- 04 Jun, 2020 40 commits
-
-
Anshuman Khandual authored
Patch series "mm/thp: Rename pmd_mknotpresent() as pmd_mknotvalid()", v2. This series renames pmd_mknotpresent() as pmd_mknotvalid(). Before that it drops an existing pmd_mknotpresent() definition from powerpc platform which was never required as it defines it's pmdp_invalidate() through subscribing __HAVE_ARCH_PMDP_INVALIDATE. This does not create any functional change. This rename was suggested by Catalin during a previous discussion while we were trying to change the THP helpers on arm64 platform for migration. https://patchwork.kernel.org/patch/11019637/ This patch (of 2): Platform needs to define pmd_mknotpresent() for generic pmdp_invalidate() only when __HAVE_ARCH_PMDP_INVALIDATE is not subscribed. Otherwise platform specific pmd_mknotpresent() is not required. Hence just drop it. Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will@kernel.org> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1587520326-10099-1-git-send-email-anshuman.khandual@arm.com Link: http://lkml.kernel.org/r/1584680057-13753-1-git-send-email-anshuman.khandual@arm.com Link: http://lkml.kernel.org/r/1584680057-13753-2-git-send-email-anshuman.khandual@arm.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Yang Shi authored
Since commit 8f182270 ("mm/swap.c: flush lru pvecs on compound page arrival") THP would not stay in pagevec anymore. So the optimization made by commit d9654322 ("thp: increase split_huge_page() success rate") doesn't make sense anymore, which tries to unpin munlocked THPs from pagevec by draining pagevec. Draining lru cache before isolating THP in mlock path is also unnecessary. b676b293 ("mm, thp: fix mapped pages avoiding unevictable list on mlock") added it and 9a73f61b ("thp, mlock: do not mlock PTE-mapped file huge pages") accidentally carried it over after the above optimization went in. Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Link: http://lkml.kernel.org/r/1585946493-7531-1-git-send-email-yang.shi@linux.alibaba.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Shijie Hu authored
In a 32-bit program, running on arm64 architecture. When the address space below mmap base is completely exhausted, shmat() for huge pages will return ENOMEM, but shmat() for normal pages can still success on no-legacy mode. This seems not fair. For normal pages, the calling trace of get_unmapped_area() is: => mm->get_unmapped_area() if on legacy mode, => arch_get_unmapped_area() => vm_unmapped_area() if on no-legacy mode, => arch_get_unmapped_area_topdown() => vm_unmapped_area() For huge pages, the calling trace of get_unmapped_area() is: => file->f_op->get_unmapped_area() => hugetlb_get_unmapped_area() => vm_unmapped_area() To solve this issue, we only need to make hugetlb_get_unmapped_area() take the same way as mm->get_unmapped_area(). Add *bottomup() and *topdown() for hugetlbfs, and check current mm->get_unmapped_area() to decide which one to use. If mm->get_unmapped_area is equal to arch_get_unmapped_area_topdown(), hugetlb_get_unmapped_area() calls topdown routine, otherwise calls bottomup routine. Reported-by: kbuild test robot <lkp@intel.com> Signed-off-by: Shijie Hu <hushijie3@huawei.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Will Deacon <will@kernel.org> Cc: Xiaoming Ni <nixiaoming@huawei.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: yangerkun <yangerkun@huawei.com> Cc: ChenGang <cg.chen@huawei.com> Cc: Chen Jie <chenjie6@huawei.com> Link: http://lkml.kernel.org/r/20200518065338.113664-1-hushijie3@huawei.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mike Rapoport authored
sparc32 never registered the memory occupied by the kernel image with memblock_add() and it only reserved this memory with meblock_reserve(). With openbios as system firmware, the memory occupied by the kernel is reserved in openbios and removed from mem.available. The prom setup code in the kernel uses mem.available to set up the memory banks and essentially there is a hole for the memory occupied by the kernel image. Later in bootmem_init() this memory is memblock_reserve()d. Up until recently, memmap initialization would call __init_single_page() for the pages in that hole, the free_low_memory_core_early() would mark them as reserved and everything would be Ok. After the change in memmap initialization introduced by the commit "mm: memmap_init: iterate over memblock regions rather that check each PFN", the hole is skipped and the page structs for it are not initialized. And when they are passed from memblock to page allocator as reserved, the latter gets confused. Simply registering the memory occupied by the kernel with memblock_add() resolves this issue. Tested on qemu-system-sparc with Debian Etch [1] userspace. [1] https://people.debian.org/~aurel32/qemu/sparc/debian_etch_sparc_small.qcow2Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: David S. Miller <davem@davemloft.net> Cc: Guenter Roeck <linux@roeck-us.net> Link: https://lkml.kernel.org/r/20200517000050.GA87467@roeck-us.nlllllet/Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
chenqiwu authored
Fix a minor typo "usabe->usable" for the current discription of member variable "memory" in struct memblock. BTW, I think it's unclear the member variable "base" in struct memblock_type is currently described as the physical address of memory region, change it to base address of the region is clearer since the variable is decorated as phys_addr_t. Signed-off-by: chenqiwu <chenqiwu@xiaomi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Link: http://lkml.kernel.org/r/1588846952-32166-1-git-send-email-qiwuchen55@gmail.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Michal Hocko authored
ba841078 ("mm/mempolicy: Allow lookup_node() to handle fatal signal") has added a special casing for 0 return value because that was a possible gup return value when interrupted by fatal signal. This has been fixed by ae46d2aa ("mm/gup: Let __get_user_pages_locked() return -EINTR for fatal signal") in the mean time so ba841078 can be reverted. This patch however doesn't go all the way to revert it because the check for 0 is wrong and confusing here. Firstly it is inherently unsafe to access the page when get_user_pages_locked returns 0 (aka no page returned). Fortunatelly this will not happen because get_user_pages_locked will not return 0 when nr_pages > 0 unless FOLL_NOWAIT is specified which is not the case here. Document this potential error code in gup code while we are at it. Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Peter Xu <peterx@redhat.com> Link: http://lkml.kernel.org/r/20200421071026.18394-1-mhocko@kernel.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Changhee Han authored
To see a sorted result from page_owner, there must be a tiresome preprocessing step before running page_owner_sort. This patch simply filters out lines which start with "PFN" while reading the page owner report. Signed-off-by: Changhee Han <ch0.han@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Jonathan Corbet <corbet@lwn.net> Link: http://lkml.kernel.org/r/20200429052940.16968-1-ch0.han@lge.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Shakeel Butt authored
The commit 2262185c ("mm: per-cgroup memory reclaim stats") added PGLAZYFREE, PGACTIVATE & PGDEACTIVATE stats for cgroups but missed couple of places and PGLAZYFREE missed huge page handling. Fix that. Also for PGLAZYFREE use the irq-unsafe function to update as the irq is already disabled. Fixes: 2262185c ("mm: per-cgroup memory reclaim stats") Signed-off-by: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: http://lkml.kernel.org/r/20200527182947.251343-1-shakeelb@google.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Shakeel Butt authored
Many of the callbacks called by pagevec_lru_move_fn() does not correctly update the vmstats for huge pages. Fix that. Also __pagevec_lru_add_fn() use the irq-unsafe alternative to update the stat as the irqs are already disabled. Signed-off-by: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Link: http://lkml.kernel.org/r/20200527182916.249910-1-shakeelb@google.comSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
When LRU cost only shows up on one list, we abruptly stop scanning that list altogether. That's an extreme reaction: by the time the other list starts thrashing and the pendulum swings back, we may have no recent age information on the first list anymore, and we could have significant latencies until the scanner has caught up. Soften this change in the feedback system by ensuring that no list receives less than a third of overall pressure, and only distribute the other 66% according to LRU cost. This ensures that we maintain a minimum rate of aging on the entire workingset while it's being pressured, while still allowing a generous rate of convergence when the relative sizes of the lists need to adjust. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-15-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
The VM tries to balance reclaim pressure between anon and file so as to reduce the amount of IO incurred due to the memory shortage. It already counts refaults and swapins, but in addition it should also count writepage calls during reclaim. For swap, this is obvious: it's IO that wouldn't have occurred if the anonymous memory hadn't been under memory pressure. From a relative balancing point of view this makes sense as well: even if anon is cold and reclaimable, a cache that isn't thrashing may have equally cold pages that don't require IO to reclaim. For file writeback, it's trickier: some of the reclaim writepage IO would have likely occurred anyway due to dirty expiration. But not all of it - premature writeback reduces batching and generates additional writes. Since the flushers are already woken up by the time the VM starts writing cache pages one by one, let's assume that we'e likely causing writes that wouldn't have happened without memory pressure. In addition, the per-page cost of IO would have probably been much cheaper if written in larger batches from the flusher thread rather than the single-page-writes from kswapd. For our purposes - getting the trend right to accelerate convergence on a stable state that doesn't require paging at all - this is sufficiently accurate. If we later wanted to optimize for sustained thrashing, we can still refine the measurements. Count all writepage calls from kswapd as IO cost toward the LRU that the page belongs to. Why do this dynamically? Don't we know in advance that anon pages require IO to reclaim, and so could build in a static bias? First, scanning is not the same as reclaiming. If all the anon pages are referenced, we may not swap for a while just because we're scanning the anon list. During this time, however, it's important that we age anonymous memory and the page cache at the same rate so that their hot-cold gradients are comparable. Everything else being equal, we still want to reclaim the coldest memory overall. Second, we keep copies in swap unless the page changes. If there is swap-backed data that's mostly read (tmpfs file) and has been swapped out before, we can reclaim it without incurring additional IO. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-14-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
