Commit 1ecd3902 authored by Matthew Wilcox's avatar Matthew Wilcox Committed by James Bottomley

[SCSI] fc4: remove this and all associated drivers

This code has been slowly rotting for about eight years.  It's currently
impeding a few SCSI cleanups, and nobody seems to have hardware to test
it any more.  I talked to Dave Miller about it, and he agrees we can
delete it.  If anyone wants a software FC stack in future, they can
retrieve this driver from git.
Signed-off-by: default avatarMatthew Wilcox <matthew@wil.cx>
Acked-by: default avatarDavid S. Miller <davem@davemloft.net>
Signed-off-by: default avatarJames Bottomley <James.Bottomley@SteelEye.com>
parent d85714d8
...@@ -456,8 +456,6 @@ source "drivers/Kconfig" ...@@ -456,8 +456,6 @@ source "drivers/Kconfig"
source "drivers/sbus/char/Kconfig" source "drivers/sbus/char/Kconfig"
source "drivers/fc4/Kconfig"
source "fs/Kconfig" source "fs/Kconfig"
menu "Instrumentation Support" menu "Instrumentation Support"
......
...@@ -34,7 +34,6 @@ obj-$(CONFIG_NUBUS) += nubus/ ...@@ -34,7 +34,6 @@ obj-$(CONFIG_NUBUS) += nubus/
obj-$(CONFIG_ATM) += atm/ obj-$(CONFIG_ATM) += atm/
obj-y += macintosh/ obj-y += macintosh/
obj-$(CONFIG_IDE) += ide/ obj-$(CONFIG_IDE) += ide/
obj-$(CONFIG_FC4) += fc4/
obj-$(CONFIG_SCSI) += scsi/ obj-$(CONFIG_SCSI) += scsi/
obj-$(CONFIG_ATA) += ata/ obj-$(CONFIG_ATA) += ata/
obj-$(CONFIG_FUSION) += message/ obj-$(CONFIG_FUSION) += message/
......
#
# FC4 device configuration
#
menu "Fibre Channel support"
config FC4
tristate "Fibre Channel and FC4 SCSI support"
---help---
Fibre Channel is a high speed serial protocol mainly used to
connect large storage devices to the computer; it is compatible with
and intended to replace SCSI.
This is an experimental support for storage arrays connected to your
computer using optical fibre cables and the "X3.269-199X Fibre
Channel Protocol for SCSI" specification. If you want to use this,
you need to say Y here and to "SCSI support" as well as to the
drivers for the storage array itself and for the interface adapter
such as SOC or SOC+. This subsystem could even serve for IP
networking, with some code extensions.
If unsure, say N.
comment "FC4 drivers"
depends on FC4
config FC4_SOC
tristate "Sun SOC/Sbus"
depends on FC4!=n && SPARC
help
Serial Optical Channel is an interface card with one or two Fibre
Optic ports, each of which can be connected to a disk array. Note
that if you have older firmware in the card, you'll need the
microcode from the Solaris driver to make it work.
To compile this support as a module, choose M here: the module will
be called soc.
config FC4_SOCAL
tristate "Sun SOC+ (aka SOCAL)"
depends on FC4!=n && SPARC
---help---
Serial Optical Channel Plus is an interface card with up to two
Fibre Optic ports. This card supports FC Arbitrated Loop (usually
A5000 or internal FC disks in E[3-6]000 machines through the
Interface Board). You'll probably need the microcode from the
Solaris driver to make it work.
To compile this support as a module, choose M here: the module will
be called socal.
comment "FC4 targets"
depends on FC4
config SCSI_PLUTO
tristate "SparcSTORAGE Array 100 and 200 series"
depends on FC4!=n && SCSI
help
If you never bought a disk array made by Sun, go with N.
To compile this support as a module, choose M here: the module will
be called pluto.
config SCSI_FCAL
tristate "Sun Enterprise Network Array (A5000 and EX500)" if SPARC
depends on FC4!=n && SCSI
help
This driver drives FC-AL disks connected through a Fibre Channel
card using the drivers/fc4 layer (currently only SOCAL). The most
common is either A5000 array or internal disks in E[3-6]000
machines.
To compile this support as a module, choose M here: the module will
be called fcal.
config SCSI_FCAL
prompt "Generic FC-AL disk driver"
depends on FC4!=n && SCSI && !SPARC
endmenu
#
# Makefile for the Linux Fibre Channel device drivers.
#
fc4-objs := fc.o fc_syms.o
obj-$(CONFIG_FC4) += fc4.o
obj-$(CONFIG_FC4_SOC) += soc.o
obj-$(CONFIG_FC4_SOCAL) += socal.o
/* fc-al.h: Definitions for Fibre Channel Arbitrated Loop topology.
*
* Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*
* Sources:
* Fibre Channel Arbitrated Loop (FC-AL), ANSI, Rev. 4.5, 1995
*/
#ifndef __FC_AL_H
#define __FC_AL_H
/* Loop initialization payloads */
#define FC_AL_LISM 0x11010000 /* Select Master, 12B payload */
#define FC_AL_LIFA 0x11020000 /* Fabric Assign AL_PA bitmap, 20B payload */
#define FC_AL_LIPA 0x11030000 /* Previously Acquired AL_PA bitmap, 20B payload */
#define FC_AL_LIHA 0x11040000 /* Hard Assigned AL_PA bitmap, 20B payload */
#define FC_AL_LISA 0x11050000 /* Soft Assigned AL_PA bitmap, 20B payload */
#define FC_AL_LIRP 0x11060000 /* Report AL_PA position map, 132B payload */
#define FC_AL_LILP 0x11070000 /* Loop AL_PA position map, 132B payload */
typedef struct {
u32 magic;
u8 len;
u8 alpa[127];
} fc_al_posmap;
#endif /* !(__FC_H) */
This diff is collapsed.
/* fc.h: Definitions for Fibre Channel Physical and Signaling Interface.
*
* Copyright (C) 1996-1997,1999 Jakub Jelinek (jj@ultra.linux.cz)
*
* Sources:
* Fibre Channel Physical & Signaling Interface (FC-PH), dpANS, 1994
* dpANS Fibre Channel Protocol for SCSI (X3.269-199X), Rev. 012, 1995
*/
#ifndef __FC_H
#define __FC_H
/* World Wide Name */
#define NAAID_IEEE 1
#define NAAID_IEEE_EXT 2
#define NAAID_LOCAL 3
#define NAAID_IP 4
#define NAAID_IEEE_REG 5
#define NAAID_IEEE_REG_EXT 6
#define NAAID_CCITT 12
#define NAAID_CCITT_GRP 14
/* This is NAAID_IEEE_EXT scheme */
typedef struct {
u32 naaid:4;
u32 nportid:12;
u32 hi:16;
u32 lo;
} fc_wwn;
/* Frame header for FC-PH frames */
/* r_ctl field */
#define R_CTL_DEVICE_DATA 0x00 /* FC4 Device_Data frame */
#define R_CTL_EXTENDED_SVC 0x20 /* Extended Link_Data frame */
#define R_CTL_FC4_SVC 0x30 /* FC4 Link_Data frame */
#define R_CTL_VIDEO 0x40 /* Video_Data frame */
#define R_CTL_BASIC_SVC 0x80 /* Basic Link_Data frame */
#define R_CTL_LINK_CTL 0xc0 /* Link_Control frame */
/* FC4 Device_Data frames */
#define R_CTL_UNCATEGORIZED 0x00
#define R_CTL_SOLICITED_DATA 0x01
#define R_CTL_UNSOL_CONTROL 0x02
#define R_CTL_SOLICITED_CONTROL 0x03
#define R_CTL_UNSOL_DATA 0x04
#define R_CTL_XFER_RDY 0x05
#define R_CTL_COMMAND 0x06
#define R_CTL_STATUS 0x07
/* Basic Link_Data frames */
#define R_CTL_LS_NOP 0x80
#define R_CTL_LS_ABTS 0x81
#define R_CTL_LS_RMC 0x82
#define R_CTL_LS_BA_ACC 0x84
#define R_CTL_LS_BA_RJT 0x85
/* Extended Link_Data frames */
#define R_CTL_ELS_REQ 0x22
#define R_CTL_ELS_RSP 0x23
/* Link_Control frames */
#define R_CTL_ACK_1 0xc0
#define R_CTL_ACK_N 0xc1
#define R_CTL_P_RJT 0xc2
#define R_CTL_F_RJT 0xc3
#define R_CTL_P_BSY 0xc4
#define R_CTL_F_BSY_DF 0xc5
#define R_CTL_F_BSY_LC 0xc6
#define R_CTL_LCR 0xc7
/* type field */
#define TYPE_BASIC_LS 0x00
#define TYPE_EXTENDED_LS 0x01
#define TYPE_IS8802 0x04
#define TYPE_IS8802_SNAP 0x05
#define TYPE_SCSI_FCP 0x08
#define TYPE_SCSI_GPP 0x09
#define TYPE_HIPP_FP 0x0a
#define TYPE_IPI3_MASTER 0x11
#define TYPE_IPI3_SLAVE 0x12
#define TYPE_IPI3_PEER 0x13
/* f_ctl field */
#define F_CTL_FILL_BYTES 0x000003
#define F_CTL_XCHG_REASSEMBLE 0x000004
#define F_CTL_RO_PRESENT 0x000008
#define F_CTL_ABORT_SEQ 0x000030
#define F_CTL_CONTINUE_SEQ 0x0000c0
