Commit 431959c0 authored by Mark Brown's avatar Mark Brown

Merge remote-tracking branches 'spi/topic/blackfin', 'spi/topic/cadence',...

Merge remote-tracking branches 'spi/topic/blackfin', 'spi/topic/cadence', 'spi/topic/dw' and 'spi/topic/err' into spi-next
......@@ -51,19 +51,6 @@ config INTEL_MIC_X100_DMA
OS and tools for MIC to use with this driver are available from
<http://software.intel.com/en-us/mic-developer>.
config INTEL_MID_DMAC
tristate "Intel MID DMA support for Peripheral DMA controllers"
depends on PCI && X86
select DMA_ENGINE
default n
help
Enable support for the Intel(R) MID DMA engine present
in Intel MID chipsets.
Say Y here if you have such a chipset.
If unsure, say N.
config ASYNC_TX_ENABLE_CHANNEL_SWITCH
bool
......
......@@ -6,7 +6,6 @@ obj-$(CONFIG_DMA_VIRTUAL_CHANNELS) += virt-dma.o
obj-$(CONFIG_DMA_ACPI) += acpi-dma.o
obj-$(CONFIG_DMA_OF) += of-dma.o
obj-$(CONFIG_INTEL_MID_DMAC) += intel_mid_dma.o
obj-$(CONFIG_DMATEST) += dmatest.o
obj-$(CONFIG_INTEL_IOATDMA) += ioat/
obj-$(CONFIG_INTEL_IOP_ADMA) += iop-adma.o
......
This diff is collapsed.
/*
* intel_mid_dma_regs.h - Intel MID DMA Drivers
*
* Copyright (C) 2008-10 Intel Corp
* Author: Vinod Koul <vinod.koul@intel.com>
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
*
*/
#ifndef __INTEL_MID_DMAC_REGS_H__
#define __INTEL_MID_DMAC_REGS_H__
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
#include <linux/pci_ids.h>
#define INTEL_MID_DMA_DRIVER_VERSION "1.1.0"
#define REG_BIT0 0x00000001
#define REG_BIT8 0x00000100
#define INT_MASK_WE 0x8
#define CLEAR_DONE 0xFFFFEFFF
#define UNMASK_INTR_REG(chan_num) \
((REG_BIT0 << chan_num) | (REG_BIT8 << chan_num))
#define MASK_INTR_REG(chan_num) (REG_BIT8 << chan_num)
#define ENABLE_CHANNEL(chan_num) \
((REG_BIT0 << chan_num) | (REG_BIT8 << chan_num))
#define DISABLE_CHANNEL(chan_num) \
(REG_BIT8 << chan_num)
#define DESCS_PER_CHANNEL 16
/*DMA Registers*/
/*registers associated with channel programming*/
#define DMA_REG_SIZE 0x400
#define DMA_CH_SIZE 0x58
/*CH X REG = (DMA_CH_SIZE)*CH_NO + REG*/
#define SAR 0x00 /* Source Address Register*/
#define DAR 0x08 /* Destination Address Register*/
#define LLP 0x10 /* Linked List Pointer Register*/
#define CTL_LOW 0x18 /* Control Register*/
#define CTL_HIGH 0x1C /* Control Register*/
#define CFG_LOW 0x40 /* Configuration Register Low*/
#define CFG_HIGH 0x44 /* Configuration Register high*/
#define STATUS_TFR 0x2E8
#define STATUS_BLOCK 0x2F0
#define STATUS_ERR 0x308
#define RAW_TFR 0x2C0
#define RAW_BLOCK 0x2C8
#define RAW_ERR 0x2E0
#define MASK_TFR 0x310
#define MASK_BLOCK 0x318
#define MASK_SRC_TRAN 0x320
#define MASK_DST_TRAN 0x328
#define MASK_ERR 0x330
#define CLEAR_TFR 0x338
#define CLEAR_BLOCK 0x340
#define CLEAR_SRC_TRAN 0x348
#define CLEAR_DST_TRAN 0x350
#define CLEAR_ERR 0x358
#define INTR_STATUS 0x360
#define DMA_CFG 0x398
#define DMA_CHAN_EN 0x3A0
/*DMA channel control registers*/
union intel_mid_dma_ctl_lo {
struct {
u32 int_en:1; /*enable or disable interrupts*/
/*should be 0*/
u32 dst_tr_width:3; /*destination transfer width*/
