Commit 5b9b28a6 authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler updates from Ingo Molnar:
 "The main scheduler changes in this cycle were:

   - various sched/deadline fixes and enhancements

   - rescheduling latency fixes/cleanups

   - rework the rq->clock code to be more consistent and more robust.

   - minor micro-optimizations

   - ->avg.decay_count fixes

   - add a stack overflow check to might_sleep()

   - idle-poll handler fix, possibly resulting in power savings

   - misc smaller updates and fixes"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/Documentation: Remove unneeded word
  sched/wait: Introduce wait_on_bit_timeout()
  sched: Pull resched loop to __schedule() callers
  sched/deadline: Remove cpu_active_mask from cpudl_find()
  sched: Fix hrtick_start() on UP
  sched/deadline: Avoid pointless __setscheduler()
  sched/deadline: Fix stale yield state
  sched/deadline: Fix hrtick for a non-leftmost task
  sched/deadline: Modify cpudl::free_cpus to reflect rd->online
  sched/idle: Add missing checks to the exit condition of cpu_idle_poll()
  sched: Fix missing preemption opportunity
  sched/rt: Reduce rq lock contention by eliminating locking of non-feasible target
  sched/debug: Print rq->clock_task
  sched/core: Rework rq->clock update skips
  sched/core: Validate rq_clock*() serialization
  sched/core: Remove check of p->sched_class
  sched/fair: Fix sched_entity::avg::decay_count initialization
  sched/debug: Fix potential call to __ffs(0) in sched_show_task()
  sched/debug: Check for stack overflow in ___might_sleep()
  sched/fair: Fix the dealing with decay_count in __synchronize_entity_decay()
parents a4cbbf54 139b6fd2
...@@ -989,6 +989,32 @@ wait_on_bit_io(void *word, int bit, unsigned mode) ...@@ -989,6 +989,32 @@ wait_on_bit_io(void *word, int bit, unsigned mode)
mode); mode);
} }
/**
* wait_on_bit_timeout - wait for a bit to be cleared or a timeout elapses
* @word: the word being waited on, a kernel virtual address
* @bit: the bit of the word being waited on
* @mode: the task state to sleep in
* @timeout: timeout, in jiffies
*
* Use the standard hashed waitqueue table to wait for a bit
* to be cleared. This is similar to wait_on_bit(), except also takes a
* timeout parameter.
*
* Returned value will be zero if the bit was cleared before the
* @timeout elapsed, or non-zero if the @timeout elapsed or process
* received a signal and the mode permitted wakeup on that signal.
*/
static inline int
wait_on_bit_timeout(void *word, int bit, unsigned mode, unsigned long timeout)
{
might_sleep();
if (!test_bit(bit, word))
return 0;
return out_of_line_wait_on_bit_timeout(word, bit,
bit_wait_timeout,
mode, timeout);
}
/** /**
* wait_on_bit_action - wait for a bit to be cleared * wait_on_bit_action - wait for a bit to be cleared
* @word: the word being waited on, a kernel virtual address * @word: the word being waited on, a kernel virtual address
......
...@@ -81,7 +81,7 @@ __visible void __sched __mutex_lock_slowpath(atomic_t *lock_count); ...@@ -81,7 +81,7 @@ __visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
* The mutex must later on be released by the same task that * The mutex must later on be released by the same task that
* acquired it. Recursive locking is not allowed. The task * acquired it. Recursive locking is not allowed. The task
* may not exit without first unlocking the mutex. Also, kernel * may not exit without first unlocking the mutex. Also, kernel
* memory where the mutex resides mutex must not be freed with * memory where the mutex resides must not be freed with
* the mutex still locked. The mutex must first be initialized * the mutex still locked. The mutex must first be initialized
* (or statically defined) before it can be locked. memset()-ing * (or statically defined) before it can be locked. memset()-ing
* the mutex to 0 is not allowed. * the mutex to 0 is not allowed.
......
...@@ -119,7 +119,9 @@ void update_rq_clock(struct rq *rq) ...@@ -119,7 +119,9 @@ void update_rq_clock(struct rq *rq)
{ {
s64 delta; s64 delta;
if (rq->skip_clock_update > 0) lockdep_assert_held(&rq->lock);
if (rq->clock_skip_update & RQCF_ACT_SKIP)
return; return;
delta = sched_clock_cpu(cpu_of(rq)) - rq->clock; delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
...@@ -490,6 +492,11 @@ static __init void init_hrtick(void) ...@@ -490,6 +492,11 @@ static __init void init_hrtick(void)
*/ */
void hrtick_start(struct rq *rq, u64 delay) void hrtick_start(struct rq *rq, u64 delay)
{ {
/*
* Don't schedule slices shorter than 10000ns, that just
* doesn't make sense. Rely on vruntime for fairness.
*/
delay = max_t(u64, delay, 10000LL);
__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0, __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
HRTIMER_MODE_REL_PINNED, 0); HRTIMER_MODE_REL_PINNED, 0);
} }
...@@ -1046,7 +1053,7 @@ void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags) ...@@ -1046,7 +1053,7 @@ void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
* this case, we can save a useless back to back clock update. * this case, we can save a useless back to back clock update.
*/ */
if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr)) if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
rq->skip_clock_update = 1; rq_clock_skip_update(rq, true);
} }
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
...@@ -1836,6 +1843,9 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p) ...@@ -1836,6 +1843,9 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
p->se.prev_sum_exec_runtime = 0; p->se.prev_sum_exec_runtime = 0;
p->se.nr_migrations = 0; p->se.nr_migrations = 0;
p->se.vruntime = 0; p->se.vruntime = 0;
#ifdef CONFIG_SMP
p->se.avg.decay_count = 0;
#endif
INIT_LIST_HEAD(&p->se.group_node); INIT_LIST_HEAD(&p->se.group_node);
#ifdef CONFIG_SCHEDSTATS #ifdef CONFIG_SCHEDSTATS
...@@ -2755,6 +2765,10 @@ pick_next_task(struct rq *rq, struct task_struct *prev) ...@@ -2755,6 +2765,10 @@ pick_next_task(struct rq *rq, struct task_struct *prev)
* - explicit schedule() call * - explicit schedule() call
* - return from syscall or exception to user-space * - return from syscall or exception to user-space
* - return from interrupt-handler to user-space * - return from interrupt-handler to user-space
*
* WARNING: all callers must re-check need_resched() afterward and reschedule
* accordingly in case an event triggered the need for rescheduling (such as
* an interrupt waking up a task) while preemption was disabled in __schedule().
*/ */
static void __sched __schedule(void) static void __sched __schedule(void)
{ {
...@@ -2763,7 +2777,6 @@ static void __sched __schedule(void) ...@@ -2763,7 +2777,6 @@ static void __sched __schedule(void)
struct rq *rq; struct rq *rq;
int cpu; int cpu;
need_resched:
preempt_disable(); preempt_disable();
cpu = smp_processor_id(); cpu = smp_processor_id();
rq = cpu_rq(cpu); rq = cpu_rq(cpu);
...@@ -2783,6 +2796,8 @@ static void __sched __schedule(void) ...@@ -2783,6 +2796,8 @@ static void __sched __schedule(void)
smp_mb__before_spinlock(); smp_mb__before_spinlock();
raw_spin_lock_irq(&rq->lock); raw_spin_lock_irq(&rq->lock);
rq->clock_skip_update <<= 1; /* promote REQ to ACT */
switch_count = &prev->nivcsw; switch_count = &prev->nivcsw;
if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
if (unlikely(signal_pending_state(prev->state, prev))) { if (unlikely(signal_pending_state(prev->state, prev))) {
...@@ -2807,13 +2822,13 @@ static void __sched __schedule(void) ...@@ -2807,13 +2822,13 @@ static void __sched __schedule(void)
switch_count = &prev->nvcsw; switch_count = &prev->nvcsw;
} }
if (task_on_rq_queued(prev) || rq->skip_clock_update < 0) if (task_on_rq_queued(prev))
update_rq_clock(rq); update_rq_clock(rq);
next = pick_next_task(rq, prev); next = pick_next_task(rq, prev);
clear_tsk_need_resched(prev); clear_tsk_need_resched(prev);
clear_preempt_need_resched(); clear_preempt_need_resched();
rq->skip_clock_update = 0; rq->clock_skip_update = 0;
if (likely(prev != next)) { if (likely(prev != next)) {
rq->nr_switches++; rq->nr_switches++;
...@@ -2828,8 +2843,6 @@ static void __sched __schedule(void) ...@@ -2828,8 +2843,6 @@ static void __sched __schedule(void)
post_schedule(rq); post_schedule(rq);
sched_preempt_enable_no_resched(); sched_preempt_enable_no_resched();
if (need_resched())
goto need_resched;
} }
static inline void sched_submit_work(struct task_struct *tsk) static inline void sched_submit_work(struct task_struct *tsk)
...@@ -2849,7 +2862,9 @@ asmlinkage __visible void __sched schedule(void) ...@@ -2849,7 +2862,9 @@ asmlinkage __visible void __sched schedule(void)
struct task_struct *tsk = current; struct task_struct *tsk = current;
sched_submit_work(tsk); sched_submit_work(tsk);
__schedule(); do {
__schedule();
} while (need_resched());
} }
EXPORT_SYMBOL(schedule); EXPORT_SYMBOL(schedule);
...@@ -2884,6 +2899,21 @@ void __sched schedule_preempt_disabled(void) ...@@ -2884,6 +2899,21 @@ void __sched schedule_preempt_disabled(void)
preempt_disable(); preempt_disable();
} }
static void preempt_schedule_common(void)
{
do {
__preempt_count_add(PREEMPT_ACTIVE);
__schedule();
__preempt_count_sub(PREEMPT_ACTIVE);
/*
* Check again in case we missed a preemption opportunity
* between schedule and now.
*/
barrier();
} while (need_resched());
}
#ifdef CONFIG_PREEMPT #ifdef CONFIG_PREEMPT
/* /*
* this is the entry point to schedule() from in-kernel preemption * this is the entry point to schedule() from in-kernel preemption
...@@ -2899,17 +2929,7 @@ asmlinkage __visible void __sched notrace preempt_schedule(void) ...@@ -2899,17 +2929,7 @@ asmlinkage __visible void __sched notrace preempt_schedule(void)
if (likely(!preemptible())) if (likely(!preemptible()))
return; return;
do { preempt_schedule_common();
__preempt_count_add(PREEMPT_ACTIVE);
__schedule();
__preempt_count_sub(PREEMPT_ACTIVE);
/*
* Check again in case we missed a preemption opportunity
* between schedule and now.
*/
barrier();
} while (need_resched());
} }
NOKPROBE_SYMBOL(preempt_schedule); NOKPROBE_SYMBOL(preempt_schedule);
EXPORT_SYMBOL(preempt_schedule); EXPORT_SYMBOL(preempt_schedule);
...@@ -3405,6 +3425,20 @@ static bool check_same_owner(struct task_struct *p) ...@@ -3405,6 +3425,20 @@ static bool check_same_owner(struct task_struct *p)
return match; return match;
} }
static bool dl_param_changed(struct task_struct *p,
const struct sched_attr *attr)
{
struct sched_dl_entity *dl_se = &p->dl;
if (dl_se->dl_runtime != attr->sched_runtime ||
dl_se->dl_deadline != attr->sched_deadline ||
dl_se->dl_period != attr->sched_period ||
dl_se->flags != attr->sched_flags)
return true;
return false;
}
static int __sched_setscheduler(struct task_struct *p, static int __sched_setscheduler(struct task_struct *p,
const struct sched_attr *attr, const struct sched_attr *attr,
bool user) bool user)
...@@ -3533,7 +3567,7 @@ static int __sched_setscheduler(struct task_struct *p, ...@@ -3533,7 +3567,7 @@ static int __sched_setscheduler(struct task_struct *p,
goto change; goto change;
if (rt_policy(policy) && attr->sched_priority != p->rt_priority) if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
goto change; goto change;
if (dl_policy(policy)) if (dl_policy(policy) && dl_param_changed(p, attr))
goto change; goto change;
p->sched_reset_on_fork = reset_on_fork; p->sched_reset_on_fork = reset_on_fork;
...@@ -4225,17 +4259,10 @@ SYSCALL_DEFINE0(sched_yield) ...@@ -4225,17 +4259,10 @@ SYSCALL_DEFINE0(sched_yield)
