- 08 Sep, 2015 40 commits
-
-
Sergey Senozhatsky authored
Perform automatic pool compaction by a shrinker when system is getting tight on memory. User-space has a very little knowledge regarding zsmalloc fragmentation and basically has no mechanism to tell whether compaction will result in any memory gain. Another issue is that user space is not always aware of the fact that system is getting tight on memory. Which leads to very uncomfortable scenarios when user space may start issuing compaction 'randomly' or from crontab (for example). Fragmentation is not always necessarily bad, allocated and unused objects, after all, may be filled with the data later, w/o the need of allocating a new zspage. On the other hand, we obviously don't want to waste memory when the system needs it. Compaction now has a relatively quick pool scan so we are able to estimate the number of pages that will be freed easily, which makes it possible to call this function from a shrinker->count_objects() callback. We also abort compaction as soon as we detect that we can't free any pages any more, preventing wasteful objects migrations. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Suggested-by: Minchan Kim <minchan@kernel.org> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Sergey Senozhatsky authored
Compaction returns back to zram the number of migrated objects, which is quite uninformative -- we have objects of different sizes so user space cannot obtain any valuable data from that number. Change compaction to operate in terms of pages and return back to compaction issuer the number of pages that were freed during compaction. So from now on we will export more meaningful value in zram<id>/mm_stat -- the number of freed (compacted) pages. This requires: (a) a rename of `num_migrated' to 'pages_compacted' (b) a internal API change -- return first_page's fullness_group from putback_zspage(), so we know when putback_zspage() did free_zspage(). It helps us to account compaction stats correctly. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Sergey Senozhatsky authored
`zs_compact_control' accounts the number of migrated objects but it has a limited lifespan -- we lose it as soon as zs_compaction() returns back to zram. It worked fine, because (a) zram had it's own counter of migrated objects and (b) only zram could trigger compaction. However, this does not work for automatic pool compaction (not issued by zram). To account objects migrated during auto-compaction (issued by the shrinker) we need to store this number in zs_pool. Define a new `struct zs_pool_stats' structure to keep zs_pool's stats there. It provides only `num_migrated', as of this writing, but it surely can be extended. A new zsmalloc zs_pool_stats() symbol exports zs_pool's stats back to caller. Use zs_pool_stats() in zram and remove `num_migrated' from zram_stats. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Suggested-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Sergey Senozhatsky authored
Change zs_object_copy() argument order to be (DST, SRC) rather than (SRC, DST). copy/move functions usually have (to, from) arguments order. Rename alloc_target_page() to isolate_target_page(). This function doesn't allocate anything, it isolates target page, pretty much like isolate_source_page(). Tweak __zs_compact() comment. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Sergey Senozhatsky authored
This function checks if class compaction will free any pages. Rephrasing -- do we have enough unused objects to form at least one ZS_EMPTY page and free it. It aborts compaction if class compaction will not result in any (further) savings. EXAMPLE (this debug output is not part of this patch set): - class size - number of allocated objects - number of used objects - max objects per zspage - pages per zspage - estimated number of pages that will be freed [..] class-512 objs:544 inuse:540 maxobj-per-zspage:8 pages-per-zspage:1 zspages-to-free:0 ... class-512 compaction is useless. break class-496 objs:660 inuse:570 maxobj-per-zspage:33 pages-per-zspage:4 zspages-to-free:2 class-496 objs:627 inuse:570 maxobj-per-zspage:33 pages-per-zspage:4 zspages-to-free:1 class-496 objs:594 inuse:570 maxobj-per-zspage:33 pages-per-zspage:4 zspages-to-free:0 ... class-496 compaction is useless. break class-448 objs:657 inuse:617 maxobj-per-zspage:9 pages-per-zspage:1 zspages-to-free:4 class-448 objs:648 inuse:617 maxobj-per-zspage:9 pages-per-zspage:1 zspages-to-free:3 class-448 objs:639 inuse:617 maxobj-per-zspage:9 pages-per-zspage:1 zspages-to-free:2 class-448 objs:630 inuse:617 maxobj-per-zspage:9 pages-per-zspage:1 zspages-to-free:1 class-448 objs:621 inuse:617 