rcu: Simplify rcu_note_context_switch exit from critical section
Because __rcu_read_unlock() can be preempted just before the call to rcu_read_unlock_special(), it is possible for a task to be preempted just before it would have fully exited its RCU read-side critical section. This would result in a needless extension of that critical section until that task was resumed, which might in turn result in a needlessly long grace period, needless RCU priority boosting, and needless force-quiescent-state actions. Therefore, rcu_note_context_switch() invokes __rcu_read_unlock() followed by rcu_preempt_deferred_qs() when it detects this situation. This action by rcu_note_context_switch() ends the RCU read-side critical section immediately. Of course, once the task resumes, it will invoke rcu_read_unlock_special() redundantly. This is harmless because the fact that a preemption happened means that interrupts, preemption, and softirqs cannot have been disabled, so there would be no deferred quiescent state. While ->rcu_read_lock_nesting remains less than zero, none of the ->rcu_read_unlock_special.b bits can be set, and they were all zeroed by the call to rcu_note_context_switch() at task-preemption time. Therefore, setting ->rcu_read_unlock_special.b.exp_hint to false has no effect. Therefore, the extra call to rcu_preempt_deferred_qs_irqrestore() would return immediately. With one possible exception, which is if an expedited grace period started just as the task was being resumed, which could leave ->exp_deferred_qs set. This will cause rcu_preempt_deferred_qs_irqrestore() to invoke rcu_report_exp_rdp(), reporting the quiescent state, just as it should. (Such an expedited grace period won't affect the preemption code path due to interrupts having already been disabled.) But when rcu_note_context_switch() invokes __rcu_read_unlock(), it is doing so with preemption disabled, hence __rcu_read_unlock() will unconditionally defer the quiescent state, only to immediately invoke rcu_preempt_deferred_qs(), thus immediately reporting the deferred quiescent state. It turns out to be safe (and faster) to instead just invoke rcu_preempt_deferred_qs() without the __rcu_read_unlock() middleman. Because this is the invocation during the preemption (as opposed to the invocation just after the resume), at least one of the bits in ->rcu_read_unlock_special.b must be set and ->rcu_read_lock_nesting must be negative. This means that rcu_preempt_need_deferred_qs() must return true, avoiding the early exit from rcu_preempt_deferred_qs(). Thus, rcu_preempt_deferred_qs_irqrestore() will be invoked immediately, as required. This commit therefore simplifies the CONFIG_PREEMPT=y version of rcu_note_context_switch() by removing the "else if" branch of its "if" statement. This change means that all callers that would have invoked rcu_read_unlock_special() followed by rcu_preempt_deferred_qs() will now simply invoke rcu_preempt_deferred_qs(), thus avoiding the rcu_read_unlock_special() middleman when __rcu_read_unlock() is preempted. Cc: rcu@vger.kernel.org Cc: kernel-team@android.com Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Showing
Please register or sign in to comment