We split the LRU lists into anon and file, and we rebalance the scan pressure between them when one of them begins thrashing: if the file cache experiences workingset refaults, we increase the pressure on anonymous pages; if the workload is stalled on swapins, we increase the pressure on the file cache instead. With cgroups and their nested LRU lists, we currently don't do this correctly. While recursive cgroup reclaim establishes a relative LRU order among the pages of all involved cgroups, LRU pressure balancing is done on an individual cgroup LRU level. As a result, when one cgroup is thrashing on the filesystem cache while a sibling may have cold anonymous pages, pressure doesn't get equalized between them. This patch moves LRU balancing decision to the root of reclaim - the same level where the LRU order is established. It does this by tracking LRU cost recursively, so that every level of the cgroup tree knows the aggregate LRU cost of all memory within its domain. When the page scanner calculates the scan balance for any given individual cgroup's LRU list, it uses the values from the ancestor cgroup that initiated the reclaim cycle. If one sibling is then thrashing on the cache, it will tip the pressure balance inside its ancestors, and the next hierarchical reclaim iteration will go more after the anon pages in the tree. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-13-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
Since the LRUs were split into anon and file lists, the VM has been balancing between page cache and anonymous pages based on per-list ratios of scanned vs. rotated pages. In most cases that tips page reclaim towards the list that is easier to reclaim and has the fewest actively used pages, but there are a few problems with it: 1. Refaults and LRU rotations are weighted the same way, even though one costs IO and the other costs a bit of CPU. 2. The less we scan an LRU list based on already observed rotations, the more we increase the sampling interval for new references, and rotations become even more likely on that list. This can enter a death spiral in which we stop looking at one list completely until the other one is all but annihilated by page reclaim. Since commit a528910e ("mm: thrash detection-based file cache sizing") we have refault detection for the page cache. Along with swapin events, they are good indicators of when the file or anon list, respectively, is too small for its workingset and needs to grow. For example, if the page cache is thrashing, the cache pages need more time in memory, while there may be colder pages on the anonymous list. Likewise, if swapped pages are faulting back in, it indicates that we reclaim anonymous pages too aggressively and should back off. Replace LRU rotations with refaults and swapins as the basis for relative reclaim cost of the two LRUs. This will have the VM target list balances that incur the least amount of IO on aggregate. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-12-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
When shrinking the active file list we rotate referenced pages only when they're in an executable mapping. The others get deactivated. When it comes to balancing scan pressure, though, we count all referenced pages as rotated, even the deactivated ones. Yet they do not carry the same cost to the system: the deactivated page *might* refault later on, but the deactivation is tangible progress toward freeing pages; rotations on the other hand cost time and effort without getting any closer to freeing memory. Don't treat both events as equal. The following patch will hook up LRU balancing to cache and anon refaults, which are a much more concrete cost signal for reclaiming one list over the other. Thus, remove the maybe-IO cost bias from page references, and only note the CPU cost for actual rotations that prevent the pages from getting reclaimed. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-11-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
Operations like MADV_FREE, FADV_DONTNEED etc. currently move any affected active pages to the inactive list to accelerate their reclaim (good) but also steer page reclaim toward that LRU type, or away from the other (bad). The reason why this is undesirable is that such operations are not part of the regular page aging cycle, and rather a fluke that doesn't say much about the remaining pages on that list; they might all be in heavy use, and once the chunk of easy victims has been purged, the VM continues to apply elevated pressure on those remaining hot pages. The other LRU, meanwhile, might have easily reclaimable pages, and there was never a need to steer away from it in the first place. As the previous patch outlined, we should focus on recording actually observed cost to steer the balance rather than speculating about the potential value of one LRU list over the other. In that spirit, leave explicitely deactivated pages to the LRU algorithm to pick up, and let rotations decide which list is the easiest to reclaim. [cai@lca.pw: fix set-but-not-used warning] Link: http://lkml.kernel.org/r/20200522133335.GA624@Qians-MacBook-Air.localSigned-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Rik van Riel <riel@surriel.com> Cc: Qian Cai <cai@lca.pw> Link: http://lkml.kernel.org/r/20200520232525.798933-10-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
Currently, scan pressure between the anon and file LRU lists is balanced based on a mixture of reclaim efficiency and a somewhat vague notion of "value" of having certain pages in memory over others. That concept of value is problematic, because it has caused us to count any event that remotely makes one LRU list more or less preferrable for reclaim, even when these events are not directly comparable and impose very different costs on the system. One example is referenced file pages that we still deactivate and referenced anonymous pages that we actually rotate back to the head of the list. There is also conceptual overlap with the LRU algorithm itself. By rotating recently used pages instead of reclaiming them, the algorithm already biases the applied scan pressure based on page value. Thus, when rebalancing scan pressure due to rotations, we should think of reclaim cost, and leave assessing the page value to the LRU algorithm. Lastly, considering both value-increasing as well as value-decreasing events can sometimes cause the same type of event to be counted twice, i.e. how rotating a page increases the LRU value, while reclaiming it succesfully decreases the value. In itself this will balance out fine, but it quietly skews the impact of events that are only recorded once. The abstract metric of "value", the murky relationship with the LRU algorithm, and accounting both negative and positive events make the current pressure balancing model hard to reason about and modify. This patch switches to a balancing model of accounting the concrete, actually observed cost of reclaiming one LRU over another. For now, that cost includes pages that are scanned but rotated back to the list head. Subsequent patches will add consideration for IO caused by refaulting of recently evicted pages. Replace struct zone_reclaim_stat with two cost counters in the lruvec, and make everything that affects cost go through a new lru_note_cost() function. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-9-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
When we calculate the relative scan pressure between the anon and file LRU lists, we have to assume that reclaim_stat can contain zeroes. To avoid div0 crashes, we add 1 to all denominators like so: anon_prio = swappiness; file_prio = 200 - anon_prio; [...] /* * The amount of pressure on anon vs file pages is inversely * proportional to the fraction of recently scanned pages on * each list that were recently referenced and in active use. */ ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); ap /= reclaim_stat->recent_rotated[0] + 1; fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); fp /= reclaim_stat->recent_rotated[1] + 1; spin_unlock_irq(&pgdat->lru_lock); fraction[0] = ap; fraction[1] = fp; denominator = ap + fp + 1; While reclaim_stat can contain 0, it's not actually possible for ap + fp to be 0. One of anon_prio or file_prio could be zero, but they must still add up to 200. And the reclaim_stat fraction, due to the +1 in there, is always at least 1. So if one of the two numerators is 0, the other one can't be. ap + fp is always at least 1. Drop the + 1. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-8-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
When the splitlru patches divided page cache and swap-backed pages into separate LRU lists, the pressure balance between the lists was biased to account for the fact that streaming IO can cause memory pressure with a flood of pages that are used only once. New page cache additions would tip the balance toward the file LRU, and repeat access would neutralize that bias again. This ensured that page reclaim would always go for used-once cache first. Since e9868505 ("mm,vmscan: only evict file pages when we have plenty"), page reclaim generally skips over swap-backed memory entirely as long as there is used-once cache present, and will apply the LRU balancing when only repeatedly accessed cache pages are left - at which point the previous use-once bias will have been neutralized. This makes the use-once cache balancing bias unnecessary. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-7-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
We activate cache refaults with reuse distances in pages smaller than the size of the total cache. This allows new pages with competitive access frequencies to establish themselves, as well as challenge and potentially displace pages on the active list that have gone cold. However, that assumes that active cache can only replace other active cache in a competition for the hottest memory. This is not a great default assumption. The page cache might be thrashing while there are enough completely cold and unused anonymous pages sitting around that we'd only have to write to swap once to stop all IO from the cache. Activate cache refaults when their reuse distance in pages is smaller than the total userspace workingset, including anonymous pages. Reclaim can still decide how to balance pressure among the two LRUs depending on the IO situation. Rotational drives will prefer avoiding random IO from swap and go harder after cache. But fundamentally, hot cache should be able to compete with anon pages for a place in RAM. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-6-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
They're the same function, and for the purpose of all callers they are equivalent to lru_cache_add(). [akpm@linux-foundation.org: fix it for local_lock changes] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Rik van Riel <riel@surriel.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Link: http://lkml.kernel.org/r/20200520232525.798933-5-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
With the advent of fast random IO devices (SSDs, PMEM) and in-memory swap devices such as zswap, it's possible for swap to be much faster than filesystems, and for swapping to be preferable over thrashing filesystem caches. Allow setting swappiness - which defines the rough relative IO cost of cache misses between page cache and swap-backed pages - to reflect such situations by making the swap-preferred range configurable. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-4-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
Having statistics on pages scanned and pages reclaimed for both anon and file pages makes it easier to evaluate changes to LRU balancing. While at it, clean up the stat-keeping mess for isolation, putback, reclaim stats etc. a bit: first the physical LRU operation (isolation and putback), followed by vmstats, reclaim_stats, and then vm events. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200520232525.798933-3-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
The reclaim code that balances between swapping and cache reclaim tries to predict likely reuse based on in-memory reference patterns alone. This works in many cases, but when it fails it cannot detect when the cache is thrashing pathologically, or when we're in the middle of a swap storm. The high seek cost of rotational drives under which the algorithm evolved also meant that mistakes could quickly result in lockups from too aggressive swapping (which is predominantly random IO). As a result, the balancing code has been tuned over time to a point where it mostly goes for page cache and defers swapping until the VM is under significant memory pressure. The resulting strategy doesn't make optimal caching decisions - where optimal is the least amount of IO required to execute the workload. The proliferation of fast random IO devices such as SSDs, in-memory compression such as zswap, and persistent memory technologies on the horizon, has made this undesirable behavior very noticable: Even in the presence of large amounts of cold anonymous memory and a capable swap device, the VM refuses to even seriously scan these pages, and can leave the page cache thrashing needlessly. This series sets out to address this. Since commit ("a528910e mm: thrash detection-based file cache sizing") we have exact tracking of refault IO - the ultimate cost of reclaiming the wrong pages. This allows us to use an IO cost based balancing model that is more aggressive about scanning anonymous memory when the cache is thrashing, while being able to avoid unnecessary swap storms. These patches base the LRU balance on the rate of refaults on each list, times the relative IO cost between swap device and filesystem (swappiness), in order to optimize reclaim for least IO cost incurred. History I floated these changes in 2016. At the time they were incomplete and full of workarounds due to a lack of infrastructure in the reclaim code: We didn't have PageWorkingset, we didn't have hierarchical cgroup statistics, and problems with the cgroup swap controller. As swapping wasn't too high a priority then, the patches stalled out. With all dependencies in place now, here we are again with much cleaner, feature-complete patches. I kept the acks for patches that stayed materially the same :-) Below is a series of test results that demonstrate certain problematic behavior of the current code, as well as showcase the new code's more predictable and appropriate balancing decisions. Test #1: No convergence This test shows an edge case where the VM currently doesn't converge at all on a new file workingset with a stale anon/tmpfs set. The test sets up a cold anon set the size of 3/4 RAM, then tries to establish a new file set half the size of RAM (flat access pattern). The vanilla kernel refuses to even scan anon pages and never converges. The file set is perpetually served from the filesystem. The first test kernel is with the series up to the workingset patch applied. This allows thrashing page cache to challenge the anonymous workingset. The VM then scans the lists based on the current scanned/rotated balancing algorithm. It converges on a stable state where all cold anon pages are pushed out and the fileset is served entirely from cache: noconverge/5.7-rc5-mm noconverge/5.7-rc5-mm-workingset Scanned 417719308.00 ( +0.00%) 64091155.00 ( -84.66%) Reclaimed 417711094.00 ( +0.00%) 61640308.00 ( -85.24%) Reclaim efficiency % 100.00 ( +0.00%) 96.18 ( -3.78%) Scanned file 417719308.00 ( +0.00%) 59211118.00 ( -85.83%) Scanned anon 0.00 ( +0.00%) 4880037.00 ( ) Swapouts 0.00 ( +0.00%) 2439957.00 ( ) Swapins 0.00 ( +0.00%) 257.00 ( ) Refaults 415246605.00 ( +0.00%) 59183722.00 ( -85.75%) Restore refaults 0.00 ( +0.00%) 54988252.00 ( ) The second test kernel is with the full patch series applied, which replaces the scanned/rotated ratios with refault/swapin rate-based balancing. It evicts the cold anon pages more aggressively in the presence of a thrashing cache and the absence of swapins, and so converges with about 60% of the IO and reclaim activity: noconverge/5.7-rc5-mm-workingset noconverge/5.7-rc5-mm-lrubalance Scanned 64091155.00 ( +0.00%) 37579741.00 ( -41.37%) Reclaimed 61640308.00 ( +0.00%) 35129293.00 ( -43.01%) Reclaim efficiency % 96.18 ( +0.00%) 93.48 ( -2.78%) Scanned file 59211118.00 ( +0.00%) 32708385.00 ( -44.76%) Scanned anon 4880037.00 ( +0.00%) 4871356.00 ( -0.18%) Swapouts 2439957.00 ( +0.00%) 2435565.00 ( -0.18%) Swapins 257.00 ( +0.00%) 262.00 ( +1.94%) Refaults 59183722.00 ( +0.00%) 32675667.00 ( -44.79%) Restore refaults 54988252.00 ( +0.00%) 28480430.00 ( -48.21%) We're triggering this case in host sideloading scenarios: When a host's primary workload is not saturating the machine (primary load is usually driven by user activity), we can optimistically sideload a batch job; if user activity picks up and the primary workload needs the whole host during this time, we freeze the sideload and rely on it getting pushed to swap. Frequently that swapping doesn't happen and the completely inactive sideload simply stays resident while the expanding primary worklad is struggling to gain ground. Test #2: Kernel build This test is a a kernel build that is slightly memory-restricted (make -j4 inside a 400M cgroup). Despite the very aggressive swapping of cold anon pages in test #1, this test shows that the new kernel carefully balances swap against cache refaults when both the file and the cache set are pressured. It shows the patched kernel to be slightly better at finding the coldest memory from the combined anon and file set to evict under pressure. The result is lower aggregate reclaim and paging activity: z 5.7-rc5-mm 5.7-rc5-mm-lrubalance Real time 210.60 ( +0.00%) 210.97 ( +0.18%) User time 745.42 ( +0.00%) 746.48 ( +0.14%) System time 69.78 ( +0.00%) 69.79 ( +0.02%) Scanned file 354682.00 ( +0.00%) 293661.00 ( -17.20%) Scanned anon 465381.00 ( +0.00%) 378144.00 ( -18.75%) Swapouts 185920.00 ( +0.00%) 147801.00 ( -20.50%) Swapins 34583.00 ( +0.00%) 32491.00 ( -6.05%) Refaults 212664.00 ( +0.00%) 172409.00 ( -18.93%) Restore refaults 48861.00 ( +0.00%) 80091.00 ( +63.91%) Total paging IO 433167.00 ( +0.00%) 352701.00 ( -18.58%) Test #3: Overload This next test is not about performance, but rather about the predictability of the algorithm. The current balancing behavior doesn't always lead to comprehensible results, which makes performance analysis and parameter tuning (swappiness e.g.) very difficult. The test shows the balancing behavior under equivalent anon and file input. Anon and file sets are created of equal size (3/4 RAM), have the same access patterns (a hot-cold gradient), and synchronized access rates. Swappiness is raised from the default of 60 to 100 to indicate equal IO cost between swap and cache. With the vanilla balancing code, anon scans make up around 9% of the total pages scanned, or a ~1:10 ratio. This is a surprisingly skewed ratio, and it's an outcome that is hard to explain given the input parameters to the VM. The new balancing model targets a 1:2 balance: All else being equal, reclaiming a file page costs one page IO - the refault; reclaiming an anon page costs two IOs - the swapout and the swapin. In the test we observe a ~1:3 balance. The scanned and paging IO numbers indicate that the anon LRU algorithm we have in place right now does a slightly worse job at picking the coldest pages compared to the file algorithm. There is ongoing work to improve this, like Joonsoo's anon workingset patches; however, it's difficult to compare the two aging strategies when the balancing between them is behaving unintuitively. The slightly less efficient anon reclaim results in a deviation from the optimal 1:2 scan ratio we would like to see here - however, 1:3 is much closer to what we'd want to see in this test than the vanilla kernel's aging of 10+ cache pages for every anonymous one: overload-100/5.7-rc5-mm-workingset overload-100/5.7-rc5-mm-lrubalance-realfile Scanned 533633725.00 ( +0.00%) 595687785.00 ( +11.63%) Reclaimed 494325440.00 ( +0.00%) 518154380.00 ( +4.82%) Reclaim efficiency % 92.63 ( +0.00%) 86.98 ( -6.03%) Scanned file 484532894.00 ( +0.00%) 456937722.00 ( -5.70%) Scanned anon 49100831.00 ( +0.00%) 138750063.00 ( +182.58%) Swapouts 8096423.00 ( +0.00%) 48982142.00 ( +504.98%) Swapins 10027384.00 ( +0.00%) 62325044.00 ( +521.55%) Refaults 479819973.00 ( +0.00%) 451309483.00 ( -5.94%) Restore refaults 426422087.00 ( +0.00%) 399914067.00 ( -6.22%) Total paging IO 497943780.00 ( +0.00%) 562616669.00 ( +12.99%) Test #4: Parallel IO It's important to note that these patches only affect the situation where the kernel has to reclaim workingset memory, which is usually a transitionary period. The vast majority of page reclaim occuring in a system is from trimming the ever-expanding page cache. These patches don't affect cache trimming behavior. We never swap as long as we only have use-once cache moving through the file LRU, we only consider swapping when the cache is actively thrashing. The following test demonstrates this. It has an anon workingset that takes up half of RAM and then writes a file that is twice the size of RAM out to disk. As the cache is funneled through the inactive file list, no anon pages are scanned (aside from apparently some background noise of 10 pages): 5.7-rc5-mm 5.7-rc5-mm-lrubalance Scanned 10714722.00 ( +0.00%) 10723445.00 ( +0.08%) Reclaimed 10703596.00 ( +0.00%) 10712166.00 ( +0.08%) Reclaim efficiency % 99.90 ( +0.00%) 99.89 ( -0.00%) Scanned file 10714722.00 ( +0.00%) 10723435.00 ( +0.08%) Scanned anon 0.00 ( +0.00%) 10.00 ( ) Swapouts 0.00 ( +0.00%) 7.00 ( ) Swapins 0.00 ( +0.00%) 0.00 ( +0.00%) Refaults 92.00 ( +0.00%) 41.00 ( -54.84%) Restore refaults 0.00 ( +0.00%) 0.00 ( +0.00%) Total paging IO 92.00 ( +0.00%) 48.00 ( -47.31%) This patch (of 14): Currently, THP are counted as single pages until they are split right before being swapped out. However, at that point the VM is already in the middle of reclaim, and adjusting the LRU balance then is useless. Always account THP by the number of basepages, and remove the fixup from the splitting path. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Rik van Riel <riel@surriel.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Link: http://lkml.kernel.org/r/20200520232525.798933-1-hannes@cmpxchg.org Link: http://lkml.kernel.org/r/20200520232525.798933-2-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
The previous patches have simplified the access rules around page->mem_cgroup somewhat: 1. We never change page->mem_cgroup while the page is isolated by somebody else. This was by far the biggest exception to our rules and it didn't stop at lock_page() or lock_page_memcg(). 2. We charge pages before they get put into page tables now, so the somewhat fishy rule about "can be in page table as long as it's still locked" is now gone and boiled down to having an exclusive reference to the page. Document the new rules. Any of the following will stabilize the page->mem_cgroup association: - the page lock - LRU isolation - lock_page_memcg() - exclusive access to the page Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-20-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
Swapin faults were the last event to charge pages after they had already been put on the LRU list. Now that we charge directly on swapin, the lrucare portion of the charge code is unused. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Shakeel Butt <shakeelb@google.com> Link: http://lkml.kernel.org/r/20200508183105.225460-19-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Alex Shi authored
Signed-off-by: Alex Shi <alex.shi@linux.alibaba.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Hugh Dickins <hughd@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-18-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
Right now, users that are otherwise memory controlled can easily escape their containment and allocate significant amounts of memory that they're not being charged for. That's because swap readahead pages are not being charged until somebody actually faults them into their page table. This can be exploited with MADV_WILLNEED, which triggers arbitrary readahead allocations without charging the pages. There are additional problems with the delayed charging of swap pages: 1. To implement refault/workingset detection for anonymous pages, we need to have a target LRU available at swapin time, but the LRU is not determinable until the page has been charged. 2. To implement per-cgroup LRU locking, we need page->mem_cgroup to be stable when the page is isolated from the LRU; otherwise, the locks change under us. But swapcache gets charged after it's already on the LRU, and even if we cannot isolate it ourselves (since charging is not exactly optional). The previous patch ensured we always maintain cgroup ownership records for swap pages. This patch moves the swapcache charging point from the fault handler to swapin time to fix all of the above problems. v2: simplify swapin error checking (Joonsoo) [hughd@google.com: fix livelock in __read_swap_cache_async()] Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2005212246080.8458@eggly.anvilsSigned-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Link: http://lkml.kernel.org/r/20200508183105.225460-17-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
Without swap page tracking, users that are otherwise memory controlled can easily escape their containment and allocate significant amounts of memory that they're not being charged for. That's because swap does readahead, but without the cgroup records of who owned the page at swapout, readahead pages don't get charged until somebody actually faults them into their page table and we can identify an owner task. This can be maliciously exploited with MADV_WILLNEED, which triggers arbitrary readahead allocations without charging the pages. Make swap swap page tracking an integral part of memcg and remove the Kconfig options. In the first place, it was only made configurable to allow users to save some memory. But the overhead of tracking cgroup ownership per swap page is minimal - 2 byte per page, or 512k per 1G of swap, or 0.04%. Saving that at the expense of broken containment semantics is not something we should present as a coequal option. The swapaccount=0 boot option will continue to exist, and it will eliminate the page_counter overhead and hide the swap control files, but it won't disable swap slot ownership tracking. This patch makes sure we always have the cgroup records at swapin time; the next patch will fix the actual bug by charging readahead swap pages at swapin time rather than at fault time. v2: fix double swap charge bug in cgroup1/cgroup2 code gating [hannes@cmpxchg.org: fix crash with cgroup_disable=memory] Link: http://lkml.kernel.org/r/20200521215855.GB815153@cmpxchg.orgSigned-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Naresh Kamboju <naresh.kamboju@linaro.org> Link: http://lkml.kernel.org/r/20200508183105.225460-16-hannes@cmpxchg.orgDebugged-by: Hugh Dickins <hughd@google.com> Debugged-by: Michal Hocko <mhocko@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
A few cleanups to streamline the swap controller setup: - Replace the do_swap_account flag with cgroup_memory_noswap. This brings it in line with other functionality that is usually available unless explicitly opted out of - nosocket, nokmem. - Remove the really_do_swap_account flag that stores the boot option and is later used to switch the do_swap_account. It's not clear why this indirection is/was necessary. Use do_swap_account directly. - Minor coding style polishing Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-15-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
There are no more users. RIP in peace. [arnd@arndb.de: fix an unused-function warning] Link: http://lkml.kernel.org/r/20200528095640.151454-1-arnd@arndb.deSigned-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-14-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
With the page->mapping requirement gone from memcg, we can charge anon and file-thp pages in one single step, right after they're allocated. This removes two out of three API calls - especially the tricky commit step that needed to happen at just the right time between when the page is "set up" and when it's "published" - somewhat vague and fluid concepts that varied by page type. All we need is a freshly allocated page and a memcg context to charge. v2: prevent double charges on pre-allocated hugepages in khugepaged [hannes@cmpxchg.org: Fix crash - *hpage could be ERR_PTR instead of NULL] Link: http://lkml.kernel.org/r/20200512215813.GA487759@cmpxchg.orgSigned-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Qian Cai <cai@lca.pw> Link: http://lkml.kernel.org/r/20200508183105.225460-13-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
With rmap memcg locking already in place for NR_ANON_MAPPED, it's just a small step to remove the MEMCG_RSS_HUGE wart and switch memcg to the native NR_ANON_THPS accounting sites. [hannes@cmpxchg.org: fixes] Link: http://lkml.kernel.org/r/20200512121750.GA397968@cmpxchg.orgSigned-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Randy Dunlap <rdunlap@infradead.org> [build-tested] Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-12-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
Memcg maintains a private MEMCG_RSS counter. This divergence from the generic VM accounting means unnecessary code overhead, and creates a dependency for memcg that page->mapping is set up at the time of charging, so that page types can be told apart. Convert the generic accounting sites to mod_lruvec_page_state and friends to maintain the per-cgroup vmstat counter of NR_ANON_MAPPED. We use lock_page_memcg() to stabilize page->mem_cgroup during rmap changes, the same way we do for NR_FILE_MAPPED. With the previous patch removing MEMCG_CACHE and the private NR_SHMEM counter, this patch finally eliminates the need to have page->mapping set up at charge time. However, we need to have page->mem_cgroup set up by the time rmap runs and does the accounting, so switch the commit and the rmap callbacks around. v2: fix temporary accounting bug by switching rmap<->commit (Joonsoo) Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-11-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
Memcg maintains private MEMCG_CACHE and NR_SHMEM counters. This divergence from the generic VM accounting means unnecessary code overhead, and creates a dependency for memcg that page->mapping is set up at the time of charging, so that page types can be told apart. Convert the generic accounting sites to mod_lruvec_page_state and friends to maintain the per-cgroup vmstat counters of NR_FILE_PAGES and NR_SHMEM. The page is already locked in these places, so page->mem_cgroup is stable; we only need minimal tweaks of two mem_cgroup_migrate() calls to ensure it's set up in time. Then replace MEMCG_CACHE with NR_FILE_PAGES and delete the private NR_SHMEM accounting sites. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-10-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
Anonymous compound pages can be mapped by ptes, which means that if we want to track NR_MAPPED_ANON, NR_ANON_THPS on a per-cgroup basis, we have to be prepared to see tail pages in our accounting functions. Make mod_lruvec_page_state() and lock_page_memcg() deal with tail pages correctly, namely by redirecting to the head page which has the page->mem_cgroup set up. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-9-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
When memcg uses the generic vmstat counters, it doesn't need to do anything at charging and uncharging time. It does, however, need to migrate counts when pages move to a different cgroup in move_account. Prepare the move_account function for the arrival of NR_FILE_PAGES, NR_ANON_MAPPED, NR_ANON_THPS etc. by having a branch for files and a branch for anon, which can then divided into sub-branches. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-8-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
The uncharge batching code adds up the anon, file, kmem counts to determine the total number of pages to uncharge and references to drop. But the next patches will remove the anon and file counters. Maintain an aggregate nr_pages in the uncharge_gather struct. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-7-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
The try/commit/cancel protocol that memcg uses dates back to when pages used to be uncharged upon removal from the page cache, and thus couldn't be committed before the insertion had succeeded. Nowadays, pages are uncharged when they are physically freed; it doesn't matter whether the insertion was successful or not. For the page cache, the transaction dance has become unnecessary. Introduce a mem_cgroup_charge() function that simply charges a newly allocated page to a cgroup and sets up page->mem_cgroup in one single step. If the insertion fails, the caller doesn't have to do anything but free/put the page. Then switch the page cache over to this new API. Subsequent patches will also convert anon pages, but it needs a bit more prep work. Right now, memcg depends on page->mapping being already set up at the time of charging, so that it can maintain its own MEMCG_CACHE and MEMCG_RSS counters. For anon, page->mapping is set under the same pte lock under which the page is publishd, so a single charge point that can block doesn't work there just yet. The following prep patches will replace the private memcg counters with the generic vmstat counters, thus removing the page->mapping dependency, then complete the transition to the new single-point charge API and delete the old transactional scheme. v2: leave shmem swapcache when charging fails to avoid double IO (Joonsoo) v3: rebase on preceeding shmem simplification patch Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-6-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
The cgroup swaprate throttling is about matching new anon allocations to the rate of available IO when that is being throttled. It's the io controller hooking into the VM, rather than a memory controller thing. Rename mem_cgroup_throttle_swaprate() to cgroup_throttle_swaprate(), and drop the @memcg argument which is only used to check whether the preceding page charge has succeeded and the fault is proceeding. We could decouple the call from mem_cgroup_try_charge() here as well, but that would cause unnecessary churn: the following patches convert all callsites to a new charge API and we'll decouple as we go along. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com> Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: Shakeel Butt <shakeelb@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200508183105.225460-5-hannes@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
Commit 215c02bc ("tmpfs: fix shmem_getpage_gfp() VM_BUG_ON") recognized that hole punching can race with swapin and removed the BUG_ON() for a truncated entry from the swapin path. The patch also added a swapcache deletion to optimize this rare case: Since swapin has the page locked, and free_swap_and_cache() merely trylocks, this situation can leave the page stranded in swapcache. Usually, page reclaim picks up stale swapcache pages, and the race can happen at any other time when the page is locked. (The same happens for non-shmem swapin racing with page table zapping.) The thinking here was: we already observed the race and we have the page locked, we may as well do the cleanup instead of waiting for reclaim. However, this optimization complicates the next patch which moves the cgroup charging code around. As this is just a minor speedup for a race condition that is so rare that it required a fuzzer to trigger the original BUG_ON(), it's no longer worth the complications. Suggested-by: Hugh Dickins <hughd@google.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Hugh Dickins <hughd@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Michal Hocko <mhocko@suse.com> Cc: Roman Gushchin <guro@fb.com> Cc: Balbir Singh <bsingharora@gmail.com> Link: http://lkml.kernel.org/r/20200511181056.GA339505@cmpxchg.orgSigned-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-