maxobj-per-zspage:9 pages-per-zspage:1 zspages-to-free:0 ... class-448 compaction is useless. break class-432 objs:728 inuse:685 maxobj-per-zspage:28 pages-per-zspage:3 zspages-to-free:1 class-432 objs:700 inuse:685 maxobj-per-zspage:28 pages-per-zspage:3 zspages-to-free:0 ... class-432 compaction is useless. break class-416 objs:819 inuse:705 maxobj-per-zspage:39 pages-per-zspage:4 zspages-to-free:2 class-416 objs:780 inuse:705 maxobj-per-zspage:39 pages-per-zspage:4 zspages-to-free:1 class-416 objs:741 inuse:705 maxobj-per-zspage:39 pages-per-zspage:4 zspages-to-free:0 ... class-416 compaction is useless. break class-400 objs:690 inuse:674 maxobj-per-zspage:10 pages-per-zspage:1 zspages-to-free:1 class-400 objs:680 inuse:674 maxobj-per-zspage:10 pages-per-zspage:1 zspages-to-free:0 ... class-400 compaction is useless. break class-384 objs:736 inuse:709 maxobj-per-zspage:32 pages-per-zspage:3 zspages-to-free:0 ... class-384 compaction is useless. break [..] Every "compaction is useless" indicates that we saved CPU cycles. class-512 has 544 object allocated 540 objects used 8 objects per-page Even if we have a ALMOST_EMPTY zspage, we still don't have enough room to migrate all of its objects and free this zspage; so compaction will not make a lot of sense, it's better to just leave it as is. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Sergey Senozhatsky authored
Always account per-class `zs_size_stat' stats. This data will help us make better decisions during compaction. We are especially interested in OBJ_ALLOCATED and OBJ_USED, which can tell us if class compaction will result in any memory gain. For instance, we know the number of allocated objects in the class, the number of objects being used (so we also know how many objects are not used) and the number of objects per-page. So we can ensure if we have enough unused objects to form at least one ZS_EMPTY zspage during compaction. We calculate this value on per-class basis so we can calculate a total number of zspages that can be released. Which is exactly what a shrinker wants to know. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Sergey Senozhatsky authored
This patchset tweaks compaction and makes it possible to trigger pool compaction automatically when system is getting low on memory. zsmalloc in some cases can suffer from a notable fragmentation and compaction can release some considerable amount of memory. The problem here is that currently we fully rely on user space to perform compaction when needed. However, performing zsmalloc compaction is not always an obvious thing to do. For example, suppose we have a `idle' fragmented (compaction was never performed) zram device and system is getting low on memory due to some 3rd party user processes (gcc LTO, or firefox, etc.). It's quite unlikely that user space will issue zpool compaction in this case. Besides, user space cannot tell for sure how badly pool is fragmented; however, this info is known to zsmalloc and, hence, to a shrinker. This patch (of 7): __zs_compact() does not use `nr_to_migrate', drop it. Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Alexander Kuleshov authored
Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Zhen Lei authored
For a memoryless node, the output of get_pfn_range_for_nid are all zero. It will display mem from 0 to -1. Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Xishi Qiu authored
When hot adding a node from add_memory(), we will add memblock first, so the node is not empty. But when called from cpu_up(), the node should be empty. Signed-off-by: Xishi Qiu <qiuxishi@huawei.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>\ Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Yaowei Bai authored
We use sysctl_lowmem_reserve_ratio rather than sysctl_lower_zone_reserve_ratio to determine how aggressive the kernel is in defending lowmem from the possibility of being captured into pinned user memory. To avoid misleading, correct it in some comments. Signed-off-by: Yaowei Bai <bywxiaobai@163.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Yaowei Bai authored
The comment says that the per-cpu batchsize and zone watermarks are determined by present_pages which is definitely wrong, they are both calculated from managed_pages. Fix it. Signed-off-by: Yaowei Bai <bywxiaobai@163.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Chen Gang authored
There's no point in initializing vma->vm_pgoff if the insertion attempt will be failing anyway. Run the checks before performing the initialization. Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Petr Mladek authored
Commit 1dfb059b ("thp: reduce khugepaged freezing latency") fixed khugepaged to do not block a system suspend. But the result is that it could not get interrupted before the given timeout because the condition for the wait event is "false". This patch puts back the original approach but it uses freezable_schedule_timeout_interruptible() instead of schedule_timeout_interruptible(). It does the right thing. I am pretty sure that the freezable variant was not used in the original fix only because it was not available at that time. The regression has been there for ages. It was not critical. It just did the allocation throttling a little bit more aggressively. I found this problem when converting the kthread to kthread worker API and trying to understand the code. This bug is thought to have minimal userspace-visible impact. Somebody could set a high alloc_sleep value by mistake, and then try to fix it back, but khugepaged would keep sleeping until the high value expires. Signed-off-by: Petr Mladek <pmladek@suse.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: David Rientjes <rientjes@google.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Alexander Kuleshov authored
s/succees/success/ Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Joonsoo Kim authored
We cache isolate_start_pfn before entering isolate_migratepages(). If pageblock is skipped in isolate_migratepages() due to whatever reason, cc->migrate_pfn can be far from isolate_start_pfn hence we flush pages that were freed. For example, the following scenario can be possible: - assume order-9 compaction, pageblock order is 9 - start_isolate_pfn is 0x200 - isolate_migratepages() - skip a number of pageblocks - start to isolate from pfn 0x600 - cc->migrate_pfn = 0x620 - return - last_migrated_pfn is set to 0x200 - check flushing condition - current_block_start is set to 0x600 - last_migrated_pfn < current_block_start then do useless flush This wrong flush would not help the performance and success rate so this patch tries to fix it. One simple way to know the exact position where we start to isolate migratable pages is that we cache it in isolate_migratepages() before entering actual isolation. This patch implements that and fixes the problem. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vlastimil Babka authored
alloc_pages_node() might fail when called with NUMA_NO_NODE and __GFP_THISNODE on a CPU belonging to a memoryless node. To make the local-node fallback more robust and prevent such situations, use numa_mem_id(), which was introduced for similar scenarios in the slab context. Suggested-by: Christoph Lameter <cl@linux.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Christoph Lameter <cl@linux.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vlastimil Babka authored
Perform the same debug checks in alloc_pages_node() as are done in __alloc_pages_node(), by making the former function a wrapper of the latter one. In addition to better diagnostics in DEBUG_VM builds for situations which have been already fatal (e.g. out-of-bounds node id), there are two visible changes for potential existing buggy callers of alloc_pages_node(): - calling alloc_pages_node() with any negative nid (e.g. due to arithmetic overflow) was treated as passing NUMA_NO_NODE and fallback to local node was applied. This will now be fatal. - calling alloc_pages_node() with an offline node will now be checked for DEBUG_VM builds. Since it's not fatal if the node has been previously online, and this patch may expose some existing buggy callers, change the VM_BUG_ON in __alloc_pages_node() to VM_WARN_ON. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vlastimil Babka authored
alloc_pages_exact_node() was introduced in commit 6484eb3e ("page allocator: do not check NUMA node ID when the caller knows the node is valid") as an optimized variant of alloc_pages_node(), that doesn't fallback to current node for nid == NUMA_NO_NODE. Unfortunately the name of the function can easily suggest that the allocation is restricted to the given node and fails otherwise. In truth, the node is only preferred, unless __GFP_THISNODE is passed among the gfp flags. The misleading name has lead to mistakes in the past, see for example commits 5265047a ("mm, thp: really limit transparent hugepage allocation to local node") and b360edb4 ("mm, mempolicy: migrate_to_node should only migrate to node"). Another issue with the name is that there's a family of alloc_pages_exact*() functions where 'exact' means exact size (instead of page order), which leads to more confusion. To prevent further mistakes, this patch effectively renames alloc_pages_exact_node() to __alloc_pages_node() to better convey that it's an optimized variant of alloc_pages_node() not intended for general usage. Both functions get described in comments. It has been also considered to really provide a convenience function for allocations restricted to a node, but the major opinion seems to be that __GFP_THISNODE already provides that functionality and we shouldn't duplicate the API needlessly. The number of users would be small anyway. Existing callers of alloc_pages_exact_node() are simply converted to call __alloc_pages_node(), with the exception of sba_alloc_coherent() which open-codes the check for NUMA_NO_NODE, so it is converted to use alloc_pages_node() instead. This means it no longer performs some VM_BUG_ON checks, and since the current check for nid in alloc_pages_node() uses a 'nid < 0' comparison (which includes NUMA_NO_NODE), it may hide wrong values which would be previously exposed. Both differences will be rectified by the next patch. To sum up, this patch makes no functional changes, except temporarily hiding potentially buggy callers. Restricting the checks in alloc_pages_node() is left for the next patch which can in turn expose more existing buggy callers. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Robin Holt <robinmholt@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Gleb Natapov <gleb@kernel.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Cliff Whickman <cpw@sgi.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Hugh Dickins authored
This is merely a politeness: I've not found that shrink_page_list() leads to deadlock with the page it holds locked across wait_on_page_writeback(); but nevertheless, why hold others off by keeping the page locked there? And while we're at it: remove the mistaken "not " from the commentary on this Case 3 (and a distracting blank line from Case 2, if I may). Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Jeff Layton authored
If the list_head is empty then we'll have called list_lru_from_kmem for nothing. Move that call inside of the list_empty if block. Signed-off-by: Jeff Layton <jeff.layton@primarydata.com> Reviewed-by: Vladimir Davydov <vdavydov@parallels.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Wang Kai authored
In log_early function, crt_early_log should also count once when 'crt_early_log >= ARRAY_SIZE(early_log)'. Otherwise the reported count from kmemleak_init is one less than 'actual number'. Then, in kmemleak_init, if early_log buffer size equal actual number, kmemleak will init sucessful, so change warning condition to 'crt_early_log > ARRAY_SIZE(early_log)'. Signed-off-by: Wang Kai <morgan.wang@huawei.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Chen Gang authored
__split_vma() doesn't need out_err label, neither need initializing err. copy_vma() can return NULL directly when kmem_cache_alloc() fails. Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Yu Zhao authored
Shmem uses shmem_recalc_inode to update i_blocks when it allocates page, undoes range or swaps. But mm can drop clean page without notifying shmem. This makes fstat sometimes return out-of-date block size. The problem can be partially solved when we add inode_operations->getattr which calls shmem_recalc_inode to update i_blocks for fstat. shmem_recalc_inode also updates counter used by statfs and vm_committed_as. For them the situation is not changed. They still suffer from the discrepancy after dropping clean page and before the function is called by aforementioned triggers. Signed-off-by: Yu Zhao <yuzhao@google.com> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Alexander Kuleshov authored
Since commit e3239ff9 ("memblock: Rename memblock_region to memblock_type and memblock_property to memblock_region"), all local variables of the membock_type type were renamed to 'type'. This commit renames all remaining local variables with the memblock_type type to the same view. Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Naoya Horiguchi authored
memory_failure() can be called at any page at any time, which means that we can't eliminate the possibility of containment failure. In such case the best option is to leak the page intentionally (and never touch it later.) We have an unpoison function for testing, and it cannot handle such containment-failed pages, which results in kernel panic (visible with various calltraces.) So this patch suggests that we limit the unpoisonable pages to properly contained pages and ignore any other ones. Testers are recommended to keep in mind that there're un-unpoisonable pages when writing test programs. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Tested-by: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Wanpeng Li authored
Wanpeng Li reported a race between soft_offline_page() and unpoison_memory(), which causes the following kernel panic: BUG: Bad page state in process bash pfn:97000 page:ffffea00025c0000 count:0 mapcount:1 mapping: (null) index:0x7f4fdbe00 flags: 0x1fffff80080048(uptodate|active|swapbacked) page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set bad because of flags: flags: 0x40(active) Modules linked in: snd_hda_codec_hdmi i915 rpcsec_gss_krb5 nfsv4 dns_resolver bnep rfcomm nfsd bluetooth auth_rpcgss nfs_acl nfs rfkill lockd grace sunrpc i2c_algo_bit drm_kms_helper snd_hda_codec_realtek snd_hda_codec_generic drm snd_hda_intel fscache snd_hda_codec x86_pkg_temp_thermal coretemp kvm_intel snd_hda_core snd_hwdep kvm snd_pcm snd_seq_dummy snd_seq_oss crct10dif_pclmul snd_seq_midi crc32_pclmul snd_seq_midi_event ghash_clmulni_intel snd_rawmidi aesni_intel lrw gf128mul snd_seq glue_helper ablk_helper snd_seq_device cryptd fuse snd_timer dcdbas serio_raw mei_me parport_pc snd mei ppdev i2c_core video lp soundcore parport lpc_ich shpchp mfd_core ext4 mbcache jbd2 sd_mod e1000e ahci ptp libahci crc32c_intel libata pps_core CPU: 3 PID: 2211 Comm: bash Not tainted 4.2.0-rc5-mm1+ #45 Hardware name: Dell Inc. OptiPlex 7020/0F5C5X, BIOS A03 01/08/2015 Call Trace: dump_stack+0x48/0x5c bad_page+0xe6/0x140 free_pages_prepare+0x2f9/0x320 ? uncharge_list+0xdd/0x100 free_hot_cold_page+0x40/0x170 __put_single_page+0x20/0x30 put_page+0x25/0x40 unmap_and_move+0x1a6/0x1f0 migrate_pages+0x100/0x1d0 ? kill_procs+0x100/0x100 ? unlock_page+0x6f/0x90 __soft_offline_page+0x127/0x2a0 soft_offline_page+0xa6/0x200 This race is explained like below: CPU0 CPU1 soft_offline_page __soft_offline_page TestSetPageHWPoison unpoison_memory PageHWPoison check (true) TestClearPageHWPoison put_page -> release refcount held by get_hwpoison_page in unpoison_memory put_page -> release refcount held by isolate_lru_page in __soft_offline_page migrate_pages The second put_page() releases refcount held by isolate_lru_page() which will lead to unmap_and_move() releases the last refcount of page and w/ mapcount still 1 since try_to_unmap() is not called if there is only one user map the page. Anyway, the page refcount and mapcount will still mess if the page is mapped by multiple users. This race was introduced by commit 4491f712 ("mm/memory-failure: set PageHWPoison before migrate_pages()"), which focuses on preventing the reuse of successfully migrated page. Before this commit we prevent the reuse by changing the migratetype to MIGRATE_ISOLATE during soft offlining, which has the following problems, so simply reverting the commit is not a best option: 1) it doesn't eliminate the reuse completely, because set_migratetype_isolate() can fail to set MIGRATE_ISOLATE to the target page if the pageblock of the page contains one or more unmovable pages (i.e. has_unmovable_pages() returns true). 2) the original code changes migratetype to MIGRATE_ISOLATE forcibly, and sets it to MIGRATE_MOVABLE forcibly after soft offline, regardless of the original migratetype state, which could impact other subsystems like memory hotplug or compaction. This patch moves PageSetHWPoison just after put_page() in unmap_and_move(), which closes up the reported race window and minimizes another race window b/w SetPageHWPoison and reallocation (which causes the reuse of soft-offlined page.) The latter race window still exists but it's acceptable, because it's rare and effectively the same as ordinary "containment failure" case even if it happens, so keep the window open is acceptable. Fixes: 4491f712 ("mm/memory-failure: set PageHWPoison before migrate_pages()") Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reported-by: Wanpeng Li <wanpeng.li@hotmail.com> Tested-by: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Naoya Horiguchi authored
num_poisoned_pages counter will be changed outside mm/memory-failure.c by a subsequent patch, so this patch prepares wrappers to manipulate it. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Tested-by: Wanpeng Li <wanpeng.li@hotmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Wanpeng Li authored
Replace most instances of put_page() in memory error handling with put_hwpoison_page(). Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Wanpeng Li authored
Hwpoison injection takes a refcount of target page and another refcount of head page of THP if the target page is the tail page of a THP. However, current code doesn't release the refcount of head page if the THP is not supported to be injected wrt hwpoison filter. Fix it by reducing the refcount of head page if the target page is the tail page of a THP and it is not supported to be injected. Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Wanpeng Li authored
Introduce put_hwpoison_page to put refcount for memory error handling. Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Suggested-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Wanpeng Li authored
There is a race between madvise_hwpoison path and memory_failure: CPU0 CPU1 madvise_hwpoison get_user_pages_fast PageHWPoison check (false) memory_failure TestSetPageHWPoison soft_offline_page PageHWPoison check (true) return -EBUSY (without put_page) Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Suggested-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Wanpeng Li authored
THP pages will get a refcount in madvise_hwpoison() w/ MF_COUNT_INCREASED flag, however, the refcount is still held when fail to split THP pages. Fix it by reducing the refcount of THP pages when fail to split THP. Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mark Salter authored
The early_ioremap library now has a generic copy_from_early_mem() function. Use the generic copy function for x86 relocate_initrd(). [akpm@linux-foundation.org: remove MAX_MAP_CHUNK define, per Yinghai Lu] Signed-off-by: Mark Salter <msalter@redhat.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mark Salter authored
The use of mem= could leave part or all of the initrd outside of the kernel linear map. This will lead to an error when unpacking the initrd and a probable failure to boot. This patch catches that situation and relocates the initrd to be fully within the linear map. Signed-off-by: Mark Salter <msalter@redhat.com> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mark Salter authored
When booting an arm64 kernel w/initrd using UEFI/grub, use of mem= will likely cut off part or all of the initrd. This leaves it outside the kernel linear map which leads to failure when unpacking. The x86 code has a similar need to relocate an initrd outside of mapped memory in some cases. The current x86 code uses early_memremap() to copy the original initrd from unmapped to mapped RAM. This patchset creates a generic copy_from_early_mem() utility based on that x86 code and has arm64 and x86 share it in their respective initrd relocation code. This patch (of 3): In some early boot circumstances, it may be necessary to copy from RAM outside the kernel linear mapping to mapped RAM. The need to relocate an initrd is one example in the x86 code. This patch creates a helper function based on current x86 code. Signed-off-by: Mark Salter <msalter@redhat.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mike Kravetz authored
The URL for libhugetlbfs has changed. Also, put a stronger emphasis on using libgugetlbfs for hugetlb regression testing. Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Joern Engel <joern@logfs.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: David Rientjes <rientjes@google.com> Cc: Shuah Khan <shuahkh@osg.samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mike Kravetz authored
The hugetlb selftests provide minimal coverage. Have run script point people at libhugetlbfs for better regression testing. Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Joern Engel <joern@logfs.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: David Rientjes <rientjes@google.com> Cc: Shuah Khan <shuahkh@osg.samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Mike Kravetz authored
This manually reverts 7e50533d ("selftests: add hugetlbfstest"). The hugetlbfstest test depends on hugetlb pages being counted in a task's rss. This functionality is not in the kernel, so the test will always fail. Remove test to avoid confusion. Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Joern Engel <joern@logfs.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: David Rientjes <rientjes@google.com> Cc: Shuah Khan <shuahkh@osg.samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
Vlastimil Babka authored
The compaction free scanner is looking for PageBuddy() pages and skipping all others. For large compound pages such as THP or hugetlbfs, we can save a lot of iterations if we skip them at once using their compound_order(). This is generally unsafe and we can read a bogus value of order due to a race, but if we are careful, the only danger is skipping too much. When tested with stress-highalloc from mmtests on 4GB system with 1GB hugetlbfs pages, the vmstat compact_free_scanned count decreased by at least 15%. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Mel Gorman <mgorman@suse.de> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Michal Nazarewicz <mina86@mina86.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Christoph Lameter <cl@linux.com> Cc: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-