(page)) {
2903
			n->free_slabs--;
2904
			return page;
2905
		}
2906 2907 2908 2909 2910 2911
	}

	return NULL;
}

static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2912 2913 2914
{
	struct page *page;

2915
	assert_spin_locked(&n->list_lock);
2916
	page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2917 2918
	if (!page) {
		n->free_touched = 1;
2919 2920
		page = list_first_entry_or_null(&n->slabs_free, struct page,
						lru);
2921
		if (page)
2922
			n->free_slabs--;
2923 2924
	}

2925
	if (sk_memalloc_socks())
2926
		page = get_valid_first_slab(n, page, pfmemalloc);
2927

2928 2929 2930
	return page;
}

2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
				struct kmem_cache_node *n, gfp_t flags)
{
	struct page *page;
	void *obj;
	void *list = NULL;

	if (!gfp_pfmemalloc_allowed(flags))
		return NULL;

	spin_lock(&n->list_lock);
	page = get_first_slab(n, true);
	if (!page) {
		spin_unlock(&n->list_lock);
		return NULL;
	}

	obj = slab_get_obj(cachep, page);
	n->free_objects--;

	fixup_slab_list(cachep, n, page, &list);

	spin_unlock(&n->list_lock);
	fixup_objfreelist_debug(cachep, &list);

	return obj;
}

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
/*
 * Slab list should be fixed up by fixup_slab_list() for existing slab
 * or cache_grow_end() for new slab
 */
static __always_inline int alloc_block(struct kmem_cache *cachep,
		struct array_cache *ac, struct page *page, int batchcount)
{
	/*
	 * There must be at least one object available for
	 * allocation.
	 */
	BUG_ON(page->active >= cachep->num);

	while (page->active < cachep->num && batchcount--) {
		STATS_INC_ALLOCED(cachep);
		STATS_INC_ACTIVE(cachep);
		STATS_SET_HIGH(cachep);

		ac->entry[ac->avail++] = slab_get_obj(cachep, page);
	}

	return batchcount;
}

2983
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds's avatar
Linus Torvalds committed
2984 2985
{
	int batchcount;
2986
	struct kmem_cache_node *n;
2987
	struct array_cache *ac, *shared;
2988
	int node;
2989
	void *list = NULL;
2990
	struct page *page;
2991

Linus Torvalds's avatar
Linus Torvalds committed
2992
	check_irq_off();
2993
	node = numa_mem_id();
2994

2995
	ac = cpu_cache_get(cachep);
Linus Torvalds's avatar
Linus Torvalds committed
2996 2997
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
Andrew Morton's avatar
Andrew Morton committed
2998 2999 3000 3001
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
Linus Torvalds's avatar
Linus Torvalds committed
3002 3003 3004
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
3005
	n = get_node(cachep, node);
3006

3007
	BUG_ON(ac->avail > 0 || !n);
3008 3009 3010 3011
	shared = READ_ONCE(n->shared);
	if (!n->free_objects && (!shared || !shared->avail))
		goto direct_grow;

3012
	spin_lock(&n->list_lock);
3013
	shared = READ_ONCE(n->shared);
Linus Torvalds's avatar
Linus Torvalds committed
3014

3015
	/* See if we can refill from the shared array */
3016 3017
	if (shared && transfer_objects(ac, shared, batchcount)) {
		shared->touched = 1;
3018
		goto alloc_done;
3019
	}
3020

Linus Torvalds's avatar
Linus Torvalds committed
3021 3022
	while (batchcount > 0) {
		/* Get slab alloc is to come from. */
3023
		page = get_first_slab(n, false);
3024 3025
		if (!page)
			goto must_grow;
Linus Torvalds's avatar
Linus Torvalds committed
3026 3027

		check_spinlock_acquired(cachep);
3028

3029
		batchcount = alloc_block(cachep, ac, page, batchcount);
3030
		fixup_slab_list(cachep, n, page, &list);
Linus Torvalds's avatar
Linus Torvalds committed
3031 3032
	}

Andrew Morton's avatar
Andrew Morton committed
3033
must_grow:
3034
	n->free_objects -= ac->avail;
Andrew Morton's avatar
Andrew Morton committed
3035
alloc_done:
3036
	spin_unlock(&n->list_lock);
3037
	fixup_objfreelist_debug(cachep, &list);
Linus Torvalds's avatar
Linus Torvalds committed
3038

3039
direct_grow:
Linus Torvalds's avatar
Linus Torvalds committed
3040
	if (unlikely(!ac->avail)) {
3041 3042 3043 3044 3045 3046 3047 3048
		/* Check if we can use obj in pfmemalloc slab */
		if (sk_memalloc_socks()) {
			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);

			if (obj)
				return obj;
		}

3049
		page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3050

3051 3052 3053 3054
		/*
		 * cache_grow_begin() can reenable interrupts,
		 * then ac could change.
		 */
3055
		ac = cpu_cache_get(cachep);
3056 3057 3058
		if (!ac->avail && page)
			alloc_block(cachep, ac, page, batchcount);
		cache_grow_end(cachep, page);
3059

3060
		if (!ac->avail)
Linus Torvalds's avatar
Linus Torvalds committed
3061 3062 3063
			return NULL;
	}
	ac->touched = 1;
3064

3065
	return ac->entry[--ac->avail];
Linus Torvalds's avatar
Linus Torvalds committed
3066 3067
}

Andrew Morton's avatar
Andrew Morton committed
3068 3069
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
Linus Torvalds's avatar
Linus Torvalds committed
3070
{
3071
	might_sleep_if(gfpflags_allow_blocking(flags));
Linus Torvalds's avatar
Linus Torvalds committed
3072 3073 3074
}

#if DEBUG
Andrew Morton's avatar
Andrew Morton committed
3075
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3076
				gfp_t flags, void *objp, unsigned long caller)
Linus Torvalds's avatar
Linus Torvalds committed
3077
{
3078
	if (!objp)
Linus Torvalds's avatar
Linus Torvalds committed
3079
		return objp;
3080
	if (cachep->flags & SLAB_POISON) {
Linus Torvalds's avatar
Linus Torvalds committed
3081
		check_poison_obj(cachep, objp);
3082
		slab_kernel_map(cachep, objp, 1, 0);
Linus Torvalds's avatar
Linus Torvalds committed
3083 3084 3085
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
3086
		*dbg_userword(cachep, objp) = (void *)caller;
Linus Torvalds's avatar
Linus Torvalds committed
3087 3088

	if (cachep->flags & SLAB_RED_ZONE) {
Andrew Morton's avatar
Andrew Morton committed
3089 3090
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
Joe Perches's avatar
Joe Perches committed
3091
			slab_error(cachep, "double free, or memory outside object was overwritten");
3092 3093 3094
			pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
Linus Torvalds's avatar
Linus Torvalds committed
3095 3096 3097 3098
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3099

3100
	objp += obj_offset(cachep);
3101
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3102
		cachep->ctor(objp);
Tetsuo Handa's avatar
Tetsuo Handa committed
3103 3104
	if (ARCH_SLAB_MINALIGN &&
	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3105
		pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
Hugh Dickins's avatar
Hugh Dickins committed
3106
		       objp, (int)ARCH_SLAB_MINALIGN);
3107
	}
Linus Torvalds's avatar
Linus Torvalds committed
3108 3109 3110 3111 3112 3113
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3114
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds's avatar
Linus Torvalds committed
3115
{
3116
	void *objp;
Linus Torvalds's avatar
Linus Torvalds committed
3117 3118
	struct array_cache *ac;

3119
	check_irq_off();
3120

3121
	ac = cpu_cache_get(cachep);
Linus Torvalds's avatar
Linus Torvalds committed
3122 3123
	if (likely(ac->avail)) {
		ac->touched = 1;
3124
		objp = ac->entry[--ac->avail];
3125

3126 3127
		STATS_INC_ALLOCHIT(cachep);
		goto out;
Linus Torvalds's avatar
Linus Torvalds committed
3128
	}
3129 3130

	STATS_INC_ALLOCMISS(cachep);
3131
	objp = cache_alloc_refill(cachep, flags);
3132 3133 3134 3135 3136 3137 3138
	/*
	 * the 'ac' may be updated by cache_alloc_refill(),
	 * and kmemleak_erase() requires its correct value.
	 */
	ac = cpu_cache_get(cachep);

out:
3139 3140 3141 3142 3143
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3144 3145
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3146 3147 3148
	return objp;
}

3149
#ifdef CONFIG_NUMA
3150
/*
3151
 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3152 3153 3154 3155 3156 3157 3158 3159
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3160
	if (in_interrupt() || (flags & __GFP_THISNODE))
3161
		return NULL;
3162
	nid_alloc = nid_here = numa_mem_id();
3163
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3164
		nid_alloc = cpuset_slab_spread_node();
3165
	else if (current->mempolicy)
3166
		nid_alloc = mempolicy_slab_node();
3167
	if (nid_alloc != nid_here)
3168
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3169 3170 3171
	return NULL;
}

3172 3173
/*
 * Fallback function if there was no memory available and no objects on a
3174
 * certain node and fall back is permitted. First we scan all the
3175
 * available node for available objects. If that fails then we
3176 3177 3178
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3179
 */
3180
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3181
{
3182
	struct zonelist *zonelist;
3183
	struct zoneref *z;
3184 3185
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3186
	void *obj = NULL;
3187
	struct page *page;
3188
	int nid;
3189
	unsigned int cpuset_mems_cookie;
3190 3191 3192 3193

	if (flags & __GFP_THISNODE)
		return NULL;

3194
retry_cpuset:
3195
	cpuset_mems_cookie = read_mems_allowed_begin();
3196
	zonelist = node_zonelist(mempolicy_slab_node(), flags);
3197

3198 3199 3200 3201 3202
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3203 3204
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3205

3206
		if (cpuset_zone_allowed(zone, flags) &&
3207 3208
			get_node(cache, nid) &&
			get_node(cache, nid)->free_objects) {
3209
				obj = ____cache_alloc_node(cache,
David Rientjes's avatar
David Rientjes committed
3210
					gfp_exact_node(flags), nid);
3211 3212 3213
				if (obj)
					break;
		}
3214 3215
	}

3216
	if (!obj) {
3217 3218 3219 3220 3221 3222
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3223 3224 3225 3226
		page = cache_grow_begin(cache, flags, numa_mem_id());
		cache_grow_end(cache, page);
		if (page) {
			nid = page_to_nid(page);
3227 3228
			obj = ____cache_alloc_node(cache,
				gfp_exact_node(flags), nid);
3229

3230
			/*
3231 3232
			 * Another processor may allocate the objects in
			 * the slab since we are not holding any locks.
3233
			 */
3234 3235
			if (!obj)
				goto retry;
3236
		}
3237
	}
3238

3239
	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3240
		goto retry_cpuset;
3241 3242 3243
	return obj;
}

3244 3245
/*
 * A interface to enable slab creation on nodeid
Linus Torvalds's avatar
Linus Torvalds committed
3246
 */
3247
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
Andrew Morton's avatar
Andrew Morton committed
3248
				int nodeid)
3249
{
3250
	struct page *page;
3251
	struct kmem_cache_node *n;
3252
	void *obj = NULL;
3253
	void *list = NULL;
3254

3255
	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3256
	n = get_node(cachep, nodeid);
3257
	BUG_ON(!n);
3258

3259
	check_irq_off();
3260
	spin_lock(&n->list_lock);
3261
	page = get_first_slab(n, false);
3262 3263
	if (!page)
		goto must_grow;
3264 3265 3266 3267 3268 3269 3270

	check_spinlock_acquired_node(cachep, nodeid);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

3271
	BUG_ON(page->active == cachep->num);
3272

3273
	obj = slab_get_obj(cachep, page);
3274
	n->free_objects--;
3275

3276
	fixup_slab_list(cachep, n, page, &list);
3277

3278
	spin_unlock(&n->list_lock);
3279
	fixup_objfreelist_debug(cachep, &list);
3280
	return obj;
3281

Andrew Morton's avatar
Andrew Morton committed
3282
must_grow:
3283
	spin_unlock(&n->list_lock);
3284
	page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3285 3286 3287 3288
	if (page) {
		/* This slab isn't counted yet so don't update free_objects */
		obj = slab_get_obj(cachep, page);
	}
3289
	cache_grow_end(cachep, page);
Linus Torvalds's avatar
Linus Torvalds committed
3290

3291
	return obj ? obj : fallback_alloc(cachep, flags);
3292
}
3293 3294

static __always_inline void *
3295
slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3296
		   unsigned long caller)
3297 3298 3299
{
	unsigned long save_flags;
	void *ptr;
3300
	int slab_node = numa_mem_id();
3301

3302
	flags &= gfp_allowed_mask;
3303 3304
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3305 3306
		return NULL;

3307 3308 3309
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

Andrew Morton's avatar
Andrew Morton committed
3310
	if (nodeid == NUMA_NO_NODE)
3311
		nodeid = slab_node;
3312

3313
	if (unlikely(!get_node(cachep, nodeid))) {
3314 3315 3316 3317 3318
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3319
	if (nodeid == slab_node) {
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3336 3337
	if (unlikely(flags & __GFP_ZERO) && ptr)
		memset(ptr, 0, cachep->object_size);
3338

3339
	slab_post_alloc_hook(cachep, flags, 1, &ptr);
3340 3341 3342 3343 3344 3345 3346 3347
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

3348
	if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3359 3360
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
3376
slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3377 3378 3379 3380
{
	unsigned long save_flags;
	void *objp;

3381
	flags &= gfp_allowed_mask;
3382 3383
	cachep = slab_pre_alloc_hook(cachep, flags);
	if (unlikely(!cachep))
3384 3385
		return NULL;

3386 3387 3388 3389 3390 3391 3392
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3393 3394
	if (unlikely(flags & __GFP_ZERO) && objp)
		memset(objp, 0, cachep->object_size);
3395

3396
	slab_post_alloc_hook(cachep, flags, 1, &objp);
3397 3398
	return objp;
}
3399 3400

/*
3401
 * Caller needs to acquire correct kmem_cache_node's list_lock
3402
 * @list: List of detached free slabs should be freed by caller
3403
 */
3404 3405
static void free_block(struct kmem_cache *cachep, void **objpp,
			int nr_objects, int node, struct list_head *list)
Linus Torvalds's avatar
Linus Torvalds committed
3406 3407
{
	int i;
3408
	struct kmem_cache_node *n = get_node(cachep, node);
3409 3410 3411
	struct page *page;

	n->free_objects += nr_objects;
Linus Torvalds's avatar
Linus Torvalds committed
3412 3413

	for (i = 0; i < nr_objects; i++) {
3414
		void *objp;
3415
		struct page *page;
Linus Torvalds's avatar
Linus Torvalds committed
3416

3417 3418
		objp = objpp[i];

3419 3420
		page = virt_to_head_page(objp);
		list_del(&page->lru);
3421
		check_spinlock_acquired_node(cachep, node);
3422
		slab_put_obj(cachep, page, objp);
Linus Torvalds's avatar
Linus Torvalds committed
3423 3424 3425
		STATS_DEC_ACTIVE(cachep);

		/* fixup slab chains */
3426
		if (page->active == 0) {
3427
			list_add(&page->lru, &n->slabs_free);
3428 3429
			n->free_slabs++;
		} else {
Linus Torvalds's avatar
Linus Torvalds committed
3430 3431 3432 3433
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3434
			list_add_tail(&page->lru, &n->slabs_partial);
Linus Torvalds's avatar
Linus Torvalds committed
3435 3436
		}
	}
3437 3438 3439 3440 3441

	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
		n->free_objects -= cachep->num;

		page = list_last_entry(&n->slabs_free, struct page, lru);
3442
		list_move(&page->lru, list);
3443
		n->free_slabs--;
3444
		n->total_slabs--;
3445
	}
Linus Torvalds's avatar
Linus Torvalds committed
3446 3447
}

3448
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
Linus Torvalds's avatar
Linus Torvalds committed
3449 3450
{
	int batchcount;
3451
	struct kmem_cache_node *n;
3452
	int node = numa_mem_id();
3453
	LIST_HEAD(list);
Linus Torvalds's avatar
Linus Torvalds committed
3454 3455

	batchcount = ac->batchcount;
3456

Linus Torvalds's avatar
Linus Torvalds committed
3457
	check_irq_off();
3458
	n = get_node(cachep, node);
3459 3460 3461
	spin_lock(&n->list_lock);
	if (n->shared) {
		struct array_cache *shared_array = n->shared;
3462
		int max = shared_array->limit - shared_array->avail;
Linus Torvalds's avatar
Linus Torvalds committed
3463 3464 3465
		if (max) {
			if (batchcount > max)
				batchcount = max;
3466
			memcpy(&(shared_array->entry[shared_array->avail]),
3467
			       ac->entry, sizeof(void *) * batchcount);
Linus Torvalds's avatar
Linus Torvalds committed
3468 3469 3470 3471 3472
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3473
	free_block(cachep, ac->entry, batchcount, node, &list);
Andrew Morton's avatar
Andrew Morton committed
3474
free_done:
Linus Torvalds's avatar
Linus Torvalds committed
3475 3476 3477
#if STATS
	{
		int i = 0;
3478
		struct page *page;
Linus Torvalds's avatar
Linus Torvalds committed
3479

3480
		list_for_each_entry(page, &n->slabs_free, lru) {
3481
			BUG_ON(page->active);
Linus Torvalds's avatar
Linus Torvalds committed
3482 3483 3484 3485 3486 3487

			i++;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3488
	spin_unlock(&n->list_lock);
3489
	slabs_destroy(cachep, &list);
Linus Torvalds's avatar
Linus Torvalds committed
3490
	ac->avail -= batchcount;
Andrew Morton's avatar
Andrew Morton committed
3491
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
Linus Torvalds's avatar
Linus Torvalds committed
3492 3493 3494
}

/*
Andrew Morton's avatar
Andrew Morton committed
3495 3496
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
Linus Torvalds's avatar
Linus Torvalds committed
3497
 */
3498
static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3499
				unsigned long caller)
Linus Torvalds's avatar
Linus Torvalds committed
3500
{
3501 3502 3503 3504 3505 3506
	/* Put the object into the quarantine, don't touch it for now. */
	if (kasan_slab_free(cachep, objp))
		return;

	___cache_free(cachep, objp, caller);
}
Linus Torvalds's avatar
Linus Torvalds committed
3507

3508 3509 3510 3511
void ___cache_free(struct kmem_cache *cachep, void *objp,
		unsigned long caller)
{
	struct array_cache *ac = cpu_cache_get(cachep);
3512

Linus Torvalds's avatar
Linus Torvalds committed
3513
	check_irq_off();
3514
	kmemleak_free_recursive(objp, cachep->flags);
3515
	objp = cache_free_debugcheck(cachep, objp, caller);
Linus Torvalds's avatar
Linus Torvalds committed
3516

3517
	kmemcheck_slab_free(cachep, objp, cachep->object_size);
Pekka Enberg's avatar
Pekka Enberg committed
3518

3519 3520 3521 3522 3523 3524 3525
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3526
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3527 3528
		return;

3529
	if (ac->avail < ac->limit) {
Linus Torvalds's avatar
Linus Torvalds committed
3530 3531 3532 3533 3534
		STATS_INC_FREEHIT(cachep);
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
	}
3535

3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
	if (sk_memalloc_socks()) {
		struct page *page = virt_to_head_page(objp);

		if (unlikely(PageSlabPfmemalloc(page))) {
			cache_free_pfmemalloc(cachep, page, objp);
			return;
		}
	}

	ac->entry[ac->avail++] = objp;
Linus Torvalds's avatar
Linus Torvalds committed
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3556
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
Linus Torvalds's avatar
Linus Torvalds committed
3557
{
3558
	void *ret = slab_alloc(cachep, flags, _RET_IP_);
3559

3560
	kasan_slab_alloc(cachep, ret, flags);
3561
	trace_kmem_cache_alloc(_RET_IP_, ret,
3562
			       cachep->object_size, cachep->size, flags);
3563 3564

	return ret;
Linus Torvalds's avatar
Linus Torvalds committed
3565 3566 3567
}
EXPORT_SYMBOL(kmem_cache_alloc);

3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
				  size_t size, void **p, unsigned long caller)
{
	size_t i;

	for (i = 0; i < size; i++)
		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
}

3578
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3579
			  void **p)
3580
{
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
	size_t i;

	s = slab_pre_alloc_hook(s, flags);
	if (!s)
		return 0;

	cache_alloc_debugcheck_before(s, flags);

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = __do_cache_alloc(s, flags);

		if (unlikely(!objp))
			goto error;
		p[i] = objp;
	}
	local_irq_enable();

3599 3600
	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);

3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
	/* Clear memory outside IRQ disabled section */
	if (unlikely(flags & __GFP_ZERO))
		for (i = 0; i < size; i++)
			memset(p[i], 0, s->object_size);

	slab_post_alloc_hook(s, flags, size, p);
	/* FIXME: Trace call missing. Christoph would like a bulk variant */
	return size;
error:
	local_irq_enable();
3611
	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3612 3613 3614
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
	return 0;
3615 3616 3617
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);

3618
#ifdef CONFIG_TRACING
3619
void *
3620
kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3621
{
3622 3623
	void *ret;

3624
	ret = slab_alloc(cachep, flags, _RET_IP_);
3625

3626
	kasan_kmalloc(cachep, ret, size, flags);
3627
	trace_kmalloc(_RET_IP_, ret,
3628
		      size, cachep->size, flags);
3629
	return ret;
3630
}
3631
EXPORT_SYMBOL(kmem_cache_alloc_trace);
3632 3633
#endif

Linus Torvalds's avatar
Linus Torvalds committed
3634
#ifdef CONFIG_NUMA
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
3646 3647
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
3648
	void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3649

3650
	kasan_slab_alloc(cachep, ret, flags);
3651
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3652
				    cachep->object_size, cachep->size,
3653
				    flags, nodeid);
3654 3655

	return ret;
3656
}
Linus Torvalds's avatar
Linus Torvalds committed
3657 3658
EXPORT_SYMBOL(kmem_cache_alloc_node);

3659
#ifdef CONFIG_TRACING
3660
void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3661
				  gfp_t flags,
3662 3663
				  int nodeid,
				  size_t size)
3664
{
3665 3666
	void *ret;

3667
	ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3668 3669

	kasan_kmalloc(cachep, ret, size, flags);
3670
	trace_kmalloc_node(_RET_IP_, ret,
3671
			   size, cachep->size,
3672 3673
			   flags, nodeid);
	return ret;
3674
}
3675
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3676 3677
#endif

3678
static __always_inline void *
3679
__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3680
{
3681
	struct kmem_cache *cachep;
3682
	void *ret;
3683

3684
	cachep = kmalloc_slab(size, flags);
3685 3686
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3687
	ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3688
	kasan_kmalloc(cachep, ret, size, flags);
3689 3690

	return ret;
3691
}
3692 3693 3694

void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3695
	return __do_kmalloc_node(size, flags, node, _RET_IP_);
3696
}
3697
EXPORT_SYMBOL(__kmalloc_node);
3698 3699

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3700
		int node, unsigned long caller)
3701
{
3702
	return __do_kmalloc_node(size, flags, node, caller);
3703 3704 3705
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#endif /* CONFIG_NUMA */
Linus Torvalds's avatar
Linus Torvalds committed
3706 3707

/**
3708
 * __do_kmalloc - allocate memory
Linus Torvalds's avatar
Linus Torvalds committed
3709
 * @size: how many bytes of memory are required.
3710
 * @flags: the type of memory to allocate (see kmalloc).
3711
 * @caller: function caller for debug tracking of the caller
Linus Torvalds's avatar
Linus Torvalds committed
3712
 */
3713
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3714
					  unsigned long caller)
Linus Torvalds's avatar
Linus Torvalds committed
3715
{
3716
	struct kmem_cache *cachep;
3717
	void *ret;
Linus Torvalds's avatar
Linus Torvalds committed
3718

3719
	cachep = kmalloc_slab(size, flags);
3720 3721
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3722
	ret = slab_alloc(cachep, flags, caller);
3723

3724
	kasan_kmalloc(cachep, ret, size, flags);
3725
	trace_kmalloc(caller, ret,
3726
		      size, cachep->size, flags);
3727 3728

	return ret;
3729 3730 3731 3732
}

void *__kmalloc(size_t size, gfp_t flags)
{
3733
	return __do_kmalloc(size, flags, _RET_IP_);
Linus Torvalds's avatar
Linus Torvalds committed
3734 3735 3736
}
EXPORT_SYMBOL(__kmalloc);

3737
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3738
{
3739
	return __do_kmalloc(size, flags, caller);
3740 3741
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3742

Linus Torvalds's avatar
Linus Torvalds committed
3743 3744 3745 3746 3747 3748 3749 3750
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3751
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
3752 3753
{
	unsigned long flags;
3754 3755 3756
	cachep = cache_from_obj(cachep, objp);
	if (!cachep)
		return;
Linus Torvalds's avatar
Linus Torvalds committed
3757 3758

	local_irq_save(flags);
3759
	debug_check_no_locks_freed(objp, cachep->object_size);
3760
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3761
		debug_check_no_obj_freed(objp, cachep->object_size);
3762
	__cache_free(cachep, objp, _RET_IP_);
Linus Torvalds's avatar
Linus Torvalds committed
3763
	local_irq_restore(flags);
3764

3765
	trace_kmem_cache_free(_RET_IP_, objp);
Linus Torvalds's avatar
Linus Torvalds committed
3766 3767 3768
}
EXPORT_SYMBOL(kmem_cache_free);

3769 3770 3771 3772 3773 3774 3775 3776 3777
void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
{
	struct kmem_cache *s;
	size_t i;

	local_irq_disable();
	for (i = 0; i < size; i++) {
		void *objp = p[i];

3778 3779 3780 3781
		if (!orig_s) /* called via kfree_bulk */
			s = virt_to_cache(objp);
		else
			s = cache_from_obj(orig_s, objp);
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794

		debug_check_no_locks_freed(objp, s->object_size);
		if (!(s->flags & SLAB_DEBUG_OBJECTS))
			debug_check_no_obj_freed(objp, s->object_size);

		__cache_free(s, objp, _RET_IP_);
	}
	local_irq_enable();

	/* FIXME: add tracing */
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

Linus Torvalds's avatar
Linus Torvalds committed
3795 3796 3797 3798
/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3799 3800
 * If @objp is NULL, no operation is performed.
 *
Linus Torvalds's avatar
Linus Torvalds committed
3801 3802 3803 3804 3805
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3806
	struct kmem_cache *c;
Linus Torvalds's avatar
Linus Torvalds committed
3807 3808
	unsigned long flags;

3809 3810
	trace_kfree(_RET_IP_, objp);

3811
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
Linus Torvalds's avatar
Linus Torvalds committed
3812 3813 3814
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3815
	c = virt_to_cache(objp);
3816 3817 3818
	debug_check_no_locks_freed(objp, c->object_size);

	debug_check_no_obj_freed(objp, c->object_size);
3819
	__cache_free(c, (void *)objp, _RET_IP_);
Linus Torvalds's avatar
Linus Torvalds committed
3820 3821 3822 3823
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3824
/*
3825
 * This initializes kmem_cache_node or resizes various caches for all nodes.
3826
 */
3827
static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3828
{
3829
	int ret;
3830
	int node;
3831
	struct kmem_cache_node *n;
3832

3833
	for_each_online_node(node) {
3834 3835
		ret = setup_kmem_cache_node(cachep, node, gfp, true);
		if (ret)
3836 3837 3838
			goto fail;

	}
3839

3840
	return 0;
3841

Andrew Morton's avatar
Andrew Morton committed
3842
fail:
3843
	if (!cachep->list.next) {
3844 3845 3846
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
3847 3848
			n = get_node(cachep, node);
			if (n) {
3849 3850 3851
				kfree(n->shared);
				free_alien_cache(n->alien);
				kfree(n);
3852
				cachep->node[node] = NULL;
3853 3854 3855 3856
			}
			node--;
		}
	}
3857
	return -ENOMEM;
3858 3859
}

3860
/* Always called with the slab_mutex held */
3861
static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3862
				int batchcount, int shared, gfp_t gfp)
Linus Torvalds's avatar
Linus Torvalds committed
3863
{
3864 3865
	struct array_cache __percpu *cpu_cache, *prev;
	int cpu;
Linus Torvalds's avatar
Linus Torvalds committed
3866

3867 3868
	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
	if (!cpu_cache)
3869 3870
		return -ENOMEM;

3871 3872 3873
	prev = cachep->cpu_cache;
	cachep->cpu_cache = cpu_cache;
	kick_all_cpus_sync();
3874

Linus Torvalds's avatar
Linus Torvalds committed
3875 3876 3877
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3878
	cachep->shared = shared;
Linus Torvalds's avatar
Linus Torvalds committed
3879

3880
	if (!prev)
3881
		goto setup_node;
3882 3883

	for_each_online_cpu(cpu) {
3884
		LIST_HEAD(list);
3885 3886
		int node;
		struct kmem_cache_node *n;
3887
		struct array_cache *ac = per_cpu_ptr(prev, cpu);
3888

3889
		node = cpu_to_mem(cpu);
3890 3891
		n = get_node(cachep, node);
		spin_lock_irq(&n->list_lock);
3892
		free_block(cachep, ac->entry, ac->avail, node, &list);
3893
		spin_unlock_irq(&n->list_lock);
3894
		slabs_destroy(cachep, &list);
Linus Torvalds's avatar
Linus Torvalds committed
3895
	}
3896 3897
	free_percpu(prev);

3898 3899
setup_node:
	return setup_kmem_cache_nodes(cachep, gfp);
Linus Torvalds's avatar
Linus Torvalds committed
3900 3901
}

3902 3903 3904 3905
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared, gfp_t gfp)
{
	int ret;
3906
	struct kmem_cache *c;
3907 3908 3909 3910 3911 3912 3913 3914 3915

	ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);

	if (slab_state < FULL)
		return ret;

	if ((ret < 0) || !is_root_cache(cachep))
		return ret;

3916 3917 3918 3919
	lockdep_assert_held(&slab_mutex);
	for_each_memcg_cache(c, cachep) {
		/* return value determined by the root cache only */
		__do_tune_cpucache(c, limit, batchcount, shared, gfp);
3920 3921 3922 3923 3924
	}

	return ret;
}

3925
/* Called with slab_mutex held always */
3926
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
Linus Torvalds's avatar
Linus Torvalds committed
3927 3928
{
	int err;
3929 3930 3931 3932
	int limit = 0;
	int shared = 0;
	int batchcount = 0;

3933
	err = cache_random_seq_create(cachep, cachep->num, gfp);
3934 3935 3936
	if (err)
		goto end;

3937 3938 3939 3940 3941 3942
	if (!is_root_cache(cachep)) {
		struct kmem_cache *root = memcg_root_cache(cachep);
		limit = root->limit;
		shared = root->shared;
		batchcount = root->batchcount;
	}
Linus Torvalds's avatar
Linus Torvalds committed
3943

3944 3945
	if (limit && shared && batchcount)
		goto skip_setup;
Andrew Morton's avatar
Andrew Morton committed
3946 3947
	/*
	 * The head array serves three purposes:
Linus Torvalds's avatar
Linus Torvalds committed
3948 3949
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
Andrew Morton's avatar
Andrew Morton committed
3950
	 * - reduce the number of linked list operations on the slab and
Linus Torvalds's avatar
Linus Torvalds committed
3951 3952 3953 3954
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3955
	if (cachep->size > 131072)
Linus Torvalds's avatar
Linus Torvalds committed
3956
		limit = 1;
3957
	else if (cachep->size > PAGE_SIZE)
Linus Torvalds's avatar
Linus Torvalds committed
3958
		limit = 8;
3959
	else if (cachep->size > 1024)
Linus Torvalds's avatar
Linus Torvalds committed
3960
		limit = 24;
3961
	else if (cachep->size > 256)
Linus Torvalds's avatar
Linus Torvalds committed
3962 3963 3964 3965
		limit = 54;
	else
		limit = 120;

Andrew Morton's avatar
Andrew Morton committed
3966 3967
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
Linus Torvalds's avatar
Linus Torvalds committed
3968 3969 3970 3971 3972 3973 3974 3975
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3976
	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
Linus Torvalds's avatar
Linus Torvalds committed
3977 3978 3979
		shared = 8;

#if DEBUG
Andrew Morton's avatar
Andrew Morton committed
3980 3981 3982
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
Linus Torvalds's avatar
Linus Torvalds committed
3983 3984 3985 3986
	 */
	if (limit > 32)
		limit = 32;
#endif
3987 3988 3989
	batchcount = (limit + 1) / 2;
skip_setup:
	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3990
end:
Linus Torvalds's avatar
Linus Torvalds committed
3991
	if (err)
3992
		pr_err("enable_cpucache failed for %s, error %d\n",
3993
		       cachep->name, -err);
3994
	return err;
Linus Torvalds's avatar
Linus Torvalds committed
3995 3996
}

3997
/*
3998 3999
 * Drain an array if it contains any elements taking the node lock only if
 * necessary. Note that the node listlock also protects the array_cache
4000
 * if drain_array() is used on the shared array.
4001
 */
4002
static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4003
			 struct array_cache *ac, int node)
Linus Torvalds's avatar
Linus Torvalds committed
4004
{
4005
	LIST_HEAD(list);
4006 4007 4008

	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
	check_mutex_acquired();
Linus Torvalds's avatar
Linus Torvalds committed
4009

4010 4011
	if (!ac || !ac->avail)
		return;
4012 4013

	if (ac->touched) {
Linus Torvalds's avatar
Linus Torvalds committed
4014
		ac->touched = 0;
4015
		return;
Linus Torvalds's avatar
Linus Torvalds committed
4016
	}
4017 4018 4019 4020 4021 4022

	spin_lock_irq(&n->list_lock);
	drain_array_locked(cachep, ac, node, false, &list);
	spin_unlock_irq(&n->list_lock);

	slabs_destroy(cachep, &list);
Linus Torvalds's avatar
Linus Torvalds committed
4023 4024 4025 4026
}

/**
 * cache_reap - Reclaim memory from caches.
4027
 * @w: work descriptor
Linus Torvalds's avatar
Linus Torvalds committed
4028 4029 4030 4031 4032 4033
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
Andrew Morton's avatar
Andrew Morton committed
4034 4035
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
Linus Torvalds's avatar
Linus Torvalds committed
4036
 */
4037
static void cache_reap(struct work_struct *w)
Linus Torvalds's avatar
Linus Torvalds committed
4038
{
4039
	struct kmem_cache *searchp;
4040
	struct kmem_cache_node *n;
4041
	int node = numa_mem_id();
4042
	struct delayed_work *work = to_delayed_work(w);
Linus Torvalds's avatar
Linus Torvalds committed
4043

4044
	if (!mutex_trylock(&slab_mutex))
Linus Torvalds's avatar
Linus Torvalds committed
4045
		/* Give up. Setup the next iteration. */
4046
		goto out;
Linus Torvalds's avatar
Linus Torvalds committed
4047

4048
	list_for_each_entry(searchp, &slab_caches, list) {
Linus Torvalds's avatar
Linus Torvalds committed
4049 4050
		check_irq_on();

4051
		/*
4052
		 * We only take the node lock if absolutely necessary and we
4053 4054 4055
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4056
		n = get_node(searchp, node);
4057

4058
		reap_alien(searchp, n);
Linus Torvalds's avatar
Linus Torvalds committed
4059

4060
		drain_array(searchp, n, cpu_cache_get(searchp), node);
Linus Torvalds's avatar
Linus Torvalds committed
4061

4062 4063 4064 4065
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4066
		if (time_after(n->next_reap, jiffies))
4067
			goto next;
Linus Torvalds's avatar
Linus Torvalds committed
4068

4069
		n->next_reap = jiffies + REAPTIMEOUT_NODE;
Linus Torvalds's avatar
Linus Torvalds committed
4070

4071
		drain_array(searchp, n, n->shared, node);
Linus Torvalds's avatar
Linus Torvalds committed
4072

4073 4074
		if (n->free_touched)
			n->free_touched = 0;
4075 4076
		else {
			int freed;
Linus Torvalds's avatar
Linus Torvalds committed
4077

4078
			freed = drain_freelist(searchp, n, (n->free_limit +
4079 4080 4081
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4082
next:
Linus Torvalds's avatar
Linus Torvalds committed
4083 4084 4085
		cond_resched();
	}
	check_irq_on();
4086
	mutex_unlock(&slab_mutex);
4087
	next_reap_node();
4088
out:
Andrew Morton's avatar
Andrew Morton committed
4089
	/* Set up the next iteration */
4090
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
Linus Torvalds's avatar
Linus Torvalds committed
4091 4092
}

4093
#ifdef CONFIG_SLABINFO
4094
void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
Linus Torvalds's avatar
Linus Torvalds committed
4095
{
4096
	unsigned long active_objs, num_objs, active_slabs;
4097 4098
	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
	unsigned long free_slabs = 0;
4099
	int node;
4100
	struct kmem_cache_node *n;
Linus Torvalds's avatar
Linus Torvalds committed
4101

4102
	for_each_kmem_cache_node(cachep, node, n) {
4103
		check_irq_on();
4104
		spin_lock_irq(&n->list_lock);
4105

4106 4107
		total_slabs += n->total_slabs;
		free_slabs += n->free_slabs;
4108
		free_objs += n->free_objects;
4109

4110 4111
		if (n->shared)
			shared_avail += n->shared->avail;
4112

4113
		spin_unlock_irq(&n->list_lock);
Linus Torvalds's avatar
Linus Torvalds committed
4114
	}
4115 4116
	num_objs = total_slabs * cachep->num;
	active_slabs = total_slabs - free_slabs;
4117
	active_objs = num_objs - free_objs;
Linus Torvalds's avatar
Linus Torvalds committed
4118

4119 4120 4121
	sinfo->active_objs = active_objs;
	sinfo->num_objs = num_objs;
	sinfo->active_slabs = active_slabs;
4122
	sinfo->num_slabs = total_slabs;
4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
	sinfo->shared_avail = shared_avail;
	sinfo->limit = cachep->limit;
	sinfo->batchcount = cachep->batchcount;
	sinfo->shared = cachep->shared;
	sinfo->objects_per_slab = cachep->num;
	sinfo->cache_order = cachep->gfporder;
}

void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
{
Linus Torvalds's avatar
Linus Torvalds committed
4133
#if STATS
4134
	{			/* node stats */
Linus Torvalds's avatar
Linus Torvalds committed
4135 4136 4137 4138 4139 4140 4141
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4142
		unsigned long node_frees = cachep->node_frees;
4143
		unsigned long overflows = cachep->node_overflow;
Linus Torvalds's avatar
Linus Torvalds committed
4144

Joe Perches's avatar
Joe Perches committed
4145
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
Joe Perches's avatar
Joe Perches committed
4146 4147 4148
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
Linus Torvalds's avatar
Linus Torvalds committed
4149 4150 4151 4152 4153 4154 4155 4156 4157
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4158
			   allochit, allocmiss, freehit, freemiss);
Linus Torvalds's avatar
Linus Torvalds committed
4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
	}
#endif
}

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4171
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4172
		       size_t count, loff_t *ppos)
Linus Torvalds's avatar
Linus Torvalds committed
4173
{
4174
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
Linus Torvalds's avatar
Linus Torvalds committed
4175
	int limit, batchcount, shared, res;
4176
	struct kmem_cache *cachep;
4177

Linus Torvalds's avatar
Linus Torvalds committed
4178 4179 4180 4181
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
4182
	kbuf[MAX_SLABINFO_WRITE] = '\0';
Linus Torvalds's avatar
Linus Torvalds committed
4183 4184 4185 4186 4187 4188 4189 4190 4191 4192

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
4193
	mutex_lock(&slab_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
4194
	res = -EINVAL;
4195
	list_for_each_entry(cachep, &slab_caches, list) {
Linus Torvalds's avatar
Linus Torvalds committed
4196
		if (!strcmp(cachep->name, kbuf)) {
Andrew Morton's avatar
Andrew Morton committed
4197 4198
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4199
				res = 0;
Linus Torvalds's avatar
Linus Torvalds committed
4200
			} else {
4201
				res = do_tune_cpucache(cachep, limit,
4202 4203
						       batchcount, shared,
						       GFP_KERNEL);
Linus Torvalds's avatar
Linus Torvalds committed
4204 4205 4206 4207
			}
			break;
		}
	}
4208
	mutex_unlock(&slab_mutex);
Linus Torvalds's avatar
Linus Torvalds committed
4209 4210 4211 4212
	if (res >= 0)
		res = count;
	return res;
}
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245

#ifdef CONFIG_DEBUG_SLAB_LEAK

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

4246 4247
static void handle_slab(unsigned long *n, struct kmem_cache *c,
						struct page *page)
4248 4249
{
	void *p;
4250 4251
	int i, j;
	unsigned long v;
4252

4253 4254
	if (n[0] == n[1])
		return;
4255
	for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
		bool active = true;

		for (j = page->active; j < c->num; j++) {
			if (get_free_obj(page, j) == i) {
				active = false;
				break;
			}
		}

		if (!active)
4266
			continue;
4267

4268 4269 4270 4271 4272 4273 4274 4275 4276 4277
		/*
		 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
		 * mapping is established when actual object allocation and
		 * we could mistakenly access the unmapped object in the cpu
		 * cache.
		 */
		if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
			continue;

		if (!add_caller(n, v))
4278 4279 4280 4281 4282 4283 4284 4285
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4286
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4287

4288
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4289
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4290
		if (modname[0])
4291 4292 4293 4294 4295 4296 4297 4298 4299
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4300
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4301
	struct page *page;
4302
	struct kmem_cache_node *n;
4303
	const char *name;
4304
	unsigned long *x = m->private;
4305 4306 4307 4308 4309 4310 4311 4312
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
	/*
	 * Set store_user_clean and start to grab stored user information
	 * for all objects on this cache. If some alloc/free requests comes
	 * during the processing, information would be wrong so restart
	 * whole processing.
	 */
	do {
		set_store_user_clean(cachep);
		drain_cpu_caches(cachep);

		x[1] = 0;
4324

4325
		for_each_kmem_cache_node(cachep, node, n) {
4326

4327 4328
			check_irq_on();
			spin_lock_irq(&n->list_lock);
4329

4330 4331 4332 4333 4334 4335 4336
			list_for_each_entry(page, &n->slabs_full, lru)
				handle_slab(x, cachep, page);
			list_for_each_entry(page, &n->slabs_partial, lru)
				handle_slab(x, cachep, page);
			spin_unlock_irq(&n->list_lock);
		}
	} while (!is_store_user_clean(cachep));
4337 4338

	name = cachep->name;
4339
	if (x[0] == x[1]) {
4340
		/* Increase the buffer size */
4341
		mutex_unlock(&slab_mutex);
4342
		m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4343 4344
		if (!m->private) {
			/* Too bad, we are really out */
4345
			m->private = x;
4346
			mutex_lock(&slab_mutex);
4347 4348
			return -ENOMEM;
		}
4349 4350
		*(unsigned long *)m->private = x[0] * 2;
		kfree(x);
4351
		mutex_lock(&slab_mutex);
4352 4353 4354 4355
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
4356 4357 4358
	for (i = 0; i < x[1]; i++) {
		seq_printf(m, "%s: %lu ", name, x[2*i+3]);
		show_symbol(m, x[2*i+2]);
4359 4360
		seq_putc(m, '\n');
	}
4361

4362 4363 4364
	return 0;
}

4365
static const struct seq_operations slabstats_op = {
4366
	.start = slab_start,
4367 4368
	.next = slab_next,
	.stop = slab_stop,
4369 4370
	.show = leaks_show,
};
4371 4372 4373

static int slabstats_open(struct inode *inode, struct file *file)
{
4374 4375 4376 4377 4378 4379 4380 4381 4382
	unsigned long *n;

	n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
	if (!n)
		return -ENOMEM;

	*n = PAGE_SIZE / (2 * sizeof(unsigned long));

	return 0;
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4397
#endif
4398 4399 4400
	return 0;
}
module_init(slab_proc_init);
Linus Torvalds's avatar
Linus Torvalds committed
4401 4402
#endif

4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
#ifdef CONFIG_HARDENED_USERCOPY
/*
 * Rejects objects that are incorrectly sized.
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
const char *__check_heap_object(const void *ptr, unsigned long n,
				struct page *page)
{
	struct kmem_cache *cachep;
	unsigned int objnr;
	unsigned long offset;

	/* Find and validate object. */
	cachep = page->slab_cache;
	objnr = obj_to_index(cachep, page, (void *)ptr);
	BUG_ON(objnr >= cachep->num);

	/* Find offset within object. */
	offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);

	/* Allow address range falling entirely within object size. */
	if (offset <= cachep->object_size && n <= cachep->object_size - offset)
		return NULL;

	return cachep->name;
}
#endif /* CONFIG_HARDENED_USERCOPY */

4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
Pekka Enberg's avatar
Pekka Enberg committed
4445
size_t ksize(const void *objp)
Linus Torvalds's avatar
Linus Torvalds committed
4446
{
4447 4448
	size_t size;

4449 4450
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4451
		return 0;
Linus Torvalds's avatar
Linus Torvalds committed
4452

4453 4454 4455 4456
	size = virt_to_cache(objp)->object_size;
	/* We assume that ksize callers could use the whole allocated area,
	 * so we need to unpoison this area.
	 */
4457
	kasan_unpoison_shadow(objp, size);
4458 4459

	return size;
Linus Torvalds's avatar
Linus Torvalds committed
4460
}
4461
EXPORT_SYMBOL(ksize);