sched/numa: Use down_read_trylock() for the mmap_sem
A customer has reported a soft-lockup when running an intensive memory stress test, where the trace on multiple CPU's looks like this: RIP: 0010:[<ffffffff810c53fe>] [<ffffffff810c53fe>] native_queued_spin_lock_slowpath+0x10e/0x190 ... Call Trace: [<ffffffff81182d07>] queued_spin_lock_slowpath+0x7/0xa [<ffffffff811bc331>] change_protection_range+0x3b1/0x930 [<ffffffff811d4be8>] change_prot_numa+0x18/0x30 [<ffffffff810adefe>] task_numa_work+0x1fe/0x310 [<ffffffff81098322>] task_work_run+0x72/0x90 Further investigation showed that the lock contention here is pmd_lock(). The task_numa_work() function makes sure that only one thread is let to perform the work in a single scan period (via cmpxchg), but if there's a thread with mmap_sem locked for writing for several periods, multiple threads in task_numa_work() can build up a convoy waiting for mmap_sem for read and then all get unblocked at once. This patch changes the down_read() to the trylock version, which prevents the build up. For a workload experiencing mmap_sem contention, it's probably better to postpone the NUMA balancing work anyway. This seems to have fixed the soft lockups involving pmd_lock(), which is in line with the convoy theory. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20170515131316.21909-1-vbabka@suse.czSigned-off-by: Ingo Molnar <mingo@kernel.org>
Showing
Please register or sign in to comment