/*usually 32 bits = 010*/
u32 src_tr_width:3; /*source transfer width*/
/*usually 32 bits = 010*/
u32 dinc:2; /*destination address inc/dec*/
/*For mem:INC=00, Periphral NoINC=11*/
u32 sinc:2; /*source address inc or dec, as above*/
u32 dst_msize:3; /*destination burst transaction length*/
/*always = 16 ie 011*/
u32 src_msize:3; /*source burst transaction length*/
/*always = 16 ie 011*/
u32 reser1:3;
u32 tt_fc:3; /*transfer type and flow controller*/
/*M-M = 000
P-M = 010
M-P = 001*/
u32 dms:2; /*destination master select = 0*/
u32 sms:2; /*source master select = 0*/
u32 llp_dst_en:1; /*enable/disable destination LLP = 0*/
u32 llp_src_en:1; /*enable/disable source LLP = 0*/
u32 reser2:3;
} ctlx;
u32 ctl_lo;
};
union intel_mid_dma_ctl_hi {
struct {
u32 block_ts:12; /*block transfer size*/
u32 done:1; /*Done - updated by DMAC*/
u32 reser:19; /*configured by DMAC*/
} ctlx;
u32 ctl_hi;
};
/*DMA channel configuration registers*/
union intel_mid_dma_cfg_lo {
struct {
u32 reser1:5;
u32 ch_prior:3; /*channel priority = 0*/
u32 ch_susp:1; /*channel suspend = 0*/
u32 fifo_empty:1; /*FIFO empty or not R bit = 0*/
u32 hs_sel_dst:1; /*select HW/SW destn handshaking*/
/*HW = 0, SW = 1*/
u32 hs_sel_src:1; /*select HW/SW src handshaking*/
u32 reser2:6;
u32 dst_hs_pol:1; /*dest HS interface polarity*/
u32 src_hs_pol:1; /*src HS interface polarity*/
u32 max_abrst:10; /*max AMBA burst len = 0 (no sw limit*/
u32 reload_src:1; /*auto reload src addr =1 if src is P*/
u32 reload_dst:1; /*AR destn addr =1 if dstn is P*/
} cfgx;
u32 cfg_lo;
};
union intel_mid_dma_cfg_hi {
struct {
u32 fcmode:1; /*flow control mode = 1*/
u32 fifo_mode:1; /*FIFO mode select = 1*/
u32 protctl:3; /*protection control = 0*/
u32 rsvd:2;
u32 src_per:4; /*src hw HS interface*/
u32 dst_per:4; /*dstn hw HS interface*/
u32 reser2:17;
} cfgx;
u32 cfg_hi;
};
/**
* struct intel_mid_dma_chan - internal mid representation of a DMA channel
* @chan: dma_chan strcture represetation for mid chan
* @ch_regs: MMIO register space pointer to channel register
* @dma_base: MMIO register space DMA engine base pointer
* @ch_id: DMA channel id
* @lock: channel spinlock
* @active_list: current active descriptors
* @queue: current queued up descriptors
* @free_list: current free descriptors
* @slave: dma slave structure
* @descs_allocated: total number of descriptors allocated
* @dma: dma device structure pointer
* @busy: bool representing if ch is busy (active txn) or not
* @in_use: bool representing if ch is in use or not
* @raw_tfr: raw trf interrupt received
* @raw_block: raw block interrupt received
*/
struct intel_mid_dma_chan {
struct dma_chan chan;
void __iomem *ch_regs;
void __iomem *dma_base;
int ch_id;
spinlock_t lock;
struct list_head active_list;
struct list_head queue;
struct list_head free_list;
unsigned int descs_allocated;
struct middma_device *dma;
bool busy;
bool in_use;
u32 raw_tfr;
u32 raw_block;
struct intel_mid_dma_slave *mid_slave;
};
static inline struct intel_mid_dma_chan *to_intel_mid_dma_chan(
struct dma_chan *chan)
{
return container_of(chan, struct intel_mid_dma_chan, chan);
}
enum intel_mid_dma_state {
RUNNING = 0,
SUSPENDED,
};
/**
* struct middma_device - internal representation of a DMA device
* @pdev: PCI device
* @dma_base: MMIO register space pointer of DMA
* @dma_pool: for allocating DMA descriptors
* @common: embedded struct dma_device
* @tasklet: dma tasklet for processing interrupts
* @ch: per channel data
* @pci_id: DMA device PCI ID
* @intr_mask: Interrupt mask to be used
* @mask_reg: MMIO register for periphral mask
* @chan_base: Base ch index (read from driver data)
* @max_chan: max number of chs supported (from drv_data)
* @block_size: Block size of DMA transfer supported (from drv_data)
* @pimr_mask: MMIO register addr for periphral interrupt (from drv_data)
* @state: dma PM device state
*/
struct middma_device {
struct pci_dev *pdev;
void __iomem *dma_base;
struct pci_pool *dma_pool;
struct dma_device common;
struct tasklet_struct tasklet;
struct intel_mid_dma_chan ch[MAX_CHAN];
unsigned int pci_id;
unsigned int intr_mask;
void __iomem *mask_reg;
int chan_base;
int max_chan;
int block_size;
unsigned int pimr_mask;
enum intel_mid_dma_state state;
};
static inline struct middma_device *to_middma_device(struct dma_device *common)
{
return container_of(common, struct middma_device, common);
}
struct intel_mid_dma_desc {
void __iomem *block; /*ch ptr*/
struct list_head desc_node;
struct dma_async_tx_descriptor txd;
size_t len;
dma_addr_t sar;
dma_addr_t dar;
u32 cfg_hi;
u32 cfg_lo;
u32 ctl_lo;
u32 ctl_hi;
struct pci_pool *lli_pool;
struct intel_mid_dma_lli *lli;
dma_addr_t lli_phys;
unsigned int lli_length;
unsigned int current_lli;
dma_addr_t next;
enum dma_transfer_direction dirn;
enum dma_status status;
enum dma_slave_buswidth width; /*width of DMA txn*/
enum intel_mid_dma_mode cfg_mode; /*mode configuration*/
};
struct intel_mid_dma_lli {
dma_addr_t sar;
dma_addr_t dar;
dma_addr_t llp;
u32 ctl_lo;
u32 ctl_hi;
} __attribute__ ((packed));
static inline int test_ch_en(void __iomem *dma, u32 ch_no)
{
u32 en_reg = ioread32(dma + DMA_CHAN_EN);
return (en_reg >> ch_no) & 0x1;
}
static inline struct intel_mid_dma_desc *to_intel_mid_dma_desc
(struct dma_async_tx_descriptor *txd)
{
return container_of(txd, struct intel_mid_dma_desc, txd);
}
static inline struct intel_mid_dma_slave *to_intel_mid_dma_slave
(struct dma_slave_config *slave)
{
return container_of(slave, struct intel_mid_dma_slave, dma_slave);
}
int dma_resume(struct device *dev);
#endif /*__INTEL_MID_DMAC_REGS_H__*/
......@@ -159,10 +159,9 @@ config SPI_BUTTERFLY
config SPI_CADENCE
tristate "Cadence SPI controller"
depends on ARM
help
This selects the Cadence SPI controller master driver
used by Xilinx Zynq.
used by Xilinx Zynq and ZynqMP.
config SPI_CLPS711X
tristate "CLPS711X host SPI controller"
......@@ -632,7 +631,7 @@ config SPI_DW_PCI
config SPI_DW_MID_DMA
bool "DMA support for DW SPI controller on Intel MID platform"
depends on SPI_DW_PCI && INTEL_MID_DMAC
depends on SPI_DW_PCI && DW_DMAC_PCI
config SPI_DW_MMIO
tristate "Memory-mapped io interface driver for DW SPI core"
......
......@@ -559,7 +559,7 @@ static void bfin_spi_pump_transfers(unsigned long data)
struct spi_transfer *previous = NULL;
struct bfin_spi_slave_data *chip = NULL;
unsigned int bits_per_word;
u16 cr, cr_width, dma_width, dma_config;
u16 cr, cr_width = 0, dma_width, dma_config;
u32 tranf_success = 1;
u8 full_duplex = 0;
......@@ -648,7 +648,6 @@ static void bfin_spi_pump_transfers(unsigned long data)
} else if (bits_per_word == 8) {
drv_data->n_bytes = bits_per_word/8;
drv_data->len = transfer->len;
cr_width = 0;
drv_data->ops = &bfin_bfin_spi_transfer_ops_u8;
}
cr = bfin_read(&drv_data->regs->ctl) & ~(BIT_CTL_TIMOD | BIT_CTL_WORDSIZE);
......
......@@ -23,29 +23,31 @@
#include "spi-dw.h"
#ifdef CONFIG_SPI_DW_MID_DMA
#include <linux/intel_mid_dma.h>
#include <linux/pci.h>
#include <linux/platform_data/dma-dw.h>
#define RX_BUSY 0
#define TX_BUSY 1
struct mid_dma {
struct intel_mid_dma_slave dmas_tx;
struct intel_mid_dma_slave dmas_rx;
};
static struct dw_dma_slave mid_dma_tx = { .dst_id = 1 };
static struct dw_dma_slave mid_dma_rx = { .src_id = 0 };
static bool mid_spi_dma_chan_filter(struct dma_chan *chan, void *param)
{
struct dw_spi *dws = param;
struct dw_dma_slave *s = param;
if (s->dma_dev != chan->device->dev)
return false;
return dws->dma_dev == chan->device->dev;
chan->private = s;
return true;
}
static int mid_spi_dma_init(struct dw_spi *dws)
{
struct mid_dma *dw_dma = dws->dma_priv;
struct pci_dev *dma_dev;
struct intel_mid_dma_slave *rxs, *txs;
struct dw_dma_slave *tx = dws->dma_tx;
struct dw_dma_slave *rx = dws->dma_rx;
dma_cap_mask_t mask;
/*
......@@ -56,28 +58,22 @@ static int mid_spi_dma_init(struct dw_spi *dws)
if (!dma_dev)
return -ENODEV;
dws->dma_dev = &dma_dev->dev;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
/* 1. Init rx channel */
dws->rxchan = dma_request_channel(mask, mid_spi_dma_chan_filter, dws);
rx->dma_dev = &dma_dev->dev;
dws->rxchan = dma_request_channel(mask, mid_spi_dma_chan_filter, rx);
if (!dws->rxchan)
goto err_exit;
rxs = &dw_dma->dmas_rx;
rxs->hs_mode = LNW_DMA_HW_HS;
rxs->cfg_mode = LNW_DMA_PER_TO_MEM;
dws->rxchan->private = rxs;
dws->master->dma_rx = dws->rxchan;
/* 2. Init tx channel */
dws->txchan = dma_request_channel(mask, mid_spi_dma_chan_filter, dws);
tx->dma_dev = &dma_dev->dev;
dws->txchan = dma_request_channel(mask, mid_spi_dma_chan_filter, tx);
if (!dws->txchan)
goto free_rxchan;
txs = &dw_dma->dmas_tx;
txs->hs_mode = LNW_DMA_HW_HS;
txs->cfg_mode = LNW_DMA_MEM_TO_PER;
dws->txchan->private = txs;
dws->master->dma_tx = dws->txchan;
dws->dma_inited = 1;
return 0;
......@@ -100,6 +96,42 @@ static void mid_spi_dma_exit(struct dw_spi *dws)
dma_release_channel(dws->rxchan);
}
static irqreturn_t dma_transfer(struct dw_spi *dws)
{
u16 irq_status = dw_readl(dws, DW_SPI_ISR);
if (!irq_status)
return IRQ_NONE;
dw_readl(dws, DW_SPI_ICR);
spi_reset_chip(dws);
dev_err(&dws->master->dev, "%s: FIFO overrun/underrun\n", __func__);
dws->master->cur_msg->status = -EIO;
spi_finalize_current_transfer(dws->master);
return IRQ_HANDLED;
}
static bool mid_spi_can_dma(struct spi_master *master, struct spi_device *spi,
struct spi_transfer *xfer)
{
struct dw_spi *dws = spi_master_get_devdata(master);
if (!dws->dma_inited)
return false;
return xfer->len > dws->fifo_len;
}
static enum dma_slave_buswidth convert_dma_width(u32 dma_width) {
if (dma_width == 1)
return DMA_SLAVE_BUSWIDTH_1_BYTE;
else if (dma_width == 2)
return DMA_SLAVE_BUSWIDTH_2_BYTES;
return DMA_SLAVE_BUSWIDTH_UNDEFINED;
}
/*
* dws->dma_chan_busy is set before the dma transfer starts, callback for tx
* channel will clear a corresponding bit.
......@@ -111,33 +143,30 @@ static void dw_spi_dma_tx_done(void *arg)
clear_bit(TX_BUSY, &dws->dma_chan_busy);
if (test_bit(RX_BUSY, &dws->dma_chan_busy))
return;
dw_spi_xfer_done(dws);
spi_finalize_current_transfer(dws->master);
}
static struct dma_async_tx_descriptor *dw_spi_dma_prepare_tx(struct dw_spi *dws)
static struct dma_async_tx_descriptor *dw_spi_dma_prepare_tx(struct dw_spi *dws,
struct spi_transfer *xfer)
{
struct dma_slave_config txconf;
struct dma_async_tx_descriptor *txdesc;
if (!dws->tx_dma)
if (!xfer->tx_buf)
return NULL;
txconf.direction = DMA_MEM_TO_DEV;
txconf.dst_addr = dws->dma_addr;
txconf.dst_maxburst = LNW_DMA_MSIZE_16;
txconf.dst_maxburst = 16;
txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
txconf.dst_addr_width = dws->dma_width;
txconf.dst_addr_width = convert_dma_width(dws->dma_width);
txconf.device_fc = false;
dmaengine_slave_config(dws->txchan, &txconf);
memset(&dws->tx_sgl, 0, sizeof(dws->tx_sgl));
dws->tx_sgl.dma_address = dws->tx_dma;
dws->tx_sgl.length = dws->len;
txdesc = dmaengine_prep_slave_sg(dws->txchan,
&dws->tx_sgl,
1,
xfer->tx_sg.sgl,
xfer->tx_sg.nents,
DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!txdesc)
......@@ -160,33 +189,30 @@ static void dw_spi_dma_rx_done(void *arg)
clear_bit(RX_BUSY, &dws->dma_chan_busy);
if (test_bit(TX_BUSY, &dws->dma_chan_busy))
return;
dw_spi_xfer_done(dws);
spi_finalize_current_transfer(dws->master);
}
static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws)
static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws,
struct spi_transfer *xfer)
{
struct dma_slave_config rxconf;
struct dma_async_tx_descriptor *rxdesc;
if (!dws->rx_dma)
if (!xfer->rx_buf)
return NULL;
rxconf.direction = DMA_DEV_TO_MEM;
rxconf.src_addr = dws->dma_addr;
rxconf.src_maxburst = LNW_DMA_MSIZE_16;
rxconf.src_maxburst = 16;
rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
rxconf.src_addr_width = dws->dma_width;
rxconf.src_addr_width = convert_dma_width(dws->dma_width);
rxconf.device_fc = false;
dmaengine_slave_config(dws->rxchan, &rxconf);
memset(&dws->rx_sgl, 0, sizeof(dws->rx_sgl));
dws->rx_sgl.dma_address = dws->rx_dma;
dws->rx_sgl.length = dws->len;
rxdesc = dmaengine_prep_slave_sg(dws->rxchan,
&dws->rx_sgl,
1,
xfer->rx_sg.sgl,
xfer->rx_sg.nents,
DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!rxdesc)
......@@ -198,37 +224,36 @@ static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws)
return rxdesc;
}
static void dw_spi_dma_setup(struct dw_spi *dws)
static int mid_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
{
u16 dma_ctrl = 0;
spi_enable_chip(dws, 0);
dw_writel(dws, DW_SPI_DMARDLR, 0xf);
dw_writel(dws, DW_SPI_DMATDLR, 0x10);
dw_writew(dws, DW_SPI_DMARDLR, 0xf);
dw_writew(dws, DW_SPI_DMATDLR, 0x10);
if (dws->tx_dma)
if (xfer->tx_buf)
dma_ctrl |= SPI_DMA_TDMAE;
if (dws->rx_dma)
if (xfer->rx_buf)
dma_ctrl |= SPI_DMA_RDMAE;
dw_writew(dws, DW_SPI_DMACR, dma_ctrl);
dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
/* Set the interrupt mask */
spi_umask_intr(dws, SPI_INT_TXOI | SPI_INT_RXUI | SPI_INT_RXOI);
spi_enable_chip(dws, 1);
dws->transfer_handler = dma_transfer;
return 0;
}
static int mid_spi_dma_transfer(struct dw_spi *dws, int cs_change)
static int mid_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
{
struct dma_async_tx_descriptor *txdesc, *rxdesc;
/* 1. setup DMA related registers */
if (cs_change)
dw_spi_dma_setup(dws);
/* Prepare the TX dma transfer */
txdesc = dw_spi_dma_prepare_tx(dws, xfer);
/* 2. Prepare the TX dma transfer */
txdesc = dw_spi_dma_prepare_tx(dws);
/* 3. Prepare the RX dma transfer */
rxdesc = dw_spi_dma_prepare_rx(dws);
/* Prepare the RX dma transfer */
rxdesc = dw_spi_dma_prepare_rx(dws, xfer);
/* rx must be started before tx due to spi instinct */
if (rxdesc) {
......@@ -246,10 +271,25 @@ static int mid_spi_dma_transfer(struct dw_spi *dws, int cs_change)
return 0;
}
static void mid_spi_dma_stop(struct dw_spi *dws)
{
if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
dmaengine_terminate_all(dws->txchan);
clear_bit(TX_BUSY, &dws->dma_chan_busy);
}
if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
dmaengine_terminate_all(dws->rxchan);
clear_bit(RX_BUSY, &dws->dma_chan_busy);
}
}
static struct dw_spi_dma_ops mid_dma_ops = {
.dma_init = mid_spi_dma_init,
.dma_exit = mid_spi_dma_exit,
.dma_setup = mid_spi_dma_setup,
.can_dma = mid_spi_can_dma,
.dma_transfer = mid_spi_dma_transfer,
.dma_stop = mid_spi_dma_stop,
};
#endif
......@@ -282,9 +322,8 @@ int dw_spi_mid_init(struct dw_spi *dws)
iounmap(clk_reg);
#ifdef CONFIG_SPI_DW_MID_DMA
dws->dma_priv = kzalloc(sizeof(struct mid_dma), GFP_KERNEL);
if (!dws->dma_priv)
return -ENOMEM;
dws->dma_tx = &mid_dma_tx;
dws->dma_rx = &mid_dma_rx;
dws->dma_ops = &mid_dma_ops;
#endif
return 0;
......
This diff is collapsed.
......@@ -91,12 +91,15 @@ struct dw_spi;
struct dw_spi_dma_ops {
int (*dma_init)(struct dw_spi *dws);
void (*dma_exit)(struct dw_spi *dws);
int (*dma_transfer)(struct dw_spi *dws, int cs_change);
int (*dma_setup)(struct dw_spi *dws, struct spi_transfer *xfer);
bool (*can_dma)(struct spi_master *master, struct spi_device *spi,
struct spi_transfer *xfer);
int (*dma_transfer)(struct dw_spi *dws, struct spi_transfer *xfer);
void (*dma_stop)(struct dw_spi *dws);
};
struct dw_spi {
struct spi_master *master;
struct spi_device *cur_dev;
enum dw_ssi_type type;
char name[16];
......@@ -109,41 +112,26 @@ struct dw_spi {
u16 bus_num;
u16 num_cs; /* supported slave numbers */
/* Message Transfer pump */
struct tasklet_struct pump_transfers;
/* Current message transfer state info */
struct spi_message *cur_msg;
struct spi_transfer *cur_transfer;
struct chip_data *cur_chip;
struct chip_data *prev_chip;
size_t len;
void *tx;
void *tx_end;
void *rx;
void *rx_end;
int dma_mapped;
dma_addr_t rx_dma;
dma_addr_t tx_dma;
size_t rx_map_len;
size_t tx_map_len;
u8 n_bytes; /* current is a 1/2 bytes op */
u8 max_bits_per_word; /* maxim is 16b */
u32 dma_width;
irqreturn_t (*transfer_handler)(struct dw_spi *dws);
void (*cs_control)(u32 command);
/* Dma info */
/* DMA info */
int dma_inited;
struct dma_chan *txchan;
struct scatterlist tx_sgl;
struct dma_chan *rxchan;
struct scatterlist rx_sgl;
unsigned long dma_chan_busy;
struct device *dma_dev;
dma_addr_t dma_addr; /* phy address of the Data register */
struct dw_spi_dma_ops *dma_ops;
void *dma_priv; /* platform relate info */
void *dma_tx;
void *dma_rx;
/* Bus interface info */
void *priv;
......@@ -162,16 +150,6 @@ static inline void dw_writel(struct dw_spi *dws, u32 offset, u32 val)
__raw_writel(val, dws->regs + offset);
}
static inline u16 dw_readw(struct dw_spi *dws, u32 offset)
{
return __raw_readw(dws->regs + offset);
}
static inline void dw_writew(struct dw_spi *dws, u32 offset, u16 val)
{
__raw_writew(val, dws->regs + offset);
}
static inline void spi_enable_chip(struct dw_spi *dws, int enable)
{
dw_writel(dws, DW_SPI_SSIENR, (enable ? 1 : 0));
......@@ -182,22 +160,6 @@ static inline void spi_set_clk(struct dw_spi *dws, u16 div)
dw_writel(dws, DW_SPI_BAUDR, div);
}
static inline void spi_chip_sel(struct dw_spi *dws, struct spi_device *spi,
int active)
{
u16 cs = spi->chip_select;
int gpio_val = active ? (spi->mode & SPI_CS_HIGH) :
!(spi->mode & SPI_CS_HIGH);
if (dws->cs_control)
dws->cs_control(active);
if (gpio_is_valid(spi->cs_gpio))
gpio_set_value(spi->cs_gpio, gpio_val);
if (active)
dw_writel(dws, DW_SPI_SER, 1 << cs);
}
/* Disable IRQ bits */
static inline void spi_mask_intr(struct dw_spi *dws, u32 mask)
{
......@@ -216,16 +178,27 @@ static inline void spi_umask_intr(struct dw_spi *dws, u32 mask)
dw_writel(dws, DW_SPI_IMR, new_mask);
}
/*
* This does disable the SPI controller, interrupts, and re-enable the
* controller back. Transmit and receive FIFO buffers are cleared when the
* device is disabled.
*/
static inline void spi_reset_chip(struct dw_spi *dws)
{
spi_enable_chip(dws, 0);
spi_mask_intr(dws, 0xff);
spi_enable_chip(dws, 1);
}
/*
* Each SPI slave device to work with dw_api controller should
* has such a structure claiming its working mode (PIO/DMA etc),
* has such a structure claiming its working mode (poll or PIO/DMA),
* which can be save in the "controller_data" member of the
* struct spi_device.
*/
struct dw_spi_chip {
u8 poll_mode; /* 1 for controller polling mode */
u8 type; /* SPI/SSP/MicroWire */
u8 enable_dma;
void (*cs_control)(u32 command);
};
......@@ -233,7 +206,6 @@ extern int dw_spi_add_host(struct device *dev, struct dw_spi *dws);
extern void dw_spi_remove_host(struct dw_spi *dws);
extern int dw_spi_suspend_host(struct dw_spi *dws);
extern int dw_spi_resume_host(struct dw_spi *dws);
extern void dw_spi_xfer_done(struct dw_spi *dws);
/* platform related setup */
extern int dw_spi_mid_init(struct dw_spi *dws); /* Intel MID platforms */
......
......@@ -850,7 +850,7 @@ static int spi_transfer_one_message(struct spi_master *master,
if (msg->status == -EINPROGRESS)
msg->status = ret;
if (msg->status)
if (msg->status && master->handle_err)
master->handle_err(master, msg);
spi_finalize_current_message(master);
......
/*
* intel_mid_dma.h - Intel MID DMA Drivers
*
* Copyright (C) 2008-10 Intel Corp
* Author: Vinod Koul <vinod.koul@intel.com>
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
*
*/
#ifndef __INTEL_MID_DMA_H__
#define __INTEL_MID_DMA_H__
#include <linux/dmaengine.h>
#define DMA_PREP_CIRCULAR_LIST (1 << 10)
/*DMA mode configurations*/
enum intel_mid_dma_mode {
LNW_DMA_PER_TO_MEM = 0, /*periphral to memory configuration*/
LNW_DMA_MEM_TO_PER, /*memory to periphral configuration*/
LNW_DMA_MEM_TO_MEM, /*mem to mem confg (testing only)*/
};
/*DMA handshaking*/
enum intel_mid_dma_hs_mode {
LNW_DMA_HW_HS = 0, /*HW Handshaking only*/
LNW_DMA_SW_HS = 1, /*SW Handshaking not recommended*/
};
/*Burst size configuration*/
enum intel_mid_dma_msize {
LNW_DMA_MSIZE_1 = 0x0,
LNW_DMA_MSIZE_4 = 0x1,
LNW_DMA_MSIZE_8 = 0x2,
LNW_DMA_MSIZE_16 = 0x3,
LNW_DMA_MSIZE_32 = 0x4,
LNW_DMA_MSIZE_64 = 0x5,
};
/**
* struct intel_mid_dma_slave - DMA slave structure
*
* @dirn: DMA trf direction
* @src_width: tx register width
* @dst_width: rx register width
* @hs_mode: HW/SW handshaking mode
* @cfg_mode: DMA data transfer mode (per-per/mem-per/mem-mem)
* @src_msize: Source DMA burst size
* @dst_msize: Dst DMA burst size
* @per_addr: Periphral address
* @device_instance: DMA peripheral device instance, we can have multiple
* peripheral device connected to single DMAC
*/
struct intel_mid_dma_slave {
enum intel_mid_dma_hs_mode hs_mode; /*handshaking*/
enum intel_mid_dma_mode cfg_mode; /*mode configuration*/
unsigned int device_instance; /*0, 1 for periphral instance*/
struct dma_slave_config dma_slave;
};
#endif /*__INTEL_MID_DMA_H__*/
......@@ -294,7 +294,7 @@ static inline void spi_unregister_driver(struct spi_driver *sdrv)
* transfer_one_message are mutually exclusive; when both
* are set, the generic subsystem does not call your
* transfer_one callback.
* @handle_err: the subsystem calls the driver to handle and error that occurs
* @handle_err: the subsystem calls the driver to handle an error that occurs
* in the generic implementation of transfer_one_message().
* @unprepare_message: undo any work done by prepare_message().
* @cs_gpios: Array of GPIOs to use as chip select lines; one per CS
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment