-
Sean Christopherson authored
It turns out that we should *not* invert all not-present mappings, because the all zeroes case is obviously special. clear_page() does not undergo the XOR logic to invert the address bits, i.e. PTE, PMD and PUD entries that have not been individually written will have val=0 and so will trigger __pte_needs_invert(). As a result, {pte,pmd,pud}_pfn() will return the wrong PFN value, i.e. all ones (adjusted by the max PFN mask) instead of zero. A zeroed entry is ok because the page at physical address 0 is reserved early in boot specifically to mitigate L1TF, so explicitly exempt them from the inversion when reading the PFN. Manifested as an unexpected mprotect(..., PROT_NONE) failure when called on a VMA that has VM_PFNMAP and was mmap'd to as something other than PROT_NONE but never used. mprotect() sends the PROT_NONE request down prot_none_walk(), which walks the PTEs to check the PFNs. prot_none_pte_entry() gets the bogus PFN from pte_pfn() and returns -EACCES because it thinks mprotect() is trying to adjust a high MMIO address. [ This is a very modified version of Sean's original patch, but all credit goes to Sean for doing this and also pointing out that sometimes the __pte_needs_invert() function only gets the protection bits, not the full eventual pte. But zero remains special even in just protection bits, so that's ok. - Linus ] Fixes: f22cc87f ("x86/speculation/l1tf: Invert all not present mappings") Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Acked-by: Andi Kleen <ak@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
f19f5c49