return 0; return 0;
} }
static void __cond_resched(void)
{
__preempt_count_add(PREEMPT_ACTIVE);
__schedule();
__preempt_count_sub(PREEMPT_ACTIVE);
}
int __sched _cond_resched(void) int __sched _cond_resched(void)
{ {
if (should_resched()) { if (should_resched()) {
__cond_resched(); preempt_schedule_common();
return 1; return 1;
} }
return 0; return 0;
...@@ -4260,7 +4287,7 @@ int __cond_resched_lock(spinlock_t *lock) ...@@ -4260,7 +4287,7 @@ int __cond_resched_lock(spinlock_t *lock)
if (spin_needbreak(lock) || resched) { if (spin_needbreak(lock) || resched) {
spin_unlock(lock); spin_unlock(lock);
if (resched) if (resched)
__cond_resched(); preempt_schedule_common();
else else
cpu_relax(); cpu_relax();
ret = 1; ret = 1;
...@@ -4276,7 +4303,7 @@ int __sched __cond_resched_softirq(void) ...@@ -4276,7 +4303,7 @@ int __sched __cond_resched_softirq(void)
if (should_resched()) { if (should_resched()) {
local_bh_enable(); local_bh_enable();
__cond_resched(); preempt_schedule_common();
local_bh_disable(); local_bh_disable();
return 1; return 1;
} }
...@@ -4531,9 +4558,10 @@ void sched_show_task(struct task_struct *p) ...@@ -4531,9 +4558,10 @@ void sched_show_task(struct task_struct *p)
{ {
unsigned long free = 0; unsigned long free = 0;
int ppid; int ppid;
unsigned state; unsigned long state = p->state;
state = p->state ? __ffs(p->state) + 1 : 0; if (state)
state = __ffs(state) + 1;
printk(KERN_INFO "%-15.15s %c", p->comm, printk(KERN_INFO "%-15.15s %c", p->comm,
state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
#if BITS_PER_LONG == 32 #if BITS_PER_LONG == 32
...@@ -4766,7 +4794,7 @@ static struct rq *move_queued_task(struct task_struct *p, int new_cpu) ...@@ -4766,7 +4794,7 @@ static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{ {
if (p->sched_class && p->sched_class->set_cpus_allowed) if (p->sched_class->set_cpus_allowed)
p->sched_class->set_cpus_allowed(p, new_mask); p->sched_class->set_cpus_allowed(p, new_mask);
cpumask_copy(&p->cpus_allowed, new_mask); cpumask_copy(&p->cpus_allowed, new_mask);
...@@ -7275,6 +7303,11 @@ void __init sched_init(void) ...@@ -7275,6 +7303,11 @@ void __init sched_init(void)
atomic_inc(&init_mm.mm_count); atomic_inc(&init_mm.mm_count);
enter_lazy_tlb(&init_mm, current); enter_lazy_tlb(&init_mm, current);
/*
* During early bootup we pretend to be a normal task:
*/
current->sched_class = &fair_sched_class;
/* /*
* Make us the idle thread. Technically, schedule() should not be * Make us the idle thread. Technically, schedule() should not be
* called from this thread, however somewhere below it might be, * called from this thread, however somewhere below it might be,
...@@ -7285,11 +7318,6 @@ void __init sched_init(void) ...@@ -7285,11 +7318,6 @@ void __init sched_init(void)
calc_load_update = jiffies + LOAD_FREQ; calc_load_update = jiffies + LOAD_FREQ;
/*
* During early bootup we pretend to be a normal task:
*/
current->sched_class = &fair_sched_class;
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT); zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
/* May be allocated at isolcpus cmdline parse time */ /* May be allocated at isolcpus cmdline parse time */
...@@ -7350,6 +7378,9 @@ void ___might_sleep(const char *file, int line, int preempt_offset) ...@@ -7350,6 +7378,9 @@ void ___might_sleep(const char *file, int line, int preempt_offset)
in_atomic(), irqs_disabled(), in_atomic(), irqs_disabled(),
current->pid, current->comm); current->pid, current->comm);
if (task_stack_end_corrupted(current))
printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
debug_show_held_locks(current); debug_show_held_locks(current);
if (irqs_disabled()) if (irqs_disabled())
print_irqtrace_events(current); print_irqtrace_events(current);
......
...@@ -107,7 +107,8 @@ int cpudl_find(struct cpudl *cp, struct task_struct *p, ...@@ -107,7 +107,8 @@ int cpudl_find(struct cpudl *cp, struct task_struct *p,
int best_cpu = -1; int best_cpu = -1;
const struct sched_dl_entity *dl_se = &p->dl; const struct sched_dl_entity *dl_se = &p->dl;
if (later_mask && cpumask_and(later_mask, later_mask, cp->free_cpus)) { if (later_mask &&
cpumask_and(later_mask, cp->free_cpus, &p->cpus_allowed)) {
best_cpu = cpumask_any(later_mask); best_cpu = cpumask_any(later_mask);
goto out; goto out;
} else if (cpumask_test_cpu(cpudl_maximum(cp), &p->cpus_allowed) && } else if (cpumask_test_cpu(cpudl_maximum(cp), &p->cpus_allowed) &&
...@@ -185,6 +186,26 @@ void cpudl_set(struct cpudl *cp, int cpu, u64 dl, int is_valid) ...@@ -185,6 +186,26 @@ void cpudl_set(struct cpudl *cp, int cpu, u64 dl, int is_valid)
raw_spin_unlock_irqrestore(&cp->lock, flags); raw_spin_unlock_irqrestore(&cp->lock, flags);
} }
/*
* cpudl_set_freecpu - Set the cpudl.free_cpus
* @cp: the cpudl max-heap context
* @cpu: rd attached cpu
*/
void cpudl_set_freecpu(struct cpudl *cp, int cpu)
{
cpumask_set_cpu(cpu, cp->free_cpus);
}
/*
* cpudl_clear_freecpu - Clear the cpudl.free_cpus
* @cp: the cpudl max-heap context
* @cpu: rd attached cpu
*/
void cpudl_clear_freecpu(struct cpudl *cp, int cpu)
{
cpumask_clear_cpu(cpu, cp->free_cpus);
}
/* /*
* cpudl_init - initialize the cpudl structure * cpudl_init - initialize the cpudl structure
* @cp: the cpudl max-heap context * @cp: the cpudl max-heap context
...@@ -203,7 +224,7 @@ int cpudl_init(struct cpudl *cp) ...@@ -203,7 +224,7 @@ int cpudl_init(struct cpudl *cp)
if (!cp->elements) if (!cp->elements)
return -ENOMEM; return -ENOMEM;
if (!alloc_cpumask_var(&cp->free_cpus, GFP_KERNEL)) { if (!zalloc_cpumask_var(&cp->free_cpus, GFP_KERNEL)) {
kfree(cp->elements); kfree(cp->elements);
return -ENOMEM; return -ENOMEM;
} }
...@@ -211,8 +232,6 @@ int cpudl_init(struct cpudl *cp) ...@@ -211,8 +232,6 @@ int cpudl_init(struct cpudl *cp)
for_each_possible_cpu(i) for_each_possible_cpu(i)
cp->elements[i].idx = IDX_INVALID; cp->elements[i].idx = IDX_INVALID;
cpumask_setall(cp->free_cpus);
return 0; return 0;
} }
......
...@@ -24,6 +24,8 @@ int cpudl_find(struct cpudl *cp, struct task_struct *p, ...@@ -24,6 +24,8 @@ int cpudl_find(struct cpudl *cp, struct task_struct *p,
struct cpumask *later_mask); struct cpumask *later_mask);
void cpudl_set(struct cpudl *cp, int cpu, u64 dl, int is_valid); void cpudl_set(struct cpudl *cp, int cpu, u64 dl, int is_valid);
int cpudl_init(struct cpudl *cp); int cpudl_init(struct cpudl *cp);
void cpudl_set_freecpu(struct cpudl *cp, int cpu);
void cpudl_clear_freecpu(struct cpudl *cp, int cpu);
void cpudl_cleanup(struct cpudl *cp); void cpudl_cleanup(struct cpudl *cp);
#endif /* CONFIG_SMP */ #endif /* CONFIG_SMP */
......
...@@ -350,6 +350,11 @@ static void replenish_dl_entity(struct sched_dl_entity *dl_se, ...@@ -350,6 +350,11 @@ static void replenish_dl_entity(struct sched_dl_entity *dl_se,
dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
dl_se->runtime = pi_se->dl_runtime; dl_se->runtime = pi_se->dl_runtime;
} }
if (dl_se->dl_yielded)
dl_se->dl_yielded = 0;
if (dl_se->dl_throttled)
dl_se->dl_throttled = 0;
} }
/* /*
...@@ -536,23 +541,19 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) ...@@ -536,23 +541,19 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
sched_clock_tick(); sched_clock_tick();
update_rq_clock(rq); update_rq_clock(rq);
dl_se->dl_throttled = 0; enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
dl_se->dl_yielded = 0; if (dl_task(rq->curr))
if (task_on_rq_queued(p)) { check_preempt_curr_dl(rq, p, 0);
enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); else
if (dl_task(rq->curr)) resched_curr(rq);
check_preempt_curr_dl(rq, p, 0);
else
resched_curr(rq);
#ifdef CONFIG_SMP #ifdef CONFIG_SMP
/* /*
* Queueing this task back might have overloaded rq, * Queueing this task back might have overloaded rq,
* check if we need to kick someone away. * check if we need to kick someone away.
*/ */
if (has_pushable_dl_tasks(rq)) if (has_pushable_dl_tasks(rq))
push_dl_task(rq); push_dl_task(rq);
#endif #endif
}
unlock: unlock:
raw_spin_unlock(&rq->lock); raw_spin_unlock(&rq->lock);
...@@ -613,10 +614,9 @@ static void update_curr_dl(struct rq *rq) ...@@ -613,10 +614,9 @@ static void update_curr_dl(struct rq *rq)
dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec; dl_se->runtime -= dl_se->dl_yielded ? 0 : delta_exec;
if (dl_runtime_exceeded(rq, dl_se)) { if (dl_runtime_exceeded(rq, dl_se)) {
dl_se->dl_throttled = 1;
__dequeue_task_dl(rq, curr, 0); __dequeue_task_dl(rq, curr, 0);
if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted))) if (unlikely(!start_dl_timer(dl_se, curr->dl.dl_boosted)))
dl_se->dl_throttled = 1;
else
enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
if (!is_leftmost(curr, &rq->dl)) if (!is_leftmost(curr, &rq->dl))
...@@ -853,7 +853,7 @@ static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) ...@@ -853,7 +853,7 @@ static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
* its rq, the bandwidth timer callback (which clearly has not * its rq, the bandwidth timer callback (which clearly has not
* run yet) will take care of this. * run yet) will take care of this.
*/ */
if (p->dl.dl_throttled) if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH))
return; return;
enqueue_dl_entity(&p->dl, pi_se, flags); enqueue_dl_entity(&p->dl, pi_se, flags);
...@@ -1073,7 +1073,13 @@ static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) ...@@ -1073,7 +1073,13 @@ static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
{ {
update_curr_dl(rq); update_curr_dl(rq);
if (hrtick_enabled(rq) && queued && p->dl.runtime > 0) /*
* Even when we have runtime, update_curr_dl() might have resulted in us
* not being the leftmost task anymore. In that case NEED_RESCHED will
* be set and schedule() will start a new hrtick for the next task.
*/
if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
is_leftmost(p, &rq->dl))
start_hrtick_dl(rq, p); start_hrtick_dl(rq, p);
} }
...@@ -1166,9 +1172,6 @@ static int find_later_rq(struct task_struct *task) ...@@ -1166,9 +1172,6 @@ static int find_later_rq(struct task_struct *task)
* We have to consider system topology and task affinity * We have to consider system topology and task affinity
* first, then we can look for a suitable cpu. * first, then we can look for a suitable cpu.
*/ */
cpumask_copy(later_mask, task_rq(task)->rd->span);
cpumask_and(later_mask, later_mask, cpu_active_mask);
cpumask_and(later_mask, later_mask, &task->cpus_allowed);
best_cpu = cpudl_find(&task_rq(task)->rd->cpudl, best_cpu = cpudl_find(&task_rq(task)->rd->cpudl,
task, later_mask); task, later_mask);
if (best_cpu == -1) if (best_cpu == -1)
...@@ -1563,6 +1566,7 @@ static void rq_online_dl(struct rq *rq) ...@@ -1563,6 +1566,7 @@ static void rq_online_dl(struct rq *rq)
if (rq->dl.overloaded) if (rq->dl.overloaded)
dl_set_overload(rq); dl_set_overload(rq);
cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
if (rq->dl.dl_nr_running > 0) if (rq->dl.dl_nr_running > 0)
cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1); cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1);
} }
...@@ -1574,6 +1578,7 @@ static void rq_offline_dl(struct rq *rq) ...@@ -1574,6 +1578,7 @@ static void rq_offline_dl(struct rq *rq)
dl_clear_overload(rq); dl_clear_overload(rq);
cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0);
cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
} }
void init_sched_dl_class(void) void init_sched_dl_class(void)
......
...@@ -305,6 +305,7 @@ do { \ ...@@ -305,6 +305,7 @@ do { \
PN(next_balance); PN(next_balance);
SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
PN(clock); PN(clock);
PN(clock_task);
P(cpu_load[0]); P(cpu_load[0]);
P(cpu_load[1]); P(cpu_load[1]);
P(cpu_load[2]); P(cpu_load[2]);
......
...@@ -676,7 +676,6 @@ void init_task_runnable_average(struct task_struct *p) ...@@ -676,7 +676,6 @@ void init_task_runnable_average(struct task_struct *p)
{ {
u32 slice; u32 slice;
p->se.avg.decay_count = 0;
slice = sched_slice(task_cfs_rq(p), &p->se) >> 10; slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
p->se.avg.runnable_avg_sum = slice; p->se.avg.runnable_avg_sum = slice;
p->se.avg.runnable_avg_period = slice; p->se.avg.runnable_avg_period = slice;
...@@ -2574,11 +2573,11 @@ static inline u64 __synchronize_entity_decay(struct sched_entity *se) ...@@ -2574,11 +2573,11 @@ static inline u64 __synchronize_entity_decay(struct sched_entity *se)
u64 decays = atomic64_read(&cfs_rq->decay_counter); u64 decays = atomic64_read(&cfs_rq->decay_counter);
decays -= se->avg.decay_count; decays -= se->avg.decay_count;
se->avg.decay_count = 0;
if (!decays) if (!decays)
return 0; return 0;
se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays); se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
se->avg.decay_count = 0;
return decays; return decays;
} }
...@@ -5157,7 +5156,7 @@ static void yield_task_fair(struct rq *rq) ...@@ -5157,7 +5156,7 @@ static void yield_task_fair(struct rq *rq)
* so we don't do microscopic update in schedule() * so we don't do microscopic update in schedule()
* and double the fastpath cost. * and double the fastpath cost.
*/ */
rq->skip_clock_update = 1; rq_clock_skip_update(rq, true);
} }
set_skip_buddy(se); set_skip_buddy(se);
...@@ -5949,8 +5948,8 @@ static unsigned long scale_rt_capacity(int cpu) ...@@ -5949,8 +5948,8 @@ static unsigned long scale_rt_capacity(int cpu)
*/ */
age_stamp = ACCESS_ONCE(rq->age_stamp); age_stamp = ACCESS_ONCE(rq->age_stamp);
avg = ACCESS_ONCE(rq->rt_avg); avg = ACCESS_ONCE(rq->rt_avg);
delta = __rq_clock_broken(rq) - age_stamp;
delta = rq_clock(rq) - age_stamp;
if (unlikely(delta < 0)) if (unlikely(delta < 0))
delta = 0; delta = 0;
......
...@@ -47,7 +47,8 @@ static inline int cpu_idle_poll(void) ...@@ -47,7 +47,8 @@ static inline int cpu_idle_poll(void)
rcu_idle_enter(); rcu_idle_enter();
trace_cpu_idle_rcuidle(0, smp_processor_id()); trace_cpu_idle_rcuidle(0, smp_processor_id());
local_irq_enable(); local_irq_enable();
while (!tif_need_resched()) while (!tif_need_resched() &&
(cpu_idle_force_poll || tick_check_broadcast_expired()))
cpu_relax(); cpu_relax();
trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
rcu_idle_exit(); rcu_idle_exit();
......
...@@ -831,11 +831,14 @@ static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) ...@@ -831,11 +831,14 @@ static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
enqueue = 1; enqueue = 1;
/* /*
* Force a clock update if the CPU was idle, * When we're idle and a woken (rt) task is
* lest wakeup -> unthrottle time accumulate. * throttled check_preempt_curr() will set
* skip_update and the time between the wakeup
* and this unthrottle will get accounted as
* 'runtime'.
*/ */
if (rt_rq->rt_nr_running && rq->curr == rq->idle) if (rt_rq->rt_nr_running && rq->curr == rq->idle)
rq->skip_clock_update = -1; rq_clock_skip_update(rq, false);
} }
if (rt_rq->rt_time || rt_rq->rt_nr_running) if (rt_rq->rt_time || rt_rq->rt_nr_running)
idle = 0; idle = 0;
...@@ -1337,7 +1340,12 @@ select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags) ...@@ -1337,7 +1340,12 @@ select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
curr->prio <= p->prio)) { curr->prio <= p->prio)) {
int target = find_lowest_rq(p); int target = find_lowest_rq(p);
if (target != -1) /*
* Don't bother moving it if the destination CPU is
* not running a lower priority task.
*/
if (target != -1 &&
p->prio < cpu_rq(target)->rt.highest_prio.curr)
cpu = target; cpu = target;
} }
rcu_read_unlock(); rcu_read_unlock();
...@@ -1614,6 +1622,16 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) ...@@ -1614,6 +1622,16 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
lowest_rq = cpu_rq(cpu); lowest_rq = cpu_rq(cpu);
if (lowest_rq->rt.highest_prio.curr <= task->prio) {
/*
* Target rq has tasks of equal or higher priority,
* retrying does not release any lock and is unlikely
* to yield a different result.
*/
lowest_rq = NULL;
break;
}
/* if the prio of this runqueue changed, try again */ /* if the prio of this runqueue changed, try again */
if (double_lock_balance(rq, lowest_rq)) { if (double_lock_balance(rq, lowest_rq)) {
/* /*
......
...@@ -558,8 +558,6 @@ struct rq { ...@@ -558,8 +558,6 @@ struct rq {
#ifdef CONFIG_NO_HZ_FULL #ifdef CONFIG_NO_HZ_FULL
unsigned long last_sched_tick; unsigned long last_sched_tick;
#endif #endif
int skip_clock_update;
/* capture load from *all* tasks on this cpu: */ /* capture load from *all* tasks on this cpu: */
struct load_weight load; struct load_weight load;
unsigned long nr_load_updates; unsigned long nr_load_updates;
...@@ -588,6 +586,7 @@ struct rq { ...@@ -588,6 +586,7 @@ struct rq {
unsigned long next_balance; unsigned long next_balance;
struct mm_struct *prev_mm; struct mm_struct *prev_mm;
unsigned int clock_skip_update;
u64 clock; u64 clock;
u64 clock_task; u64 clock_task;
...@@ -687,16 +686,35 @@ DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); ...@@ -687,16 +686,35 @@ DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
#define cpu_curr(cpu) (cpu_rq(cpu)->curr) #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
#define raw_rq() raw_cpu_ptr(&runqueues) #define raw_rq() raw_cpu_ptr(&runqueues)
static inline u64 __rq_clock_broken(struct rq *rq)
{
return ACCESS_ONCE(rq->clock);
}
static inline u64 rq_clock(struct rq *rq) static inline u64 rq_clock(struct rq *rq)
{ {
lockdep_assert_held(&rq->lock);
return rq->clock; return rq->clock;
} }
static inline u64 rq_clock_task(struct rq *rq) static inline u64 rq_clock_task(struct rq *rq)
{ {
lockdep_assert_held(&rq->lock);
return rq->clock_task; return rq->clock_task;
} }
#define RQCF_REQ_SKIP 0x01
#define RQCF_ACT_SKIP 0x02
static inline void rq_clock_skip_update(struct rq *rq, bool skip)
{
lockdep_assert_held(&rq->lock);
if (skip)
rq->clock_skip_update |= RQCF_REQ_SKIP;
else
rq->clock_skip_update &= ~RQCF_REQ_SKIP;
}
#ifdef CONFIG_NUMA #ifdef CONFIG_NUMA
enum numa_topology_type { enum numa_topology_type {
NUMA_DIRECT, NUMA_DIRECT,
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment