Commit dc253813 authored by Damien Lespiau's avatar Damien Lespiau Committed by Daniel Vetter

drm/i915/skl: Replace the HDMI DPLL divider computation algorithm

The HW validation team came back from further testing with a slightly
changed constraint on the deviation between the DCO frequency and the
central frequency. Instead of +-4%, it's now +1%/-6%.

Unfortunately, the previous algorithm didn't quite cope with these new
constraints, the reason being that it wasn't thorough enough looking at
the possible divider candidates.

The new algorithm looks at all dividers, which is definitely a hammer
approach (we could reduce further the set of dividers to good ones as a
follow up, at the cost of a bit more complicated code). But, at least,
we can now satisfy the +1%/+6% rule for all the "Well known" HDMI
frequencies of my test set (373 entries).

On that subject, the new code is quite extensively tested in
intel-gpu-tools (tools/skl_compute_wrpll).

v2: Fix cycling between central frequencies and dividers (Paulo)
    Properly choose the minimal deviation between postive and negative
    candidates (Paulo).

    On the 373 test frequencies, v2 computes better dividers than v1 (ie
    more even dividers and lower deviation on average):

    v1: average deviation: 206.52
    v2: average deviation: 194.47
Signed-off-by: default avatarDamien Lespiau <damien.lespiau@intel.com>
Reviewed-by: default avatarPaulo Zanoni <paulo.r.zanoni@intel.com>
Signed-off-by: default avatarDaniel Vetter <daniel.vetter@ffwll.ch>
parent f37c0505
...@@ -1104,6 +1104,103 @@ hsw_ddi_pll_select(struct intel_crtc *intel_crtc, ...@@ -1104,6 +1104,103 @@ hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
return true; return true;
} }
struct skl_wrpll_context {
uint64_t min_deviation; /* current minimal deviation */
uint64_t central_freq; /* chosen central freq */
uint64_t dco_freq; /* chosen dco freq */
unsigned int p; /* chosen divider */
};
static void skl_wrpll_context_init(struct skl_wrpll_context *ctx)
{
memset(ctx, 0, sizeof(*ctx));
ctx->min_deviation = U64_MAX;
}
/* DCO freq must be within +1%/-6% of the DCO central freq */
#define SKL_DCO_MAX_PDEVIATION 100
#define SKL_DCO_MAX_NDEVIATION 600
static void skl_wrpll_try_divider(struct skl_wrpll_context *ctx,
uint64_t central_freq,
uint64_t dco_freq,
unsigned int divider)
{
uint64_t deviation;
deviation = div64_u64(10000 * abs_diff(dco_freq, central_freq),
central_freq);
/* positive deviation */
if (dco_freq >= central_freq) {
if (deviation < SKL_DCO_MAX_PDEVIATION &&
deviation < ctx->min_deviation) {
ctx->min_deviation = deviation;
ctx->central_freq = central_freq;
ctx->dco_freq = dco_freq;
ctx->p = divider;
}
/* negative deviation */
} else if (deviation < SKL_DCO_MAX_NDEVIATION &&
deviation < ctx->min_deviation) {
ctx->min_deviation = deviation;
ctx->central_freq = central_freq;
ctx->dco_freq = dco_freq;
ctx->p = divider;
}
}
static void skl_wrpll_get_multipliers(unsigned int p,
unsigned int *p0 /* out */,
unsigned int *p1 /* out */,
unsigned int *p2 /* out */)
{
/* even dividers */
if (p % 2 == 0) {
unsigned int half = p / 2;
if (half == 1 || half == 2 || half == 3 || half == 5) {
*p0 = 2;
*p1 = 1;
*p2 = half;
} else if (half % 2 == 0) {
*p0 = 2;
*p1 = half / 2;
*p2 = 2;
} else if (half % 3 == 0) {
*p0 = 3;
*p1 = half / 3;
*p2 = 2;
} else if (half % 7 == 0) {
*p0 = 7;
*p1 = half / 7;
*p2 = 2;
}
} else if (p == 3 || p == 9) { /* 3, 5, 7, 9, 15, 21, 35 */
*p0 = 3;
*p1 = 1;
*p2 = p / 3;
} else if (p == 5 || p == 7) {
*p0 = p;
*p1 = 1;
*p2 = 1;
} else if (p == 15) {
*p0 = 3;
*p1 = 1;
*p2 = 5;
} else if (p == 21) {
*p0 = 7;
*p1 = 1;
*p2 = 3;
} else if (p == 35) {
*p0 = 7;
*p1 = 1;
*p2 = 5;
}
}
struct skl_wrpll_params { struct skl_wrpll_params {
uint32_t dco_fraction; uint32_t dco_fraction;
uint32_t dco_integer; uint32_t dco_integer;
...@@ -1189,90 +1286,56 @@ skl_ddi_calculate_wrpll(int clock /* in Hz */, ...@@ -1189,90 +1286,56 @@ skl_ddi_calculate_wrpll(int clock /* in Hz */,
uint64_t dco_central_freq[3] = {8400000000ULL, uint64_t dco_central_freq[3] = {8400000000ULL,
9000000000ULL, 9000000000ULL,
9600000000ULL}; 9600000000ULL};
uint32_t min_dco_deviation = 400; static const int even_dividers[] = { 4, 6, 8, 10, 12, 14, 16, 18, 20,
uint32_t min_dco_index = 3; 24, 28, 30, 32, 36, 40, 42, 44,
uint32_t P0[4] = {1, 2, 3, 7}; 48, 52, 54, 56, 60, 64, 66, 68,
uint32_t P2[4] = {1, 2, 3, 5}; 70, 72, 76, 78, 80, 84, 88, 90,
bool found = false; 92, 96, 98 };
uint32_t candidate_p = 0; static const int odd_dividers[] = { 3, 5, 7, 9, 15, 21, 35 };
uint32_t candidate_p0[3] = {0}, candidate_p1[3] = {0}; static const struct {
uint32_t candidate_p2[3] = {0}; const int *list;
uint32_t dco_central_freq_deviation[3]; int n_dividers;
uint32_t i, P1, k, dco_count; } dividers[] = {
bool retry_with_odd = false; { even_dividers, ARRAY_SIZE(even_dividers) },
{ odd_dividers, ARRAY_SIZE(odd_dividers) },
/* Determine P0, P1 or P2 */ };
for (dco_count = 0; dco_count < 3; dco_count++) { struct skl_wrpll_context ctx;
found = false; unsigned int dco, d, i;
candidate_p = unsigned int p0, p1, p2;
div64_u64(dco_central_freq[dco_count], afe_clock);
if (retry_with_odd == false) skl_wrpll_context_init(&ctx);
candidate_p = (candidate_p % 2 == 0 ?
candidate_p : candidate_p + 1); for (d = 0; d < ARRAY_SIZE(dividers); d++) {
for (dco = 0; dco < ARRAY_SIZE(dco_central_freq); dco++) {
for (P1 = 1; P1 < candidate_p; P1++) { for (i = 0; i < dividers[d].n_dividers; i++) {
for (i = 0; i < 4; i++) { unsigned int p = dividers[d].list[i];
if (!(P0[i] != 1 || P1 == 1)) uint64_t dco_freq = p * afe_clock;
continue;
skl_wrpll_try_divider(&ctx,
for (k = 0; k < 4; k++) { dco_central_freq[dco],
if (P1 != 1 && P2[k] != 2) dco_freq,
continue; p);
if (candidate_p == P0[i] * P1 * P2[k]) {
/* Found possible P0, P1, P2 */
found = true;
candidate_p0[dco_count] = P0[i];
candidate_p1[dco_count] = P1;
candidate_p2[dco_count] = P2[k];
goto found;
}
}
}
}
found:
if (found) {
dco_central_freq_deviation[dco_count] =
div64_u64(10000 *
abs_diff(candidate_p * afe_clock,
dco_central_freq[dco_count]),
dco_central_freq[dco_count]);
if (dco_central_freq_deviation[dco_count] <
min_dco_deviation) {
min_dco_deviation =
dco_central_freq_deviation[dco_count];
min_dco_index = dco_count;
} }
} }
if (min_dco_index > 2 && dco_count == 2) {
/* oh well, we tried... */
if (retry_with_odd)
break;
retry_with_odd = true;
dco_count = 0;
}
} }
if (WARN(min_dco_index > 2, if (!ctx.p) {
"No valid parameters found for pixel clock: %dHz\n", clock)) DRM_DEBUG_DRIVER("No valid divider found for %dHz\n", clock);
return false; return false;
}
skl_wrpll_params_populate(wrpll_params, /*
afe_clock, * gcc incorrectly analyses that these can be used without being
dco_central_freq[min_dco_index], * initialized. To be fair, it's hard to guess.
candidate_p0[min_dco_index], */
candidate_p1[min_dco_index], p0 = p1 = p2 = 0;
candidate_p2[min_dco_index]); skl_wrpll_get_multipliers(ctx.p, &p0, &p1, &p2);
skl_wrpll_params_populate(wrpll_params, afe_clock, ctx.central_freq,
p0, p1, p2);
return true; return true;
} }
static bool static bool
skl_ddi_pll_select(struct intel_crtc *intel_crtc, skl_ddi_pll_select(struct intel_crtc *intel_crtc,
struct intel_crtc_state *crtc_state, struct intel_crtc_state *crtc_state,
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment