-
Jason A. Donenfeld authored
Now that our crng uses chacha20, we can rely on its speedy characteristics for replacing MD5, while simultaneously achieving a higher security guarantee. Before the idea was to use these functions if you wanted random integers that aren't stupidly insecure but aren't necessarily secure either, a vague gray zone, that hopefully was "good enough" for its users. With chacha20, we can strengthen this claim, since either we're using an rdrand-like instruction, or we're using the same crng as /dev/urandom. And it's faster than what was before. We could have chosen to replace this with a SipHash-derived function, which might be slightly faster, but at the cost of having yet another RNG construction in the kernel. By moving to chacha20, we have a single RNG to analyze and verify, and we also already get good performance improvements on all platforms. Implementation-wise, rather than use a generic buffer for both get_random_int/long and memcpy based on the size needs, we use a specific buffer for 32-bit reads and for 64-bit reads. This way, we're guaranteed to always have aligned accesses on all platforms. While slightly more verbose in C, the assembly this generates is a lot simpler than otherwise. Finally, on 32-bit platforms where longs and ints are the same size, we simply alias get_random_int to get_random_long. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Suggested-by: Theodore Ts'o <tytso@mit.edu> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Hannes Frederic Sowa <hannes@stressinduktion.org> Cc: Andy Lutomirski <luto@amacapital.net> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
f5b98461