packet: rollover lock contention avoidance
Rollover has to call packet_rcv_has_room on sockets in the fanout group to find a socket to migrate to. This operation is expensive especially if the packet sockets use rings, when a lock has to be acquired. Avoid pounding on the lock by all sockets by temporarily marking a socket as "under memory pressure" when such pressure is detected. While set, only the socket owner may call packet_rcv_has_room on the socket. Once it detects normal conditions, it clears the flag. The socket is not used as a victim by any other socket in the meantime. Under reasonably balanced load, each socket writer frequently calls packet_rcv_has_room and clears its own pressure field. As a backup for when the socket is rarely written to, also clear the flag on reading (packet_recvmsg, packet_poll) if this can be done cheaply (i.e., without calling packet_rcv_has_room). This is only for edge cases. Tested: Ran bench_rollover: a process with 8 sockets in a single fanout group, each pinned to a single cpu that receives one nic recv interrupt. RPS and RFS are disabled. The benchmark uses packet rx_ring, which has to take a lock when determining whether a socket has room. Sent 3.5 Mpps of UDP traffic with sufficient entropy to spread uniformly across the packet sockets (and inserted an iptables rule to drop in PREROUTING to avoid protocol stack processing). Without this patch, all sockets try to migrate traffic to neighbors, causing lock contention when searching for a non- empty neighbor. The lock is the top 9 entries. perf record -a -g sleep 5 - 17.82% bench_rollover [kernel.kallsyms] [k] _raw_spin_lock - _raw_spin_lock - 99.00% spin_lock + 81.77% packet_rcv_has_room.isra.41 + 18.23% tpacket_rcv + 0.84% packet_rcv_has_room.isra.41 + 5.20% ksoftirqd/6 [kernel.kallsyms] [k] _raw_spin_lock + 5.15% ksoftirqd/1 [kernel.kallsyms] [k] _raw_spin_lock + 5.14% ksoftirqd/2 [kernel.kallsyms] [k] _raw_spin_lock + 5.12% ksoftirqd/7 [kernel.kallsyms] [k] _raw_spin_lock + 5.12% ksoftirqd/5 [kernel.kallsyms] [k] _raw_spin_lock + 5.10% ksoftirqd/4 [kernel.kallsyms] [k] _raw_spin_lock + 4.66% ksoftirqd/0 [kernel.kallsyms] [k] _raw_spin_lock + 4.45% ksoftirqd/3 [kernel.kallsyms] [k] _raw_spin_lock + 1.55% bench_rollover [kernel.kallsyms] [k] packet_rcv_has_room.isra.41 On net-next with this patch, this lock contention is no longer a top entry. Most time is spent in the actual read function. Next up are other locks: + 15.52% bench_rollover bench_rollover [.] reader + 4.68% swapper [kernel.kallsyms] [k] memcpy_erms + 2.77% swapper [kernel.kallsyms] [k] packet_lookup_frame.isra.51 + 2.56% ksoftirqd/1 [kernel.kallsyms] [k] memcpy_erms + 2.16% swapper [kernel.kallsyms] [k] tpacket_rcv + 1.93% swapper [kernel.kallsyms] [k] mlx4_en_process_rx_cq Looking closer at the remaining _raw_spin_lock, the cost of probing in rollover is now comparable to the cost of taking the lock later in tpacket_rcv. - 1.51% swapper [kernel.kallsyms] [k] _raw_spin_lock - _raw_spin_lock + 33.41% packet_rcv_has_room + 28.15% tpacket_rcv + 19.54% enqueue_to_backlog + 6.45% __free_pages_ok + 2.78% packet_rcv_fanout + 2.13% fanout_demux_rollover + 2.01% netif_receive_skb_internal Signed-off-by: Willem de Bruijn <willemb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
Showing
Please register or sign in to comment