#define F_CTL_INVALIDATE_XID 0x004000
#define F_CTL_XID_REASSIGNED 0x008000
#define F_CTL_SEQ_INITIATIVE 0x010000
#define F_CTL_CHAINED_SEQ 0x020000
#define F_CTL_END_CONNECT 0x040000
#define F_CTL_END_SEQ 0x080000
#define F_CTL_LAST_SEQ 0x100000
#define F_CTL_FIRST_SEQ 0x200000
#define F_CTL_SEQ_CONTEXT 0x400000
#define F_CTL_XCHG_CONTEXT 0x800000
typedef struct {
u32 r_ctl:8, did:24;
u32 xxx1:8, sid:24;
u32 type:8, f_ctl:24;
u32 seq_id:8, df_ctl:8, seq_cnt:16;
u16 ox_id, rx_id;
u32 param;
} fc_hdr;
/* The following are ugly macros to make setup of this structure faster */
#define FILL_FCHDR_RCTL_DID(fch, r_ctl, did) *(u32 *)(fch) = ((r_ctl) << 24) | (did);
#define FILL_FCHDR_SID(fch, sid) *((u32 *)(fch)+1) = (sid);
#define FILL_FCHDR_TYPE_FCTL(fch, type, f_ctl) *((u32 *)(fch)+2) = ((type) << 24) | (f_ctl);
#define FILL_FCHDR_SEQ_DF_SEQ(fch, seq_id, df_ctl, seq_cnt) *((u32 *)(fch)+3) = ((seq_id) << 24) | ((df_ctl) << 16) | (seq_cnt);
#define FILL_FCHDR_OXRX(fch, ox_id, rx_id) *((u32 *)(fch)+4) = ((ox_id) << 16) | (rx_id);
/* Well known addresses */
#define FS_GENERAL_MULTICAST 0xfffff7
#define FS_WELL_KNOWN_MULTICAST 0xfffff8
#define FS_HUNT_GROUP 0xfffff9
#define FS_MANAGEMENT_SERVER 0xfffffa
#define FS_TIME_SERVER 0xfffffb
#define FS_NAME_SERVER 0xfffffc
#define FS_FABRIC_CONTROLLER 0xfffffd
#define FS_FABRIC_F_PORT 0xfffffe
#define FS_BROADCAST 0xffffff
/* Reject frames */
/* The param field should be cast to this structure */
typedef struct {
u8 action;
u8 reason;
u8 xxx;
u8 vendor_unique;
} rjt_param;
/* Reject action codes */
#define RJT_RETRY 0x01
#define RJT_NONRETRY 0x02
/* Reject reason codes */
#define RJT_INVALID_DID 0x01
#define RJT_INVALID_SID 0x02
#define RJT_NPORT_NOT_AVAIL_TEMP 0x03
#define RJT_NPORT_NOT_AVAIL_PERM 0x04
#define RJT_CLASS_NOT_SUPPORTED 0x05
#define RJT_DELIMITER_ERROR 0x06
#define RJT_TYPE_NOT_SUPPORTED 0x07
#define RJT_INVALID_LINK_CONTROL 0x08
#define RJT_INVALID_R_CTL 0x09
#define RJT_INVALID_F_CTL 0x0a
#define RJT_INVALID_OX_ID 0x0b
#define RJT_INVALID_RX_ID 0x0c
#define RJT_INVALID_SEQ_ID 0x0d
#define RJT_INVALID_DF_CTL 0x0e
#define RJT_INVALID_SEQ_CNT 0x0f
#define RJT_INVALID_PARAMETER 0x10
#define RJT_EXCHANGE_ERROR 0x11
#define RJT_PROTOCOL_ERROR 0x12
#define RJT_INCORRECT_LENGTH 0x13
#define RJT_UNEXPECTED_ACK 0x14
#define RJT_UNEXPECTED_LINK_RESP 0x15
#define RJT_LOGIN_REQUIRED 0x16
#define RJT_EXCESSIVE_SEQUENCES 0x17
#define RJT_CANT_ESTABLISH_EXCHANGE 0x18
#define RJT_SECURITY_NOT_SUPPORTED 0x19
#define RJT_FABRIC_NA 0x1a
#define RJT_VENDOR_UNIQUE 0xff
#define SP_F_PORT_LOGIN 0x10
/* Extended SVC commands */
#define LS_RJT 0x01000000
#define LS_ACC 0x02000000
#define LS_PRLI_ACC 0x02100014
#define LS_PLOGI 0x03000000
#define LS_FLOGI 0x04000000
#define LS_LOGO 0x05000000
#define LS_ABTX 0x06000000
#define LS_RCS 0x07000000
#define LS_RES 0x08000000
#define LS_RSS 0x09000000
#define LS_RSI 0x0a000000
#define LS_ESTS 0x0b000000
#define LS_ESTC 0x0c000000
#define LS_ADVC 0x0d000000
#define LS_RTV 0x0e000000
#define LS_RLS 0x0f000000
#define LS_ECHO 0x10000000
#define LS_TEST 0x11000000
#define LS_RRQ 0x12000000
#define LS_IDENT 0x20000000
#define LS_PRLI 0x20100014
#define LS_DISPLAY 0x21000000
#define LS_PRLO 0x21100014
#define LS_PDISC 0x50000000
#define LS_ADISC 0x52000000
typedef struct {
u8 fcph_hi, fcph_lo;
u16 buf2buf_credit;
u8 common_features;
u8 xxx1;
u16 buf2buf_size;
u8 xxx2;
u8 total_concurrent;
u16 off_by_info;
u32 e_d_tov;
} common_svc_parm;
typedef struct {
u16 serv_opts;
u16 initiator_ctl;
u16 rcpt_ctl;
u16 recv_size;
u8 xxx1;
u8 concurrent_seqs;
u16 end2end_credit;
u16 open_seqs_per_xchg;
u16 xxx2;
} svc_parm;
/* Login */
typedef struct {
u32 code;
common_svc_parm common;
fc_wwn nport_wwn;
fc_wwn node_wwn;
svc_parm class1;
svc_parm class2;
svc_parm class3;
} logi;
#endif /* !(__FC_H) */
/*
* We should not even be trying to compile this if we are not doing
* a module.
*/
#include <linux/module.h>
#ifdef CONFIG_MODULES
#include <linux/types.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include "fcp_impl.h"
EXPORT_SYMBOL(fcp_init);
EXPORT_SYMBOL(fcp_release);
EXPORT_SYMBOL(fcp_queue_empty);
EXPORT_SYMBOL(fcp_receive_solicited);
EXPORT_SYMBOL(fc_channels);
EXPORT_SYMBOL(fcp_state_change);
EXPORT_SYMBOL(fc_do_plogi);
EXPORT_SYMBOL(fc_do_prli);
/* SCSI stuff */
EXPORT_SYMBOL(fcp_scsi_queuecommand);
EXPORT_SYMBOL(fcp_scsi_abort);
EXPORT_SYMBOL(fcp_scsi_dev_reset);
EXPORT_SYMBOL(fcp_scsi_host_reset);
#endif /* CONFIG_MODULES */
/* fcp.h: Definitions for Fibre Channel Protocol.
*
* Copyright (C) 1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*
*/
#ifndef __FCP_H
#define __FCP_H
/* FCP addressing is hierarchical with up to 4 layers, MS first.
Exact meaning of the addresses is up to the vendor */
/* fcp_cntl field */
#define FCP_CNTL_WRITE 0x00000001 /* Initiator write */
#define FCP_CNTL_READ 0x00000002 /* Initiator read */
#define FCP_CNTL_ABORT_TSK 0x00000200 /* Abort task set */
#define FCP_CNTL_CLR_TASK 0x00000400 /* Clear task set */
#define FCP_CNTL_RESET 0x00002000 /* Reset */
#define FCP_CNTL_CLR_ACA 0x00004000 /* Clear ACA */
#define FCP_CNTL_KILL_TASK 0x00008000 /* Terminate task */
#define FCP_CNTL_QTYPE_MASK 0x00070000 /* Tagged queueing type */
#define FCP_CNTL_QTYPE_SIMPLE 0x00000000
#define FCP_CNTL_QTYPE_HEAD_OF_Q 0x00010000
#define FCP_CNTL_QTYPE_ORDERED 0x00020000
#define FCP_CNTL_QTYPE_ACA_Q_TAG 0x00040000
#define FCP_CNTL_QTYPE_UNTAGGED 0x00050000
typedef struct {
u16 fcp_addr[4];
u32 fcp_cntl;
u8 fcp_cdb[16];
u32 fcp_data_len;
} fcp_cmd;
/* fcp_status field */
#define FCP_STATUS_MASK 0x000000ff /* scsi status of command */
#define FCP_STATUS_RSP_LEN 0x00000100 /* response_len != 0 */
#define FCP_STATUS_SENSE_LEN 0x00000200 /* sense_len != 0 */
#define FCP_STATUS_RESID 0x00000400 /* resid != 0 */
typedef struct {
u32 xxx[2];
u32 fcp_status;
u32 fcp_resid;
u32 fcp_sense_len;
u32 fcp_response_len;
/* u8 fcp_sense[fcp_sense_len]; */
/* u8 fcp_response[fcp_response_len]; */
} fcp_rsp;
/* fcp errors */
/* rsp_info_type field */
#define FCP_RSP_SCSI_BUS_ERR 0x01
#define FCP_RSP_SCSI_PORT_ERR 0x02
#define FCP_RSP_CARD_ERR 0x03
/* isp_status field */
#define FCP_RSP_CMD_COMPLETE 0x0000
#define FCP_RSP_CMD_INCOMPLETE 0x0001
#define FCP_RSP_CMD_DMA_ERR 0x0002
#define FCP_RSP_CMD_TRAN_ERR 0x0003
#define FCP_RSP_CMD_RESET 0x0004
#define FCP_RSP_CMD_ABORTED 0x0005
#define FCP_RSP_CMD_TIMEOUT 0x0006
#define FCP_RSP_CMD_OVERRUN 0x0007
/* isp_state_flags field */
#define FCP_RSP_ST_GOT_BUS 0x0100
#define FCP_RSP_ST_GOT_TARGET 0x0200
#define FCP_RSP_ST_SENT_CMD 0x0400
#define FCP_RSP_ST_XFRD_DATA 0x0800
#define FCP_RSP_ST_GOT_STATUS 0x1000
#define FCP_RSP_ST_GOT_SENSE 0x2000
/* isp_stat_flags field */
#define FCP_RSP_STAT_DISC 0x0001
#define FCP_RSP_STAT_SYNC 0x0002
#define FCP_RSP_STAT_PERR 0x0004
#define FCP_RSP_STAT_BUS_RESET 0x0008
#define FCP_RSP_STAT_DEV_RESET 0x0010
#define FCP_RSP_STAT_ABORTED 0x0020
#define FCP_RSP_STAT_TIMEOUT 0x0040
#define FCP_RSP_STAT_NEGOTIATE 0x0080
typedef struct {
u8 rsp_info_type;
u8 xxx;
u16 isp_status;
u16 isp_state_flags;
u16 isp_stat_flags;
} fcp_scsi_err;
#endif /* !(__FCP_H) */
/* fcp_impl.h: Generic SCSI on top of FC4 - our interface defines.
*
* Copyright (C) 1997-1999 Jakub Jelinek (jj@ultra.linux.cz)
* Copyright (C) 1998 Jirka Hanika (geo@ff.cuni.cz)
*/
#ifndef _FCP_SCSI_H
#define _FCP_SCSI_H
#include <linux/types.h>
#include "../scsi/scsi.h"
#include "fc.h"
#include "fcp.h"
#include "fc-al.h"
#include <asm/io.h>
#ifdef __sparc__
#include <asm/sbus.h>
#endif
/* 0 or 1 */
#define FCP_SCSI_USE_NEW_EH_CODE 0
#define FC_CLASS_OUTBOUND 0x01
#define FC_CLASS_INBOUND 0x02
#define FC_CLASS_SIMPLE 0x03
#define FC_CLASS_IO_WRITE 0x04
#define FC_CLASS_IO_READ 0x05
#define FC_CLASS_UNSOLICITED 0x06
#define FC_CLASS_OFFLINE 0x08
#define PROTO_OFFLINE 0x02
#define PROTO_REPORT_AL_MAP 0x03
#define PROTO_FORCE_LIP 0x06
struct _fc_channel;
typedef struct fcp_cmnd {
struct fcp_cmnd *next;
struct fcp_cmnd *prev;
void (*done)(struct scsi_cmnd *);
unsigned short proto;
unsigned short token;
unsigned int did;
/* FCP SCSI stuff */
dma_addr_t data;
/* From now on this cannot be touched for proto == TYPE_SCSI_FCP */
fc_hdr fch;
dma_addr_t cmd;
dma_addr_t rsp;
int cmdlen;
int rsplen;
int class;
int datalen;
/* This is just used as a verification during login */
struct _fc_channel *fc;
void *ls;
} fcp_cmnd;
typedef struct {
unsigned int len;
unsigned char list[0];
} fcp_posmap;
typedef struct _fc_channel {
struct _fc_channel *next;
int irq;
int state;
int sid;
int did;
char name[16];
void (*fcp_register)(struct _fc_channel *, u8, int);
void (*reset)(struct _fc_channel *);
int (*hw_enque)(struct _fc_channel *, fcp_cmnd *);
fc_wwn wwn_node;
fc_wwn wwn_nport;
fc_wwn wwn_dest;
common_svc_parm *common_svc;
svc_parm *class_svcs;
#ifdef __sparc__
struct sbus_dev *dev;
#else
struct pci_dev *dev;
#endif
struct module *module;
/* FCP SCSI stuff */
short can_queue;
short abort_count;
int rsp_size;
fcp_cmd *scsi_cmd_pool;
char *scsi_rsp_pool;
dma_addr_t dma_scsi_cmd, dma_scsi_rsp;
unsigned long *scsi_bitmap;
long scsi_bitmap_end;
int scsi_free;
int (*encode_addr)(struct scsi_cmnd *, u16 *, struct _fc_channel *, fcp_cmnd *);
fcp_cmnd *scsi_que;
char scsi_name[4];
fcp_cmnd **cmd_slots;
int channels;
int targets;
long *ages;
struct scsi_cmnd *rst_pkt;
fcp_posmap *posmap;
/* LOGIN stuff */
fcp_cmnd *login;
void *ls;
} fc_channel;
extern fc_channel *fc_channels;
#define FC_STATE_UNINITED 0
#define FC_STATE_ONLINE 1
#define FC_STATE_OFFLINE 2
#define FC_STATE_RESETING 3
#define FC_STATE_FPORT_OK 4
#define FC_STATE_MAYBEOFFLINE 5
#define FC_STATUS_OK 0
#define FC_STATUS_P_RJT 2
#define FC_STATUS_F_RJT 3
#define FC_STATUS_P_BSY 4
#define FC_STATUS_F_BSY 5
#define FC_STATUS_ERR_OFFLINE 0x11
#define FC_STATUS_TIMEOUT 0x12
#define FC_STATUS_ERR_OVERRUN 0x13
#define FC_STATUS_POINTTOPOINT 0x15
#define FC_STATUS_AL 0x16
#define FC_STATUS_UNKNOWN_CQ_TYPE 0x20
#define FC_STATUS_BAD_SEG_CNT 0x21
#define FC_STATUS_MAX_XCHG_EXCEEDED 0x22
#define FC_STATUS_BAD_XID 0x23
#define FC_STATUS_XCHG_BUSY 0x24
#define FC_STATUS_BAD_POOL_ID 0x25
#define FC_STATUS_INSUFFICIENT_CQES 0x26
#define FC_STATUS_ALLOC_FAIL 0x27
#define FC_STATUS_BAD_SID 0x28
#define FC_STATUS_NO_SEQ_INIT 0x29
#define FC_STATUS_TIMED_OUT -1
#define FC_STATUS_BAD_RSP -2
void fcp_queue_empty(fc_channel *);
int fcp_init(fc_channel *);
void fcp_release(fc_channel *fc_chain, int count);
void fcp_receive_solicited(fc_channel *, int, int, int, fc_hdr *);
void fcp_state_change(fc_channel *, int);
int fc_do_plogi(fc_channel *, unsigned char, fc_wwn *, fc_wwn *);
int fc_do_prli(fc_channel *, unsigned char);
#define for_each_fc_channel(fc) \
for (fc = fc_channels; fc; fc = fc->next)
#define for_each_online_fc_channel(fc) \
for_each_fc_channel(fc) \
if (fc->state == FC_STATE_ONLINE)
int fcp_scsi_queuecommand(struct scsi_cmnd *,
void (* done) (struct scsi_cmnd *));
int fcp_scsi_abort(struct scsi_cmnd *);
int fcp_scsi_dev_reset(struct scsi_cmnd *);
int fcp_scsi_host_reset(struct scsi_cmnd *);
#endif /* !(_FCP_SCSI_H) */
This diff is collapsed.
/* soc.h: Definitions for Sparc SUNW,soc Fibre Channel Sbus driver.
*
* Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
#ifndef __SOC_H
#define __SOC_H
#include "fc.h"
#include "fcp.h"
#include "fcp_impl.h"
/* Hardware register offsets and constants first {{{ */
#define CFG 0x00UL /* Config Register */
#define SAE 0x04UL /* Slave Access Error Register */
#define CMD 0x08UL /* Command and Status Register */
#define IMASK 0x0cUL /* Interrupt Mask Register */
/* Config Register */
#define SOC_CFG_EXT_RAM_BANK_MASK 0x07000000
#define SOC_CFG_EEPROM_BANK_MASK 0x00030000
#define SOC_CFG_BURST64_MASK 0x00000700
#define SOC_CFG_SBUS_PARITY_TEST 0x00000020
#define SOC_CFG_SBUS_PARITY_CHECK 0x00000010
#define SOC_CFG_SBUS_ENHANCED 0x00000008
#define SOC_CFG_BURST_MASK 0x00000007
/* Bursts */
#define SOC_CFG_BURST_4 0x00000000
#define SOC_CFG_BURST_16 0x00000004
#define SOC_CFG_BURST_32 0x00000005
#define SOC_CFG_BURST_64 0x00000006
/* Slave Access Error Register */
#define SOC_SAE_ALIGNMENT 0x00000004
#define SOC_SAE_UNSUPPORTED 0x00000002
#define SOC_SAE_PARITY 0x00000001
/* Command & Status Register */
#define SOC_CMD_RSP_QALL 0x000f0000
#define SOC_CMD_RSP_Q0 0x00010000
#define SOC_CMD_RSP_Q1 0x00020000
#define SOC_CMD_RSP_Q2 0x00040000
#define SOC_CMD_RSP_Q3 0x00080000
#define SOC_CMD_REQ_QALL 0x00000f00
#define SOC_CMD_REQ_Q0 0x00000100
#define SOC_CMD_REQ_Q1 0x00000200
#define SOC_CMD_REQ_Q2 0x00000400
#define SOC_CMD_REQ_Q3 0x00000800
#define SOC_CMD_SAE 0x00000080
#define SOC_CMD_INTR_PENDING 0x00000008
#define SOC_CMD_NON_QUEUED 0x00000004
#define SOC_CMD_IDLE 0x00000002
#define SOC_CMD_SOFT_RESET 0x00000001
/* Interrupt Mask Register */
#define SOC_IMASK_RSP_QALL 0x000f0000
#define SOC_IMASK_RSP_Q0 0x00010000
#define SOC_IMASK_RSP_Q1 0x00020000
#define SOC_IMASK_RSP_Q2 0x00040000
#define SOC_IMASK_RSP_Q3 0x00080000
#define SOC_IMASK_REQ_QALL 0x00000f00
#define SOC_IMASK_REQ_Q0 0x00000100
#define SOC_IMASK_REQ_Q1 0x00000200
#define SOC_IMASK_REQ_Q2 0x00000400
#define SOC_IMASK_REQ_Q3 0x00000800
#define SOC_IMASK_SAE 0x00000080
#define SOC_IMASK_NON_QUEUED 0x00000004
#define SOC_INTR(s, cmd) \
(((cmd & SOC_CMD_RSP_QALL) | ((~cmd) & SOC_CMD_REQ_QALL)) \
& s->imask)
#define SOC_SETIMASK(s, i) \
do { (s)->imask = (i); \
sbus_writel((i), (s)->regs + IMASK); \
} while(0)
/* XRAM
*
* This is a 64KB register area. It accepts only halfword access.
* That's why here are the following inline functions...
*/
typedef void __iomem *xram_p;
/* Get 32bit number from XRAM */
static inline u32 xram_get_32(xram_p x)
{
return ((sbus_readw(x + 0x00UL) << 16) |
(sbus_readw(x + 0x02UL)));
}
/* Like the above, but when we don't care about the high 16 bits */
static inline u32 xram_get_32low(xram_p x)
{
return (u32) sbus_readw(x + 0x02UL);
}
static inline u16 xram_get_16(xram_p x)
{
return sbus_readw(x);
}
static inline u8 xram_get_8(xram_p x)
{
if ((unsigned long)x & 0x1UL) {
x = x - 1;
return (u8) sbus_readw(x);
} else {
return (u8) (sbus_readw(x) >> 8);
}
}
static inline void xram_copy_from(void *p, xram_p x, int len)
{
for (len >>= 2; len > 0; len--, x += sizeof(u32)) {
u32 val, *p32 = p;
val = ((sbus_readw(x + 0x00UL) << 16) |
(sbus_readw(x + 0x02UL)));
*p32++ = val;
p = p32;
}
}
static inline void xram_copy_to(xram_p x, void *p, int len)
{
for (len >>= 2; len > 0; len--, x += sizeof(u32)) {
u32 tmp, *p32 = p;
tmp = *p32++;
p = p32;
sbus_writew(tmp >> 16, x + 0x00UL);
sbus_writew(tmp, x + 0x02UL);
}
}
static inline void xram_bzero(xram_p x, int len)
{
for (len >>= 1; len > 0; len--, x += sizeof(u16))
sbus_writew(0, x);
}
/* Circular Queue */
#define SOC_CQ_REQ_OFFSET (0x100 * sizeof(u16))
#define SOC_CQ_RSP_OFFSET (0x110 * sizeof(u16))
typedef struct {
u32 address;
u8 in;
u8 out;
u8 last;
u8 seqno;
} soc_hw_cq;
#define SOC_PORT_A 0x0000 /* From/To Port A */
#define SOC_PORT_B 0x0001 /* From/To Port A */
#define SOC_FC_HDR 0x0002 /* Contains FC Header */
#define SOC_NORSP 0x0004 /* Don't generate response nor interrupt */
#define SOC_NOINT 0x0008 /* Generate response but not interrupt */
#define SOC_XFERRDY 0x0010 /* Generate XFERRDY */
#define SOC_IGNOREPARAM 0x0020 /* Ignore PARAM field in the FC header */
#define SOC_COMPLETE 0x0040 /* Command completed */
#define SOC_UNSOLICITED 0x0080 /* For request this is the packet to establish unsolicited pools, */
/* for rsp this is unsolicited packet */
#define SOC_STATUS 0x0100 /* State change (on/off line) */
typedef struct {
u32 token;
u16 flags;
u8 class;
u8 segcnt;
u32 bytecnt;
} soc_hdr;
typedef struct {
u32 base;
u32 count;
} soc_data;
#define SOC_CQTYPE_OUTBOUND 0x01
#define SOC_CQTYPE_INBOUND 0x02
#define SOC_CQTYPE_SIMPLE 0x03
#define SOC_CQTYPE_IO_WRITE 0x04
#define SOC_CQTYPE_IO_READ 0x05
#define SOC_CQTYPE_UNSOLICITED 0x06
#define SOC_CQTYPE_DIAG 0x07
#define SOC_CQTYPE_OFFLINE 0x08
#define SOC_CQTYPE_RESPONSE 0x10
#define SOC_CQTYPE_INLINE 0x20
#define SOC_CQFLAGS_CONT 0x01
#define SOC_CQFLAGS_FULL 0x02
#define SOC_CQFLAGS_BADHDR 0x04
#define SOC_CQFLAGS_BADPKT 0x08
typedef struct {
soc_hdr shdr;
soc_data data[3];
fc_hdr fchdr;
u8 count;
u8 type;
u8 flags;
u8 seqno;
} soc_req;
#define SOC_OK 0
#define SOC_P_RJT 2
#define SOC_F_RJT 3
#define SOC_P_BSY 4
#define SOC_F_BSY 5
#define SOC_ONLINE 0x10
#define SOC_OFFLINE 0x11
#define SOC_TIMEOUT 0x12
#define SOC_OVERRUN 0x13
#define SOC_UNKOWN_CQ_TYPE 0x20
#define SOC_BAD_SEG_CNT 0x21
#define SOC_MAX_XCHG_EXCEEDED 0x22
#define SOC_BAD_XID 0x23
#define SOC_XCHG_BUSY 0x24
#define SOC_BAD_POOL_ID 0x25
#define SOC_INSUFFICIENT_CQES 0x26
#define SOC_ALLOC_FAIL 0x27
#define SOC_BAD_SID 0x28
#define SOC_NO_SEG_INIT 0x29
typedef struct {
soc_hdr shdr;
u32 status;
soc_data data;
u8 xxx1[12];
fc_hdr fchdr;
u8 count;
u8 type;
u8 flags;
u8 seqno;
} soc_rsp;
/* }}} */
/* Now our software structures and constants we use to drive the beast {{{ */
#define SOC_CQ_REQ0_SIZE 4
#define SOC_CQ_REQ1_SIZE 64
#define SOC_CQ_RSP0_SIZE 8
#define SOC_CQ_RSP1_SIZE 4
#define SOC_SOLICITED_RSP_Q 0
#define SOC_UNSOLICITED_RSP_Q 1
struct soc;
typedef struct {
/* This must come first */
fc_channel fc;
struct soc *s;
u16 flags;
u16 mask;
} soc_port;
typedef struct {
soc_hw_cq __iomem *hw_cq; /* Related XRAM cq */
soc_req __iomem *pool;
u8 in;
u8 out;
u8 last;
u8 seqno;
} soc_cq_rsp;
typedef struct {
soc_hw_cq __iomem *hw_cq; /* Related XRAM cq */
soc_req *pool;
u8 in;
u8 out;
u8 last;
u8 seqno;
} soc_cq_req;
struct soc {
spinlock_t lock;
soc_port port[2]; /* Every SOC has one or two FC ports */
soc_cq_req req[2]; /* Request CQs */
soc_cq_rsp rsp[2]; /* Response CQs */
int soc_no;
void __iomem *regs;
xram_p xram;
fc_wwn wwn;
u32 imask; /* Our copy of regs->imask */
u32 cfg; /* Our copy of regs->cfg */
char serv_params[80];
struct soc *next;
int curr_port; /* Which port will have priority to fcp_queue_empty */
soc_req *req_cpu;
u32 req_dvma;
};
/* }}} */
#endif /* !(__SOC_H) */
This diff is collapsed.
/* socal.h: Definitions for Sparc SUNW,socal (SOC+) Fibre Channel Sbus driver.
*
* Copyright (C) 1998,1999 Jakub Jelinek (jj@ultra.linux.cz)
*/
#ifndef __SOCAL_H
#define __SOCAL_H
#include "fc.h"
#include "fcp.h"
#include "fcp_impl.h"
/* Hardware register offsets and constants first {{{ */
#define CFG 0x00UL
#define SAE 0x04UL
#define CMD 0x08UL
#define IMASK 0x0cUL
#define REQP 0x10UL
#define RESP 0x14UL
/* Config Register */
#define SOCAL_CFG_EXT_RAM_BANK_MASK 0x07000000
#define SOCAL_CFG_EEPROM_BANK_MASK 0x00030000
#define SOCAL_CFG_BURST64_MASK 0x00000700
#define SOCAL_CFG_SBUS_PARITY_TEST 0x00000020
#define SOCAL_CFG_SBUS_PARITY_CHECK 0x00000010
#define SOCAL_CFG_SBUS_ENHANCED 0x00000008
#define SOCAL_CFG_BURST_MASK 0x00000007
/* Bursts */
#define SOCAL_CFG_BURST_4 0x00000000
#define SOCAL_CFG_BURST_8 0x00000003
#define SOCAL_CFG_BURST_16 0x00000004
#define SOCAL_CFG_BURST_32 0x00000005
#define SOCAL_CFG_BURST_64 0x00000006
#define SOCAL_CFG_BURST_128 0x00000007
/* Slave Access Error Register */
#define SOCAL_SAE_ALIGNMENT 0x00000004
#define SOCAL_SAE_UNSUPPORTED 0x00000002
#define SOCAL_SAE_PARITY 0x00000001
/* Command & Status Register */
#define SOCAL_CMD_RSP_QALL 0x000f0000
#define SOCAL_CMD_RSP_Q0 0x00010000
#define SOCAL_CMD_RSP_Q1 0x00020000
#define SOCAL_CMD_RSP_Q2 0x00040000
#define SOCAL_CMD_RSP_Q3 0x00080000
#define SOCAL_CMD_REQ_QALL 0x00000f00
#define SOCAL_CMD_REQ_Q0 0x00000100
#define SOCAL_CMD_REQ_Q1 0x00000200
#define SOCAL_CMD_REQ_Q2 0x00000400
#define SOCAL_CMD_REQ_Q3 0x00000800
#define SOCAL_CMD_SAE 0x00000080
#define SOCAL_CMD_INTR_PENDING 0x00000008
#define SOCAL_CMD_NON_QUEUED 0x00000004
#define SOCAL_CMD_IDLE 0x00000002
#define SOCAL_CMD_SOFT_RESET 0x00000001
/* Interrupt Mask Register */
#define SOCAL_IMASK_RSP_QALL 0x000f0000
#define SOCAL_IMASK_RSP_Q0 0x00010000
#define SOCAL_IMASK_RSP_Q1 0x00020000
#define SOCAL_IMASK_RSP_Q2 0x00040000
#define SOCAL_IMASK_RSP_Q3 0x00080000
#define SOCAL_IMASK_REQ_QALL 0x00000f00
#define SOCAL_IMASK_REQ_Q0 0x00000100
#define SOCAL_IMASK_REQ_Q1 0x00000200
#define SOCAL_IMASK_REQ_Q2 0x00000400
#define SOCAL_IMASK_REQ_Q3 0x00000800
#define SOCAL_IMASK_SAE 0x00000080
#define SOCAL_IMASK_NON_QUEUED 0x00000004
#define SOCAL_INTR(s, cmd) \
(((cmd & SOCAL_CMD_RSP_QALL) | ((~cmd) & SOCAL_CMD_REQ_QALL)) \
& s->imask)
#define SOCAL_SETIMASK(s, i) \
do { (s)->imask = (i); \
sbus_writel((i), (s)->regs + IMASK); \
} while (0)
#define SOCAL_MAX_EXCHANGES 1024
/* XRAM
*
* This is a 64KB register area.
* From the documentation, it seems like it is finally able to cope
* at least with 1,2,4 byte accesses for read and 2,4 byte accesses for write.
*/
/* Circular Queue */
#define SOCAL_CQ_REQ_OFFSET 0x200
#define SOCAL_CQ_RSP_OFFSET 0x220
typedef struct {
u32 address;
u8 in;
u8 out;
u8 last;
u8 seqno;
} socal_hw_cq;
#define SOCAL_PORT_A 0x0000 /* From/To Port A */
#define SOCAL_PORT_B 0x0001 /* From/To Port A */
#define SOCAL_FC_HDR 0x0002 /* Contains FC Header */
#define SOCAL_NORSP 0x0004 /* Don't generate response nor interrupt */
#define SOCAL_NOINT 0x0008 /* Generate response but not interrupt */
#define SOCAL_XFERRDY 0x0010 /* Generate XFERRDY */
#define SOCAL_IGNOREPARAM 0x0020 /* Ignore PARAM field in the FC header */
#define SOCAL_COMPLETE 0x0040 /* Command completed */
#define SOCAL_UNSOLICITED 0x0080 /* For request this is the packet to establish unsolicited pools, */
/* for rsp this is unsolicited packet */
#define SOCAL_STATUS 0x0100 /* State change (on/off line) */
#define SOCAL_RSP_HDR 0x0200 /* Return frame header in any case */
typedef struct {
u32 token;
u16 flags;
u8 class;
u8 segcnt;
u32 bytecnt;
} socal_hdr;
typedef struct {
u32 base;
u32 count;
} socal_data;
#define SOCAL_CQTYPE_NOP 0x00
#define SOCAL_CQTYPE_OUTBOUND 0x01
#define SOCAL_CQTYPE_INBOUND 0x02
#define SOCAL_CQTYPE_SIMPLE 0x03
#define SOCAL_CQTYPE_IO_WRITE 0x04
#define SOCAL_CQTYPE_IO_READ 0x05
#define SOCAL_CQTYPE_UNSOLICITED 0x06
#define SOCAL_CQTYPE_BYPASS_DEV 0x06
#define SOCAL_CQTYPE_DIAG 0x07
#define SOCAL_CQTYPE_OFFLINE 0x08
#define SOCAL_CQTYPE_ADD_POOL 0x09
#define SOCAL_CQTYPE_DELETE_POOL 0x0a
#define SOCAL_CQTYPE_ADD_BUFFER 0x0b
#define SOCAL_CQTYPE_ADD_POOL_BUFFER 0x0c
#define SOCAL_CQTYPE_REQUEST_ABORT 0x0d
#define SOCAL_CQTYPE_REQUEST_LIP 0x0e
#define SOCAL_CQTYPE_REPORT_MAP 0x0f
#define SOCAL_CQTYPE_RESPONSE 0x10
#define SOCAL_CQTYPE_INLINE 0x20
#define SOCAL_CQFLAGS_CONT 0x01
#define SOCAL_CQFLAGS_FULL 0x02
#define SOCAL_CQFLAGS_BADHDR 0x04
#define SOCAL_CQFLAGS_BADPKT 0x08
typedef struct {
socal_hdr shdr;
socal_data data[3];
fc_hdr fchdr;
u8 count;
u8 type;
u8 flags;
u8 seqno;
} socal_req;
#define SOCAL_OK 0
#define SOCAL_P_RJT 2
#define SOCAL_F_RJT 3
#define SOCAL_P_BSY 4
#define SOCAL_F_BSY 5
#define SOCAL_ONLINE 0x10
#define SOCAL_OFFLINE 0x11
#define SOCAL_TIMEOUT 0x12
#define SOCAL_OVERRUN 0x13
#define SOCAL_ONLINE_LOOP 0x14
#define SOCAL_OLD_PORT 0x15
#define SOCAL_AL_PORT 0x16
#define SOCAL_UNKOWN_CQ_TYPE 0x20
#define SOCAL_BAD_SEG_CNT 0x21
#define SOCAL_MAX_XCHG_EXCEEDED 0x22
#define SOCAL_BAD_XID 0x23
#define SOCAL_XCHG_BUSY 0x24
#define SOCAL_BAD_POOL_ID 0x25
#define SOCAL_INSUFFICIENT_CQES 0x26
#define SOCAL_ALLOC_FAIL 0x27
#define SOCAL_BAD_SID 0x28
#define SOCAL_NO_SEG_INIT 0x29
#define SOCAL_BAD_DID 0x2a
#define SOCAL_ABORTED 0x30
#define SOCAL_ABORT_FAILED 0x31
typedef struct {
socal_hdr shdr;
u32 status;
socal_data data;
u8 xxx1[10];
u16 ncmds;
fc_hdr fchdr;
u8 count;
u8 type;
u8 flags;
u8 seqno;
} socal_rsp;
typedef struct {
socal_hdr shdr;
u8 xxx1[48];
u8 count;
u8 type;
u8 flags;
u8 seqno;
} socal_cmdonly;
#define SOCAL_DIAG_NOP 0x00
#define SOCAL_DIAG_INT_LOOP 0x01
#define SOCAL_DIAG_EXT_LOOP 0x02
#define SOCAL_DIAG_REM_LOOP 0x03
#define SOCAL_DIAG_XRAM_TEST 0x04
#define SOCAL_DIAG_SOC_TEST 0x05
#define SOCAL_DIAG_HCB_TEST 0x06
#define SOCAL_DIAG_SOCLB_TEST 0x07
#define SOCAL_DIAG_SRDSLB_TEST 0x08
#define SOCAL_DIAG_EXTOE_TEST 0x09
typedef struct {
socal_hdr shdr;
u32 cmd;
u8 xxx1[44];
u8 count;
u8 type;
u8 flags;
u8 seqno;
} socal_diag_req;
#define SOCAL_POOL_MASK_RCTL 0x800000
#define SOCAL_POOL_MASK_DID 0x700000
#define SOCAL_POOL_MASK_SID 0x070000
#define SOCAL_POOL_MASK_TYPE 0x008000
#define SOCAL_POOL_MASK_F_CTL 0x007000
#define SOCAL_POOL_MASK_SEQ_ID 0x000800
#define SOCAL_POOL_MASK_D_CTL 0x000400
#define SOCAL_POOL_MASK_SEQ_CNT 0x000300
#define SOCAL_POOL_MASK_OX_ID 0x0000f0
#define SOCAL_POOL_MASK_PARAM 0x00000f
typedef struct {
socal_hdr shdr;
u32 pool_id;
u32 header_mask;
u32 buf_size;
u32 entries;
u8 xxx1[8];
fc_hdr fchdr;
u8 count;
u8 type;
u8 flags;
u8 seqno;
} socal_pool_req;
/* }}} */
/* Now our software structures and constants we use to drive the beast {{{ */
#define SOCAL_CQ_REQ0_SIZE 4
#define SOCAL_CQ_REQ1_SIZE 256
#define SOCAL_CQ_RSP0_SIZE 8
#define SOCAL_CQ_RSP1_SIZE 4
#define SOCAL_CQ_RSP2_SIZE 4
#define SOCAL_SOLICITED_RSP_Q 0
#define SOCAL_SOLICITED_BAD_RSP_Q 1
#define SOCAL_UNSOLICITED_RSP_Q 2
struct socal;
typedef struct {
/* This must come first */
fc_channel fc;
struct socal *s;
u16 flags;
u16 mask;
} socal_port;
typedef struct {
socal_hw_cq __iomem *hw_cq; /* Related XRAM cq */
socal_req *pool;
u8 in;
u8 out;
u8 last;
u8 seqno;
} socal_cq;
struct socal {
spinlock_t lock;
socal_port port[2]; /* Every SOCAL has one or two FC ports */
socal_cq req[4]; /* Request CQs */
socal_cq rsp[4]; /* Response CQs */
int socal_no;
void __iomem *regs;
void __iomem *xram;
void __iomem *eeprom;
fc_wwn wwn;
u32 imask; /* Our copy of regs->imask */
u32 cfg; /* Our copy of regs->cfg */
char serv_params[80];
struct socal *next;
int curr_port; /* Which port will have priority to fcp_queue_empty */
socal_req * req_cpu;
u32 req_dvma;
};
/* }}} */
#endif /* !(__SOCAL_H) */
...@@ -115,7 +115,6 @@ obj-$(CONFIG_SCSI_QLOGICPTI) += qlogicpti.o ...@@ -115,7 +115,6 @@ obj-$(CONFIG_SCSI_QLOGICPTI) += qlogicpti.o
obj-$(CONFIG_BLK_DEV_IDESCSI) += ide-scsi.o obj-$(CONFIG_BLK_DEV_IDESCSI) += ide-scsi.o
obj-$(CONFIG_SCSI_MESH) += mesh.o obj-$(CONFIG_SCSI_MESH) += mesh.o
obj-$(CONFIG_SCSI_MAC53C94) += mac53c94.o obj-$(CONFIG_SCSI_MAC53C94) += mac53c94.o
obj-$(CONFIG_SCSI_PLUTO) += pluto.o
obj-$(CONFIG_SCSI_DECNCR) += NCR53C9x.o dec_esp.o obj-$(CONFIG_SCSI_DECNCR) += NCR53C9x.o dec_esp.o
obj-$(CONFIG_BLK_DEV_3W_XXXX_RAID) += 3w-xxxx.o obj-$(CONFIG_BLK_DEV_3W_XXXX_RAID) += 3w-xxxx.o
obj-$(CONFIG_SCSI_3W_9XXX) += 3w-9xxx.o obj-$(CONFIG_SCSI_3W_9XXX) += 3w-9xxx.o
...@@ -123,7 +122,6 @@ obj-$(CONFIG_SCSI_PPA) += ppa.o ...@@ -123,7 +122,6 @@ obj-$(CONFIG_SCSI_PPA) += ppa.o
obj-$(CONFIG_SCSI_IMM) += imm.o obj-$(CONFIG_SCSI_IMM) += imm.o
obj-$(CONFIG_JAZZ_ESP) += esp_scsi.o jazz_esp.o obj-$(CONFIG_JAZZ_ESP) += esp_scsi.o jazz_esp.o
obj-$(CONFIG_SUN3X_ESP) += NCR53C9x.o sun3x_esp.o obj-$(CONFIG_SUN3X_ESP) += NCR53C9x.o sun3x_esp.o
obj-$(CONFIG_SCSI_FCAL) += fcal.o
obj-$(CONFIG_SCSI_LASI700) += 53c700.o lasi700.o obj-$(CONFIG_SCSI_LASI700) += 53c700.o lasi700.o
obj-$(CONFIG_SCSI_SNI_53C710) += 53c700.o sni_53c710.o obj-$(CONFIG_SCSI_SNI_53C710) += 53c700.o sni_53c710.o
obj-$(CONFIG_SCSI_NSP32) += nsp32.o obj-$(CONFIG_SCSI_NSP32) += nsp32.o
......
/* fcal.c: Fibre Channel Arbitrated Loop SCSI host adapter driver.
*
* Copyright (C) 1998,1999 Jakub Jelinek (jj@ultra.linux.cz)
*
*/
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/init.h>
#ifdef CONFIG_KMOD
#include <linux/kmod.h>
#endif
#include <asm/irq.h>
#include "scsi.h"
#include <scsi/scsi_host.h>
#include "../fc4/fcp_impl.h"
#include "fcal.h"
#include <linux/module.h>
/* #define FCAL_DEBUG */
#define fcal_printk printk ("FCAL %s: ", fc->name); printk
#ifdef FCAL_DEBUG
#define FCALD(x) fcal_printk x;
#define FCALND(x) printk ("FCAL: "); printk x;
#else
#define FCALD(x)
#define FCALND(x)
#endif
static unsigned char alpa2target[] = {
0x7e, 0x7d, 0x7c, 0xff, 0x7b, 0xff, 0xff, 0xff, 0x7a, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x79,
0x78, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x77, 0x76, 0xff, 0xff, 0x75, 0xff, 0x74, 0x73, 0x72,
0xff, 0xff, 0xff, 0x71, 0xff, 0x70, 0x6f, 0x6e, 0xff, 0x6d, 0x6c, 0x6b, 0x6a, 0x69, 0x68, 0xff,
0xff, 0x67, 0x66, 0x65, 0x64, 0x63, 0x62, 0xff, 0xff, 0x61, 0x60, 0xff, 0x5f, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0x5e, 0xff, 0x5d, 0x5c, 0x5b, 0xff, 0x5a, 0x59, 0x58, 0x57, 0x56, 0x55, 0xff,
0xff, 0x54, 0x53, 0x52, 0x51, 0x50, 0x4f, 0xff, 0xff, 0x4e, 0x4d, 0xff, 0x4c, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0x4b, 0xff, 0x4a, 0x49, 0x48, 0xff, 0x47, 0x46, 0x45, 0x44, 0x43, 0x42, 0xff,
0xff, 0x41, 0x40, 0x3f, 0x3e, 0x3d, 0x3c, 0xff, 0xff, 0x3b, 0x3a, 0xff, 0x39, 0xff, 0xff, 0xff,
0x38, 0x37, 0x36, 0xff, 0x35, 0xff, 0xff, 0xff, 0x34, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x33,
0x32, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x31, 0x30, 0xff, 0xff, 0x2f, 0xff, 0x2e, 0x2d, 0x2c,
0xff, 0xff, 0xff, 0x2b, 0xff, 0x2a, 0x29, 0x28, 0xff, 0x27, 0x26, 0x25, 0x24, 0x23, 0x22, 0xff,
0xff, 0x21, 0x20, 0x1f, 0x1e, 0x1d, 0x1c, 0xff, 0xff, 0x1b, 0x1a, 0xff, 0x19, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0x18, 0xff, 0x17, 0x16, 0x15, 0xff, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f, 0xff,
0xff, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0xff, 0xff, 0x08, 0x07, 0xff, 0x06, 0xff, 0xff, 0xff,
0x05, 0x04, 0x03, 0xff, 0x02, 0xff, 0xff, 0xff, 0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
};
static unsigned char target2alpa[] = {
0xef, 0xe8, 0xe4, 0xe2, 0xe1, 0xe0, 0xdc, 0xda, 0xd9, 0xd6, 0xd5, 0xd4, 0xd3, 0xd2, 0xd1, 0xce,
0xcd, 0xcc, 0xcb, 0xca, 0xc9, 0xc7, 0xc6, 0xc5, 0xc3, 0xbc, 0xba, 0xb9, 0xb6, 0xb5, 0xb4, 0xb3,
0xb2, 0xb1, 0xae, 0xad, 0xac, 0xab, 0xaa, 0xa9, 0xa7, 0xa6, 0xa5, 0xa3, 0x9f, 0x9e, 0x9d, 0x9b,
0x98, 0x97, 0x90, 0x8f, 0x88, 0x84, 0x82, 0x81, 0x80, 0x7c, 0x7a, 0x79, 0x76, 0x75, 0x74, 0x73,
0x72, 0x71, 0x6e, 0x6d, 0x6c, 0x6b, 0x6a, 0x69, 0x67, 0x66, 0x65, 0x63, 0x5c, 0x5a, 0x59, 0x56,
0x55, 0x54, 0x53, 0x52, 0x51, 0x4e, 0x4d, 0x4c, 0x4b, 0x4a, 0x49, 0x47, 0x46, 0x45, 0x43, 0x3c,
0x3a, 0x39, 0x36, 0x35, 0x34, 0x33, 0x32, 0x31, 0x2e, 0x2d, 0x2c, 0x2b, 0x2a, 0x29, 0x27, 0x26,
0x25, 0x23, 0x1f, 0x1e, 0x1d, 0x1b, 0x18, 0x17, 0x10, 0x0f, 0x08, 0x04, 0x02, 0x01, 0x00
};
static int fcal_encode_addr(Scsi_Cmnd *SCpnt, u16 *addr, fc_channel *fc, fcp_cmnd *fcmd);
int fcal_slave_configure(struct scsi_device *device)
{
int depth_to_use;
if (device->tagged_supported)
depth_to_use = /* 254 */ 8;
else
depth_to_use = 2;
scsi_adjust_queue_depth(device,
(device->tagged_supported ?
MSG_SIMPLE_TAG : 0),
depth_to_use);
return 0;
}
/* Detect all FC Arbitrated Loops attached to the machine.
fc4 module has done all the work for us... */
int __init fcal_detect(struct scsi_host_template *tpnt)
{
int nfcals = 0;
fc_channel *fc;
int fcalcount;
int i;
tpnt->proc_name = "fcal";
fcalcount = 0;
for_each_online_fc_channel(fc)
if (fc->posmap)
fcalcount++;
FCALND(("%d channels online\n", fcalcount))
if (!fcalcount) {
#if defined(MODULE) && defined(CONFIG_FC4_SOCAL_MODULE) && defined(CONFIG_KMOD)
request_module("socal");
for_each_online_fc_channel(fc)
if (fc->posmap)
fcalcount++;
if (!fcalcount)
#endif
return 0;
}
for_each_online_fc_channel(fc) {
struct Scsi_Host *host;
long *ages;
struct fcal *fcal;
if (!fc->posmap) continue;
/* Strange, this is already registered to some other SCSI host, then it cannot be fcal */
if (fc->scsi_name[0]) continue;
memcpy (fc->scsi_name, "FCAL", 4);
fc->can_queue = FCAL_CAN_QUEUE;
fc->rsp_size = 64;
fc->encode_addr = fcal_encode_addr;
ages = kmalloc (128 * sizeof(long), GFP_KERNEL);
if (!ages) continue;
host = scsi_register (tpnt, sizeof (struct fcal));
if (!host)
{
kfree(ages);
continue;
}
if (!try_module_get(fc->module)) {
kfree(ages);
scsi_unregister(host);
continue;
}
nfcals++;
fcal = (struct fcal *)host->hostdata;
fc->fcp_register(fc, TYPE_SCSI_FCP, 0);
for (i = 0; i < fc->posmap->len; i++) {
int status, target, alpa;
alpa = fc->posmap->list[i];
FCALD(("Sending PLOGI to %02x\n", alpa))
target = alpa2target[alpa];
status = fc_do_plogi(fc, alpa, fcal->node_wwn + target,
fcal->nport_wwn + target);
FCALD(("PLOGI returned with status %d\n", status))
if (status != FC_STATUS_OK)
continue;
FCALD(("Sending PRLI to %02x\n", alpa))
status = fc_do_prli(fc, alpa);
FCALD(("PRLI returned with status %d\n", status))
if (status == FC_STATUS_OK)
fcal->map[target] = 1;
}
host->max_id = 127;
host->irq = fc->irq;
#ifdef __sparc_v9__
host->unchecked_isa_dma = 1;
#endif
fc->channels = 1;
fc->targets = 127;
fc->ages = ages;
memset (ages, 0, 128 * sizeof(long));
fcal->fc = fc;
FCALD(("Found FCAL\n"))
}
if (nfcals)
#ifdef __sparc__
printk ("FCAL: Total of %d Sun Enterprise Network Array (A5000 or EX500) channels found\n", nfcals);
#else
printk ("FCAL: Total of %d Fibre Channel Arbitrated Loops found\n", nfcals);
#endif
return nfcals;
}
int fcal_release(struct Scsi_Host *host)
{
struct fcal *fcal = (struct fcal *)host->hostdata;
fc_channel *fc = fcal->fc;
module_put(fc->module);
fc->fcp_register(fc, TYPE_SCSI_FCP, 1);
FCALND((" releasing fcal.\n"));
kfree (fc->ages);
FCALND(("released fcal!\n"));
return 0;
}
#undef SPRINTF
#define SPRINTF(args...) { if (pos < (buffer + length)) pos += sprintf (pos, ## args); }
int fcal_proc_info (struct Scsi_Host *host, char *buffer, char **start, off_t offset, int length, int inout)
{
struct fcal *fcal;
fc_channel *fc;
char *pos = buffer;
int i, j;
if (inout) return length;
fcal = (struct fcal *)host->hostdata;
fc = fcal->fc;
#ifdef __sparc__
SPRINTF ("Sun Enterprise Network Array (A5000 or E?500) on %s PROM node %x\n", fc->name, fc->dev->prom_node);
#else
SPRINTF ("Fibre Channel Arbitrated Loop on %s\n", fc->name);
#endif
SPRINTF ("Initiator AL-PA: %02x\n", fc->sid);
SPRINTF ("\nAttached devices:\n");
for (i = 0; i < fc->posmap->len; i++) {
unsigned char alpa = fc->posmap->list[i];
unsigned char target;
u32 *u1, *u2;
target = alpa2target[alpa];
u1 = (u32 *)&fcal->nport_wwn[target];
u2 = (u32 *)&fcal->node_wwn[target];
if (!u1[0] && !u1[1]) {
SPRINTF (" [AL-PA: %02x] Not responded to PLOGI\n", alpa);
} else if (!fcal->map[target]) {
SPRINTF (" [AL-PA: %02x, Port WWN: %08x%08x, Node WWN: %08x%08x] Not responded to PRLI\n",
alpa, u1[0], u1[1], u2[0], u2[1]);
} else {
struct scsi_device *scd;
shost_for_each_device(scd, host)
if (scd->id == target) {
SPRINTF (" [AL-PA: %02x, Id: %02d, Port WWN: %08x%08x, Node WWN: %08x%08x] ",
alpa, target, u1[0], u1[1], u2[0], u2[1]);
SPRINTF ("%s ", scsi_device_type(scd->type));
for (j = 0; (j < 8) && (scd->vendor[j] >= 0x20); j++)
SPRINTF ("%c", scd->vendor[j]);
SPRINTF (" ");
for (j = 0; (j < 16) && (scd->model[j] >= 0x20); j++)
SPRINTF ("%c", scd->model[j]);
SPRINTF ("\n");
}
}
}
SPRINTF ("\n");
*start = buffer + offset;
if ((pos - buffer) < offset)
return 0;
else if (pos - buffer - offset < length)
return pos - buffer - offset;
else
return length;
}
/*
For FC-AL, we use a simple addressing: we have just one channel 0,
and all AL-PAs are mapped to targets 0..0x7e
*/
static int fcal_encode_addr(Scsi_Cmnd *SCpnt, u16 *addr, fc_channel *fc, fcp_cmnd *fcmd)
{
struct fcal *f;
/* We don't support LUNs yet - I'm not sure if LUN should be in SCSI fcp_cdb, or in second byte of addr[0] */
if (SCpnt->cmnd[1] & 0xe0) return -EINVAL;
/* FC-PLDA tells us... */
memset(addr, 0, 8);
f = (struct fcal *)SCpnt->device->host->hostdata;
if (!f->map[SCpnt->device->id])
return -EINVAL;
/* Now, determine DID: It will be Native Identifier, so we zero upper
2 bytes of the 3 byte DID, lowest byte will be AL-PA */
fcmd->did = target2alpa[SCpnt->device->id];
FCALD(("trying DID %06x\n", fcmd->did))
return 0;
}
static struct scsi_host_template driver_template = {
.name = "Fibre Channel Arbitrated Loop",
.detect = fcal_detect,
.release = fcal_release,
.proc_info = fcal_proc_info,
.queuecommand = fcp_scsi_queuecommand,
.slave_configure = fcal_slave_configure,
.can_queue = FCAL_CAN_QUEUE,
.this_id = -1,
.sg_tablesize = 1,
.cmd_per_lun = 1,
.use_clustering = ENABLE_CLUSTERING,
.eh_abort_handler = fcp_scsi_abort,
.eh_device_reset_handler = fcp_scsi_dev_reset,
.eh_host_reset_handler = fcp_scsi_host_reset,
};
#include "scsi_module.c"
MODULE_LICENSE("GPL");
/* fcal.h: Generic Fibre Channel Arbitrated Loop SCSI host adapter driver definitions.
*
* Copyright (C) 1998,1999 Jakub Jelinek (jj@ultra.linux.cz)
*/
#ifndef _FCAL_H
#define _FCAL_H
#include "../fc4/fcp_impl.h"
struct fcal {
/* fc must be first */
fc_channel *fc;
unsigned char map[128];
fc_wwn nport_wwn[128];
fc_wwn node_wwn[128];
};
/* Arbitrary constant. Cannot be too large, as fc4 layer has limitations
for a particular channel */
#define FCAL_CAN_QUEUE 512
int fcal_detect(struct scsi_host_template *);
int fcal_release(struct Scsi_Host *);
int fcal_slave_configure(struct scsi_device *);
#endif /* !(_FCAL_H) */
/* pluto.c: SparcSTORAGE Array SCSI host adapter driver.
*
* Copyright (C) 1997,1998,1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*
*/
#include <linux/completion.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/init.h>
#ifdef CONFIG_KMOD
#include <linux/kmod.h>
#endif
#include <asm/irq.h>
#include "scsi.h"
#include <scsi/scsi_host.h>
#include "../fc4/fcp_impl.h"
#include "pluto.h"
#include <linux/module.h>
#define RQ_SCSI_BUSY 0xffff
#define RQ_SCSI_DONE 0xfffe
/* #define PLUTO_DEBUG */
#define pluto_printk printk ("PLUTO %s: ", fc->name); printk
#ifdef PLUTO_DEBUG
#define PLD(x) pluto_printk x;
#define PLND(x) printk ("PLUTO: "); printk x;
#else
#define PLD(x)
#define PLND(x)
#endif
static struct ctrl_inquiry {
struct Scsi_Host host;
struct pluto pluto;
Scsi_Cmnd cmd;
char inquiry[256];
fc_channel *fc;
} *fcs __initdata;
static int fcscount __initdata = 0;
static atomic_t fcss __initdata = ATOMIC_INIT(0);
static DECLARE_COMPLETION(fc_detect_complete);
static int pluto_encode_addr(Scsi_Cmnd *SCpnt, u16 *addr, fc_channel *fc, fcp_cmnd *fcmd);
static void __init pluto_detect_done(Scsi_Cmnd *SCpnt)
{
/* Do nothing */
}
static void __init pluto_detect_scsi_done(Scsi_Cmnd *SCpnt)
{
PLND(("Detect done %08lx\n", (long)SCpnt))
if (atomic_dec_and_test (&fcss))
complete(&fc_detect_complete);
}
int pluto_slave_configure(struct scsi_device *device)
{
int depth_to_use;
if (device->tagged_supported)
depth_to_use = /* 254 */ 8;
else
depth_to_use = 2;
scsi_adjust_queue_depth(device,
(device->tagged_supported ?
MSG_SIMPLE_TAG : 0),
depth_to_use);
return 0;
}
/* Detect all SSAs attached to the machine.
To be fast, do it on all online FC channels at the same time. */
int __init pluto_detect(struct scsi_host_template *tpnt)
{
int i, retry, nplutos;
fc_channel *fc;
struct scsi_device dev;
tpnt->proc_name = "pluto";
fcscount = 0;
for_each_online_fc_channel(fc) {
if (!fc->posmap)
fcscount++;
}
PLND(("%d channels online\n", fcscount))
if (!fcscount) {
#if defined(MODULE) && defined(CONFIG_FC4_SOC_MODULE) && defined(CONFIG_KMOD)
request_module("soc");
for_each_online_fc_channel(fc) {
if (!fc->posmap)
fcscount++;
}
if (!fcscount)
#endif
return 0;
}
fcs = kcalloc(fcscount, sizeof (struct ctrl_inquiry), GFP_DMA);
if (!fcs) {
printk ("PLUTO: Not enough memory to probe\n");
return 0;
}
memset (&dev, 0, sizeof(dev));
atomic_set (&fcss, fcscount);
i = 0;
for_each_online_fc_channel(fc) {
Scsi_Cmnd *SCpnt;
struct Scsi_Host *host;
struct pluto *pluto;
if (i == fcscount) break;
if (fc->posmap) continue;
PLD(("trying to find SSA\n"))
/* If this is already registered to some other SCSI host, then it cannot be pluto */
if (fc->scsi_name[0]) continue;
memcpy (fc->scsi_name, "SSA", 4);
fcs[i].fc = fc;
fc->can_queue = PLUTO_CAN_QUEUE;
fc->rsp_size = 64;
fc->encode_addr = pluto_encode_addr;
fc->fcp_register(fc, TYPE_SCSI_FCP, 0);
SCpnt = &(fcs[i].cmd);
host = &(fcs[i].host);
pluto = (struct pluto *)host->hostdata;
pluto->fc = fc;
SCpnt->cmnd[0] = INQUIRY;
SCpnt->cmnd[4] = 255;
/* FC layer requires this, so that SCpnt->device->tagged_supported is initially 0 */
SCpnt->device = &dev;
dev.host = host;
SCpnt->cmd_len = COMMAND_SIZE(INQUIRY);
SCpnt->request->cmd_flags &= ~REQ_STARTED;
SCpnt->request_bufflen = 256;
SCpnt->request_buffer = fcs[i].inquiry;
PLD(("set up %d %08lx\n", i, (long)SCpnt))
i++;
}
for (retry = 0; retry < 5; retry++) {
for (i = 0; i < fcscount; i++) {
if (!fcs[i].fc) break;
if (!(fcs[i].cmd.request->cmd_flags & REQ_STARTED)) {
fcs[i].cmd.request->cmd_flags |= REQ_STARTED;
disable_irq(fcs[i].fc->irq);
PLND(("queuecommand %d %d\n", retry, i))
fcp_scsi_queuecommand (&(fcs[i].cmd),
pluto_detect_scsi_done);
enable_irq(fcs[i].fc->irq);
}
}
wait_for_completion_timeout(&fc_detect_complete, 10 * HZ);
PLND(("Woken up\n"))
if (!atomic_read(&fcss))
break; /* All fc channels have answered us */
}
PLND(("Finished search\n"))
for (i = 0, nplutos = 0; i < fcscount; i++) {
Scsi_Cmnd *SCpnt;
if (!(fc = fcs[i].fc)) break;
SCpnt = &(fcs[i].cmd);
/* Let FC mid-level free allocated resources */
pluto_detect_scsi_done(SCpnt);
if (!SCpnt->result) {
struct pluto_inquiry *inq;
struct pluto *pluto;
struct Scsi_Host *host;
inq = (struct pluto_inquiry *)fcs[i].inquiry;
if ((inq->dtype & 0x1f) == TYPE_PROCESSOR &&
!strncmp (inq->vendor_id, "SUN", 3) &&
!strncmp (inq->product_id, "SSA", 3)) {
char *p;
long *ages;
ages = kcalloc((inq->channels + 1) * inq->targets, sizeof(long), GFP_KERNEL);
if (!ages) continue;
host = scsi_register (tpnt, sizeof (struct pluto));
if(!host)
{
kfree(ages);
continue;
}
if (!try_module_get(fc->module)) {
kfree(ages);
scsi_unregister(host);
continue;
}
nplutos++;
pluto = (struct pluto *)host->hostdata;
host->max_id = inq->targets;
host->max_channel = inq->channels;
host->irq = fc->irq;
fc->channels = inq->channels + 1;
fc->targets = inq->targets;
fc->ages = ages;
pluto->fc = fc;
memcpy (pluto->rev_str, inq->revision, 4);
pluto->rev_str[4] = 0;
p = strchr (pluto->rev_str, ' ');
if (p) *p = 0;
memcpy (pluto->fw_rev_str, inq->fw_revision, 4);
pluto->fw_rev_str[4] = 0;
p = strchr (pluto->fw_rev_str, ' ');
if (p) *p = 0;
memcpy (pluto->serial_str, inq->serial, 12);
pluto->serial_str[12] = 0;
p = strchr (pluto->serial_str, ' ');
if (p) *p = 0;
PLD(("Found SSA rev %s fw rev %s serial %s %dx%d\n", pluto->rev_str, pluto->fw_rev_str, pluto->serial_str, host->max_channel, host->max_id))
} else
fc->fcp_register(fc, TYPE_SCSI_FCP, 1);
} else
fc->fcp_register(fc, TYPE_SCSI_FCP, 1);
}
kfree(fcs);
if (nplutos)
printk ("PLUTO: Total of %d SparcSTORAGE Arrays found\n", nplutos);
return nplutos;
}
int pluto_release(struct Scsi_Host *host)
{
struct pluto *pluto = (struct pluto *)host->hostdata;
fc_channel *fc = pluto->fc;
module_put(fc->module);
fc->fcp_register(fc, TYPE_SCSI_FCP, 1);
PLND((" releasing pluto.\n"));
kfree (fc->ages);
PLND(("released pluto!\n"));
return 0;
}
const char *pluto_info(struct Scsi_Host *host)
{
static char buf[128], *p;
struct pluto *pluto = (struct pluto *) host->hostdata;
sprintf(buf, "SUN SparcSTORAGE Array %s fw %s serial %s %dx%d on %s",
pluto->rev_str, pluto->fw_rev_str, pluto->serial_str,
host->max_channel, host->max_id, pluto->fc->name);
#ifdef __sparc__
p = strchr(buf, 0);
sprintf(p, " PROM node %x", pluto->fc->dev->prom_node);
#endif
return buf;
}
/* SSA uses this FC4S addressing:
switch (addr[0])
{
case 0: CONTROLLER - All of addr[1]..addr[3] has to be 0
case 1: SINGLE DISK - addr[1] channel, addr[2] id, addr[3] 0
case 2: DISK GROUP - ???
}
So that SCSI mid-layer can access to these, we reserve
channel 0 id 0 lun 0 for CONTROLLER
and channels 1 .. max_channel are normal single disks.
*/
static int pluto_encode_addr(Scsi_Cmnd *SCpnt, u16 *addr, fc_channel *fc, fcp_cmnd *fcmd)
{
PLND(("encode addr %d %d %d\n", SCpnt->device->channel, SCpnt->device->id, SCpnt->cmnd[1] & 0xe0))
/* We don't support LUNs - neither does SSA :) */
if (SCpnt->cmnd[1] & 0xe0)
return -EINVAL;
if (!SCpnt->device->channel) {
if (SCpnt->device->id)
return -EINVAL;
memset (addr, 0, 4 * sizeof(u16));
} else {
addr[0] = 1;
addr[1] = SCpnt->device->channel - 1;
addr[2] = SCpnt->device->id;
addr[3] = 0;
}
/* We're Point-to-Point, so target it to the default DID */
fcmd->did = fc->did;
PLND(("trying %04x%04x%04x%04x\n", addr[0], addr[1], addr[2], addr[3]))
return 0;
}
static struct scsi_host_template driver_template = {
.name = "Sparc Storage Array 100/200",
.detect = pluto_detect,
.release = pluto_release,
.info = pluto_info,
.queuecommand = fcp_scsi_queuecommand,
.slave_configure = pluto_slave_configure,
.can_queue = PLUTO_CAN_QUEUE,
.this_id = -1,
.sg_tablesize = 1,
.cmd_per_lun = 1,
.use_clustering = ENABLE_CLUSTERING,
.eh_abort_handler = fcp_scsi_abort,
.eh_device_reset_handler = fcp_scsi_dev_reset,
.eh_host_reset_handler = fcp_scsi_host_reset,
};
#include "scsi_module.c"
MODULE_LICENSE("GPL");
/* pluto.h: SparcSTORAGE Array SCSI host adapter driver definitions.
*
* Copyright (C) 1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
#ifndef _PLUTO_H
#define _PLUTO_H
#include "../fc4/fcp_impl.h"
struct pluto {
/* This must be first */
fc_channel *fc;
char rev_str[5];
char fw_rev_str[5];
char serial_str[13];
};
struct pluto_inquiry {
u8 dtype;
u8 removable:1, qualifier:7;
u8 iso:2, ecma:3, ansi:3;
u8 aenc:1, trmiop:1, :2, rdf:4;
u8 len;
u8 xxx1;
u8 xxx2;
u8 reladdr:1, wbus32:1, wbus16:1, sync:1, linked:1, :1, cmdque:1, softreset:1;
u8 vendor_id[8];
u8 product_id[16];
u8 revision[4];
u8 fw_revision[4];
u8 serial[12];
u8 xxx3[2];
u8 channels;
u8 targets;
};
/* This is the max number of outstanding SCSI commands per pluto */
#define PLUTO_CAN_QUEUE 254
int pluto_detect(struct scsi_host_template *);
int pluto_release(struct Scsi_Host *);
const char * pluto_info(struct Scsi_Host *);
int pluto_slave_configure(struct scsi_device *);
#endif /* !(_PLUTO_H) */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment