- 19 Apr, 2020 5 commits
-
-
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds authored
Pull scheduler fixes from Thomas Gleixner: "Two fixes for the scheduler: - Work around an uninitialized variable warning where GCC can't figure it out. - Allow 'isolcpus=' to skip unknown subparameters so that older kernels work with the commandline of a newer kernel. Improve the error output while at it" * tag 'sched-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/vtime: Work around an unitialized variable warning sched/isolation: Allow "isolcpus=" to skip unknown sub-parameters
-
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds authored
Pull RCU fix from Thomas Gleixner: "A single bugfix for RCU to prevent taking a lock in NMI context" * tag 'core-urgent-2020-04-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: rcu: Don't acquire lock in NMI handler in rcu_nmi_enter_common()
-
git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4Linus Torvalds authored
Pull ext4 fixes from Ted Ts'o: "Miscellaneous bug fixes and cleanups for ext4, including a fix for generic/388 in data=journal mode, removing some BUG_ON's, and cleaning up some compiler warnings" * tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: ext4: convert BUG_ON's to WARN_ON's in mballoc.c ext4: increase wait time needed before reuse of deleted inode numbers ext4: remove set but not used variable 'es' in ext4_jbd2.c ext4: remove set but not used variable 'es' ext4: do not zeroout extents beyond i_disksize ext4: fix return-value types in several function comments ext4: use non-movable memory for superblock readahead ext4: use matching invalidatepage in ext4_writepage
-
git://git.samba.org/sfrench/cifs-2.6Linus Torvalds authored
Pull cifs fixes from Steve French: "Three small smb3 fixes: two debug related (helping network tracing for SMB2 mounts, and the other removing an unintended debug line on signing failures), and one fixing a performance problem with 64K pages" * tag '5.7-rc-smb3-fixes' of git://git.samba.org/sfrench/cifs-2.6: smb3: remove overly noisy debug line in signing errors cifs: improve read performance for page size 64KB & cache=strict & vers=2.1+ cifs: dump the session id and keys also for SMB2 sessions
-
Linus Torvalds authored
Merge tag 'flexible-array-member-5.7-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gustavoars/linux Pull flexible-array member conversion from Gustavo Silva: "The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] sizeof(flexible-array-member) triggers a warning because flexible array members have incomplete type[1]. There are some instances of code in which the sizeof operator is being incorrectly/erroneously applied to zero-length arrays and the result is zero. Such instances may be hiding some bugs. So, this work (flexible-array member convertions) will also help to get completely rid of those sorts of issues. Notice that all of these patches have been baking in linux-next for quite a while now and, 238 more of these patches have already been merged into 5.7-rc1. There are a couple hundred more of these issues waiting to be addressed in the whole codebase" [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") * tag 'flexible-array-member-5.7-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gustavoars/linux: (28 commits) xattr.h: Replace zero-length array with flexible-array member uapi: linux: fiemap.h: Replace zero-length array with flexible-array member uapi: linux: dlm_device.h: Replace zero-length array with flexible-array member tpm_eventlog.h: Replace zero-length array with flexible-array member ti_wilink_st.h: Replace zero-length array with flexible-array member swap.h: Replace zero-length array with flexible-array member skbuff.h: Replace zero-length array with flexible-array member sched: topology.h: Replace zero-length array with flexible-array member rslib.h: Replace zero-length array with flexible-array member rio.h: Replace zero-length array with flexible-array member posix_acl.h: Replace zero-length array with flexible-array member platform_data: wilco-ec.h: Replace zero-length array with flexible-array member memcontrol.h: Replace zero-length array with flexible-array member list_lru.h: Replace zero-length array with flexible-array member lib: cpu_rmap: Replace zero-length array with flexible-array member irq.h: Replace zero-length array with flexible-array member ihex.h: Replace zero-length array with flexible-array member igmp.h: Replace zero-length array with flexible-array member genalloc.h: Replace zero-length array with flexible-array member ethtool.h: Replace zero-length array with flexible-array member ...
-
- 18 Apr, 2020 35 commits
-
-
git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsiLinus Torvalds authored
Pull SCSI fixes from James Bottomley: "Seven fixes: three in target, one on a sg error leg, two in qla2xxx fixing warnings introduced in the last merge window and updating MAINTAINERS and one in hisi_sas fixing a problem introduced by libata" * tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: scsi: sg: add sg_remove_request in sg_common_write scsi: target: tcmu: reset_ring should reset TCMU_DEV_BIT_BROKEN scsi: target: fix PR IN / READ FULL STATUS for FC scsi: target: Write NULL to *port_nexus_ptr if no ISID scsi: MAINTAINERS: Update qla2xxx FC-SCSI driver maintainer scsi: qla2xxx: Fix regression warnings scsi: hisi_sas: Fix build error without SATA_HOST
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Gustavo A. R. Silva authored
The current codebase makes use of the zero-length array language extension to the C90 standard, but the preferred mechanism to declare variable-length types such as these ones is a flexible array member[1][2], introduced in C99: struct foo { int stuff; struct boo array[]; }; By making use of the mechanism above, we will get a compiler warning in case the flexible array does not occur last in the structure, which will help us prevent some kind of undefined behavior bugs from being inadvertently introduced[3] to the codebase from now on. Also, notice that, dynamic memory allocations won't be affected by this change: "Flexible array members have incomplete type, and so the sizeof operator may not be applied. As a quirk of the original implementation of zero-length arrays, sizeof evaluates to zero."[1] This issue was found with the help of Coccinelle. [1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html [2] https://github.com/KSPP/linux/issues/21 [3] commit 76497732 ("cxgb3/l2t: Fix undefined behaviour") Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
-
Linus Torvalds authored
Merge tag 'hwmon-for-v5.7-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging Pull hwmon fixes from Guenter Roeck: - Fix up chip IDs (isl68137) - error handling for invalid temperatures and use true module name (drivetemp) - Fix static symbol warnings (k10temp) - Use valid hwmon device name (jc42) * tag 'hwmon-for-v5.7-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging: hwmon: (jc42) Fix name to have no illegal characters hwmon: (k10temp) make some symbols static hwmon: (drivetemp) Return -ENODATA for invalid temperatures hwmon: (drivetemp) Use drivetemp's true module name in Kconfig section hwmon: (pmbus/isl68137) Fix up chip IDs
-
git://git.kernel.org/pub/scm/fs/xfs/xfs-linuxLinus Torvalds authored
Pull xfs fixes from Darrick Wong: "The three commits here fix some livelocks and other clashes with fsfreeze, a potential corruption problem, and a minor race between processes freeing and allocating space when the filesystem is near ENOSPC. Summary: - Fix a partially uninitialized variable. - Teach the background gc threads to apply for fsfreeze protection. - Fix some scaling problems when multiple threads try to flush the filesystem when we're about to hit ENOSPC" * tag 'xfs-5.7-fixes-3' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: xfs: move inode flush to the sync workqueue xfs: fix partially uninitialized structure in xfs_reflink_remap_extent xfs: acquire superblock freeze protection on eofblocks scans
-
git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linuxLinus Torvalds authored
Pull thread fixes from Christian Brauner: "A few fixes and minor improvements: - Correctly validate the cgroup file descriptor when clone3() is used with CLONE_INTO_CGROUP. - Check that a new enough version of struct clone_args is passed which supports the cgroup file descriptor argument when CLONE_INTO_CGROUP is set in the flags argument. - Catch nonsensical struct clone_args layouts at build time. - Catch extensions of struct clone_args without updating the uapi visible size definitions at build time. - Check whether the signal is valid early in kill_pid_usb_asyncio() before doing further work. - Replace open-coded rcu_read_lock()+kill_pid_info()+rcu_read_unlock() sequence in kill_something_info() with kill_proc_info() which is a dedicated helper to do just that" * tag 'for-linus-2020-04-18' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: clone3: add build-time CLONE_ARGS_SIZE_VER* validity checks clone3: add a check for the user struct size if CLONE_INTO_CGROUP is set clone3: fix cgroup argument sanity check signal: use kill_proc_info instead of kill_pid_info in kill_something_info signal: check sig before setting info in kill_pid_usb_asyncio
-
git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linuxLinus Torvalds authored
Pull i2c fixes from Wolfram Sang: "Some driver bugfixes and an old API removal now that all users are gone" * 'i2c/for-current' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux: i2c: tegra: Synchronize DMA before termination i2c: tegra: Better handle case where CPU0 is busy for a long time i2c: remove i2c_new_probed_device API i2c: altera: use proper variable to hold errno i2c: designware: platdrv: Remove DPM_FLAG_SMART_SUSPEND flag on BYT and CHT
-
git://anongit.freedesktop.org/drm/drmLinus Torvalds authored
Pull drm fixes from Dave Airlie: "Quiet enough for rc2, mostly amdgpu fixes, a couple of i915 fixes, and one nouveau module firmware fix: i915: - Fix guest page access by using the brand new VFIO dma r/w interface (Yan) - Fix for i915 perf read buffers (Ashutosh) amdgpu: - gfx10 fix - SMU7 overclocking fix - RAS fix - GPU reset fix - Fix a regression in a previous suspend/resume fix - Add a gfxoff quirk nouveau: - fix missing MODULE_FIRMWARE" * tag 'drm-fixes-2020-04-18' of git://anongit.freedesktop.org/drm/drm: drm/nouveau/sec2/gv100-: add missing MODULE_FIRMWARE() drm/amdgpu/gfx9: add gfxoff quirk drm/amdgpu: fix the hw hang during perform system reboot and reset drm/i915/gvt: switch to user vfio_group_pin/upin_pages drm/i915/gvt: subsitute kvm_read/write_guest with vfio_dma_rw drm/i915/gvt: hold reference of VFIO group during opening of vgpu drm/i915/perf: Do not clear pollin for small user read buffers drm/amdgpu: fix wrong vram lost counter increment V2 drm/amd/powerplay: unload mp1 for Arcturus RAS baco reset drm/amd/powerplay: force the trim of the mclk dpm_levels if OD is enabled Revert "drm/amdgpu: change SH MEM alignment mode for gfx10"
-
Sascha Hauer authored
The jc42 driver passes I2C client's name as hwmon device name. In case of device tree probed devices this ends up being part of the compatible string, "jc-42.4-temp". This name contains hyphens and the hwmon core doesn't like this: jc42 2-0018: hwmon: 'jc-42.4-temp' is not a valid name attribute, please fix This changes the name to "jc42" which doesn't have any illegal characters. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> Link: https://lore.kernel.org/r/20200417092853.31206-1-s.hauer@pengutronix.deSigned-off-by: Guenter Roeck <linux@roeck-us.net>
-