Commit 6f2f0f64 authored by Abhishek Sahu's avatar Abhishek Sahu Committed by Wolfram Sang

i2c: qup: fix buffer overflow for multiple msg of maximum xfer len

The BAM mode requires buffer for start tag data and tx, rx SG
list. Currently, this is being taken for maximum transfer length
(65K). But an I2C transfer can have multiple messages and each
message can be of this maximum length so the buffer overflow will
happen in this case. Since increasing buffer length won’t be
feasible since an I2C transfer can contain any number of messages
so this patch does following changes to make i2c transfers working
for multiple messages case.

1. Calculate the required buffers for 2 maximum length messages
   (65K * 2).
2. Split the descriptor formation and descriptor scheduling.
   The idea is to fit as many messages in one DMA transfers for 65K
   threshold value (max_xfer_sg_len). Whenever the sg_cnt is
   crossing this, then schedule the BAM transfer and subsequent
   transfer will again start from zero.
Signed-off-by: default avatarAbhishek Sahu <absahu@codeaurora.org>
Reviewed-by: default avatarAndy Gross <andy.gross@linaro.org>
Signed-off-by: default avatarWolfram Sang <wsa@the-dreams.de>
parent ecb6e1e5
...@@ -118,8 +118,12 @@ ...@@ -118,8 +118,12 @@
#define ONE_BYTE 0x1 #define ONE_BYTE 0x1
#define QUP_I2C_MX_CONFIG_DURING_RUN BIT(31) #define QUP_I2C_MX_CONFIG_DURING_RUN BIT(31)
/* Maximum transfer length for single DMA descriptor */
#define MX_TX_RX_LEN SZ_64K #define MX_TX_RX_LEN SZ_64K
#define MX_BLOCKS (MX_TX_RX_LEN / QUP_READ_LIMIT) #define MX_BLOCKS (MX_TX_RX_LEN / QUP_READ_LIMIT)
/* Maximum transfer length for all DMA descriptors */
#define MX_DMA_TX_RX_LEN (2 * MX_TX_RX_LEN)
#define MX_DMA_BLOCKS (MX_DMA_TX_RX_LEN / QUP_READ_LIMIT)
/* /*
* Minimum transfer timeout for i2c transfers in seconds. It will be added on * Minimum transfer timeout for i2c transfers in seconds. It will be added on
...@@ -150,6 +154,7 @@ struct qup_i2c_bam { ...@@ -150,6 +154,7 @@ struct qup_i2c_bam {
struct qup_i2c_tag tag; struct qup_i2c_tag tag;
struct dma_chan *dma; struct dma_chan *dma;
struct scatterlist *sg; struct scatterlist *sg;
unsigned int sg_cnt;
}; };
struct qup_i2c_dev { struct qup_i2c_dev {
...@@ -188,6 +193,8 @@ struct qup_i2c_dev { ...@@ -188,6 +193,8 @@ struct qup_i2c_dev {
bool is_dma; bool is_dma;
/* To check if the current transfer is using DMA */ /* To check if the current transfer is using DMA */
bool use_dma; bool use_dma;
unsigned int max_xfer_sg_len;
unsigned int tag_buf_pos;
struct dma_pool *dpool; struct dma_pool *dpool;
struct qup_i2c_tag start_tag; struct qup_i2c_tag start_tag;
struct qup_i2c_bam brx; struct qup_i2c_bam brx;
...@@ -692,102 +699,87 @@ static int qup_i2c_req_dma(struct qup_i2c_dev *qup) ...@@ -692,102 +699,87 @@ static int qup_i2c_req_dma(struct qup_i2c_dev *qup)
return 0; return 0;
} }
static int qup_i2c_bam_do_xfer(struct qup_i2c_dev *qup, struct i2c_msg *msg, static int qup_i2c_bam_make_desc(struct qup_i2c_dev *qup, struct i2c_msg *msg)
int num)
{ {
struct dma_async_tx_descriptor *txd, *rxd = NULL; int ret = 0, limit = QUP_READ_LIMIT;
int ret = 0, idx = 0, limit = QUP_READ_LIMIT; u32 len = 0, blocks, rem;
dma_cookie_t cookie_rx, cookie_tx; u32 i = 0, tlen, tx_len = 0;
u32 len, blocks, rem;
u32 i, tlen, tx_len, tx_cnt = 0, rx_cnt = 0, off = 0;
u8 *tags; u8 *tags;
while (idx < num) { qup_i2c_set_blk_data(qup, msg);
tx_len = 0, len = 0, i = 0;
qup->is_last = (idx == (num - 1));
qup_i2c_set_blk_data(qup, msg); blocks = qup->blk.count;
rem = msg->len - (blocks - 1) * limit;
blocks = qup->blk.count; if (msg->flags & I2C_M_RD) {
rem = msg->len - (blocks - 1) * limit; while (qup->blk.pos < blocks) {
tlen = (i == (blocks - 1)) ? rem : limit;
tags = &qup->start_tag.start[qup->tag_buf_pos + len];
len += qup_i2c_set_tags(tags, qup, msg);
qup->blk.data_len -= tlen;
if (msg->flags & I2C_M_RD) { /* scratch buf to read the start and len tags */
while (qup->blk.pos < blocks) { ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
tlen = (i == (blocks - 1)) ? rem : limit; &qup->brx.tag.start[0],
tags = &qup->start_tag.start[off + len]; 2, qup, DMA_FROM_DEVICE);
len += qup_i2c_set_tags(tags, qup, msg);
qup->blk.data_len -= tlen;
/* scratch buf to read the start and len tags */ if (ret)
ret = qup_sg_set_buf(&qup->brx.sg[rx_cnt++], return ret;
&qup->brx.tag.start[0],
2, qup, DMA_FROM_DEVICE);
if (ret) ret = qup_sg_set_buf(&qup->brx.sg[qup->brx.sg_cnt++],
return ret; &msg->buf[limit * i],
tlen, qup,
DMA_FROM_DEVICE);
if (ret)
return ret;
ret = qup_sg_set_buf(&qup->brx.sg[rx_cnt++], i++;
&msg->buf[limit * i], qup->blk.pos = i;
tlen, qup, }
DMA_FROM_DEVICE); ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
if (ret) &qup->start_tag.start[qup->tag_buf_pos],
return ret; len, qup, DMA_TO_DEVICE);
if (ret)
return ret;
i++; qup->tag_buf_pos += len;
qup->blk.pos = i; } else {
} while (qup->blk.pos < blocks) {
ret = qup_sg_set_buf(&qup->btx.sg[tx_cnt++], tlen = (i == (blocks - 1)) ? rem : limit;
&qup->start_tag.start[off], tags = &qup->start_tag.start[qup->tag_buf_pos + tx_len];
len, qup, DMA_TO_DEVICE); len = qup_i2c_set_tags(tags, qup, msg);
qup->blk.data_len -= tlen;
ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
tags, len,
qup, DMA_TO_DEVICE);
if (ret) if (ret)
return ret; return ret;
off += len; tx_len += len;
} else { ret = qup_sg_set_buf(&qup->btx.sg[qup->btx.sg_cnt++],
while (qup->blk.pos < blocks) { &msg->buf[limit * i],
tlen = (i == (blocks - 1)) ? rem : limit; tlen, qup, DMA_TO_DEVICE);
tags = &qup->start_tag.start[off + tx_len]; if (ret)
len = qup_i2c_set_tags(tags, qup, msg); return ret;
qup->blk.data_len -= tlen; i++;
qup->blk.pos = i;
ret = qup_sg_set_buf(&qup->btx.sg[tx_cnt++],
tags, len,
qup, DMA_TO_DEVICE);
if (ret)
return ret;
tx_len += len;
ret = qup_sg_set_buf(&qup->btx.sg[tx_cnt++],
&msg->buf[limit * i],
tlen, qup, DMA_TO_DEVICE);
if (ret)
return ret;
i++;
qup->blk.pos = i;
}
off += tx_len;
if (idx == (num - 1)) {
len = 1;
if (rx_cnt) {
qup->btx.tag.start[0] =
QUP_BAM_INPUT_EOT;
len++;
}
qup->btx.tag.start[len - 1] =
QUP_BAM_FLUSH_STOP;
ret = qup_sg_set_buf(&qup->btx.sg[tx_cnt++],
&qup->btx.tag.start[0],
len, qup, DMA_TO_DEVICE);
if (ret)
return ret;
}
} }
idx++;
msg++; qup->tag_buf_pos += tx_len;
} }
return 0;
}
static int qup_i2c_bam_schedule_desc(struct qup_i2c_dev *qup)
{
struct dma_async_tx_descriptor *txd, *rxd = NULL;
int ret = 0;
dma_cookie_t cookie_rx, cookie_tx;
u32 len = 0;
u32 tx_cnt = qup->btx.sg_cnt, rx_cnt = qup->brx.sg_cnt;
/* schedule the EOT and FLUSH I2C tags */ /* schedule the EOT and FLUSH I2C tags */
len = 1; len = 1;
if (rx_cnt) { if (rx_cnt) {
...@@ -886,11 +878,19 @@ static int qup_i2c_bam_do_xfer(struct qup_i2c_dev *qup, struct i2c_msg *msg, ...@@ -886,11 +878,19 @@ static int qup_i2c_bam_do_xfer(struct qup_i2c_dev *qup, struct i2c_msg *msg,
return ret; return ret;
} }
static void qup_i2c_bam_clear_tag_buffers(struct qup_i2c_dev *qup)
{
qup->btx.sg_cnt = 0;
qup->brx.sg_cnt = 0;
qup->tag_buf_pos = 0;
}
static int qup_i2c_bam_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, static int qup_i2c_bam_xfer(struct i2c_adapter *adap, struct i2c_msg *msg,
int num) int num)
{ {
struct qup_i2c_dev *qup = i2c_get_adapdata(adap); struct qup_i2c_dev *qup = i2c_get_adapdata(adap);
int ret = 0; int ret = 0;
int idx = 0;
enable_irq(qup->irq); enable_irq(qup->irq);
ret = qup_i2c_req_dma(qup); ret = qup_i2c_req_dma(qup);
...@@ -913,9 +913,34 @@ static int qup_i2c_bam_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, ...@@ -913,9 +913,34 @@ static int qup_i2c_bam_xfer(struct i2c_adapter *adap, struct i2c_msg *msg,
goto out; goto out;
writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL); writel(qup->clk_ctl, qup->base + QUP_I2C_CLK_CTL);
qup_i2c_bam_clear_tag_buffers(qup);
for (idx = 0; idx < num; idx++) {
qup->msg = msg + idx;
qup->is_last = idx == (num - 1);
ret = qup_i2c_bam_make_desc(qup, qup->msg);
if (ret)
break;
/*
* Make DMA descriptor and schedule the BAM transfer if its
* already crossed the maximum length. Since the memory for all
* tags buffers have been taken for 2 maximum possible
* transfers length so it will never cross the buffer actual
* length.
*/
if (qup->btx.sg_cnt > qup->max_xfer_sg_len ||
qup->brx.sg_cnt > qup->max_xfer_sg_len ||
qup->is_last) {
ret = qup_i2c_bam_schedule_desc(qup);
if (ret)
break;
qup_i2c_bam_clear_tag_buffers(qup);
}
}
qup->msg = msg;
ret = qup_i2c_bam_do_xfer(qup, qup->msg, num);
out: out:
disable_irq(qup->irq); disable_irq(qup->irq);
...@@ -1468,7 +1493,8 @@ static int qup_i2c_probe(struct platform_device *pdev) ...@@ -1468,7 +1493,8 @@ static int qup_i2c_probe(struct platform_device *pdev)
else if (ret != 0) else if (ret != 0)
goto nodma; goto nodma;
blocks = (MX_BLOCKS << 1) + 1; qup->max_xfer_sg_len = (MX_BLOCKS << 1);
blocks = (MX_DMA_BLOCKS << 1) + 1;
qup->btx.sg = devm_kzalloc(&pdev->dev, qup->btx.sg = devm_kzalloc(&pdev->dev,
sizeof(*qup->btx.sg) * blocks, sizeof(*qup->btx.sg) * blocks,
GFP_KERNEL); GFP_KERNEL);
...@@ -1611,7 +1637,7 @@ static int qup_i2c_probe(struct platform_device *pdev) ...@@ -1611,7 +1637,7 @@ static int qup_i2c_probe(struct platform_device *pdev)
one_bit_t = (USEC_PER_SEC / clk_freq) + 1; one_bit_t = (USEC_PER_SEC / clk_freq) + 1;
qup->one_byte_t = one_bit_t * 9; qup->one_byte_t = one_bit_t * 9;
qup->xfer_timeout = TOUT_MIN * HZ + qup->xfer_timeout = TOUT_MIN * HZ +
usecs_to_jiffies(MX_TX_RX_LEN * qup->one_byte_t); usecs_to_jiffies(MX_DMA_TX_RX_LEN * qup->one_byte_t);
dev_dbg(qup->dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n", dev_dbg(qup->dev, "IN:block:%d, fifo:%d, OUT:block:%d, fifo:%d\n",
qup->in_blk_sz, qup->in_fifo_sz, qup->in_blk_sz, qup->in_fifo_sz,
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment