- 15 Oct, 2018 40 commits
-
-
Filipe Manana authored
When replaying a log which contains a tmpfile (which necessarily has a link count of 0) we end up calling inc_nlink(), at fs/btrfs/tree-log.c:replay_one_buffer(), which produces a warning like the following: [195191.943673] WARNING: CPU: 0 PID: 6924 at fs/inode.c:342 inc_nlink+0x33/0x40 [195191.943723] CPU: 0 PID: 6924 Comm: mount Not tainted 4.19.0-rc6-btrfs-next-38 #1 [195191.943724] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014 [195191.943726] RIP: 0010:inc_nlink+0x33/0x40 [195191.943728] RSP: 0018:ffffb96e425e3870 EFLAGS: 00010246 [195191.943730] RAX: 0000000000000000 RBX: ffff8c0d1e6af4f0 RCX: 0000000000000006 [195191.943731] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff8c0d1e6af4f0 [195191.943731] RBP: 0000000000000097 R08: 0000000000000001 R09: 0000000000000000 [195191.943732] R10: 0000000000000000 R11: 0000000000000000 R12: ffffb96e425e3a60 [195191.943733] R13: ffff8c0d10cff0c8 R14: ffff8c0d0d515348 R15: ffff8c0d78a1b3f8 [195191.943735] FS: 00007f570ee24480(0000) GS:ffff8c0dfb200000(0000) knlGS:0000000000000000 [195191.943736] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [195191.943737] CR2: 00005593286277c8 CR3: 00000000bb8f2006 CR4: 00000000003606f0 [195191.943739] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [195191.943740] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [195191.943741] Call Trace: [195191.943778] replay_one_buffer+0x797/0x7d0 [btrfs] [195191.943802] walk_up_log_tree+0x1c1/0x250 [btrfs] [195191.943809] ? rcu_read_lock_sched_held+0x3f/0x70 [195191.943825] walk_log_tree+0xae/0x1d0 [btrfs] [195191.943840] btrfs_recover_log_trees+0x1d7/0x4d0 [btrfs] [195191.943856] ? replay_dir_deletes+0x280/0x280 [btrfs] [195191.943870] open_ctree+0x1c3b/0x22a0 [btrfs] [195191.943887] btrfs_mount_root+0x6b4/0x800 [btrfs] [195191.943894] ? rcu_read_lock_sched_held+0x3f/0x70 [195191.943899] ? pcpu_alloc+0x55b/0x7c0 [195191.943906] ? mount_fs+0x3b/0x140 [195191.943908] mount_fs+0x3b/0x140 [195191.943912] ? __init_waitqueue_head+0x36/0x50 [195191.943916] vfs_kern_mount+0x62/0x160 [195191.943927] btrfs_mount+0x134/0x890 [btrfs] [195191.943936] ? rcu_read_lock_sched_held+0x3f/0x70 [195191.943938] ? pcpu_alloc+0x55b/0x7c0 [195191.943943] ? mount_fs+0x3b/0x140 [195191.943952] ? btrfs_remount+0x570/0x570 [btrfs] [195191.943954] mount_fs+0x3b/0x140 [195191.943956] ? __init_waitqueue_head+0x36/0x50 [195191.943960] vfs_kern_mount+0x62/0x160 [195191.943963] do_mount+0x1f9/0xd40 [195191.943967] ? memdup_user+0x4b/0x70 [195191.943971] ksys_mount+0x7e/0xd0 [195191.943974] __x64_sys_mount+0x21/0x30 [195191.943977] do_syscall_64+0x60/0x1b0 [195191.943980] entry_SYSCALL_64_after_hwframe+0x49/0xbe [195191.943983] RIP: 0033:0x7f570e4e524a [195191.943986] RSP: 002b:00007ffd83589478 EFLAGS: 00000206 ORIG_RAX: 00000000000000a5 [195191.943989] RAX: ffffffffffffffda RBX: 0000563f335b2060 RCX: 00007f570e4e524a [195191.943990] RDX: 0000563f335b2240 RSI: 0000563f335b2280 RDI: 0000563f335b2260 [195191.943992] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000020 [195191.943993] R10: 00000000c0ed0000 R11: 0000000000000206 R12: 0000563f335b2260 [195191.943994] R13: 0000563f335b2240 R14: 0000000000000000 R15: 00000000ffffffff [195191.944002] irq event stamp: 8688 [195191.944010] hardirqs last enabled at (8687): [<ffffffff9cb004c3>] console_unlock+0x503/0x640 [195191.944012] hardirqs last disabled at (8688): [<ffffffff9ca037dd>] trace_hardirqs_off_thunk+0x1a/0x1c [195191.944018] softirqs last enabled at (8638): [<ffffffff9cc0a5d1>] __set_page_dirty_nobuffers+0x101/0x150 [195191.944020] softirqs last disabled at (8634): [<ffffffff9cc26bbe>] wb_wakeup_delayed+0x2e/0x60 [195191.944022] ---[ end trace 5d6e873a9a0b811a ]--- This happens because the inode does not have the flag I_LINKABLE set, which is a runtime only flag, not meant to be persisted, set when the inode is created through open(2) if the flag O_EXCL is not passed to it. Except for the warning, there are no other consequences (like corruptions or metadata inconsistencies). Since it's pointless to replay a tmpfile as it would be deleted in a later phase of the log replay procedure (it has a link count of 0), fix this by not logging tmpfiles and if a tmpfile is found in a log (created by a kernel without this change), skip the replay of the inode. A test case for fstests follows soon. Fixes: 471d557a ("Btrfs: fix loss of prealloc extents past i_size after fsync log replay") CC: stable@vger.kernel.org # 4.18+ Reported-by: Martin Steigerwald <martin@lichtvoll.de> Link: https://lore.kernel.org/linux-btrfs/3666619.NTnn27ZJZE@merkaba/Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
We don't need it, rsv->size is set once and never changes throughout its lifetime, so just use that for the reserve size. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
I ran into an issue where there was some reference being held on an inode that I couldn't track. This assert wasn't triggered, but it at least rules out we're doing something stupid. Reviewed-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
Allocating new chunks modifies both the extent and chunk tree, which can trigger new chunk allocations. So instead of doing list_for_each_safe, just do while (!list_empty()) so we make sure we don't exit with other pending bg's still on our list. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Omar Sandoval <osandov@fb.com> Reviewed-by: Liu Bo <bo.liu@linux.alibaba.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
We need to clear the max_extent_size when we clear bits from a bitmap since it could have been from the range that contains the max_extent_size. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Liu Bo <bo.liu@linux.alibaba.com> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
If we're allocating a new space cache inode it's likely going to be under a transaction handle, so we need to use memalloc_nofs_save() in order to avoid deadlocks, and more importantly lockdep messages that make xfstests fail. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
We want to release the unused reservation we have since it refills the delayed refs reserve, which will make everything go smoother when running the delayed refs if we're short on our reservation. CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Omar Sandoval <osandov@fb.com> Reviewed-by: Liu Bo <bo.liu@linux.alibaba.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Liu Bo authored
Btrfs's btree locking has two modes, spinning mode and blocking mode, while searching btree, locking is always acquired in spinning mode and then converted to blocking mode if necessary, and in some hot paths we may switch the locking back to spinning mode by btrfs_clear_path_blocking(). When acquiring locks, both of reader and writer need to wait for blocking readers and writers to complete before doing read_lock()/write_lock(). The problem is that btrfs_clear_path_blocking() needs to switch nodes in the path to blocking mode at first (by btrfs_set_path_blocking) to make lockdep happy before doing its actual clearing blocking job. When switching to blocking mode from spinning mode, it consists of step 1) bumping up blocking readers counter and step 2) read_unlock()/write_unlock(), this has caused serious ping-pong effect if there're a great amount of concurrent readers/writers, as waiters will be woken up and go to sleep immediately. 1) Killing this kind of ping-pong results in a big improvement in my 1600k files creation script, MNT=/mnt/btrfs mkfs.btrfs -f /dev/sdf mount /dev/def $MNT time fsmark -D 10000 -S0 -n 100000 -s 0 -L 1 -l /tmp/fs_log.txt \ -d $MNT/0 -d $MNT/1 \ -d $MNT/2 -d $MNT/3 \ -d $MNT/4 -d $MNT/5 \ -d $MNT/6 -d $MNT/7 \ -d $MNT/8 -d $MNT/9 \ -d $MNT/10 -d $MNT/11 \ -d $MNT/12 -d $MNT/13 \ -d $MNT/14 -d $MNT/15 w/o patch: real 2m27.307s user 0m12.839s sys 13m42.831s w/ patch: real 1m2.273s user 0m15.802s sys 8m16.495s 1.1) latency histogram from funclatency[1] Overall with the patch, there're ~50% less write lock acquisition and the 95% max latency that write lock takes also reduces to ~100ms from >500ms. -------------------------------------------- w/o patch: -------------------------------------------- Function = btrfs_tree_lock msecs : count distribution 0 -> 1 : 2385222 |****************************************| 2 -> 3 : 37147 | | 4 -> 7 : 20452 | | 8 -> 15 : 13131 | | 16 -> 31 : 3877 | | 32 -> 63 : 3900 | | 64 -> 127 : 2612 | | 128 -> 255 : 974 | | 256 -> 511 : 165 | | 512 -> 1023 : 13 | | Function = btrfs_tree_read_lock msecs : count distribution 0 -> 1 : 6743860 |****************************************| 2 -> 3 : 2146 | | 4 -> 7 : 190 | | 8 -> 15 : 38 | | 16 -> 31 : 4 | | -------------------------------------------- w/ patch: -------------------------------------------- Function = btrfs_tree_lock msecs : count distribution 0 -> 1 : 1318454 |****************************************| 2 -> 3 : 6800 | | 4 -> 7 : 3664 | | 8 -> 15 : 2145 | | 16 -> 31 : 809 | | 32 -> 63 : 219 | | 64 -> 127 : 10 | | Function = btrfs_tree_read_lock msecs : count distribution 0 -> 1 : 6854317 |****************************************| 2 -> 3 : 2383 | | 4 -> 7 : 601 | | 8 -> 15 : 92 | | 2) dbench also proves the improvement, dbench -t 120 -D /mnt/btrfs 16 w/o patch: Throughput 158.363 MB/sec w/ patch: Throughput 449.52 MB/sec 3) xfstests didn't show any additional failures. One thing to note is that callers may set path->leave_spinning to have all nodes in the path stay in spinning mode, which means callers are ready to not sleep before releasing the path, but it won't cause problems if they don't want to sleep in blocking mode. [1]: https://github.com/iovisor/bcc/blob/master/tools/funclatency.pySigned-off-by: Liu Bo <bo.liu@linux.alibaba.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
The value of blocking_readers is increased only when the lock is taken for read, no way we can fail the condition with the write lock. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
The replace_wait and bio_counter were mistakenly added to fs_info in commit c404e0dc ("Btrfs: fix use-after-free in the finishing procedure of the device replace"), but they logically belong to fs_info::dev_replace. Besides, bio_counter is a very generic name and is confusing in bare fs_info context. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
The exit sequence in btrfs_dev_replace_start does not allow to simply add a label to the right place so the error handling after starting transaction failure jumps there. Currently there's a lock that pairs with the unlock in the section, which is unnecessary and only raises questions. Add a variable to track the locking status and avoid the extra locking. Reviewed-by: Omar Sandoval <osandov@fb.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
Too trivial, the purpose can be simply documented in a comment. Reviewed-by: Omar Sandoval <osandov@fb.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
The wrapper is too trivial, open coding does not make it less readable. Reviewed-by: Omar Sandoval <osandov@fb.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
There's a single caller and the function name does not say it's actually taking the lock, so open coding makes it more explicit. For now, btrfs_dev_replace_read_lock is used instead of read_lock so it's paired with the unlocking wrapper in the same block. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
This member seems to be copied from the extent_buffer locking scheme and is at least used to assert that the read lock/unlock is properly nested. In some way. While the _inc/_dec are called inside the read lock section, the asserts are both inside and outside, so the ordering is not guaranteed and we can see read/inc/dec ordered in any way (theoretically). A missing call of btrfs_dev_replace_clear_lock_blocking could cause unexpected read_locks count, so this at least looks like a valid assertion, but this will become unnecessary with later updates. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
Although we have tree level check at tree read runtime, it's completely based on its parent level. We still need to do accurate level check to avoid invalid tree blocks sneak into kernel space. The check itself is simple, for leaf its level should always be 0. For nodes its level should be in range [1, BTRFS_MAX_LEVEL - 1]. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Su Yue <suy.fnst@cn.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
For qgroup_trace_extent_swap(), if we find one leaf that needs to be traced, we will also iterate all file extents and trace them. This is OK if we're relocating data block groups, but if we're relocating metadata block groups, balance code itself has ensured that both subtree of file tree and reloc tree contain the same contents. That's to say, if we're relocating metadata block groups, all file extents in reloc and file tree should match, thus no need to trace them. This should reduce the total number of dirty extents processed in metadata block group balance. [[Benchmark]] (with all previous enhancement) Hardware: VM 4G vRAM, 8 vCPUs, disk is using 'unsafe' cache mode, backing device is SAMSUNG 850 evo SSD. Host has 16G ram. Mkfs parameter: --nodesize 4K (To bump up tree size) Initial subvolume contents: 4G data copied from /usr and /lib. (With enough regular small files) Snapshots: 16 snapshots of the original subvolume. each snapshot has 3 random files modified. balance parameter: -m So the content should be pretty similar to a real world root fs layout. | v4.19-rc1 | w/ patchset | diff (*) --------------------------------------------------------------- relocated extents | 22929 | 22851 | -0.3% qgroup dirty extents | 227757 | 140886 | -38.1% time (sys) | 65.253s | 37.464s | -42.6% time (real) | 74.032s | 44.722s | -39.6% Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
Reloc tree doesn't contribute to qgroup numbers, as we have accounted them at balance time (see replace_path()). Skipping the unneeded subtree tracing should reduce the overhead. [[Benchmark]] Hardware: VM 4G vRAM, 8 vCPUs, disk is using 'unsafe' cache mode, backing device is SAMSUNG 850 evo SSD. Host has 16G ram. Mkfs parameter: --nodesize 4K (To bump up tree size) Initial subvolume contents: 4G data copied from /usr and /lib. (With enough regular small files) Snapshots: 16 snapshots of the original subvolume. each snapshot has 3 random files modified. balance parameter: -m So the content should be pretty similar to a real world root fs layout. | v4.19-rc1 | w/ patchset | diff (*) --------------------------------------------------------------- relocated extents | 22929 | 22900 | -0.1% qgroup dirty extents | 227757 | 167139 | -26.6% time (sys) | 65.253s | 50.123s | -23.2% time (real) | 74.032s | 52.551s | -29.0% Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
Before this patch, with quota enabled during balance, we need to mark the whole subtree dirty for quota. E.g. OO = Old tree blocks (from file tree) NN = New tree blocks (from reloc tree) File tree (src) Reloc tree (dst) OO (a) NN (a) / \ / \ (b) OO OO (c) (b) NN NN (c) / \ / \ / \ / \ OO OO OO OO (d) OO OO OO NN (d) For old balance + quota case, quota will mark the whole src and dst tree dirty, including all the 3 old tree blocks in reloc tree. It's doable for small file tree or new tree blocks are all located at lower level. But for large file tree or new tree blocks are all located at higher level, this will lead to mark the whole tree dirty, and be unbelievably slow. This patch will change how we handle such balance with quota enabled case. Now we will search from (b) and (c) for any new tree blocks whose generation is equal to @last_snapshot, and only mark them dirty. In above case, we only need to trace tree blocks NN(b), NN(c) and NN(d). (NN(a) will be traced when COW happens for nodeptr modification). And also for tree blocks OO(b), OO(c), OO(d). (OO(a) will be traced when COW happens for nodeptr modification.) For above case, we could skip 3 tree blocks, but for larger tree, we can skip tons of unmodified tree blocks, and hugely speed up balance. This patch will introduce a new function, btrfs_qgroup_trace_subtree_swap(), which will do the following main work: 1) Read out real root eb And setup basic dst_path for later calls 2) Call qgroup_trace_new_subtree_blocks() To trace all new tree blocks in reloc tree and their counter parts in the file tree. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
Introduce new function, qgroup_trace_new_subtree_blocks(), to iterate all new tree blocks in a reloc tree. So that qgroup could skip unrelated tree blocks during balance, which should hugely speedup balance speed when quota is enabled. The function qgroup_trace_new_subtree_blocks() itself only cares about new tree blocks in reloc tree. All its main works are: 1) Read out tree blocks according to parent pointers 2) Do recursive depth-first search Will call the same function on all its children tree blocks, with search level set to current level -1. And will also skip all children whose generation is smaller than @last_snapshot. 3) Call qgroup_trace_extent_swap() to trace tree blocks So although we have parameter list related to source file tree, it's not used at all, but only passed to qgroup_trace_extent_swap(). Thus despite the tree read code, the core should be pretty short and all about recursive depth-first search. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
Introduce a new function, qgroup_trace_extent_swap(), which will be used later for balance qgroup speedup. The basis idea of balance is swapping tree blocks between reloc tree and the real file tree. The swap will happen in highest tree block, but there may be a lot of tree blocks involved. For example: OO = Old tree blocks NN = New tree blocks allocated during balance File tree (257) Reloc tree for 257 L2 OO NN / \ / \ L1 OO OO (a) OO NN (a) / \ / \ / \ / \ L0 OO OO OO OO OO OO NN NN (b) (c) (b) (c) When calling qgroup_trace_extent_swap(), we will pass: @src_eb = OO(a) @dst_path = [ nodes[1] = NN(a), nodes[0] = NN(c) ] @dst_level = 0 @root_level = 1 In that case, qgroup_trace_extent_swap() will search from OO(a) to reach OO(c), then mark both OO(c) and NN(c) as qgroup dirty. The main work of qgroup_trace_extent_swap() can be split into 3 parts: 1) Tree search from @src_eb It should acts as a simplified btrfs_search_slot(). The key for search can be extracted from @dst_path->nodes[dst_level] (first key). 2) Mark the final tree blocks in @src_path and @dst_path qgroup dirty NOTE: In above case, OO(a) and NN(a) won't be marked qgroup dirty. They should be marked during preivous (@dst_level = 1) iteration. 3) Mark file extents in leaves dirty We don't have good way to pick out new file extents only. So we still follow the old method by scanning all file extents in the leave. This function can free us from keeping two pathes, thus later we only need to care about how to iterate all new tree blocks in reloc tree. Signed-off-by: Qu Wenruo <wqu@suse.com> [ copy changelog to function comment ] Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
Number of qgroup dirty extents is directly linked to the performance overhead, so add a new trace event, trace_qgroup_num_dirty_extents(), to record how many dirty extents is processed in btrfs_qgroup_account_extents(). This will be pretty handy to analyze later balance performance improvement. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
fs/btrfs/relocation.c:build_backref_tree() is some code from 2009 era, although it works pretty fine, it's not that easy to understand. Especially combined with the complex btrfs backref format. This patch adds some basic comment for the backref build part of the code, making it less hard to read, at least for backref searching part. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Omar Sandoval authored
The only aops we define for symlinks are identical to the aops for regular files. This has been the case since symlink support was added in commit 2b8d99a7 ("Btrfs: symlinks and hard links"). As far as I can tell, there wasn't a good reason to have separate aops then, and there isn't now, so let's just do what most other filesystems do and reuse the same structure. Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Chris Mason authored
During buffered writes, we follow this basic series of steps: again: lock all the pages wait for writeback on all the pages Take the extent range lock wait for ordered extents on the whole range clean all the pages if (copy_from_user_in_atomic() hits a fault) { drop our locks goto again; } dirty all the pages release all the locks The extra waiting, cleaning and locking are there to make sure we don't modify pages in flight to the drive, after they've been crc'd. If some of the pages in the range were already dirty when the write began, and we need to goto again, we create a window where a dirty page has been cleaned and unlocked. It may be reclaimed before we're able to lock it again, which means we'll read the old contents off the drive and lose any modifications that had been pending writeback. We don't actually need to clean the pages. All of the other locking in place makes sure we don't start IO on the pages, so we can just leave them dirty for the duration of the write. Fixes: 73d59314 (the original btrfs merge) CC: stable@vger.kernel.org # v4.4+ Signed-off-by: Chris Mason <clm@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
The helper does the same math and we take care about the special case when flags is 0 too. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Refactor the delayed refs loop by using the newly introduced btrfs_run_delayed_refs_for_head function. This greatly simplifies __btrfs_run_delayed_refs and makes it more obvious what is happening. We now have 1 loop which iterates the existing delayed_heads and then each selected ref head is processed by the new helper. All existing semantics of the code are preserved so no functional changes. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
This patch introduces a new helper encompassing the implicit inner loop in __btrfs_run_delayed_refs which processes all the refs for a given head. The code is mostly copy/paste, the only difference is that if we detect a newer reference then -EAGAIN is returned so that callers can react correctly. Also, at the end of the loop the head is relocked and btrfs_merge_delayed_refs is run again to retain the pre-refactoring semantics. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
This is in preparation to refactor the giant loop in __btrfs_run_delayed_refs. As a first step define a new function which implements acquiring a reference to a btrfs_delayed_refs_head and use it. No functional changes. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
Avoid the inline ifdefs and use two sections for self-tests enabled and disabled. Though there could be no ifdef and unconditional test_bit of BTRFS_FS_STATE_DUMMY_FS_INFO, the static inline can help to optimize out any code that would depend on conditions using btrfs_is_testing. As this is only for the testing code, drop unlikely(). Reviewed-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
Reviewed-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
The data used only for tests are better placed at the end of the structure so that they don't change the structure layout. All new members of btrfs_root should be placed before. Reviewed-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
The helper find_lock_delalloc_range is now conditionally built static, dpending on whether the self-tests are enabled or not. There's a macro that is supposed to hide the export, used only once. To discourage further use, drop it an add a public wrapper for the helper needed by tests. Reviewed-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Liu Bo authored
rb_first_cached() trades an extra pointer "leftmost" for doing the same job as rb_first() but in O(1). While resolving indirect refs and missing refs, it always looks for the first rb entry in a while loop, it's helpful to use rb_first_cached instead. For more details about the optimization see patch "Btrfs: delayed-refs: use rb_first_cached for href_root". Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Liu Bo authored
rb_first_cached() trades an extra pointer "leftmost" for doing the same job as rb_first() but in O(1). As evict_inode_truncate_pages() removes all extent mapping by always looking for the first rb entry, it's helpful to use rb_first_cached instead. For more details about the optimization see patch "Btrfs: delayed-refs: use rb_first_cached for href_root". Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Liu Bo authored
rb_first_cached() trades an extra pointer "leftmost" for doing the same job as rb_first() but in O(1). Functions manipulating delayed_item need to get the first entry, this converts it to use rb_first_cached(). For more details about the optimization see patch "Btrfs: delayed-refs: use rb_first_cached for href_root". Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Liu Bo authored
rb_first_cached() trades an extra pointer "leftmost" for doing the same job as rb_first() but in O(1). Functions manipulating href->ref_tree need to get the first entry, this converts href->ref_tree to use rb_first_cached(). For more details about the optimization see patch "Btrfs: delayed-refs: use rb_first_cached for href_root". Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Liu Bo authored
rb_first_cached() trades an extra pointer "leftmost" for doing the same job as rb_first() but in O(1). Functions manipulating href_root need to get the first entry, this converts href_root to use rb_first_cached(). This patch is first in the sequenct of similar updates to other rbtrees and this is analysis of the expected behaviour and improvements. There's a common pattern: while (node = rb_first) { entry = rb_entry(node) next = rb_next(node) rb_erase(node) cleanup(entry) } rb_first needs to traverse the tree up to logN depth, rb_erase can completely reshuffle the tree. With the caching we'll skip the traversal in rb_first. That's a cached memory access vs looped pointer dereference trade-off that IMHO has a clear winner. Measurements show there's not much difference in a sample tree with 10000 nodes: 4.5s / rb_first and 4.8s / rb_first_cached. Real effects of caching and pointer chasing are unpredictable though. Further optimzations can be done to avoid the expensive rb_erase step. In some cases it's ok to process the nodes in any order, so the tree can be traversed in post-order, not rebalancing the children nodes and just calling free. Care must be taken regarding the next node. Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com> Reviewed-by: David Sterba <dsterba@suse.com> [ update changelog from mail discussions ] Signed-off-by: David Sterba <dsterba@suse.com>
-
Josef Bacik authored
While testing my backport I noticed there was a panic if I ran generic/416 generic/417 generic/418 all in a row. This just happened to uncover a race where we had outstanding IO after we destroy all of our workqueues, and then we'd go to queue the endio work on those free'd workqueues. This is because we aren't waiting for the caching threads to be done before freeing everything up, so to fix this make sure we wait on any outstanding caching that's being done before we free up the block group, so we're sure to be done with all IO by the time we get to btrfs_stop_all_workers(). This fixes the panic I was seeing consistently in testing. ------------[ cut here ]------------ kernel BUG at fs/btrfs/volumes.c:6112! SMP PTI Modules linked in: CPU: 1 PID: 27165 Comm: kworker/u4:7 Not tainted 4.16.0-02155-g3553e54a578d-dirty #875 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014 Workqueue: btrfs-cache btrfs_cache_helper RIP: 0010:btrfs_map_bio+0x346/0x370 RSP: 0000:ffffc900061e79d0 EFLAGS: 00010202 RAX: 0000000000000000 RBX: ffff880071542e00 RCX: 0000000000533000 RDX: ffff88006bb74380 RSI: 0000000000000008 RDI: ffff880078160000 RBP: 0000000000000001 R08: ffff8800781cd200 R09: 0000000000503000 R10: ffff88006cd21200 R11: 0000000000000000 R12: 0000000000000000 R13: 0000000000000000 R14: ffff8800781cd200 R15: ffff880071542e00 FS: 0000000000000000(0000) GS:ffff88007fd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000000817ffc4 CR3: 0000000078314000 CR4: 00000000000006e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btree_submit_bio_hook+0x8a/0xd0 submit_one_bio+0x5d/0x80 read_extent_buffer_pages+0x18a/0x320 btree_read_extent_buffer_pages+0xbc/0x200 ? alloc_extent_buffer+0x359/0x3e0 read_tree_block+0x3d/0x60 read_block_for_search.isra.30+0x1a5/0x360 btrfs_search_slot+0x41b/0xa10 btrfs_next_old_leaf+0x212/0x470 caching_thread+0x323/0x490 normal_work_helper+0xc5/0x310 process_one_work+0x141/0x340 worker_thread+0x44/0x3c0 kthread+0xf8/0x130 ? process_one_work+0x340/0x340 ? kthread_bind+0x10/0x10 ret_from_fork+0x35/0x40 RIP: btrfs_map_bio+0x346/0x370 RSP: ffffc900061e79d0 ---[ end trace 827eb13e50846033 ]--- Kernel panic - not syncing: Fatal exception Kernel Offset: disabled ---[ end Kernel panic - not syncing: Fatal exception CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Omar Sandoval <osandov@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Jeff Mahoney authored
Commit 499f377f (btrfs: iterate over unused chunk space in FITRIM) fixed free space trimming, but introduced latency when it was running. This is due to it pinning the transaction using both a incremented refcount and holding the commit root sem for the duration of a single trim operation. This was to ensure safety but it's unnecessary. We already hold the the chunk mutex so we know that the chunk we're using can't be allocated while we're trimming it. In order to check against chunks allocated already in this transaction, we need to check the pending chunks list. To to that safely without joining the transaction (or attaching than then having to commit it) we need to ensure that the dev root's commit root doesn't change underneath us and the pending chunk lists stays around until we're done with it. We can ensure the former by holding the commit root sem and the latter by pinning the transaction. We do this now, but the critical section covers the trim operation itself and we don't need to do that. This patch moves the pinning and unpinning logic into helpers and unpins the transaction after performing the search and check for pending chunks. Limiting the critical section of the transaction pinning improves the latency substantially on slower storage (e.g. image files over NFS). Fixes: 499f377f ("btrfs: iterate over unused chunk space in FITRIM") CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Jeff Mahoney <jeffm@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-