slub.c 128 KB
Newer Older
Christoph Lameter's avatar
Christoph Lameter committed
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
Christoph Lameter's avatar
Christoph Lameter committed
7
 *
Christoph Lameter's avatar
Christoph Lameter committed
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
Christoph Lameter's avatar
Christoph Lameter committed
10 11 12
 */

#include <linux/mm.h>
Nick Piggin's avatar
Nick Piggin committed
13
#include <linux/swap.h> /* struct reclaim_state */
Christoph Lameter's avatar
Christoph Lameter committed
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include <linux/proc_fs.h>
Christoph Lameter's avatar
Christoph Lameter committed
20
#include <linux/seq_file.h>
21
#include <linux/kmemcheck.h>
Christoph Lameter's avatar
Christoph Lameter committed
22 23 24 25
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
26
#include <linux/debugobjects.h>
Christoph Lameter's avatar
Christoph Lameter committed
27
#include <linux/kallsyms.h>
28
#include <linux/memory.h>
Roman Zippel's avatar
Roman Zippel committed
29
#include <linux/math64.h>
Akinobu Mita's avatar
Akinobu Mita committed
30
#include <linux/fault-inject.h>
31
#include <linux/stacktrace.h>
Christoph Lameter's avatar
Christoph Lameter committed
32

33 34
#include <trace/events/kmem.h>

Christoph Lameter's avatar
Christoph Lameter committed
35 36
/*
 * Lock order:
37 38 39
 *   1. slub_lock (Global Semaphore)
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
Christoph Lameter's avatar
Christoph Lameter committed
40
 *
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
 *   slub_lock
 *
 *   The role of the slub_lock is to protect the list of all the slabs
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
Christoph Lameter's avatar
Christoph Lameter committed
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
Christoph Lameter's avatar
Christoph Lameter committed
78 79
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
Christoph Lameter's avatar
Christoph Lameter committed
80
 * freed then the slab will show up again on the partial lists.
Christoph Lameter's avatar
Christoph Lameter committed
81 82
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
Christoph Lameter's avatar
Christoph Lameter committed
83 84 85 86 87 88 89
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
90 91 92 93 94 95 96 97 98 99 100 101
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
102
 * 			freelist that allows lockless access to
103 104
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
Christoph Lameter's avatar
Christoph Lameter committed
105 106 107
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
108
 * 			the fast path and disables lockless freelists.
Christoph Lameter's avatar
Christoph Lameter committed
109 110
 */

111 112 113 114 115
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
		SLAB_TRACE | SLAB_DEBUG_FREE)

static inline int kmem_cache_debug(struct kmem_cache *s)
{
116
#ifdef CONFIG_SLUB_DEBUG
117
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
118
#else
119
	return 0;
120
#endif
121
}
122

Christoph Lameter's avatar
Christoph Lameter committed
123 124 125 126 127 128 129 130 131 132 133
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

134 135 136
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

137 138 139 140
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
141
#define MIN_PARTIAL 5
Christoph Lameter's avatar
Christoph Lameter committed
142

143 144 145 146 147 148 149
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
 * sort the partial list by the number of objects in the.
 */
#define MAX_PARTIAL 10

Christoph Lameter's avatar
Christoph Lameter committed
150 151
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
Christoph Lameter's avatar
Christoph Lameter committed
152

153
/*
154 155 156
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
157
 */
158
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
159

Christoph Lameter's avatar
Christoph Lameter committed
160 161 162 163
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
164 165
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
		SLAB_FAILSLAB)
Christoph Lameter's avatar
Christoph Lameter committed
166 167

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
168
		SLAB_CACHE_DMA | SLAB_NOTRACK)
Christoph Lameter's avatar
Christoph Lameter committed
169

170 171
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
172
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
173

Christoph Lameter's avatar
Christoph Lameter committed
174
/* Internal SLUB flags */
Christoph Lameter's avatar
Christoph Lameter committed
175
#define __OBJECT_POISON		0x80000000UL /* Poison object */
176
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
Christoph Lameter's avatar
Christoph Lameter committed
177 178 179 180 181 182 183 184 185

static int kmem_size = sizeof(struct kmem_cache);

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

static enum {
	DOWN,		/* No slab functionality available */
186
	PARTIAL,	/* Kmem_cache_node works */
Christoph Lameter's avatar
Christoph Lameter committed
187
	UP,		/* Everything works but does not show up in sysfs */
Christoph Lameter's avatar
Christoph Lameter committed
188 189 190 191 192
	SYSFS		/* Sysfs up */
} slab_state = DOWN;

/* A list of all slab caches on the system */
static DECLARE_RWSEM(slub_lock);
Adrian Bunk's avatar
Adrian Bunk committed
193
static LIST_HEAD(slab_caches);
Christoph Lameter's avatar
Christoph Lameter committed
194

195 196 197
/*
 * Tracking user of a slab.
 */
198
#define TRACK_ADDRS_COUNT 16
199
struct track {
200
	unsigned long addr;	/* Called from address */
201 202 203
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
204 205 206 207 208 209 210
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

211
#ifdef CONFIG_SYSFS
Christoph Lameter's avatar
Christoph Lameter committed
212 213 214
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
215

Christoph Lameter's avatar
Christoph Lameter committed
216
#else
217 218 219
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
220 221
static inline void sysfs_slab_remove(struct kmem_cache *s)
{
222
	kfree(s->name);
223 224
	kfree(s);
}
225

Christoph Lameter's avatar
Christoph Lameter committed
226 227
#endif

228
static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 230
{
#ifdef CONFIG_SLUB_STATS
231
	__this_cpu_inc(s->cpu_slab->stat[si]);
232 233 234
#endif
}

Christoph Lameter's avatar
Christoph Lameter committed
235 236 237 238 239 240 241 242 243 244 245 246 247 248
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

int slab_is_available(void)
{
	return slab_state >= UP;
}

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
	return s->node[node];
}

Christoph Lameter's avatar
Christoph Lameter committed
249
/* Verify that a pointer has an address that is valid within a slab page */
250 251 252 253 254
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

255
	if (!object)
256 257
		return 1;

258
	base = page_address(page);
259
	if (object < base || object >= base + page->objects * s->size ||
260 261 262 263 264 265 266
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

267 268 269 270 271
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

272 273 274 275 276 277 278 279 280 281 282 283
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

284 285 286 287 288 289
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
290 291
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
292 293 294 295 296 297 298 299
			__p += (__s)->size)

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->objsize;

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

324 325 326 327 328
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

329
static inline struct kmem_cache_order_objects oo_make(int order,
330
		unsigned long size, int reserved)
331 332
{
	struct kmem_cache_order_objects x = {
333
		(order << OO_SHIFT) + order_objects(order, size, reserved)
334 335 336 337 338 339 340
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
341
	return x.x >> OO_SHIFT;
342 343 344 345
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
346
	return x.x & OO_MASK;
347 348
}

349 350 351 352 353 354 355 356 357 358 359 360 361
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	__bit_spin_unlock(PG_locked, &page->flags);
}

362 363 364 365 366 367 368 369 370
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
#ifdef CONFIG_CMPXCHG_DOUBLE
	if (s->flags & __CMPXCHG_DOUBLE) {
371
		if (cmpxchg_double(&page->freelist, &page->counters,
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
		slab_lock(page);
		if (page->freelist == freelist_old && page->counters == counters_old) {
			page->freelist = freelist_new;
			page->counters = counters_new;
			slab_unlock(page);
			return 1;
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

398 399 400 401 402 403 404
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
#ifdef CONFIG_CMPXCHG_DOUBLE
	if (s->flags & __CMPXCHG_DOUBLE) {
405
		if (cmpxchg_double(&page->freelist, &page->counters,
406 407 408 409 410 411
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
412 413 414
		unsigned long flags;

		local_irq_save(flags);
415
		slab_lock(page);
416 417 418
		if (page->freelist == freelist_old && page->counters == counters_old) {
			page->freelist = freelist_new;
			page->counters = counters_new;
419
			slab_unlock(page);
420
			local_irq_restore(flags);
421 422
			return 1;
		}
423
		slab_unlock(page);
424
		local_irq_restore(flags);
425 426 427 428 429 430 431 432 433 434 435 436
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

437
#ifdef CONFIG_SLUB_DEBUG
438 439 440
/*
 * Determine a map of object in use on a page.
 *
441
 * Node listlock must be held to guarantee that the page does
442 443 444 445 446 447 448 449 450 451 452
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

453 454 455
/*
 * Debug settings:
 */
456 457 458
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
459
static int slub_debug;
460
#endif
461 462

static char *slub_debug_slabs;
463
static int disable_higher_order_debug;
464

Christoph Lameter's avatar
Christoph Lameter committed
465 466 467 468 469
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
470 471
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
Christoph Lameter's avatar
Christoph Lameter committed
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
488
			enum track_item alloc, unsigned long addr)
Christoph Lameter's avatar
Christoph Lameter committed
489
{
Akinobu Mita's avatar
Akinobu Mita committed
490
	struct track *p = get_track(s, object, alloc);
Christoph Lameter's avatar
Christoph Lameter committed
491 492

	if (addr) {
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
		save_stack_trace(&trace);

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
Christoph Lameter's avatar
Christoph Lameter committed
511 512
		p->addr = addr;
		p->cpu = smp_processor_id();
513
		p->pid = current->pid;
Christoph Lameter's avatar
Christoph Lameter committed
514 515 516 517 518 519 520
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
521 522 523
	if (!(s->flags & SLAB_STORE_USER))
		return;

524 525
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
Christoph Lameter's avatar
Christoph Lameter committed
526 527 528 529 530 531 532
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

533
	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
534
		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
535 536 537 538 539 540 541 542 543 544
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
			else
				break;
	}
#endif
545 546 547 548 549 550 551 552 553 554 555 556 557
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
558 559
	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
		page, page->objects, page->inuse, page->freelist, page->flags);
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
	printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
Christoph Lameter's avatar
Christoph Lameter committed
576 577
}

578 579 580 581 582 583 584 585 586 587 588 589
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
Christoph Lameter's avatar
Christoph Lameter committed
590 591
{
	unsigned int off;	/* Offset of last byte */
592
	u8 *addr = page_address(page);
593 594 595 596 597 598 599 600 601

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
602
		print_section("Bytes b4 ", p - 16, 16);
Christoph Lameter's avatar
Christoph Lameter committed
603

604 605
	print_section("Object ", p, min_t(unsigned long, s->objsize,
				PAGE_SIZE));
Christoph Lameter's avatar
Christoph Lameter committed
606
	if (s->flags & SLAB_RED_ZONE)
607
		print_section("Redzone ", p + s->objsize,
Christoph Lameter's avatar
Christoph Lameter committed
608 609 610 611 612 613 614
			s->inuse - s->objsize);

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

615
	if (s->flags & SLAB_STORE_USER)
Christoph Lameter's avatar
Christoph Lameter committed
616 617 618 619
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
620
		print_section("Padding ", p + off, s->size - off);
621 622

	dump_stack();
Christoph Lameter's avatar
Christoph Lameter committed
623 624 625 626 627
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
628
	slab_bug(s, "%s", reason);
629
	print_trailer(s, page, object);
Christoph Lameter's avatar
Christoph Lameter committed
630 631
}

632
static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
Christoph Lameter's avatar
Christoph Lameter committed
633 634 635 636
{
	va_list args;
	char buf[100];

637 638
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
Christoph Lameter's avatar
Christoph Lameter committed
639
	va_end(args);
640
	slab_bug(s, "%s", buf);
641
	print_page_info(page);
Christoph Lameter's avatar
Christoph Lameter committed
642 643 644
	dump_stack();
}

645
static void init_object(struct kmem_cache *s, void *object, u8 val)
Christoph Lameter's avatar
Christoph Lameter committed
646 647 648 649 650
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
		memset(p, POISON_FREE, s->objsize - 1);
651
		p[s->objsize - 1] = POISON_END;
Christoph Lameter's avatar
Christoph Lameter committed
652 653 654
	}

	if (s->flags & SLAB_RED_ZONE)
655
		memset(p + s->objsize, val, s->inuse - s->objsize);
Christoph Lameter's avatar
Christoph Lameter committed
656 657
}

658 659 660 661 662 663 664 665 666
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
667
			u8 *start, unsigned int value, unsigned int bytes)
668 669 670 671
{
	u8 *fault;
	u8 *end;

672
	fault = memchr_inv(start, value, bytes);
673 674 675 676 677 678 679 680 681 682 683 684 685 686
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
Christoph Lameter's avatar
Christoph Lameter committed
687 688 689 690 691 692 693 694 695
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
Christoph Lameter's avatar
Christoph Lameter committed
696
 *
Christoph Lameter's avatar
Christoph Lameter committed
697 698 699 700 701
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
 * object + s->objsize
 * 	Padding to reach word boundary. This is also used for Redzoning.
Christoph Lameter's avatar
Christoph Lameter committed
702 703 704
 * 	Padding is extended by another word if Redzoning is enabled and
 * 	objsize == inuse.
 *
Christoph Lameter's avatar
Christoph Lameter committed
705 706 707 708
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
Christoph Lameter's avatar
Christoph Lameter committed
709 710
 * 	Meta data starts here.
 *
Christoph Lameter's avatar
Christoph Lameter committed
711 712
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
Christoph Lameter's avatar
Christoph Lameter committed
713
 * 	C. Padding to reach required alignment boundary or at mininum
Christoph Lameter's avatar
Christoph Lameter committed
714
 * 		one word if debugging is on to be able to detect writes
Christoph Lameter's avatar
Christoph Lameter committed
715 716 717
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
Christoph Lameter's avatar
Christoph Lameter committed
718 719
 *
 * object + s->size
Christoph Lameter's avatar
Christoph Lameter committed
720
 * 	Nothing is used beyond s->size.
Christoph Lameter's avatar
Christoph Lameter committed
721
 *
Christoph Lameter's avatar
Christoph Lameter committed
722 723
 * If slabcaches are merged then the objsize and inuse boundaries are mostly
 * ignored. And therefore no slab options that rely on these boundaries
Christoph Lameter's avatar
Christoph Lameter committed
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

742 743
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
Christoph Lameter's avatar
Christoph Lameter committed
744 745
}

746
/* Check the pad bytes at the end of a slab page */
Christoph Lameter's avatar
Christoph Lameter committed
747 748
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
749 750 751 752 753
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
Christoph Lameter's avatar
Christoph Lameter committed
754 755 756 757

	if (!(s->flags & SLAB_POISON))
		return 1;

758
	start = page_address(page);
759
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
760 761
	end = start + length;
	remainder = length % s->size;
Christoph Lameter's avatar
Christoph Lameter committed
762 763 764
	if (!remainder)
		return 1;

765
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
766 767 768 769 770 771
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
772
	print_section("Padding ", end - remainder, remainder);
773

Eric Dumazet's avatar
Eric Dumazet committed
774
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
775
	return 0;
Christoph Lameter's avatar
Christoph Lameter committed
776 777 778
}

static int check_object(struct kmem_cache *s, struct page *page,
779
					void *object, u8 val)
Christoph Lameter's avatar
Christoph Lameter committed
780 781 782 783 784
{
	u8 *p = object;
	u8 *endobject = object + s->objsize;

	if (s->flags & SLAB_RED_ZONE) {
785
		if (!check_bytes_and_report(s, page, object, "Redzone",
786
			endobject, val, s->inuse - s->objsize))
Christoph Lameter's avatar
Christoph Lameter committed
787 788
			return 0;
	} else {
Ingo Molnar's avatar
Ingo Molnar committed
789 790 791 792
		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
			check_bytes_and_report(s, page, p, "Alignment padding",
				endobject, POISON_INUSE, s->inuse - s->objsize);
		}
Christoph Lameter's avatar
Christoph Lameter committed
793 794 795
	}

	if (s->flags & SLAB_POISON) {
796
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
797 798 799
			(!check_bytes_and_report(s, page, p, "Poison", p,
					POISON_FREE, s->objsize - 1) ||
			 !check_bytes_and_report(s, page, p, "Poison",
800
				p + s->objsize - 1, POISON_END, 1)))
Christoph Lameter's avatar
Christoph Lameter committed
801 802 803 804 805 806 807
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

808
	if (!s->offset && val == SLUB_RED_ACTIVE)
Christoph Lameter's avatar
Christoph Lameter committed
809 810 811 812 813 814 815 816 817 818
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
819
		 * No choice but to zap it and thus lose the remainder
Christoph Lameter's avatar
Christoph Lameter committed
820
		 * of the free objects in this slab. May cause
Christoph Lameter's avatar
Christoph Lameter committed
821
		 * another error because the object count is now wrong.
Christoph Lameter's avatar
Christoph Lameter committed
822
		 */
823
		set_freepointer(s, p, NULL);
Christoph Lameter's avatar
Christoph Lameter committed
824 825 826 827 828 829 830
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
831 832
	int maxobj;

Christoph Lameter's avatar
Christoph Lameter committed
833 834 835
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
836
		slab_err(s, page, "Not a valid slab page");
Christoph Lameter's avatar
Christoph Lameter committed
837 838
		return 0;
	}
839

840
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
841 842 843 844 845 846
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
			s->name, page->objects, maxobj);
		return 0;
	}
	if (page->inuse > page->objects) {
847
		slab_err(s, page, "inuse %u > max %u",
848
			s->name, page->inuse, page->objects);
Christoph Lameter's avatar
Christoph Lameter committed
849 850 851 852 853 854 855 856
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
Christoph Lameter's avatar
Christoph Lameter committed
857 858
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
Christoph Lameter's avatar
Christoph Lameter committed
859 860 861 862
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
863
	void *fp;
Christoph Lameter's avatar
Christoph Lameter committed
864
	void *object = NULL;
865
	unsigned long max_objects;
Christoph Lameter's avatar
Christoph Lameter committed
866

867
	fp = page->freelist;
868
	while (fp && nr <= page->objects) {
Christoph Lameter's avatar
Christoph Lameter committed
869 870 871 872 873 874
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
875
				set_freepointer(s, object, NULL);
Christoph Lameter's avatar
Christoph Lameter committed
876 877
				break;
			} else {
878
				slab_err(s, page, "Freepointer corrupt");
879
				page->freelist = NULL;
880
				page->inuse = page->objects;
881
				slab_fix(s, "Freelist cleared");
Christoph Lameter's avatar
Christoph Lameter committed
882 883 884 885 886 887 888 889 890
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

891
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
892 893
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
894 895 896 897 898 899 900

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
901
	if (page->inuse != page->objects - nr) {
902
		slab_err(s, page, "Wrong object count. Counter is %d but "
903 904
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
905
		slab_fix(s, "Object count adjusted.");
Christoph Lameter's avatar
Christoph Lameter committed
906 907 908 909
	}
	return search == NULL;
}

910 911
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
912 913 914 915 916 917 918 919 920
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
921
			print_section("Object ", (void *)object, s->objsize);
922 923 924 925 926

		dump_stack();
	}
}

927 928 929 930 931 932
/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
{
933
	flags &= gfp_allowed_mask;
934 935 936 937 938 939 940 941
	lockdep_trace_alloc(flags);
	might_sleep_if(flags & __GFP_WAIT);

	return should_failslab(s->objsize, flags, s->flags);
}

static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
{
942
	flags &= gfp_allowed_mask;
943
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
944 945 946 947 948 949 950
	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
}

static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
	/*
	 * Trouble is that we may no longer disable interupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
		kmemcheck_slab_free(s, x, s->objsize);
		debug_check_no_locks_freed(x, s->objsize);
		local_irq_restore(flags);
	}
#endif
966 967
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->objsize);
968 969
}

970
/*
Christoph Lameter's avatar
Christoph Lameter committed
971
 * Tracking of fully allocated slabs for debugging purposes.
972 973
 *
 * list_lock must be held.
974
 */
975 976
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
977
{
978 979 980
	if (!(s->flags & SLAB_STORE_USER))
		return;

981 982 983
	list_add(&page->lru, &n->full);
}

984 985 986
/*
 * list_lock must be held.
 */
987 988 989 990 991 992 993 994
static void remove_full(struct kmem_cache *s, struct page *page)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	list_del(&page->lru);
}

995 996 997 998 999 1000 1001 1002
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1003 1004 1005 1006 1007
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1008
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1009 1010 1011 1012 1013 1014 1015 1016 1017
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1018
	if (n) {
1019
		atomic_long_inc(&n->nr_slabs);
1020 1021
		atomic_long_add(objects, &n->total_objects);
	}
1022
}
1023
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1024 1025 1026 1027
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1028
	atomic_long_sub(objects, &n->total_objects);
1029 1030 1031
}

/* Object debug checks for alloc/free paths */
1032 1033 1034 1035 1036 1037
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1038
	init_object(s, object, SLUB_RED_INACTIVE);
1039 1040 1041
	init_tracking(s, object);
}

1042
static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
1043
					void *object, unsigned long addr)
Christoph Lameter's avatar
Christoph Lameter committed
1044 1045 1046 1047 1048 1049
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1050
		goto bad;
Christoph Lameter's avatar
Christoph Lameter committed
1051 1052
	}

1053
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
Christoph Lameter's avatar
Christoph Lameter committed
1054 1055
		goto bad;

1056 1057 1058 1059
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1060
	init_object(s, object, SLUB_RED_ACTIVE);
Christoph Lameter's avatar
Christoph Lameter committed
1061
	return 1;
1062

Christoph Lameter's avatar
Christoph Lameter committed
1063 1064 1065 1066 1067
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
Christoph Lameter's avatar
Christoph Lameter committed
1068
		 * as used avoids touching the remaining objects.
Christoph Lameter's avatar
Christoph Lameter committed
1069
		 */
1070
		slab_fix(s, "Marking all objects used");
1071
		page->inuse = page->objects;
1072
		page->freelist = NULL;
Christoph Lameter's avatar
Christoph Lameter committed
1073 1074 1075 1076
	}
	return 0;
}

1077 1078
static noinline int free_debug_processing(struct kmem_cache *s,
		 struct page *page, void *object, unsigned long addr)
Christoph Lameter's avatar
Christoph Lameter committed
1079
{
1080 1081 1082 1083
	unsigned long flags;
	int rc = 0;

	local_irq_save(flags);
1084 1085
	slab_lock(page);

Christoph Lameter's avatar
Christoph Lameter committed
1086 1087 1088 1089
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
1090
		slab_err(s, page, "Invalid object pointer 0x%p", object);
Christoph Lameter's avatar
Christoph Lameter committed
1091 1092 1093 1094
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1095
		object_err(s, page, object, "Object already free");
Christoph Lameter's avatar
Christoph Lameter committed
1096 1097 1098
		goto fail;
	}

1099
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1100
		goto out;
Christoph Lameter's avatar
Christoph Lameter committed
1101 1102

	if (unlikely(s != page->slab)) {
Ingo Molnar's avatar
Ingo Molnar committed
1103
		if (!PageSlab(page)) {
1104 1105
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
Ingo Molnar's avatar
Ingo Molnar committed
1106
		} else if (!page->slab) {
Christoph Lameter's avatar
Christoph Lameter committed
1107
			printk(KERN_ERR
1108
				"SLUB <none>: no slab for object 0x%p.\n",
Christoph Lameter's avatar
Christoph Lameter committed
1109
						object);
1110
			dump_stack();
1111
		} else
1112 1113
			object_err(s, page, object,
					"page slab pointer corrupt.");
Christoph Lameter's avatar
Christoph Lameter committed
1114 1115
		goto fail;
	}
1116 1117 1118 1119

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1120
	init_object(s, object, SLUB_RED_INACTIVE);
1121 1122
	rc = 1;
out:
1123
	slab_unlock(page);
1124 1125
	local_irq_restore(flags);
	return rc;
1126

Christoph Lameter's avatar
Christoph Lameter committed
1127
fail:
1128
	slab_fix(s, "Object at 0x%p not freed", object);
1129
	goto out;
Christoph Lameter's avatar
Christoph Lameter committed
1130 1131
}

1132 1133
static int __init setup_slub_debug(char *str)
{
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

1148 1149 1150 1151 1152 1153 1154 1155 1156
	if (tolower(*str) == 'o') {
		/*
		 * Avoid enabling debugging on caches if its minimum order
		 * would increase as a result.
		 */
		disable_higher_order_debug = 1;
		goto out;
	}

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
1167
	for (; *str && *str != ','; str++) {
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1184 1185 1186
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1187 1188
		default:
			printk(KERN_ERR "slub_debug option '%c' "
1189
				"unknown. skipped\n", *str);
1190
		}
1191 1192
	}

1193
check_slabs:
1194 1195
	if (*str == ',')
		slub_debug_slabs = str + 1;
1196
out:
1197 1198 1199 1200 1201
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1202 1203
static unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
1204
	void (*ctor)(void *))
1205 1206
{
	/*
1207
	 * Enable debugging if selected on the kernel commandline.
1208
	 */
1209
	if (slub_debug && (!slub_debug_slabs ||
1210 1211
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
		flags |= slub_debug;
1212 1213

	return flags;
1214 1215
}
#else
1216 1217
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
1218

1219
static inline int alloc_debug_processing(struct kmem_cache *s,
1220
	struct page *page, void *object, unsigned long addr) { return 0; }
1221

1222
static inline int free_debug_processing(struct kmem_cache *s,
1223
	struct page *page, void *object, unsigned long addr) { return 0; }
1224 1225 1226 1227

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1228
			void *object, u8 val) { return 1; }
1229 1230
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1231
static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1232 1233
static inline unsigned long kmem_cache_flags(unsigned long objsize,
	unsigned long flags, const char *name,
1234
	void (*ctor)(void *))
1235 1236 1237
{
	return flags;
}
1238
#define slub_debug 0
1239

1240 1241
#define disable_higher_order_debug 0

1242 1243
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1244 1245
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1246 1247 1248 1249
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1250 1251 1252 1253 1254 1255 1256 1257 1258

static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
							{ return 0; }

static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
		void *object) {}

static inline void slab_free_hook(struct kmem_cache *s, void *x) {}

1259
#endif /* CONFIG_SLUB_DEBUG */
1260

Christoph Lameter's avatar
Christoph Lameter committed
1261 1262 1263
/*
 * Slab allocation and freeing
 */
1264 1265 1266 1267 1268
static inline struct page *alloc_slab_page(gfp_t flags, int node,
					struct kmem_cache_order_objects oo)
{
	int order = oo_order(oo);

1269 1270
	flags |= __GFP_NOTRACK;

1271
	if (node == NUMA_NO_NODE)
1272 1273
		return alloc_pages(flags, order);
	else
1274
		return alloc_pages_exact_node(node, flags, order);
1275 1276
}

Christoph Lameter's avatar
Christoph Lameter committed
1277 1278
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
1279
	struct page *page;
1280
	struct kmem_cache_order_objects oo = s->oo;
1281
	gfp_t alloc_gfp;
Christoph Lameter's avatar
Christoph Lameter committed
1282

1283 1284 1285 1286 1287
	flags &= gfp_allowed_mask;

	if (flags & __GFP_WAIT)
		local_irq_enable();

1288
	flags |= s->allocflags;
1289

1290 1291 1292 1293 1294 1295 1296
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;

	page = alloc_slab_page(alloc_gfp, node, oo);
1297 1298 1299 1300 1301 1302 1303
	if (unlikely(!page)) {
		oo = s->min;
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
		page = alloc_slab_page(flags, node, oo);
Christoph Lameter's avatar
Christoph Lameter committed
1304

1305 1306
		if (page)
			stat(s, ORDER_FALLBACK);
1307
	}
1308

1309 1310 1311 1312 1313 1314
	if (flags & __GFP_WAIT)
		local_irq_disable();

	if (!page)
		return NULL;

1315
	if (kmemcheck_enabled
1316
		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
		int pages = 1 << oo_order(oo);

		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
1329 1330
	}

1331
	page->objects = oo_objects(oo);
Christoph Lameter's avatar
Christoph Lameter committed
1332 1333 1334
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1335
		1 << oo_order(oo));
Christoph Lameter's avatar
Christoph Lameter committed
1336 1337 1338 1339 1340 1341 1342

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
1343
	setup_object_debug(s, page, object);
1344
	if (unlikely(s->ctor))
1345
		s->ctor(object);
Christoph Lameter's avatar
Christoph Lameter committed
1346 1347 1348 1349 1350 1351 1352 1353 1354
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *last;
	void *p;

Christoph Lameter's avatar
Christoph Lameter committed
1355
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
Christoph Lameter's avatar
Christoph Lameter committed
1356

Christoph Lameter's avatar
Christoph Lameter committed
1357 1358
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
Christoph Lameter's avatar
Christoph Lameter committed
1359 1360 1361
	if (!page)
		goto out;

1362
	inc_slabs_node(s, page_to_nid(page), page->objects);
Christoph Lameter's avatar
Christoph Lameter committed
1363 1364 1365 1366 1367 1368
	page->slab = s;
	page->flags |= 1 << PG_slab;

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
1369
		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
Christoph Lameter's avatar
Christoph Lameter committed
1370 1371

	last = start;
1372
	for_each_object(p, s, start, page->objects) {
Christoph Lameter's avatar
Christoph Lameter committed
1373 1374 1375 1376 1377
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1378
	set_freepointer(s, last, NULL);
Christoph Lameter's avatar
Christoph Lameter committed
1379 1380

	page->freelist = start;
1381
	page->inuse = page->objects;
1382
	page->frozen = 1;
Christoph Lameter's avatar
Christoph Lameter committed
1383 1384 1385 1386 1387 1388
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1389 1390
	int order = compound_order(page);
	int pages = 1 << order;
Christoph Lameter's avatar
Christoph Lameter committed
1391

1392
	if (kmem_cache_debug(s)) {
Christoph Lameter's avatar
Christoph Lameter committed
1393 1394 1395
		void *p;

		slab_pad_check(s, page);
1396 1397
		for_each_object(p, s, page_address(page),
						page->objects)
1398
			check_object(s, page, p, SLUB_RED_INACTIVE);
Christoph Lameter's avatar
Christoph Lameter committed
1399 1400
	}

1401
	kmemcheck_free_shadow(page, compound_order(page));
1402

Christoph Lameter's avatar
Christoph Lameter committed
1403 1404 1405
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1406
		-pages);
Christoph Lameter's avatar
Christoph Lameter committed
1407

1408 1409
	__ClearPageSlab(page);
	reset_page_mapcount(page);
Nick Piggin's avatar
Nick Piggin committed
1410 1411
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1412
	__free_pages(page, order);
Christoph Lameter's avatar
Christoph Lameter committed
1413 1414
}

1415 1416 1417
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

Christoph Lameter's avatar
Christoph Lameter committed
1418 1419 1420 1421
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1422 1423 1424 1425 1426
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

Christoph Lameter's avatar
Christoph Lameter committed
1427 1428 1429 1430 1431 1432
	__free_slab(page->slab, page);
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
			head = (void *)&page->lru;
		}
Christoph Lameter's avatar
Christoph Lameter committed
1447 1448 1449 1450 1451 1452 1453 1454

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1455
	dec_slabs_node(s, page_to_nid(page), page->objects);
Christoph Lameter's avatar
Christoph Lameter committed
1456 1457 1458 1459
	free_slab(s, page);
}

/*
1460 1461 1462
 * Management of partially allocated slabs.
 *
 * list_lock must be held.
Christoph Lameter's avatar
Christoph Lameter committed
1463
 */
1464
static inline void add_partial(struct kmem_cache_node *n,
1465
				struct page *page, int tail)
Christoph Lameter's avatar
Christoph Lameter committed
1466
{
Christoph Lameter's avatar
Christoph Lameter committed
1467
	n->nr_partial++;
1468
	if (tail == DEACTIVATE_TO_TAIL)
1469 1470 1471
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
Christoph Lameter's avatar
Christoph Lameter committed
1472 1473
}

1474 1475 1476 1477
/*
 * list_lock must be held.
 */
static inline void remove_partial(struct kmem_cache_node *n,
1478 1479 1480 1481 1482 1483
					struct page *page)
{
	list_del(&page->lru);
	n->nr_partial--;
}

Christoph Lameter's avatar
Christoph Lameter committed
1484
/*
1485 1486
 * Lock slab, remove from the partial list and put the object into the
 * per cpu freelist.
Christoph Lameter's avatar
Christoph Lameter committed
1487
 *
1488 1489
 * Returns a list of objects or NULL if it fails.
 *
Christoph Lameter's avatar
Christoph Lameter committed
1490
 * Must hold list_lock.
Christoph Lameter's avatar
Christoph Lameter committed
1491
 */
1492
static inline void *acquire_slab(struct kmem_cache *s,
1493
		struct kmem_cache_node *n, struct page *page,
1494
		int mode)
Christoph Lameter's avatar
Christoph Lameter committed
1495
{
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
	void *freelist;
	unsigned long counters;
	struct page new;

	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
	do {
		freelist = page->freelist;
		counters = page->counters;
		new.counters = counters;
1509 1510
		if (mode)
			new.inuse = page->objects;
1511 1512 1513 1514

		VM_BUG_ON(new.frozen);
		new.frozen = 1;

1515
	} while (!__cmpxchg_double_slab(s, page,
1516 1517 1518 1519 1520
			freelist, counters,
			NULL, new.counters,
			"lock and freeze"));

	remove_partial(n, page);
1521
	return freelist;
Christoph Lameter's avatar
Christoph Lameter committed
1522 1523
}

1524 1525
static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);

Christoph Lameter's avatar
Christoph Lameter committed
1526
/*
Christoph Lameter's avatar
Christoph Lameter committed
1527
 * Try to allocate a partial slab from a specific node.
Christoph Lameter's avatar
Christoph Lameter committed
1528
 */
1529
static void *get_partial_node(struct kmem_cache *s,
1530
		struct kmem_cache_node *n, struct kmem_cache_cpu *c)
Christoph Lameter's avatar
Christoph Lameter committed
1531
{
1532 1533
	struct page *page, *page2;
	void *object = NULL;
Christoph Lameter's avatar
Christoph Lameter committed
1534 1535 1536 1537

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
Christoph Lameter's avatar
Christoph Lameter committed
1538 1539
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
Christoph Lameter's avatar
Christoph Lameter committed
1540 1541 1542 1543 1544
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1545
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1546
		void *t = acquire_slab(s, n, page, object == NULL);
1547 1548 1549 1550 1551
		int available;

		if (!t)
			break;

1552
		if (!object) {
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
			c->page = page;
			c->node = page_to_nid(page);
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
			available =  page->objects - page->inuse;
		} else {
			page->freelist = t;
			available = put_cpu_partial(s, page, 0);
		}
		if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
			break;

1565
	}
Christoph Lameter's avatar
Christoph Lameter committed
1566
	spin_unlock(&n->list_lock);
1567
	return object;
Christoph Lameter's avatar
Christoph Lameter committed
1568 1569 1570
}

/*
Christoph Lameter's avatar
Christoph Lameter committed
1571
 * Get a page from somewhere. Search in increasing NUMA distances.
Christoph Lameter's avatar
Christoph Lameter committed
1572
 */
1573 1574
static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
		struct kmem_cache_cpu *c)
Christoph Lameter's avatar
Christoph Lameter committed
1575 1576 1577
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1578
	struct zoneref *z;
1579 1580
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1581
	void *object;
Christoph Lameter's avatar
Christoph Lameter committed
1582 1583

	/*
Christoph Lameter's avatar
Christoph Lameter committed
1584 1585 1586 1587
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
Christoph Lameter's avatar
Christoph Lameter committed
1588
	 *
Christoph Lameter's avatar
Christoph Lameter committed
1589 1590 1591 1592
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
Christoph Lameter's avatar
Christoph Lameter committed
1593
	 *
Christoph Lameter's avatar
Christoph Lameter committed
1594
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
Christoph Lameter's avatar
Christoph Lameter committed
1595 1596 1597 1598 1599
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
Christoph Lameter's avatar
Christoph Lameter committed
1600
	 */
1601 1602
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
Christoph Lameter's avatar
Christoph Lameter committed
1603 1604
		return NULL;

1605
	get_mems_allowed();
1606
	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1607
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
Christoph Lameter's avatar
Christoph Lameter committed
1608 1609
		struct kmem_cache_node *n;

1610
		n = get_node(s, zone_to_nid(zone));
Christoph Lameter's avatar
Christoph Lameter committed
1611

1612
		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1613
				n->nr_partial > s->min_partial) {
1614 1615
			object = get_partial_node(s, n, c);
			if (object) {
1616
				put_mems_allowed();
1617
				return object;
1618
			}
Christoph Lameter's avatar
Christoph Lameter committed
1619 1620
		}
	}
1621
	put_mems_allowed();
Christoph Lameter's avatar
Christoph Lameter committed
1622 1623 1624 1625 1626 1627 1628
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1629
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1630
		struct kmem_cache_cpu *c)
Christoph Lameter's avatar
Christoph Lameter committed
1631
{
1632
	void *object;
1633
	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
Christoph Lameter's avatar
Christoph Lameter committed
1634

1635 1636 1637
	object = get_partial_node(s, get_node(s, searchnode), c);
	if (object || node != NUMA_NO_NODE)
		return object;
Christoph Lameter's avatar
Christoph Lameter committed
1638

1639
	return get_any_partial(s, flags, c);
Christoph Lameter's avatar
Christoph Lameter committed
1640 1641
}

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
		printk("due to cpu change %d -> %d\n",
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
		printk("due to cpu running other code. Event %ld->%ld\n",
			tid_to_event(tid), tid_to_event(actual_tid));
	else
		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
			actual_tid, tid, next_tid(tid));
#endif
1698
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1699 1700 1701 1702 1703 1704 1705 1706 1707
}

void init_kmem_cache_cpus(struct kmem_cache *s)
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1708

Christoph Lameter's avatar
Christoph Lameter committed
1709 1710 1711
/*
 * Remove the cpu slab
 */
1712
static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
Christoph Lameter's avatar
Christoph Lameter committed
1713
{
1714
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
1715
	struct page *page = c->page;
1716 1717 1718 1719 1720
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *freelist;
	void *nextfree;
1721
	int tail = DEACTIVATE_TO_HEAD;
1722 1723 1724 1725
	struct page new;
	struct page old;

	if (page->freelist) {
1726
		stat(s, DEACTIVATE_REMOTE_FREES);
1727
		tail = DEACTIVATE_TO_TAIL;
1728 1729 1730 1731 1732 1733 1734
	}

	c->tid = next_tid(c->tid);
	c->page = NULL;
	freelist = c->freelist;
	c->freelist = NULL;

1735
	/*
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
			VM_BUG_ON(!new.frozen);

1755
		} while (!__cmpxchg_double_slab(s, page,
1756 1757 1758 1759 1760 1761 1762
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1763
	/*
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1776
	 */
1777
redo:
1778

1779 1780 1781
	old.freelist = page->freelist;
	old.counters = page->counters;
	VM_BUG_ON(!old.frozen);
1782

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1794
	if (!new.inuse && n->nr_partial > s->min_partial)
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1827

1828 1829 1830 1831 1832
			remove_full(s, page);

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1833
			stat(s, tail);
1834 1835

		} else if (m == M_FULL) {
1836

1837 1838 1839 1840 1841 1842 1843
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1844
	if (!__cmpxchg_double_slab(s, page,
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1857
	}
Christoph Lameter's avatar
Christoph Lameter committed
1858 1859
}

1860 1861 1862 1863 1864
/* Unfreeze all the cpu partial slabs */
static void unfreeze_partials(struct kmem_cache *s)
{
	struct kmem_cache_node *n = NULL;
	struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
1865
	struct page *page, *discard_page = NULL;
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886

	while ((page = c->partial)) {
		enum slab_modes { M_PARTIAL, M_FREE };
		enum slab_modes l, m;
		struct page new;
		struct page old;

		c->partial = page->next;
		l = M_FREE;

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
			VM_BUG_ON(!old.frozen);

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1887
			if (!new.inuse && (!n || n->nr_partial > s->min_partial))
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
				m = M_FREE;
			else {
				struct kmem_cache_node *n2 = get_node(s,
							page_to_nid(page));

				m = M_PARTIAL;
				if (n != n2) {
					if (n)
						spin_unlock(&n->list_lock);

					n = n2;
					spin_lock(&n->list_lock);
				}
			}

			if (l != m) {
				if (l == M_PARTIAL)
					remove_partial(n, page);
				else
1907 1908
					add_partial(n, page,
						DEACTIVATE_TO_TAIL);
1909 1910 1911 1912 1913 1914 1915 1916 1917 1918

				l = m;
			}

		} while (!cmpxchg_double_slab(s, page,
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

		if (m == M_FREE) {
1919 1920
			page->next = discard_page;
			discard_page = page;
1921 1922 1923 1924 1925
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
1926 1927 1928 1929 1930 1931 1932 1933 1934

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
{
	struct page *oldpage;
	int pages;
	int pobjects;

	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
				unfreeze_partials(s);
				local_irq_restore(flags);
				pobjects = 0;
				pages = 0;
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

1981
	} while (irqsafe_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
1982 1983 1984 1985
	stat(s, CPU_PARTIAL_FREE);
	return pobjects;
}

1986
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
Christoph Lameter's avatar
Christoph Lameter committed
1987
{
1988
	stat(s, CPUSLAB_FLUSH);
1989
	deactivate_slab(s, c);
Christoph Lameter's avatar
Christoph Lameter committed
1990 1991 1992 1993
}

/*
 * Flush cpu slab.
Christoph Lameter's avatar
Christoph Lameter committed
1994
 *
Christoph Lameter's avatar
Christoph Lameter committed
1995 1996
 * Called from IPI handler with interrupts disabled.
 */
1997
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
Christoph Lameter's avatar
Christoph Lameter committed
1998
{
1999
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
Christoph Lameter's avatar
Christoph Lameter committed
2000

2001 2002 2003 2004 2005 2006
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

		unfreeze_partials(s);
	}
Christoph Lameter's avatar
Christoph Lameter committed
2007 2008 2009 2010 2011 2012
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2013
	__flush_cpu_slab(s, smp_processor_id());
Christoph Lameter's avatar
Christoph Lameter committed
2014 2015 2016 2017
}

static void flush_all(struct kmem_cache *s)
{
2018
	on_each_cpu(flush_cpu_slab, s, 1);
Christoph Lameter's avatar
Christoph Lameter committed
2019 2020
}

2021 2022 2023 2024 2025 2026 2027
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
static inline int node_match(struct kmem_cache_cpu *c, int node)
{
#ifdef CONFIG_NUMA
2028
	if (node != NUMA_NO_NODE && c->node != node)
2029 2030 2031 2032 2033
		return 0;
#endif
	return 1;
}

2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}

2053 2054 2055 2056 2057 2058 2059 2060 2061
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
#ifdef CONFIG_SLUB_DEBUG
	return atomic_long_read(&n->total_objects);
#else
	return 0;
#endif
}

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
	int node;

	printk(KERN_WARNING
		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
		"default order: %d, min order: %d\n", s->name, s->objsize,
		s->size, oo_order(s->oo), oo_order(s->min));

2074 2075 2076 2077
	if (oo_order(s->min) > get_order(s->objsize))
		printk(KERN_WARNING "  %s debugging increased min order, use "
		       "slub_debug=O to disable.\n", s->name);

2078 2079 2080 2081 2082 2083 2084 2085 2086
	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

		if (!n)
			continue;

2087 2088 2089
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
2090 2091 2092 2093 2094 2095 2096

		printk(KERN_WARNING
			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
			node, nr_slabs, nr_objs, nr_free);
	}
}

2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
	void *object;
	struct kmem_cache_cpu *c;
	struct page *page = new_slab(s, flags, node);

	if (page) {
		c = __this_cpu_ptr(s->cpu_slab);
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
		object = page->freelist;
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->node = page_to_nid(page);
		c->page = page;
		*pc = c;
	} else
		object = NULL;

	return object;
}

Christoph Lameter's avatar
Christoph Lameter committed
2126
/*
2127 2128 2129 2130 2131 2132
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
Christoph Lameter's avatar
Christoph Lameter committed
2133
 *
2134 2135 2136
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
Christoph Lameter's avatar
Christoph Lameter committed
2137
 *
2138
 * And if we were unable to get a new slab from the partial slab lists then
Christoph Lameter's avatar
Christoph Lameter committed
2139 2140
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
Christoph Lameter's avatar
Christoph Lameter committed
2141
 */
2142 2143
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
Christoph Lameter's avatar
Christoph Lameter committed
2144 2145
{
	void **object;
2146
	unsigned long flags;
2147 2148
	struct page new;
	unsigned long counters;
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
Christoph Lameter's avatar
Christoph Lameter committed
2159

2160
	if (!c->page)
Christoph Lameter's avatar
Christoph Lameter committed
2161
		goto new_slab;
2162
redo:
2163
	if (unlikely(!node_match(c, node))) {
2164
		stat(s, ALLOC_NODE_MISMATCH);
2165 2166 2167
		deactivate_slab(s, c);
		goto new_slab;
	}
Christoph Lameter's avatar
Christoph Lameter committed
2168

2169 2170 2171
	stat(s, ALLOC_SLOWPATH);

	do {
2172 2173
		object = c->page->freelist;
		counters = c->page->counters;
2174 2175 2176
		new.counters = counters;
		VM_BUG_ON(!new.frozen);

2177 2178 2179 2180 2181 2182 2183 2184
		/*
		 * If there is no object left then we use this loop to
		 * deactivate the slab which is simple since no objects
		 * are left in the slab and therefore we do not need to
		 * put the page back onto the partial list.
		 *
		 * If there are objects left then we retrieve them
		 * and use them to refill the per cpu queue.
2185
		 */
2186

2187
		new.inuse = c->page->objects;
2188 2189
		new.frozen = object != NULL;

2190
	} while (!__cmpxchg_double_slab(s, c->page,
2191 2192 2193
			object, counters,
			NULL, new.counters,
			"__slab_alloc"));
Christoph Lameter's avatar
Christoph Lameter committed
2194

2195
	if (!object) {
2196 2197
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2198
		goto new_slab;
2199
	}
Christoph Lameter's avatar
Christoph Lameter committed
2200

2201
	stat(s, ALLOC_REFILL);
Christoph Lameter's avatar
Christoph Lameter committed
2202

2203
load_freelist:
2204
	c->freelist = get_freepointer(s, object);
2205 2206
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
Christoph Lameter's avatar
Christoph Lameter committed
2207 2208 2209
	return object;

new_slab:
2210

2211 2212 2213 2214 2215 2216 2217
	if (c->partial) {
		c->page = c->partial;
		c->partial = c->page->next;
		c->node = page_to_nid(c->page);
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
Christoph Lameter's avatar
Christoph Lameter committed
2218 2219
	}

2220
	/* Then do expensive stuff like retrieving pages from the partial lists */
2221
	object = get_partial(s, gfpflags, node, c);
2222

2223
	if (unlikely(!object)) {
2224

2225
		object = new_slab_objects(s, gfpflags, node, &c);
2226

2227 2228 2229
		if (unlikely(!object)) {
			if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
				slab_out_of_memory(s, gfpflags, node);
2230

2231 2232 2233
			local_irq_restore(flags);
			return NULL;
		}
Christoph Lameter's avatar
Christoph Lameter committed
2234
	}
2235

2236
	if (likely(!kmem_cache_debug(s)))
2237
		goto load_freelist;
2238

2239 2240 2241
	/* Only entered in the debug case */
	if (!alloc_debug_processing(s, c->page, object, addr))
		goto new_slab;	/* Slab failed checks. Next slab needed */
2242

2243
	c->freelist = get_freepointer(s, object);
2244
	deactivate_slab(s, c);
2245
	c->node = NUMA_NO_NODE;
2246 2247
	local_irq_restore(flags);
	return object;
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2260
static __always_inline void *slab_alloc(struct kmem_cache *s,
2261
		gfp_t gfpflags, int node, unsigned long addr)
2262 2263
{
	void **object;
2264
	struct kmem_cache_cpu *c;
2265
	unsigned long tid;
2266

2267
	if (slab_pre_alloc_hook(s, gfpflags))
Akinobu Mita's avatar
Akinobu Mita committed
2268
		return NULL;
2269

2270 2271 2272 2273 2274 2275 2276 2277
redo:

	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
	 */
2278
	c = __this_cpu_ptr(s->cpu_slab);
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */
	tid = c->tid;
	barrier();

2289 2290
	object = c->freelist;
	if (unlikely(!object || !node_match(c, node)))
2291

2292
		object = __slab_alloc(s, gfpflags, node, addr, c);
2293 2294

	else {
2295
		/*
Lucas De Marchi's avatar
Lucas De Marchi committed
2296
		 * The cmpxchg will only match if there was no additional
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
		 * operation and if we are on the right processor.
		 *
		 * The cmpxchg does the following atomically (without lock semantics!)
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
		 * Since this is without lock semantics the protection is only against
		 * code executing on this cpu *not* from access by other cpus.
		 */
2307
		if (unlikely(!irqsafe_cpu_cmpxchg_double(
2308 2309
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2310
				get_freepointer_safe(s, object), next_tid(tid)))) {
2311 2312 2313 2314

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2315
		stat(s, ALLOC_FASTPATH);
2316
	}
2317

2318
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2319
		memset(object, 0, s->objsize);
2320

2321
	slab_post_alloc_hook(s, gfpflags, object);
2322

2323
	return object;
Christoph Lameter's avatar
Christoph Lameter committed
2324 2325 2326 2327
}

void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2328
	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2329

2330
	trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
2331 2332

	return ret;
Christoph Lameter's avatar
Christoph Lameter committed
2333 2334 2335
}
EXPORT_SYMBOL(kmem_cache_alloc);

2336
#ifdef CONFIG_TRACING
2337 2338 2339 2340 2341 2342 2343 2344 2345
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
	void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);

void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
2346
{
2347 2348 2349
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
2350
}
2351
EXPORT_SYMBOL(kmalloc_order_trace);
2352 2353
#endif

Christoph Lameter's avatar
Christoph Lameter committed
2354 2355 2356
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2357 2358
	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);

2359 2360
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
				    s->objsize, s->size, gfpflags, node);
2361 2362

	return ret;
Christoph Lameter's avatar
Christoph Lameter committed
2363 2364 2365
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2366
#ifdef CONFIG_TRACING
2367
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2368
				    gfp_t gfpflags,
2369
				    int node, size_t size)
2370
{
2371 2372 2373 2374 2375
	void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
	return ret;
2376
}
2377
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2378
#endif
2379
#endif
2380

Christoph Lameter's avatar
Christoph Lameter committed
2381
/*
2382 2383
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
Christoph Lameter's avatar
Christoph Lameter committed
2384
 *
2385 2386 2387
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
Christoph Lameter's avatar
Christoph Lameter committed
2388
 */
2389
static void __slab_free(struct kmem_cache *s, struct page *page,
2390
			void *x, unsigned long addr)
Christoph Lameter's avatar
Christoph Lameter committed
2391 2392 2393
{
	void *prior;
	void **object = (void *)x;
2394 2395 2396 2397 2398
	int was_frozen;
	int inuse;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2399
	unsigned long uninitialized_var(flags);
Christoph Lameter's avatar
Christoph Lameter committed
2400

2401
	stat(s, FREE_SLOWPATH);
Christoph Lameter's avatar
Christoph Lameter committed
2402

2403
	if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2404
		return;
Christoph Lameter's avatar
Christoph Lameter committed
2405

2406 2407 2408 2409 2410 2411 2412 2413
	do {
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, object, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse--;
		if ((!new.inuse || !prior) && !was_frozen && !n) {
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436

			if (!kmem_cache_debug(s) && !prior)

				/*
				 * Slab was on no list before and will be partially empty
				 * We can defer the list move and instead freeze it.
				 */
				new.frozen = 1;

			else { /* Needs to be taken off a list */

	                        n = get_node(s, page_to_nid(page));
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2437 2438
		}
		inuse = new.inuse;
Christoph Lameter's avatar
Christoph Lameter committed
2439

2440 2441 2442 2443
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		object, new.counters,
		"__slab_free"));
Christoph Lameter's avatar
Christoph Lameter committed
2444

2445
	if (likely(!n)) {
2446 2447 2448 2449 2450 2451 2452 2453 2454

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
		if (new.frozen && !was_frozen)
			put_cpu_partial(s, page, 1);

		/*
2455 2456 2457 2458 2459
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
                if (was_frozen)
                        stat(s, FREE_FROZEN);
2460
                return;
2461
        }
Christoph Lameter's avatar
Christoph Lameter committed
2462 2463

	/*
2464 2465
	 * was_frozen may have been set after we acquired the list_lock in
	 * an earlier loop. So we need to check it here again.
Christoph Lameter's avatar
Christoph Lameter committed
2466
	 */
2467 2468 2469 2470 2471
	if (was_frozen)
		stat(s, FREE_FROZEN);
	else {
		if (unlikely(!inuse && n->nr_partial > s->min_partial))
                        goto slab_empty;
Christoph Lameter's avatar
Christoph Lameter committed
2472

2473 2474 2475 2476 2477 2478
		/*
		 * Objects left in the slab. If it was not on the partial list before
		 * then add it.
		 */
		if (unlikely(!prior)) {
			remove_full(s, page);
2479
			add_partial(n, page, DEACTIVATE_TO_TAIL);
2480 2481
			stat(s, FREE_ADD_PARTIAL);
		}
2482
	}
2483
	spin_unlock_irqrestore(&n->list_lock, flags);
Christoph Lameter's avatar
Christoph Lameter committed
2484 2485 2486
	return;

slab_empty:
2487
	if (prior) {
Christoph Lameter's avatar
Christoph Lameter committed
2488
		/*
2489
		 * Slab on the partial list.
Christoph Lameter's avatar
Christoph Lameter committed
2490
		 */
2491
		remove_partial(n, page);
2492
		stat(s, FREE_REMOVE_PARTIAL);
2493 2494 2495
	} else
		/* Slab must be on the full list */
		remove_full(s, page);
2496

2497
	spin_unlock_irqrestore(&n->list_lock, flags);
2498
	stat(s, FREE_SLAB);
Christoph Lameter's avatar
Christoph Lameter committed
2499 2500 2501
	discard_slab(s, page);
}

2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
2513
static __always_inline void slab_free(struct kmem_cache *s,
2514
			struct page *page, void *x, unsigned long addr)
2515 2516
{
	void **object = (void *)x;
2517
	struct kmem_cache_cpu *c;
2518
	unsigned long tid;
2519

2520 2521
	slab_free_hook(s, x);

2522 2523 2524 2525 2526 2527 2528
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
	 * during the cmpxchg then the free will succedd.
	 */
2529
	c = __this_cpu_ptr(s->cpu_slab);
2530

2531 2532
	tid = c->tid;
	barrier();
2533

2534
	if (likely(page == c->page)) {
2535
		set_freepointer(s, object, c->freelist);
2536

2537
		if (unlikely(!irqsafe_cpu_cmpxchg_double(
2538 2539 2540 2541 2542 2543 2544
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2545
		stat(s, FREE_FASTPATH);
2546
	} else
2547
		__slab_free(s, page, x, addr);
2548 2549 2550

}

Christoph Lameter's avatar
Christoph Lameter committed
2551 2552
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2553
	struct page *page;
Christoph Lameter's avatar
Christoph Lameter committed
2554

2555
	page = virt_to_head_page(x);
Christoph Lameter's avatar
Christoph Lameter committed
2556

2557
	slab_free(s, page, x, _RET_IP_);
2558

2559
	trace_kmem_cache_free(_RET_IP_, x);
Christoph Lameter's avatar
Christoph Lameter committed
2560 2561 2562 2563
}
EXPORT_SYMBOL(kmem_cache_free);

/*
Christoph Lameter's avatar
Christoph Lameter committed
2564 2565 2566 2567
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
Christoph Lameter's avatar
Christoph Lameter committed
2568 2569 2570 2571
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
Christoph Lameter's avatar
Christoph Lameter committed
2572
 * must be moved on and off the partial lists and is therefore a factor in
Christoph Lameter's avatar
Christoph Lameter committed
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2583
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2584
static int slub_min_objects;
Christoph Lameter's avatar
Christoph Lameter committed
2585 2586 2587

/*
 * Merge control. If this is set then no merging of slab caches will occur.
Christoph Lameter's avatar
Christoph Lameter committed
2588
 * (Could be removed. This was introduced to pacify the merge skeptics.)
Christoph Lameter's avatar
Christoph Lameter committed
2589 2590 2591 2592 2593 2594
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
Christoph Lameter's avatar
Christoph Lameter committed
2595 2596 2597 2598
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
2599
 * unused space left. We go to a higher order if more than 1/16th of the slab
Christoph Lameter's avatar
Christoph Lameter committed
2600 2601 2602 2603 2604 2605
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
Christoph Lameter's avatar
Christoph Lameter committed
2606
 *
Christoph Lameter's avatar
Christoph Lameter committed
2607 2608 2609 2610
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
Christoph Lameter's avatar
Christoph Lameter committed
2611
 *
Christoph Lameter's avatar
Christoph Lameter committed
2612 2613 2614 2615
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
Christoph Lameter's avatar
Christoph Lameter committed
2616
 */
2617
static inline int slab_order(int size, int min_objects,
2618
				int max_order, int fract_leftover, int reserved)
Christoph Lameter's avatar
Christoph Lameter committed
2619 2620 2621
{
	int order;
	int rem;
2622
	int min_order = slub_min_order;
Christoph Lameter's avatar
Christoph Lameter committed
2623

2624
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2625
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2626

2627
	for (order = max(min_order,
2628 2629
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
Christoph Lameter's avatar
Christoph Lameter committed
2630

2631
		unsigned long slab_size = PAGE_SIZE << order;
Christoph Lameter's avatar
Christoph Lameter committed
2632

2633
		if (slab_size < min_objects * size + reserved)
Christoph Lameter's avatar
Christoph Lameter committed
2634 2635
			continue;

2636
		rem = (slab_size - reserved) % size;
Christoph Lameter's avatar
Christoph Lameter committed
2637

2638
		if (rem <= slab_size / fract_leftover)
Christoph Lameter's avatar
Christoph Lameter committed
2639 2640 2641
			break;

	}
Christoph Lameter's avatar
Christoph Lameter committed
2642

Christoph Lameter's avatar
Christoph Lameter committed
2643 2644 2645
	return order;
}

2646
static inline int calculate_order(int size, int reserved)
2647 2648 2649 2650
{
	int order;
	int min_objects;
	int fraction;
2651
	int max_objects;
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
2662 2663
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2664
	max_objects = order_objects(slub_max_order, size, reserved);
2665 2666
	min_objects = min(min_objects, max_objects);

2667
	while (min_objects > 1) {
2668
		fraction = 16;
2669 2670
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
2671
					slub_max_order, fraction, reserved);
2672 2673 2674 2675
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
2676
		min_objects--;
2677 2678 2679 2680 2681 2682
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
2683
	order = slab_order(size, 1, slub_max_order, 1, reserved);
2684 2685 2686 2687 2688 2689
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
2690
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
David Rientjes's avatar
David Rientjes committed
2691
	if (order < MAX_ORDER)
2692 2693 2694 2695
		return order;
	return -ENOSYS;
}

Christoph Lameter's avatar
Christoph Lameter committed
2696
/*
Christoph Lameter's avatar
Christoph Lameter committed
2697
 * Figure out what the alignment of the objects will be.
Christoph Lameter's avatar
Christoph Lameter committed
2698 2699 2700 2701 2702
 */
static unsigned long calculate_alignment(unsigned long flags,
		unsigned long align, unsigned long size)
{
	/*
Christoph Lameter's avatar
Christoph Lameter committed
2703 2704
	 * If the user wants hardware cache aligned objects then follow that
	 * suggestion if the object is sufficiently large.
Christoph Lameter's avatar
Christoph Lameter committed
2705
	 *
Christoph Lameter's avatar
Christoph Lameter committed
2706 2707
	 * The hardware cache alignment cannot override the specified
	 * alignment though. If that is greater then use it.
Christoph Lameter's avatar
Christoph Lameter committed
2708
	 */
2709 2710 2711 2712 2713 2714
	if (flags & SLAB_HWCACHE_ALIGN) {
		unsigned long ralign = cache_line_size();
		while (size <= ralign / 2)
			ralign /= 2;
		align = max(align, ralign);
	}
Christoph Lameter's avatar
Christoph Lameter committed
2715 2716

	if (align < ARCH_SLAB_MINALIGN)
2717
		align = ARCH_SLAB_MINALIGN;
Christoph Lameter's avatar
Christoph Lameter committed
2718 2719 2720 2721

	return ALIGN(align, sizeof(void *));
}

2722 2723
static void
init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
Christoph Lameter's avatar
Christoph Lameter committed
2724 2725 2726 2727
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2728
#ifdef CONFIG_SLUB_DEBUG
2729
	atomic_long_set(&n->nr_slabs, 0);
2730
	atomic_long_set(&n->total_objects, 0);
2731
	INIT_LIST_HEAD(&n->full);
2732
#endif
Christoph Lameter's avatar
Christoph Lameter committed
2733 2734
}

2735
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2736
{
2737 2738
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2739

2740
	/*
2741 2742
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
2743
	 */
2744 2745
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
2746 2747 2748 2749 2750

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
2751

2752
	return 1;
2753 2754
}

2755 2756
static struct kmem_cache *kmem_cache_node;

Christoph Lameter's avatar
Christoph Lameter committed
2757 2758 2759 2760 2761 2762
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
 * Note that this function only works on the kmalloc_node_cache
2763 2764
 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
 * memory on a fresh node that has no slab structures yet.
Christoph Lameter's avatar
Christoph Lameter committed
2765
 */
2766
static void early_kmem_cache_node_alloc(int node)
Christoph Lameter's avatar
Christoph Lameter committed
2767 2768 2769 2770
{
	struct page *page;
	struct kmem_cache_node *n;

2771
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
Christoph Lameter's avatar
Christoph Lameter committed
2772

2773
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
Christoph Lameter's avatar
Christoph Lameter committed
2774 2775

	BUG_ON(!page);
2776 2777 2778 2779 2780 2781 2782
	if (page_to_nid(page) != node) {
		printk(KERN_ERR "SLUB: Unable to allocate memory from "
				"node %d\n", node);
		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
				"in order to be able to continue\n");
	}

Christoph Lameter's avatar
Christoph Lameter committed
2783 2784
	n = page->freelist;
	BUG_ON(!n);
2785
	page->freelist = get_freepointer(kmem_cache_node, n);
2786
	page->inuse = 1;
2787
	page->frozen = 0;
2788
	kmem_cache_node->node[node] = n;
2789
#ifdef CONFIG_SLUB_DEBUG
2790
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2791
	init_tracking(kmem_cache_node, n);
2792
#endif
2793 2794
	init_kmem_cache_node(n, kmem_cache_node);
	inc_slabs_node(kmem_cache_node, node, page->objects);
Christoph Lameter's avatar
Christoph Lameter committed
2795

2796
	add_partial(n, page, DEACTIVATE_TO_HEAD);
Christoph Lameter's avatar
Christoph Lameter committed
2797 2798 2799 2800 2801 2802
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

2803
	for_each_node_state(node, N_NORMAL_MEMORY) {
Christoph Lameter's avatar
Christoph Lameter committed
2804
		struct kmem_cache_node *n = s->node[node];
2805

2806
		if (n)
2807 2808
			kmem_cache_free(kmem_cache_node, n);

Christoph Lameter's avatar
Christoph Lameter committed
2809 2810 2811 2812
		s->node[node] = NULL;
	}
}

2813
static int init_kmem_cache_nodes(struct kmem_cache *s)
Christoph Lameter's avatar
Christoph Lameter committed
2814 2815 2816
{
	int node;

2817
	for_each_node_state(node, N_NORMAL_MEMORY) {
Christoph Lameter's avatar
Christoph Lameter committed
2818 2819
		struct kmem_cache_node *n;

2820
		if (slab_state == DOWN) {
2821
			early_kmem_cache_node_alloc(node);
2822 2823
			continue;
		}
2824
		n = kmem_cache_alloc_node(kmem_cache_node,
2825
						GFP_KERNEL, node);
Christoph Lameter's avatar
Christoph Lameter committed
2826

2827 2828 2829
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
Christoph Lameter's avatar
Christoph Lameter committed
2830
		}
2831

Christoph Lameter's avatar
Christoph Lameter committed
2832
		s->node[node] = n;
2833
		init_kmem_cache_node(n, s);
Christoph Lameter's avatar
Christoph Lameter committed
2834 2835 2836 2837
	}
	return 1;
}

2838
static void set_min_partial(struct kmem_cache *s, unsigned long min)
2839 2840 2841 2842 2843 2844 2845 2846
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

Christoph Lameter's avatar
Christoph Lameter committed
2847 2848 2849 2850
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
2851
static int calculate_sizes(struct kmem_cache *s, int forced_order)
Christoph Lameter's avatar
Christoph Lameter committed
2852 2853 2854 2855
{
	unsigned long flags = s->flags;
	unsigned long size = s->objsize;
	unsigned long align = s->align;
2856
	int order;
Christoph Lameter's avatar
Christoph Lameter committed
2857

2858 2859 2860 2861 2862 2863 2864 2865
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
Christoph Lameter's avatar
Christoph Lameter committed
2866 2867 2868 2869 2870 2871
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2872
			!s->ctor)
Christoph Lameter's avatar
Christoph Lameter committed
2873 2874 2875 2876 2877 2878
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
Christoph Lameter's avatar
Christoph Lameter committed
2879
	 * If we are Redzoning then check if there is some space between the
Christoph Lameter's avatar
Christoph Lameter committed
2880
	 * end of the object and the free pointer. If not then add an
Christoph Lameter's avatar
Christoph Lameter committed
2881
	 * additional word to have some bytes to store Redzone information.
Christoph Lameter's avatar
Christoph Lameter committed
2882 2883 2884
	 */
	if ((flags & SLAB_RED_ZONE) && size == s->objsize)
		size += sizeof(void *);
2885
#endif
Christoph Lameter's avatar
Christoph Lameter committed
2886 2887

	/*
Christoph Lameter's avatar
Christoph Lameter committed
2888 2889
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
Christoph Lameter's avatar
Christoph Lameter committed
2890 2891 2892 2893
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2894
		s->ctor)) {
Christoph Lameter's avatar
Christoph Lameter committed
2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

2907
#ifdef CONFIG_SLUB_DEBUG
Christoph Lameter's avatar
Christoph Lameter committed
2908 2909 2910 2911 2912 2913 2914
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

2915
	if (flags & SLAB_RED_ZONE)
Christoph Lameter's avatar
Christoph Lameter committed
2916 2917 2918 2919
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
2920
		 * corrupted if a user writes before the start
Christoph Lameter's avatar
Christoph Lameter committed
2921 2922 2923
		 * of the object.
		 */
		size += sizeof(void *);
2924
#endif
Christoph Lameter's avatar
Christoph Lameter committed
2925

Christoph Lameter's avatar
Christoph Lameter committed
2926 2927
	/*
	 * Determine the alignment based on various parameters that the
2928 2929
	 * user specified and the dynamic determination of cache line size
	 * on bootup.
Christoph Lameter's avatar
Christoph Lameter committed
2930 2931
	 */
	align = calculate_alignment(flags, align, s->objsize);
2932
	s->align = align;
Christoph Lameter's avatar
Christoph Lameter committed
2933 2934 2935 2936 2937 2938 2939 2940

	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
	size = ALIGN(size, align);
	s->size = size;
2941 2942 2943
	if (forced_order >= 0)
		order = forced_order;
	else
2944
		order = calculate_order(size, s->reserved);
Christoph Lameter's avatar
Christoph Lameter committed
2945

2946
	if (order < 0)
Christoph Lameter's avatar
Christoph Lameter committed
2947 2948
		return 0;

2949
	s->allocflags = 0;
2950
	if (order)
2951 2952 2953 2954 2955 2956 2957 2958
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
		s->allocflags |= SLUB_DMA;

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

Christoph Lameter's avatar
Christoph Lameter committed
2959 2960 2961
	/*
	 * Determine the number of objects per slab
	 */
2962 2963
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
2964 2965
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
Christoph Lameter's avatar
Christoph Lameter committed
2966

2967
	return !!oo_objects(s->oo);
Christoph Lameter's avatar
Christoph Lameter committed
2968 2969 2970

}

2971
static int kmem_cache_open(struct kmem_cache *s,
Christoph Lameter's avatar
Christoph Lameter committed
2972 2973
		const char *name, size_t size,
		size_t align, unsigned long flags,
2974
		void (*ctor)(void *))
Christoph Lameter's avatar
Christoph Lameter committed
2975 2976 2977 2978 2979 2980
{
	memset(s, 0, kmem_size);
	s->name = name;
	s->ctor = ctor;
	s->objsize = size;
	s->align = align;
2981
	s->flags = kmem_cache_flags(size, flags, name, ctor);
2982
	s->reserved = 0;
Christoph Lameter's avatar
Christoph Lameter committed
2983

2984 2985
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
Christoph Lameter's avatar
Christoph Lameter committed
2986

2987
	if (!calculate_sizes(s, -1))
Christoph Lameter's avatar
Christoph Lameter committed
2988
		goto error;
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
		if (get_order(s->size) > get_order(s->objsize)) {
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
Christoph Lameter's avatar
Christoph Lameter committed
3001

3002 3003 3004 3005 3006 3007
#ifdef CONFIG_CMPXCHG_DOUBLE
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3008 3009 3010 3011
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3027
	 * B) The number of objects in cpu partial slabs to extract from the
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
	 *    per node list when we run out of per cpu objects. We only fetch 50%
	 *    to keep some capacity around for frees.
	 */
	if (s->size >= PAGE_SIZE)
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

Christoph Lameter's avatar
Christoph Lameter committed
3040 3041
	s->refcount = 1;
#ifdef CONFIG_NUMA
3042
	s->remote_node_defrag_ratio = 1000;
Christoph Lameter's avatar
Christoph Lameter committed
3043
#endif
3044
	if (!init_kmem_cache_nodes(s))
3045
		goto error;
Christoph Lameter's avatar
Christoph Lameter committed
3046

3047
	if (alloc_kmem_cache_cpus(s))
Christoph Lameter's avatar
Christoph Lameter committed
3048
		return 1;
3049

3050
	free_kmem_cache_nodes(s);
Christoph Lameter's avatar
Christoph Lameter committed
3051 3052 3053 3054
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3055
			s->name, (unsigned long)size, s->size, oo_order(s->oo),
Christoph Lameter's avatar
Christoph Lameter committed
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
			s->offset, flags);
	return 0;
}

/*
 * Determine the size of a slab object
 */
unsigned int kmem_cache_size(struct kmem_cache *s)
{
	return s->objsize;
}
EXPORT_SYMBOL(kmem_cache_size);

3069 3070 3071 3072 3073 3074
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
Namhyung Kim's avatar
Namhyung Kim committed
3075 3076
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
3077 3078
	if (!map)
		return;
3079 3080 3081
	slab_err(s, page, "%s", text);
	slab_lock(page);

3082
	get_map(s, page, map);
3083 3084 3085 3086 3087 3088 3089 3090 3091
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
							p, p - addr);
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
3092
	kfree(map);
3093 3094 3095
#endif
}

Christoph Lameter's avatar
Christoph Lameter committed
3096
/*
3097
 * Attempt to free all partial slabs on a node.
3098 3099
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
Christoph Lameter's avatar
Christoph Lameter committed
3100
 */
3101
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
Christoph Lameter's avatar
Christoph Lameter committed
3102 3103 3104
{
	struct page *page, *h;

3105
	list_for_each_entry_safe(page, h, &n->partial, lru) {
Christoph Lameter's avatar
Christoph Lameter committed
3106
		if (!page->inuse) {
3107
			remove_partial(n, page);
Christoph Lameter's avatar
Christoph Lameter committed
3108
			discard_slab(s, page);
3109 3110 3111
		} else {
			list_slab_objects(s, page,
				"Objects remaining on kmem_cache_close()");
3112
		}
3113
	}
Christoph Lameter's avatar
Christoph Lameter committed
3114 3115 3116
}

/*
Christoph Lameter's avatar
Christoph Lameter committed
3117
 * Release all resources used by a slab cache.
Christoph Lameter's avatar
Christoph Lameter committed
3118
 */
3119
static inline int kmem_cache_close(struct kmem_cache *s)
Christoph Lameter's avatar
Christoph Lameter committed
3120 3121 3122 3123
{
	int node;

	flush_all(s);
3124
	free_percpu(s->cpu_slab);
Christoph Lameter's avatar
Christoph Lameter committed
3125
	/* Attempt to free all objects */
3126
	for_each_node_state(node, N_NORMAL_MEMORY) {
Christoph Lameter's avatar
Christoph Lameter committed
3127 3128
		struct kmem_cache_node *n = get_node(s, node);

3129 3130
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
Christoph Lameter's avatar
Christoph Lameter committed
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
			return 1;
	}
	free_kmem_cache_nodes(s);
	return 0;
}

/*
 * Close a cache and release the kmem_cache structure
 * (must be used for caches created using kmem_cache_create)
 */
void kmem_cache_destroy(struct kmem_cache *s)
{
	down_write(&slub_lock);
	s->refcount--;
	if (!s->refcount) {
		list_del(&s->list);
3147
		up_write(&slub_lock);
3148 3149 3150 3151 3152
		if (kmem_cache_close(s)) {
			printk(KERN_ERR "SLUB %s: %s called for cache that "
				"still has objects.\n", s->name, __func__);
			dump_stack();
		}
3153 3154
		if (s->flags & SLAB_DESTROY_BY_RCU)
			rcu_barrier();
Christoph Lameter's avatar
Christoph Lameter committed
3155
		sysfs_slab_remove(s);
3156 3157
	} else
		up_write(&slub_lock);
Christoph Lameter's avatar
Christoph Lameter committed
3158 3159 3160 3161 3162 3163 3164
}
EXPORT_SYMBOL(kmem_cache_destroy);

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

3165
struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
Christoph Lameter's avatar
Christoph Lameter committed
3166 3167
EXPORT_SYMBOL(kmalloc_caches);

3168 3169
static struct kmem_cache *kmem_cache;

3170
#ifdef CONFIG_ZONE_DMA
3171
static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
3172 3173
#endif

Christoph Lameter's avatar
Christoph Lameter committed
3174 3175
static int __init setup_slub_min_order(char *str)
{
3176
	get_option(&str, &slub_min_order);
Christoph Lameter's avatar
Christoph Lameter committed
3177 3178 3179 3180 3181 3182 3183 3184

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
3185
	get_option(&str, &slub_max_order);
David Rientjes's avatar
David Rientjes committed
3186
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
Christoph Lameter's avatar
Christoph Lameter committed
3187 3188 3189 3190 3191 3192 3193 3194

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
3195
	get_option(&str, &slub_min_objects);
Christoph Lameter's avatar
Christoph Lameter committed
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

3210 3211
static struct kmem_cache *__init create_kmalloc_cache(const char *name,
						int size, unsigned int flags)
Christoph Lameter's avatar
Christoph Lameter committed
3212
{
3213 3214 3215 3216
	struct kmem_cache *s;

	s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);

3217 3218 3219 3220
	/*
	 * This function is called with IRQs disabled during early-boot on
	 * single CPU so there's no need to take slub_lock here.
	 */
3221
	if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
3222
								flags, NULL))
Christoph Lameter's avatar
Christoph Lameter committed
3223 3224 3225
		goto panic;

	list_add(&s->list, &slab_caches);
3226
	return s;
Christoph Lameter's avatar
Christoph Lameter committed
3227 3228 3229

panic:
	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
3230
	return NULL;
Christoph Lameter's avatar
Christoph Lameter committed
3231 3232
}

3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
/*
 * Conversion table for small slabs sizes / 8 to the index in the
 * kmalloc array. This is necessary for slabs < 192 since we have non power
 * of two cache sizes there. The size of larger slabs can be determined using
 * fls.
 */
static s8 size_index[24] = {
	3,	/* 8 */
	4,	/* 16 */
	5,	/* 24 */
	5,	/* 32 */
	6,	/* 40 */
	6,	/* 48 */
	6,	/* 56 */
	6,	/* 64 */
	1,	/* 72 */
	1,	/* 80 */
	1,	/* 88 */
	1,	/* 96 */
	7,	/* 104 */
	7,	/* 112 */
	7,	/* 120 */
	7,	/* 128 */
	2,	/* 136 */
	2,	/* 144 */
	2,	/* 152 */
	2,	/* 160 */
	2,	/* 168 */
	2,	/* 176 */
	2,	/* 184 */
	2	/* 192 */
};

3266 3267 3268 3269 3270
static inline int size_index_elem(size_t bytes)
{
	return (bytes - 1) / 8;
}

Christoph Lameter's avatar
Christoph Lameter committed
3271 3272
static struct kmem_cache *get_slab(size_t size, gfp_t flags)
{
3273
	int index;
Christoph Lameter's avatar
Christoph Lameter committed
3274

3275 3276 3277
	if (size <= 192) {
		if (!size)
			return ZERO_SIZE_PTR;
Christoph Lameter's avatar
Christoph Lameter committed
3278

3279
		index = size_index[size_index_elem(size)];
3280
	} else
3281
		index = fls(size - 1);
Christoph Lameter's avatar
Christoph Lameter committed
3282 3283

#ifdef CONFIG_ZONE_DMA
3284
	if (unlikely((flags & SLUB_DMA)))
3285
		return kmalloc_dma_caches[index];
3286

Christoph Lameter's avatar
Christoph Lameter committed
3287
#endif
3288
	return kmalloc_caches[index];
Christoph Lameter's avatar
Christoph Lameter committed
3289 3290 3291 3292
}

void *__kmalloc(size_t size, gfp_t flags)
{
3293
	struct kmem_cache *s;
3294
	void *ret;
Christoph Lameter's avatar
Christoph Lameter committed
3295

3296
	if (unlikely(size > SLUB_MAX_SIZE))
3297
		return kmalloc_large(size, flags);
3298 3299 3300 3301

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3302 3303
		return s;

3304
	ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
3305

3306
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3307 3308

	return ret;
Christoph Lameter's avatar
Christoph Lameter committed
3309 3310 3311
}
EXPORT_SYMBOL(__kmalloc);

3312
#ifdef CONFIG_NUMA
3313 3314
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3315
	struct page *page;
3316
	void *ptr = NULL;
3317

3318 3319
	flags |= __GFP_COMP | __GFP_NOTRACK;
	page = alloc_pages_node(node, flags, get_order(size));
3320
	if (page)
3321 3322 3323 3324
		ptr = page_address(page);

	kmemleak_alloc(ptr, size, 1, flags);
	return ptr;
3325 3326
}

Christoph Lameter's avatar
Christoph Lameter committed
3327 3328
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3329
	struct kmem_cache *s;
3330
	void *ret;
Christoph Lameter's avatar
Christoph Lameter committed
3331

Ingo Molnar's avatar
Ingo Molnar committed
3332
	if (unlikely(size > SLUB_MAX_SIZE)) {
3333 3334
		ret = kmalloc_large_node(size, flags, node);

3335 3336 3337
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
3338 3339 3340

		return ret;
	}
3341 3342 3343 3344

	s = get_slab(size, flags);

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3345 3346
		return s;

3347 3348
	ret = slab_alloc(s, flags, node, _RET_IP_);

3349
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3350 3351

	return ret;
Christoph Lameter's avatar
Christoph Lameter committed
3352 3353 3354 3355 3356 3357
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
3358
	struct page *page;
Christoph Lameter's avatar
Christoph Lameter committed
3359

3360
	if (unlikely(object == ZERO_SIZE_PTR))
3361 3362
		return 0;

3363 3364
	page = virt_to_head_page(object);

Pekka Enberg's avatar
Pekka Enberg committed
3365 3366
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3367
		return PAGE_SIZE << compound_order(page);
Pekka Enberg's avatar
Pekka Enberg committed
3368
	}
Christoph Lameter's avatar
Christoph Lameter committed
3369

3370
	return slab_ksize(page->slab);
Christoph Lameter's avatar
Christoph Lameter committed
3371
}
3372
EXPORT_SYMBOL(ksize);
Christoph Lameter's avatar
Christoph Lameter committed
3373

3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
#ifdef CONFIG_SLUB_DEBUG
bool verify_mem_not_deleted(const void *x)
{
	struct page *page;
	void *object = (void *)x;
	unsigned long flags;
	bool rv;

	if (unlikely(ZERO_OR_NULL_PTR(x)))
		return false;

	local_irq_save(flags);

	page = virt_to_head_page(x);
	if (unlikely(!PageSlab(page))) {
		/* maybe it was from stack? */
		rv = true;
		goto out_unlock;
	}

	slab_lock(page);
	if (on_freelist(page->slab, page, object)) {
		object_err(page->slab, page, object, "Object is on free-list");
		rv = false;
	} else {
		rv = true;
	}
	slab_unlock(page);

out_unlock:
	local_irq_restore(flags);
	return rv;
}
EXPORT_SYMBOL(verify_mem_not_deleted);
#endif

Christoph Lameter's avatar
Christoph Lameter committed
3410 3411 3412
void kfree(const void *x)
{
	struct page *page;
3413
	void *object = (void *)x;
Christoph Lameter's avatar
Christoph Lameter committed
3414

3415 3416
	trace_kfree(_RET_IP_, x);

3417
	if (unlikely(ZERO_OR_NULL_PTR(x)))
Christoph Lameter's avatar
Christoph Lameter committed
3418 3419
		return;

3420
	page = virt_to_head_page(x);
3421
	if (unlikely(!PageSlab(page))) {
3422
		BUG_ON(!PageCompound(page));
3423
		kmemleak_free(x);
3424 3425 3426
		put_page(page);
		return;
	}
3427
	slab_free(page->slab, page, object, _RET_IP_);
Christoph Lameter's avatar
Christoph Lameter committed
3428 3429 3430
}
EXPORT_SYMBOL(kfree);

3431
/*
Christoph Lameter's avatar
Christoph Lameter committed
3432 3433 3434 3435 3436 3437 3438 3439
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3440 3441 3442 3443 3444 3445 3446 3447
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3448
	int objects = oo_objects(s->max);
3449
	struct list_head *slabs_by_inuse =
3450
		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3451 3452 3453 3454 3455 3456
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
3457
	for_each_node_state(node, N_NORMAL_MEMORY) {
3458 3459 3460 3461 3462
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

3463
		for (i = 0; i < objects; i++)
3464 3465 3466 3467 3468
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
Christoph Lameter's avatar
Christoph Lameter committed
3469
		 * Build lists indexed by the items in use in each slab.
3470
		 *
Christoph Lameter's avatar
Christoph Lameter committed
3471 3472
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3473 3474
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3475 3476 3477
			list_move(&page->lru, slabs_by_inuse + page->inuse);
			if (!page->inuse)
				n->nr_partial--;
3478 3479 3480
		}

		/*
Christoph Lameter's avatar
Christoph Lameter committed
3481 3482
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
3483
		 */
3484
		for (i = objects - 1; i > 0; i--)
3485 3486 3487
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
3488 3489 3490 3491

		/* Release empty slabs */
		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
			discard_slab(s, page);
3492 3493 3494 3495 3496 3497 3498
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

3499
#if defined(CONFIG_MEMORY_HOTPLUG)
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list)
		kmem_cache_shrink(s);
	up_read(&slub_lock);

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

	offline_node = marg->status_change_nid;

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3535
			 * and offline_pages() function shouldn't call this
3536 3537
			 * callback. So, we must fail.
			 */
3538
			BUG_ON(slabs_node(s, offline_node));
3539 3540

			s->node[offline_node] = NULL;
3541
			kmem_cache_free(kmem_cache_node, n);
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
		}
	}
	up_read(&slub_lock);
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int nid = marg->status_change_nid;
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3563
	 * We are bringing a node online. No memory is available yet. We must
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
	down_read(&slub_lock);
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3574
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3575 3576 3577 3578
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3579
		init_kmem_cache_node(n, s);
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
		s->node[nid] = n;
	}
out:
	up_read(&slub_lock);
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3607 3608 3609 3610
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3611 3612 3613 3614 3615
	return ret;
}

#endif /* CONFIG_MEMORY_HOTPLUG */

Christoph Lameter's avatar
Christoph Lameter committed
3616 3617 3618 3619
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
/*
 * Used for early kmem_cache structures that were allocated using
 * the page allocator
 */

static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
{
	int node;

	list_add(&s->list, &slab_caches);
	s->refcount = -1;

	for_each_node_state(node, N_NORMAL_MEMORY) {
		struct kmem_cache_node *n = get_node(s, node);
		struct page *p;

		if (n) {
			list_for_each_entry(p, &n->partial, lru)
				p->slab = s;

Li Zefan's avatar
Li Zefan committed
3640
#ifdef CONFIG_SLUB_DEBUG
3641 3642 3643 3644 3645 3646 3647
			list_for_each_entry(p, &n->full, lru)
				p->slab = s;
#endif
		}
	}
}

Christoph Lameter's avatar
Christoph Lameter committed
3648 3649 3650
void __init kmem_cache_init(void)
{
	int i;
3651
	int caches = 0;
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
	struct kmem_cache *temp_kmem_cache;
	int order;
	struct kmem_cache *temp_kmem_cache_node;
	unsigned long kmalloc_size;

	kmem_size = offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *);

	/* Allocate two kmem_caches from the page allocator */
	kmalloc_size = ALIGN(kmem_size, cache_line_size());
	order = get_order(2 * kmalloc_size);
	kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);

Christoph Lameter's avatar
Christoph Lameter committed
3665 3666
	/*
	 * Must first have the slab cache available for the allocations of the
Christoph Lameter's avatar
Christoph Lameter committed
3667
	 * struct kmem_cache_node's. There is special bootstrap code in
Christoph Lameter's avatar
Christoph Lameter committed
3668 3669
	 * kmem_cache_open for slab_state == DOWN.
	 */
3670 3671 3672 3673 3674
	kmem_cache_node = (void *)kmem_cache + kmalloc_size;

	kmem_cache_open(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node),
		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3675

3676
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
Christoph Lameter's avatar
Christoph Lameter committed
3677 3678 3679 3680

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3681 3682 3683 3684 3685
	temp_kmem_cache = kmem_cache;
	kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
		0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
	kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
	memcpy(kmem_cache, temp_kmem_cache, kmem_size);
Christoph Lameter's avatar
Christoph Lameter committed
3686

3687 3688 3689 3690 3691 3692
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
	temp_kmem_cache_node = kmem_cache_node;
Christoph Lameter's avatar
Christoph Lameter committed
3693

3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
	kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
	memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);

	kmem_cache_bootstrap_fixup(kmem_cache_node);

	caches++;
	kmem_cache_bootstrap_fixup(kmem_cache);
	caches++;
	/* Free temporary boot structure */
	free_pages((unsigned long)temp_kmem_cache, order);

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3706 3707 3708 3709

	/*
	 * Patch up the size_index table if we have strange large alignment
	 * requirements for the kmalloc array. This is only the case for
Christoph Lameter's avatar
Christoph Lameter committed
3710
	 * MIPS it seems. The standard arches will not generate any code here.
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720
	 *
	 * Largest permitted alignment is 256 bytes due to the way we
	 * handle the index determination for the smaller caches.
	 *
	 * Make sure that nothing crazy happens if someone starts tinkering
	 * around with ARCH_KMALLOC_MINALIGN
	 */
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));

3721 3722 3723 3724 3725 3726
	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
		int elem = size_index_elem(i);
		if (elem >= ARRAY_SIZE(size_index))
			break;
		size_index[elem] = KMALLOC_SHIFT_LOW;
	}
3727

3728 3729 3730 3731 3732 3733 3734 3735
	if (KMALLOC_MIN_SIZE == 64) {
		/*
		 * The 96 byte size cache is not used if the alignment
		 * is 64 byte.
		 */
		for (i = 64 + 8; i <= 96; i += 8)
			size_index[size_index_elem(i)] = 7;
	} else if (KMALLOC_MIN_SIZE == 128) {
3736 3737 3738 3739 3740 3741
		/*
		 * The 192 byte sized cache is not used if the alignment
		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
		 * instead.
		 */
		for (i = 128 + 8; i <= 192; i += 8)
3742
			size_index[size_index_elem(i)] = 8;
3743 3744
	}

3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
	/* Caches that are not of the two-to-the-power-of size */
	if (KMALLOC_MIN_SIZE <= 32) {
		kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
		caches++;
	}

	if (KMALLOC_MIN_SIZE <= 64) {
		kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
		caches++;
	}

	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
		kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
		caches++;
	}

Christoph Lameter's avatar
Christoph Lameter committed
3761 3762 3763
	slab_state = UP;

	/* Provide the correct kmalloc names now that the caches are up */
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
	if (KMALLOC_MIN_SIZE <= 32) {
		kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
		BUG_ON(!kmalloc_caches[1]->name);
	}

	if (KMALLOC_MIN_SIZE <= 64) {
		kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
		BUG_ON(!kmalloc_caches[2]->name);
	}

3774 3775 3776 3777
	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
		char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);

		BUG_ON(!s);
3778
		kmalloc_caches[i]->name = s;
3779
	}
Christoph Lameter's avatar
Christoph Lameter committed
3780 3781 3782

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3783
#endif
Christoph Lameter's avatar
Christoph Lameter committed
3784

3785
#ifdef CONFIG_ZONE_DMA
3786 3787
	for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
		struct kmem_cache *s = kmalloc_caches[i];
3788

3789
		if (s && s->size) {
3790 3791 3792 3793
			char *name = kasprintf(GFP_NOWAIT,
				 "dma-kmalloc-%d", s->objsize);

			BUG_ON(!name);
3794 3795
			kmalloc_dma_caches[i] = create_kmalloc_cache(name,
				s->objsize, SLAB_CACHE_DMA);
3796 3797 3798
		}
	}
#endif
Ingo Molnar's avatar
Ingo Molnar committed
3799 3800
	printk(KERN_INFO
		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3801 3802
		" CPUs=%d, Nodes=%d\n",
		caches, cache_line_size(),
Christoph Lameter's avatar
Christoph Lameter committed
3803 3804 3805 3806
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3807 3808 3809 3810
void __init kmem_cache_init_late(void)
{
}

Christoph Lameter's avatar
Christoph Lameter committed
3811 3812 3813 3814 3815 3816 3817 3818
/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

3819
	if (s->ctor)
Christoph Lameter's avatar
Christoph Lameter committed
3820 3821
		return 1;

3822 3823 3824 3825 3826 3827
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

Christoph Lameter's avatar
Christoph Lameter committed
3828 3829 3830 3831
	return 0;
}

static struct kmem_cache *find_mergeable(size_t size,
3832
		size_t align, unsigned long flags, const char *name,
3833
		void (*ctor)(void *))
Christoph Lameter's avatar
Christoph Lameter committed
3834
{
3835
	struct kmem_cache *s;
Christoph Lameter's avatar
Christoph Lameter committed
3836 3837 3838 3839

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3840
	if (ctor)
Christoph Lameter's avatar
Christoph Lameter committed
3841 3842 3843 3844 3845
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3846
	flags = kmem_cache_flags(size, flags, name, NULL);
Christoph Lameter's avatar
Christoph Lameter committed
3847

3848
	list_for_each_entry(s, &slab_caches, list) {
Christoph Lameter's avatar
Christoph Lameter committed
3849 3850 3851 3852 3853 3854
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3855
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
Christoph Lameter's avatar
Christoph Lameter committed
3856 3857 3858 3859 3860
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
3861
		if ((s->size & ~(align - 1)) != s->size)
Christoph Lameter's avatar
Christoph Lameter committed
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

		return s;
	}
	return NULL;
}

struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3873
		size_t align, unsigned long flags, void (*ctor)(void *))
Christoph Lameter's avatar
Christoph Lameter committed
3874 3875
{
	struct kmem_cache *s;
3876
	char *n;
Christoph Lameter's avatar
Christoph Lameter committed
3877

3878 3879 3880
	if (WARN_ON(!name))
		return NULL;

Christoph Lameter's avatar
Christoph Lameter committed
3881
	down_write(&slub_lock);
3882
	s = find_mergeable(size, align, flags, name, ctor);
Christoph Lameter's avatar
Christoph Lameter committed
3883 3884 3885 3886 3887 3888 3889 3890
	if (s) {
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
		s->objsize = max(s->objsize, (int)size);
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
Christoph Lameter's avatar
Christoph Lameter committed
3891

3892 3893
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
Christoph Lameter's avatar
Christoph Lameter committed
3894
			goto err;
3895
		}
3896
		up_write(&slub_lock);
3897 3898
		return s;
	}
Christoph Lameter's avatar
Christoph Lameter committed
3899

3900 3901 3902 3903
	n = kstrdup(name, GFP_KERNEL);
	if (!n)
		goto err;

3904 3905
	s = kmalloc(kmem_size, GFP_KERNEL);
	if (s) {
3906
		if (kmem_cache_open(s, n,
3907
				size, align, flags, ctor)) {
Christoph Lameter's avatar
Christoph Lameter committed
3908
			list_add(&s->list, &slab_caches);
3909 3910
			if (sysfs_slab_add(s)) {
				list_del(&s->list);
3911
				kfree(n);
3912
				kfree(s);
3913
				goto err;
3914
			}
3915
			up_write(&slub_lock);
3916 3917
			return s;
		}
3918
		kfree(n);
3919
		kfree(s);
Christoph Lameter's avatar
Christoph Lameter committed
3920
	}
3921
err:
Christoph Lameter's avatar
Christoph Lameter committed
3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
	up_write(&slub_lock);

	if (flags & SLAB_PANIC)
		panic("Cannot create slabcache %s\n", name);
	else
		s = NULL;
	return s;
}
EXPORT_SYMBOL(kmem_cache_create);

#ifdef CONFIG_SMP
/*
Christoph Lameter's avatar
Christoph Lameter committed
3934 3935
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
Christoph Lameter's avatar
Christoph Lameter committed
3936 3937 3938 3939 3940
 */
static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3941 3942
	struct kmem_cache *s;
	unsigned long flags;
Christoph Lameter's avatar
Christoph Lameter committed
3943 3944 3945

	switch (action) {
	case CPU_UP_CANCELED:
3946
	case CPU_UP_CANCELED_FROZEN:
Christoph Lameter's avatar
Christoph Lameter committed
3947
	case CPU_DEAD:
3948
	case CPU_DEAD_FROZEN:
3949 3950 3951 3952 3953 3954 3955
		down_read(&slub_lock);
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
		up_read(&slub_lock);
Christoph Lameter's avatar
Christoph Lameter committed
3956 3957 3958 3959 3960 3961 3962
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3963
static struct notifier_block __cpuinitdata slab_notifier = {
Ingo Molnar's avatar
Ingo Molnar committed
3964
	.notifier_call = slab_cpuup_callback
3965
};
Christoph Lameter's avatar
Christoph Lameter committed
3966 3967 3968

#endif

3969
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
Christoph Lameter's avatar
Christoph Lameter committed
3970
{
3971
	struct kmem_cache *s;
3972
	void *ret;
3973

3974
	if (unlikely(size > SLUB_MAX_SIZE))
3975 3976
		return kmalloc_large(size, gfpflags);

3977
	s = get_slab(size, gfpflags);
Christoph Lameter's avatar
Christoph Lameter committed
3978

3979
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3980
		return s;
Christoph Lameter's avatar
Christoph Lameter committed
3981

3982
	ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3983

Lucas De Marchi's avatar
Lucas De Marchi committed
3984
	/* Honor the call site pointer we received. */
3985
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3986 3987

	return ret;
Christoph Lameter's avatar
Christoph Lameter committed
3988 3989
}

3990
#ifdef CONFIG_NUMA
Christoph Lameter's avatar
Christoph Lameter committed
3991
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3992
					int node, unsigned long caller)
Christoph Lameter's avatar
Christoph Lameter committed
3993
{
3994
	struct kmem_cache *s;
3995
	void *ret;
3996

3997 3998 3999 4000 4001 4002 4003 4004 4005
	if (unlikely(size > SLUB_MAX_SIZE)) {
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
4006

4007
	s = get_slab(size, gfpflags);
Christoph Lameter's avatar
Christoph Lameter committed
4008

4009
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4010
		return s;
Christoph Lameter's avatar
Christoph Lameter committed
4011

4012 4013
	ret = slab_alloc(s, gfpflags, node, caller);

Lucas De Marchi's avatar
Lucas De Marchi committed
4014
	/* Honor the call site pointer we received. */
4015
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4016 4017

	return ret;
Christoph Lameter's avatar
Christoph Lameter committed
4018
}
4019
#endif
Christoph Lameter's avatar
Christoph Lameter committed
4020

4021
#ifdef CONFIG_SYSFS
4022 4023 4024 4025 4026 4027 4028 4029 4030
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
4031
#endif
4032

4033
#ifdef CONFIG_SLUB_DEBUG
4034 4035
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4036 4037
{
	void *p;
4038
	void *addr = page_address(page);
4039 4040 4041 4042 4043 4044

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
4045
	bitmap_zero(map, page->objects);
4046

4047 4048 4049 4050 4051
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
4052 4053
	}

4054
	for_each_object(p, s, addr, page->objects)
4055
		if (!test_bit(slab_index(p, s, addr), map))
4056
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4057 4058 4059 4060
				return 0;
	return 1;
}

4061 4062
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4063
{
4064 4065 4066
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
4067 4068
}

4069 4070
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
4071 4072 4073 4074 4075 4076 4077 4078
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
4079
		validate_slab_slab(s, page, map);
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
4090
		validate_slab_slab(s, page, map);
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

4103
static long validate_slab_cache(struct kmem_cache *s)
4104 4105 4106
{
	int node;
	unsigned long count = 0;
4107
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4108 4109 4110 4111
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
4112 4113

	flush_all(s);
4114
	for_each_node_state(node, N_NORMAL_MEMORY) {
4115 4116
		struct kmem_cache_node *n = get_node(s, node);

4117
		count += validate_slab_node(s, n, map);
4118
	}
4119
	kfree(map);
4120 4121
	return count;
}
4122
/*
Christoph Lameter's avatar
Christoph Lameter committed
4123
 * Generate lists of code addresses where slabcache objects are allocated
4124 4125 4126 4127 4128
 * and freed.
 */

struct location {
	unsigned long count;
4129
	unsigned long addr;
4130 4131 4132 4133 4134
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
Rusty Russell's avatar
Rusty Russell committed
4135
	DECLARE_BITMAP(cpus, NR_CPUS);
4136
	nodemask_t nodes;
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4152
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4153 4154 4155 4156 4157 4158
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4159
	l = (void *)__get_free_pages(flags, order);
4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4173
				const struct track *track)
4174 4175 4176
{
	long start, end, pos;
	struct location *l;
4177
	unsigned long caddr;
4178
	unsigned long age = jiffies - track->when;
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

Rusty Russell's avatar
Rusty Russell committed
4210 4211
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4212 4213
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4214 4215 4216
			return 1;
		}

4217
		if (track->addr < caddr)
4218 4219 4220 4221 4222 4223
			end = pos;
		else
			start = pos;
	}

	/*
Christoph Lameter's avatar
Christoph Lameter committed
4224
	 * Not found. Insert new tracking element.
4225
	 */
4226
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4227 4228 4229 4230 4231 4232 4233 4234
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4235 4236 4237 4238 4239 4240
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
Rusty Russell's avatar
Rusty Russell committed
4241 4242
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4243 4244
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4245 4246 4247 4248
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
4249
		struct page *page, enum track_item alloc,
Namhyung Kim's avatar
Namhyung Kim committed
4250
		unsigned long *map)
4251
{
4252
	void *addr = page_address(page);
4253 4254
	void *p;

4255
	bitmap_zero(map, page->objects);
4256
	get_map(s, page, map);
4257

4258
	for_each_object(p, s, addr, page->objects)
4259 4260
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4261 4262 4263 4264 4265
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4266
	int len = 0;
4267
	unsigned long i;
4268
	struct loc_track t = { 0, 0, NULL };
4269
	int node;
4270 4271
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
4272

4273 4274 4275
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4276
		return sprintf(buf, "Out of memory\n");
4277
	}
4278 4279 4280
	/* Push back cpu slabs */
	flush_all(s);

4281
	for_each_node_state(node, N_NORMAL_MEMORY) {
4282 4283 4284 4285
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

4286
		if (!atomic_long_read(&n->nr_slabs))
4287 4288 4289 4290
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
4291
			process_slab(&t, s, page, alloc, map);
4292
		list_for_each_entry(page, &n->full, lru)
4293
			process_slab(&t, s, page, alloc, map);
4294 4295 4296 4297
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4298
		struct location *l = &t.loc[i];
4299

Hugh Dickins's avatar
Hugh Dickins committed
4300
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4301
			break;
4302
		len += sprintf(buf + len, "%7ld ", l->count);
4303 4304

		if (l->addr)
4305
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4306
		else
4307
			len += sprintf(buf + len, "<not-available>");
4308 4309

		if (l->sum_time != l->min_time) {
4310
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
Roman Zippel's avatar
Roman Zippel committed
4311 4312 4313
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4314
		} else
4315
			len += sprintf(buf + len, " age=%ld",
4316 4317 4318
				l->min_time);

		if (l->min_pid != l->max_pid)
4319
			len += sprintf(buf + len, " pid=%ld-%ld",
4320 4321
				l->min_pid, l->max_pid);
		else
4322
			len += sprintf(buf + len, " pid=%ld",
4323 4324
				l->min_pid);

Rusty Russell's avatar
Rusty Russell committed
4325 4326
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4327 4328 4329
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
Rusty Russell's avatar
Rusty Russell committed
4330
						 to_cpumask(l->cpus));
4331 4332
		}

4333
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4334 4335 4336
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
4337 4338 4339
					l->nodes);
		}

4340
		len += sprintf(buf + len, "\n");
4341 4342 4343
	}

	free_loc_track(&t);
4344
	kfree(map);
4345
	if (!t.count)
4346 4347
		len += sprintf(buf, "No data\n");
	return len;
4348
}
4349
#endif
4350

4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
			" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
	validate_slab_cache(kmalloc_caches[6]);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
			p);
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4413
#ifdef CONFIG_SYSFS
Christoph Lameter's avatar
Christoph Lameter committed
4414
enum slab_stat_type {
4415 4416 4417 4418 4419
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
Christoph Lameter's avatar
Christoph Lameter committed
4420 4421
};

4422
#define SO_ALL		(1 << SL_ALL)
Christoph Lameter's avatar
Christoph Lameter committed
4423 4424 4425
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4426
#define SO_TOTAL	(1 << SL_TOTAL)
Christoph Lameter's avatar
Christoph Lameter committed
4427

4428 4429
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
Christoph Lameter's avatar
Christoph Lameter committed
4430 4431 4432 4433 4434 4435 4436 4437
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;
	unsigned long *per_cpu;

	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4438 4439
	if (!nodes)
		return -ENOMEM;
Christoph Lameter's avatar
Christoph Lameter committed
4440 4441
	per_cpu = nodes + nr_node_ids;

4442 4443
	if (flags & SO_CPU) {
		int cpu;
Christoph Lameter's avatar
Christoph Lameter committed
4444

4445
		for_each_possible_cpu(cpu) {
4446
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4447
			int node = ACCESS_ONCE(c->node);
4448
			struct page *page;
4449

4450
			if (node < 0)
4451
				continue;
4452 4453 4454 4455
			page = ACCESS_ONCE(c->page);
			if (page) {
				if (flags & SO_TOTAL)
					x = page->objects;
4456
				else if (flags & SO_OBJECTS)
4457
					x = page->inuse;
Christoph Lameter's avatar
Christoph Lameter committed
4458 4459
				else
					x = 1;
4460

Christoph Lameter's avatar
Christoph Lameter committed
4461
				total += x;
4462
				nodes[node] += x;
Christoph Lameter's avatar
Christoph Lameter committed
4463
			}
4464 4465 4466 4467
			page = c->partial;

			if (page) {
				x = page->pobjects;
4468 4469
				total += x;
				nodes[node] += x;
4470
			}
4471
			per_cpu[node]++;
Christoph Lameter's avatar
Christoph Lameter committed
4472 4473 4474
		}
	}

4475
	lock_memory_hotplug();
4476
#ifdef CONFIG_SLUB_DEBUG
4477 4478 4479 4480 4481 4482 4483 4484 4485
	if (flags & SO_ALL) {
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);

		if (flags & SO_TOTAL)
			x = atomic_long_read(&n->total_objects);
		else if (flags & SO_OBJECTS)
			x = atomic_long_read(&n->total_objects) -
				count_partial(n, count_free);
Christoph Lameter's avatar
Christoph Lameter committed
4486 4487

			else
4488
				x = atomic_long_read(&n->nr_slabs);
Christoph Lameter's avatar
Christoph Lameter committed
4489 4490 4491 4492
			total += x;
			nodes[node] += x;
		}

4493 4494 4495
	} else
#endif
	if (flags & SO_PARTIAL) {
4496 4497
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);
Christoph Lameter's avatar
Christoph Lameter committed
4498

4499 4500 4501 4502
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
Christoph Lameter's avatar
Christoph Lameter committed
4503
			else
4504
				x = n->nr_partial;
Christoph Lameter's avatar
Christoph Lameter committed
4505 4506 4507 4508 4509 4510
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
4511
	for_each_node_state(node, N_NORMAL_MEMORY)
Christoph Lameter's avatar
Christoph Lameter committed
4512 4513 4514 4515
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4516
	unlock_memory_hotplug();
Christoph Lameter's avatar
Christoph Lameter committed
4517 4518 4519 4520
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4521
#ifdef CONFIG_SLUB_DEBUG
Christoph Lameter's avatar
Christoph Lameter committed
4522 4523 4524 4525
static int any_slab_objects(struct kmem_cache *s)
{
	int node;

4526
	for_each_online_node(node) {
Christoph Lameter's avatar
Christoph Lameter committed
4527 4528
		struct kmem_cache_node *n = get_node(s, node);

4529 4530 4531
		if (!n)
			continue;

4532
		if (atomic_long_read(&n->total_objects))
Christoph Lameter's avatar
Christoph Lameter committed
4533 4534 4535 4536
			return 1;
	}
	return 0;
}
4537
#endif
Christoph Lameter's avatar
Christoph Lameter committed
4538 4539

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4540
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
Christoph Lameter's avatar
Christoph Lameter committed
4541 4542 4543 4544 4545 4546 4547 4548

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4549 4550
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
Christoph Lameter's avatar
Christoph Lameter committed
4551 4552 4553

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4554
	__ATTR(_name, 0600, _name##_show, _name##_store)
Christoph Lameter's avatar
Christoph Lameter committed
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->objsize);
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4576
	return sprintf(buf, "%d\n", oo_objects(s->oo));
Christoph Lameter's avatar
Christoph Lameter committed
4577 4578 4579
}
SLAB_ATTR_RO(objs_per_slab);

4580 4581 4582
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4583 4584 4585 4586 4587 4588
	unsigned long order;
	int err;

	err = strict_strtoul(buf, 10, &order);
	if (err)
		return err;
4589 4590 4591 4592 4593 4594 4595 4596

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

Christoph Lameter's avatar
Christoph Lameter committed
4597 4598
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4599
	return sprintf(buf, "%d\n", oo_order(s->oo));
Christoph Lameter's avatar
Christoph Lameter committed
4600
}
4601
SLAB_ATTR(order);
Christoph Lameter's avatar
Christoph Lameter committed
4602

4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

	err = strict_strtoul(buf, 10, &min);
	if (err)
		return err;

4618
	set_min_partial(s, min);
4619 4620 4621 4622
	return length;
}
SLAB_ATTR(min_partial);

4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

	err = strict_strtoul(buf, 10, &objects);
	if (err)
		return err;

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

Christoph Lameter's avatar
Christoph Lameter committed
4644 4645
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
4646 4647 4648
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
Christoph Lameter's avatar
Christoph Lameter committed
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4660
	return show_slab_objects(s, buf, SO_PARTIAL);
Christoph Lameter's avatar
Christoph Lameter committed
4661 4662 4663 4664 4665
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4666
	return show_slab_objects(s, buf, SO_CPU);
Christoph Lameter's avatar
Christoph Lameter committed
4667 4668 4669 4670 4671
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4672
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
Christoph Lameter's avatar
Christoph Lameter committed
4673 4674 4675
}
SLAB_ATTR_RO(objects);

4676 4677 4678 4679 4680 4681
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4748 4749 4750 4751 4752 4753
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4754
#ifdef CONFIG_SLUB_DEBUG
4755 4756 4757 4758 4759 4760
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4761 4762 4763 4764 4765 4766
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

Christoph Lameter's avatar
Christoph Lameter committed
4767 4768 4769 4770 4771 4772 4773 4774 4775
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4776 4777
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
Christoph Lameter's avatar
Christoph Lameter committed
4778
		s->flags |= SLAB_DEBUG_FREE;
4779
	}
Christoph Lameter's avatar
Christoph Lameter committed
4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
4793 4794
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
Christoph Lameter's avatar
Christoph Lameter committed
4795
		s->flags |= SLAB_TRACE;
4796
	}
Christoph Lameter's avatar
Christoph Lameter committed
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4813 4814
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
Christoph Lameter's avatar
Christoph Lameter committed
4815
		s->flags |= SLAB_RED_ZONE;
4816
	}
4817
	calculate_sizes(s, -1);
Christoph Lameter's avatar
Christoph Lameter committed
4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4834 4835
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
Christoph Lameter's avatar
Christoph Lameter committed
4836
		s->flags |= SLAB_POISON;
4837
	}
4838
	calculate_sizes(s, -1);
Christoph Lameter's avatar
Christoph Lameter committed
4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4855 4856
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
Christoph Lameter's avatar
Christoph Lameter committed
4857
		s->flags |= SLAB_STORE_USER;
4858
	}
4859
	calculate_sizes(s, -1);
Christoph Lameter's avatar
Christoph Lameter committed
4860 4861 4862 4863
	return length;
}
SLAB_ATTR(store_user);

4864 4865 4866 4867 4868 4869 4870 4871
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4872 4873 4874 4875 4876 4877 4878 4879
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4880 4881
}
SLAB_ATTR(validate);
4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4915
#endif
4916

4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

Christoph Lameter's avatar
Christoph Lameter committed
4936
#ifdef CONFIG_NUMA
4937
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
Christoph Lameter's avatar
Christoph Lameter committed
4938
{
4939
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
Christoph Lameter's avatar
Christoph Lameter committed
4940 4941
}

4942
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
Christoph Lameter's avatar
Christoph Lameter committed
4943 4944
				const char *buf, size_t length)
{
4945 4946 4947 4948 4949 4950 4951
	unsigned long ratio;
	int err;

	err = strict_strtoul(buf, 10, &ratio);
	if (err)
		return err;

4952
	if (ratio <= 100)
4953
		s->remote_node_defrag_ratio = ratio * 10;
Christoph Lameter's avatar
Christoph Lameter committed
4954 4955 4956

	return length;
}
4957
SLAB_ATTR(remote_node_defrag_ratio);
Christoph Lameter's avatar
Christoph Lameter committed
4958 4959
#endif

4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4972
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4973 4974 4975 4976 4977 4978 4979

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4980
#ifdef CONFIG_SMP
4981 4982
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4983
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4984
	}
4985
#endif
4986 4987 4988 4989
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

4990 4991 4992 4993 4994
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
4995
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4996 4997
}

4998 4999 5000 5001 5002
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
5003 5004 5005 5006 5007 5008 5009 5010 5011
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
5023
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5024 5025 5026 5027 5028 5029 5030
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5031
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5032
STAT_ATTR(ORDER_FALLBACK, order_fallback);
5033 5034
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5035 5036
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5037 5038
#endif

5039
static struct attribute *slab_attrs[] = {
Christoph Lameter's avatar
Christoph Lameter committed
5040 5041 5042 5043
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
5044
	&min_partial_attr.attr,
5045
	&cpu_partial_attr.attr,
Christoph Lameter's avatar
Christoph Lameter committed
5046
	&objects_attr.attr,
5047
	&objects_partial_attr.attr,
Christoph Lameter's avatar
Christoph Lameter committed
5048 5049 5050 5051 5052 5053 5054 5055
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
5056
	&shrink_attr.attr,
5057
	&reserved_attr.attr,
5058
	&slabs_cpu_partial_attr.attr,
5059
#ifdef CONFIG_SLUB_DEBUG
5060 5061 5062 5063
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
Christoph Lameter's avatar
Christoph Lameter committed
5064 5065 5066
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
5067
	&validate_attr.attr,
5068 5069
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
5070
#endif
Christoph Lameter's avatar
Christoph Lameter committed
5071 5072 5073 5074
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
5075
	&remote_node_defrag_ratio_attr.attr,
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
5088
	&alloc_node_mismatch_attr.attr,
5089 5090 5091 5092 5093 5094 5095
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
5096
	&deactivate_bypass_attr.attr,
5097
	&order_fallback_attr.attr,
5098 5099
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
5100 5101
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
Christoph Lameter's avatar
Christoph Lameter committed
5102
#endif
5103 5104 5105 5106
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

Christoph Lameter's avatar
Christoph Lameter committed
5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);

	return err;
}

5152 5153 5154 5155
static void kmem_cache_release(struct kobject *kobj)
{
	struct kmem_cache *s = to_slab(kobj);

5156
	kfree(s->name);
5157 5158 5159
	kfree(s);
}

5160
static const struct sysfs_ops slab_sysfs_ops = {
Christoph Lameter's avatar
Christoph Lameter committed
5161 5162 5163 5164 5165 5166
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5167
	.release = kmem_cache_release
Christoph Lameter's avatar
Christoph Lameter committed
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5179
static const struct kset_uevent_ops slab_uevent_ops = {
Christoph Lameter's avatar
Christoph Lameter committed
5180 5181 5182
	.filter = uevent_filter,
};

5183
static struct kset *slab_kset;
Christoph Lameter's avatar
Christoph Lameter committed
5184 5185 5186 5187

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
Christoph Lameter's avatar
Christoph Lameter committed
5188 5189
 *
 * Format	:[flags-]size
Christoph Lameter's avatar
Christoph Lameter committed
5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
5212 5213
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
Christoph Lameter's avatar
Christoph Lameter committed
5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
	int unmergeable;

	if (slab_state < SYSFS)
		/* Defer until later */
		return 0;

	unmergeable = slab_unmergeable(s);
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5238
		sysfs_remove_link(&slab_kset->kobj, s->name);
Christoph Lameter's avatar
Christoph Lameter committed
5239 5240 5241 5242 5243 5244 5245 5246 5247
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5248
	s->kobj.kset = slab_kset;
5249 5250 5251
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
	if (err) {
		kobject_put(&s->kobj);
Christoph Lameter's avatar
Christoph Lameter committed
5252
		return err;
5253
	}
Christoph Lameter's avatar
Christoph Lameter committed
5254 5255

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5256 5257 5258
	if (err) {
		kobject_del(&s->kobj);
		kobject_put(&s->kobj);
Christoph Lameter's avatar
Christoph Lameter committed
5259
		return err;
5260
	}
Christoph Lameter's avatar
Christoph Lameter committed
5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
5272 5273 5274 5275 5276 5277 5278
	if (slab_state < SYSFS)
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

Christoph Lameter's avatar
Christoph Lameter committed
5279 5280
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
5281
	kobject_put(&s->kobj);
Christoph Lameter's avatar
Christoph Lameter committed
5282 5283 5284 5285
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
5286
 * available lest we lose that information.
Christoph Lameter's avatar
Christoph Lameter committed
5287 5288 5289 5290 5291 5292 5293
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

Adrian Bunk's avatar
Adrian Bunk committed
5294
static struct saved_alias *alias_list;
Christoph Lameter's avatar
Christoph Lameter committed
5295 5296 5297 5298 5299 5300 5301 5302 5303

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

	if (slab_state == SYSFS) {
		/*
		 * If we have a leftover link then remove it.
		 */
5304 5305
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
Christoph Lameter's avatar
Christoph Lameter committed
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5321
	struct kmem_cache *s;
Christoph Lameter's avatar
Christoph Lameter committed
5322 5323
	int err;

5324 5325
	down_write(&slub_lock);

5326
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5327
	if (!slab_kset) {
5328
		up_write(&slub_lock);
Christoph Lameter's avatar
Christoph Lameter committed
5329 5330 5331 5332
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

5333 5334
	slab_state = SYSFS;

5335
	list_for_each_entry(s, &slab_caches, list) {
5336
		err = sysfs_slab_add(s);
5337 5338 5339
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
						" to sysfs\n", s->name);
5340
	}
Christoph Lameter's avatar
Christoph Lameter committed
5341 5342 5343 5344 5345 5346

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5347 5348 5349
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
					" %s to sysfs\n", s->name);
Christoph Lameter's avatar
Christoph Lameter committed
5350 5351 5352
		kfree(al);
	}

5353
	up_write(&slub_lock);
Christoph Lameter's avatar
Christoph Lameter committed
5354 5355 5356 5357 5358
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5359
#endif /* CONFIG_SYSFS */
5360 5361 5362 5363

/*
 * The /proc/slabinfo ABI
 */
5364
#ifdef CONFIG_SLABINFO
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400
static void print_slabinfo_header(struct seq_file *m)
{
	seq_puts(m, "slabinfo - version: 2.1\n");
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

	down_read(&slub_lock);
	if (!n)
		print_slabinfo_header(m);

	return seq_list_start(&slab_caches, *pos);
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
	return seq_list_next(p, &slab_caches, pos);
}

static void s_stop(struct seq_file *m, void *p)
{
	up_read(&slub_lock);
}

static int s_show(struct seq_file *m, void *p)
{
	unsigned long nr_partials = 0;
	unsigned long nr_slabs = 0;
	unsigned long nr_inuse = 0;
5401 5402
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415
	struct kmem_cache *s;
	int node;

	s = list_entry(p, struct kmem_cache, list);

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

		nr_partials += n->nr_partial;
		nr_slabs += atomic_long_read(&n->nr_slabs);
5416 5417
		nr_objs += atomic_long_read(&n->total_objects);
		nr_free += count_partial(n, count_free);
5418 5419
	}

5420
	nr_inuse = nr_objs - nr_free;
5421 5422

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
5423 5424
		   nr_objs, s->size, oo_objects(s->oo),
		   (1 << oo_order(s->oo)));
5425 5426 5427 5428 5429 5430 5431
	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
		   0UL);
	seq_putc(m, '\n');
	return 0;
}

5432
static const struct seq_operations slabinfo_op = {
5433 5434 5435 5436 5437 5438
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
};

5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

static int __init slab_proc_init(void)
{
5453
	proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
5454 5455 5456
	return 0;
}
module_init(slab_proc_init);
5457
#endif /* CONFIG_SLABINFO */