Commit f0ba4377 authored by Mauro Carvalho Chehab's avatar Mauro Carvalho Chehab Committed by Jonathan Corbet

docs: convert docs to ReST and rename to *.rst

The conversion is actually:
  - add blank lines and indentation in order to identify paragraphs;
  - fix tables markups;
  - add some lists markups;
  - mark literal blocks;
  - adjust title markups.

At its new index.rst, let's add a :orphan: while this is not linked to
the main index.rst file, in order to avoid build warnings.
Signed-off-by: default avatarMauro Carvalho Chehab <mchehab+samsung@kernel.org>
Acked-by: default avatarBjorn Helgaas <bhelgaas@google.com>
Acked-by: default avatarMark Brown <broonie@kernel.org>
Signed-off-by: default avatarJonathan Corbet <corbet@lwn.net>
parent 8ea61889
=============================
Guidance for writing policies
=============================
......@@ -30,7 +31,7 @@ multiqueue (mq)
This policy is now an alias for smq (see below).
The following tunables are accepted, but have no effect:
The following tunables are accepted, but have no effect::
'sequential_threshold <#nr_sequential_ios>'
'random_threshold <#nr_random_ios>'
......@@ -56,7 +57,9 @@ mq policy's hints to be dropped. Also, performance of the cache may
degrade slightly until smq recalculates the origin device's hotspots
that should be cached.
Memory usage:
Memory usage
^^^^^^^^^^^^
The mq policy used a lot of memory; 88 bytes per cache block on a 64
bit machine.
......@@ -69,7 +72,9 @@ cache block).
All this means smq uses ~25bytes per cache block. Still a lot of
memory, but a substantial improvement nontheless.
Level balancing:
Level balancing
^^^^^^^^^^^^^^^
mq placed entries in different levels of the multiqueue structures
based on their hit count (~ln(hit count)). This meant the bottom
levels generally had the most entries, and the top ones had very
......@@ -94,7 +99,9 @@ is used to decide which blocks to promote. If the hotspot queue is
performing badly then it starts moving entries more quickly between
levels. This lets it adapt to new IO patterns very quickly.
Performance:
Performance
^^^^^^^^^^^
Testing smq shows substantially better performance than mq.
cleaner
......@@ -105,16 +112,19 @@ The cleaner writes back all dirty blocks in a cache to decommission it.
Examples
========
The syntax for a table is:
The syntax for a table is::
cache <metadata dev> <cache dev> <origin dev> <block size>
<#feature_args> [<feature arg>]*
<policy> <#policy_args> [<policy arg>]*
The syntax to send a message using the dmsetup command is:
The syntax to send a message using the dmsetup command is::
dmsetup message <mapped device> 0 sequential_threshold 1024
dmsetup message <mapped device> 0 random_threshold 8
Using dmsetup:
Using dmsetup::
dmsetup create blah --table "0 268435456 cache /dev/sdb /dev/sdc \
/dev/sdd 512 0 mq 4 sequential_threshold 1024 random_threshold 8"
creates a 128GB large mapped device named 'blah' with the
......
========
dm-delay
========
Device-Mapper's "delay" target delays reads and/or writes
and maps them to different devices.
Parameters:
Parameters::
<device> <offset> <delay> [<write_device> <write_offset> <write_delay>
[<flush_device> <flush_offset> <flush_delay>]]
......@@ -14,15 +16,16 @@ Delays are specified in milliseconds.
Example scripts
===============
[[
#!/bin/sh
# Create device delaying rw operation for 500ms
echo "0 `blockdev --getsz $1` delay $1 0 500" | dmsetup create delayed
]]
[[
#!/bin/sh
# Create device delaying only write operation for 500ms and
# splitting reads and writes to different devices $1 $2
echo "0 `blockdev --getsz $1` delay $1 0 0 $2 0 500" | dmsetup create delayed
]]
::
#!/bin/sh
# Create device delaying rw operation for 500ms
echo "0 `blockdev --getsz $1` delay $1 0 500" | dmsetup create delayed
::
#!/bin/sh
# Create device delaying only write operation for 500ms and
# splitting reads and writes to different devices $1 $2
echo "0 `blockdev --getsz $1` delay $1 0 0 $2 0 500" | dmsetup create delayed
========
dm-crypt
=========
========
Device-Mapper's "crypt" target provides transparent encryption of block devices
using the kernel crypto API.
......@@ -7,15 +8,20 @@ using the kernel crypto API.
For a more detailed description of supported parameters see:
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt
Parameters: <cipher> <key> <iv_offset> <device path> \
Parameters::
<cipher> <key> <iv_offset> <device path> \
<offset> [<#opt_params> <opt_params>]
<cipher>
Encryption cipher, encryption mode and Initial Vector (IV) generator.
The cipher specifications format is:
The cipher specifications format is::
cipher[:keycount]-chainmode-ivmode[:ivopts]
Examples:
Examples::
aes-cbc-essiv:sha256
aes-xts-plain64
serpent-xts-plain64
......@@ -25,12 +31,17 @@ Parameters: <cipher> <key> <iv_offset> <device path> \
as for the first format type.
This format is mainly used for specification of authenticated modes.
The crypto API cipher specifications format is:
The crypto API cipher specifications format is::
capi:cipher_api_spec-ivmode[:ivopts]
Examples:
Examples::
capi:cbc(aes)-essiv:sha256
capi:xts(aes)-plain64
Examples of authenticated modes:
Examples of authenticated modes::
capi:gcm(aes)-random
capi:authenc(hmac(sha256),xts(aes))-random
capi:rfc7539(chacha20,poly1305)-random
......@@ -142,21 +153,21 @@ LUKS (Linux Unified Key Setup) is now the preferred way to set up disk
encryption with dm-crypt using the 'cryptsetup' utility, see
https://gitlab.com/cryptsetup/cryptsetup
[[
#!/bin/sh
# Create a crypt device using dmsetup
dmsetup create crypt1 --table "0 `blockdev --getsz $1` crypt aes-cbc-essiv:sha256 babebabebabebabebabebabebabebabe 0 $1 0"
]]
[[
#!/bin/sh
# Create a crypt device using dmsetup when encryption key is stored in keyring service
dmsetup create crypt2 --table "0 `blockdev --getsize $1` crypt aes-cbc-essiv:sha256 :32:logon:my_prefix:my_key 0 $1 0"
]]
[[
#!/bin/sh
# Create a crypt device using cryptsetup and LUKS header with default cipher
cryptsetup luksFormat $1
cryptsetup luksOpen $1 crypt1
]]
::
#!/bin/sh
# Create a crypt device using dmsetup
dmsetup create crypt1 --table "0 `blockdev --getsz $1` crypt aes-cbc-essiv:sha256 babebabebabebabebabebabebabebabe 0 $1 0"
::
#!/bin/sh
# Create a crypt device using dmsetup when encryption key is stored in keyring service
dmsetup create crypt2 --table "0 `blockdev --getsize $1` crypt aes-cbc-essiv:sha256 :32:logon:my_prefix:my_key 0 $1 0"
::
#!/bin/sh
# Create a crypt device using cryptsetup and LUKS header with default cipher
cryptsetup luksFormat $1
cryptsetup luksOpen $1 crypt1
=========
dm-flakey
=========
......@@ -15,17 +16,26 @@ underlying devices.
Table parameters
----------------
::
<dev path> <offset> <up interval> <down interval> \
[<num_features> [<feature arguments>]]
Mandatory parameters:
<dev path>: Full pathname to the underlying block-device, or a
"major:minor" device-number.
<offset>: Starting sector within the device.
<up interval>: Number of seconds device is available.
<down interval>: Number of seconds device returns errors.
<dev path>:
Full pathname to the underlying block-device, or a
"major:minor" device-number.
<offset>:
Starting sector within the device.
<up interval>:
Number of seconds device is available.
<down interval>:
Number of seconds device returns errors.
Optional feature parameters:
If no feature parameters are present, during the periods of
unreliability, all I/O returns errors.
......@@ -41,17 +51,24 @@ Optional feature parameters:
During <down interval>, replace <Nth_byte> of the data of
each matching bio with <value>.
<Nth_byte>: The offset of the byte to replace.
Counting starts at 1, to replace the first byte.
<direction>: Either 'r' to corrupt reads or 'w' to corrupt writes.
'w' is incompatible with drop_writes.
<value>: The value (from 0-255) to write.
<flags>: Perform the replacement only if bio->bi_opf has all the
selected flags set.
<Nth_byte>:
The offset of the byte to replace.
Counting starts at 1, to replace the first byte.
<direction>:
Either 'r' to corrupt reads or 'w' to corrupt writes.
'w' is incompatible with drop_writes.
<value>:
The value (from 0-255) to write.
<flags>:
Perform the replacement only if bio->bi_opf has all the
selected flags set.
Examples:
Replaces the 32nd byte of READ bios with the value 1::
corrupt_bio_byte 32 r 1 0
- replaces the 32nd byte of READ bios with the value 1
Replaces the 224th byte of REQ_META (=32) bios with the value 0::
corrupt_bio_byte 224 w 0 32
- replaces the 224th byte of REQ_META (=32) bios with the value 0
================================
Early creation of mapped devices
====================================
================================
It is possible to configure a device-mapper device to act as the root device for
your system in two ways.
......@@ -12,15 +13,17 @@ The second is to create one or more device-mappers using the module parameter
The format is specified as a string of data separated by commas and optionally
semi-colons, where:
- a comma is used to separate fields like name, uuid, flags and table
(specifies one device)
- a semi-colon is used to separate devices.
So the format will look like this:
So the format will look like this::
dm-mod.create=<name>,<uuid>,<minor>,<flags>,<table>[,<table>+][;<name>,<uuid>,<minor>,<flags>,<table>[,<table>+]+]
Where,
Where::
<name> ::= The device name.
<uuid> ::= xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx | ""
<minor> ::= The device minor number | ""
......@@ -29,7 +32,7 @@ Where,
<target_type> ::= "verity" | "linear" | ... (see list below)
The dm line should be equivalent to the one used by the dmsetup tool with the
--concise argument.
`--concise` argument.
Target types
============
......@@ -38,32 +41,34 @@ Not all target types are available as there are serious risks in allowing
activation of certain DM targets without first using userspace tools to check
the validity of associated metadata.
"cache": constrained, userspace should verify cache device
"crypt": allowed
"delay": allowed
"era": constrained, userspace should verify metadata device
"flakey": constrained, meant for test
"linear": allowed
"log-writes": constrained, userspace should verify metadata device
"mirror": constrained, userspace should verify main/mirror device
"raid": constrained, userspace should verify metadata device
"snapshot": constrained, userspace should verify src/dst device
"snapshot-origin": allowed
"snapshot-merge": constrained, userspace should verify src/dst device
"striped": allowed
"switch": constrained, userspace should verify dev path
"thin": constrained, requires dm target message from userspace
"thin-pool": constrained, requires dm target message from userspace
"verity": allowed
"writecache": constrained, userspace should verify cache device
"zero": constrained, not meant for rootfs
======================= =======================================================
`cache` constrained, userspace should verify cache device
`crypt` allowed
`delay` allowed
`era` constrained, userspace should verify metadata device
`flakey` constrained, meant for test
`linear` allowed
`log-writes` constrained, userspace should verify metadata device
`mirror` constrained, userspace should verify main/mirror device
`raid` constrained, userspace should verify metadata device
`snapshot` constrained, userspace should verify src/dst device
`snapshot-origin` allowed
`snapshot-merge` constrained, userspace should verify src/dst device
`striped` allowed
`switch` constrained, userspace should verify dev path
`thin` constrained, requires dm target message from userspace
`thin-pool` constrained, requires dm target message from userspace
`verity` allowed
`writecache` constrained, userspace should verify cache device
`zero` constrained, not meant for rootfs
======================= =======================================================
If the target is not listed above, it is constrained by default (not tested).
Examples
========
An example of booting to a linear array made up of user-mode linux block
devices:
devices::
dm-mod.create="lroot,,,rw, 0 4096 linear 98:16 0, 4096 4096 linear 98:32 0" root=/dev/dm-0
......@@ -71,8 +76,8 @@ This will boot to a rw dm-linear target of 8192 sectors split across two block
devices identified by their major:minor numbers. After boot, udev will rename
this target to /dev/mapper/lroot (depending on the rules). No uuid was assigned.
An example of multiple device-mappers, with the dm-mod.create="..." contents is shown here
split on multiple lines for readability:
An example of multiple device-mappers, with the dm-mod.create="..." contents
is shown here split on multiple lines for readability::
dm-linear,,1,rw,
0 32768 linear 8:1 0,
......@@ -84,30 +89,36 @@ split on multiple lines for readability:
Other examples (per target):
"crypt":
"crypt"::
dm-crypt,,8,ro,
0 1048576 crypt aes-xts-plain64
babebabebabebabebabebabebabebabebabebabebabebabebabebabebabebabe 0
/dev/sda 0 1 allow_discards
"delay":
"delay"::
dm-delay,,4,ro,0 409600 delay /dev/sda1 0 500
"linear":
"linear"::
dm-linear,,,rw,
0 32768 linear /dev/sda1 0,
32768 1024000 linear /dev/sda2 0,
1056768 204800 linear /dev/sda3 0,
1261568 512000 linear /dev/sda4 0
"snapshot-origin":
"snapshot-origin"::
dm-snap-orig,,4,ro,0 409600 snapshot-origin 8:2
"striped":
"striped"::
dm-striped,,4,ro,0 1638400 striped 4 4096
/dev/sda1 0 /dev/sda2 0 /dev/sda3 0 /dev/sda4 0
"verity":
"verity"::
dm-verity,,4,ro,
0 1638400 verity 1 8:1 8:2 4096 4096 204800 1 sha256
fb1a5a0f00deb908d8b53cb270858975e76cf64105d412ce764225d53b8f3cfd
......
============
dm-integrity
============
The dm-integrity target emulates a block device that has additional
per-sector tags that can be used for storing integrity information.
......@@ -35,15 +39,16 @@ zeroes. If the superblock is neither valid nor zeroed, the dm-integrity
target can't be loaded.
To use the target for the first time:
1. overwrite the superblock with zeroes
2. load the dm-integrity target with one-sector size, the kernel driver
will format the device
will format the device
3. unload the dm-integrity target
4. read the "provided_data_sectors" value from the superblock
5. load the dm-integrity target with the the target size
"provided_data_sectors"
"provided_data_sectors"
6. if you want to use dm-integrity with dm-crypt, load the dm-crypt target
with the size "provided_data_sectors"
with the size "provided_data_sectors"
Target arguments:
......@@ -51,17 +56,20 @@ Target arguments:
1. the underlying block device
2. the number of reserved sector at the beginning of the device - the
dm-integrity won't read of write these sectors
dm-integrity won't read of write these sectors
3. the size of the integrity tag (if "-" is used, the size is taken from
the internal-hash algorithm)
the internal-hash algorithm)
4. mode:
D - direct writes (without journal) - in this mode, journaling is
D - direct writes (without journal)
in this mode, journaling is
not used and data sectors and integrity tags are written
separately. In case of crash, it is possible that the data
and integrity tag doesn't match.
J - journaled writes - data and integrity tags are written to the
J - journaled writes
data and integrity tags are written to the
journal and atomicity is guaranteed. In case of crash,
either both data and tag or none of them are written. The
journaled mode degrades write throughput twice because the
......@@ -178,9 +186,12 @@ and the reloaded target would be non-functional.
The layout of the formatted block device:
* reserved sectors (they are not used by this target, they can be used for
storing LUKS metadata or for other purpose), the size of the reserved
area is specified in the target arguments
* reserved sectors
(they are not used by this target, they can be used for
storing LUKS metadata or for other purpose), the size of the reserved
area is specified in the target arguments
* superblock (4kiB)
* magic string - identifies that the device was formatted
* version
......@@ -192,40 +203,55 @@ The layout of the formatted block device:
metadata and padding). The user of this target should not send
bios that access data beyond the "provided data sectors" limit.
* flags
SB_FLAG_HAVE_JOURNAL_MAC - a flag is set if journal_mac is used
SB_FLAG_RECALCULATING - recalculating is in progress
SB_FLAG_DIRTY_BITMAP - journal area contains the bitmap of dirty
blocks
SB_FLAG_HAVE_JOURNAL_MAC
- a flag is set if journal_mac is used
SB_FLAG_RECALCULATING
- recalculating is in progress
SB_FLAG_DIRTY_BITMAP
- journal area contains the bitmap of dirty
blocks
* log2(sectors per block)
* a position where recalculating finished
* journal
The journal is divided into sections, each section contains:
* metadata area (4kiB), it contains journal entries
every journal entry contains:
- every journal entry contains:
* logical sector (specifies where the data and tag should
be written)
* last 8 bytes of data
* integrity tag (the size is specified in the superblock)
every metadata sector ends with
- every metadata sector ends with
* mac (8-bytes), all the macs in 8 metadata sectors form a
64-byte value. It is used to store hmac of sector
numbers in the journal section, to protect against a
possibility that the attacker tampers with sector
numbers in the journal.
* commit id
* data area (the size is variable; it depends on how many journal
entries fit into the metadata area)
every sector in the data area contains:
- every sector in the data area contains:
* data (504 bytes of data, the last 8 bytes are stored in
the journal entry)
* commit id
To test if the whole journal section was written correctly, every
512-byte sector of the journal ends with 8-byte commit id. If the
commit id matches on all sectors in a journal section, then it is
assumed that the section was written correctly. If the commit id
doesn't match, the section was written partially and it should not
be replayed.
* one or more runs of interleaved tags and data. Each run contains:
* one or more runs of interleaved tags and data.
Each run contains:
* tag area - it contains integrity tags. There is one tag for each
sector in the data area
* data area - it contains data sectors. The number of data sectors
......
=====
dm-io
=====
......@@ -7,7 +8,7 @@ version.
The user must set up an io_region structure to describe the desired location
of the I/O. Each io_region indicates a block-device along with the starting
sector and size of the region.
sector and size of the region::
struct io_region {
struct block_device *bdev;
......@@ -19,7 +20,7 @@ Dm-io can read from one io_region or write to one or more io_regions. Writes
to multiple regions are specified by an array of io_region structures.
The first I/O service type takes a list of memory pages as the data buffer for
the I/O, along with an offset into the first page.
the I/O, along with an offset into the first page::
struct page_list {
struct page_list *next;
......@@ -35,7 +36,7 @@ the I/O, along with an offset into the first page.
The second I/O service type takes an array of bio vectors as the data buffer
for the I/O. This service can be handy if the caller has a pre-assembled bio,
but wants to direct different portions of the bio to different devices.
but wants to direct different portions of the bio to different devices::
int dm_io_sync_bvec(unsigned int num_regions, struct io_region *where,
int rw, struct bio_vec *bvec,
......@@ -47,7 +48,7 @@ but wants to direct different portions of the bio to different devices.
The third I/O service type takes a pointer to a vmalloc'd memory buffer as the
data buffer for the I/O. This service can be handy if the caller needs to do
I/O to a large region but doesn't want to allocate a large number of individual
memory pages.
memory pages::
int dm_io_sync_vm(unsigned int num_regions, struct io_region *where, int rw,
void *data, unsigned long *error_bits);
......@@ -55,11 +56,11 @@ memory pages.
void *data, io_notify_fn fn, void *context);
Callers of the asynchronous I/O services must include the name of a completion
callback routine and a pointer to some context data for the I/O.
callback routine and a pointer to some context data for the I/O::
typedef void (*io_notify_fn)(unsigned long error, void *context);
The "error" parameter in this callback, as well as the "*error" parameter in
The "error" parameter in this callback, as well as the `*error` parameter in
all of the synchronous versions, is a bitset (instead of a simple error value).
In the case of an write-I/O to multiple regions, this bitset allows dm-io to
indicate success or failure on each individual region.
......@@ -72,4 +73,3 @@ always available in order to avoid unnecessary waiting while performing I/O.
When the user is finished using the dm-io services, they should call
dm_io_put() and specify the same number of pages that were given on the
dm_io_get() call.
=====================
Device-Mapper Logging
=====================
The device-mapper logging code is used by some of the device-mapper
......@@ -16,11 +17,13 @@ dm_dirty_log_type in include/linux/dm-dirty-log.h). Various different
logging implementations are available and provide different
capabilities. The list includes:
============== ==============================================================
Type Files
==== =====
============== ==============================================================
disk drivers/md/dm-log.c
core drivers/md/dm-log.c
userspace drivers/md/dm-log-userspace* include/linux/dm-log-userspace.h
============== ==============================================================
The "disk" log type
-------------------
......
===============
dm-queue-length
===============
......@@ -6,12 +7,18 @@ which selects a path with the least number of in-flight I/Os.
The path selector name is 'queue-length'.
Table parameters for each path: [<repeat_count>]
::
<repeat_count>: The number of I/Os to dispatch using the selected
path before switching to the next path.
If not given, internal default is used. To check
the default value, see the activated table.
Status for each path: <status> <fail-count> <in-flight>
::
<status>: 'A' if the path is active, 'F' if the path is failed.
<fail-count>: The number of path failures.
<in-flight>: The number of in-flight I/Os on the path.
......@@ -29,11 +36,13 @@ Examples
========
In case that 2 paths (sda and sdb) are used with repeat_count == 128.
# echo "0 10 multipath 0 0 1 1 queue-length 0 2 1 8:0 128 8:16 128" \
dmsetup create test
#
# dmsetup table
test: 0 10 multipath 0 0 1 1 queue-length 0 2 1 8:0 128 8:16 128
#
# dmsetup status
test: 0 10 multipath 2 0 0 0 1 1 E 0 2 1 8:0 A 0 0 8:16 A 0 0
::
# echo "0 10 multipath 0 0 1 1 queue-length 0 2 1 8:0 128 8:16 128" \
dmsetup create test
#
# dmsetup table
test: 0 10 multipath 0 0 1 1 queue-length 0 2 1 8:0 128 8:16 128
#
# dmsetup status
test: 0 10 multipath 2 0 0 0 1 1 E 0 2 1 8:0 A 0 0 8:16 A 0 0
===============
dm-service-time
===============
......@@ -12,25 +13,34 @@ in a path-group, and it can be specified as a table argument.
The path selector name is 'service-time'.
Table parameters for each path: [<repeat_count> [<relative_throughput>]]
<repeat_count>: The number of I/Os to dispatch using the selected
Table parameters for each path:
[<repeat_count> [<relative_throughput>]]
<repeat_count>:
The number of I/Os to dispatch using the selected
path before switching to the next path.
If not given, internal default is used. To check
the default value, see the activated table.
<relative_throughput>: The relative throughput value of the path
<relative_throughput>:
The relative throughput value of the path
among all paths in the path-group.
The valid range is 0-100.
If not given, minimum value '1' is used.
If '0' is given, the path isn't selected while
other paths having a positive value are available.
Status for each path: <status> <fail-count> <in-flight-size> \
<relative_throughput>
<status>: 'A' if the path is active, 'F' if the path is failed.
<fail-count>: The number of path failures.
<in-flight-size>: The size of in-flight I/Os on the path.
<relative_throughput>: The relative throughput value of the path
among all paths in the path-group.
Status for each path:
<status> <fail-count> <in-flight-size> <relative_throughput>
<status>:
'A' if the path is active, 'F' if the path is failed.
<fail-count>:
The number of path failures.
<in-flight-size>:
The size of in-flight I/Os on the path.
<relative_throughput>:
The relative throughput value of the path
among all paths in the path-group.
Algorithm
......@@ -39,7 +49,7 @@ Algorithm
dm-service-time adds the I/O size to 'in-flight-size' when the I/O is
dispatched and subtracts when completed.
Basically, dm-service-time selects a path having minimum service time
which is calculated by:
which is calculated by::
('in-flight-size' + 'size-of-incoming-io') / 'relative_throughput'
......@@ -67,25 +77,25 @@ Examples
========
In case that 2 paths (sda and sdb) are used with repeat_count == 128
and sda has an average throughput 1GB/s and sdb has 4GB/s,
'relative_throughput' value may be '1' for sda and '4' for sdb.
# echo "0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 1 8:16 128 4" \
dmsetup create test
#
# dmsetup table
test: 0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 1 8:16 128 4
#
# dmsetup status
test: 0 10 multipath 2 0 0 0 1 1 E 0 2 2 8:0 A 0 0 1 8:16 A 0 0 4
Or '2' for sda and '8' for sdb would be also true.
# echo "0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 2 8:16 128 8" \
dmsetup create test
#
# dmsetup table
test: 0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 2 8:16 128 8
#
# dmsetup status
test: 0 10 multipath 2 0 0 0 1 1 E 0 2 2 8:0 A 0 0 2 8:16 A 0 0 8
'relative_throughput' value may be '1' for sda and '4' for sdb::
# echo "0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 1 8:16 128 4" \
dmsetup create test
#
# dmsetup table
test: 0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 1 8:16 128 4
#
# dmsetup status
test: 0 10 multipath 2 0 0 0 1 1 E 0 2 2 8:0 A 0 0 1 8:16 A 0 0 4
Or '2' for sda and '8' for sdb would be also true::
# echo "0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 2 8:16 128 8" \
dmsetup create test
#
# dmsetup table
test: 0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 2 8:16 128 8
#
# dmsetup status
test: 0 10 multipath 2 0 0 0 1 1 E 0 2 2 8:0 A 0 0 2 8:16 A 0 0 8
====================
device-mapper uevent
====================
The device-mapper uevent code adds the capability to device-mapper to create
and send kobject uevents (uevents). Previously device-mapper events were only
available through the ioctl interface. The advantage of the uevents interface
......@@ -6,92 +10,101 @@ the event avoiding the need to query the state of the device-mapper device after
the event is received.
There are two functions currently for device-mapper events. The first function
listed creates the event and the second function sends the event(s).
listed creates the event and the second function sends the event(s)::
void dm_path_uevent(enum dm_uevent_type event_type, struct dm_target *ti,
const char *path, unsigned nr_valid_paths)
void dm_path_uevent(enum dm_uevent_type event_type, struct dm_target *ti,
const char *path, unsigned nr_valid_paths)
void dm_send_uevents(struct list_head *events, struct kobject *kobj)
void dm_send_uevents(struct list_head *events, struct kobject *kobj)
The variables added to the uevent environment are:
Variable Name: DM_TARGET
Uevent Action(s): KOBJ_CHANGE
Type: string
Description:
Value: Name of device-mapper target that generated the event.
------------------------
:Uevent Action(s): KOBJ_CHANGE
:Type: string
:Description:
:Value: Name of device-mapper target that generated the event.
Variable Name: DM_ACTION
Uevent Action(s): KOBJ_CHANGE
Type: string
Description:
Value: Device-mapper specific action that caused the uevent action.
PATH_FAILED - A path has failed.
------------------------
:Uevent Action(s): KOBJ_CHANGE
:Type: string
:Description:
:Value: Device-mapper specific action that caused the uevent action.
PATH_FAILED - A path has failed;
PATH_REINSTATED - A path has been reinstated.
Variable Name: DM_SEQNUM
Uevent Action(s): KOBJ_CHANGE
Type: unsigned integer
Description: A sequence number for this specific device-mapper device.
Value: Valid unsigned integer range.
------------------------
:Uevent Action(s): KOBJ_CHANGE
:Type: unsigned integer
:Description: A sequence number for this specific device-mapper device.
:Value: Valid unsigned integer range.
Variable Name: DM_PATH
Uevent Action(s): KOBJ_CHANGE
Type: string
Description: Major and minor number of the path device pertaining to this
event.
Value: Path name in the form of "Major:Minor"
----------------------
:Uevent Action(s): KOBJ_CHANGE
:Type: string
:Description: Major and minor number of the path device pertaining to this
event.
:Value: Path name in the form of "Major:Minor"
Variable Name: DM_NR_VALID_PATHS
Uevent Action(s): KOBJ_CHANGE
Type: unsigned integer
Description:
Value: Valid unsigned integer range.
--------------------------------
:Uevent Action(s): KOBJ_CHANGE
:Type: unsigned integer
:Description:
:Value: Valid unsigned integer range.
Variable Name: DM_NAME
Uevent Action(s): KOBJ_CHANGE
Type: string
Description: Name of the device-mapper device.
Value: Name
----------------------
:Uevent Action(s): KOBJ_CHANGE
:Type: string
:Description: Name of the device-mapper device.
:Value: Name
Variable Name: DM_UUID
Uevent Action(s): KOBJ_CHANGE
Type: string
Description: UUID of the device-mapper device.
Value: UUID. (Empty string if there isn't one.)
----------------------
:Uevent Action(s): KOBJ_CHANGE
:Type: string
:Description: UUID of the device-mapper device.
:Value: UUID. (Empty string if there isn't one.)
An example of the uevents generated as captured by udevmonitor is shown
below.
1.) Path failure.
UEVENT[1192521009.711215] change@/block/dm-3
ACTION=change
DEVPATH=/block/dm-3
SUBSYSTEM=block
DM_TARGET=multipath
DM_ACTION=PATH_FAILED
DM_SEQNUM=1
DM_PATH=8:32
DM_NR_VALID_PATHS=0
DM_NAME=mpath2
DM_UUID=mpath-35333333000002328
MINOR=3
MAJOR=253
SEQNUM=1130
2.) Path reinstate.
UEVENT[1192521132.989927] change@/block/dm-3
ACTION=change
DEVPATH=/block/dm-3
SUBSYSTEM=block
DM_TARGET=multipath
DM_ACTION=PATH_REINSTATED
DM_SEQNUM=2
DM_PATH=8:32
DM_NR_VALID_PATHS=1
DM_NAME=mpath2
DM_UUID=mpath-35333333000002328
MINOR=3
MAJOR=253
SEQNUM=1131
below
1.) Path failure::
UEVENT[1192521009.711215] change@/block/dm-3
ACTION=change
DEVPATH=/block/dm-3
SUBSYSTEM=block
DM_TARGET=multipath
DM_ACTION=PATH_FAILED
DM_SEQNUM=1
DM_PATH=8:32
DM_NR_VALID_PATHS=0
DM_NAME=mpath2
DM_UUID=mpath-35333333000002328
MINOR=3
MAJOR=253
SEQNUM=1130
2.) Path reinstate::
UEVENT[1192521132.989927] change@/block/dm-3
ACTION=change
DEVPATH=/block/dm-3
SUBSYSTEM=block
DM_TARGET=multipath
DM_ACTION=PATH_REINSTATED
DM_SEQNUM=2
DM_PATH=8:32
DM_NR_VALID_PATHS=1
DM_NAME=mpath2
DM_UUID=mpath-35333333000002328
MINOR=3
MAJOR=253
SEQNUM=1131
========
dm-zoned
========
......@@ -133,12 +134,13 @@ A zoned block device must first be formatted using the dmzadm tool. This
will analyze the device zone configuration, determine where to place the
metadata sets on the device and initialize the metadata sets.
Ex:
Ex::
dmzadm --format /dev/sdxx
dmzadm --format /dev/sdxx
For a formatted device, the target can be created normally with the
dmsetup utility. The only parameter that dm-zoned requires is the
underlying zoned block device name. Ex:
underlying zoned block device name. Ex::
echo "0 `blockdev --getsize ${dev}` zoned ${dev}" | dmsetup create dmz-`basename ${dev}`
echo "0 `blockdev --getsize ${dev}` zoned ${dev}" | \
dmsetup create dmz-`basename ${dev}`
======
dm-era
======
Introduction
============
......@@ -14,12 +18,14 @@ coherency after rolling back a vendor snapshot.
Constructor
===========
era <metadata dev> <origin dev> <block size>
era <metadata dev> <origin dev> <block size>
metadata dev : fast device holding the persistent metadata
origin dev : device holding data blocks that may change
block size : block size of origin data device, granularity that is
tracked by the target
================ ======================================================
metadata dev fast device holding the persistent metadata
origin dev device holding data blocks that may change
block size block size of origin data device, granularity that is
tracked by the target
================ ======================================================
Messages
========
......@@ -49,14 +55,16 @@ Status
<metadata block size> <#used metadata blocks>/<#total metadata blocks>
<current era> <held metadata root | '-'>
metadata block size : Fixed block size for each metadata block in
sectors
#used metadata blocks : Number of metadata blocks used
#total metadata blocks : Total number of metadata blocks
current era : The current era
held metadata root : The location, in blocks, of the metadata root
that has been 'held' for userspace read
access. '-' indicates there is no held root
========================= ==============================================
metadata block size Fixed block size for each metadata block in
sectors
#used metadata blocks Number of metadata blocks used
#total metadata blocks Total number of metadata blocks
current era The current era
held metadata root The location, in blocks, of the metadata root
that has been 'held' for userspace read
access. '-' indicates there is no held root
========================= ==============================================
Detailed use case
=================
......@@ -88,7 +96,7 @@ Memory usage
The target uses a bitset to record writes in the current era. It also
has a spare bitset ready for switching over to a new era. Other than
that it uses a few 4k blocks for updating metadata.
that it uses a few 4k blocks for updating metadata::
(4 * nr_blocks) bytes + buffers
......
:orphan:
=============
Device Mapper
=============
.. toctree::
:maxdepth: 1
cache-policies
cache
delay
dm-crypt
dm-flakey
dm-init
dm-integrity
dm-io
dm-log
dm-queue-length
dm-raid
dm-service-time
dm-uevent
dm-zoned
era
kcopyd
linear
log-writes
persistent-data
snapshot
statistics
striped
switch
thin-provisioning
unstriped
verity
writecache
zero
.. only:: subproject and html
Indices
=======
* :ref:`genindex`
======
kcopyd
======
......@@ -7,7 +8,7 @@ notification. It is used by dm-snapshot and dm-mirror.
Users of kcopyd must first create a client and indicate how many memory pages
to set aside for their copy jobs. This is done with a call to
kcopyd_client_create().
kcopyd_client_create()::
int kcopyd_client_create(unsigned int num_pages,
struct kcopyd_client **result);
......@@ -16,7 +17,7 @@ To start a copy job, the user must set up io_region structures to describe
the source and destinations of the copy. Each io_region indicates a
block-device along with the starting sector and size of the region. The source
of the copy is given as one io_region structure, and the destinations of the
copy are given as an array of io_region structures.
copy are given as an array of io_region structures::
struct io_region {
struct block_device *bdev;
......@@ -26,7 +27,7 @@ copy are given as an array of io_region structures.
To start the copy, the user calls kcopyd_copy(), passing in the client
pointer, pointers to the source and destination io_regions, the name of a
completion callback routine, and a pointer to some context data for the copy.
completion callback routine, and a pointer to some context data for the copy::
int kcopyd_copy(struct kcopyd_client *kc, struct io_region *from,
unsigned int num_dests, struct io_region *dests,
......@@ -41,7 +42,6 @@ write error occurred during the copy.
When a user is done with all their copy jobs, they should call
kcopyd_client_destroy() to delete the kcopyd client, which will release the
associated memory pages.
associated memory pages::
void kcopyd_client_destroy(struct kcopyd_client *kc);
=========
dm-linear
=========
Device-Mapper's "linear" target maps a linear range of the Device-Mapper
device onto a linear range of another device. This is the basic building
block of logical volume managers.
Parameters: <dev path> <offset>
<dev path>:
Full pathname to the underlying block-device, or a
"major:minor" device-number.
<offset>:
Starting sector within the device.
Example scripts
===============
::
#!/bin/sh
# Create an identity mapping for a device
echo "0 `blockdev --getsz $1` linear $1 0" | dmsetup create identity
::
#!/bin/sh
# Join 2 devices together
size1=`blockdev --getsz $1`
size2=`blockdev --getsz $2`
echo "0 $size1 linear $1 0
$size1 $size2 linear $2 0" | dmsetup create joined
::
#!/usr/bin/perl -w
# Split a device into 4M chunks and then join them together in reverse order.
my $name = "reverse";
my $extent_size = 4 * 1024 * 2;
my $dev = $ARGV[0];
my $table = "";
my $count = 0;
if (!defined($dev)) {
die("Please specify a device.\n");
}
my $dev_size = `blockdev --getsz $dev`;
my $extents = int($dev_size / $extent_size) -
(($dev_size % $extent_size) ? 1 : 0);
while ($extents > 0) {
my $this_start = $count * $extent_size;
$extents--;
$count++;
my $this_offset = $extents * $extent_size;
$table .= "$this_start $extent_size linear $dev $this_offset\n";
}
`echo \"$table\" | dmsetup create $name`;
dm-linear
=========
Device-Mapper's "linear" target maps a linear range of the Device-Mapper
device onto a linear range of another device. This is the basic building
block of logical volume managers.
Parameters: <dev path> <offset>
<dev path>: Full pathname to the underlying block-device, or a
"major:minor" device-number.
<offset>: Starting sector within the device.
Example scripts
===============
[[
#!/bin/sh
# Create an identity mapping for a device
echo "0 `blockdev --getsz $1` linear $1 0" | dmsetup create identity
]]
[[
#!/bin/sh
# Join 2 devices together
size1=`blockdev --getsz $1`
size2=`blockdev --getsz $2`
echo "0 $size1 linear $1 0
$size1 $size2 linear $2 0" | dmsetup create joined
]]
[[
#!/usr/bin/perl -w
# Split a device into 4M chunks and then join them together in reverse order.
my $name = "reverse";
my $extent_size = 4 * 1024 * 2;
my $dev = $ARGV[0];
my $table = "";
my $count = 0;
if (!defined($dev)) {
die("Please specify a device.\n");
}
my $dev_size = `blockdev --getsz $dev`;
my $extents = int($dev_size / $extent_size) -
(($dev_size % $extent_size) ? 1 : 0);
while ($extents > 0) {
my $this_start = $count * $extent_size;
$extents--;
$count++;
my $this_offset = $extents * $extent_size;
$table .= "$this_start $extent_size linear $dev $this_offset\n";
}
`echo \"$table\" | dmsetup create $name`;
]]
=============
dm-log-writes
=============
......@@ -25,11 +26,11 @@ completed WRITEs, at the time the REQ_PREFLUSH is issued, are added in order to
simulate the worst case scenario with regard to power failures. Consider the
following example (W means write, C means complete):
W1,W2,W3,C3,C2,Wflush,C1,Cflush
W1,W2,W3,C3,C2,Wflush,C1,Cflush
The log would show the following
The log would show the following:
W3,W2,flush,W1....
W3,W2,flush,W1....
Again this is to simulate what is actually on disk, this allows us to detect
cases where a power failure at a particular point in time would create an
......@@ -42,11 +43,11 @@ Any REQ_OP_DISCARD requests are treated like WRITE requests. Otherwise we would
have all the DISCARD requests, and then the WRITE requests and then the FLUSH
request. Consider the following example:
WRITE block 1, DISCARD block 1, FLUSH
WRITE block 1, DISCARD block 1, FLUSH
If we logged DISCARD when it completed, the replay would look like this
If we logged DISCARD when it completed, the replay would look like this:
DISCARD 1, WRITE 1, FLUSH
DISCARD 1, WRITE 1, FLUSH
which isn't quite what happened and wouldn't be caught during the log replay.
......@@ -57,15 +58,19 @@ i) Constructor
log-writes <dev_path> <log_dev_path>
dev_path : Device that all of the IO will go to normally.
log_dev_path : Device where the log entries are written to.
============= ==============================================
dev_path Device that all of the IO will go to normally.
log_dev_path Device where the log entries are written to.
============= ==============================================
ii) Status
<#logged entries> <highest allocated sector>
#logged entries : Number of logged entries
highest allocated sector : Highest allocated sector
=========================== ========================
#logged entries Number of logged entries
highest allocated sector Highest allocated sector
=========================== ========================
iii) Messages
......@@ -75,15 +80,15 @@ iii) Messages
For example say you want to fsck a file system after every
write, but first you need to replay up to the mkfs to make sure
we're fsck'ing something reasonable, you would do something like
this:
this::
mkfs.btrfs -f /dev/mapper/log
dmsetup message log 0 mark mkfs
<run test>
This would allow you to replay the log up to the mkfs mark and
then replay from that point on doing the fsck check in the
interval that you want.
This would allow you to replay the log up to the mkfs mark and
then replay from that point on doing the fsck check in the
interval that you want.
Every log has a mark at the end labeled "dm-log-writes-end".
......@@ -97,42 +102,42 @@ Example usage
=============
Say you want to test fsync on your file system. You would do something like
this:
TABLE="0 $(blockdev --getsz /dev/sdb) log-writes /dev/sdb /dev/sdc"
dmsetup create log --table "$TABLE"
mkfs.btrfs -f /dev/mapper/log
dmsetup message log 0 mark mkfs
mount /dev/mapper/log /mnt/btrfs-test
<some test that does fsync at the end>
dmsetup message log 0 mark fsync
md5sum /mnt/btrfs-test/foo
umount /mnt/btrfs-test
dmsetup remove log
replay-log --log /dev/sdc --replay /dev/sdb --end-mark fsync
mount /dev/sdb /mnt/btrfs-test
md5sum /mnt/btrfs-test/foo
<verify md5sum's are correct>
Another option is to do a complicated file system operation and verify the file
system is consistent during the entire operation. You could do this with:
TABLE="0 $(blockdev --getsz /dev/sdb) log-writes /dev/sdb /dev/sdc"
dmsetup create log --table "$TABLE"
mkfs.btrfs -f /dev/mapper/log
dmsetup message log 0 mark mkfs
mount /dev/mapper/log /mnt/btrfs-test
<fsstress to dirty the fs>
btrfs filesystem balance /mnt/btrfs-test
umount /mnt/btrfs-test
dmsetup remove log
replay-log --log /dev/sdc --replay /dev/sdb --end-mark mkfs
btrfsck /dev/sdb
replay-log --log /dev/sdc --replay /dev/sdb --start-mark mkfs \
this::
TABLE="0 $(blockdev --getsz /dev/sdb) log-writes /dev/sdb /dev/sdc"
dmsetup create log --table "$TABLE"
mkfs.btrfs -f /dev/mapper/log
dmsetup message log 0 mark mkfs
mount /dev/mapper/log /mnt/btrfs-test
<some test that does fsync at the end>
dmsetup message log 0 mark fsync
md5sum /mnt/btrfs-test/foo
umount /mnt/btrfs-test
dmsetup remove log
replay-log --log /dev/sdc --replay /dev/sdb --end-mark fsync
mount /dev/sdb /mnt/btrfs-test
md5sum /mnt/btrfs-test/foo
<verify md5sum's are correct>
Another option is to do a complicated file system operation and verify the file
system is consistent during the entire operation. You could do this with:
TABLE="0 $(blockdev --getsz /dev/sdb) log-writes /dev/sdb /dev/sdc"
dmsetup create log --table "$TABLE"
mkfs.btrfs -f /dev/mapper/log
dmsetup message log 0 mark mkfs
mount /dev/mapper/log /mnt/btrfs-test
<fsstress to dirty the fs>
btrfs filesystem balance /mnt/btrfs-test
umount /mnt/btrfs-test
dmsetup remove log
replay-log --log /dev/sdc --replay /dev/sdb --end-mark mkfs
btrfsck /dev/sdb
replay-log --log /dev/sdc --replay /dev/sdb --start-mark mkfs \
--fsck "btrfsck /dev/sdb" --check fua
And that will replay the log until it sees a FUA request, run the fsck command
......
==============================
Device-mapper snapshot support
==============================
Device-mapper allows you, without massive data copying:
*) To create snapshots of any block device i.e. mountable, saved states of
the block device which are also writable without interfering with the
original content;
*) To create device "forks", i.e. multiple different versions of the
same data stream.
*) To merge a snapshot of a block device back into the snapshot's origin
device.
- To create snapshots of any block device i.e. mountable, saved states of
the block device which are also writable without interfering with the
original content;
- To create device "forks", i.e. multiple different versions of the
same data stream.
- To merge a snapshot of a block device back into the snapshot's origin
device.
In the first two cases, dm copies only the chunks of data that get
changed and uses a separate copy-on-write (COW) block device for
......@@ -22,7 +23,7 @@ the origin device.
There are three dm targets available:
snapshot, snapshot-origin, and snapshot-merge.
*) snapshot-origin <origin>
- snapshot-origin <origin>
which will normally have one or more snapshots based on it.
Reads will be mapped directly to the backing device. For each write, the
......@@ -30,7 +31,7 @@ original data will be saved in the <COW device> of each snapshot to keep
its visible content unchanged, at least until the <COW device> fills up.
*) snapshot <origin> <COW device> <persistent?> <chunksize>
- snapshot <origin> <COW device> <persistent?> <chunksize>
A snapshot of the <origin> block device is created. Changed chunks of
<chunksize> sectors will be stored on the <COW device>. Writes will
......@@ -83,25 +84,25 @@ When you create the first LVM2 snapshot of a volume, four dm devices are used:
source volume), whose table is replaced by a "snapshot-origin" mapping
from device #1.
A fixed naming scheme is used, so with the following commands:
A fixed naming scheme is used, so with the following commands::
lvcreate -L 1G -n base volumeGroup
lvcreate -L 100M --snapshot -n snap volumeGroup/base
lvcreate -L 1G -n base volumeGroup
lvcreate -L 100M --snapshot -n snap volumeGroup/base
we'll have this situation (with volumes in above order):
we'll have this situation (with volumes in above order)::
# dmsetup table|grep volumeGroup
# dmsetup table|grep volumeGroup
volumeGroup-base-real: 0 2097152 linear 8:19 384
volumeGroup-snap-cow: 0 204800 linear 8:19 2097536
volumeGroup-snap: 0 2097152 snapshot 254:11 254:12 P 16
volumeGroup-base: 0 2097152 snapshot-origin 254:11
volumeGroup-base-real: 0 2097152 linear 8:19 384
volumeGroup-snap-cow: 0 204800 linear 8:19 2097536
volumeGroup-snap: 0 2097152 snapshot 254:11 254:12 P 16
volumeGroup-base: 0 2097152 snapshot-origin 254:11
# ls -lL /dev/mapper/volumeGroup-*
brw------- 1 root root 254, 11 29 ago 18:15 /dev/mapper/volumeGroup-base-real
brw------- 1 root root 254, 12 29 ago 18:15 /dev/mapper/volumeGroup-snap-cow
brw------- 1 root root 254, 13 29 ago 18:15 /dev/mapper/volumeGroup-snap
brw------- 1 root root 254, 10 29 ago 18:14 /dev/mapper/volumeGroup-base
# ls -lL /dev/mapper/volumeGroup-*
brw------- 1 root root 254, 11 29 ago 18:15 /dev/mapper/volumeGroup-base-real
brw------- 1 root root 254, 12 29 ago 18:15 /dev/mapper/volumeGroup-snap-cow
brw------- 1 root root 254, 13 29 ago 18:15 /dev/mapper/volumeGroup-snap
brw------- 1 root root 254, 10 29 ago 18:14 /dev/mapper/volumeGroup-base
How snapshot-merge is used by LVM2
......@@ -114,27 +115,28 @@ merging snapshot after it completes. The "snapshot" that hands over its
COW device to the "snapshot-merge" is deactivated (unless using lvchange
--refresh); but if it is left active it will simply return I/O errors.
A snapshot will merge into its origin with the following command:
A snapshot will merge into its origin with the following command::
lvconvert --merge volumeGroup/snap
lvconvert --merge volumeGroup/snap
we'll now have this situation:
we'll now have this situation::
# dmsetup table|grep volumeGroup
# dmsetup table|grep volumeGroup
volumeGroup-base-real: 0 2097152 linear 8:19 384
volumeGroup-base-cow: 0 204800 linear 8:19 2097536
volumeGroup-base: 0 2097152 snapshot-merge 254:11 254:12 P 16
volumeGroup-base-real: 0 2097152 linear 8:19 384
volumeGroup-base-cow: 0 204800 linear 8:19 2097536
volumeGroup-base: 0 2097152 snapshot-merge 254:11 254:12 P 16
# ls -lL /dev/mapper/volumeGroup-*
brw------- 1 root root 254, 11 29 ago 18:15 /dev/mapper/volumeGroup-base-real
brw------- 1 root root 254, 12 29 ago 18:16 /dev/mapper/volumeGroup-base-cow
brw------- 1 root root 254, 10 29 ago 18:16 /dev/mapper/volumeGroup-base
# ls -lL /dev/mapper/volumeGroup-*
brw------- 1 root root 254, 11 29 ago 18:15 /dev/mapper/volumeGroup-base-real
brw------- 1 root root 254, 12 29 ago 18:16 /dev/mapper/volumeGroup-base-cow
brw------- 1 root root 254, 10 29 ago 18:16 /dev/mapper/volumeGroup-base
How to determine when a merging is complete
===========================================
The snapshot-merge and snapshot status lines end with:
<sectors_allocated>/<total_sectors> <metadata_sectors>
Both <sectors_allocated> and <total_sectors> include both data and metadata.
......@@ -142,35 +144,37 @@ During merging, the number of sectors allocated gets smaller and
smaller. Merging has finished when the number of sectors holding data
is zero, in other words <sectors_allocated> == <metadata_sectors>.
Here is a practical example (using a hybrid of lvm and dmsetup commands):
Here is a practical example (using a hybrid of lvm and dmsetup commands)::
# lvs
LV VG Attr LSize Origin Snap% Move Log Copy% Convert
base volumeGroup owi-a- 4.00g
snap volumeGroup swi-a- 1.00g base 18.97
# lvs
LV VG Attr LSize Origin Snap% Move Log Copy% Convert
base volumeGroup owi-a- 4.00g
snap volumeGroup swi-a- 1.00g base 18.97
# dmsetup status volumeGroup-snap
0 8388608 snapshot 397896/2097152 1560
^^^^ metadata sectors
# dmsetup status volumeGroup-snap
0 8388608 snapshot 397896/2097152 1560
^^^^ metadata sectors
# lvconvert --merge -b volumeGroup/snap
Merging of volume snap started.
# lvconvert --merge -b volumeGroup/snap
Merging of volume snap started.
# lvs volumeGroup/snap
LV VG Attr LSize Origin Snap% Move Log Copy% Convert
base volumeGroup Owi-a- 4.00g 17.23
# lvs volumeGroup/snap
LV VG Attr LSize Origin Snap% Move Log Copy% Convert
base volumeGroup Owi-a- 4.00g 17.23
# dmsetup status volumeGroup-base
0 8388608 snapshot-merge 281688/2097152 1104
# dmsetup status volumeGroup-base
0 8388608 snapshot-merge 281688/2097152 1104
# dmsetup status volumeGroup-base
0 8388608 snapshot-merge 180480/2097152 712
# dmsetup status volumeGroup-base
0 8388608 snapshot-merge 180480/2097152 712
# dmsetup status volumeGroup-base
0 8388608 snapshot-merge 16/2097152 16
# dmsetup status volumeGroup-base
0 8388608 snapshot-merge 16/2097152 16
Merging has finished.
# lvs
LV VG Attr LSize Origin Snap% Move Log Copy% Convert
base volumeGroup owi-a- 4.00g
::
# lvs
LV VG Attr LSize Origin Snap% Move Log Copy% Convert
base volumeGroup owi-a- 4.00g
=============
DM statistics
=============
......@@ -11,7 +12,7 @@ Individual statistics will be collected for each step-sized area within
the range specified.
The I/O statistics counters for each step-sized area of a region are
in the same format as /sys/block/*/stat or /proc/diskstats (see:
in the same format as `/sys/block/*/stat` or `/proc/diskstats` (see:
Documentation/iostats.txt). But two extra counters (12 and 13) are
provided: total time spent reading and writing. When the histogram
argument is used, the 14th parameter is reported that represents the
......@@ -32,40 +33,45 @@ on each other's data.
The creation of DM statistics will allocate memory via kmalloc or
fallback to using vmalloc space. At most, 1/4 of the overall system
memory may be allocated by DM statistics. The admin can see how much
memory is used by reading
/sys/module/dm_mod/parameters/stats_current_allocated_bytes
memory is used by reading:
/sys/module/dm_mod/parameters/stats_current_allocated_bytes
Messages
========
@stats_create <range> <step>
[<number_of_optional_arguments> <optional_arguments>...]
[<program_id> [<aux_data>]]
@stats_create <range> <step> [<number_of_optional_arguments> <optional_arguments>...] [<program_id> [<aux_data>]]
Create a new region and return the region_id.
<range>
"-" - whole device
"<start_sector>+<length>" - a range of <length> 512-byte sectors
starting with <start_sector>.
"-"
whole device
"<start_sector>+<length>"
a range of <length> 512-byte sectors
starting with <start_sector>.
<step>
"<area_size>" - the range is subdivided into areas each containing
<area_size> sectors.
"/<number_of_areas>" - the range is subdivided into the specified
number of areas.
"<area_size>"
the range is subdivided into areas each containing
<area_size> sectors.
"/<number_of_areas>"
the range is subdivided into the specified
number of areas.
<number_of_optional_arguments>
The number of optional arguments
<optional_arguments>
The following optional arguments are supported
precise_timestamps - use precise timer with nanosecond resolution
The following optional arguments are supported:
precise_timestamps
use precise timer with nanosecond resolution
instead of the "jiffies" variable. When this argument is
used, the resulting times are in nanoseconds instead of
milliseconds. Precise timestamps are a little bit slower
to obtain than jiffies-based timestamps.
histogram:n1,n2,n3,n4,... - collect histogram of latencies. The
histogram:n1,n2,n3,n4,...
collect histogram of latencies. The
numbers n1, n2, etc are times that represent the boundaries
of the histogram. If precise_timestamps is not used, the
times are in milliseconds, otherwise they are in
......@@ -96,21 +102,18 @@ Messages
@stats_list message, but it doesn't use this value for anything.
@stats_delete <region_id>
Delete the region with the specified id.
<region_id>
region_id returned from @stats_create
@stats_clear <region_id>
Clear all the counters except the in-flight i/o counters.
<region_id>
region_id returned from @stats_create
@stats_list [<program_id>]
List all regions registered with @stats_create.
<program_id>
......@@ -127,7 +130,6 @@ Messages
if they were specified when creating the region.
@stats_print <region_id> [<starting_line> <number_of_lines>]
Print counters for each step-sized area of a region.
<region_id>
......@@ -143,10 +145,11 @@ Messages
Output format for each step-sized area of a region:
<start_sector>+<length> counters
<start_sector>+<length>
counters
The first 11 counters have the same meaning as
/sys/block/*/stat or /proc/diskstats.
`/sys/block/*/stat or /proc/diskstats`.
Please refer to Documentation/iostats.txt for details.
......@@ -163,11 +166,11 @@ Messages
11. the weighted number of milliseconds spent doing I/Os
Additional counters:
12. the total time spent reading in milliseconds
13. the total time spent writing in milliseconds
@stats_print_clear <region_id> [<starting_line> <number_of_lines>]
Atomically print and then clear all the counters except the
in-flight i/o counters. Useful when the client consuming the
statistics does not want to lose any statistics (those updated
......@@ -185,7 +188,6 @@ Messages
If omitted, all lines are printed and then cleared.
@stats_set_aux <region_id> <aux_data>
Store auxiliary data aux_data for the specified region.
<region_id>
......@@ -201,23 +203,23 @@ Examples
========
Subdivide the DM device 'vol' into 100 pieces and start collecting
statistics on them:
statistics on them::
dmsetup message vol 0 @stats_create - /100
Set the auxiliary data string to "foo bar baz" (the escape for each
space must also be escaped, otherwise the shell will consume them):
space must also be escaped, otherwise the shell will consume them)::
dmsetup message vol 0 @stats_set_aux 0 foo\\ bar\\ baz
List the statistics:
List the statistics::
dmsetup message vol 0 @stats_list
Print the statistics:
Print the statistics::
dmsetup message vol 0 @stats_print 0
Delete the statistics:
Delete the statistics::
dmsetup message vol 0 @stats_delete 0
=========
dm-stripe
=========
......@@ -8,12 +9,16 @@ potentially provide improved I/O throughput by utilizing several physical
devices in parallel.
Parameters: <num devs> <chunk size> [<dev path> <offset>]+
<num devs>: Number of underlying devices.
<chunk size>: Size of each chunk of data. Must be at least as
large as the system's PAGE_SIZE.
<dev path>: Full pathname to the underlying block-device, or a
"major:minor" device-number.
<offset>: Starting sector within the device.
<num devs>:
Number of underlying devices.
<chunk size>:
Size of each chunk of data. Must be at least as
large as the system's PAGE_SIZE.
<dev path>:
Full pathname to the underlying block-device, or a
"major:minor" device-number.
<offset>:
Starting sector within the device.
One or more underlying devices can be specified. The striped device size must
be a multiple of the chunk size multiplied by the number of underlying devices.
......@@ -22,36 +27,35 @@ be a multiple of the chunk size multiplied by the number of underlying devices.
Example scripts
===============
[[
#!/usr/bin/perl -w
# Create a striped device across any number of underlying devices. The device
# will be called "stripe_dev" and have a chunk-size of 128k.
::
my $chunk_size = 128 * 2;
my $dev_name = "stripe_dev";
my $num_devs = @ARGV;
my @devs = @ARGV;
my ($min_dev_size, $stripe_dev_size, $i);
#!/usr/bin/perl -w
# Create a striped device across any number of underlying devices. The device
# will be called "stripe_dev" and have a chunk-size of 128k.
if (!$num_devs) {
die("Specify at least one device\n");
}
my $chunk_size = 128 * 2;
my $dev_name = "stripe_dev";
my $num_devs = @ARGV;
my @devs = @ARGV;
my ($min_dev_size, $stripe_dev_size, $i);
$min_dev_size = `blockdev --getsz $devs[0]`;
for ($i = 1; $i < $num_devs; $i++) {
my $this_size = `blockdev --getsz $devs[$i]`;
$min_dev_size = ($min_dev_size < $this_size) ?
$min_dev_size : $this_size;
}
if (!$num_devs) {
die("Specify at least one device\n");
}
$stripe_dev_size = $min_dev_size * $num_devs;
$stripe_dev_size -= $stripe_dev_size % ($chunk_size * $num_devs);
$min_dev_size = `blockdev --getsz $devs[0]`;
for ($i = 1; $i < $num_devs; $i++) {
my $this_size = `blockdev --getsz $devs[$i]`;
$min_dev_size = ($min_dev_size < $this_size) ?
$min_dev_size : $this_size;
}
$table = "0 $stripe_dev_size striped $num_devs $chunk_size";
for ($i = 0; $i < $num_devs; $i++) {
$table .= " $devs[$i] 0";
}
$stripe_dev_size = $min_dev_size * $num_devs;
$stripe_dev_size -= $stripe_dev_size % ($chunk_size * $num_devs);
`echo $table | dmsetup create $dev_name`;
]]
$table = "0 $stripe_dev_size striped $num_devs $chunk_size";
for ($i = 0; $i < $num_devs; $i++) {
$table .= " $devs[$i] 0";
}
`echo $table | dmsetup create $dev_name`;
=========
dm-switch
=========
......@@ -67,27 +68,25 @@ b-tree can achieve.
Construction Parameters
=======================
<num_paths> <region_size> <num_optional_args> [<optional_args>...]
[<dev_path> <offset>]+
<num_paths>
The number of paths across which to distribute the I/O.
<num_paths> <region_size> <num_optional_args> [<optional_args>...] [<dev_path> <offset>]+
<num_paths>
The number of paths across which to distribute the I/O.
<region_size>
The number of 512-byte sectors in a region. Each region can be redirected
to any of the available paths.
<region_size>
The number of 512-byte sectors in a region. Each region can be redirected
to any of the available paths.
<num_optional_args>
The number of optional arguments. Currently, no optional arguments
are supported and so this must be zero.
<num_optional_args>
The number of optional arguments. Currently, no optional arguments
are supported and so this must be zero.
<dev_path>
The block device that represents a specific path to the device.
<dev_path>
The block device that represents a specific path to the device.
<offset>
The offset of the start of data on the specific <dev_path> (in units
of 512-byte sectors). This number is added to the sector number when
forwarding the request to the specific path. Typically it is zero.
<offset>
The offset of the start of data on the specific <dev_path> (in units
of 512-byte sectors). This number is added to the sector number when
forwarding the request to the specific path. Typically it is zero.
Messages
========
......@@ -122,17 +121,21 @@ Example
Assume that you have volumes vg1/switch0 vg1/switch1 vg1/switch2 with
the same size.
Create a switch device with 64kB region size:
Create a switch device with 64kB region size::
dmsetup create switch --table "0 `blockdev --getsz /dev/vg1/switch0`
switch 3 128 0 /dev/vg1/switch0 0 /dev/vg1/switch1 0 /dev/vg1/switch2 0"
Set mappings for the first 7 entries to point to devices switch0, switch1,
switch2, switch0, switch1, switch2, switch1:
switch2, switch0, switch1, switch2, switch1::
dmsetup message switch 0 set_region_mappings 0:0 :1 :2 :0 :1 :2 :1
Set repetitive mapping. This command:
Set repetitive mapping. This command::
dmsetup message switch 0 set_region_mappings 1000:1 :2 R2,10
is equivalent to:
is equivalent to::
dmsetup message switch 0 set_region_mappings 1000:1 :2 :1 :2 :1 :2 :1 :2 \
:1 :2 :1 :2 :1 :2 :1 :2 :1 :2
=================
Thin provisioning
=================
Introduction
============
......@@ -95,6 +99,8 @@ previously.)
Using an existing pool device
-----------------------------
::
dmsetup create pool \
--table "0 20971520 thin-pool $metadata_dev $data_dev \
$data_block_size $low_water_mark"
......@@ -154,7 +160,7 @@ Thin provisioning
i) Creating a new thinly-provisioned volume.
To create a new thinly- provisioned volume you must send a message to an
active pool device, /dev/mapper/pool in this example.
active pool device, /dev/mapper/pool in this example::
dmsetup message /dev/mapper/pool 0 "create_thin 0"
......@@ -164,7 +170,7 @@ i) Creating a new thinly-provisioned volume.
ii) Using a thinly-provisioned volume.
Thinly-provisioned volumes are activated using the 'thin' target:
Thinly-provisioned volumes are activated using the 'thin' target::
dmsetup create thin --table "0 2097152 thin /dev/mapper/pool 0"
......@@ -181,6 +187,8 @@ i) Creating an internal snapshot.
must suspend it before creating the snapshot to avoid corruption.
This is NOT enforced at the moment, so please be careful!
::
dmsetup suspend /dev/mapper/thin
dmsetup message /dev/mapper/pool 0 "create_snap 1 0"
dmsetup resume /dev/mapper/thin
......@@ -198,14 +206,14 @@ ii) Using an internal snapshot.
activating or removing them both. (This differs from conventional
device-mapper snapshots.)
Activate it exactly the same way as any other thinly-provisioned volume:
Activate it exactly the same way as any other thinly-provisioned volume::
dmsetup create snap --table "0 2097152 thin /dev/mapper/pool 1"
External snapshots
------------------
You can use an external _read only_ device as an origin for a
You can use an external **read only** device as an origin for a
thinly-provisioned volume. Any read to an unprovisioned area of the
thin device will be passed through to the origin. Writes trigger
the allocation of new blocks as usual.
......@@ -223,11 +231,13 @@ i) Creating a snapshot of an external device
This is the same as creating a thin device.
You don't mention the origin at this stage.
::
dmsetup message /dev/mapper/pool 0 "create_thin 0"
ii) Using a snapshot of an external device.
Append an extra parameter to the thin target specifying the origin:
Append an extra parameter to the thin target specifying the origin::
dmsetup create snap --table "0 2097152 thin /dev/mapper/pool 0 /dev/image"
......@@ -240,6 +250,8 @@ Deactivation
All devices using a pool must be deactivated before the pool itself
can be.
::
dmsetup remove thin
dmsetup remove snap
dmsetup remove pool
......@@ -252,25 +264,32 @@ Reference
i) Constructor
thin-pool <metadata dev> <data dev> <data block size (sectors)> \
<low water mark (blocks)> [<number of feature args> [<arg>]*]
::
thin-pool <metadata dev> <data dev> <data block size (sectors)> \
<low water mark (blocks)> [<number of feature args> [<arg>]*]
Optional feature arguments:
skip_block_zeroing: Skip the zeroing of newly-provisioned blocks.
skip_block_zeroing:
Skip the zeroing of newly-provisioned blocks.
ignore_discard: Disable discard support.
ignore_discard:
Disable discard support.
no_discard_passdown: Don't pass discards down to the underlying
data device, but just remove the mapping.
no_discard_passdown:
Don't pass discards down to the underlying
data device, but just remove the mapping.
read_only: Don't allow any changes to be made to the pool
read_only:
Don't allow any changes to be made to the pool
metadata. This mode is only available after the
thin-pool has been created and first used in full
read/write mode. It cannot be specified on initial
thin-pool creation.
error_if_no_space: Error IOs, instead of queueing, if no space.
error_if_no_space:
Error IOs, instead of queueing, if no space.
Data block size must be between 64KB (128 sectors) and 1GB
(2097152 sectors) inclusive.
......@@ -278,10 +297,12 @@ i) Constructor
ii) Status
<transaction id> <used metadata blocks>/<total metadata blocks>
<used data blocks>/<total data blocks> <held metadata root>
ro|rw|out_of_data_space [no_]discard_passdown [error|queue]_if_no_space
needs_check|- metadata_low_watermark
::
<transaction id> <used metadata blocks>/<total metadata blocks>
<used data blocks>/<total data blocks> <held metadata root>
ro|rw|out_of_data_space [no_]discard_passdown [error|queue]_if_no_space
needs_check|- metadata_low_watermark
transaction id:
A 64-bit number used by userspace to help synchronise with metadata
......@@ -336,13 +357,11 @@ ii) Status
iii) Messages
create_thin <dev id>
Create a new thinly-provisioned device.
<dev id> is an arbitrary unique 24-bit identifier chosen by
the caller.
create_snap <dev id> <origin id>
Create a new snapshot of another thinly-provisioned device.
<dev id> is an arbitrary unique 24-bit identifier chosen by
the caller.
......@@ -350,11 +369,9 @@ iii) Messages
of which the new device will be a snapshot.
delete <dev id>
Deletes a thin device. Irreversible.
set_transaction_id <current id> <new id>
Userland volume managers, such as LVM, need a way to
synchronise their external metadata with the internal metadata of the
pool target. The thin-pool target offers to store an
......@@ -364,14 +381,12 @@ iii) Messages
compare-and-swap message.
reserve_metadata_snap
Reserve a copy of the data mapping btree for use by userland.
This allows userland to inspect the mappings as they were when
this message was executed. Use the pool's status command to
get the root block associated with the metadata snapshot.
release_metadata_snap
Release a previously reserved copy of the data mapping btree.
'thin' target
......@@ -379,7 +394,9 @@ iii) Messages
i) Constructor
thin <pool dev> <dev id> [<external origin dev>]
::
thin <pool dev> <dev id> [<external origin dev>]
pool dev:
the thin-pool device, e.g. /dev/mapper/my_pool or 253:0
......@@ -401,8 +418,7 @@ provisioned as and when needed.
ii) Status
<nr mapped sectors> <highest mapped sector>
<nr mapped sectors> <highest mapped sector>
If the pool has encountered device errors and failed, the status
will just contain the string 'Fail'. The userspace recovery
tools should then be used.
......
================================
Device-mapper "unstriped" target
================================
Introduction
============
......@@ -34,46 +38,46 @@ striped target to combine the 4 devices into one. It then will use
the unstriped target ontop of the striped device to access the
individual backing loop devices. We write data to the newly exposed
unstriped devices and verify the data written matches the correct
underlying device on the striped array.
underlying device on the striped array::
#!/bin/bash
#!/bin/bash
MEMBER_SIZE=$((128 * 1024 * 1024))
NUM=4
SEQ_END=$((${NUM}-1))
CHUNK=256
BS=4096
MEMBER_SIZE=$((128 * 1024 * 1024))
NUM=4
SEQ_END=$((${NUM}-1))
CHUNK=256
BS=4096
RAID_SIZE=$((${MEMBER_SIZE}*${NUM}/512))
DM_PARMS="0 ${RAID_SIZE} striped ${NUM} ${CHUNK}"
COUNT=$((${MEMBER_SIZE} / ${BS}))
RAID_SIZE=$((${MEMBER_SIZE}*${NUM}/512))
DM_PARMS="0 ${RAID_SIZE} striped ${NUM} ${CHUNK}"
COUNT=$((${MEMBER_SIZE} / ${BS}))
for i in $(seq 0 ${SEQ_END}); do
dd if=/dev/zero of=member-${i} bs=${MEMBER_SIZE} count=1 oflag=direct
losetup /dev/loop${i} member-${i}
DM_PARMS+=" /dev/loop${i} 0"
done
for i in $(seq 0 ${SEQ_END}); do
dd if=/dev/zero of=member-${i} bs=${MEMBER_SIZE} count=1 oflag=direct
losetup /dev/loop${i} member-${i}
DM_PARMS+=" /dev/loop${i} 0"
done
echo $DM_PARMS | dmsetup create raid0
for i in $(seq 0 ${SEQ_END}); do
echo "0 1 unstriped ${NUM} ${CHUNK} ${i} /dev/mapper/raid0 0" | dmsetup create set-${i}
done;
echo $DM_PARMS | dmsetup create raid0
for i in $(seq 0 ${SEQ_END}); do
echo "0 1 unstriped ${NUM} ${CHUNK} ${i} /dev/mapper/raid0 0" | dmsetup create set-${i}
done;
for i in $(seq 0 ${SEQ_END}); do
dd if=/dev/urandom of=/dev/mapper/set-${i} bs=${BS} count=${COUNT} oflag=direct
diff /dev/mapper/set-${i} member-${i}
done;
for i in $(seq 0 ${SEQ_END}); do
dd if=/dev/urandom of=/dev/mapper/set-${i} bs=${BS} count=${COUNT} oflag=direct
diff /dev/mapper/set-${i} member-${i}
done;
for i in $(seq 0 ${SEQ_END}); do
dmsetup remove set-${i}
done
for i in $(seq 0 ${SEQ_END}); do
dmsetup remove set-${i}
done
dmsetup remove raid0
dmsetup remove raid0
for i in $(seq 0 ${SEQ_END}); do
losetup -d /dev/loop${i}
rm -f member-${i}
done
for i in $(seq 0 ${SEQ_END}); do
losetup -d /dev/loop${i}
rm -f member-${i}
done
Another example
---------------
......@@ -81,7 +85,7 @@ Another example
Intel NVMe drives contain two cores on the physical device.
Each core of the drive has segregated access to its LBA range.
The current LBA model has a RAID 0 128k chunk on each core, resulting
in a 256k stripe across the two cores:
in a 256k stripe across the two cores::
Core 0: Core 1:
__________ __________
......@@ -108,17 +112,24 @@ Example dmsetup usage
unstriped ontop of Intel NVMe device that has 2 cores
-----------------------------------------------------
dmsetup create nvmset0 --table '0 512 unstriped 2 256 0 /dev/nvme0n1 0'
dmsetup create nvmset1 --table '0 512 unstriped 2 256 1 /dev/nvme0n1 0'
::
dmsetup create nvmset0 --table '0 512 unstriped 2 256 0 /dev/nvme0n1 0'
dmsetup create nvmset1 --table '0 512 unstriped 2 256 1 /dev/nvme0n1 0'
There will now be two devices that expose Intel NVMe core 0 and 1
respectively:
/dev/mapper/nvmset0
/dev/mapper/nvmset1
respectively::
/dev/mapper/nvmset0
/dev/mapper/nvmset1
unstriped ontop of striped with 4 drives using 128K chunk size
--------------------------------------------------------------
dmsetup create raid_disk0 --table '0 512 unstriped 4 256 0 /dev/mapper/striped 0'
dmsetup create raid_disk1 --table '0 512 unstriped 4 256 1 /dev/mapper/striped 0'
dmsetup create raid_disk2 --table '0 512 unstriped 4 256 2 /dev/mapper/striped 0'
dmsetup create raid_disk3 --table '0 512 unstriped 4 256 3 /dev/mapper/striped 0'
::
dmsetup create raid_disk0 --table '0 512 unstriped 4 256 0 /dev/mapper/striped 0'
dmsetup create raid_disk1 --table '0 512 unstriped 4 256 1 /dev/mapper/striped 0'
dmsetup create raid_disk2 --table '0 512 unstriped 4 256 2 /dev/mapper/striped 0'
dmsetup create raid_disk3 --table '0 512 unstriped 4 256 3 /dev/mapper/striped 0'
=========
dm-verity
==========
=========
Device-Mapper's "verity" target provides transparent integrity checking of
block devices using a cryptographic digest provided by the kernel crypto API.
......@@ -7,6 +8,9 @@ This target is read-only.
Construction Parameters
=======================
::
<version> <dev> <hash_dev>
<data_block_size> <hash_block_size>
<num_data_blocks> <hash_start_block>
......@@ -160,7 +164,9 @@ calculating the parent node.
The tree looks something like:
alg = sha256, num_blocks = 32768, block_size = 4096
alg = sha256, num_blocks = 32768, block_size = 4096
::
[ root ]
/ . . . \
......@@ -189,6 +195,7 @@ block boundary) are the hash blocks which are stored a depth at a time
The full specification of kernel parameters and on-disk metadata format
is available at the cryptsetup project's wiki page
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMVerity
Status
......@@ -198,7 +205,8 @@ If any check failed, C (for Corruption) is returned.
Example
=======
Set up a device:
Set up a device::
# dmsetup create vroot --readonly --table \
"0 2097152 verity 1 /dev/sda1 /dev/sda2 4096 4096 262144 1 sha256 "\
"4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076 "\
......@@ -209,11 +217,13 @@ the hash tree or activate the kernel device. This is available from
the cryptsetup upstream repository https://gitlab.com/cryptsetup/cryptsetup/
(as a libcryptsetup extension).
Create hash on the device:
Create hash on the device::
# veritysetup format /dev/sda1 /dev/sda2
...
Root hash: 4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076
Activate the device:
Activate the device::
# veritysetup create vroot /dev/sda1 /dev/sda2 \
4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076
=================
Writecache target
=================
The writecache target caches writes on persistent memory or on SSD. It
doesn't cache reads because reads are supposed to be cached in page cache
in normal RAM.
......@@ -6,15 +10,18 @@ When the device is constructed, the first sector should be zeroed or the
first sector should contain valid superblock from previous invocation.
Constructor parameters:
1. type of the cache device - "p" or "s"
p - persistent memory
s - SSD
- p - persistent memory
- s - SSD
2. the underlying device that will be cached
3. the cache device
4. block size (4096 is recommended; the maximum block size is the page
size)
5. the number of optional parameters (the parameters with an argument
count as two)
start_sector n (default: 0)
offset from the start of cache device in 512-byte sectors
high_watermark n (default: 50)
......@@ -43,6 +50,7 @@ Constructor parameters:
applicable only to persistent memory - don't use the FUA
flag when writing back data and send the FLUSH request
afterwards
- some underlying devices perform better with fua, some
with nofua. The user should test it
......@@ -60,6 +68,7 @@ Messages:
flush the cache device on next suspend. Use this message
when you are going to remove the cache device. The proper
sequence for removing the cache device is:
1. send the "flush_on_suspend" message
2. load an inactive table with a linear target that maps
to the underlying device
......
=======
dm-zero
=======
......@@ -18,20 +19,19 @@ filesystem limitations.
To create a sparse device, start by creating a dm-zero device that's the
desired size of the sparse device. For this example, we'll assume a 10TB
sparse device.
sparse device::
TEN_TERABYTES=`expr 10 \* 1024 \* 1024 \* 1024 \* 2` # 10 TB in sectors
echo "0 $TEN_TERABYTES zero" | dmsetup create zero1
TEN_TERABYTES=`expr 10 \* 1024 \* 1024 \* 1024 \* 2` # 10 TB in sectors
echo "0 $TEN_TERABYTES zero" | dmsetup create zero1
Then create a snapshot of the zero device, using any available block-device as
the COW device. The size of the COW device will determine the amount of real
space available to the sparse device. For this example, we'll assume /dev/sdb1
is an available 10GB partition.
is an available 10GB partition::
echo "0 $TEN_TERABYTES snapshot /dev/mapper/zero1 /dev/sdb1 p 128" | \
dmsetup create sparse1
echo "0 $TEN_TERABYTES snapshot /dev/mapper/zero1 /dev/sdb1 p 128" | \
dmsetup create sparse1
This will create a 10TB sparse device called /dev/mapper/sparse1 that has
10GB of actual storage space available. If more than 10GB of data is written
to this device, it will start returning I/O errors.
......@@ -417,9 +417,9 @@ will then have to be provided beforehand in the normal way.
[DMC-CBC-ATTACK] http://www.jakoblell.com/blog/2013/12/22/practical-malleability-attack-against-cbc-encrypted-luks-partitions/
[DM-INTEGRITY] https://www.kernel.org/doc/Documentation/device-mapper/dm-integrity.txt
[DM-INTEGRITY] https://www.kernel.org/doc/Documentation/device-mapper/dm-integrity.rst
[DM-VERITY] https://www.kernel.org/doc/Documentation/device-mapper/verity.txt
[DM-VERITY] https://www.kernel.org/doc/Documentation/device-mapper/verity.rst
[FSCRYPT-POLICY2] https://www.spinics.net/lists/linux-ext4/msg58710.html
......
......@@ -453,7 +453,7 @@ config DM_INIT
Enable "dm-mod.create=" parameter to create mapped devices at init time.
This option is useful to allow mounting rootfs without requiring an
initramfs.
See Documentation/device-mapper/dm-init.txt for dm-mod.create="..."
See Documentation/device-mapper/dm-init.rst for dm-mod.create="..."
format.
If unsure, say N.
......
......@@ -25,7 +25,7 @@ static char *create;
* Format: dm-mod.create=<name>,<uuid>,<minor>,<flags>,<table>[,<table>+][;<name>,<uuid>,<minor>,<flags>,<table>[,<table>+]+]
* Table format: <start_sector> <num_sectors> <target_type> <target_args>
*
* See Documentation/device-mapper/dm-init.txt for dm-mod.create="..." format
* See Documentation/device-mapper/dm-init.rst for dm-mod.create="..." format
* details.
*/
......
......@@ -3558,7 +3558,7 @@ static void raid_status(struct dm_target *ti, status_type_t type,
* v1.5.0+:
*
* Sync action:
* See Documentation/device-mapper/dm-raid.txt for
* See Documentation/device-mapper/dm-raid.rst for
* information on each of these states.
*/
DMEMIT(" %s", sync_action);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment