Commit 0fa5d399 authored by Russell King's avatar Russell King

Merge branch 'devel-stable' into for-linus

parents 0b99cb73 14318efb
* ARM CPUs binding description
The device tree allows to describe the layout of CPUs in a system through
the "cpus" node, which in turn contains a number of subnodes (ie "cpu")
defining properties for every cpu.
Bindings for CPU nodes follow the ePAPR standard, available from:
http://devicetree.org
For the ARM architecture every CPU node must contain the following properties:
- device_type: must be "cpu"
- reg: property matching the CPU MPIDR[23:0] register bits
reg[31:24] bits must be set to 0
- compatible: should be one of:
"arm,arm1020"
"arm,arm1020e"
"arm,arm1022"
"arm,arm1026"
"arm,arm720"
"arm,arm740"
"arm,arm7tdmi"
"arm,arm920"
"arm,arm922"
"arm,arm925"
"arm,arm926"
"arm,arm940"
"arm,arm946"
"arm,arm9tdmi"
"arm,cortex-a5"
"arm,cortex-a7"
"arm,cortex-a8"
"arm,cortex-a9"
"arm,cortex-a15"
"arm,arm1136"
"arm,arm1156"
"arm,arm1176"
"arm,arm11mpcore"
"faraday,fa526"
"intel,sa110"
"intel,sa1100"
"marvell,feroceon"
"marvell,mohawk"
"marvell,xsc3"
"marvell,xscale"
Example:
cpus {
#size-cells = <0>;
#address-cells = <1>;
CPU0: cpu@0 {
device_type = "cpu";
compatible = "arm,cortex-a15";
reg = <0x0>;
};
CPU1: cpu@1 {
device_type = "cpu";
compatible = "arm,cortex-a15";
reg = <0x1>;
};
CPU2: cpu@100 {
device_type = "cpu";
compatible = "arm,cortex-a7";
reg = <0x100>;
};
CPU3: cpu@101 {
device_type = "cpu";
compatible = "arm,cortex-a7";
reg = <0x101>;
};
};
......@@ -69,6 +69,14 @@ struct gic_chip_data {
static DEFINE_RAW_SPINLOCK(irq_controller_lock);
/*
* The GIC mapping of CPU interfaces does not necessarily match
* the logical CPU numbering. Let's use a mapping as returned
* by the GIC itself.
*/
#define NR_GIC_CPU_IF 8
static u8 gic_cpu_map[NR_GIC_CPU_IF] __read_mostly;
/*
* Supported arch specific GIC irq extension.
* Default make them NULL.
......@@ -238,11 +246,11 @@ static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
unsigned int cpu = cpumask_any_and(mask_val, cpu_online_mask);
u32 val, mask, bit;
if (cpu >= 8 || cpu >= nr_cpu_ids)
if (cpu >= NR_GIC_CPU_IF || cpu >= nr_cpu_ids)
return -EINVAL;
mask = 0xff << shift;
bit = 1 << (cpu_logical_map(cpu) + shift);
bit = gic_cpu_map[cpu] << shift;
raw_spin_lock(&irq_controller_lock);
val = readl_relaxed(reg) & ~mask;
......@@ -349,11 +357,6 @@ static void __init gic_dist_init(struct gic_chip_data *gic)
u32 cpumask;
unsigned int gic_irqs = gic->gic_irqs;
void __iomem *base = gic_data_dist_base(gic);
u32 cpu = cpu_logical_map(smp_processor_id());
cpumask = 1 << cpu;
cpumask |= cpumask << 8;
cpumask |= cpumask << 16;
writel_relaxed(0, base + GIC_DIST_CTRL);
......@@ -366,6 +369,7 @@ static void __init gic_dist_init(struct gic_chip_data *gic)
/*
* Set all global interrupts to this CPU only.
*/
cpumask = readl_relaxed(base + GIC_DIST_TARGET + 0);
for (i = 32; i < gic_irqs; i += 4)
writel_relaxed(cpumask, base + GIC_DIST_TARGET + i * 4 / 4);
......@@ -389,8 +393,24 @@ static void __cpuinit gic_cpu_init(struct gic_chip_data *gic)
{
void __iomem *dist_base = gic_data_dist_base(gic);
void __iomem *base = gic_data_cpu_base(gic);
unsigned int cpu_mask, cpu = smp_processor_id();
int i;
/*
* Get what the GIC says our CPU mask is.
*/
BUG_ON(cpu >= NR_GIC_CPU_IF);
cpu_mask = readl_relaxed(dist_base + GIC_DIST_TARGET + 0);
gic_cpu_map[cpu] = cpu_mask;
/*
* Clear our mask from the other map entries in case they're
* still undefined.
*/
for (i = 0; i < NR_GIC_CPU_IF; i++)
if (i != cpu)
gic_cpu_map[i] &= ~cpu_mask;
/*
* Deal with the banked PPI and SGI interrupts - disable all
* PPI interrupts, ensure all SGI interrupts are enabled.
......@@ -646,7 +666,7 @@ void __init gic_init_bases(unsigned int gic_nr, int irq_start,
{
irq_hw_number_t hwirq_base;
struct gic_chip_data *gic;
int gic_irqs, irq_base;
int gic_irqs, irq_base, i;
BUG_ON(gic_nr >= MAX_GIC_NR);
......@@ -682,6 +702,13 @@ void __init gic_init_bases(unsigned int gic_nr, int irq_start,
gic_set_base_accessor(gic, gic_get_common_base);
}
/*
* Initialize the CPU interface map to all CPUs.
* It will be refined as each CPU probes its ID.
*/
for (i = 0; i < NR_GIC_CPU_IF; i++)
gic_cpu_map[i] = 0xff;
/*
* For primary GICs, skip over SGIs.
* For secondary GICs, skip over PPIs, too.
......@@ -737,7 +764,7 @@ void gic_raise_softirq(const struct cpumask *mask, unsigned int irq)
/* Convert our logical CPU mask into a physical one. */
for_each_cpu(cpu, mask)
map |= 1 << cpu_logical_map(cpu);
map |= gic_cpu_map[cpu];
/*
* Ensure that stores to Normal memory are visible to the
......
......@@ -16,7 +16,6 @@ generic-y += local64.h
generic-y += msgbuf.h
generic-y += param.h
generic-y += parport.h
generic-y += percpu.h
generic-y += poll.h
generic-y += resource.h
generic-y += sections.h
......
......@@ -15,6 +15,7 @@
struct cpuinfo_arm {
struct cpu cpu;
u32 cpuid;
#ifdef CONFIG_SMP
unsigned int loops_per_jiffy;
#endif
......
......@@ -25,6 +25,19 @@
#define CPUID_EXT_ISAR4 "c2, 4"
#define CPUID_EXT_ISAR5 "c2, 5"
#define MPIDR_SMP_BITMASK (0x3 << 30)
#define MPIDR_SMP_VALUE (0x2 << 30)
#define MPIDR_MT_BITMASK (0x1 << 24)
#define MPIDR_HWID_BITMASK 0xFFFFFF
#define MPIDR_LEVEL_BITS 8
#define MPIDR_LEVEL_MASK ((1 << MPIDR_LEVEL_BITS) - 1)
#define MPIDR_AFFINITY_LEVEL(mpidr, level) \
((mpidr >> (MPIDR_LEVEL_BITS * level)) & MPIDR_LEVEL_MASK)
extern unsigned int processor_id;
#ifdef CONFIG_CPU_CP15
......
......@@ -146,15 +146,7 @@ static inline void cti_irq_ack(struct cti *cti)
*/
static inline void cti_unlock(struct cti *cti)
{
void __iomem *base = cti->base;
unsigned long val;
val = __raw_readl(base + LOCKSTATUS);
if (val & 1) {
val = LOCKCODE;
__raw_writel(val, base + LOCKACCESS);
}
__raw_writel(LOCKCODE, cti->base + LOCKACCESS);
}
/**
......@@ -166,14 +158,6 @@ static inline void cti_unlock(struct cti *cti)
*/
static inline void cti_lock(struct cti *cti)
{
void __iomem *base = cti->base;
unsigned long val;
val = __raw_readl(base + LOCKSTATUS);
if (!(val & 1)) {
val = ~LOCKCODE;
__raw_writel(val, base + LOCKACCESS);
}
__raw_writel(~LOCKCODE, cti->base + LOCKACCESS);
}
#endif
......@@ -98,12 +98,12 @@ static inline void decode_ctrl_reg(u32 reg,
#define ARM_BASE_WCR 112
/* Accessor macros for the debug registers. */
#define ARM_DBG_READ(M, OP2, VAL) do {\
asm volatile("mrc p14, 0, %0, c0," #M ", " #OP2 : "=r" (VAL));\
#define ARM_DBG_READ(N, M, OP2, VAL) do {\
asm volatile("mrc p14, 0, %0, " #N "," #M ", " #OP2 : "=r" (VAL));\
} while (0)
#define ARM_DBG_WRITE(M, OP2, VAL) do {\
asm volatile("mcr p14, 0, %0, c0," #M ", " #OP2 : : "r" (VAL));\
#define ARM_DBG_WRITE(N, M, OP2, VAL) do {\
asm volatile("mcr p14, 0, %0, " #N "," #M ", " #OP2 : : "r" (VAL));\
} while (0)
struct notifier_block;
......
......@@ -5,18 +5,15 @@
typedef struct {
#ifdef CONFIG_CPU_HAS_ASID
unsigned int id;
raw_spinlock_t id_lock;
u64 id;
#endif
unsigned int kvm_seq;
unsigned int vmalloc_seq;
} mm_context_t;
#ifdef CONFIG_CPU_HAS_ASID
#define ASID(mm) ((mm)->context.id & 255)
/* init_mm.context.id_lock should be initialized. */
#define INIT_MM_CONTEXT(name) \
.context.id_lock = __RAW_SPIN_LOCK_UNLOCKED(name.context.id_lock),
#define ASID_BITS 8
#define ASID_MASK ((~0ULL) << ASID_BITS)
#define ASID(mm) ((mm)->context.id & ~ASID_MASK)
#else
#define ASID(mm) (0)
#endif
......
......@@ -20,88 +20,12 @@
#include <asm/proc-fns.h>
#include <asm-generic/mm_hooks.h>
void __check_kvm_seq(struct mm_struct *mm);
void __check_vmalloc_seq(struct mm_struct *mm);
#ifdef CONFIG_CPU_HAS_ASID
/*
* On ARMv6, we have the following structure in the Context ID:
*
* 31 7 0
* +-------------------------+-----------+
* | process ID | ASID |
* +-------------------------+-----------+
* | context ID |
* +-------------------------------------+
*
* The ASID is used to tag entries in the CPU caches and TLBs.
* The context ID is used by debuggers and trace logic, and
* should be unique within all running processes.
*/
#define ASID_BITS 8
#define ASID_MASK ((~0) << ASID_BITS)
#define ASID_FIRST_VERSION (1 << ASID_BITS)
extern unsigned int cpu_last_asid;
void __init_new_context(struct task_struct *tsk, struct mm_struct *mm);
void __new_context(struct mm_struct *mm);
void cpu_set_reserved_ttbr0(void);
static inline void switch_new_context(struct mm_struct *mm)
{
unsigned long flags;
__new_context(mm);
local_irq_save(flags);
cpu_switch_mm(mm->pgd, mm);
local_irq_restore(flags);
}
static inline void check_and_switch_context(struct mm_struct *mm,
struct task_struct *tsk)
{
if (unlikely(mm->context.kvm_seq != init_mm.context.kvm_seq))
__check_kvm_seq(mm);
/*
* Required during context switch to avoid speculative page table
* walking with the wrong TTBR.
*/
cpu_set_reserved_ttbr0();
if (!((mm->context.id ^ cpu_last_asid) >> ASID_BITS))
/*
* The ASID is from the current generation, just switch to the
* new pgd. This condition is only true for calls from
* context_switch() and interrupts are already disabled.
*/
cpu_switch_mm(mm->pgd, mm);
else if (irqs_disabled())
/*
* Defer the new ASID allocation until after the context
* switch critical region since __new_context() cannot be
* called with interrupts disabled (it sends IPIs).
*/
set_ti_thread_flag(task_thread_info(tsk), TIF_SWITCH_MM);
else
/*
* That is a direct call to switch_mm() or activate_mm() with
* interrupts enabled and a new context.
*/
switch_new_context(mm);
}
#define init_new_context(tsk,mm) (__init_new_context(tsk,mm),0)
#define finish_arch_post_lock_switch \
finish_arch_post_lock_switch
static inline void finish_arch_post_lock_switch(void)
{
if (test_and_clear_thread_flag(TIF_SWITCH_MM))
switch_new_context(current->mm);
}
void check_and_switch_context(struct mm_struct *mm, struct task_struct *tsk);
#define init_new_context(tsk,mm) ({ mm->context.id = 0; })
#else /* !CONFIG_CPU_HAS_ASID */
......@@ -110,8 +34,8 @@ static inline void finish_arch_post_lock_switch(void)
static inline void check_and_switch_context(struct mm_struct *mm,
struct task_struct *tsk)
{
if (unlikely(mm->context.kvm_seq != init_mm.context.kvm_seq))
__check_kvm_seq(mm);
if (unlikely(mm->context.vmalloc_seq != init_mm.context.vmalloc_seq))
__check_vmalloc_seq(mm);
if (irqs_disabled())
/*
......@@ -143,6 +67,7 @@ static inline void finish_arch_post_lock_switch(void)
#endif /* CONFIG_CPU_HAS_ASID */
#define destroy_context(mm) do { } while(0)
#define activate_mm(prev,next) switch_mm(prev, next, NULL)
/*
* This is called when "tsk" is about to enter lazy TLB mode.
......@@ -186,6 +111,5 @@ switch_mm(struct mm_struct *prev, struct mm_struct *next,
}
#define deactivate_mm(tsk,mm) do { } while (0)
#define activate_mm(prev,next) switch_mm(prev, next, NULL)
#endif
/*
* Copyright 2012 Calxeda, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _ASM_ARM_PERCPU_H_
#define _ASM_ARM_PERCPU_H_
/*
* Same as asm-generic/percpu.h, except that we store the per cpu offset
* in the TPIDRPRW. TPIDRPRW only exists on V6K and V7
*/
#if defined(CONFIG_SMP) && !defined(CONFIG_CPU_V6)
static inline void set_my_cpu_offset(unsigned long off)
{
/* Set TPIDRPRW */
asm volatile("mcr p15, 0, %0, c13, c0, 4" : : "r" (off) : "memory");
}
static inline unsigned long __my_cpu_offset(void)
{
unsigned long off;
/* Read TPIDRPRW */
asm("mrc p15, 0, %0, c13, c0, 4" : "=r" (off) : : "memory");
return off;
}
#define __my_cpu_offset __my_cpu_offset()
#else
#define set_my_cpu_offset(x) do {} while(0)
#endif /* CONFIG_SMP */
#include <asm-generic/percpu.h>
#endif /* _ASM_ARM_PERCPU_H_ */
......@@ -21,4 +21,11 @@
#define C(_x) PERF_COUNT_HW_CACHE_##_x
#define CACHE_OP_UNSUPPORTED 0xFFFF
#ifdef CONFIG_HW_PERF_EVENTS
struct pt_regs;
extern unsigned long perf_instruction_pointer(struct pt_regs *regs);
extern unsigned long perf_misc_flags(struct pt_regs *regs);
#define perf_misc_flags(regs) perf_misc_flags(regs)
#endif
#endif /* __ARM_PERF_EVENT_H__ */
......@@ -115,6 +115,7 @@
* The PTE table pointer refers to the hardware entries; the "Linux"
* entries are stored 1024 bytes below.
*/
#define L_PTE_VALID (_AT(pteval_t, 1) << 0) /* Valid */
#define L_PTE_PRESENT (_AT(pteval_t, 1) << 0)
#define L_PTE_YOUNG (_AT(pteval_t, 1) << 1)
#define L_PTE_FILE (_AT(pteval_t, 1) << 2) /* only when !PRESENT */
......@@ -123,6 +124,7 @@
#define L_PTE_USER (_AT(pteval_t, 1) << 8)
#define L_PTE_XN (_AT(pteval_t, 1) << 9)
#define L_PTE_SHARED (_AT(pteval_t, 1) << 10) /* shared(v6), coherent(xsc3) */
#define L_PTE_NONE (_AT(pteval_t, 1) << 11)
/*
* These are the memory types, defined to be compatible with
......
......@@ -67,7 +67,8 @@
* These bits overlap with the hardware bits but the naming is preserved for
* consistency with the classic page table format.
*/
#define L_PTE_PRESENT (_AT(pteval_t, 3) << 0) /* Valid */
#define L_PTE_VALID (_AT(pteval_t, 1) << 0) /* Valid */
#define L_PTE_PRESENT (_AT(pteval_t, 3) << 0) /* Present */
#define L_PTE_FILE (_AT(pteval_t, 1) << 2) /* only when !PRESENT */
#define L_PTE_USER (_AT(pteval_t, 1) << 6) /* AP[1] */
#define L_PTE_RDONLY (_AT(pteval_t, 1) << 7) /* AP[2] */
......@@ -76,6 +77,7 @@
#define L_PTE_XN (_AT(pteval_t, 1) << 54) /* XN */
#define L_PTE_DIRTY (_AT(pteval_t, 1) << 55) /* unused */
#define L_PTE_SPECIAL (_AT(pteval_t, 1) << 56) /* unused */
#define L_PTE_NONE (_AT(pteval_t, 1) << 57) /* PROT_NONE */
/*
* To be used in assembly code with the upper page attributes.
......
......@@ -73,7 +73,7 @@ extern pgprot_t pgprot_kernel;
#define _MOD_PROT(p, b) __pgprot(pgprot_val(p) | (b))
#define PAGE_NONE _MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY)
#define PAGE_NONE _MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY | L_PTE_NONE)
#define PAGE_SHARED _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
#define PAGE_SHARED_EXEC _MOD_PROT(pgprot_user, L_PTE_USER)
#define PAGE_COPY _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
......@@ -83,7 +83,7 @@ extern pgprot_t pgprot_kernel;
#define PAGE_KERNEL _MOD_PROT(pgprot_kernel, L_PTE_XN)
#define PAGE_KERNEL_EXEC pgprot_kernel
#define __PAGE_NONE __pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN)
#define __PAGE_NONE __pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN | L_PTE_NONE)
#define __PAGE_SHARED __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
#define __PAGE_SHARED_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER)
#define __PAGE_COPY __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
......@@ -203,9 +203,7 @@ static inline pte_t *pmd_page_vaddr(pmd_t pmd)
#define pte_exec(pte) (!(pte_val(pte) & L_PTE_XN))
#define pte_special(pte) (0)
#define pte_present_user(pte) \
((pte_val(pte) & (L_PTE_PRESENT | L_PTE_USER)) == \
(L_PTE_PRESENT | L_PTE_USER))
#define pte_present_user(pte) (pte_present(pte) && (pte_val(pte) & L_PTE_USER))
#if __LINUX_ARM_ARCH__ < 6
static inline void __sync_icache_dcache(pte_t pteval)
......@@ -242,7 +240,7 @@ static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{
const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER;
const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER | L_PTE_NONE;
pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
return pte;
}
......
......@@ -67,19 +67,19 @@ struct arm_pmu {
cpumask_t active_irqs;
char *name;
irqreturn_t (*handle_irq)(int irq_num, void *dev);
void (*enable)(struct hw_perf_event *evt, int idx);
void (*disable)(struct hw_perf_event *evt, int idx);
void (*enable)(struct perf_event *event);
void (*disable)(struct perf_event *event);
int (*get_event_idx)(struct pmu_hw_events *hw_events,
struct hw_perf_event *hwc);
struct perf_event *event);
int (*set_event_filter)(struct hw_perf_event *evt,
struct perf_event_attr *attr);
u32 (*read_counter)(int idx);
void (*write_counter)(int idx, u32 val);
void (*start)(void);
void (*stop)(void);
u32 (*read_counter)(struct perf_event *event);
void (*write_counter)(struct perf_event *event, u32 val);
void (*start)(struct arm_pmu *);
void (*stop)(struct arm_pmu *);
void (*reset)(void *);
int (*request_irq)(irq_handler_t handler);
void (*free_irq)(void);
int (*request_irq)(struct arm_pmu *, irq_handler_t handler);
void (*free_irq)(struct arm_pmu *);
int (*map_event)(struct perf_event *event);
int num_events;
atomic_t active_events;
......@@ -93,15 +93,11 @@ struct arm_pmu {
extern const struct dev_pm_ops armpmu_dev_pm_ops;
int armpmu_register(struct arm_pmu *armpmu, char *name, int type);
int armpmu_register(struct arm_pmu *armpmu, int type);
u64 armpmu_event_update(struct perf_event *event,
struct hw_perf_event *hwc,
int idx);
u64 armpmu_event_update(struct perf_event *event);
int armpmu_event_set_period(struct perf_event *event,
struct hw_perf_event *hwc,
int idx);
int armpmu_event_set_period(struct perf_event *event);
int armpmu_map_event(struct perf_event *event,
const unsigned (*event_map)[PERF_COUNT_HW_MAX],
......
......@@ -15,6 +15,7 @@
extern struct machine_desc *setup_machine_fdt(unsigned int dt_phys);
extern void arm_dt_memblock_reserve(void);
extern void __init arm_dt_init_cpu_maps(void);
#else /* CONFIG_OF */
......@@ -24,6 +25,7 @@ static inline struct machine_desc *setup_machine_fdt(unsigned int dt_phys)
}
static inline void arm_dt_memblock_reserve(void) { }
static inline void arm_dt_init_cpu_maps(void) { }
#endif /* CONFIG_OF */
#endif /* ASMARM_PROM_H */
......@@ -5,6 +5,9 @@
#ifndef __ASMARM_SMP_PLAT_H
#define __ASMARM_SMP_PLAT_H
#include <linux/cpumask.h>
#include <linux/err.h>
#include <asm/cputype.h>
/*
......@@ -48,5 +51,19 @@ static inline int cache_ops_need_broadcast(void)
*/
extern int __cpu_logical_map[];
#define cpu_logical_map(cpu) __cpu_logical_map[cpu]
/*
* Retrieve logical cpu index corresponding to a given MPIDR[23:0]
* - mpidr: MPIDR[23:0] to be used for the look-up
*
* Returns the cpu logical index or -EINVAL on look-up error
*/
static inline int get_logical_index(u32 mpidr)
{
int cpu;
for (cpu = 0; cpu < nr_cpu_ids; cpu++)
if (cpu_logical_map(cpu) == mpidr)
return cpu;
return -EINVAL;
}
#endif
......@@ -19,8 +19,10 @@
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <asm/cputype.h>
#include <asm/setup.h>
#include <asm/page.h>
#include <asm/smp_plat.h>
#include <asm/mach/arch.h>
#include <asm/mach-types.h>
......@@ -61,6 +63,108 @@ void __init arm_dt_memblock_reserve(void)
}
}
/*
* arm_dt_init_cpu_maps - Function retrieves cpu nodes from the device tree
* and builds the cpu logical map array containing MPIDR values related to
* logical cpus
*
* Updates the cpu possible mask with the number of parsed cpu nodes
*/
void __init arm_dt_init_cpu_maps(void)
{
/*
* Temp logical map is initialized with UINT_MAX values that are
* considered invalid logical map entries since the logical map must
* contain a list of MPIDR[23:0] values where MPIDR[31:24] must
* read as 0.
*/
struct device_node *cpu, *cpus;
u32 i, j, cpuidx = 1;
u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
u32 tmp_map[NR_CPUS] = { [0 ... NR_CPUS-1] = UINT_MAX };
bool bootcpu_valid = false;
cpus = of_find_node_by_path("/cpus");
if (!cpus)
return;
for_each_child_of_node(cpus, cpu) {
u32 hwid;
pr_debug(" * %s...\n", cpu->full_name);
/*
* A device tree containing CPU nodes with missing "reg"
* properties is considered invalid to build the
* cpu_logical_map.
*/
if (of_property_read_u32(cpu, "reg", &hwid)) {
pr_debug(" * %s missing reg property\n",
cpu->full_name);
return;
}
/*
* 8 MSBs must be set to 0 in the DT since the reg property
* defines the MPIDR[23:0].
*/
if (hwid & ~MPIDR_HWID_BITMASK)
return;
/*
* Duplicate MPIDRs are a recipe for disaster.
* Scan all initialized entries and check for
* duplicates. If any is found just bail out.
* temp values were initialized to UINT_MAX
* to avoid matching valid MPIDR[23:0] values.
*/
for (j = 0; j < cpuidx; j++)
if (WARN(tmp_map[j] == hwid, "Duplicate /cpu reg "
"properties in the DT\n"))
return;
/*
* Build a stashed array of MPIDR values. Numbering scheme
* requires that if detected the boot CPU must be assigned
* logical id 0. Other CPUs get sequential indexes starting
* from 1. If a CPU node with a reg property matching the
* boot CPU MPIDR is detected, this is recorded so that the
* logical map built from DT is validated and can be used
* to override the map created in smp_setup_processor_id().
*/
if (hwid == mpidr) {
i = 0;
bootcpu_valid = true;
} else {
i = cpuidx++;
}
if (WARN(cpuidx > nr_cpu_ids, "DT /cpu %u nodes greater than "
"max cores %u, capping them\n",
cpuidx, nr_cpu_ids)) {
cpuidx = nr_cpu_ids;
break;
}
tmp_map[i] = hwid;
}
if (WARN(!bootcpu_valid, "DT missing boot CPU MPIDR[23:0], "
"fall back to default cpu_logical_map\n"))
return;
/*
* Since the boot CPU node contains proper data, and all nodes have
* a reg property, the DT CPU list can be considered valid and the
* logical map created in smp_setup_processor_id() can be overridden
*/
for (i = 0; i < cpuidx; i++) {
set_cpu_possible(i, true);
cpu_logical_map(i) = tmp_map[i];
pr_debug("cpu logical map 0x%x\n", cpu_logical_map(i));
}
}
/**
* setup_machine_fdt - Machine setup when an dtb was passed to the kernel
* @dt_phys: physical address of dt blob
......
......@@ -52,14 +52,14 @@ static u8 debug_arch;
/* Maximum supported watchpoint length. */
static u8 max_watchpoint_len;
#define READ_WB_REG_CASE(OP2, M, VAL) \
case ((OP2 << 4) + M): \
ARM_DBG_READ(c ## M, OP2, VAL); \
#define READ_WB_REG_CASE(OP2, M, VAL) \
case ((OP2 << 4) + M): \
ARM_DBG_READ(c0, c ## M, OP2, VAL); \
break
#define WRITE_WB_REG_CASE(OP2, M, VAL) \
case ((OP2 << 4) + M): \
ARM_DBG_WRITE(c ## M, OP2, VAL);\
#define WRITE_WB_REG_CASE(OP2, M, VAL) \
case ((OP2 << 4) + M): \
ARM_DBG_WRITE(c0, c ## M, OP2, VAL); \
break
#define GEN_READ_WB_REG_CASES(OP2, VAL) \
......@@ -136,12 +136,12 @@ static u8 get_debug_arch(void)
/* Do we implement the extended CPUID interface? */
if (((read_cpuid_id() >> 16) & 0xf) != 0xf) {
pr_warning("CPUID feature registers not supported. "
"Assuming v6 debug is present.\n");
pr_warn_once("CPUID feature registers not supported. "
"Assuming v6 debug is present.\n");
return ARM_DEBUG_ARCH_V6;
}
ARM_DBG_READ(c0, 0, didr);
ARM_DBG_READ(c0, c0, 0, didr);
return (didr >> 16) & 0xf;
}
......@@ -169,7 +169,7 @@ static int debug_exception_updates_fsr(void)
static int get_num_wrp_resources(void)
{
u32 didr;
ARM_DBG_READ(c0, 0, didr);
ARM_DBG_READ(c0, c0, 0, didr);
return ((didr >> 28) & 0xf) + 1;
}
......@@ -177,7 +177,7 @@ static int get_num_wrp_resources(void)
static int get_num_brp_resources(void)
{
u32 didr;
ARM_DBG_READ(c0, 0, didr);
ARM_DBG_READ(c0, c0, 0, didr);
return ((didr >> 24) & 0xf) + 1;
}
......@@ -228,19 +228,17 @@ static int get_num_brps(void)
* be put into halting debug mode at any time by an external debugger
* but there is nothing we can do to prevent that.
*/
static int enable_monitor_mode(void)
static int monitor_mode_enabled(void)
{
u32 dscr;
int ret = 0;
ARM_DBG_READ(c1, 0, dscr);
ARM_DBG_READ(c0, c1, 0, dscr);
return !!(dscr & ARM_DSCR_MDBGEN);
}
/* Ensure that halting mode is disabled. */
if (WARN_ONCE(dscr & ARM_DSCR_HDBGEN,
"halting debug mode enabled. Unable to access hardware resources.\n")) {
ret = -EPERM;
goto out;
}
static int enable_monitor_mode(void)
{
u32 dscr;
ARM_DBG_READ(c0, c1, 0, dscr);
/* If monitor mode is already enabled, just return. */
if (dscr & ARM_DSCR_MDBGEN)
......@@ -250,24 +248,27 @@ static int enable_monitor_mode(void)
switch (get_debug_arch()) {
case ARM_DEBUG_ARCH_V6:
case ARM_DEBUG_ARCH_V6_1:
ARM_DBG_WRITE(c1, 0, (dscr | ARM_DSCR_MDBGEN));
ARM_DBG_WRITE(c0, c1, 0, (dscr | ARM_DSCR_MDBGEN));
break;
case ARM_DEBUG_ARCH_V7_ECP14:
case ARM_DEBUG_ARCH_V7_1:
ARM_DBG_WRITE(c2, 2, (dscr | ARM_DSCR_MDBGEN));
ARM_DBG_WRITE(c0, c2, 2, (dscr | ARM_DSCR_MDBGEN));
isb();
break;
default:
ret = -ENODEV;
goto out;
return -ENODEV;
}
/* Check that the write made it through. */
ARM_DBG_READ(c1, 0, dscr);
if (!(dscr & ARM_DSCR_MDBGEN))
ret = -EPERM;
ARM_DBG_READ(c0, c1, 0, dscr);
if (!(dscr & ARM_DSCR_MDBGEN)) {
pr_warn_once("Failed to enable monitor mode on CPU %d.\n",
smp_processor_id());
return -EPERM;
}
out:
return ret;
return 0;
}
int hw_breakpoint_slots(int type)
......@@ -328,14 +329,9 @@ int arch_install_hw_breakpoint(struct perf_event *bp)
{
struct arch_hw_breakpoint *info = counter_arch_bp(bp);
struct perf_event **slot, **slots;
int i, max_slots, ctrl_base, val_base, ret = 0;
int i, max_slots, ctrl_base, val_base;
u32 addr, ctrl;
/* Ensure that we are in monitor mode and halting mode is disabled. */
ret = enable_monitor_mode();
if (ret)
goto out;
addr = info->address;
ctrl = encode_ctrl_reg(info->ctrl) | 0x1;
......@@ -362,9 +358,9 @@ int arch_install_hw_breakpoint(struct perf_event *bp)
}
}
if (WARN_ONCE(i == max_slots, "Can't find any breakpoint slot\n")) {
ret = -EBUSY;
goto out;
if (i == max_slots) {
pr_warning("Can't find any breakpoint slot\n");
return -EBUSY;
}
/* Override the breakpoint data with the step data. */
......@@ -383,9 +379,7 @@ int arch_install_hw_breakpoint(struct perf_event *bp)
/* Setup the control register. */
write_wb_reg(ctrl_base + i, ctrl);
out:
return ret;
return 0;
}
void arch_uninstall_hw_breakpoint(struct perf_event *bp)
......@@ -416,8 +410,10 @@ void arch_uninstall_hw_breakpoint(struct perf_event *bp)
}
}
if (WARN_ONCE(i == max_slots, "Can't find any breakpoint slot\n"))
if (i == max_slots) {
pr_warning("Can't find any breakpoint slot\n");
return;
}
/* Ensure that we disable the mismatch breakpoint. */
if (info->ctrl.type != ARM_BREAKPOINT_EXECUTE &&
......@@ -596,6 +592,10 @@ int arch_validate_hwbkpt_settings(struct perf_event *bp)
int ret = 0;
u32 offset, alignment_mask = 0x3;
/* Ensure that we are in monitor debug mode. */
if (!monitor_mode_enabled())
return -ENODEV;
/* Build the arch_hw_breakpoint. */
ret = arch_build_bp_info(bp);
if (ret)
......@@ -858,7 +858,7 @@ static int hw_breakpoint_pending(unsigned long addr, unsigned int fsr,
local_irq_enable();
/* We only handle watchpoints and hardware breakpoints. */
ARM_DBG_READ(c1, 0, dscr);
ARM_DBG_READ(c0, c1, 0, dscr);
/* Perform perf callbacks. */
switch (ARM_DSCR_MOE(dscr)) {
......@@ -906,7 +906,7 @@ static struct undef_hook debug_reg_hook = {
static void reset_ctrl_regs(void *unused)
{
int i, raw_num_brps, err = 0, cpu = smp_processor_id();
u32 dbg_power;
u32 val;
/*
* v7 debug contains save and restore registers so that debug state
......@@ -919,23 +919,30 @@ static void reset_ctrl_regs(void *unused)
switch (debug_arch) {
case ARM_DEBUG_ARCH_V6:
case ARM_DEBUG_ARCH_V6_1:
/* ARMv6 cores just need to reset the registers. */
goto reset_regs;
/* ARMv6 cores clear the registers out of reset. */
goto out_mdbgen;
case ARM_DEBUG_ARCH_V7_ECP14:
/*
* Ensure sticky power-down is clear (i.e. debug logic is
* powered up).
*/
asm volatile("mrc p14, 0, %0, c1, c5, 4" : "=r" (dbg_power));
if ((dbg_power & 0x1) == 0)
ARM_DBG_READ(c1, c5, 4, val);
if ((val & 0x1) == 0)
err = -EPERM;
/*
* Check whether we implement OS save and restore.
*/
ARM_DBG_READ(c1, c1, 4, val);
if ((val & 0x9) == 0)
goto clear_vcr;
break;
case ARM_DEBUG_ARCH_V7_1:
/*
* Ensure the OS double lock is clear.
*/
asm volatile("mrc p14, 0, %0, c1, c3, 4" : "=r" (dbg_power));
if ((dbg_power & 0x1) == 1)
ARM_DBG_READ(c1, c3, 4, val);
if ((val & 0x1) == 1)
err = -EPERM;
break;
}
......@@ -947,24 +954,29 @@ static void reset_ctrl_regs(void *unused)
}
/*
* Unconditionally clear the lock by writing a value
* Unconditionally clear the OS lock by writing a value
* other than 0xC5ACCE55 to the access register.
*/
asm volatile("mcr p14, 0, %0, c1, c0, 4" : : "r" (0));
ARM_DBG_WRITE(c1, c0, 4, 0);
isb();
/*
* Clear any configured vector-catch events before
* enabling monitor mode.
*/
asm volatile("mcr p14, 0, %0, c0, c7, 0" : : "r" (0));
clear_vcr:
ARM_DBG_WRITE(c0, c7, 0, 0);
isb();
reset_regs:
if (enable_monitor_mode())
if (cpumask_intersects(&debug_err_mask, cpumask_of(cpu))) {
pr_warning("CPU %d failed to disable vector catch\n", cpu);
return;
}
/* We must also reset any reserved registers. */
/*
* The control/value register pairs are UNKNOWN out of reset so
* clear them to avoid spurious debug events.
*/
raw_num_brps = get_num_brp_resources();
for (i = 0; i < raw_num_brps; ++i) {
write_wb_reg(ARM_BASE_BCR + i, 0UL);
......@@ -975,6 +987,19 @@ static void reset_ctrl_regs(void *unused)
write_wb_reg(ARM_BASE_WCR + i, 0UL);
write_wb_reg(ARM_BASE_WVR + i, 0UL);
}
if (cpumask_intersects(&debug_err_mask, cpumask_of(cpu))) {
pr_warning("CPU %d failed to clear debug register pairs\n", cpu);
return;
}
/*
* Have a crack at enabling monitor mode. We don't actually need
* it yet, but reporting an error early is useful if it fails.
*/
out_mdbgen:
if (enable_monitor_mode())
cpumask_or(&debug_err_mask, &debug_err_mask, cpumask_of(cpu));
}
static int __cpuinit dbg_reset_notify(struct notifier_block *self,
......@@ -992,8 +1017,6 @@ static struct notifier_block __cpuinitdata dbg_reset_nb = {
static int __init arch_hw_breakpoint_init(void)
{
u32 dscr;
debug_arch = get_debug_arch();
if (!debug_arch_supported()) {
......@@ -1028,17 +1051,10 @@ static int __init arch_hw_breakpoint_init(void)
core_num_brps, core_has_mismatch_brps() ? "(+1 reserved) " :
"", core_num_wrps);
ARM_DBG_READ(c1, 0, dscr);
if (dscr & ARM_DSCR_HDBGEN) {
max_watchpoint_len = 4;
pr_warning("halting debug mode enabled. Assuming maximum watchpoint size of %u bytes.\n",
max_watchpoint_len);
} else {
/* Work out the maximum supported watchpoint length. */
max_watchpoint_len = get_max_wp_len();
pr_info("maximum watchpoint size is %u bytes.\n",
max_watchpoint_len);
}
/* Work out the maximum supported watchpoint length. */
max_watchpoint_len = get_max_wp_len();
pr_info("maximum watchpoint size is %u bytes.\n",
max_watchpoint_len);
/* Register debug fault handler. */
hook_fault_code(FAULT_CODE_DEBUG, hw_breakpoint_pending, SIGTRAP,
......
......@@ -86,12 +86,10 @@ armpmu_map_event(struct perf_event *event,
return -ENOENT;
}
int
armpmu_event_set_period(struct perf_event *event,
struct hw_perf_event *hwc,
int idx)
int armpmu_event_set_period(struct perf_event *event)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
s64 left = local64_read(&hwc->period_left);
s64 period = hwc->sample_period;
int ret = 0;
......@@ -119,24 +117,22 @@ armpmu_event_set_period(struct perf_event *event,
local64_set(&hwc->prev_count, (u64)-left);
armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
perf_event_update_userpage(event);
return ret;
}
u64
armpmu_event_update(struct perf_event *event,
struct hw_perf_event *hwc,
int idx)
u64 armpmu_event_update(struct perf_event *event)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
u64 delta, prev_raw_count, new_raw_count;
again:
prev_raw_count = local64_read(&hwc->prev_count);
new_raw_count = armpmu->read_counter(idx);
new_raw_count = armpmu->read_counter(event);
if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
new_raw_count) != prev_raw_count)
......@@ -159,7 +155,7 @@ armpmu_read(struct perf_event *event)
if (hwc->idx < 0)
return;
armpmu_event_update(event, hwc, hwc->idx);
armpmu_event_update(event);
}
static void
......@@ -173,14 +169,13 @@ armpmu_stop(struct perf_event *event, int flags)
* PERF_EF_UPDATE, see comments in armpmu_start().
*/
if (!(hwc->state & PERF_HES_STOPPED)) {
armpmu->disable(hwc, hwc->idx);
armpmu_event_update(event, hwc, hwc->idx);
armpmu->disable(event);
armpmu_event_update(event);
hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
}
}
static void
armpmu_start(struct perf_event *event, int flags)
static void armpmu_start(struct perf_event *event, int flags)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
......@@ -200,8 +195,8 @@ armpmu_start(struct perf_event *event, int flags)
* get an interrupt too soon or *way* too late if the overflow has
* happened since disabling.
*/
armpmu_event_set_period(event, hwc, hwc->idx);
armpmu->enable(hwc, hwc->idx);
armpmu_event_set_period(event);
armpmu->enable(event);
}
static void
......@@ -233,7 +228,7 @@ armpmu_add(struct perf_event *event, int flags)
perf_pmu_disable(event->pmu);
/* If we don't have a space for the counter then finish early. */
idx = armpmu->get_event_idx(hw_events, hwc);
idx = armpmu->get_event_idx(hw_events, event);
if (idx < 0) {
err = idx;
goto out;
......@@ -244,7 +239,7 @@ armpmu_add(struct perf_event *event, int flags)
* sure it is disabled.
*/
event->hw.idx = idx;
armpmu->disable(hwc, idx);
armpmu->disable(event);
hw_events->events[idx] = event;
hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
......@@ -264,13 +259,12 @@ validate_event(struct pmu_hw_events *hw_events,
struct perf_event *event)
{
struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
struct hw_perf_event fake_event = event->hw;
struct pmu *leader_pmu = event->group_leader->pmu;
if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
return 1;
return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
return armpmu->get_event_idx(hw_events, event) >= 0;
}
static int
......@@ -316,7 +310,7 @@ static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
static void
armpmu_release_hardware(struct arm_pmu *armpmu)
{
armpmu->free_irq();
armpmu->free_irq(armpmu);
pm_runtime_put_sync(&armpmu->plat_device->dev);
}
......@@ -330,7 +324,7 @@ armpmu_reserve_hardware(struct arm_pmu *armpmu)
return -ENODEV;
pm_runtime_get_sync(&pmu_device->dev);
err = armpmu->request_irq(armpmu_dispatch_irq);
err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
if (err) {
armpmu_release_hardware(armpmu);
return err;
......@@ -465,13 +459,13 @@ static void armpmu_enable(struct pmu *pmu)
int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
if (enabled)
armpmu->start();
armpmu->start(armpmu);
}
static void armpmu_disable(struct pmu *pmu)
{
struct arm_pmu *armpmu = to_arm_pmu(pmu);
armpmu->stop();
armpmu->stop(armpmu);
}
#ifdef CONFIG_PM_RUNTIME
......@@ -517,12 +511,13 @@ static void __init armpmu_init(struct arm_pmu *armpmu)
};
}
int armpmu_register(struct arm_pmu *armpmu, char *name, int type)
int armpmu_register(struct arm_pmu *armpmu, int type)
{
armpmu_init(armpmu);
pm_runtime_enable(&armpmu->plat_device->dev);
pr_info("enabled with %s PMU driver, %d counters available\n",
armpmu->name, armpmu->num_events);
return perf_pmu_register(&armpmu->pmu, name, type);
return perf_pmu_register(&armpmu->pmu, armpmu->name, type);
}
/*
......@@ -576,6 +571,10 @@ perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
{
struct frame_tail __user *tail;
if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
/* We don't support guest os callchain now */
return;
}
tail = (struct frame_tail __user *)regs->ARM_fp - 1;
......@@ -603,9 +602,41 @@ perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
{
struct stackframe fr;
if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
/* We don't support guest os callchain now */
return;
}
fr.fp = regs->ARM_fp;
fr.sp = regs->ARM_sp;
fr.lr = regs->ARM_lr;
fr.pc = regs->ARM_pc;
walk_stackframe(&fr, callchain_trace, entry);
}
unsigned long perf_instruction_pointer(struct pt_regs *regs)
{
if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
return perf_guest_cbs->get_guest_ip();
return instruction_pointer(regs);
}
unsigned long perf_misc_flags(struct pt_regs *regs)
{
int misc = 0;
if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
if (perf_guest_cbs->is_user_mode())
misc |= PERF_RECORD_MISC_GUEST_USER;
else
misc |= PERF_RECORD_MISC_GUEST_KERNEL;
} else {
if (user_mode(regs))
misc |= PERF_RECORD_MISC_USER;
else
misc |= PERF_RECORD_MISC_KERNEL;
}
return misc;
}
......@@ -23,6 +23,7 @@
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <asm/cputype.h>
......@@ -45,7 +46,7 @@ const char *perf_pmu_name(void)
if (!cpu_pmu)
return NULL;
return cpu_pmu->pmu.name;
return cpu_pmu->name;
}
EXPORT_SYMBOL_GPL(perf_pmu_name);
......@@ -70,7 +71,7 @@ static struct pmu_hw_events *cpu_pmu_get_cpu_events(void)
return &__get_cpu_var(cpu_hw_events);
}
static void cpu_pmu_free_irq(void)
static void cpu_pmu_free_irq(struct arm_pmu *cpu_pmu)
{
int i, irq, irqs;
struct platform_device *pmu_device = cpu_pmu->plat_device;
......@@ -86,7 +87,7 @@ static void cpu_pmu_free_irq(void)
}
}
static int cpu_pmu_request_irq(irq_handler_t handler)
static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler)
{
int i, err, irq, irqs;
struct platform_device *pmu_device = cpu_pmu->plat_device;
......@@ -147,7 +148,7 @@ static void __devinit cpu_pmu_init(struct arm_pmu *cpu_pmu)
/* Ensure the PMU has sane values out of reset. */
if (cpu_pmu && cpu_pmu->reset)
on_each_cpu(cpu_pmu->reset, NULL, 1);
on_each_cpu(cpu_pmu->reset, cpu_pmu, 1);
}
/*
......@@ -163,7 +164,9 @@ static int __cpuinit cpu_pmu_notify(struct notifier_block *b,
return NOTIFY_DONE;
if (cpu_pmu && cpu_pmu->reset)
cpu_pmu->reset(NULL);
cpu_pmu->reset(cpu_pmu);
else
return NOTIFY_DONE;
return NOTIFY_OK;
}
......@@ -195,13 +198,13 @@ static struct platform_device_id __devinitdata cpu_pmu_plat_device_ids[] = {
/*
* CPU PMU identification and probing.
*/
static struct arm_pmu *__devinit probe_current_pmu(void)
static int __devinit probe_current_pmu(struct arm_pmu *pmu)
{
struct arm_pmu *pmu = NULL;
int cpu = get_cpu();
unsigned long cpuid = read_cpuid_id();
unsigned long implementor = (cpuid & 0xFF000000) >> 24;
unsigned long part_number = (cpuid & 0xFFF0);
int ret = -ENODEV;
pr_info("probing PMU on CPU %d\n", cpu);
......@@ -211,25 +214,25 @@ static struct arm_pmu *__devinit probe_current_pmu(void)
case 0xB360: /* ARM1136 */
case 0xB560: /* ARM1156 */
case 0xB760: /* ARM1176 */
pmu = armv6pmu_init();
ret = armv6pmu_init(pmu);
break;
case 0xB020: /* ARM11mpcore */
pmu = armv6mpcore_pmu_init();
ret = armv6mpcore_pmu_init(pmu);
break;
case 0xC080: /* Cortex-A8 */
pmu = armv7_a8_pmu_init();
ret = armv7_a8_pmu_init(pmu);
break;
case 0xC090: /* Cortex-A9 */
pmu = armv7_a9_pmu_init();
ret = armv7_a9_pmu_init(pmu);
break;
case 0xC050: /* Cortex-A5 */
pmu = armv7_a5_pmu_init();
ret = armv7_a5_pmu_init(pmu);
break;
case 0xC0F0: /* Cortex-A15 */
pmu = armv7_a15_pmu_init();
ret = armv7_a15_pmu_init(pmu);
break;
case 0xC070: /* Cortex-A7 */
pmu = armv7_a7_pmu_init();
ret = armv7_a7_pmu_init(pmu);
break;
}
/* Intel CPUs [xscale]. */
......@@ -237,43 +240,54 @@ static struct arm_pmu *__devinit probe_current_pmu(void)
part_number = (cpuid >> 13) & 0x7;
switch (part_number) {
case 1:
pmu = xscale1pmu_init();
ret = xscale1pmu_init(pmu);
break;
case 2:
pmu = xscale2pmu_init();
ret = xscale2pmu_init(pmu);
break;
}
}
put_cpu();
return pmu;
return ret;
}
static int __devinit cpu_pmu_device_probe(struct platform_device *pdev)
{
const struct of_device_id *of_id;
struct arm_pmu *(*init_fn)(void);
int (*init_fn)(struct arm_pmu *);
struct device_node *node = pdev->dev.of_node;
struct arm_pmu *pmu;
int ret = -ENODEV;
if (cpu_pmu) {
pr_info("attempt to register multiple PMU devices!");
return -ENOSPC;
}
pmu = kzalloc(sizeof(struct arm_pmu), GFP_KERNEL);
if (!pmu) {
pr_info("failed to allocate PMU device!");
return -ENOMEM;
}
if (node && (of_id = of_match_node(cpu_pmu_of_device_ids, pdev->dev.of_node))) {
init_fn = of_id->data;
cpu_pmu = init_fn();
ret = init_fn(pmu);
} else {
cpu_pmu = probe_current_pmu();
ret = probe_current_pmu(pmu);
}
if (!cpu_pmu)
return -ENODEV;
if (ret) {
pr_info("failed to register PMU devices!");
kfree(pmu);
return ret;
}
cpu_pmu = pmu;
cpu_pmu->plat_device = pdev;
cpu_pmu_init(cpu_pmu);
register_cpu_notifier(&cpu_pmu_hotplug_notifier);
armpmu_register(cpu_pmu, cpu_pmu->name, PERF_TYPE_RAW);
armpmu_register(cpu_pmu, PERF_TYPE_RAW);
return 0;
}
......@@ -290,6 +304,16 @@ static struct platform_driver cpu_pmu_driver = {
static int __init register_pmu_driver(void)
{
return platform_driver_register(&cpu_pmu_driver);
int err;
err = register_cpu_notifier(&cpu_pmu_hotplug_notifier);
if (err)
return err;
err = platform_driver_register(&cpu_pmu_driver);
if (err)
unregister_cpu_notifier(&cpu_pmu_hotplug_notifier);
return err;
}
device_initcall(register_pmu_driver);
......@@ -401,9 +401,10 @@ armv6_pmcr_counter_has_overflowed(unsigned long pmcr,
return ret;
}
static inline u32
armv6pmu_read_counter(int counter)
static inline u32 armv6pmu_read_counter(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
int counter = hwc->idx;
unsigned long value = 0;
if (ARMV6_CYCLE_COUNTER == counter)
......@@ -418,10 +419,11 @@ armv6pmu_read_counter(int counter)
return value;
}
static inline void
armv6pmu_write_counter(int counter,
u32 value)
static inline void armv6pmu_write_counter(struct perf_event *event, u32 value)
{
struct hw_perf_event *hwc = &event->hw;
int counter = hwc->idx;
if (ARMV6_CYCLE_COUNTER == counter)
asm volatile("mcr p15, 0, %0, c15, c12, 1" : : "r"(value));
else if (ARMV6_COUNTER0 == counter)
......@@ -432,12 +434,13 @@ armv6pmu_write_counter(int counter,
WARN_ONCE(1, "invalid counter number (%d)\n", counter);
}
static void
armv6pmu_enable_event(struct hw_perf_event *hwc,
int idx)
static void armv6pmu_enable_event(struct perf_event *event)
{
unsigned long val, mask, evt, flags;
struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
struct pmu_hw_events *events = cpu_pmu->get_hw_events();
int idx = hwc->idx;
if (ARMV6_CYCLE_COUNTER == idx) {
mask = 0;
......@@ -473,7 +476,8 @@ armv6pmu_handle_irq(int irq_num,
{
unsigned long pmcr = armv6_pmcr_read();
struct perf_sample_data data;
struct pmu_hw_events *cpuc;
struct arm_pmu *cpu_pmu = (struct arm_pmu *)dev;
struct pmu_hw_events *cpuc = cpu_pmu->get_hw_events();
struct pt_regs *regs;
int idx;
......@@ -489,7 +493,6 @@ armv6pmu_handle_irq(int irq_num,
*/
armv6_pmcr_write(pmcr);
cpuc = &__get_cpu_var(cpu_hw_events);
for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
struct perf_event *event = cpuc->events[idx];
struct hw_perf_event *hwc;
......@@ -506,13 +509,13 @@ armv6pmu_handle_irq(int irq_num,
continue;
hwc = &event->hw;
armpmu_event_update(event, hwc, idx);
armpmu_event_update(event);
perf_sample_data_init(&data, 0, hwc->last_period);
if (!armpmu_event_set_period(event, hwc, idx))
if (!armpmu_event_set_period(event))
continue;
if (perf_event_overflow(event, &data, regs))
cpu_pmu->disable(hwc, idx);
cpu_pmu->disable(event);
}
/*
......@@ -527,8 +530,7 @@ armv6pmu_handle_irq(int irq_num,
return IRQ_HANDLED;
}
static void
armv6pmu_start(void)
static void armv6pmu_start(struct arm_pmu *cpu_pmu)
{
unsigned long flags, val;
struct pmu_hw_events *events = cpu_pmu->get_hw_events();
......@@ -540,8 +542,7 @@ armv6pmu_start(void)
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}
static void
armv6pmu_stop(void)
static void armv6pmu_stop(struct arm_pmu *cpu_pmu)
{
unsigned long flags, val;
struct pmu_hw_events *events = cpu_pmu->get_hw_events();
......@@ -555,10 +556,11 @@ armv6pmu_stop(void)
static int
armv6pmu_get_event_idx(struct pmu_hw_events *cpuc,
struct hw_perf_event *event)
struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
/* Always place a cycle counter into the cycle counter. */
if (ARMV6_PERFCTR_CPU_CYCLES == event->config_base) {
if (ARMV6_PERFCTR_CPU_CYCLES == hwc->config_base) {
if (test_and_set_bit(ARMV6_CYCLE_COUNTER, cpuc->used_mask))
return -EAGAIN;
......@@ -579,12 +581,13 @@ armv6pmu_get_event_idx(struct pmu_hw_events *cpuc,
}
}
static void
armv6pmu_disable_event(struct hw_perf_event *hwc,
int idx)
static void armv6pmu_disable_event(struct perf_event *event)
{
unsigned long val, mask, evt, flags;
struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
struct pmu_hw_events *events = cpu_pmu->get_hw_events();
int idx = hwc->idx;
if (ARMV6_CYCLE_COUNTER == idx) {
mask = ARMV6_PMCR_CCOUNT_IEN;
......@@ -613,12 +616,13 @@ armv6pmu_disable_event(struct hw_perf_event *hwc,
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
}
static void
armv6mpcore_pmu_disable_event(struct hw_perf_event *hwc,
int idx)
static void armv6mpcore_pmu_disable_event(struct perf_event *event)
{
unsigned long val, mask, flags, evt = 0;
struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
struct pmu_hw_events *events = cpu_pmu->get_hw_events();
int idx = hwc->idx;
if (ARMV6_CYCLE_COUNTER == idx) {
mask = ARMV6_PMCR_CCOUNT_IEN;
......@@ -649,24 +653,22 @@ static int armv6_map_event(struct perf_event *event)
&armv6_perf_cache_map, 0xFF);
}
static struct arm_pmu armv6pmu = {
.name = "v6",
.handle_irq = armv6pmu_handle_irq,
.enable = armv6pmu_enable_event,
.disable = armv6pmu_disable_event,
.read_counter = armv6pmu_read_counter,
.write_counter = armv6pmu_write_counter,
.get_event_idx = armv6pmu_get_event_idx,
.start = armv6pmu_start,
.stop = armv6pmu_stop,
.map_event = armv6_map_event,
.num_events = 3,
.max_period = (1LLU << 32) - 1,
};
static struct arm_pmu *__devinit armv6pmu_init(void)
static int __devinit armv6pmu_init(struct arm_pmu *cpu_pmu)
{
return &armv6pmu;
cpu_pmu->name = "v6";
cpu_pmu->handle_irq = armv6pmu_handle_irq;
cpu_pmu->enable = armv6pmu_enable_event;
cpu_pmu->disable = armv6pmu_disable_event;
cpu_pmu->read_counter = armv6pmu_read_counter;
cpu_pmu->write_counter = armv6pmu_write_counter;
cpu_pmu->get_event_idx = armv6pmu_get_event_idx;
cpu_pmu->start = armv6pmu_start;
cpu_pmu->stop = armv6pmu_stop;
cpu_pmu->map_event = armv6_map_event;
cpu_pmu->num_events = 3;
cpu_pmu->max_period = (1LLU << 32) - 1;
return 0;
}
/*
......@@ -683,33 +685,31 @@ static int armv6mpcore_map_event(struct perf_event *event)
&armv6mpcore_perf_cache_map, 0xFF);
}
static struct arm_pmu armv6mpcore_pmu = {
.name = "v6mpcore",
.handle_irq = armv6pmu_handle_irq,
.enable = armv6pmu_enable_event,
.disable = armv6mpcore_pmu_disable_event,
.read_counter = armv6pmu_read_counter,
.write_counter = armv6pmu_write_counter,
.get_event_idx = armv6pmu_get_event_idx,
.start = armv6pmu_start,
.stop = armv6pmu_stop,
.map_event = armv6mpcore_map_event,
.num_events = 3,
.max_period = (1LLU << 32) - 1,
};
static struct arm_pmu *__devinit armv6mpcore_pmu_init(void)
static int __devinit armv6mpcore_pmu_init(struct arm_pmu *cpu_pmu)
{
return &armv6mpcore_pmu;
cpu_pmu->name = "v6mpcore";
cpu_pmu->handle_irq = armv6pmu_handle_irq;
cpu_pmu->enable = armv6pmu_enable_event;
cpu_pmu->disable = armv6mpcore_pmu_disable_event;
cpu_pmu->read_counter = armv6pmu_read_counter;
cpu_pmu->write_counter = armv6pmu_write_counter;
cpu_pmu->get_event_idx = armv6pmu_get_event_idx;
cpu_pmu->start = armv6pmu_start;
cpu_pmu->stop = armv6pmu_stop;
cpu_pmu->map_event = armv6mpcore_map_event;
cpu_pmu->num_events = 3;
cpu_pmu->max_period = (1LLU << 32) - 1;
return 0;
}
#else
static struct arm_pmu *__devinit armv6pmu_init(void)
static int armv6pmu_init(struct arm_pmu *cpu_pmu)
{
return NULL;
return -ENODEV;
}
static struct arm_pmu *__devinit armv6mpcore_pmu_init(void)
static int armv6mpcore_pmu_init(struct arm_pmu *cpu_pmu)
{
return NULL;
return -ENODEV;
}
#endif /* CONFIG_CPU_V6 || CONFIG_CPU_V6K */
This diff is collapsed.
This diff is collapsed.
......@@ -383,6 +383,12 @@ void cpu_init(void)
BUG();
}
/*
* This only works on resume and secondary cores. For booting on the
* boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
*/
set_my_cpu_offset(per_cpu_offset(cpu));
cpu_proc_init();
/*
......@@ -426,13 +432,14 @@ int __cpu_logical_map[NR_CPUS];
void __init smp_setup_processor_id(void)
{
int i;
u32 cpu = is_smp() ? read_cpuid_mpidr() & 0xff : 0;
u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
cpu_logical_map(0) = cpu;
for (i = 1; i < NR_CPUS; ++i)
for (i = 1; i < nr_cpu_ids; ++i)
cpu_logical_map(i) = i == cpu ? 0 : i;
printk(KERN_INFO "Booting Linux on physical CPU %d\n", cpu);
printk(KERN_INFO "Booting Linux on physical CPU 0x%x\n", mpidr);
}
static void __init setup_processor(void)
......@@ -758,6 +765,7 @@ void __init setup_arch(char **cmdline_p)
unflatten_device_tree();
arm_dt_init_cpu_maps();
#ifdef CONFIG_SMP
if (is_smp()) {
smp_set_ops(mdesc->smp);
......@@ -841,12 +849,9 @@ static const char *hwcap_str[] = {
static int c_show(struct seq_file *m, void *v)
{
int i;
int i, j;
u32 cpuid;
seq_printf(m, "Processor\t: %s rev %d (%s)\n",
cpu_name, read_cpuid_id() & 15, elf_platform);
#if defined(CONFIG_SMP)
for_each_online_cpu(i) {
/*
* glibc reads /proc/cpuinfo to determine the number of
......@@ -854,45 +859,48 @@ static int c_show(struct seq_file *m, void *v)
* "processor". Give glibc what it expects.
*/
seq_printf(m, "processor\t: %d\n", i);
seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n",
cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
seq_printf(m, "model name\t: %s rev %d (%s)\n",
cpu_name, cpuid & 15, elf_platform);
#if defined(CONFIG_SMP)
seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
(per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
}
#else /* CONFIG_SMP */
seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
loops_per_jiffy / (500000/HZ),
(loops_per_jiffy / (5000/HZ)) % 100);
#else
seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
loops_per_jiffy / (500000/HZ),
(loops_per_jiffy / (5000/HZ)) % 100);
#endif
/* dump out the processor features */
seq_puts(m, "Features\t: ");
/* dump out the processor features */
seq_puts(m, "Features\t: ");
for (i = 0; hwcap_str[i]; i++)
if (elf_hwcap & (1 << i))
seq_printf(m, "%s ", hwcap_str[i]);
for (j = 0; hwcap_str[j]; j++)
if (elf_hwcap & (1 << j))
seq_printf(m, "%s ", hwcap_str[j]);
seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24);
seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]);
seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
seq_printf(m, "CPU architecture: %s\n",
proc_arch[cpu_architecture()]);
if ((read_cpuid_id() & 0x0008f000) == 0x00000000) {
/* pre-ARM7 */
seq_printf(m, "CPU part\t: %07x\n", read_cpuid_id() >> 4);
} else {
if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
/* ARM7 */
seq_printf(m, "CPU variant\t: 0x%02x\n",
(read_cpuid_id() >> 16) & 127);
if ((cpuid & 0x0008f000) == 0x00000000) {
/* pre-ARM7 */
seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
} else {
/* post-ARM7 */
seq_printf(m, "CPU variant\t: 0x%x\n",
(read_cpuid_id() >> 20) & 15);
if ((cpuid & 0x0008f000) == 0x00007000) {
/* ARM7 */
seq_printf(m, "CPU variant\t: 0x%02x\n",
(cpuid >> 16) & 127);
} else {
/* post-ARM7 */
seq_printf(m, "CPU variant\t: 0x%x\n",
(cpuid >> 20) & 15);
}
seq_printf(m, "CPU part\t: 0x%03x\n",
(cpuid >> 4) & 0xfff);
}
seq_printf(m, "CPU part\t: 0x%03x\n",
(read_cpuid_id() >> 4) & 0xfff);
seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
}
seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15);
seq_puts(m, "\n");
seq_printf(m, "Hardware\t: %s\n", machine_name);
seq_printf(m, "Revision\t: %04x\n", system_rev);
......
......@@ -281,6 +281,7 @@ static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
cpu_info->loops_per_jiffy = loops_per_jiffy;
cpu_info->cpuid = read_cpuid_id();
store_cpu_topology(cpuid);
}
......@@ -313,9 +314,10 @@ asmlinkage void __cpuinit secondary_start_kernel(void)
current->active_mm = mm;
cpumask_set_cpu(cpu, mm_cpumask(mm));
cpu_init();
printk("CPU%u: Booted secondary processor\n", cpu);
cpu_init();
preempt_disable();
trace_hardirqs_off();
......@@ -371,6 +373,7 @@ void __init smp_cpus_done(unsigned int max_cpus)
void __init smp_prepare_boot_cpu(void)
{
set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
}
void __init smp_prepare_cpus(unsigned int max_cpus)
......
......@@ -196,32 +196,7 @@ static inline void parse_dt_topology(void) {}
static inline void update_cpu_power(unsigned int cpuid, unsigned int mpidr) {}
#endif
/*
* cpu topology management
*/
#define MPIDR_SMP_BITMASK (0x3 << 30)
#define MPIDR_SMP_VALUE (0x2 << 30)
#define MPIDR_MT_BITMASK (0x1 << 24)
/*
* These masks reflect the current use of the affinity levels.
* The affinity level can be up to 16 bits according to ARM ARM
*/
#define MPIDR_HWID_BITMASK 0xFFFFFF
#define MPIDR_LEVEL0_MASK 0x3
#define MPIDR_LEVEL0_SHIFT 0
#define MPIDR_LEVEL1_MASK 0xF
#define MPIDR_LEVEL1_SHIFT 8
#define MPIDR_LEVEL2_MASK 0xFF
#define MPIDR_LEVEL2_SHIFT 16
/*
/*
* cpu topology table
*/
struct cputopo_arm cpu_topology[NR_CPUS];
......@@ -282,19 +257,14 @@ void store_cpu_topology(unsigned int cpuid)
if (mpidr & MPIDR_MT_BITMASK) {
/* core performance interdependency */
cpuid_topo->thread_id = (mpidr >> MPIDR_LEVEL0_SHIFT)
& MPIDR_LEVEL0_MASK;
cpuid_topo->core_id = (mpidr >> MPIDR_LEVEL1_SHIFT)
& MPIDR_LEVEL1_MASK;
cpuid_topo->socket_id = (mpidr >> MPIDR_LEVEL2_SHIFT)
& MPIDR_LEVEL2_MASK;
cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
} else {
/* largely independent cores */
cpuid_topo->thread_id = -1;
cpuid_topo->core_id = (mpidr >> MPIDR_LEVEL0_SHIFT)
& MPIDR_LEVEL0_MASK;
cpuid_topo->socket_id = (mpidr >> MPIDR_LEVEL1_SHIFT)
& MPIDR_LEVEL1_MASK;
cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
}
} else {
/*
......
......@@ -57,8 +57,6 @@ static int __init omap2_init_pmu(unsigned oh_num, char *oh_names[])
if (IS_ERR(omap_pmu_dev))
return PTR_ERR(omap_pmu_dev);
pm_runtime_enable(&omap_pmu_dev->dev);
return 0;
}
......
......@@ -2,6 +2,9 @@
* linux/arch/arm/mm/context.c
*
* Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved.
* Copyright (C) 2012 ARM Limited
*
* Author: Will Deacon <will.deacon@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
......@@ -14,14 +17,40 @@
#include <linux/percpu.h>
#include <asm/mmu_context.h>
#include <asm/smp_plat.h>
#include <asm/thread_notify.h>
#include <asm/tlbflush.h>
/*
* On ARMv6, we have the following structure in the Context ID:
*
* 31 7 0
* +-------------------------+-----------+
* | process ID | ASID |
* +-------------------------+-----------+
* | context ID |
* +-------------------------------------+
*
* The ASID is used to tag entries in the CPU caches and TLBs.
* The context ID is used by debuggers and trace logic, and
* should be unique within all running processes.
*/
#define ASID_FIRST_VERSION (1ULL << ASID_BITS)
#define NUM_USER_ASIDS (ASID_FIRST_VERSION - 1)
#define ASID_TO_IDX(asid) ((asid & ~ASID_MASK) - 1)
#define IDX_TO_ASID(idx) ((idx + 1) & ~ASID_MASK)
static DEFINE_RAW_SPINLOCK(cpu_asid_lock);
unsigned int cpu_last_asid = ASID_FIRST_VERSION;
static atomic64_t asid_generation = ATOMIC64_INIT(ASID_FIRST_VERSION);
static DECLARE_BITMAP(asid_map, NUM_USER_ASIDS);
static DEFINE_PER_CPU(atomic64_t, active_asids);
static DEFINE_PER_CPU(u64, reserved_asids);
static cpumask_t tlb_flush_pending;
#ifdef CONFIG_ARM_LPAE
void cpu_set_reserved_ttbr0(void)
static void cpu_set_reserved_ttbr0(void)
{
unsigned long ttbl = __pa(swapper_pg_dir);
unsigned long ttbh = 0;
......@@ -37,7 +66,7 @@ void cpu_set_reserved_ttbr0(void)
isb();
}
#else
void cpu_set_reserved_ttbr0(void)
static void cpu_set_reserved_ttbr0(void)
{
u32 ttb;
/* Copy TTBR1 into TTBR0 */
......@@ -84,124 +113,104 @@ static int __init contextidr_notifier_init(void)
arch_initcall(contextidr_notifier_init);
#endif
/*
* We fork()ed a process, and we need a new context for the child
* to run in.
*/
void __init_new_context(struct task_struct *tsk, struct mm_struct *mm)
static void flush_context(unsigned int cpu)
{
mm->context.id = 0;
raw_spin_lock_init(&mm->context.id_lock);
}
int i;
u64 asid;
/* Update the list of reserved ASIDs and the ASID bitmap. */
bitmap_clear(asid_map, 0, NUM_USER_ASIDS);
for_each_possible_cpu(i) {
if (i == cpu) {
asid = 0;
} else {
asid = atomic64_xchg(&per_cpu(active_asids, i), 0);
__set_bit(ASID_TO_IDX(asid), asid_map);
}
per_cpu(reserved_asids, i) = asid;
}
static void flush_context(void)
{
cpu_set_reserved_ttbr0();
local_flush_tlb_all();
if (icache_is_vivt_asid_tagged()) {
/* Queue a TLB invalidate and flush the I-cache if necessary. */
if (!tlb_ops_need_broadcast())
cpumask_set_cpu(cpu, &tlb_flush_pending);
else
cpumask_setall(&tlb_flush_pending);
if (icache_is_vivt_asid_tagged())
__flush_icache_all();
dsb();
}
}
#ifdef CONFIG_SMP
static int is_reserved_asid(u64 asid)
{
int cpu;
for_each_possible_cpu(cpu)
if (per_cpu(reserved_asids, cpu) == asid)
return 1;
return 0;
}
static void set_mm_context(struct mm_struct *mm, unsigned int asid)
static void new_context(struct mm_struct *mm, unsigned int cpu)
{
unsigned long flags;
u64 asid = mm->context.id;
u64 generation = atomic64_read(&asid_generation);
/*
* Locking needed for multi-threaded applications where the
* same mm->context.id could be set from different CPUs during
* the broadcast. This function is also called via IPI so the
* mm->context.id_lock has to be IRQ-safe.
*/
raw_spin_lock_irqsave(&mm->context.id_lock, flags);
if (likely((mm->context.id ^ cpu_last_asid) >> ASID_BITS)) {
if (asid != 0 && is_reserved_asid(asid)) {
/*
* Old version of ASID found. Set the new one and
* reset mm_cpumask(mm).
* Our current ASID was active during a rollover, we can
* continue to use it and this was just a false alarm.
*/
mm->context.id = asid;
asid = generation | (asid & ~ASID_MASK);
} else {
/*
* Allocate a free ASID. If we can't find one, take a
* note of the currently active ASIDs and mark the TLBs
* as requiring flushes.
*/
asid = find_first_zero_bit(asid_map, NUM_USER_ASIDS);
if (asid == NUM_USER_ASIDS) {
generation = atomic64_add_return(ASID_FIRST_VERSION,
&asid_generation);
flush_context(cpu);
asid = find_first_zero_bit(asid_map, NUM_USER_ASIDS);
}
__set_bit(asid, asid_map);
asid = generation | IDX_TO_ASID(asid);
cpumask_clear(mm_cpumask(mm));
}
raw_spin_unlock_irqrestore(&mm->context.id_lock, flags);
/*
* Set the mm_cpumask(mm) bit for the current CPU.
*/
cpumask_set_cpu(smp_processor_id(), mm_cpumask(mm));
mm->context.id = asid;
}
/*
* Reset the ASID on the current CPU. This function call is broadcast
* from the CPU handling the ASID rollover and holding cpu_asid_lock.
*/
static void reset_context(void *info)
void check_and_switch_context(struct mm_struct *mm, struct task_struct *tsk)
{
unsigned int asid;
unsigned long flags;
unsigned int cpu = smp_processor_id();
struct mm_struct *mm = current->active_mm;
smp_rmb();
asid = cpu_last_asid + cpu + 1;
if (unlikely(mm->context.vmalloc_seq != init_mm.context.vmalloc_seq))
__check_vmalloc_seq(mm);
flush_context();
set_mm_context(mm, asid);
/* set the new ASID */
cpu_switch_mm(mm->pgd, mm);
}
/*
* Required during context switch to avoid speculative page table
* walking with the wrong TTBR.
*/
cpu_set_reserved_ttbr0();
#else
if (!((mm->context.id ^ atomic64_read(&asid_generation)) >> ASID_BITS)
&& atomic64_xchg(&per_cpu(active_asids, cpu), mm->context.id))
goto switch_mm_fastpath;
static inline void set_mm_context(struct mm_struct *mm, unsigned int asid)
{
mm->context.id = asid;
cpumask_copy(mm_cpumask(mm), cpumask_of(smp_processor_id()));
}
raw_spin_lock_irqsave(&cpu_asid_lock, flags);
/* Check that our ASID belongs to the current generation. */
if ((mm->context.id ^ atomic64_read(&asid_generation)) >> ASID_BITS)
new_context(mm, cpu);
#endif
atomic64_set(&per_cpu(active_asids, cpu), mm->context.id);
cpumask_set_cpu(cpu, mm_cpumask(mm));
void __new_context(struct mm_struct *mm)
{
unsigned int asid;
if (cpumask_test_and_clear_cpu(cpu, &tlb_flush_pending))
local_flush_tlb_all();
raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
raw_spin_lock(&cpu_asid_lock);
#ifdef CONFIG_SMP
/*
* Check the ASID again, in case the change was broadcast from
* another CPU before we acquired the lock.
*/
if (unlikely(((mm->context.id ^ cpu_last_asid) >> ASID_BITS) == 0)) {
cpumask_set_cpu(smp_processor_id(), mm_cpumask(mm));
raw_spin_unlock(&cpu_asid_lock);
return;
}
#endif
/*
* At this point, it is guaranteed that the current mm (with
* an old ASID) isn't active on any other CPU since the ASIDs
* are changed simultaneously via IPI.
*/
asid = ++cpu_last_asid;
if (asid == 0)
asid = cpu_last_asid = ASID_FIRST_VERSION;
/*
* If we've used up all our ASIDs, we need
* to start a new version and flush the TLB.
*/
if (unlikely((asid & ~ASID_MASK) == 0)) {
asid = cpu_last_asid + smp_processor_id() + 1;
flush_context();
#ifdef CONFIG_SMP
smp_wmb();
smp_call_function(reset_context, NULL, 1);
#endif
cpu_last_asid += NR_CPUS;
}
set_mm_context(mm, asid);
raw_spin_unlock(&cpu_asid_lock);
switch_mm_fastpath:
cpu_switch_mm(mm->pgd, mm);
}
......@@ -47,18 +47,18 @@ int ioremap_page(unsigned long virt, unsigned long phys,
}
EXPORT_SYMBOL(ioremap_page);
void __check_kvm_seq(struct mm_struct *mm)
void __check_vmalloc_seq(struct mm_struct *mm)
{
unsigned int seq;
do {
seq = init_mm.context.kvm_seq;
seq = init_mm.context.vmalloc_seq;
memcpy(pgd_offset(mm, VMALLOC_START),
pgd_offset_k(VMALLOC_START),
sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
pgd_index(VMALLOC_START)));
mm->context.kvm_seq = seq;
} while (seq != init_mm.context.kvm_seq);
mm->context.vmalloc_seq = seq;
} while (seq != init_mm.context.vmalloc_seq);
}
#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
......@@ -89,13 +89,13 @@ static void unmap_area_sections(unsigned long virt, unsigned long size)
if (!pmd_none(pmd)) {
/*
* Clear the PMD from the page table, and
* increment the kvm sequence so others
* increment the vmalloc sequence so others
* notice this change.
*
* Note: this is still racy on SMP machines.
*/
pmd_clear(pmdp);
init_mm.context.kvm_seq++;
init_mm.context.vmalloc_seq++;
/*
* Free the page table, if there was one.
......@@ -112,8 +112,8 @@ static void unmap_area_sections(unsigned long virt, unsigned long size)
* Ensure that the active_mm is up to date - we want to
* catch any use-after-iounmap cases.
*/
if (current->active_mm->context.kvm_seq != init_mm.context.kvm_seq)
__check_kvm_seq(current->active_mm);
if (current->active_mm->context.vmalloc_seq != init_mm.context.vmalloc_seq)
__check_vmalloc_seq(current->active_mm);
flush_tlb_kernel_range(virt, end);
}
......
......@@ -488,7 +488,7 @@ static void __init build_mem_type_table(void)
#endif
for (i = 0; i < 16; i++) {
unsigned long v = pgprot_val(protection_map[i]);
pteval_t v = pgprot_val(protection_map[i]);
protection_map[i] = __pgprot(v | user_pgprot);
}
......
......@@ -167,6 +167,10 @@
tst r1, #L_PTE_YOUNG
tstne r1, #L_PTE_PRESENT
moveq r3, #0
#ifndef CONFIG_CPU_USE_DOMAINS
tstne r1, #L_PTE_NONE
movne r3, #0
#endif
str r3, [r0]
mcr p15, 0, r0, c7, c10, 1 @ flush_pte
......
......@@ -100,7 +100,11 @@ ENTRY(cpu_v7_set_pte_ext)
orrne r3, r3, #PTE_EXT_XN
tst r1, #L_PTE_YOUNG
tstne r1, #L_PTE_PRESENT
tstne r1, #L_PTE_VALID
#ifndef CONFIG_CPU_USE_DOMAINS
eorne r1, r1, #L_PTE_NONE
tstne r1, #L_PTE_NONE
#endif
moveq r3, #0
ARM( str r3, [r0, #2048]! )
......@@ -161,11 +165,11 @@ ENDPROC(cpu_v7_set_pte_ext)
* TFR EV X F I D LR S
* .EEE ..EE PUI. .T.T 4RVI ZWRS BLDP WCAM
* rxxx rrxx xxx0 0101 xxxx xxxx x111 xxxx < forced
* 1 0 110 0011 1100 .111 1101 < we want
* 01 0 110 0011 1100 .111 1101 < we want
*/
.align 2
.type v7_crval, #object
v7_crval:
crval clear=0x0120c302, mmuset=0x10c03c7d, ucset=0x00c01c7c
crval clear=0x2120c302, mmuset=0x10c03c7d, ucset=0x00c01c7c
.previous
......@@ -65,8 +65,11 @@ ENDPROC(cpu_v7_switch_mm)
*/
ENTRY(cpu_v7_set_pte_ext)
#ifdef CONFIG_MMU
tst r2, #L_PTE_PRESENT
tst r2, #L_PTE_VALID
beq 1f
tst r3, #1 << (57 - 32) @ L_PTE_NONE
bicne r2, #L_PTE_VALID
bne 1f
tst r3, #1 << (55 - 32) @ L_PTE_DIRTY
orreq r2, #L_PTE_RDONLY
1: strd r2, r3, [r0]
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment