opt_range.cc 274 KB
Newer Older
unknown's avatar
unknown committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */

unknown's avatar
unknown committed
17 18 19 20 21
/*
  TODO:
  Fix that MAYBE_KEY are stored in the tree so that we can detect use
  of full hash keys for queries like:

unknown's avatar
unknown committed
22 23
  select s.id, kws.keyword_id from sites as s,kws where s.id=kws.site_id and kws.keyword_id in (204,205);

unknown's avatar
unknown committed
24 25
*/

26 27
/*
  Classes in this file are used in the following way:
unknown's avatar
unknown committed
28 29
  1. For a selection condition a tree of SEL_IMERGE/SEL_TREE/SEL_ARG objects
     is created. #of rows in table and index statistics are ignored at this
30
     step.
unknown's avatar
unknown committed
31 32 33 34
  2. Created SEL_TREE and index stats data are used to construct a
     TABLE_READ_PLAN-derived object (TRP_*). Several 'candidate' table read
     plans may be created.
  3. The least expensive table read plan is used to create a tree of
35 36 37 38
     QUICK_SELECT_I-derived objects which are later used for row retrieval.
     QUICK_RANGEs are also created in this step.
*/

39
#ifdef USE_PRAGMA_IMPLEMENTATION
unknown's avatar
unknown committed
40 41 42 43 44 45 46 47 48 49 50 51
#pragma implementation				// gcc: Class implementation
#endif

#include "mysql_priv.h"
#include <m_ctype.h>
#include "sql_select.h"

#ifndef EXTRA_DEBUG
#define test_rb_tree(A,B) {}
#define test_use_count(A) {}
#endif

52
/*
53
  Convert double value to #rows. Currently this does floor(), and we
54 55
  might consider using round() instead.
*/
56
#define double2rows(x) ((ha_rows)(x))
57

unknown's avatar
unknown committed
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int sel_cmp(Field *f,char *a,char *b,uint8 a_flag,uint8 b_flag);

static char is_null_string[2]= {1,0};

class SEL_ARG :public Sql_alloc
{
public:
  uint8 min_flag,max_flag,maybe_flag;
  uint8 part;					// Which key part
  uint8 maybe_null;
  uint16 elements;				// Elements in tree
  ulong use_count;				// use of this sub_tree
  Field *field;
  char *min_value,*max_value;			// Pointer to range

  SEL_ARG *left,*right,*next,*prev,*parent,*next_key_part;
  enum leaf_color { BLACK,RED } color;
  enum Type { IMPOSSIBLE, MAYBE, MAYBE_KEY, KEY_RANGE } type;

  SEL_ARG() {}
  SEL_ARG(SEL_ARG &);
  SEL_ARG(Field *,const char *,const char *);
  SEL_ARG(Field *field, uint8 part, char *min_value, char *max_value,
	  uint8 min_flag, uint8 max_flag, uint8 maybe_flag);
  SEL_ARG(enum Type type_arg)
unknown's avatar
unknown committed
83 84 85
    :elements(1),use_count(1),left(0),next_key_part(0),color(BLACK),
     type(type_arg)
  {}
unknown's avatar
unknown committed
86 87
  inline bool is_same(SEL_ARG *arg)
  {
88
    if (type != arg->type || part != arg->part)
unknown's avatar
unknown committed
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
      return 0;
    if (type != KEY_RANGE)
      return 1;
    return cmp_min_to_min(arg) == 0 && cmp_max_to_max(arg) == 0;
  }
  inline void merge_flags(SEL_ARG *arg) { maybe_flag|=arg->maybe_flag; }
  inline void maybe_smaller() { maybe_flag=1; }
  inline int cmp_min_to_min(SEL_ARG* arg)
  {
    return sel_cmp(field,min_value, arg->min_value, min_flag, arg->min_flag);
  }
  inline int cmp_min_to_max(SEL_ARG* arg)
  {
    return sel_cmp(field,min_value, arg->max_value, min_flag, arg->max_flag);
  }
  inline int cmp_max_to_max(SEL_ARG* arg)
  {
    return sel_cmp(field,max_value, arg->max_value, max_flag, arg->max_flag);
  }
  inline int cmp_max_to_min(SEL_ARG* arg)
  {
    return sel_cmp(field,max_value, arg->min_value, max_flag, arg->min_flag);
  }
  SEL_ARG *clone_and(SEL_ARG* arg)
  {						// Get overlapping range
    char *new_min,*new_max;
    uint8 flag_min,flag_max;
    if (cmp_min_to_min(arg) >= 0)
    {
      new_min=min_value; flag_min=min_flag;
    }
    else
    {
      new_min=arg->min_value; flag_min=arg->min_flag; /* purecov: deadcode */
    }
    if (cmp_max_to_max(arg) <= 0)
    {
      new_max=max_value; flag_max=max_flag;
    }
    else
    {
      new_max=arg->max_value; flag_max=arg->max_flag;
    }
    return new SEL_ARG(field, part, new_min, new_max, flag_min, flag_max,
		       test(maybe_flag && arg->maybe_flag));
  }
  SEL_ARG *clone_first(SEL_ARG *arg)
  {						// min <= X < arg->min
    return new SEL_ARG(field,part, min_value, arg->min_value,
		       min_flag, arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX,
		       maybe_flag | arg->maybe_flag);
  }
  SEL_ARG *clone_last(SEL_ARG *arg)
  {						// min <= X <= key_max
    return new SEL_ARG(field, part, min_value, arg->max_value,
		       min_flag, arg->max_flag, maybe_flag | arg->maybe_flag);
  }
  SEL_ARG *clone(SEL_ARG *new_parent,SEL_ARG **next);

  bool copy_min(SEL_ARG* arg)
  {						// Get overlapping range
    if (cmp_min_to_min(arg) > 0)
    {
      min_value=arg->min_value; min_flag=arg->min_flag;
      if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
	  (NO_MAX_RANGE | NO_MIN_RANGE))
	return 1;				// Full range
    }
    maybe_flag|=arg->maybe_flag;
    return 0;
  }
  bool copy_max(SEL_ARG* arg)
  {						// Get overlapping range
    if (cmp_max_to_max(arg) <= 0)
    {
      max_value=arg->max_value; max_flag=arg->max_flag;
      if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
	  (NO_MAX_RANGE | NO_MIN_RANGE))
	return 1;				// Full range
    }
    maybe_flag|=arg->maybe_flag;
    return 0;
  }

  void copy_min_to_min(SEL_ARG *arg)
  {
    min_value=arg->min_value; min_flag=arg->min_flag;
  }
  void copy_min_to_max(SEL_ARG *arg)
  {
    max_value=arg->min_value;
    max_flag=arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX;
  }
  void copy_max_to_min(SEL_ARG *arg)
  {
    min_value=arg->max_value;
    min_flag=arg->max_flag & NEAR_MAX ? 0 : NEAR_MIN;
  }
187
  void store_min(uint length,char **min_key,uint min_key_flag)
unknown's avatar
unknown committed
188
  {
unknown's avatar
unknown committed
189 190 191
    if ((min_flag & GEOM_FLAG) ||
        (!(min_flag & NO_MIN_RANGE) &&
	!(min_key_flag & (NO_MIN_RANGE | NEAR_MIN))))
unknown's avatar
unknown committed
192 193 194 195
    {
      if (maybe_null && *min_value)
      {
	**min_key=1;
unknown's avatar
unknown committed
196
	bzero(*min_key+1,length-1);
unknown's avatar
unknown committed
197 198
      }
      else
unknown's avatar
unknown committed
199 200
	memcpy(*min_key,min_value,length);
      (*min_key)+= length;
unknown's avatar
unknown committed
201
    }
202
  }
unknown's avatar
unknown committed
203 204 205
  void store(uint length,char **min_key,uint min_key_flag,
	     char **max_key, uint max_key_flag)
  {
206
    store_min(length, min_key, min_key_flag);
unknown's avatar
unknown committed
207 208 209 210 211 212
    if (!(max_flag & NO_MAX_RANGE) &&
	!(max_key_flag & (NO_MAX_RANGE | NEAR_MAX)))
    {
      if (maybe_null && *max_value)
      {
	**max_key=1;
unknown's avatar
unknown committed
213
	bzero(*max_key+1,length-1);
unknown's avatar
unknown committed
214 215
      }
      else
unknown's avatar
unknown committed
216 217
	memcpy(*max_key,max_value,length);
      (*max_key)+= length;
unknown's avatar
unknown committed
218 219 220 221 222 223
    }
  }

  void store_min_key(KEY_PART *key,char **range_key, uint *range_key_flag)
  {
    SEL_ARG *key_tree= first();
unknown's avatar
unknown committed
224
    key_tree->store(key[key_tree->part].store_length,
unknown's avatar
unknown committed
225 226 227 228 229 230 231 232 233 234 235 236
		    range_key,*range_key_flag,range_key,NO_MAX_RANGE);
    *range_key_flag|= key_tree->min_flag;
    if (key_tree->next_key_part &&
	key_tree->next_key_part->part == key_tree->part+1 &&
	!(*range_key_flag & (NO_MIN_RANGE | NEAR_MIN)) &&
	key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
      key_tree->next_key_part->store_min_key(key,range_key, range_key_flag);
  }

  void store_max_key(KEY_PART *key,char **range_key, uint *range_key_flag)
  {
    SEL_ARG *key_tree= last();
unknown's avatar
unknown committed
237
    key_tree->store(key[key_tree->part].store_length,
unknown's avatar
unknown committed
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
		    range_key, NO_MIN_RANGE, range_key,*range_key_flag);
    (*range_key_flag)|= key_tree->max_flag;
    if (key_tree->next_key_part &&
	key_tree->next_key_part->part == key_tree->part+1 &&
	!(*range_key_flag & (NO_MAX_RANGE | NEAR_MAX)) &&
	key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
      key_tree->next_key_part->store_max_key(key,range_key, range_key_flag);
  }

  SEL_ARG *insert(SEL_ARG *key);
  SEL_ARG *tree_delete(SEL_ARG *key);
  SEL_ARG *find_range(SEL_ARG *key);
  SEL_ARG *rb_insert(SEL_ARG *leaf);
  friend SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key, SEL_ARG *par);
#ifdef EXTRA_DEBUG
  friend int test_rb_tree(SEL_ARG *element,SEL_ARG *parent);
  void test_use_count(SEL_ARG *root);
#endif
  SEL_ARG *first();
  SEL_ARG *last();
  void make_root();
  inline bool simple_key()
  {
    return !next_key_part && elements == 1;
  }
  void increment_use_count(long count)
  {
    if (next_key_part)
    {
      next_key_part->use_count+=count;
      count*= (next_key_part->use_count-count);
      for (SEL_ARG *pos=next_key_part->first(); pos ; pos=pos->next)
	if (pos->next_key_part)
	  pos->increment_use_count(count);
    }
  }
  void free_tree()
  {
    for (SEL_ARG *pos=first(); pos ; pos=pos->next)
      if (pos->next_key_part)
      {
	pos->next_key_part->use_count--;
	pos->next_key_part->free_tree();
      }
  }

  inline SEL_ARG **parent_ptr()
  {
    return parent->left == this ? &parent->left : &parent->right;
  }
  SEL_ARG *clone_tree();
};

unknown's avatar
unknown committed
291
class SEL_IMERGE;
unknown's avatar
unknown committed
292

293

unknown's avatar
unknown committed
294 295 296 297 298
class SEL_TREE :public Sql_alloc
{
public:
  enum Type { IMPOSSIBLE, ALWAYS, MAYBE, KEY, KEY_SMALLER } type;
  SEL_TREE(enum Type type_arg) :type(type_arg) {}
unknown's avatar
unknown committed
299
  SEL_TREE() :type(KEY)
unknown's avatar
unknown committed
300
  {
unknown's avatar
unknown committed
301
    keys_map.clear_all();
unknown's avatar
unknown committed
302 303
    bzero((char*) keys,sizeof(keys));
  }
unknown's avatar
unknown committed
304
  SEL_ARG *keys[MAX_KEY];
305 306
  key_map keys_map;        /* bitmask of non-NULL elements in keys */

unknown's avatar
unknown committed
307 308
  /*
    Possible ways to read rows using index_merge. The list is non-empty only
309 310 311
    if type==KEY. Currently can be non empty only if keys_map.is_clear_all().
  */
  List<SEL_IMERGE> merges;
unknown's avatar
unknown committed
312

313 314
  /* The members below are filled/used only after get_mm_tree is done */
  key_map ror_scans_map;   /* bitmask of ROR scan-able elements in keys */
315
  uint    n_ror_scans;     /* number of set bits in ror_scans_map */
316 317 318 319

  struct st_ror_scan_info **ror_scans;     /* list of ROR key scans */
  struct st_ror_scan_info **ror_scans_end; /* last ROR scan */
  /* Note that #records for each key scan is stored in table->quick_rows */
unknown's avatar
unknown committed
320 321 322 323
};


typedef struct st_qsel_param {
324
  THD	*thd;
unknown's avatar
unknown committed
325
  TABLE *table;
326 327
  KEY_PART *key_parts,*key_parts_end;
  KEY_PART *key[MAX_KEY]; /* First key parts of keys used in the query */
328
  MEM_ROOT *mem_root, *old_root;
329
  table_map prev_tables,read_tables,current_table;
330
  uint baseflag, max_key_part, range_count;
unknown's avatar
unknown committed
331

332 333 334
  uint keys; /* number of keys used in the query */

  /* used_key_no -> table_key_no translation table */
unknown's avatar
unknown committed
335
  uint real_keynr[MAX_KEY];
336

unknown's avatar
unknown committed
337 338
  char min_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH],
    max_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH];
339
  bool quick;				// Don't calulate possible keys
340
  COND *cond;
341

unknown's avatar
unknown committed
342
  uint fields_bitmap_size;
343 344 345 346
  MY_BITMAP needed_fields;    /* bitmask of fields needed by the query */

  key_map *needed_reg;        /* ptr to SQL_SELECT::needed_reg */

347 348
  uint *imerge_cost_buff;     /* buffer for index_merge cost estimates */
  uint imerge_cost_buff_size; /* size of the buffer */
unknown's avatar
unknown committed
349 350 351

 /* TRUE if last checked tree->key can be used for ROR-scan */
  bool is_ror_scan;
unknown's avatar
unknown committed
352 353
} PARAM;

354 355 356 357 358
class TABLE_READ_PLAN;
  class TRP_RANGE;
  class TRP_ROR_INTERSECT;
  class TRP_ROR_UNION;
  class TRP_ROR_INDEX_MERGE;
359
  class TRP_GROUP_MIN_MAX;
360 361 362

struct st_ror_scan_info;

363
static SEL_TREE * get_mm_parts(PARAM *param,COND *cond_func,Field *field,
unknown's avatar
unknown committed
364 365
			       Item_func::Functype type,Item *value,
			       Item_result cmp_type);
366 367
static SEL_ARG *get_mm_leaf(PARAM *param,COND *cond_func,Field *field,
			    KEY_PART *key_part,
unknown's avatar
unknown committed
368 369
			    Item_func::Functype type,Item *value);
static SEL_TREE *get_mm_tree(PARAM *param,COND *cond);
370 371

static bool is_key_scan_ror(PARAM *param, uint keynr, uint8 nparts);
unknown's avatar
unknown committed
372 373 374 375 376
static ha_rows check_quick_select(PARAM *param,uint index,SEL_ARG *key_tree);
static ha_rows check_quick_keys(PARAM *param,uint index,SEL_ARG *key_tree,
				char *min_key,uint min_key_flag,
				char *max_key, uint max_key_flag);

unknown's avatar
unknown committed
377
QUICK_RANGE_SELECT *get_quick_select(PARAM *param,uint index,
unknown's avatar
unknown committed
378
                                     SEL_ARG *key_tree,
unknown's avatar
unknown committed
379
                                     MEM_ROOT *alloc = NULL);
380
static TRP_RANGE *get_key_scans_params(PARAM *param, SEL_TREE *tree,
unknown's avatar
unknown committed
381
                                       bool index_read_must_be_used,
382 383 384 385 386 387
                                       double read_time);
static
TRP_ROR_INTERSECT *get_best_ror_intersect(const PARAM *param, SEL_TREE *tree,
                                          double read_time,
                                          bool *are_all_covering);
static
unknown's avatar
unknown committed
388 389
TRP_ROR_INTERSECT *get_best_covering_ror_intersect(PARAM *param,
                                                   SEL_TREE *tree,
390 391 392 393
                                                   double read_time);
static
TABLE_READ_PLAN *get_best_disjunct_quick(PARAM *param, SEL_IMERGE *imerge,
                                         double read_time);
394 395
static
TRP_GROUP_MIN_MAX *get_best_group_min_max(PARAM *param, SEL_TREE *tree);
396
static int get_index_merge_params(PARAM *param, key_map& needed_reg,
unknown's avatar
unknown committed
397
                           SEL_IMERGE *imerge, double *read_time,
398
                           ha_rows* imerge_rows);
unknown's avatar
unknown committed
399
static double get_index_only_read_time(const PARAM* param, ha_rows records,
400 401
                                       int keynr);

unknown's avatar
unknown committed
402
#ifndef DBUG_OFF
403 404
static void print_sel_tree(PARAM *param, SEL_TREE *tree, key_map *tree_map,
                           const char *msg);
unknown's avatar
unknown committed
405 406
static void print_ror_scans_arr(TABLE *table, const char *msg,
                                struct st_ror_scan_info **start,
407 408 409
                                struct st_ror_scan_info **end);
static void print_rowid(byte* val, int len);
static void print_quick(QUICK_SELECT_I *quick, const key_map *needed_reg);
unknown's avatar
unknown committed
410
#endif
411

unknown's avatar
unknown committed
412 413 414 415 416 417
static SEL_TREE *tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2);
static SEL_TREE *tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2);
static SEL_ARG *sel_add(SEL_ARG *key1,SEL_ARG *key2);
static SEL_ARG *key_or(SEL_ARG *key1,SEL_ARG *key2);
static SEL_ARG *key_and(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag);
static bool get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1);
unknown's avatar
unknown committed
418
bool get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key,
unknown's avatar
unknown committed
419 420 421 422 423
			   SEL_ARG *key_tree,char *min_key,uint min_key_flag,
			   char *max_key,uint max_key_flag);
static bool eq_tree(SEL_ARG* a,SEL_ARG *b);

static SEL_ARG null_element(SEL_ARG::IMPOSSIBLE);
unknown's avatar
unknown committed
424
static bool null_part_in_key(KEY_PART *key_part, const char *key,
unknown's avatar
unknown committed
425
                             uint length);
unknown's avatar
unknown committed
426 427 428 429
bool sel_trees_can_be_ored(SEL_TREE *tree1, SEL_TREE *tree2, PARAM* param);


/*
unknown's avatar
unknown committed
430
  SEL_IMERGE is a list of possible ways to do index merge, i.e. it is
unknown's avatar
unknown committed
431
  a condition in the following form:
unknown's avatar
unknown committed
432
   (t_1||t_2||...||t_N) && (next)
unknown's avatar
unknown committed
433

unknown's avatar
unknown committed
434
  where all t_i are SEL_TREEs, next is another SEL_IMERGE and no pair
unknown's avatar
unknown committed
435 436 437 438 439 440 441 442 443 444 445
  (t_i,t_j) contains SEL_ARGS for the same index.

  SEL_TREE contained in SEL_IMERGE always has merges=NULL.

  This class relies on memory manager to do the cleanup.
*/

class SEL_IMERGE : public Sql_alloc
{
  enum { PREALLOCED_TREES= 10};
public:
unknown's avatar
unknown committed
446
  SEL_TREE *trees_prealloced[PREALLOCED_TREES];
unknown's avatar
unknown committed
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
  SEL_TREE **trees;             /* trees used to do index_merge   */
  SEL_TREE **trees_next;        /* last of these trees            */
  SEL_TREE **trees_end;         /* end of allocated space         */

  SEL_ARG  ***best_keys;        /* best keys to read in SEL_TREEs */

  SEL_IMERGE() :
    trees(&trees_prealloced[0]),
    trees_next(trees),
    trees_end(trees + PREALLOCED_TREES)
  {}
  int or_sel_tree(PARAM *param, SEL_TREE *tree);
  int or_sel_tree_with_checks(PARAM *param, SEL_TREE *new_tree);
  int or_sel_imerge_with_checks(PARAM *param, SEL_IMERGE* imerge);
};


unknown's avatar
unknown committed
464
/*
unknown's avatar
unknown committed
465 466
  Add SEL_TREE to this index_merge without any checks,

unknown's avatar
unknown committed
467 468
  NOTES
    This function implements the following:
unknown's avatar
unknown committed
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
      (x_1||...||x_N) || t = (x_1||...||x_N||t), where x_i, t are SEL_TREEs

  RETURN
     0 - OK
    -1 - Out of memory.
*/

int SEL_IMERGE::or_sel_tree(PARAM *param, SEL_TREE *tree)
{
  if (trees_next == trees_end)
  {
    const int realloc_ratio= 2;		/* Double size for next round */
    uint old_elements= (trees_end - trees);
    uint old_size= sizeof(SEL_TREE**) * old_elements;
    uint new_size= old_size * realloc_ratio;
    SEL_TREE **new_trees;
    if (!(new_trees= (SEL_TREE**)alloc_root(param->mem_root, new_size)))
      return -1;
    memcpy(new_trees, trees, old_size);
    trees=      new_trees;
    trees_next= trees + old_elements;
    trees_end=  trees + old_elements * realloc_ratio;
  }
  *(trees_next++)= tree;
  return 0;
}


/*
  Perform OR operation on this SEL_IMERGE and supplied SEL_TREE new_tree,
  combining new_tree with one of the trees in this SEL_IMERGE if they both
  have SEL_ARGs for the same key.
unknown's avatar
unknown committed
501

unknown's avatar
unknown committed
502 503 504 505 506
  SYNOPSIS
    or_sel_tree_with_checks()
      param    PARAM from SQL_SELECT::test_quick_select
      new_tree SEL_TREE with type KEY or KEY_SMALLER.

unknown's avatar
unknown committed
507
  NOTES
unknown's avatar
unknown committed
508
    This does the following:
unknown's avatar
unknown committed
509 510
    (t_1||...||t_k)||new_tree =
     either
unknown's avatar
unknown committed
511 512 513
       = (t_1||...||t_k||new_tree)
     or
       = (t_1||....||(t_j|| new_tree)||...||t_k),
unknown's avatar
unknown committed
514

unknown's avatar
unknown committed
515
     where t_i, y are SEL_TREEs.
unknown's avatar
unknown committed
516 517
    new_tree is combined with the first t_j it has a SEL_ARG on common
    key with. As a consequence of this, choice of keys to do index_merge
unknown's avatar
unknown committed
518 519
    read may depend on the order of conditions in WHERE part of the query.

unknown's avatar
unknown committed
520
  RETURN
unknown's avatar
unknown committed
521
    0  OK
unknown's avatar
unknown committed
522
    1  One of the trees was combined with new_tree to SEL_TREE::ALWAYS,
unknown's avatar
unknown committed
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
       and (*this) should be discarded.
   -1  An error occurred.
*/

int SEL_IMERGE::or_sel_tree_with_checks(PARAM *param, SEL_TREE *new_tree)
{
  for (SEL_TREE** tree = trees;
       tree != trees_next;
       tree++)
  {
    if (sel_trees_can_be_ored(*tree, new_tree, param))
    {
      *tree = tree_or(param, *tree, new_tree);
      if (!*tree)
        return 1;
      if (((*tree)->type == SEL_TREE::MAYBE) ||
          ((*tree)->type == SEL_TREE::ALWAYS))
        return 1;
      /* SEL_TREE::IMPOSSIBLE is impossible here */
      return 0;
    }
  }

546
  /* New tree cannot be combined with any of existing trees. */
unknown's avatar
unknown committed
547 548 549 550 551 552 553 554 555
  return or_sel_tree(param, new_tree);
}


/*
  Perform OR operation on this index_merge and supplied index_merge list.

  RETURN
    0 - OK
unknown's avatar
unknown committed
556
    1 - One of conditions in result is always TRUE and this SEL_IMERGE
unknown's avatar
unknown committed
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
        should be discarded.
   -1 - An error occurred
*/

int SEL_IMERGE::or_sel_imerge_with_checks(PARAM *param, SEL_IMERGE* imerge)
{
  for (SEL_TREE** tree= imerge->trees;
       tree != imerge->trees_next;
       tree++)
  {
    if (or_sel_tree_with_checks(param, *tree))
      return 1;
  }
  return 0;
}


unknown's avatar
unknown committed
574
/*
575
  Perform AND operation on two index_merge lists and store result in *im1.
unknown's avatar
unknown committed
576 577 578 579 580 581 582 583 584 585 586
*/

inline void imerge_list_and_list(List<SEL_IMERGE> *im1, List<SEL_IMERGE> *im2)
{
  im1->concat(im2);
}


/*
  Perform OR operation on 2 index_merge lists, storing result in first list.

unknown's avatar
unknown committed
587
  NOTES
unknown's avatar
unknown committed
588 589 590
    The following conversion is implemented:
     (a_1 &&...&& a_N)||(b_1 &&...&& b_K) = AND_i,j(a_i || b_j) =>
      => (a_1||b_1).
unknown's avatar
unknown committed
591 592

    i.e. all conjuncts except the first one are currently dropped.
unknown's avatar
unknown committed
593 594
    This is done to avoid producing N*K ways to do index_merge.

unknown's avatar
unknown committed
595
    If (a_1||b_1) produce a condition that is always TRUE, NULL is returned
unknown's avatar
unknown committed
596
    and index_merge is discarded (while it is actually possible to try
597
    harder).
unknown's avatar
unknown committed
598

599 600
    As a consequence of this, choice of keys to do index_merge read may depend
    on the order of conditions in WHERE part of the query.
unknown's avatar
unknown committed
601 602

  RETURN
603
    0     OK, result is stored in *im1
unknown's avatar
unknown committed
604 605 606
    other Error, both passed lists are unusable
*/

unknown's avatar
unknown committed
607
int imerge_list_or_list(PARAM *param,
unknown's avatar
unknown committed
608 609 610 611 612 613
                        List<SEL_IMERGE> *im1,
                        List<SEL_IMERGE> *im2)
{
  SEL_IMERGE *imerge= im1->head();
  im1->empty();
  im1->push_back(imerge);
unknown's avatar
unknown committed
614

unknown's avatar
unknown committed
615 616 617 618 619 620 621 622
  return imerge->or_sel_imerge_with_checks(param, im2->head());
}


/*
  Perform OR operation on index_merge list and key tree.

  RETURN
623
    0     OK, result is stored in *im1.
unknown's avatar
unknown committed
624 625 626
    other Error
*/

unknown's avatar
unknown committed
627
int imerge_list_or_tree(PARAM *param,
unknown's avatar
unknown committed
628 629 630 631 632
                        List<SEL_IMERGE> *im1,
                        SEL_TREE *tree)
{
  SEL_IMERGE *imerge;
  List_iterator<SEL_IMERGE> it(*im1);
unknown's avatar
unknown committed
633
  while ((imerge= it++))
unknown's avatar
unknown committed
634 635 636 637 638 639
  {
    if (imerge->or_sel_tree_with_checks(param, tree))
      it.remove();
  }
  return im1->is_empty();
}
unknown's avatar
unknown committed
640 641

/***************************************************************************
unknown's avatar
unknown committed
642
** Basic functions for SQL_SELECT and QUICK_RANGE_SELECT
unknown's avatar
unknown committed
643 644 645 646 647 648 649 650 651
***************************************************************************/

	/* make a select from mysql info
	   Error is set as following:
	   0 = ok
	   1 = Got some error (out of memory?)
	   */

SQL_SELECT *make_select(TABLE *head, table_map const_tables,
unknown's avatar
unknown committed
652 653 654 655
			table_map read_tables, COND *conds,
                        bool allow_null_cond,
                        int *error)
                        
unknown's avatar
unknown committed
656 657 658 659 660
{
  SQL_SELECT *select;
  DBUG_ENTER("make_select");

  *error=0;
661 662

  if (!conds && !allow_null_cond)
unknown's avatar
unknown committed
663 664 665
    DBUG_RETURN(0);
  if (!(select= new SQL_SELECT))
  {
666 667
    *error= 1;			// out of memory
    DBUG_RETURN(0);		/* purecov: inspected */
unknown's avatar
unknown committed
668 669 670 671 672 673
  }
  select->read_tables=read_tables;
  select->const_tables=const_tables;
  select->head=head;
  select->cond=conds;

unknown's avatar
unknown committed
674
  if (head->sort.io_cache)
unknown's avatar
unknown committed
675
  {
unknown's avatar
unknown committed
676
    select->file= *head->sort.io_cache;
unknown's avatar
unknown committed
677 678
    select->records=(ha_rows) (select->file.end_of_file/
			       head->file->ref_length);
unknown's avatar
unknown committed
679 680
    my_free((gptr) (head->sort.io_cache),MYF(0));
    head->sort.io_cache=0;
unknown's avatar
unknown committed
681 682 683 684 685 686 687
  }
  DBUG_RETURN(select);
}


SQL_SELECT::SQL_SELECT() :quick(0),cond(0),free_cond(0)
{
unknown's avatar
unknown committed
688
  quick_keys.clear_all(); needed_reg.clear_all();
unknown's avatar
unknown committed
689 690 691 692
  my_b_clear(&file);
}


693
void SQL_SELECT::cleanup()
unknown's avatar
unknown committed
694 695
{
  delete quick;
696
  quick= 0;
unknown's avatar
unknown committed
697
  if (free_cond)
698 699
  {
    free_cond=0;
unknown's avatar
unknown committed
700
    delete cond;
701
    cond= 0;
unknown's avatar
unknown committed
702
  }
unknown's avatar
unknown committed
703 704 705
  close_cached_file(&file);
}

706 707 708 709 710 711

SQL_SELECT::~SQL_SELECT()
{
  cleanup();
}

unknown's avatar
unknown committed
712
#undef index					// Fix for Unixware 7
unknown's avatar
unknown committed
713

unknown's avatar
unknown committed
714 715 716 717 718
QUICK_SELECT_I::QUICK_SELECT_I()
  :max_used_key_length(0),
   used_key_parts(0)
{}

unknown's avatar
unknown committed
719
QUICK_RANGE_SELECT::QUICK_RANGE_SELECT(THD *thd, TABLE *table, uint key_nr,
unknown's avatar
unknown committed
720
                                       bool no_alloc, MEM_ROOT *parent_alloc)
721
  :dont_free(0),error(0),free_file(0),in_range(0),cur_range(NULL),range(0)
unknown's avatar
unknown committed
722
{
unknown's avatar
unknown committed
723
  sorted= 0;
unknown's avatar
unknown committed
724 725
  index= key_nr;
  head=  table;
unknown's avatar
unknown committed
726
  key_part_info= head->key_info[index].key_part;
727
  my_init_dynamic_array(&ranges, sizeof(QUICK_RANGE*), 16, 16);
unknown's avatar
unknown committed
728

unknown's avatar
unknown committed
729
  /* 'thd' is not accessible in QUICK_RANGE_SELECT::reset(). */
unknown's avatar
unknown committed
730 731 732 733 734 735
  multi_range_bufsiz= thd->variables.read_rnd_buff_size;
  multi_range_count= thd->variables.multi_range_count;
  multi_range_length= 0;
  multi_range= NULL;
  multi_range_buff= NULL;

unknown's avatar
unknown committed
736
  if (!no_alloc && !parent_alloc)
unknown's avatar
unknown committed
737
  {
738 739
    // Allocates everything through the internal memroot
    init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
unknown's avatar
unknown committed
740
    thd->mem_root= &alloc;
unknown's avatar
unknown committed
741 742 743
  }
  else
    bzero((char*) &alloc,sizeof(alloc));
unknown's avatar
unknown committed
744 745
  file= head->file;
  record= head->record[0];
unknown's avatar
unknown committed
746 747
}

unknown's avatar
unknown committed
748

unknown's avatar
unknown committed
749 750
int QUICK_RANGE_SELECT::init()
{
unknown's avatar
unknown committed
751
  DBUG_ENTER("QUICK_RANGE_SELECT::init");
unknown's avatar
unknown committed
752

753 754
  if (file->inited != handler::NONE)
    file->ha_index_or_rnd_end();
unknown's avatar
Merge  
unknown committed
755
  DBUG_RETURN(error= file->ha_index_init(index, 1));
unknown's avatar
unknown committed
756 757 758 759 760 761
}


void QUICK_RANGE_SELECT::range_end()
{
  if (file->inited != handler::NONE)
762
    file->ha_index_or_rnd_end();
unknown's avatar
unknown committed
763 764
}

unknown's avatar
unknown committed
765

unknown's avatar
unknown committed
766
QUICK_RANGE_SELECT::~QUICK_RANGE_SELECT()
unknown's avatar
unknown committed
767
{
768
  DBUG_ENTER("QUICK_RANGE_SELECT::~QUICK_RANGE_SELECT");
unknown's avatar
unknown committed
769 770
  if (!dont_free)
  {
unknown's avatar
unknown committed
771 772
    /* file is NULL for CPK scan on covering ROR-intersection */
    if (file) 
773
    {
unknown's avatar
unknown committed
774 775 776 777 778 779
      range_end();
      file->extra(HA_EXTRA_NO_KEYREAD);
      if (free_file)
      {
        DBUG_PRINT("info", ("Freeing separate handler %p (free=%d)", file,
                            free_file));
780
        file->ha_reset();
unknown's avatar
unknown committed
781
        file->external_lock(current_thd, F_UNLCK);
unknown's avatar
unknown committed
782
        file->close();
783
        delete file;
unknown's avatar
unknown committed
784
      }
unknown's avatar
unknown committed
785
    }
unknown's avatar
unknown committed
786
    delete_dynamic(&ranges); /* ranges are allocated in alloc */
unknown's avatar
unknown committed
787 788
    free_root(&alloc,MYF(0));
  }
unknown's avatar
unknown committed
789 790 791 792
  if (multi_range)
    my_free((char*) multi_range, MYF(0));
  if (multi_range_buff)
    my_free((char*) multi_range_buff, MYF(0));
unknown's avatar
unknown committed
793
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
794 795
}

unknown's avatar
unknown committed
796

unknown's avatar
unknown committed
797
QUICK_INDEX_MERGE_SELECT::QUICK_INDEX_MERGE_SELECT(THD *thd_param,
unknown's avatar
unknown committed
798
                                                   TABLE *table)
unknown's avatar
unknown committed
799
  :pk_quick_select(NULL), thd(thd_param)
unknown's avatar
unknown committed
800
{
801
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::QUICK_INDEX_MERGE_SELECT");
unknown's avatar
unknown committed
802 803
  index= MAX_KEY;
  head= table;
804
  bzero(&read_record, sizeof(read_record));
805
  init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
806
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
807 808 809 810
}

int QUICK_INDEX_MERGE_SELECT::init()
{
unknown's avatar
unknown committed
811 812
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::init");
  DBUG_RETURN(0);
unknown's avatar
unknown committed
813 814
}

815
int QUICK_INDEX_MERGE_SELECT::reset()
unknown's avatar
unknown committed
816
{
817
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::reset");
unknown's avatar
unknown committed
818
  DBUG_RETURN(read_keys_and_merge());
unknown's avatar
unknown committed
819 820
}

unknown's avatar
unknown committed
821
bool
unknown's avatar
unknown committed
822 823
QUICK_INDEX_MERGE_SELECT::push_quick_back(QUICK_RANGE_SELECT *quick_sel_range)
{
unknown's avatar
unknown committed
824 825
  /*
    Save quick_select that does scan on clustered primary key as it will be
826
    processed separately.
827
  */
unknown's avatar
unknown committed
828
  if (head->file->primary_key_is_clustered() &&
829
      quick_sel_range->index == head->s->primary_key)
830 831 832 833
    pk_quick_select= quick_sel_range;
  else
    return quick_selects.push_back(quick_sel_range);
  return 0;
unknown's avatar
unknown committed
834 835 836 837
}

QUICK_INDEX_MERGE_SELECT::~QUICK_INDEX_MERGE_SELECT()
{
unknown's avatar
unknown committed
838 839
  List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
  QUICK_RANGE_SELECT* quick;
840
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::~QUICK_INDEX_MERGE_SELECT");
unknown's avatar
unknown committed
841 842 843
  quick_it.rewind();
  while ((quick= quick_it++))
    quick->file= NULL;
unknown's avatar
unknown committed
844
  quick_selects.delete_elements();
845
  delete pk_quick_select;
unknown's avatar
unknown committed
846
  free_root(&alloc,MYF(0));
847
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
848 849
}

850 851 852 853 854

QUICK_ROR_INTERSECT_SELECT::QUICK_ROR_INTERSECT_SELECT(THD *thd_param,
                                                       TABLE *table,
                                                       bool retrieve_full_rows,
                                                       MEM_ROOT *parent_alloc)
unknown's avatar
unknown committed
855
  : cpk_quick(NULL), thd(thd_param), need_to_fetch_row(retrieve_full_rows),
unknown's avatar
unknown committed
856
    scans_inited(FALSE)
857 858
{
  index= MAX_KEY;
unknown's avatar
unknown committed
859
  head= table;
860 861
  record= head->record[0];
  if (!parent_alloc)
862
    init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
863 864
  else
    bzero(&alloc, sizeof(MEM_ROOT));
unknown's avatar
unknown committed
865
  last_rowid= (byte*)alloc_root(parent_alloc? parent_alloc : &alloc,
866 867 868
                                head->file->ref_length);
}

869

unknown's avatar
unknown committed
870
/*
871 872 873
  Do post-constructor initialization.
  SYNOPSIS
    QUICK_ROR_INTERSECT_SELECT::init()
unknown's avatar
unknown committed
874

875 876 877 878 879
  RETURN
    0      OK
    other  Error code
*/

880 881
int QUICK_ROR_INTERSECT_SELECT::init()
{
unknown's avatar
unknown committed
882 883 884
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::init");
 /* Check if last_rowid was successfully allocated in ctor */
  DBUG_RETURN(!last_rowid);
885 886 887 888
}


/*
889 890 891 892
  Initialize this quick select to be a ROR-merged scan.

  SYNOPSIS
    QUICK_RANGE_SELECT::init_ror_merged_scan()
unknown's avatar
unknown committed
893
      reuse_handler If TRUE, use head->file, otherwise create a separate
894 895 896 897
                    handler object

  NOTES
    This function creates and prepares for subsequent use a separate handler
unknown's avatar
unknown committed
898
    object if it can't reuse head->file. The reason for this is that during
899 900 901
    ROR-merge several key scans are performed simultaneously, and a single
    handler is only capable of preserving context of a single key scan.

unknown's avatar
unknown committed
902
    In ROR-merge the quick select doing merge does full records retrieval,
903
    merged quick selects read only keys.
unknown's avatar
unknown committed
904 905

  RETURN
906 907 908 909
    0  ROR child scan initialized, ok to use.
    1  error
*/

910
int QUICK_RANGE_SELECT::init_ror_merged_scan(bool reuse_handler)
911 912
{
  handler *save_file= file;
unknown's avatar
unknown committed
913
  THD *thd;
914
  DBUG_ENTER("QUICK_RANGE_SELECT::init_ror_merged_scan");
unknown's avatar
unknown committed
915

916 917 918 919
  if (reuse_handler)
  {
    DBUG_PRINT("info", ("Reusing handler %p", file));
    if (file->extra(HA_EXTRA_KEYREAD) ||
920
        file->ha_retrieve_all_pk() ||
921 922 923 924
        init() || reset())
    {
      DBUG_RETURN(1);
    }
unknown's avatar
unknown committed
925
    DBUG_RETURN(0);
926 927 928 929 930 931 932 933
  }

  /* Create a separate handler object for this quick select */
  if (free_file)
  {
    /* already have own 'handler' object. */
    DBUG_RETURN(0);
  }
unknown's avatar
unknown committed
934

unknown's avatar
unknown committed
935 936
  thd= head->in_use;
  if (!(file= get_new_handler(head->s, thd->mem_root, head->s->db_type)))
937 938
    goto failure;
  DBUG_PRINT("info", ("Allocated new handler %p", file));
unknown's avatar
unknown committed
939 940
  if (file->ha_open(head, head->s->normalized_path.str, head->db_stat,
                    HA_OPEN_IGNORE_IF_LOCKED))
941
  {
unknown's avatar
unknown committed
942
    /* Caller will free the memory */
943 944
    goto failure;
  }
unknown's avatar
unknown committed
945 946
  if (file->external_lock(thd, F_RDLCK))
    goto failure;
unknown's avatar
unknown committed
947 948

  if (file->extra(HA_EXTRA_KEYREAD) ||
949
      file->ha_retrieve_all_pk() ||
950 951
      init() || reset())
  {
unknown's avatar
unknown committed
952
    file->external_lock(thd, F_UNLCK);
953 954 955
    file->close();
    goto failure;
  }
unknown's avatar
unknown committed
956
  free_file= TRUE;
957 958 959 960
  last_rowid= file->ref;
  DBUG_RETURN(0);

failure:
961 962
  if (file)
    delete file;
963 964 965 966
  file= save_file;
  DBUG_RETURN(1);
}

967 968 969 970 971

/*
  Initialize this quick select to be a part of a ROR-merged scan.
  SYNOPSIS
    QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan()
unknown's avatar
unknown committed
972
      reuse_handler If TRUE, use head->file, otherwise create separate
973
                    handler object.
unknown's avatar
unknown committed
974
  RETURN
975 976 977 978
    0     OK
    other error code
*/
int QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan(bool reuse_handler)
979 980 981
{
  List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
  QUICK_RANGE_SELECT* quick;
982
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan");
983 984

  /* Initialize all merged "children" quick selects */
unknown's avatar
unknown committed
985
  DBUG_ASSERT(!need_to_fetch_row || reuse_handler);
986 987 988
  if (!need_to_fetch_row && reuse_handler)
  {
    quick= quick_it++;
unknown's avatar
unknown committed
989
    /*
990
      There is no use of this->file. Use it for the first of merged range
991 992
      selects.
    */
unknown's avatar
unknown committed
993
    if (quick->init_ror_merged_scan(TRUE))
994 995 996
      DBUG_RETURN(1);
    quick->file->extra(HA_EXTRA_KEYREAD_PRESERVE_FIELDS);
  }
unknown's avatar
unknown committed
997
  while ((quick= quick_it++))
998
  {
unknown's avatar
unknown committed
999
    if (quick->init_ror_merged_scan(FALSE))
1000 1001
      DBUG_RETURN(1);
    quick->file->extra(HA_EXTRA_KEYREAD_PRESERVE_FIELDS);
1002
    /* All merged scans share the same record buffer in intersection. */
1003 1004 1005
    quick->record= head->record[0];
  }

unknown's avatar
unknown committed
1006
  if (need_to_fetch_row && head->file->ha_rnd_init(1))
1007 1008 1009 1010 1011 1012 1013
  {
    DBUG_PRINT("error", ("ROR index_merge rnd_init call failed"));
    DBUG_RETURN(1);
  }
  DBUG_RETURN(0);
}

1014

unknown's avatar
unknown committed
1015
/*
1016 1017 1018 1019 1020 1021 1022 1023
  Initialize quick select for row retrieval.
  SYNOPSIS
    reset()
  RETURN
    0      OK
    other  Error code
*/

1024 1025 1026
int QUICK_ROR_INTERSECT_SELECT::reset()
{
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::reset");
unknown's avatar
unknown committed
1027 1028
  if (!scans_inited && init_ror_merged_scan(TRUE))
    DBUG_RETURN(1);
unknown's avatar
unknown committed
1029
  scans_inited= TRUE;
unknown's avatar
unknown committed
1030 1031 1032 1033 1034
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  QUICK_RANGE_SELECT *quick;
  while ((quick= it++))
    quick->reset();
  DBUG_RETURN(0);
1035 1036
}

1037 1038 1039

/*
  Add a merged quick select to this ROR-intersection quick select.
unknown's avatar
unknown committed
1040

1041 1042 1043 1044 1045 1046
  SYNOPSIS
    QUICK_ROR_INTERSECT_SELECT::push_quick_back()
      quick Quick select to be added. The quick select must return
            rows in rowid order.
  NOTES
    This call can only be made before init() is called.
unknown's avatar
unknown committed
1047

1048
  RETURN
unknown's avatar
unknown committed
1049
    FALSE OK
unknown's avatar
unknown committed
1050
    TRUE  Out of memory.
1051 1052
*/

unknown's avatar
unknown committed
1053
bool
1054 1055
QUICK_ROR_INTERSECT_SELECT::push_quick_back(QUICK_RANGE_SELECT *quick)
{
1056
  return quick_selects.push_back(quick);
1057 1058 1059
}

QUICK_ROR_INTERSECT_SELECT::~QUICK_ROR_INTERSECT_SELECT()
unknown's avatar
unknown committed
1060
{
1061
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::~QUICK_ROR_INTERSECT_SELECT");
unknown's avatar
unknown committed
1062
  quick_selects.delete_elements();
1063 1064
  delete cpk_quick;
  free_root(&alloc,MYF(0));
unknown's avatar
unknown committed
1065 1066
  if (need_to_fetch_row && head->file->inited != handler::NONE)
    head->file->ha_rnd_end();
1067 1068 1069
  DBUG_VOID_RETURN;
}

unknown's avatar
unknown committed
1070

1071 1072
QUICK_ROR_UNION_SELECT::QUICK_ROR_UNION_SELECT(THD *thd_param,
                                               TABLE *table)
unknown's avatar
unknown committed
1073
  : thd(thd_param), scans_inited(FALSE)
1074 1075 1076 1077 1078 1079
{
  index= MAX_KEY;
  head= table;
  rowid_length= table->file->ref_length;
  record= head->record[0];
  init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
unknown's avatar
unknown committed
1080
  thd_param->mem_root= &alloc;
1081 1082
}

1083 1084 1085 1086 1087

/*
  Do post-constructor initialization.
  SYNOPSIS
    QUICK_ROR_UNION_SELECT::init()
unknown's avatar
unknown committed
1088

1089 1090 1091 1092 1093
  RETURN
    0      OK
    other  Error code
*/

1094 1095
int QUICK_ROR_UNION_SELECT::init()
{
unknown's avatar
unknown committed
1096
  DBUG_ENTER("QUICK_ROR_UNION_SELECT::init");
1097
  if (init_queue(&queue, quick_selects.elements, 0,
unknown's avatar
unknown committed
1098
                 FALSE , QUICK_ROR_UNION_SELECT::queue_cmp,
1099 1100 1101
                 (void*) this))
  {
    bzero(&queue, sizeof(QUEUE));
unknown's avatar
unknown committed
1102
    DBUG_RETURN(1);
1103
  }
unknown's avatar
unknown committed
1104

1105
  if (!(cur_rowid= (byte*)alloc_root(&alloc, 2*head->file->ref_length)))
unknown's avatar
unknown committed
1106
    DBUG_RETURN(1);
1107
  prev_rowid= cur_rowid + head->file->ref_length;
unknown's avatar
unknown committed
1108
  DBUG_RETURN(0);
1109 1110
}

1111

1112
/*
unknown's avatar
unknown committed
1113
  Comparison function to be used QUICK_ROR_UNION_SELECT::queue priority
1114 1115
  queue.

1116 1117 1118 1119 1120 1121
  SYNPOSIS
    QUICK_ROR_UNION_SELECT::queue_cmp()
      arg   Pointer to QUICK_ROR_UNION_SELECT
      val1  First merged select
      val2  Second merged select
*/
unknown's avatar
unknown committed
1122

1123 1124
int QUICK_ROR_UNION_SELECT::queue_cmp(void *arg, byte *val1, byte *val2)
{
1125
  QUICK_ROR_UNION_SELECT *self= (QUICK_ROR_UNION_SELECT*)arg;
1126 1127 1128 1129
  return self->head->file->cmp_ref(((QUICK_SELECT_I*)val1)->last_rowid,
                                   ((QUICK_SELECT_I*)val2)->last_rowid);
}

1130

unknown's avatar
unknown committed
1131
/*
1132 1133 1134
  Initialize quick select for row retrieval.
  SYNOPSIS
    reset()
unknown's avatar
unknown committed
1135

1136 1137 1138 1139 1140
  RETURN
    0      OK
    other  Error code
*/

1141 1142 1143 1144 1145
int QUICK_ROR_UNION_SELECT::reset()
{
  QUICK_SELECT_I* quick;
  int error;
  DBUG_ENTER("QUICK_ROR_UNION_SELECT::reset");
unknown's avatar
unknown committed
1146
  have_prev_rowid= FALSE;
unknown's avatar
unknown committed
1147 1148 1149 1150 1151 1152 1153 1154 1155
  if (!scans_inited)
  {
    QUICK_SELECT_I *quick;
    List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
    while ((quick= it++))
    {
      if (quick->init_ror_merged_scan(FALSE))
        DBUG_RETURN(1);
    }
unknown's avatar
unknown committed
1156
    scans_inited= TRUE;
unknown's avatar
unknown committed
1157 1158
  }
  queue_remove_all(&queue);
unknown's avatar
unknown committed
1159 1160
  /*
    Initialize scans for merged quick selects and put all merged quick
1161 1162 1163 1164 1165
    selects into the queue.
  */
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  while ((quick= it++))
  {
unknown's avatar
unknown committed
1166
    if (quick->reset())
unknown's avatar
unknown committed
1167
      DBUG_RETURN(1);
1168 1169 1170 1171
    if ((error= quick->get_next()))
    {
      if (error == HA_ERR_END_OF_FILE)
        continue;
unknown's avatar
unknown committed
1172
      DBUG_RETURN(error);
1173 1174 1175 1176 1177
    }
    quick->save_last_pos();
    queue_insert(&queue, (byte*)quick);
  }

unknown's avatar
unknown committed
1178
  if (head->file->ha_rnd_init(1))
1179 1180 1181 1182 1183 1184 1185 1186 1187
  {
    DBUG_PRINT("error", ("ROR index_merge rnd_init call failed"));
    DBUG_RETURN(1);
  }

  DBUG_RETURN(0);
}


unknown's avatar
unknown committed
1188
bool
1189 1190 1191 1192 1193 1194 1195 1196 1197
QUICK_ROR_UNION_SELECT::push_quick_back(QUICK_SELECT_I *quick_sel_range)
{
  return quick_selects.push_back(quick_sel_range);
}

QUICK_ROR_UNION_SELECT::~QUICK_ROR_UNION_SELECT()
{
  DBUG_ENTER("QUICK_ROR_UNION_SELECT::~QUICK_ROR_UNION_SELECT");
  delete_queue(&queue);
unknown's avatar
unknown committed
1198
  quick_selects.delete_elements();
1199 1200
  if (head->file->inited != handler::NONE)
    head->file->ha_rnd_end();
1201 1202
  free_root(&alloc,MYF(0));
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
1203 1204
}

1205

unknown's avatar
unknown committed
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
QUICK_RANGE::QUICK_RANGE()
  :min_key(0),max_key(0),min_length(0),max_length(0),
   flag(NO_MIN_RANGE | NO_MAX_RANGE)
{}

SEL_ARG::SEL_ARG(SEL_ARG &arg) :Sql_alloc()
{
  type=arg.type;
  min_flag=arg.min_flag;
  max_flag=arg.max_flag;
  maybe_flag=arg.maybe_flag;
  maybe_null=arg.maybe_null;
  part=arg.part;
  field=arg.field;
  min_value=arg.min_value;
  max_value=arg.max_value;
  next_key_part=arg.next_key_part;
  use_count=1; elements=1;
}


inline void SEL_ARG::make_root()
{
  left=right= &null_element;
  color=BLACK;
  next=prev=0;
  use_count=0; elements=1;
}

SEL_ARG::SEL_ARG(Field *f,const char *min_value_arg,const char *max_value_arg)
  :min_flag(0), max_flag(0), maybe_flag(0), maybe_null(f->real_maybe_null()),
   elements(1), use_count(1), field(f), min_value((char*) min_value_arg),
   max_value((char*) max_value_arg), next(0),prev(0),
   next_key_part(0),color(BLACK),type(KEY_RANGE)
{
  left=right= &null_element;
}

SEL_ARG::SEL_ARG(Field *field_,uint8 part_,char *min_value_,char *max_value_,
		 uint8 min_flag_,uint8 max_flag_,uint8 maybe_flag_)
  :min_flag(min_flag_),max_flag(max_flag_),maybe_flag(maybe_flag_),
   part(part_),maybe_null(field_->real_maybe_null()), elements(1),use_count(1),
   field(field_), min_value(min_value_), max_value(max_value_),
   next(0),prev(0),next_key_part(0),color(BLACK),type(KEY_RANGE)
{
  left=right= &null_element;
}

SEL_ARG *SEL_ARG::clone(SEL_ARG *new_parent,SEL_ARG **next_arg)
{
  SEL_ARG *tmp;
  if (type != KEY_RANGE)
  {
1259 1260
    if (!(tmp= new SEL_ARG(type)))
      return 0;					// out of memory
unknown's avatar
unknown committed
1261 1262 1263 1264 1265 1266
    tmp->prev= *next_arg;			// Link into next/prev chain
    (*next_arg)->next=tmp;
    (*next_arg)= tmp;
  }
  else
  {
1267 1268 1269
    if (!(tmp= new SEL_ARG(field,part, min_value,max_value,
			   min_flag, max_flag, maybe_flag)))
      return 0;					// OOM
unknown's avatar
unknown committed
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
    tmp->parent=new_parent;
    tmp->next_key_part=next_key_part;
    if (left != &null_element)
      tmp->left=left->clone(tmp,next_arg);

    tmp->prev= *next_arg;			// Link into next/prev chain
    (*next_arg)->next=tmp;
    (*next_arg)= tmp;

    if (right != &null_element)
1280 1281
      if (!(tmp->right= right->clone(tmp,next_arg)))
	return 0;				// OOM
unknown's avatar
unknown committed
1282 1283
  }
  increment_use_count(1);
1284
  tmp->color= color;
unknown's avatar
unknown committed
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
  return tmp;
}

SEL_ARG *SEL_ARG::first()
{
  SEL_ARG *next_arg=this;
  if (!next_arg->left)
    return 0;					// MAYBE_KEY
  while (next_arg->left != &null_element)
    next_arg=next_arg->left;
  return next_arg;
}

SEL_ARG *SEL_ARG::last()
{
  SEL_ARG *next_arg=this;
  if (!next_arg->right)
    return 0;					// MAYBE_KEY
  while (next_arg->right != &null_element)
    next_arg=next_arg->right;
  return next_arg;
}

1308

unknown's avatar
unknown committed
1309 1310 1311
/*
  Check if a compare is ok, when one takes ranges in account
  Returns -2 or 2 if the ranges where 'joined' like  < 2 and >= 2
1312
*/
unknown's avatar
unknown committed
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335

static int sel_cmp(Field *field, char *a,char *b,uint8 a_flag,uint8 b_flag)
{
  int cmp;
  /* First check if there was a compare to a min or max element */
  if (a_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
  {
    if ((a_flag & (NO_MIN_RANGE | NO_MAX_RANGE)) ==
	(b_flag & (NO_MIN_RANGE | NO_MAX_RANGE)))
      return 0;
    return (a_flag & NO_MIN_RANGE) ? -1 : 1;
  }
  if (b_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
    return (b_flag & NO_MIN_RANGE) ? 1 : -1;

  if (field->real_maybe_null())			// If null is part of key
  {
    if (*a != *b)
    {
      return *a ? -1 : 1;
    }
    if (*a)
      goto end;					// NULL where equal
unknown's avatar
unknown committed
1336
    a++; b++;					// Skip NULL marker
unknown's avatar
unknown committed
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
  }
  cmp=field->key_cmp((byte*) a,(byte*) b);
  if (cmp) return cmp < 0 ? -1 : 1;		// The values differed

  // Check if the compared equal arguments was defined with open/closed range
 end:
  if (a_flag & (NEAR_MIN | NEAR_MAX))
  {
    if ((a_flag & (NEAR_MIN | NEAR_MAX)) == (b_flag & (NEAR_MIN | NEAR_MAX)))
      return 0;
    if (!(b_flag & (NEAR_MIN | NEAR_MAX)))
      return (a_flag & NEAR_MIN) ? 2 : -2;
    return (a_flag & NEAR_MIN) ? 1 : -1;
  }
  if (b_flag & (NEAR_MIN | NEAR_MAX))
    return (b_flag & NEAR_MIN) ? -2 : 2;
  return 0;					// The elements where equal
}


SEL_ARG *SEL_ARG::clone_tree()
{
  SEL_ARG tmp_link,*next_arg,*root;
  next_arg= &tmp_link;
1361
  root= clone((SEL_ARG *) 0, &next_arg);
unknown's avatar
unknown committed
1362 1363
  next_arg->next=0;				// Fix last link
  tmp_link.next->prev=0;			// Fix first link
1364 1365
  if (root)					// If not OOM
    root->use_count= 0;
unknown's avatar
unknown committed
1366 1367 1368
  return root;
}

1369

1370
/*
unknown's avatar
unknown committed
1371
  Find the best index to retrieve first N records in given order
1372 1373 1374 1375 1376 1377 1378 1379

  SYNOPSIS
    get_index_for_order()
      table  Table to be accessed
      order  Required ordering
      limit  Number of records that will be retrieved

  DESCRIPTION
unknown's avatar
unknown committed
1380 1381 1382 1383
    Find the best index that allows to retrieve first #limit records in the 
    given order cheaper then one would retrieve them using full table scan.

  IMPLEMENTATION
1384
    Run through all table indexes and find the shortest index that allows
unknown's avatar
unknown committed
1385 1386
    records to be retrieved in given order. We look for the shortest index
    as we will have fewer index pages to read with it.
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

    This function is used only by UPDATE/DELETE, so we take into account how
    the UPDATE/DELETE code will work:
     * index can only be scanned in forward direction
     * HA_EXTRA_KEYREAD will not be used
    Perhaps these assumptions could be relaxed

  RETURN
    index number
    MAX_KEY if no such index was found.
*/

uint get_index_for_order(TABLE *table, ORDER *order, ha_rows limit)
{
  uint idx;
  uint match_key= MAX_KEY, match_key_len= MAX_KEY_LENGTH + 1;
  ORDER *ord;
  
  for (ord= order; ord; ord= ord->next)
    if (!ord->asc)
      return MAX_KEY;

unknown's avatar
unknown committed
1409
  for (idx= 0; idx < table->s->keys; idx++)
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
  {
    if (!(table->keys_in_use_for_query.is_set(idx)))
      continue;
    KEY_PART_INFO *keyinfo= table->key_info[idx].key_part;
    uint partno= 0;
    
    /* 
      The below check is sufficient considering we now have either BTREE 
      indexes (records are returned in order for any index prefix) or HASH 
      indexes (records are not returned in order for any index prefix).
    */
    if (!(table->file->index_flags(idx, 0, 1) & HA_READ_ORDER))
      continue;
    for (ord= order; ord; ord= ord->next, partno++)
    {
      Item *item= order->item[0];
      if (!(item->type() == Item::FIELD_ITEM &&
           ((Item_field*)item)->field->eq(keyinfo[partno].field)))
        break;
    }
    
    if (!ord && table->key_info[idx].key_length < match_key_len)
    {
      /* 
        Ok, the ordering is compatible and this key is shorter then
        previous match (we want shorter keys as we'll have to read fewer
        index pages for the same number of records)
      */
      match_key= idx;
      match_key_len= table->key_info[idx].key_length;
    }
  }

  if (match_key != MAX_KEY)
  {
    /* 
      Found an index that allows records to be retrieved in the requested 
      order. Now we'll check if using the index is cheaper then doing a table
      scan.
    */
    double full_scan_time= table->file->scan_time();
    double index_scan_time= table->file->read_time(match_key, 1, limit);
    if (index_scan_time > full_scan_time)
      match_key= MAX_KEY;
  }
  return match_key;
}


unknown's avatar
unknown committed
1459
/*
unknown's avatar
unknown committed
1460
  Table rows retrieval plan. Range optimizer creates QUICK_SELECT_I-derived
1461 1462 1463 1464 1465
  objects from table read plans.
*/
class TABLE_READ_PLAN
{
public:
unknown's avatar
unknown committed
1466 1467
  /*
    Plan read cost, with or without cost of full row retrieval, depending
1468 1469
    on plan creation parameters.
  */
unknown's avatar
unknown committed
1470
  double read_cost;
1471
  ha_rows records; /* estimate of #rows to be examined */
unknown's avatar
unknown committed
1472

unknown's avatar
unknown committed
1473 1474
  /*
    If TRUE, the scan returns rows in rowid order. This is used only for
1475 1476
    scans that can be both ROR and non-ROR.
  */
1477
  bool is_ror;
unknown's avatar
unknown committed
1478

1479 1480 1481 1482 1483
  /*
    Create quick select for this plan.
    SYNOPSIS
     make_quick()
       param               Parameter from test_quick_select
unknown's avatar
unknown committed
1484
       retrieve_full_rows  If TRUE, created quick select will do full record
1485 1486
                           retrieval.
       parent_alloc        Memory pool to use, if any.
unknown's avatar
unknown committed
1487

1488 1489
    NOTES
      retrieve_full_rows is ignored by some implementations.
unknown's avatar
unknown committed
1490 1491

    RETURN
1492 1493 1494
      created quick select
      NULL on any error.
  */
1495 1496 1497 1498
  virtual QUICK_SELECT_I *make_quick(PARAM *param,
                                     bool retrieve_full_rows,
                                     MEM_ROOT *parent_alloc=NULL) = 0;

1499
  /* Table read plans are allocated on MEM_ROOT and are never deleted */
1500 1501
  static void *operator new(size_t size, MEM_ROOT *mem_root)
  { return (void*) alloc_root(mem_root, (uint) size); }
unknown's avatar
unknown committed
1502
  static void operator delete(void *ptr,size_t size) { TRASH(ptr, size); }
1503
  static void operator delete(void *ptr, MEM_ROOT *mem_root) { /* Never called */ }
1504 1505 1506 1507 1508 1509 1510
};

class TRP_ROR_INTERSECT;
class TRP_ROR_UNION;
class TRP_INDEX_MERGE;


1511
/*
unknown's avatar
unknown committed
1512
  Plan for a QUICK_RANGE_SELECT scan.
1513 1514 1515
  TRP_RANGE::make_quick ignores retrieve_full_rows parameter because
  QUICK_RANGE_SELECT doesn't distinguish between 'index only' scans and full
  record retrieval scans.
unknown's avatar
unknown committed
1516
*/
unknown's avatar
unknown committed
1517

1518
class TRP_RANGE : public TABLE_READ_PLAN
unknown's avatar
unknown committed
1519
{
1520
public:
1521 1522
  SEL_ARG *key; /* set of intervals to be used in "range" method retrieval */
  uint     key_idx; /* key number in PARAM::key */
unknown's avatar
unknown committed
1523

unknown's avatar
unknown committed
1524
  TRP_RANGE(SEL_ARG *key_arg, uint idx_arg)
1525 1526
   : key(key_arg), key_idx(idx_arg)
  {}
unknown's avatar
unknown committed
1527

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
                             MEM_ROOT *parent_alloc)
  {
    DBUG_ENTER("TRP_RANGE::make_quick");
    QUICK_RANGE_SELECT *quick;
    if ((quick= get_quick_select(param, key_idx, key, parent_alloc)))
    {
      quick->records= records;
      quick->read_time= read_cost;
    }
    DBUG_RETURN(quick);
  }
};
unknown's avatar
unknown committed
1541 1542


1543 1544
/* Plan for QUICK_ROR_INTERSECT_SELECT scan. */

1545 1546 1547
class TRP_ROR_INTERSECT : public TABLE_READ_PLAN
{
public:
unknown's avatar
unknown committed
1548
  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
1549
                             MEM_ROOT *parent_alloc);
unknown's avatar
unknown committed
1550

1551
  /* Array of pointers to ROR range scans used in this intersection */
1552
  struct st_ror_scan_info **first_scan;
1553 1554
  struct st_ror_scan_info **last_scan; /* End of the above array */
  struct st_ror_scan_info *cpk_scan;  /* Clustered PK scan, if there is one */
unknown's avatar
unknown committed
1555
  bool is_covering; /* TRUE if no row retrieval phase is necessary */
1556
  double index_scan_costs; /* SUM(cost(index_scan)) */
1557 1558
};

1559

unknown's avatar
unknown committed
1560
/*
1561 1562
  Plan for QUICK_ROR_UNION_SELECT scan.
  QUICK_ROR_UNION_SELECT always retrieves full rows, so retrieve_full_rows
unknown's avatar
unknown committed
1563
  is ignored by make_quick.
1564
*/
1565

1566 1567 1568
class TRP_ROR_UNION : public TABLE_READ_PLAN
{
public:
unknown's avatar
unknown committed
1569
  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
1570
                             MEM_ROOT *parent_alloc);
1571 1572
  TABLE_READ_PLAN **first_ror; /* array of ptrs to plans for merged scans */
  TABLE_READ_PLAN **last_ror;  /* end of the above array */
1573 1574
};

1575 1576 1577 1578

/*
  Plan for QUICK_INDEX_MERGE_SELECT scan.
  QUICK_ROR_INTERSECT_SELECT always retrieves full rows, so retrieve_full_rows
unknown's avatar
unknown committed
1579
  is ignored by make_quick.
1580 1581
*/

1582 1583 1584
class TRP_INDEX_MERGE : public TABLE_READ_PLAN
{
public:
unknown's avatar
unknown committed
1585
  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
1586
                             MEM_ROOT *parent_alloc);
1587 1588
  TRP_RANGE **range_scans; /* array of ptrs to plans of merged scans */
  TRP_RANGE **range_scans_end; /* end of the array */
1589 1590 1591
};


1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
/*
  Plan for a QUICK_GROUP_MIN_MAX_SELECT scan. 
*/

class TRP_GROUP_MIN_MAX : public TABLE_READ_PLAN
{
private:
  bool have_min, have_max;
  KEY_PART_INFO *min_max_arg_part;
  uint group_prefix_len;
  uint used_key_parts;
  uint group_key_parts;
  KEY *index_info;
  uint index;
  uint key_infix_len;
  byte key_infix[MAX_KEY_LENGTH];
  SEL_TREE *range_tree; /* Represents all range predicates in the query. */
  SEL_ARG  *index_tree; /* The SEL_ARG sub-tree corresponding to index_info. */
  uint param_idx; /* Index of used key in param->key. */
  /* Number of records selected by the ranges in index_tree. */
public:
  ha_rows quick_prefix_records;
public:
1615 1616 1617 1618
  TRP_GROUP_MIN_MAX(bool have_min_arg, bool have_max_arg,
                    KEY_PART_INFO *min_max_arg_part_arg,
                    uint group_prefix_len_arg, uint used_key_parts_arg,
                    uint group_key_parts_arg, KEY *index_info_arg,
1619 1620
                    uint index_arg, uint key_infix_len_arg,
                    byte *key_infix_arg,
1621 1622 1623 1624 1625 1626 1627 1628 1629
                    SEL_TREE *tree_arg, SEL_ARG *index_tree_arg,
                    uint param_idx_arg, ha_rows quick_prefix_records_arg)
  : have_min(have_min_arg), have_max(have_max_arg),
    min_max_arg_part(min_max_arg_part_arg),
    group_prefix_len(group_prefix_len_arg), used_key_parts(used_key_parts_arg),
    group_key_parts(group_key_parts_arg), index_info(index_info_arg),
    index(index_arg), key_infix_len(key_infix_len_arg), range_tree(tree_arg),
    index_tree(index_tree_arg), param_idx(param_idx_arg),
    quick_prefix_records(quick_prefix_records_arg)
1630 1631 1632 1633
    {
      if (key_infix_len)
        memcpy(this->key_infix, key_infix_arg, key_infix_len);
    }
1634 1635 1636 1637 1638 1639

  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
                             MEM_ROOT *parent_alloc);
};


unknown's avatar
unknown committed
1640
/*
1641
  Fill param->needed_fields with bitmap of fields used in the query.
unknown's avatar
unknown committed
1642
  SYNOPSIS
1643 1644
    fill_used_fields_bitmap()
      param Parameter from test_quick_select function.
unknown's avatar
unknown committed
1645

1646 1647 1648
  NOTES
    Clustered PK members are not put into the bitmap as they are implicitly
    present in all keys (and it is impossible to avoid reading them).
unknown's avatar
unknown committed
1649 1650 1651
  RETURN
    0  Ok
    1  Out of memory.
1652 1653 1654 1655 1656
*/

static int fill_used_fields_bitmap(PARAM *param)
{
  TABLE *table= param->table;
unknown's avatar
unknown committed
1657
  param->fields_bitmap_size= bitmap_buffer_size(table->s->fields+1);
1658
  uint32 *tmp;
1659
  uint pk;
unknown's avatar
unknown committed
1660
  if (!(tmp= (uint32*) alloc_root(param->mem_root,param->fields_bitmap_size)) ||
unknown's avatar
unknown committed
1661
      bitmap_init(&param->needed_fields, tmp, param->fields_bitmap_size*8,
unknown's avatar
unknown committed
1662
                  FALSE))
1663
    return 1;
unknown's avatar
unknown committed
1664

1665
  bitmap_clear_all(&param->needed_fields);
1666
  for (uint i= 0; i < table->s->fields; i++)
1667 1668 1669 1670 1671
  {
    if (param->thd->query_id == table->field[i]->query_id)
      bitmap_set_bit(&param->needed_fields, i+1);
  }

1672
  pk= param->table->s->primary_key;
1673 1674
  if (param->table->file->primary_key_is_clustered() && pk != MAX_KEY)
  {
1675
    /* The table uses clustered PK and it is not internally generated */
1676
    KEY_PART_INFO *key_part= param->table->key_info[pk].key_part;
unknown's avatar
unknown committed
1677
    KEY_PART_INFO *key_part_end= key_part +
1678
                                 param->table->key_info[pk].key_parts;
unknown's avatar
unknown committed
1679
    for (;key_part != key_part_end; ++key_part)
1680 1681 1682 1683 1684 1685 1686 1687
    {
      bitmap_clear_bit(&param->needed_fields, key_part->fieldnr);
    }
  }
  return 0;
}


unknown's avatar
unknown committed
1688
/*
unknown's avatar
unknown committed
1689
  Test if a key can be used in different ranges
unknown's avatar
unknown committed
1690 1691

  SYNOPSIS
1692 1693 1694 1695 1696
    SQL_SELECT::test_quick_select()
      thd               Current thread
      keys_to_use       Keys to use for range retrieval
      prev_tables       Tables assumed to be already read when the scan is
                        performed (but not read at the moment of this call)
unknown's avatar
unknown committed
1697 1698 1699
      limit             Query limit
      force_quick_range Prefer to use range (instead of full table scan) even
                        if it is more expensive.
1700 1701 1702 1703 1704

  NOTES
    Updates the following in the select parameter:
      needed_reg - Bits for keys with may be used if all prev regs are read
      quick      - Parameter to use when reading records.
unknown's avatar
unknown committed
1705

1706 1707 1708
    In the table struct the following information is updated:
      quick_keys - Which keys can be used
      quick_rows - How many rows the key matches
unknown's avatar
unknown committed
1709

1710 1711 1712 1713
  TODO
   Check if this function really needs to modify keys_to_use, and change the
   code to pass it by reference if it doesn't.

unknown's avatar
unknown committed
1714
   In addition to force_quick_range other means can be (an usually are) used
1715 1716
   to make this function prefer range over full table scan. Figure out if
   force_quick_range is really needed.
unknown's avatar
unknown committed
1717

1718 1719 1720 1721
  RETURN
   -1 if impossible select (i.e. certainly no rows will be selected)
    0 if can't use quick_select
    1 if found usable ranges and quick select has been successfully created.
unknown's avatar
unknown committed
1722
*/
unknown's avatar
unknown committed
1723

1724 1725
int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
				  table_map prev_tables,
unknown's avatar
unknown committed
1726 1727 1728 1729
				  ha_rows limit, bool force_quick_range)
{
  uint idx;
  double scan_time;
1730
  DBUG_ENTER("SQL_SELECT::test_quick_select");
unknown's avatar
unknown committed
1731 1732 1733
  DBUG_PRINT("enter",("keys_to_use: %lu  prev_tables: %lu  const_tables: %lu",
		      keys_to_use.to_ulonglong(), (ulong) prev_tables,
		      (ulong) const_tables));
1734
  DBUG_PRINT("info", ("records=%lu", (ulong)head->file->records));
unknown's avatar
unknown committed
1735 1736
  delete quick;
  quick=0;
1737 1738 1739
  needed_reg.clear_all();
  quick_keys.clear_all();
  if ((specialflag & SPECIAL_SAFE_MODE) && ! force_quick_range ||
unknown's avatar
unknown committed
1740 1741
      !limit)
    DBUG_RETURN(0); /* purecov: inspected */
unknown's avatar
unknown committed
1742 1743
  if (keys_to_use.is_clear_all())
    DBUG_RETURN(0);
1744
  records= head->file->records;
unknown's avatar
unknown committed
1745 1746
  if (!records)
    records++;					/* purecov: inspected */
1747 1748
  scan_time= (double) records / TIME_FOR_COMPARE + 1;
  read_time= (double) head->file->scan_time() + scan_time + 1.1;
1749 1750
  if (head->force_index)
    scan_time= read_time= DBL_MAX;
unknown's avatar
unknown committed
1751
  if (limit < records)
1752
    read_time= (double) records + scan_time + 1; // Force to use index
unknown's avatar
unknown committed
1753
  else if (read_time <= 2.0 && !force_quick_range)
1754
    DBUG_RETURN(0);				/* No need for quick select */
unknown's avatar
unknown committed
1755

1756
  DBUG_PRINT("info",("Time to scan table: %g", read_time));
unknown's avatar
unknown committed
1757

1758 1759
  keys_to_use.intersect(head->keys_in_use_for_query);
  if (!keys_to_use.is_clear_all())
unknown's avatar
unknown committed
1760
  {
1761
    MEM_ROOT alloc;
1762
    SEL_TREE *tree= NULL;
unknown's avatar
unknown committed
1763
    KEY_PART *key_parts;
unknown's avatar
unknown committed
1764
    KEY *key_info;
unknown's avatar
unknown committed
1765
    PARAM param;
unknown's avatar
unknown committed
1766

unknown's avatar
unknown committed
1767
    /* set up parameter that is passed to all functions */
1768
    param.thd= thd;
unknown's avatar
unknown committed
1769
    param.baseflag=head->file->table_flags();
unknown's avatar
unknown committed
1770 1771 1772 1773 1774
    param.prev_tables=prev_tables | const_tables;
    param.read_tables=read_tables;
    param.current_table= head->map;
    param.table=head;
    param.keys=0;
1775
    param.mem_root= &alloc;
1776
    param.old_root= thd->mem_root;
1777
    param.needed_reg= &needed_reg;
1778
    param.imerge_cost_buff_size= 0;
unknown's avatar
unknown committed
1779

unknown's avatar
unknown committed
1780
    thd->no_errors=1;				// Don't warn about NULL
1781
    init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
1782 1783 1784 1785
    if (!(param.key_parts= (KEY_PART*) alloc_root(&alloc,
                                                  sizeof(KEY_PART)*
                                                  head->s->key_parts)) ||
        fill_used_fields_bitmap(&param))
unknown's avatar
unknown committed
1786
    {
unknown's avatar
unknown committed
1787
      thd->no_errors=0;
1788
      free_root(&alloc,MYF(0));			// Return memory & allocator
unknown's avatar
unknown committed
1789 1790 1791
      DBUG_RETURN(0);				// Can't use range
    }
    key_parts= param.key_parts;
1792
    thd->mem_root= &alloc;
unknown's avatar
unknown committed
1793 1794 1795 1796

    /*
      Make an array with description of all key parts of all table keys.
      This is used in get_mm_parts function.
1797
    */
unknown's avatar
unknown committed
1798
    key_info= head->key_info;
1799
    for (idx=0 ; idx < head->s->keys ; idx++, key_info++)
unknown's avatar
unknown committed
1800
    {
unknown's avatar
unknown committed
1801
      KEY_PART_INFO *key_part_info;
1802
      if (!keys_to_use.is_set(idx))
unknown's avatar
unknown committed
1803 1804 1805 1806 1807
	continue;
      if (key_info->flags & HA_FULLTEXT)
	continue;    // ToDo: ft-keys in non-ft ranges, if possible   SerG

      param.key[param.keys]=key_parts;
unknown's avatar
unknown committed
1808 1809 1810
      key_part_info= key_info->key_part;
      for (uint part=0 ; part < key_info->key_parts ;
	   part++, key_parts++, key_part_info++)
unknown's avatar
unknown committed
1811
      {
unknown's avatar
unknown committed
1812 1813 1814 1815 1816 1817
	key_parts->key=		 param.keys;
	key_parts->part=	 part;
	key_parts->length=       key_part_info->length;
	key_parts->store_length= key_part_info->store_length;
	key_parts->field=	 key_part_info->field;
	key_parts->null_bit=	 key_part_info->null_bit;
1818
        key_parts->image_type =
unknown's avatar
unknown committed
1819
          (key_info->flags & HA_SPATIAL) ? Field::itMBR : Field::itRAW;
unknown's avatar
unknown committed
1820 1821 1822 1823 1824
      }
      param.real_keynr[param.keys++]=idx;
    }
    param.key_parts_end=key_parts;

unknown's avatar
unknown committed
1825 1826 1827 1828
    /* Calculate cost of full index read for the shortest covering index */
    if (!head->used_keys.is_clear_all())
    {
      int key_for_use= find_shortest_key(head, &head->used_keys);
1829 1830 1831
      double key_read_time= (get_index_only_read_time(&param, records,
                                                     key_for_use) +
                             (double) records / TIME_FOR_COMPARE);
unknown's avatar
unknown committed
1832 1833 1834 1835 1836
      DBUG_PRINT("info",  ("'all'+'using index' scan will be using key %d, "
                           "read time %g", key_for_use, key_read_time));
      if (key_read_time < read_time)
        read_time= key_read_time;
    }
unknown's avatar
unknown committed
1837

1838 1839 1840 1841 1842
    TABLE_READ_PLAN *best_trp= NULL;
    TRP_GROUP_MIN_MAX *group_trp;
    double best_read_time= read_time;

    if (cond)
unknown's avatar
unknown committed
1843
    {
unknown's avatar
unknown committed
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
      if ((tree= get_mm_tree(&param,cond)))
      {
        if (tree->type == SEL_TREE::IMPOSSIBLE)
        {
          records=0L;                      /* Return -1 from this function. */
          read_time= (double) HA_POS_ERROR;
          goto free_mem;
        }
        if (tree->type != SEL_TREE::KEY &&
            tree->type != SEL_TREE::KEY_SMALLER)
          goto free_mem;
      }
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
    }

    /*
      Try to construct a QUICK_GROUP_MIN_MAX_SELECT.
      Notice that it can be constructed no matter if there is a range tree.
    */
    group_trp= get_best_group_min_max(&param, tree);
    if (group_trp && group_trp->read_cost < best_read_time)
    {
      best_trp= group_trp;
      best_read_time= best_trp->read_cost;
    }

    if (tree)
unknown's avatar
unknown committed
1870
    {
unknown's avatar
unknown committed
1871 1872 1873
      /*
        It is possible to use a range-based quick select (but it might be
        slower than 'all' table scan).
1874 1875
      */
      if (tree->merges.is_empty())
unknown's avatar
unknown committed
1876
      {
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
        TRP_RANGE         *range_trp;
        TRP_ROR_INTERSECT *rori_trp;
        bool can_build_covering= FALSE;

        /* Get best 'range' plan and prepare data for making other plans */
        if ((range_trp= get_key_scans_params(&param, tree, FALSE,
                                             best_read_time)))
        {
          best_trp= range_trp;
          best_read_time= best_trp->read_cost;
        }

unknown's avatar
unknown committed
1889
        /*
1890 1891 1892
          Simultaneous key scans and row deletes on several handler
          objects are not allowed so don't use ROR-intersection for
          table deletes.
unknown's avatar
unknown committed
1893
        */
1894 1895 1896 1897
        if ((thd->lex->sql_command != SQLCOM_DELETE))
#ifdef NOT_USED
          if ((thd->lex->sql_command != SQLCOM_UPDATE))
#endif
unknown's avatar
unknown committed
1898
        {
unknown's avatar
unknown committed
1899
          /*
1900 1901
            Get best non-covering ROR-intersection plan and prepare data for
            building covering ROR-intersection.
unknown's avatar
unknown committed
1902
          */
1903 1904
          if ((rori_trp= get_best_ror_intersect(&param, tree, best_read_time,
                                                &can_build_covering)))
unknown's avatar
unknown committed
1905
          {
1906 1907
            best_trp= rori_trp;
            best_read_time= best_trp->read_cost;
unknown's avatar
unknown committed
1908 1909
            /*
              Try constructing covering ROR-intersect only if it looks possible
1910 1911
              and worth doing.
            */
1912 1913 1914 1915
            if (!rori_trp->is_covering && can_build_covering &&
                (rori_trp= get_best_covering_ror_intersect(&param, tree,
                                                           best_read_time)))
              best_trp= rori_trp;
unknown's avatar
unknown committed
1916 1917
          }
        }
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
      }
      else
      {
        /* Try creating index_merge/ROR-union scan. */
        SEL_IMERGE *imerge;
        TABLE_READ_PLAN *best_conj_trp= NULL, *new_conj_trp;
        LINT_INIT(new_conj_trp); /* no empty index_merge lists possible */

        DBUG_PRINT("info",("No range reads possible,"
                           " trying to construct index_merge"));
        List_iterator_fast<SEL_IMERGE> it(tree->merges);
        while ((imerge= it++))
unknown's avatar
unknown committed
1930
        {
1931 1932 1933 1934
          new_conj_trp= get_best_disjunct_quick(&param, imerge, best_read_time);
          if (!best_conj_trp || (new_conj_trp && new_conj_trp->read_cost <
                                 best_conj_trp->read_cost))
            best_conj_trp= new_conj_trp;
1935
        }
1936 1937 1938 1939
        if (best_conj_trp)
          best_trp= best_conj_trp;
      }
    }
unknown's avatar
unknown committed
1940

1941
    thd->mem_root= param.old_root;
1942 1943 1944 1945 1946 1947 1948 1949 1950

    /* If we got a read plan, create a quick select from it. */
    if (best_trp)
    {
      records= best_trp->records;
      if (!(quick= best_trp->make_quick(&param, TRUE)) || quick->init())
      {
        delete quick;
        quick= NULL;
unknown's avatar
unknown committed
1951 1952
      }
    }
1953 1954

  free_mem:
1955
    free_root(&alloc,MYF(0));			// Return memory & allocator
1956
    thd->mem_root= param.old_root;
unknown's avatar
unknown committed
1957
    thd->no_errors=0;
unknown's avatar
unknown committed
1958
  }
unknown's avatar
unknown committed
1959

1960
  DBUG_EXECUTE("info", print_quick(quick, &needed_reg););
unknown's avatar
unknown committed
1961

unknown's avatar
unknown committed
1962 1963 1964 1965 1966 1967 1968
  /*
    Assume that if the user is using 'limit' we will only need to scan
    limit rows if we are using a key
  */
  DBUG_RETURN(records ? test(quick) : -1);
}

unknown's avatar
unknown committed
1969

unknown's avatar
unknown committed
1970
/*
1971 1972 1973 1974
  Get cost of 'sweep' full records retrieval.
  SYNOPSIS
    get_sweep_read_cost()
      param            Parameter from test_quick_select
unknown's avatar
unknown committed
1975
      records          # of records to be retrieved
1976
  RETURN
unknown's avatar
unknown committed
1977
    cost of sweep
1978
*/
1979

1980
double get_sweep_read_cost(const PARAM *param, ha_rows records)
1981
{
1982
  double result;
1983
  DBUG_ENTER("get_sweep_read_cost");
1984 1985
  if (param->table->file->primary_key_is_clustered())
  {
1986
    result= param->table->file->read_time(param->table->s->primary_key,
1987
                                          records, records);
1988 1989
  }
  else
unknown's avatar
unknown committed
1990
  {
1991
    double n_blocks=
unknown's avatar
unknown committed
1992
      ceil(ulonglong2double(param->table->file->data_file_length) / IO_SIZE);
1993 1994 1995 1996
    double busy_blocks=
      n_blocks * (1.0 - pow(1.0 - 1.0/n_blocks, rows2double(records)));
    if (busy_blocks < 1.0)
      busy_blocks= 1.0;
unknown's avatar
unknown committed
1997
    DBUG_PRINT("info",("sweep: nblocks=%g, busy_blocks=%g", n_blocks,
1998
                       busy_blocks));
1999
    /*
unknown's avatar
unknown committed
2000
      Disabled: Bail out if # of blocks to read is bigger than # of blocks in
2001 2002 2003 2004 2005 2006 2007 2008
      table data file.
    if (max_cost != DBL_MAX  && (busy_blocks+index_reads_cost) >= n_blocks)
      return 1;
    */
    JOIN *join= param->thd->lex->select_lex.join;
    if (!join || join->tables == 1)
    {
      /* No join, assume reading is done in one 'sweep' */
unknown's avatar
unknown committed
2009
      result= busy_blocks*(DISK_SEEK_BASE_COST +
2010 2011 2012 2013
                          DISK_SEEK_PROP_COST*n_blocks/busy_blocks);
    }
    else
    {
unknown's avatar
unknown committed
2014
      /*
2015 2016 2017
        Possibly this is a join with source table being non-last table, so
        assume that disk seeks are random here.
      */
2018
      result= busy_blocks;
2019 2020
    }
  }
2021
  DBUG_PRINT("info",("returning cost=%g", result));
2022
  DBUG_RETURN(result);
2023
}
2024 2025


2026 2027 2028 2029
/*
  Get best plan for a SEL_IMERGE disjunctive expression.
  SYNOPSIS
    get_best_disjunct_quick()
2030 2031
      param     Parameter from check_quick_select function
      imerge    Expression to use
2032
      read_time Don't create scans with cost > read_time
unknown's avatar
unknown committed
2033

2034
  NOTES
2035
    index_merge cost is calculated as follows:
unknown's avatar
unknown committed
2036
    index_merge_cost =
2037 2038 2039 2040 2041
      cost(index_reads) +         (see #1)
      cost(rowid_to_row_scan) +   (see #2)
      cost(unique_use)            (see #3)

    1. cost(index_reads) =SUM_i(cost(index_read_i))
unknown's avatar
unknown committed
2042 2043
       For non-CPK scans,
         cost(index_read_i) = {cost of ordinary 'index only' scan}
2044 2045 2046 2047 2048
       For CPK scan,
         cost(index_read_i) = {cost of non-'index only' scan}

    2. cost(rowid_to_row_scan)
      If table PK is clustered then
unknown's avatar
unknown committed
2049
        cost(rowid_to_row_scan) =
2050
          {cost of ordinary clustered PK scan with n_ranges=n_rows}
unknown's avatar
unknown committed
2051 2052

      Otherwise, we use the following model to calculate costs:
2053
      We need to retrieve n_rows rows from file that occupies n_blocks blocks.
unknown's avatar
unknown committed
2054
      We assume that offsets of rows we need are independent variates with
2055
      uniform distribution in [0..max_file_offset] range.
unknown's avatar
unknown committed
2056

2057 2058
      We'll denote block as "busy" if it contains row(s) we need to retrieve
      and "empty" if doesn't contain rows we need.
unknown's avatar
unknown committed
2059

2060
      Probability that a block is empty is (1 - 1/n_blocks)^n_rows (this
unknown's avatar
unknown committed
2061
      applies to any block in file). Let x_i be a variate taking value 1 if
2062
      block #i is empty and 0 otherwise.
unknown's avatar
unknown committed
2063

2064 2065
      Then E(x_i) = (1 - 1/n_blocks)^n_rows;

unknown's avatar
unknown committed
2066 2067
      E(n_empty_blocks) = E(sum(x_i)) = sum(E(x_i)) =
        = n_blocks * ((1 - 1/n_blocks)^n_rows) =
2068 2069 2070 2071
       ~= n_blocks * exp(-n_rows/n_blocks).

      E(n_busy_blocks) = n_blocks*(1 - (1 - 1/n_blocks)^n_rows) =
       ~= n_blocks * (1 - exp(-n_rows/n_blocks)).
unknown's avatar
unknown committed
2072

2073 2074
      Average size of "hole" between neighbor non-empty blocks is
           E(hole_size) = n_blocks/E(n_busy_blocks).
unknown's avatar
unknown committed
2075

2076 2077 2078 2079 2080 2081
      The total cost of reading all needed blocks in one "sweep" is:

      E(n_busy_blocks)*
       (DISK_SEEK_BASE_COST + DISK_SEEK_PROP_COST*n_blocks/E(n_busy_blocks)).

    3. Cost of Unique use is calculated in Unique::get_use_cost function.
unknown's avatar
unknown committed
2082 2083 2084 2085 2086

  ROR-union cost is calculated in the same way index_merge, but instead of
  Unique a priority queue is used.

  RETURN
2087 2088
    Created read plan
    NULL - Out of memory or no read scan could be built.
2089
*/
2090

2091 2092
static
TABLE_READ_PLAN *get_best_disjunct_quick(PARAM *param, SEL_IMERGE *imerge,
2093
                                         double read_time)
2094 2095 2096 2097 2098 2099 2100
{
  SEL_TREE **ptree;
  TRP_INDEX_MERGE *imerge_trp= NULL;
  uint n_child_scans= imerge->trees_next - imerge->trees;
  TRP_RANGE **range_scans;
  TRP_RANGE **cur_child;
  TRP_RANGE **cpk_scan= NULL;
unknown's avatar
unknown committed
2101
  bool imerge_too_expensive= FALSE;
2102 2103 2104 2105
  double imerge_cost= 0.0;
  ha_rows cpk_scan_records= 0;
  ha_rows non_cpk_scan_records= 0;
  bool pk_is_clustered= param->table->file->primary_key_is_clustered();
unknown's avatar
unknown committed
2106 2107
  bool all_scans_ror_able= TRUE;
  bool all_scans_rors= TRUE;
2108 2109 2110 2111 2112 2113 2114 2115 2116
  uint unique_calc_buff_size;
  TABLE_READ_PLAN **roru_read_plans;
  TABLE_READ_PLAN **cur_roru_plan;
  double roru_index_costs;
  ha_rows roru_total_records;
  double roru_intersect_part= 1.0;
  DBUG_ENTER("get_best_disjunct_quick");
  DBUG_PRINT("info", ("Full table scan cost =%g", read_time));

unknown's avatar
unknown committed
2117
  if (!(range_scans= (TRP_RANGE**)alloc_root(param->mem_root,
2118 2119 2120
                                             sizeof(TRP_RANGE*)*
                                             n_child_scans)))
    DBUG_RETURN(NULL);
2121
  /*
2122 2123 2124
    Collect best 'range' scan for each of disjuncts, and, while doing so,
    analyze possibility of ROR scans. Also calculate some values needed by
    other parts of the code.
2125
  */
2126
  for (ptree= imerge->trees, cur_child= range_scans;
2127
       ptree != imerge->trees_next;
2128
       ptree++, cur_child++)
2129
  {
2130 2131
    DBUG_EXECUTE("info", print_sel_tree(param, *ptree, &(*ptree)->keys_map,
                                        "tree in SEL_IMERGE"););
unknown's avatar
unknown committed
2132
    if (!(*cur_child= get_key_scans_params(param, *ptree, TRUE, read_time)))
2133 2134
    {
      /*
2135
        One of index scans in this index_merge is more expensive than entire
2136 2137 2138
        table read for another available option. The entire index_merge (and
        any possible ROR-union) will be more expensive then, too. We continue
        here only to update SQL_SELECT members.
2139
      */
unknown's avatar
unknown committed
2140
      imerge_too_expensive= TRUE;
2141 2142 2143
    }
    if (imerge_too_expensive)
      continue;
unknown's avatar
unknown committed
2144

2145 2146 2147
    imerge_cost += (*cur_child)->read_cost;
    all_scans_ror_able &= ((*ptree)->n_ror_scans > 0);
    all_scans_rors &= (*cur_child)->is_ror;
unknown's avatar
unknown committed
2148
    if (pk_is_clustered &&
2149 2150
        param->real_keynr[(*cur_child)->key_idx] ==
        param->table->s->primary_key)
2151
    {
2152 2153
      cpk_scan= cur_child;
      cpk_scan_records= (*cur_child)->records;
2154 2155
    }
    else
2156
      non_cpk_scan_records += (*cur_child)->records;
2157
  }
unknown's avatar
unknown committed
2158

2159
  DBUG_PRINT("info", ("index_merge scans cost=%g", imerge_cost));
unknown's avatar
unknown committed
2160
  if (imerge_too_expensive || (imerge_cost > read_time) ||
2161 2162
      (non_cpk_scan_records+cpk_scan_records >= param->table->file->records) &&
      read_time != DBL_MAX)
2163
  {
unknown's avatar
unknown committed
2164 2165
    /*
      Bail out if it is obvious that both index_merge and ROR-union will be
2166
      more expensive
2167
    */
2168 2169
    DBUG_PRINT("info", ("Sum of index_merge scans is more expensive than "
                        "full table scan, bailing out"));
unknown's avatar
unknown committed
2170
    DBUG_RETURN(NULL);
2171
  }
2172
  if (all_scans_rors)
2173
  {
2174 2175
    roru_read_plans= (TABLE_READ_PLAN**)range_scans;
    goto skip_to_ror_scan;
2176
  }
unknown's avatar
unknown committed
2177 2178
  if (cpk_scan)
  {
2179 2180
    /*
      Add one ROWID comparison for each row retrieved on non-CPK scan.  (it
unknown's avatar
unknown committed
2181 2182 2183
      is done in QUICK_RANGE_SELECT::row_in_ranges)
     */
    imerge_cost += non_cpk_scan_records / TIME_FOR_COMPARE_ROWID;
2184 2185 2186
  }

  /* Calculate cost(rowid_to_row_scan) */
2187
  imerge_cost += get_sweep_read_cost(param, non_cpk_scan_records);
unknown's avatar
unknown committed
2188
  DBUG_PRINT("info",("index_merge cost with rowid-to-row scan: %g",
2189
                     imerge_cost));
2190 2191
  if (imerge_cost > read_time)
    goto build_ror_index_merge;
2192 2193

  /* Add Unique operations cost */
unknown's avatar
unknown committed
2194 2195
  unique_calc_buff_size=
    Unique::get_cost_calc_buff_size(non_cpk_scan_records,
2196 2197 2198 2199 2200 2201
                                    param->table->file->ref_length,
                                    param->thd->variables.sortbuff_size);
  if (param->imerge_cost_buff_size < unique_calc_buff_size)
  {
    if (!(param->imerge_cost_buff= (uint*)alloc_root(param->mem_root,
                                                     unique_calc_buff_size)))
2202
      DBUG_RETURN(NULL);
2203 2204 2205
    param->imerge_cost_buff_size= unique_calc_buff_size;
  }

unknown's avatar
unknown committed
2206
  imerge_cost +=
2207
    Unique::get_use_cost(param->imerge_cost_buff, non_cpk_scan_records,
unknown's avatar
unknown committed
2208 2209
                         param->table->file->ref_length,
                         param->thd->variables.sortbuff_size);
unknown's avatar
unknown committed
2210
  DBUG_PRINT("info",("index_merge total cost: %g (wanted: less then %g)",
2211 2212 2213 2214 2215 2216 2217
                     imerge_cost, read_time));
  if (imerge_cost < read_time)
  {
    if ((imerge_trp= new (param->mem_root)TRP_INDEX_MERGE))
    {
      imerge_trp->read_cost= imerge_cost;
      imerge_trp->records= non_cpk_scan_records + cpk_scan_records;
unknown's avatar
unknown committed
2218
      imerge_trp->records= min(imerge_trp->records,
2219 2220 2221 2222 2223 2224
                               param->table->file->records);
      imerge_trp->range_scans= range_scans;
      imerge_trp->range_scans_end= range_scans + n_child_scans;
      read_time= imerge_cost;
    }
  }
unknown's avatar
unknown committed
2225

unknown's avatar
unknown committed
2226
build_ror_index_merge:
2227 2228
  if (!all_scans_ror_able || param->thd->lex->sql_command == SQLCOM_DELETE)
    DBUG_RETURN(imerge_trp);
unknown's avatar
unknown committed
2229

2230 2231
  /* Ok, it is possible to build a ROR-union, try it. */
  bool dummy;
unknown's avatar
unknown committed
2232
  if (!(roru_read_plans=
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
          (TABLE_READ_PLAN**)alloc_root(param->mem_root,
                                        sizeof(TABLE_READ_PLAN*)*
                                        n_child_scans)))
    DBUG_RETURN(imerge_trp);
skip_to_ror_scan:
  roru_index_costs= 0.0;
  roru_total_records= 0;
  cur_roru_plan= roru_read_plans;

  /* Find 'best' ROR scan for each of trees in disjunction */
  for (ptree= imerge->trees, cur_child= range_scans;
       ptree != imerge->trees_next;
       ptree++, cur_child++, cur_roru_plan++)
2246
  {
2247 2248
    /*
      Assume the best ROR scan is the one that has cheapest full-row-retrieval
unknown's avatar
unknown committed
2249 2250
      scan cost.
      Also accumulate index_only scan costs as we'll need them to calculate
2251 2252 2253 2254 2255 2256 2257
      overall index_intersection cost.
    */
    double cost;
    if ((*cur_child)->is_ror)
    {
      /* Ok, we have index_only cost, now get full rows scan cost */
      cost= param->table->file->
unknown's avatar
unknown committed
2258
              read_time(param->real_keynr[(*cur_child)->key_idx], 1,
2259 2260 2261 2262 2263 2264 2265
                        (*cur_child)->records) +
              rows2double((*cur_child)->records) / TIME_FOR_COMPARE;
    }
    else
      cost= read_time;

    TABLE_READ_PLAN *prev_plan= *cur_child;
unknown's avatar
unknown committed
2266
    if (!(*cur_roru_plan= get_best_ror_intersect(param, *ptree, cost,
2267 2268 2269 2270 2271 2272 2273 2274 2275
                                                 &dummy)))
    {
      if (prev_plan->is_ror)
        *cur_roru_plan= prev_plan;
      else
        DBUG_RETURN(imerge_trp);
      roru_index_costs += (*cur_roru_plan)->read_cost;
    }
    else
unknown's avatar
unknown committed
2276 2277
      roru_index_costs +=
        ((TRP_ROR_INTERSECT*)(*cur_roru_plan))->index_scan_costs;
2278
    roru_total_records += (*cur_roru_plan)->records;
unknown's avatar
unknown committed
2279
    roru_intersect_part *= (*cur_roru_plan)->records /
2280
                           param->table->file->records;
2281
  }
2282

unknown's avatar
unknown committed
2283 2284
  /*
    rows to retrieve=
2285
      SUM(rows_in_scan_i) - table_rows * PROD(rows_in_scan_i / table_rows).
2286
    This is valid because index_merge construction guarantees that conditions
2287 2288 2289
    in disjunction do not share key parts.
  */
  roru_total_records -= (ha_rows)(roru_intersect_part*
unknown's avatar
unknown committed
2290 2291 2292
                                  param->table->file->records);
  /* ok, got a ROR read plan for each of the disjuncts
    Calculate cost:
2293 2294 2295 2296 2297 2298
    cost(index_union_scan(scan_1, ... scan_n)) =
      SUM_i(cost_of_index_only_scan(scan_i)) +
      queue_use_cost(rowid_len, n) +
      cost_of_row_retrieval
    See get_merge_buffers_cost function for queue_use_cost formula derivation.
  */
unknown's avatar
unknown committed
2299

2300
  double roru_total_cost;
unknown's avatar
unknown committed
2301 2302 2303
  roru_total_cost= roru_index_costs +
                   rows2double(roru_total_records)*log((double)n_child_scans) /
                   (TIME_FOR_COMPARE_ROWID * M_LN2) +
2304 2305
                   get_sweep_read_cost(param, roru_total_records);

unknown's avatar
unknown committed
2306
  DBUG_PRINT("info", ("ROR-union: cost %g, %d members", roru_total_cost,
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
                      n_child_scans));
  TRP_ROR_UNION* roru;
  if (roru_total_cost < read_time)
  {
    if ((roru= new (param->mem_root) TRP_ROR_UNION))
    {
      roru->first_ror= roru_read_plans;
      roru->last_ror= roru_read_plans + n_child_scans;
      roru->read_cost= roru_total_cost;
      roru->records= roru_total_records;
      DBUG_RETURN(roru);
    }
  }
  DBUG_RETURN(imerge_trp);
2321 2322 2323 2324 2325 2326 2327
}


/*
  Calculate cost of 'index only' scan for given index and number of records.

  SYNOPSIS
2328
    get_index_only_read_time()
2329 2330 2331 2332 2333
      param    parameters structure
      records  #of records to read
      keynr    key to read

  NOTES
unknown's avatar
unknown committed
2334
    It is assumed that we will read trough the whole key range and that all
2335 2336 2337 2338
    key blocks are half full (normally things are much better). It is also
    assumed that each time we read the next key from the index, the handler
    performs a random seek, thus the cost is proportional to the number of
    blocks read.
2339 2340 2341 2342 2343 2344

  TODO:
    Move this to handler->read_time() by adding a flag 'index-only-read' to
    this call. The reason for doing this is that the current function doesn't
    handle the case when the row is stored in the b-tree (like in innodb
    clustered index)
2345 2346
*/

unknown's avatar
unknown committed
2347
static double get_index_only_read_time(const PARAM* param, ha_rows records,
unknown's avatar
unknown committed
2348
                                       int keynr)
2349 2350 2351 2352 2353 2354 2355
{
  double read_time;
  uint keys_per_block= (param->table->file->block_size/2/
			(param->table->key_info[keynr].key_length+
			 param->table->file->ref_length) + 1);
  read_time=((double) (records+keys_per_block-1)/
             (double) keys_per_block);
2356
  return read_time;
2357 2358
}

2359

2360 2361
typedef struct st_ror_scan_info
{
2362 2363 2364 2365 2366
  uint      idx;      /* # of used key in param->keys */
  uint      keynr;    /* # of used key in table */
  ha_rows   records;  /* estimate of # records this scan will return */

  /* Set of intervals over key fields that will be used for row retrieval. */
unknown's avatar
unknown committed
2367
  SEL_ARG   *sel_arg;
2368 2369

  /* Fields used in the query and covered by this ROR scan. */
unknown's avatar
unknown committed
2370 2371
  MY_BITMAP covered_fields;
  uint      used_fields_covered; /* # of set bits in covered_fields */
2372
  int       key_rec_length; /* length of key record (including rowid) */
2373 2374

  /*
2375 2376
    Cost of reading all index records with values in sel_arg intervals set
    (assuming there is no need to access full table records)
unknown's avatar
unknown committed
2377 2378
  */
  double    index_read_cost;
2379 2380 2381
  uint      first_uncovered_field; /* first unused bit in covered_fields */
  uint      key_components; /* # of parts in the key */
} ROR_SCAN_INFO;
2382 2383 2384


/*
unknown's avatar
unknown committed
2385
  Create ROR_SCAN_INFO* structure with a single ROR scan on index idx using
2386
  sel_arg set of intervals.
unknown's avatar
unknown committed
2387

2388 2389
  SYNOPSIS
    make_ror_scan()
2390 2391 2392
      param    Parameter from test_quick_select function
      idx      Index of key in param->keys
      sel_arg  Set of intervals for a given key
unknown's avatar
unknown committed
2393

2394
  RETURN
unknown's avatar
unknown committed
2395
    NULL - out of memory
2396
    ROR scan structure containing a scan for {idx, sel_arg}
2397 2398 2399 2400 2401 2402
*/

static
ROR_SCAN_INFO *make_ror_scan(const PARAM *param, int idx, SEL_ARG *sel_arg)
{
  ROR_SCAN_INFO *ror_scan;
2403
  uint32 *bitmap_buf;
2404 2405
  uint keynr;
  DBUG_ENTER("make_ror_scan");
unknown's avatar
unknown committed
2406

2407 2408 2409 2410 2411 2412
  if (!(ror_scan= (ROR_SCAN_INFO*)alloc_root(param->mem_root,
                                             sizeof(ROR_SCAN_INFO))))
    DBUG_RETURN(NULL);

  ror_scan->idx= idx;
  ror_scan->keynr= keynr= param->real_keynr[idx];
unknown's avatar
unknown committed
2413 2414
  ror_scan->key_rec_length= (param->table->key_info[keynr].key_length +
                             param->table->file->ref_length);
2415 2416
  ror_scan->sel_arg= sel_arg;
  ror_scan->records= param->table->quick_rows[keynr];
unknown's avatar
unknown committed
2417

2418
  if (!(bitmap_buf= (uint32*)alloc_root(param->mem_root,
unknown's avatar
unknown committed
2419
                                        param->fields_bitmap_size)))
2420
    DBUG_RETURN(NULL);
unknown's avatar
unknown committed
2421

2422
  if (bitmap_init(&ror_scan->covered_fields, bitmap_buf,
unknown's avatar
unknown committed
2423
                  param->fields_bitmap_size*8, FALSE))
2424 2425
    DBUG_RETURN(NULL);
  bitmap_clear_all(&ror_scan->covered_fields);
unknown's avatar
unknown committed
2426

2427
  KEY_PART_INFO *key_part= param->table->key_info[keynr].key_part;
unknown's avatar
unknown committed
2428
  KEY_PART_INFO *key_part_end= key_part +
2429 2430 2431 2432 2433 2434
                               param->table->key_info[keynr].key_parts;
  for (;key_part != key_part_end; ++key_part)
  {
    if (bitmap_is_set(&param->needed_fields, key_part->fieldnr))
      bitmap_set_bit(&ror_scan->covered_fields, key_part->fieldnr);
  }
unknown's avatar
unknown committed
2435
  ror_scan->index_read_cost=
2436 2437 2438 2439 2440 2441
    get_index_only_read_time(param, param->table->quick_rows[ror_scan->keynr],
                             ror_scan->keynr);
  DBUG_RETURN(ror_scan);
}


unknown's avatar
unknown committed
2442
/*
2443 2444 2445 2446 2447 2448 2449
  Compare two ROR_SCAN_INFO** by  E(#records_matched) * key_record_length.
  SYNOPSIS
    cmp_ror_scan_info()
      a ptr to first compared value
      b ptr to second compared value

  RETURN
unknown's avatar
unknown committed
2450
   -1 a < b
2451 2452
    0 a = b
    1 a > b
2453
*/
unknown's avatar
unknown committed
2454

2455
static int cmp_ror_scan_info(ROR_SCAN_INFO** a, ROR_SCAN_INFO** b)
2456 2457 2458 2459 2460 2461 2462
{
  double val1= rows2double((*a)->records) * (*a)->key_rec_length;
  double val2= rows2double((*b)->records) * (*b)->key_rec_length;
  return (val1 < val2)? -1: (val1 == val2)? 0 : 1;
}

/*
unknown's avatar
unknown committed
2463 2464 2465
  Compare two ROR_SCAN_INFO** by
   (#covered fields in F desc,
    #components asc,
2466
    number of first not covered component asc)
2467 2468 2469 2470 2471 2472 2473

  SYNOPSIS
    cmp_ror_scan_info_covering()
      a ptr to first compared value
      b ptr to second compared value

  RETURN
unknown's avatar
unknown committed
2474
   -1 a < b
2475 2476
    0 a = b
    1 a > b
2477
*/
unknown's avatar
unknown committed
2478

2479
static int cmp_ror_scan_info_covering(ROR_SCAN_INFO** a, ROR_SCAN_INFO** b)
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
{
  if ((*a)->used_fields_covered > (*b)->used_fields_covered)
    return -1;
  if ((*a)->used_fields_covered < (*b)->used_fields_covered)
    return 1;
  if ((*a)->key_components < (*b)->key_components)
    return -1;
  if ((*a)->key_components > (*b)->key_components)
    return 1;
  if ((*a)->first_uncovered_field < (*b)->first_uncovered_field)
    return -1;
  if ((*a)->first_uncovered_field > (*b)->first_uncovered_field)
    return 1;
  return 0;
}

unknown's avatar
unknown committed
2496

2497
/* Auxiliary structure for incremental ROR-intersection creation */
unknown's avatar
unknown committed
2498
typedef struct
2499 2500 2501
{
  const PARAM *param;
  MY_BITMAP covered_fields; /* union of fields covered by all scans */
unknown's avatar
unknown committed
2502
  /*
2503
    Fraction of table records that satisfies conditions of all scans.
unknown's avatar
unknown committed
2504
    This is the number of full records that will be retrieved if a
2505 2506
    non-index_only index intersection will be employed.
  */
2507 2508 2509 2510
  double out_rows;
  /* TRUE if covered_fields is a superset of needed_fields */
  bool is_covering;

2511
  ha_rows index_records; /* sum(#records to look in indexes) */
2512 2513
  double index_scan_costs; /* SUM(cost of 'index-only' scans) */
  double total_cost;
2514
} ROR_INTERSECT_INFO;
2515 2516


2517 2518 2519 2520
/*
  Allocate a ROR_INTERSECT_INFO and initialize it to contain zero scans.

  SYNOPSIS
unknown's avatar
unknown committed
2521 2522 2523
    ror_intersect_init()
      param         Parameter from test_quick_select

2524 2525 2526 2527 2528 2529
  RETURN
    allocated structure
    NULL on error
*/

static
2530
ROR_INTERSECT_INFO* ror_intersect_init(const PARAM *param)
2531 2532
{
  ROR_INTERSECT_INFO *info;
2533
  uint32* buf;
unknown's avatar
unknown committed
2534
  if (!(info= (ROR_INTERSECT_INFO*)alloc_root(param->mem_root,
2535 2536 2537
                                              sizeof(ROR_INTERSECT_INFO))))
    return NULL;
  info->param= param;
2538
  if (!(buf= (uint32*)alloc_root(param->mem_root,
unknown's avatar
unknown committed
2539
                                 param->fields_bitmap_size)))
2540 2541
    return NULL;
  if (bitmap_init(&info->covered_fields, buf, param->fields_bitmap_size*8,
unknown's avatar
unknown committed
2542
                  FALSE))
2543
    return NULL;
2544
  info->is_covering= FALSE;
2545
  info->index_scan_costs= 0.0;
2546 2547 2548
  info->index_records= 0;
  info->out_rows= param->table->file->records;
  bitmap_clear_all(&info->covered_fields);
2549 2550 2551
  return info;
}

2552 2553 2554 2555
void ror_intersect_cpy(ROR_INTERSECT_INFO *dst, const ROR_INTERSECT_INFO *src)
{
  dst->param= src->param;
  memcpy(dst->covered_fields.bitmap, src->covered_fields.bitmap, 
2556
         no_bytes_in_map(&src->covered_fields));
2557 2558 2559 2560 2561 2562
  dst->out_rows= src->out_rows;
  dst->is_covering= src->is_covering;
  dst->index_records= src->index_records;
  dst->index_scan_costs= src->index_scan_costs;
  dst->total_cost= src->total_cost;
}
unknown's avatar
unknown committed
2563 2564


2565
/*
2566
  Get selectivity of a ROR scan wrt ROR-intersection.
2567

2568
  SYNOPSIS
2569 2570 2571 2572
    ror_scan_selectivity()
      info  ROR-interection 
      scan  ROR scan
      
2573
  NOTES
2574
    Suppose we have a condition on several keys
unknown's avatar
unknown committed
2575 2576
    cond=k_11=c_11 AND k_12=c_12 AND ...  // parts of first key
         k_21=c_21 AND k_22=c_22 AND ...  // parts of second key
2577
          ...
2578
         k_n1=c_n1 AND k_n3=c_n3 AND ...  (1) //parts of the key used by *scan
unknown's avatar
unknown committed
2579

2580 2581
    where k_ij may be the same as any k_pq (i.e. keys may have common parts).

unknown's avatar
unknown committed
2582
    A full row is retrieved if entire condition holds.
2583 2584

    The recursive procedure for finding P(cond) is as follows:
unknown's avatar
unknown committed
2585

2586
    First step:
unknown's avatar
unknown committed
2587
    Pick 1st part of 1st key and break conjunction (1) into two parts:
2588 2589
      cond= (k_11=c_11 AND R)

unknown's avatar
unknown committed
2590
    Here R may still contain condition(s) equivalent to k_11=c_11.
2591 2592
    Nevertheless, the following holds:

unknown's avatar
unknown committed
2593
      P(k_11=c_11 AND R) = P(k_11=c_11) * P(R | k_11=c_11).
2594 2595 2596 2597 2598

    Mark k_11 as fixed field (and satisfied condition) F, save P(F),
    save R to be cond and proceed to recursion step.

    Recursion step:
2599
    We have a set of fixed fields/satisfied conditions) F, probability P(F),
2600 2601 2602
    and remaining conjunction R
    Pick next key part on current key and its condition "k_ij=c_ij".
    We will add "k_ij=c_ij" into F and update P(F).
2603
    Lets denote k_ij as t,  R = t AND R1, where R1 may still contain t. Then
2604

2605
     P((t AND R1)|F) = P(t|F) * P(R1|t|F) = P(t|F) * P(R1|(t AND F)) (2)
2606 2607 2608 2609 2610 2611 2612

    (where '|' mean conditional probability, not "or")

    Consider the first multiplier in (2). One of the following holds:
    a) F contains condition on field used in t (i.e. t AND F = F).
      Then P(t|F) = 1

unknown's avatar
unknown committed
2613 2614
    b) F doesn't contain condition on field used in t. Then F and t are
     considered independent.
2615

unknown's avatar
unknown committed
2616
     P(t|F) = P(t|(fields_before_t_in_key AND other_fields)) =
2617 2618
          = P(t|fields_before_t_in_key).

2619 2620
     P(t|fields_before_t_in_key) = #records(fields_before_t_in_key) /
                                   #records(fields_before_t_in_key, t)
unknown's avatar
unknown committed
2621 2622

    The second multiplier is calculated by applying this step recursively.
2623

2624 2625 2626 2627 2628
  IMPLEMENTATION
    This function calculates the result of application of the "recursion step"
    described above for all fixed key members of a single key, accumulating set
    of covered fields, selectivity, etc.

unknown's avatar
unknown committed
2629
    The calculation is conducted as follows:
2630
    Lets denote #records(keypart1, ... keypartK) as n_k. We need to calculate
unknown's avatar
unknown committed
2631

2632 2633
     n_{k1}      n_{k_2}
    --------- * ---------  * .... (3)
unknown's avatar
unknown committed
2634
     n_{k1-1}    n_{k2_1}
2635

unknown's avatar
unknown committed
2636 2637 2638 2639
    where k1,k2,... are key parts which fields were not yet marked as fixed
    ( this is result of application of option b) of the recursion step for
      parts of a single key).
    Since it is reasonable to expect that most of the fields are not marked
unknown's avatar
unknown committed
2640
    as fixed, we calculate (3) as
2641 2642 2643

                                  n_{i1}      n_{i_2}
    (3) = n_{max_key_part}  / (   --------- * ---------  * ....  )
unknown's avatar
unknown committed
2644 2645 2646 2647
                                  n_{i1-1}    n_{i2_1}

    where i1,i2, .. are key parts that were already marked as fixed.

2648 2649
    In order to minimize number of expensive records_in_range calls we group
    and reduce adjacent fractions.
unknown's avatar
unknown committed
2650

2651
  RETURN
2652 2653
    Selectivity of given ROR scan.
    
2654 2655
*/

2656 2657
static double ror_scan_selectivity(const ROR_INTERSECT_INFO *info, 
                                   const ROR_SCAN_INFO *scan)
2658 2659
{
  double selectivity_mult= 1.0;
2660
  KEY_PART_INFO *key_part= info->param->table->key_info[scan->keynr].key_part;
unknown's avatar
unknown committed
2661
  byte key_val[MAX_KEY_LENGTH+MAX_FIELD_WIDTH]; /* key values tuple */
2662
  char *key_ptr= (char*) key_val;
2663 2664
  SEL_ARG *sel_arg, *tuple_arg= NULL;
  bool cur_covered;
2665 2666
  bool prev_covered= test(bitmap_is_set(&info->covered_fields,
                                        key_part->fieldnr));
unknown's avatar
unknown committed
2667 2668 2669 2670 2671 2672
  key_range min_range;
  key_range max_range;
  min_range.key= (byte*) key_val;
  min_range.flag= HA_READ_KEY_EXACT;
  max_range.key= (byte*) key_val;
  max_range.flag= HA_READ_AFTER_KEY;
2673 2674
  ha_rows prev_records= info->param->table->file->records;
  DBUG_ENTER("ror_intersect_selectivity");
unknown's avatar
unknown committed
2675 2676 2677

  for (sel_arg= scan->sel_arg; sel_arg;
       sel_arg= sel_arg->next_key_part)
2678
  {
2679
    DBUG_PRINT("info",("sel_arg step"));
2680
    cur_covered= test(bitmap_is_set(&info->covered_fields,
unknown's avatar
unknown committed
2681
                                    key_part[sel_arg->part].fieldnr));
2682
    if (cur_covered != prev_covered)
2683
    {
2684
      /* create (part1val, ..., part{n-1}val) tuple. */
unknown's avatar
unknown committed
2685 2686
      ha_rows records;
      if (!tuple_arg)
2687
      {
unknown's avatar
unknown committed
2688 2689
        tuple_arg= scan->sel_arg;
        /* Here we use the length of the first key part */
2690
        tuple_arg->store_min(key_part->store_length, &key_ptr, 0);
unknown's avatar
unknown committed
2691 2692 2693 2694
      }
      while (tuple_arg->next_key_part != sel_arg)
      {
        tuple_arg= tuple_arg->next_key_part;
2695
        tuple_arg->store_min(key_part[tuple_arg->part].store_length, &key_ptr, 0);
unknown's avatar
unknown committed
2696
      }
2697
      min_range.length= max_range.length= ((char*) key_ptr - (char*) key_val);
unknown's avatar
unknown committed
2698 2699
      records= (info->param->table->file->
                records_in_range(scan->keynr, &min_range, &max_range));
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
      if (cur_covered)
      {
        /* uncovered -> covered */
        double tmp= rows2double(records)/rows2double(prev_records);
        DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp));
        selectivity_mult *= tmp;
        prev_records= HA_POS_ERROR;
      }
      else
      {
        /* covered -> uncovered */
unknown's avatar
unknown committed
2711
        prev_records= records;
2712
      }
2713
    }
2714 2715 2716 2717
    prev_covered= cur_covered;
  }
  if (!prev_covered)
  {
2718
    double tmp= rows2double(info->param->table->quick_rows[scan->keynr]) /
2719 2720
                rows2double(prev_records);
    DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp));
unknown's avatar
unknown committed
2721
    selectivity_mult *= tmp;
2722
  }
2723 2724 2725
  DBUG_PRINT("info", ("Returning multiplier: %g", selectivity_mult));
  DBUG_RETURN(selectivity_mult);
}
2726

unknown's avatar
unknown committed
2727

2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
/*
  Check if adding a ROR scan to a ROR-intersection reduces its cost of
  ROR-intersection and if yes, update parameters of ROR-intersection,
  including its cost.

  SYNOPSIS
    ror_intersect_add()
      param        Parameter from test_quick_select
      info         ROR-intersection structure to add the scan to.
      ror_scan     ROR scan info to add.
      is_cpk_scan  If TRUE, add the scan as CPK scan (this can be inferred
                   from other parameters and is passed separately only to
                   avoid duplicating the inference code)

  NOTES
    Adding a ROR scan to ROR-intersect "makes sense" iff the cost of ROR-
    intersection decreases. The cost of ROR-intersection is calculated as
    follows:

    cost= SUM_i(key_scan_cost_i) + cost_of_full_rows_retrieval

    When we add a scan the first increases and the second decreases.

    cost_of_full_rows_retrieval=
      (union of indexes used covers all needed fields) ?
        cost_of_sweep_read(E(rows_to_retrieve), rows_in_table) :
        0

    E(rows_to_retrieve) = #rows_in_table * ror_scan_selectivity(null, scan1) *
                           ror_scan_selectivity({scan1}, scan2) * ... *
                           ror_scan_selectivity({scan1,...}, scanN). 
  RETURN
    TRUE   ROR scan added to ROR-intersection, cost updated.
    FALSE  It doesn't make sense to add this ROR scan to this ROR-intersection.
*/

static bool ror_intersect_add(ROR_INTERSECT_INFO *info,
unknown's avatar
unknown committed
2765
                              ROR_SCAN_INFO* ror_scan, bool is_cpk_scan)
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
{
  double selectivity_mult= 1.0;

  DBUG_ENTER("ror_intersect_add");
  DBUG_PRINT("info", ("Current out_rows= %g", info->out_rows));
  DBUG_PRINT("info", ("Adding scan on %s",
                      info->param->table->key_info[ror_scan->keynr].name));
  DBUG_PRINT("info", ("is_cpk_scan=%d",is_cpk_scan));

  selectivity_mult = ror_scan_selectivity(info, ror_scan);
2776 2777 2778
  if (selectivity_mult == 1.0)
  {
    /* Don't add this scan if it doesn't improve selectivity. */
2779
    DBUG_PRINT("info", ("The scan doesn't improve selectivity."));
unknown's avatar
unknown committed
2780
    DBUG_RETURN(FALSE);
2781
  }
2782 2783 2784 2785
  
  info->out_rows *= selectivity_mult;
  DBUG_PRINT("info", ("info->total_cost= %g", info->total_cost));
  
2786
  if (is_cpk_scan)
unknown's avatar
unknown committed
2787
  {
2788 2789 2790 2791 2792 2793
    /*
      CPK scan is used to filter out rows. We apply filtering for 
      each record of every scan. Assuming 1/TIME_FOR_COMPARE_ROWID
      per check this gives us:
    */
    info->index_scan_costs += rows2double(info->index_records) / 
2794 2795 2796 2797
                              TIME_FOR_COMPARE_ROWID;
  }
  else
  {
2798
    info->index_records += info->param->table->quick_rows[ror_scan->keynr];
2799 2800
    info->index_scan_costs += ror_scan->index_read_cost;
    bitmap_union(&info->covered_fields, &ror_scan->covered_fields);
2801 2802 2803 2804 2805 2806
    if (!info->is_covering && bitmap_is_subset(&info->param->needed_fields,
                                               &info->covered_fields))
    {
      DBUG_PRINT("info", ("ROR-intersect is covering now"));
      info->is_covering= TRUE;
    }
2807
  }
unknown's avatar
unknown committed
2808

2809
  info->total_cost= info->index_scan_costs;
2810
  DBUG_PRINT("info", ("info->total_cost= %g", info->total_cost));
2811 2812
  if (!info->is_covering)
  {
2813 2814 2815
    info->total_cost += 
      get_sweep_read_cost(info->param, double2rows(info->out_rows));
    DBUG_PRINT("info", ("info->total_cost= %g", info->total_cost));
2816
  }
2817
  DBUG_PRINT("info", ("New out_rows= %g", info->out_rows));
unknown's avatar
unknown committed
2818
  DBUG_PRINT("info", ("New cost= %g, %scovering", info->total_cost,
2819
                      info->is_covering?"" : "non-"));
2820
  DBUG_RETURN(TRUE);
2821 2822
}

2823

unknown's avatar
unknown committed
2824 2825
/*
  Get best ROR-intersection plan using non-covering ROR-intersection search
2826 2827 2828 2829
  algorithm. The returned plan may be covering.

  SYNOPSIS
    get_best_ror_intersect()
2830 2831 2832
      param            Parameter from test_quick_select function.
      tree             Transformed restriction condition to be used to look
                       for ROR scans.
2833
      read_time        Do not return read plans with cost > read_time.
unknown's avatar
unknown committed
2834
      are_all_covering [out] set to TRUE if union of all scans covers all
2835 2836
                       fields needed by the query (and it is possible to build
                       a covering ROR-intersection)
2837

2838
  NOTES
2839 2840 2841 2842 2843
    get_key_scans_params must be called before this function can be called.
    
    When this function is called by ROR-union construction algorithm it
    assumes it is building an uncovered ROR-intersection (and thus # of full
    records to be retrieved is wrong here). This is a hack.
unknown's avatar
unknown committed
2844

2845
  IMPLEMENTATION
2846
    The approximate best non-covering plan search algorithm is as follows:
2847

2848 2849 2850 2851
    find_min_ror_intersection_scan()
    {
      R= select all ROR scans;
      order R by (E(#records_matched) * key_record_length).
unknown's avatar
unknown committed
2852

2853 2854 2855 2856 2857 2858
      S= first(R); -- set of scans that will be used for ROR-intersection
      R= R-first(S);
      min_cost= cost(S);
      min_scan= make_scan(S);
      while (R is not empty)
      {
2859 2860
        firstR= R - first(R);
        if (!selectivity(S + firstR < selectivity(S)))
2861
          continue;
2862
          
2863 2864 2865 2866 2867 2868 2869 2870 2871
        S= S + first(R);
        if (cost(S) < min_cost)
        {
          min_cost= cost(S);
          min_scan= make_scan(S);
        }
      }
      return min_scan;
    }
2872

2873
    See ror_intersect_add function for ROR intersection costs.
2874

2875
    Special handling for Clustered PK scans
unknown's avatar
unknown committed
2876 2877
    Clustered PK contains all table fields, so using it as a regular scan in
    index intersection doesn't make sense: a range scan on CPK will be less
2878 2879
    expensive in this case.
    Clustered PK scan has special handling in ROR-intersection: it is not used
unknown's avatar
unknown committed
2880
    to retrieve rows, instead its condition is used to filter row references
2881
    we get from scans on other keys.
2882 2883

  RETURN
unknown's avatar
unknown committed
2884
    ROR-intersection table read plan
2885
    NULL if out of memory or no suitable plan found.
2886 2887
*/

2888 2889 2890 2891 2892 2893
static
TRP_ROR_INTERSECT *get_best_ror_intersect(const PARAM *param, SEL_TREE *tree,
                                          double read_time,
                                          bool *are_all_covering)
{
  uint idx;
2894
  double min_cost= DBL_MAX;
2895
  DBUG_ENTER("get_best_ror_intersect");
2896

2897
  if ((tree->n_ror_scans < 2) || !param->table->file->records)
2898
    DBUG_RETURN(NULL);
2899 2900

  /*
2901 2902
    Step1: Collect ROR-able SEL_ARGs and create ROR_SCAN_INFO for each of 
    them. Also find and save clustered PK scan if there is one.
2903
  */
2904
  ROR_SCAN_INFO **cur_ror_scan;
2905
  ROR_SCAN_INFO *cpk_scan= NULL;
2906
  uint cpk_no;
unknown's avatar
unknown committed
2907
  bool cpk_scan_used= FALSE;
2908

2909 2910 2911 2912
  if (!(tree->ror_scans= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
                                                     sizeof(ROR_SCAN_INFO*)*
                                                     param->keys)))
    return NULL;
2913 2914
  cpk_no= ((param->table->file->primary_key_is_clustered()) ?
           param->table->s->primary_key : MAX_KEY);
unknown's avatar
unknown committed
2915

2916
  for (idx= 0, cur_ror_scan= tree->ror_scans; idx < param->keys; idx++)
2917
  {
2918
    ROR_SCAN_INFO *scan;
2919
    if (!tree->ror_scans_map.is_set(idx))
2920
      continue;
2921
    if (!(scan= make_ror_scan(param, idx, tree->keys[idx])))
2922
      return NULL;
2923
    if (param->real_keynr[idx] == cpk_no)
2924
    {
2925 2926
      cpk_scan= scan;
      tree->n_ror_scans--;
2927 2928
    }
    else
2929
      *(cur_ror_scan++)= scan;
2930
  }
unknown's avatar
unknown committed
2931

2932
  tree->ror_scans_end= cur_ror_scan;
unknown's avatar
unknown committed
2933 2934
  DBUG_EXECUTE("info",print_ror_scans_arr(param->table, "original",
                                          tree->ror_scans,
2935 2936
                                          tree->ror_scans_end););
  /*
unknown's avatar
unknown committed
2937
    Ok, [ror_scans, ror_scans_end) is array of ptrs to initialized
2938 2939
    ROR_SCAN_INFO's.
    Step 2: Get best ROR-intersection using an approximate algorithm.
2940 2941 2942
  */
  qsort(tree->ror_scans, tree->n_ror_scans, sizeof(ROR_SCAN_INFO*),
        (qsort_cmp)cmp_ror_scan_info);
unknown's avatar
unknown committed
2943 2944
  DBUG_EXECUTE("info",print_ror_scans_arr(param->table, "ordered",
                                          tree->ror_scans,
2945
                                          tree->ror_scans_end););
unknown's avatar
unknown committed
2946

2947 2948 2949 2950 2951 2952 2953 2954 2955
  ROR_SCAN_INFO **intersect_scans; /* ROR scans used in index intersection */
  ROR_SCAN_INFO **intersect_scans_end;
  if (!(intersect_scans= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
                                                     sizeof(ROR_SCAN_INFO*)*
                                                     tree->n_ror_scans)))
    return NULL;
  intersect_scans_end= intersect_scans;

  /* Create and incrementally update ROR intersection. */
2956 2957 2958
  ROR_INTERSECT_INFO *intersect, *intersect_best;
  if (!(intersect= ror_intersect_init(param)) || 
      !(intersect_best= ror_intersect_init(param)))
2959
    return NULL;
unknown's avatar
unknown committed
2960

2961
  /* [intersect_scans,intersect_scans_best) will hold the best intersection */
unknown's avatar
unknown committed
2962
  ROR_SCAN_INFO **intersect_scans_best;
2963
  cur_ror_scan= tree->ror_scans;
2964
  intersect_scans_best= intersect_scans;
2965
  while (cur_ror_scan != tree->ror_scans_end && !intersect->is_covering)
2966
  {
2967
    /* S= S + first(R);  R= R - first(R); */
unknown's avatar
unknown committed
2968
    if (!ror_intersect_add(intersect, *cur_ror_scan, FALSE))
2969 2970 2971 2972 2973 2974
    {
      cur_ror_scan++;
      continue;
    }
    
    *(intersect_scans_end++)= *(cur_ror_scan++);
unknown's avatar
unknown committed
2975

2976
    if (intersect->total_cost < min_cost)
2977
    {
2978
      /* Local minimum found, save it */
2979
      ror_intersect_cpy(intersect_best, intersect);
2980
      intersect_scans_best= intersect_scans_end;
2981
      min_cost = intersect->total_cost;
2982 2983
    }
  }
unknown's avatar
unknown committed
2984

2985 2986 2987 2988 2989 2990
  if (intersect_scans_best == intersect_scans)
  {
    DBUG_PRINT("info", ("None of scans increase selectivity"));
    DBUG_RETURN(NULL);
  }
    
2991 2992 2993 2994
  DBUG_EXECUTE("info",print_ror_scans_arr(param->table,
                                          "best ROR-intersection",
                                          intersect_scans,
                                          intersect_scans_best););
unknown's avatar
unknown committed
2995

2996
  *are_all_covering= intersect->is_covering;
unknown's avatar
unknown committed
2997
  uint best_num= intersect_scans_best - intersect_scans;
2998 2999
  ror_intersect_cpy(intersect, intersect_best);

3000 3001
  /*
    Ok, found the best ROR-intersection of non-CPK key scans.
3002 3003
    Check if we should add a CPK scan. If the obtained ROR-intersection is 
    covering, it doesn't make sense to add CPK scan.
3004 3005
  */
  if (cpk_scan && !intersect->is_covering)
3006
  {
3007
    if (ror_intersect_add(intersect, cpk_scan, TRUE) && 
3008
        (intersect->total_cost < min_cost))
3009
    {
unknown's avatar
unknown committed
3010
      cpk_scan_used= TRUE;
3011
      intersect_best= intersect; //just set pointer here
3012 3013
    }
  }
unknown's avatar
unknown committed
3014

3015
  /* Ok, return ROR-intersect plan if we have found one */
3016
  TRP_ROR_INTERSECT *trp= NULL;
3017
  if (min_cost < read_time && (cpk_scan_used || best_num > 1))
3018
  {
3019 3020
    if (!(trp= new (param->mem_root) TRP_ROR_INTERSECT))
      DBUG_RETURN(trp);
unknown's avatar
unknown committed
3021 3022
    if (!(trp->first_scan=
           (ROR_SCAN_INFO**)alloc_root(param->mem_root,
3023 3024 3025 3026
                                       sizeof(ROR_SCAN_INFO*)*best_num)))
      DBUG_RETURN(NULL);
    memcpy(trp->first_scan, intersect_scans, best_num*sizeof(ROR_SCAN_INFO*));
    trp->last_scan=  trp->first_scan + best_num;
3027 3028 3029 3030 3031 3032
    trp->is_covering= intersect_best->is_covering;
    trp->read_cost= intersect_best->total_cost;
    /* Prevent divisons by zero */
    ha_rows best_rows = double2rows(intersect_best->out_rows);
    if (!best_rows)
      best_rows= 1;
3033
    trp->records= best_rows;
3034 3035 3036 3037 3038
    trp->index_scan_costs= intersect_best->index_scan_costs;
    trp->cpk_scan= cpk_scan_used? cpk_scan: NULL;
    DBUG_PRINT("info", ("Returning non-covering ROR-intersect plan:"
                        "cost %g, records %lu",
                        trp->read_cost, (ulong) trp->records));
unknown's avatar
unknown committed
3039
  }
3040
  DBUG_RETURN(trp);
3041 3042 3043 3044
}


/*
3045
  Get best covering ROR-intersection.
3046
  SYNOPSIS
3047
    get_best_covering_ror_intersect()
3048 3049 3050
      param     Parameter from test_quick_select function.
      tree      SEL_TREE with sets of intervals for different keys.
      read_time Don't return table read plans with cost > read_time.
3051

unknown's avatar
unknown committed
3052 3053
  RETURN
    Best covering ROR-intersection plan
3054
    NULL if no plan found.
3055 3056

  NOTES
3057
    get_best_ror_intersect must be called for a tree before calling this
unknown's avatar
unknown committed
3058
    function for it.
3059
    This function invalidates tree->ror_scans member values.
unknown's avatar
unknown committed
3060

3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
  The following approximate algorithm is used:
    I=set of all covering indexes
    F=set of all fields to cover
    S={}

    do {
      Order I by (#covered fields in F desc,
                  #components asc,
                  number of first not covered component asc);
      F=F-covered by first(I);
      S=S+first(I);
      I=I-first(I);
    } while F is not empty.
3074 3075
*/

3076
static
unknown's avatar
unknown committed
3077 3078
TRP_ROR_INTERSECT *get_best_covering_ror_intersect(PARAM *param,
                                                   SEL_TREE *tree,
3079
                                                   double read_time)
3080
{
3081
  ROR_SCAN_INFO **ror_scan_mark;
unknown's avatar
unknown committed
3082
  ROR_SCAN_INFO **ror_scans_end= tree->ror_scans_end;
3083 3084 3085 3086
  DBUG_ENTER("get_best_covering_ror_intersect");
  uint nbits= param->fields_bitmap_size*8;

  for (ROR_SCAN_INFO **scan= tree->ror_scans; scan != ror_scans_end; ++scan)
unknown's avatar
unknown committed
3087
    (*scan)->key_components=
3088
      param->table->key_info[(*scan)->keynr].key_parts;
unknown's avatar
unknown committed
3089

3090 3091
  /*
    Run covering-ROR-search algorithm.
unknown's avatar
unknown committed
3092
    Assume set I is [ror_scan .. ror_scans_end)
3093
  */
unknown's avatar
unknown committed
3094

3095 3096
  /*I=set of all covering indexes */
  ror_scan_mark= tree->ror_scans;
unknown's avatar
unknown committed
3097

unknown's avatar
unknown committed
3098
  uint32 int_buf[MAX_KEY/32+1];
3099
  MY_BITMAP covered_fields;
3100
  if (bitmap_init(&covered_fields, int_buf, nbits, FALSE))
3101 3102 3103 3104 3105
    DBUG_RETURN(0);
  bitmap_clear_all(&covered_fields);

  double total_cost= 0.0f;
  ha_rows records=0;
unknown's avatar
unknown committed
3106 3107
  bool all_covered;

3108 3109 3110 3111 3112 3113
  DBUG_PRINT("info", ("Building covering ROR-intersection"));
  DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
                                           "building covering ROR-I",
                                           ror_scan_mark, ror_scans_end););
  do {
    /*
unknown's avatar
unknown committed
3114
      Update changed sorting info:
3115
        #covered fields,
unknown's avatar
unknown committed
3116
	number of first not covered component
3117 3118 3119 3120 3121
      Calculate and save these values for each of remaining scans.
    */
    for (ROR_SCAN_INFO **scan= ror_scan_mark; scan != ror_scans_end; ++scan)
    {
      bitmap_subtract(&(*scan)->covered_fields, &covered_fields);
unknown's avatar
unknown committed
3122
      (*scan)->used_fields_covered=
3123
        bitmap_bits_set(&(*scan)->covered_fields);
unknown's avatar
unknown committed
3124
      (*scan)->first_uncovered_field=
3125 3126 3127 3128 3129 3130 3131 3132 3133
        bitmap_get_first(&(*scan)->covered_fields);
    }

    qsort(ror_scan_mark, ror_scans_end-ror_scan_mark, sizeof(ROR_SCAN_INFO*),
          (qsort_cmp)cmp_ror_scan_info_covering);

    DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
                                             "remaining scans",
                                             ror_scan_mark, ror_scans_end););
unknown's avatar
unknown committed
3134

3135 3136 3137
    /* I=I-first(I) */
    total_cost += (*ror_scan_mark)->index_read_cost;
    records += (*ror_scan_mark)->records;
unknown's avatar
unknown committed
3138
    DBUG_PRINT("info", ("Adding scan on %s",
3139 3140 3141 3142 3143 3144 3145
                        param->table->key_info[(*ror_scan_mark)->keynr].name));
    if (total_cost > read_time)
      DBUG_RETURN(NULL);
    /* F=F-covered by first(I) */
    bitmap_union(&covered_fields, &(*ror_scan_mark)->covered_fields);
    all_covered= bitmap_is_subset(&param->needed_fields, &covered_fields);
  } while (!all_covered && (++ror_scan_mark < ror_scans_end));
unknown's avatar
unknown committed
3146

3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
  if (!all_covered)
    DBUG_RETURN(NULL); /* should not happen actually */

  /*
    Ok, [tree->ror_scans .. ror_scan) holds covering index_intersection with
    cost total_cost.
  */
  DBUG_PRINT("info", ("Covering ROR-intersect scans cost: %g", total_cost));
  DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
                                           "creating covering ROR-intersect",
                                           tree->ror_scans, ror_scan_mark););
unknown's avatar
unknown committed
3158

3159
  /* Add priority queue use cost. */
unknown's avatar
unknown committed
3160 3161
  total_cost += rows2double(records)*
                log((double)(ror_scan_mark - tree->ror_scans)) /
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
                (TIME_FOR_COMPARE_ROWID * M_LN2);
  DBUG_PRINT("info", ("Covering ROR-intersect full cost: %g", total_cost));

  if (total_cost > read_time)
    DBUG_RETURN(NULL);

  TRP_ROR_INTERSECT *trp;
  if (!(trp= new (param->mem_root) TRP_ROR_INTERSECT))
    DBUG_RETURN(trp);
  uint best_num= (ror_scan_mark - tree->ror_scans);
  if (!(trp->first_scan= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
                                                     sizeof(ROR_SCAN_INFO*)*
                                                     best_num)))
    DBUG_RETURN(NULL);
  memcpy(trp->first_scan, ror_scan_mark, best_num*sizeof(ROR_SCAN_INFO*));
  trp->last_scan=  trp->first_scan + best_num;
unknown's avatar
unknown committed
3178
  trp->is_covering= TRUE;
3179 3180 3181
  trp->read_cost= total_cost;
  trp->records= records;

3182 3183 3184
  DBUG_PRINT("info",
             ("Returning covering ROR-intersect plan: cost %g, records %lu",
              trp->read_cost, (ulong) trp->records));
3185
  DBUG_RETURN(trp);
3186 3187 3188
}


unknown's avatar
unknown committed
3189
/*
unknown's avatar
unknown committed
3190
  Get best "range" table read plan for given SEL_TREE.
3191
  Also update PARAM members and store ROR scans info in the SEL_TREE.
3192
  SYNOPSIS
3193
    get_key_scans_params
3194
      param        parameters from test_quick_select
unknown's avatar
unknown committed
3195
      tree         make range select for this SEL_TREE
unknown's avatar
unknown committed
3196
      index_read_must_be_used if TRUE, assume 'index only' option will be set
3197
                             (except for clustered PK indexes)
3198 3199
      read_time    don't create read plans with cost > read_time.
  RETURN
unknown's avatar
unknown committed
3200
    Best range read plan
3201
    NULL if no plan found or error occurred
unknown's avatar
unknown committed
3202 3203
*/

3204
static TRP_RANGE *get_key_scans_params(PARAM *param, SEL_TREE *tree,
unknown's avatar
unknown committed
3205
                                       bool index_read_must_be_used,
3206
                                       double read_time)
unknown's avatar
unknown committed
3207 3208
{
  int idx;
3209 3210 3211
  SEL_ARG **key,**end, **key_to_read= NULL;
  ha_rows best_records;
  TRP_RANGE* read_plan= NULL;
3212
  bool pk_is_clustered= param->table->file->primary_key_is_clustered();
3213 3214
  DBUG_ENTER("get_key_scans_params");
  LINT_INIT(best_records); /* protected by key_to_read */
unknown's avatar
unknown committed
3215
  /*
unknown's avatar
unknown committed
3216 3217
    Note that there may be trees that have type SEL_TREE::KEY but contain no
    key reads at all, e.g. tree for expression "key1 is not null" where key1
3218
    is defined as "not null".
unknown's avatar
unknown committed
3219 3220
  */
  DBUG_EXECUTE("info", print_sel_tree(param, tree, &tree->keys_map,
3221 3222 3223 3224
                                      "tree scans"););
  tree->ror_scans_map.clear_all();
  tree->n_ror_scans= 0;
  for (idx= 0,key=tree->keys, end=key+param->keys;
unknown's avatar
unknown committed
3225 3226 3227 3228 3229 3230 3231
       key != end ;
       key++,idx++)
  {
    ha_rows found_records;
    double found_read_time;
    if (*key)
    {
3232
      uint keynr= param->real_keynr[idx];
unknown's avatar
unknown committed
3233 3234
      if ((*key)->type == SEL_ARG::MAYBE_KEY ||
          (*key)->maybe_flag)
3235
        param->needed_reg->set_bit(keynr);
unknown's avatar
unknown committed
3236

unknown's avatar
unknown committed
3237 3238
      bool read_index_only= index_read_must_be_used ? TRUE :
                            (bool) param->table->used_keys.is_set(keynr);
3239

3240 3241 3242 3243 3244 3245
      found_records= check_quick_select(param, idx, *key);
      if (param->is_ror_scan)
      {
        tree->n_ror_scans++;
        tree->ror_scans_map.set_bit(idx);
      }
3246
      double cpu_cost= (double) found_records / TIME_FOR_COMPARE;
unknown's avatar
unknown committed
3247
      if (found_records != HA_POS_ERROR && found_records > 2 &&
unknown's avatar
unknown committed
3248
          read_index_only &&
unknown's avatar
unknown committed
3249
          (param->table->file->index_flags(keynr, param->max_key_part,1) &
unknown's avatar
unknown committed
3250
           HA_KEYREAD_ONLY) &&
3251
          !(pk_is_clustered && keynr == param->table->s->primary_key))
3252 3253 3254 3255 3256
      {
        /*
          We can resolve this by only reading through this key. 
          0.01 is added to avoid races between range and 'index' scan.
        */
3257
        found_read_time= get_index_only_read_time(param,found_records,keynr) +
3258 3259
                         cpu_cost + 0.01;
      }
unknown's avatar
unknown committed
3260
      else
3261
      {
unknown's avatar
unknown committed
3262
        /*
3263 3264 3265
          cost(read_through_index) = cost(disk_io) + cost(row_in_range_checks)
          The row_in_range check is in QUICK_RANGE_SELECT::cmp_next function.
        */
3266 3267 3268
	found_read_time= param->table->file->read_time(keynr,
                                                       param->range_count,
                                                       found_records) +
3269 3270
			 cpu_cost + 0.01;
      }
3271 3272 3273
      DBUG_PRINT("info",("key %s: found_read_time: %g (cur. read_time: %g)",
                         param->table->key_info[keynr].name, found_read_time,
                         read_time));
3274

3275 3276
      if (read_time > found_read_time && found_records != HA_POS_ERROR
          /*|| read_time == DBL_MAX*/ )
unknown's avatar
unknown committed
3277
      {
3278
        read_time=    found_read_time;
unknown's avatar
unknown committed
3279
        best_records= found_records;
3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
        key_to_read=  key;
      }

    }
  }

  DBUG_EXECUTE("info", print_sel_tree(param, tree, &tree->ror_scans_map,
                                      "ROR scans"););
  if (key_to_read)
  {
    idx= key_to_read - tree->keys;
    if ((read_plan= new (param->mem_root) TRP_RANGE(*key_to_read, idx)))
    {
      read_plan->records= best_records;
      read_plan->is_ror= tree->ror_scans_map.is_set(idx);
      read_plan->read_cost= read_time;
3296 3297 3298 3299
      DBUG_PRINT("info",
                 ("Returning range plan for key %s, cost %g, records %lu",
                  param->table->key_info[param->real_keynr[idx]].name,
                  read_plan->read_cost, (ulong) read_plan->records));
3300 3301 3302 3303 3304 3305 3306 3307 3308
    }
  }
  else
    DBUG_PRINT("info", ("No 'range' table read plan found"));

  DBUG_RETURN(read_plan);
}


unknown's avatar
unknown committed
3309
QUICK_SELECT_I *TRP_INDEX_MERGE::make_quick(PARAM *param,
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
                                            bool retrieve_full_rows,
                                            MEM_ROOT *parent_alloc)
{
  QUICK_INDEX_MERGE_SELECT *quick_imerge;
  QUICK_RANGE_SELECT *quick;
  /* index_merge always retrieves full rows, ignore retrieve_full_rows */
  if (!(quick_imerge= new QUICK_INDEX_MERGE_SELECT(param->thd, param->table)))
    return NULL;

  quick_imerge->records= records;
  quick_imerge->read_time= read_cost;
unknown's avatar
unknown committed
3321 3322
  for (TRP_RANGE **range_scan= range_scans; range_scan != range_scans_end;
       range_scan++)
3323 3324
  {
    if (!(quick= (QUICK_RANGE_SELECT*)
unknown's avatar
unknown committed
3325
          ((*range_scan)->make_quick(param, FALSE, &quick_imerge->alloc)))||
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
        quick_imerge->push_quick_back(quick))
    {
      delete quick;
      delete quick_imerge;
      return NULL;
    }
  }
  return quick_imerge;
}

unknown's avatar
unknown committed
3336
QUICK_SELECT_I *TRP_ROR_INTERSECT::make_quick(PARAM *param,
3337 3338 3339 3340 3341 3342 3343
                                              bool retrieve_full_rows,
                                              MEM_ROOT *parent_alloc)
{
  QUICK_ROR_INTERSECT_SELECT *quick_intrsect;
  QUICK_RANGE_SELECT *quick;
  DBUG_ENTER("TRP_ROR_INTERSECT::make_quick");
  MEM_ROOT *alloc;
unknown's avatar
unknown committed
3344 3345

  if ((quick_intrsect=
3346
         new QUICK_ROR_INTERSECT_SELECT(param->thd, param->table,
unknown's avatar
unknown committed
3347
                                        retrieve_full_rows? (!is_covering):FALSE,
3348 3349
                                        parent_alloc)))
  {
unknown's avatar
unknown committed
3350
    DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
3351 3352 3353
                                             "creating ROR-intersect",
                                             first_scan, last_scan););
    alloc= parent_alloc? parent_alloc: &quick_intrsect->alloc;
unknown's avatar
unknown committed
3354
    for (; first_scan != last_scan;++first_scan)
3355 3356 3357 3358
    {
      if (!(quick= get_quick_select(param, (*first_scan)->idx,
                                    (*first_scan)->sel_arg, alloc)) ||
          quick_intrsect->push_quick_back(quick))
unknown's avatar
unknown committed
3359
      {
3360 3361
        delete quick_intrsect;
        DBUG_RETURN(NULL);
unknown's avatar
unknown committed
3362 3363
      }
    }
3364 3365 3366 3367
    if (cpk_scan)
    {
      if (!(quick= get_quick_select(param, cpk_scan->idx,
                                    cpk_scan->sel_arg, alloc)))
unknown's avatar
unknown committed
3368
      {
3369 3370
        delete quick_intrsect;
        DBUG_RETURN(NULL);
unknown's avatar
unknown committed
3371
      }
unknown's avatar
unknown committed
3372
      quick->file= NULL; 
3373
      quick_intrsect->cpk_quick= quick;
unknown's avatar
unknown committed
3374
    }
unknown's avatar
unknown committed
3375
    quick_intrsect->records= records;
3376
    quick_intrsect->read_time= read_cost;
unknown's avatar
unknown committed
3377
  }
3378 3379 3380
  DBUG_RETURN(quick_intrsect);
}

3381

unknown's avatar
unknown committed
3382
QUICK_SELECT_I *TRP_ROR_UNION::make_quick(PARAM *param,
3383 3384 3385 3386 3387 3388 3389
                                          bool retrieve_full_rows,
                                          MEM_ROOT *parent_alloc)
{
  QUICK_ROR_UNION_SELECT *quick_roru;
  TABLE_READ_PLAN **scan;
  QUICK_SELECT_I *quick;
  DBUG_ENTER("TRP_ROR_UNION::make_quick");
unknown's avatar
unknown committed
3390 3391
  /*
    It is impossible to construct a ROR-union that will not retrieve full
3392
    rows, ignore retrieve_full_rows parameter.
3393 3394 3395
  */
  if ((quick_roru= new QUICK_ROR_UNION_SELECT(param->thd, param->table)))
  {
unknown's avatar
unknown committed
3396
    for (scan= first_ror; scan != last_ror; scan++)
3397
    {
unknown's avatar
unknown committed
3398
      if (!(quick= (*scan)->make_quick(param, FALSE, &quick_roru->alloc)) ||
3399 3400 3401 3402 3403
          quick_roru->push_quick_back(quick))
        DBUG_RETURN(NULL);
    }
    quick_roru->records= records;
    quick_roru->read_time= read_cost;
unknown's avatar
unknown committed
3404
  }
3405
  DBUG_RETURN(quick_roru);
unknown's avatar
unknown committed
3406 3407
}

3408

unknown's avatar
unknown committed
3409
/*
unknown's avatar
unknown committed
3410
  Build a SEL_TREE for <> or NOT BETWEEN predicate
unknown's avatar
unknown committed
3411 3412 3413 3414 3415 3416
 
  SYNOPSIS
    get_ne_mm_tree()
      param       PARAM from SQL_SELECT::test_quick_select
      cond_func   item for the predicate
      field       field in the predicate
unknown's avatar
unknown committed
3417 3418
      lt_value    constant that field should be smaller
      gt_value    constant that field should be greaterr
unknown's avatar
unknown committed
3419 3420 3421
      cmp_type    compare type for the field

  RETURN 
unknown's avatar
unknown committed
3422 3423
    #  Pointer to tree built tree
    0  on error
unknown's avatar
unknown committed
3424 3425 3426
*/

static SEL_TREE *get_ne_mm_tree(PARAM *param, Item_func *cond_func, 
unknown's avatar
unknown committed
3427 3428
                                Field *field,
                                Item *lt_value, Item *gt_value,
unknown's avatar
unknown committed
3429 3430
                                Item_result cmp_type)
{
unknown's avatar
unknown committed
3431
  SEL_TREE *tree;
unknown's avatar
unknown committed
3432
  tree= get_mm_parts(param, cond_func, field, Item_func::LT_FUNC,
unknown's avatar
unknown committed
3433
                     lt_value, cmp_type);
unknown's avatar
unknown committed
3434 3435 3436 3437
  if (tree)
  {
    tree= tree_or(param, tree, get_mm_parts(param, cond_func, field,
					    Item_func::GT_FUNC,
unknown's avatar
unknown committed
3438
					    gt_value, cmp_type));
unknown's avatar
unknown committed
3439 3440 3441 3442 3443
  }
  return tree;
}
   

unknown's avatar
unknown committed
3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
/*
  Build a SEL_TREE for a simple predicate
 
  SYNOPSIS
    get_func_mm_tree()
      param       PARAM from SQL_SELECT::test_quick_select
      cond_func   item for the predicate
      field       field in the predicate
      value       constant in the predicate
      cmp_type    compare type for the field
unknown's avatar
unknown committed
3454
      inv         TRUE <> NOT cond_func is considered
unknown's avatar
unknown committed
3455
                  (makes sense only when cond_func is BETWEEN or IN) 
unknown's avatar
unknown committed
3456 3457

  RETURN 
unknown's avatar
unknown committed
3458
    Pointer to the tree built tree
unknown's avatar
unknown committed
3459 3460
*/

3461 3462
static SEL_TREE *get_func_mm_tree(PARAM *param, Item_func *cond_func, 
                                  Field *field, Item *value,
unknown's avatar
unknown committed
3463
                                  Item_result cmp_type, bool inv)
3464 3465 3466 3467
{
  SEL_TREE *tree= 0;
  DBUG_ENTER("get_func_mm_tree");

unknown's avatar
unknown committed
3468
  switch (cond_func->functype()) {
unknown's avatar
unknown committed
3469

unknown's avatar
unknown committed
3470
  case Item_func::NE_FUNC:
unknown's avatar
unknown committed
3471
    tree= get_ne_mm_tree(param, cond_func, field, value, value, cmp_type);
unknown's avatar
unknown committed
3472
    break;
unknown's avatar
unknown committed
3473

unknown's avatar
unknown committed
3474
  case Item_func::BETWEEN:
unknown's avatar
unknown committed
3475
    if (inv)
3476
    {
unknown's avatar
unknown committed
3477 3478
      tree= get_ne_mm_tree(param, cond_func, field, cond_func->arguments()[1],
                           cond_func->arguments()[2], cmp_type);
unknown's avatar
unknown committed
3479 3480
    }
    else
3481
    {
unknown's avatar
unknown committed
3482 3483 3484 3485 3486 3487 3488 3489 3490
      tree= get_mm_parts(param, cond_func, field, Item_func::GE_FUNC,
		         cond_func->arguments()[1],cmp_type);
      if (tree)
      {
        tree= tree_and(param, tree, get_mm_parts(param, cond_func, field,
					         Item_func::LE_FUNC,
					         cond_func->arguments()[2],
                                                 cmp_type));
      }
3491
    }
unknown's avatar
unknown committed
3492
    break;
unknown's avatar
unknown committed
3493

unknown's avatar
unknown committed
3494
  case Item_func::IN_FUNC:
3495 3496
  {
    Item_func_in *func=(Item_func_in*) cond_func;
unknown's avatar
unknown committed
3497 3498

    if (inv)
3499
    {
unknown's avatar
unknown committed
3500
      tree= get_ne_mm_tree(param, cond_func, field,
unknown's avatar
unknown committed
3501 3502
                           func->arguments()[1], func->arguments()[1],
                           cmp_type);
unknown's avatar
unknown committed
3503
      if (tree)
3504
      {
unknown's avatar
unknown committed
3505 3506 3507 3508 3509
        Item **arg, **end;
        for (arg= func->arguments()+2, end= arg+func->argument_count()-2;
             arg < end ; arg++)
        {
          tree=  tree_and(param, tree, get_ne_mm_tree(param, cond_func, field, 
unknown's avatar
unknown committed
3510
                                                      *arg, *arg, cmp_type));
unknown's avatar
unknown committed
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
        }
      }
    }
    else
    {    
      tree= get_mm_parts(param, cond_func, field, Item_func::EQ_FUNC,
                         func->arguments()[1], cmp_type);
      if (tree)
      {
        Item **arg, **end;
        for (arg= func->arguments()+2, end= arg+func->argument_count()-2;
             arg < end ; arg++)
        {
          tree= tree_or(param, tree, get_mm_parts(param, cond_func, field, 
                                                  Item_func::EQ_FUNC,
                                                  *arg, cmp_type));
        }
3528 3529
      }
    }
unknown's avatar
unknown committed
3530
    break;
3531
  }
unknown's avatar
unknown committed
3532
  default: 
3533
  {
unknown's avatar
unknown committed
3534 3535 3536 3537 3538 3539 3540
    /* 
       Here the function for the following predicates are processed:
       <, <=, =, >=, >, LIKE, IS NULL, IS NOT NULL.
       If the predicate is of the form (value op field) it is handled
       as the equivalent predicate (field rev_op value), e.g.
       2 <= a is handled as a >= 2.
    */
3541 3542 3543
    Item_func::Functype func_type=
      (value != cond_func->arguments()[0]) ? cond_func->functype() :
        ((Item_bool_func2*) cond_func)->rev_functype();
3544
    tree= get_mm_parts(param, cond_func, field, func_type, value, cmp_type);
3545
  }
unknown's avatar
unknown committed
3546 3547
  }

3548
  DBUG_RETURN(tree);
3549

3550 3551
}

unknown's avatar
unknown committed
3552 3553 3554 3555 3556
	/* make a select tree of all keys in condition */

static SEL_TREE *get_mm_tree(PARAM *param,COND *cond)
{
  SEL_TREE *tree=0;
3557 3558
  SEL_TREE *ftree= 0;
  Item_field *field_item= 0;
unknown's avatar
unknown committed
3559
  bool inv= FALSE;
3560
  Item *value;
unknown's avatar
unknown committed
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
  DBUG_ENTER("get_mm_tree");

  if (cond->type() == Item::COND_ITEM)
  {
    List_iterator<Item> li(*((Item_cond*) cond)->argument_list());

    if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
    {
      tree=0;
      Item *item;
      while ((item=li++))
      {
	SEL_TREE *new_tree=get_mm_tree(param,item);
3574
	if (param->thd->is_fatal_error)
3575
	  DBUG_RETURN(0);	// out of memory
unknown's avatar
unknown committed
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
	tree=tree_and(param,tree,new_tree);
	if (tree && tree->type == SEL_TREE::IMPOSSIBLE)
	  break;
      }
    }
    else
    {						// COND OR
      tree=get_mm_tree(param,li++);
      if (tree)
      {
	Item *item;
	while ((item=li++))
	{
	  SEL_TREE *new_tree=get_mm_tree(param,item);
	  if (!new_tree)
3591
	    DBUG_RETURN(0);	// out of memory
unknown's avatar
unknown committed
3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
	  tree=tree_or(param,tree,new_tree);
	  if (!tree || tree->type == SEL_TREE::ALWAYS)
	    break;
	}
      }
    }
    DBUG_RETURN(tree);
  }
  /* Here when simple cond */
  if (cond->const_item())
  {
    if (cond->val_int())
      DBUG_RETURN(new SEL_TREE(SEL_TREE::ALWAYS));
    DBUG_RETURN(new SEL_TREE(SEL_TREE::IMPOSSIBLE));
  }
3607

3608 3609 3610
  table_map ref_tables= 0;
  table_map param_comp= ~(param->prev_tables | param->read_tables |
		          param->current_table);
unknown's avatar
unknown committed
3611 3612
  if (cond->type() != Item::FUNC_ITEM)
  {						// Should be a field
3613
    ref_tables= cond->used_tables();
unknown's avatar
unknown committed
3614 3615
    if ((ref_tables & param->current_table) ||
	(ref_tables & ~(param->prev_tables | param->read_tables)))
unknown's avatar
unknown committed
3616 3617 3618
      DBUG_RETURN(0);
    DBUG_RETURN(new SEL_TREE(SEL_TREE::MAYBE));
  }
3619

unknown's avatar
unknown committed
3620
  Item_func *cond_func= (Item_func*) cond;
3621 3622 3623
  if (cond_func->functype() == Item_func::BETWEEN ||
      cond_func->functype() == Item_func::IN_FUNC)
    inv= ((Item_func_opt_neg *) cond_func)->negated;
unknown's avatar
unknown committed
3624
  else if (cond_func->select_optimize() == Item_func::OPTIMIZE_NONE)
unknown's avatar
unknown committed
3625
    DBUG_RETURN(0);			       
unknown's avatar
unknown committed
3626

unknown's avatar
unknown committed
3627 3628
  param->cond= cond;

unknown's avatar
unknown committed
3629 3630
  switch (cond_func->functype()) {
  case Item_func::BETWEEN:
3631
    if (cond_func->arguments()[0]->real_item()->type() != Item::FIELD_ITEM)
3632
      DBUG_RETURN(0);
3633
    field_item= (Item_field*) (cond_func->arguments()[0]->real_item());
unknown's avatar
unknown committed
3634 3635 3636
    value= NULL;
    break;
  case Item_func::IN_FUNC:
unknown's avatar
unknown committed
3637 3638
  {
    Item_func_in *func=(Item_func_in*) cond_func;
3639
    if (func->key_item()->real_item()->type() != Item::FIELD_ITEM)
3640
      DBUG_RETURN(0);
3641
    field_item= (Item_field*) (func->key_item()->real_item());
unknown's avatar
unknown committed
3642 3643
    value= NULL;
    break;
3644
  }
unknown's avatar
unknown committed
3645
  case Item_func::MULT_EQUAL_FUNC:
unknown's avatar
unknown committed
3646
  {
3647 3648
    Item_equal *item_equal= (Item_equal *) cond;    
    if (!(value= item_equal->get_const()))
unknown's avatar
unknown committed
3649 3650 3651 3652
      DBUG_RETURN(0);
    Item_equal_iterator it(*item_equal);
    ref_tables= value->used_tables();
    while ((field_item= it++))
unknown's avatar
unknown committed
3653
    {
unknown's avatar
unknown committed
3654 3655 3656
      Field *field= field_item->field;
      Item_result cmp_type= field->cmp_type();
      if (!((ref_tables | field->table->map) & param_comp))
unknown's avatar
unknown committed
3657
      {
3658
        tree= get_mm_parts(param, cond, field, Item_func::EQ_FUNC,
unknown's avatar
unknown committed
3659 3660
		           value,cmp_type);
        ftree= !ftree ? tree : tree_and(param, ftree, tree);
unknown's avatar
unknown committed
3661 3662
      }
    }
unknown's avatar
unknown committed
3663
    
3664
    DBUG_RETURN(ftree);
unknown's avatar
unknown committed
3665 3666
  }
  default:
unknown's avatar
unknown committed
3667
    if (cond_func->arguments()[0]->real_item()->type() == Item::FIELD_ITEM)
unknown's avatar
unknown committed
3668
    {
unknown's avatar
unknown committed
3669
      field_item= (Item_field*) (cond_func->arguments()[0]->real_item());
unknown's avatar
unknown committed
3670
      value= cond_func->arg_count > 1 ? cond_func->arguments()[1] : 0;
unknown's avatar
unknown committed
3671
    }
unknown's avatar
unknown committed
3672
    else if (cond_func->have_rev_func() &&
unknown's avatar
unknown committed
3673 3674
             cond_func->arguments()[1]->real_item()->type() ==
                                                            Item::FIELD_ITEM)
unknown's avatar
unknown committed
3675
    {
unknown's avatar
unknown committed
3676
      field_item= (Item_field*) (cond_func->arguments()[1]->real_item());
unknown's avatar
unknown committed
3677 3678 3679 3680
      value= cond_func->arguments()[0];
    }
    else
      DBUG_RETURN(0);
unknown's avatar
unknown committed
3681
  }
unknown's avatar
unknown committed
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696

  /* 
     If the where condition contains a predicate (ti.field op const),
     then not only SELL_TREE for this predicate is built, but
     the trees for the results of substitution of ti.field for
     each tj.field belonging to the same multiple equality as ti.field
     are built as well.
     E.g. for WHERE t1.a=t2.a AND t2.a > 10 
     a SEL_TREE for t2.a > 10 will be built for quick select from t2
     and   
     a SEL_TREE for t1.a > 10 will be built for quick select from t1.
  */
     
  for (uint i= 0; i < cond_func->arg_count; i++)
  {
unknown's avatar
unknown committed
3697
    Item *arg= cond_func->arguments()[i]->real_item();
unknown's avatar
unknown committed
3698 3699 3700 3701 3702 3703
    if (arg != field_item)
      ref_tables|= arg->used_tables();
  }
  Field *field= field_item->field;
  Item_result cmp_type= field->cmp_type();
  if (!((ref_tables | field->table->map) & param_comp))
unknown's avatar
unknown committed
3704
    ftree= get_func_mm_tree(param, cond_func, field, value, cmp_type, inv);
unknown's avatar
unknown committed
3705 3706 3707 3708 3709 3710
  Item_equal *item_equal= field_item->item_equal;
  if (item_equal)
  {
    Item_equal_iterator it(*item_equal);
    Item_field *item;
    while ((item= it++))
unknown's avatar
unknown committed
3711
    {
unknown's avatar
unknown committed
3712 3713 3714 3715
      Field *f= item->field;
      if (field->eq(f))
        continue;
      if (!((ref_tables | f->table->map) & param_comp))
unknown's avatar
unknown committed
3716
      {
unknown's avatar
unknown committed
3717
        tree= get_func_mm_tree(param, cond_func, f, value, cmp_type, inv);
unknown's avatar
unknown committed
3718
        ftree= !ftree ? tree : tree_and(param, ftree, tree);
unknown's avatar
unknown committed
3719 3720 3721
      }
    }
  }
unknown's avatar
unknown committed
3722
  DBUG_RETURN(ftree);
unknown's avatar
unknown committed
3723 3724 3725 3726
}


static SEL_TREE *
3727
get_mm_parts(PARAM *param, COND *cond_func, Field *field,
unknown's avatar
unknown committed
3728
	     Item_func::Functype type,
3729
	     Item *value, Item_result cmp_type)
unknown's avatar
unknown committed
3730 3731 3732 3733 3734
{
  DBUG_ENTER("get_mm_parts");
  if (field->table != param->table)
    DBUG_RETURN(0);

3735 3736
  KEY_PART *key_part = param->key_parts;
  KEY_PART *end = param->key_parts_end;
unknown's avatar
unknown committed
3737 3738 3739 3740
  SEL_TREE *tree=0;
  if (value &&
      value->used_tables() & ~(param->prev_tables | param->read_tables))
    DBUG_RETURN(0);
3741
  for (; key_part != end ; key_part++)
unknown's avatar
unknown committed
3742 3743 3744 3745
  {
    if (field->eq(key_part->field))
    {
      SEL_ARG *sel_arg=0;
3746
      if (!tree && !(tree=new SEL_TREE()))
3747
	DBUG_RETURN(0);				// OOM
unknown's avatar
unknown committed
3748 3749
      if (!value || !(value->used_tables() & ~param->read_tables))
      {
3750 3751
	sel_arg=get_mm_leaf(param,cond_func,
			    key_part->field,key_part,type,value);
unknown's avatar
unknown committed
3752 3753 3754 3755 3756 3757 3758 3759
	if (!sel_arg)
	  continue;
	if (sel_arg->type == SEL_ARG::IMPOSSIBLE)
	{
	  tree->type=SEL_TREE::IMPOSSIBLE;
	  DBUG_RETURN(tree);
	}
      }
3760 3761
      else
      {
3762
	// This key may be used later
unknown's avatar
unknown committed
3763
	if (!(sel_arg= new SEL_ARG(SEL_ARG::MAYBE_KEY)))
3764
	  DBUG_RETURN(0);			// OOM
3765
      }
unknown's avatar
unknown committed
3766 3767
      sel_arg->part=(uchar) key_part->part;
      tree->keys[key_part->key]=sel_add(tree->keys[key_part->key],sel_arg);
unknown's avatar
unknown committed
3768
      tree->keys_map.set_bit(key_part->key);
unknown's avatar
unknown committed
3769 3770
    }
  }
3771

unknown's avatar
unknown committed
3772 3773 3774 3775 3776
  DBUG_RETURN(tree);
}


static SEL_ARG *
3777
get_mm_leaf(PARAM *param, COND *conf_func, Field *field, KEY_PART *key_part,
unknown's avatar
unknown committed
3778 3779
	    Item_func::Functype type,Item *value)
{
3780
  uint maybe_null=(uint) field->real_maybe_null();
unknown's avatar
unknown committed
3781
  bool optimize_range;
3782 3783
  SEL_ARG *tree= 0;
  MEM_ROOT *alloc= param->mem_root;
3784
  char *str;
unknown's avatar
unknown committed
3785
  ulong orig_sql_mode;
unknown's avatar
unknown committed
3786 3787
  DBUG_ENTER("get_mm_leaf");

3788 3789
  /*
    We need to restore the runtime mem_root of the thread in this
unknown's avatar
unknown committed
3790
    function because it evaluates the value of its argument, while
3791 3792 3793 3794 3795 3796
    the argument can be any, e.g. a subselect. The subselect
    items, in turn, assume that all the memory allocated during
    the evaluation has the same life span as the item itself.
    TODO: opt_range.cc should not reset thd->mem_root at all.
  */
  param->thd->mem_root= param->old_root;
3797 3798
  if (!value)					// IS NULL or IS NOT NULL
  {
3799
    if (field->table->maybe_null)		// Can't use a key on this
3800
      goto end;
3801
    if (!maybe_null)				// Not null field
3802 3803 3804 3805 3806 3807 3808
    {
      if (type == Item_func::ISNULL_FUNC)
        tree= &null_element;
      goto end;
    }
    if (!(tree= new (alloc) SEL_ARG(field,is_null_string,is_null_string)))
      goto end;                                 // out of memory
3809 3810 3811 3812 3813
    if (type == Item_func::ISNOTNULL_FUNC)
    {
      tree->min_flag=NEAR_MIN;		    /* IS NOT NULL ->  X > NULL */
      tree->max_flag=NO_MAX_RANGE;
    }
3814
    goto end;
3815 3816 3817
  }

  /*
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
    1. Usually we can't use an index if the column collation
       differ from the operation collation.

    2. However, we can reuse a case insensitive index for
       the binary searches:

       WHERE latin1_swedish_ci_column = 'a' COLLATE lati1_bin;

       WHERE latin1_swedish_ci_colimn = BINARY 'a '

3828 3829 3830 3831
  */
  if (field->result_type() == STRING_RESULT &&
      value->result_type() == STRING_RESULT &&
      key_part->image_type == Field::itRAW &&
3832 3833
      ((Field_str*)field)->charset() != conf_func->compare_collation() &&
      !(conf_func->compare_collation()->state & MY_CS_BINSORT))
3834
    goto end;
3835

unknown's avatar
unknown committed
3836 3837 3838
  optimize_range= field->optimize_range(param->real_keynr[key_part->key],
                                        key_part->part);

unknown's avatar
unknown committed
3839 3840 3841 3842
  if (type == Item_func::LIKE_FUNC)
  {
    bool like_error;
    char buff1[MAX_FIELD_WIDTH],*min_str,*max_str;
3843
    String tmp(buff1,sizeof(buff1),value->collation.collation),*res;
unknown's avatar
unknown committed
3844
    uint length,offset,min_length,max_length;
3845
    uint field_length= field->pack_length()+maybe_null;
unknown's avatar
unknown committed
3846

unknown's avatar
unknown committed
3847
    if (!optimize_range)
3848
      goto end;
unknown's avatar
unknown committed
3849
    if (!(res= value->val_str(&tmp)))
3850 3851 3852 3853
    {
      tree= &null_element;
      goto end;
    }
unknown's avatar
unknown committed
3854

3855 3856 3857 3858 3859
    /*
      TODO:
      Check if this was a function. This should have be optimized away
      in the sql_select.cc
    */
unknown's avatar
unknown committed
3860 3861 3862 3863 3864 3865
    if (res != &tmp)
    {
      tmp.copy(*res);				// Get own copy
      res= &tmp;
    }
    if (field->cmp_type() != STRING_RESULT)
3866
      goto end;                                 // Can only optimize strings
unknown's avatar
unknown committed
3867 3868

    offset=maybe_null;
unknown's avatar
unknown committed
3869 3870 3871
    length=key_part->store_length;

    if (length != key_part->length  + maybe_null)
unknown's avatar
unknown committed
3872
    {
unknown's avatar
unknown committed
3873 3874 3875
      /* key packed with length prefix */
      offset+= HA_KEY_BLOB_LENGTH;
      field_length= length - HA_KEY_BLOB_LENGTH;
unknown's avatar
unknown committed
3876 3877 3878
    }
    else
    {
unknown's avatar
unknown committed
3879 3880 3881 3882 3883 3884 3885 3886
      if (unlikely(length < field_length))
      {
	/*
	  This can only happen in a table created with UNIREG where one key
	  overlaps many fields
	*/
	length= field_length;
      }
unknown's avatar
unknown committed
3887
      else
unknown's avatar
unknown committed
3888
	field_length= length;
unknown's avatar
unknown committed
3889 3890
    }
    length+=offset;
3891 3892
    if (!(min_str= (char*) alloc_root(alloc, length*2)))
      goto end;
3893

unknown's avatar
unknown committed
3894 3895 3896
    max_str=min_str+length;
    if (maybe_null)
      max_str[0]= min_str[0]=0;
3897

3898
    field_length-= maybe_null;
3899
    like_error= my_like_range(field->charset(),
unknown's avatar
unknown committed
3900
			      res->ptr(), res->length(),
unknown's avatar
unknown committed
3901 3902
			      ((Item_func_like*)(param->cond))->escape,
			      wild_one, wild_many,
3903
			      field_length,
unknown's avatar
unknown committed
3904 3905
			      min_str+offset, max_str+offset,
			      &min_length, &max_length);
unknown's avatar
unknown committed
3906
    if (like_error)				// Can't optimize with LIKE
3907
      goto end;
unknown's avatar
unknown committed
3908

3909
    if (offset != maybe_null)			// BLOB or VARCHAR
unknown's avatar
unknown committed
3910 3911 3912 3913
    {
      int2store(min_str+maybe_null,min_length);
      int2store(max_str+maybe_null,max_length);
    }
3914 3915
    tree= new (alloc) SEL_ARG(field, min_str, max_str);
    goto end;
unknown's avatar
unknown committed
3916 3917
  }

unknown's avatar
unknown committed
3918
  if (!optimize_range &&
3919
      type != Item_func::EQ_FUNC &&
unknown's avatar
unknown committed
3920
      type != Item_func::EQUAL_FUNC)
3921
    goto end;                                   // Can't optimize this
unknown's avatar
unknown committed
3922

3923 3924 3925 3926
  /*
    We can't always use indexes when comparing a string index to a number
    cmp_type() is checked to allow compare of dates to numbers
  */
unknown's avatar
unknown committed
3927 3928 3929
  if (field->result_type() == STRING_RESULT &&
      value->result_type() != STRING_RESULT &&
      field->cmp_type() != value->result_type())
3930
    goto end;
3931
  /* For comparison purposes allow invalid dates like 2000-01-32 */
unknown's avatar
unknown committed
3932
  orig_sql_mode= field->table->in_use->variables.sql_mode;
3933 3934 3935 3936
  if (value->real_item()->type() == Item::STRING_ITEM &&
      (field->type() == FIELD_TYPE_DATE ||
       field->type() == FIELD_TYPE_DATETIME))
    field->table->in_use->variables.sql_mode|= MODE_INVALID_DATES;
3937
  if (value->save_in_field_no_warnings(field, 1) < 0)
unknown's avatar
unknown committed
3938
  {
3939
    field->table->in_use->variables.sql_mode= orig_sql_mode;
3940
    /* This happens when we try to insert a NULL field in a not null column */
3941 3942
    tree= &null_element;                        // cmp with NULL is never TRUE
    goto end;
unknown's avatar
unknown committed
3943
  }
3944
  field->table->in_use->variables.sql_mode= orig_sql_mode;
3945
  str= (char*) alloc_root(alloc, key_part->store_length+1);
unknown's avatar
unknown committed
3946
  if (!str)
3947
    goto end;
unknown's avatar
unknown committed
3948
  if (maybe_null)
3949
    *str= (char) field->is_real_null();		// Set to 1 if null
3950
  field->get_key_image(str+maybe_null, key_part->length, key_part->image_type);
3951 3952
  if (!(tree= new (alloc) SEL_ARG(field, str, str)))
    goto end;                                   // out of memory
unknown's avatar
unknown committed
3953

unknown's avatar
unknown committed
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
  /*
    Check if we are comparing an UNSIGNED integer with a negative constant.
    In this case we know that:
    (a) (unsigned_int [< | <=] negative_constant) == FALSE
    (b) (unsigned_int [> | >=] negative_constant) == TRUE
    In case (a) the condition is false for all values, and in case (b) it
    is true for all values, so we can avoid unnecessary retrieval and condition
    testing, and we also get correct comparison of unsinged integers with
    negative integers (which otherwise fails because at query execution time
    negative integers are cast to unsigned if compared with unsigned).
   */
unknown's avatar
unknown committed
3965 3966
  if (field->result_type() == INT_RESULT &&
      value->result_type() == INT_RESULT &&
unknown's avatar
unknown committed
3967 3968 3969 3970 3971 3972 3973 3974
      ((Field_num*)field)->unsigned_flag && !((Item_int*)value)->unsigned_flag)
  {
    longlong item_val= value->val_int();
    if (item_val < 0)
    {
      if (type == Item_func::LT_FUNC || type == Item_func::LE_FUNC)
      {
        tree->type= SEL_ARG::IMPOSSIBLE;
3975
        goto end;
unknown's avatar
unknown committed
3976 3977
      }
      if (type == Item_func::GT_FUNC || type == Item_func::GE_FUNC)
3978 3979 3980 3981
      {
        tree= 0;
        goto end;
      }
unknown's avatar
unknown committed
3982 3983
    }
  }
unknown's avatar
unknown committed
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005

  switch (type) {
  case Item_func::LT_FUNC:
    if (field_is_equal_to_item(field,value))
      tree->max_flag=NEAR_MAX;
    /* fall through */
  case Item_func::LE_FUNC:
    if (!maybe_null)
      tree->min_flag=NO_MIN_RANGE;		/* From start */
    else
    {						// > NULL
      tree->min_value=is_null_string;
      tree->min_flag=NEAR_MIN;
    }
    break;
  case Item_func::GT_FUNC:
    if (field_is_equal_to_item(field,value))
      tree->min_flag=NEAR_MIN;
    /* fall through */
  case Item_func::GE_FUNC:
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4006
  case Item_func::SP_EQUALS_FUNC:
unknown's avatar
unknown committed
4007 4008 4009
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_EQUAL;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4010
  case Item_func::SP_DISJOINT_FUNC:
unknown's avatar
unknown committed
4011 4012 4013
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_DISJOINT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4014
  case Item_func::SP_INTERSECTS_FUNC:
unknown's avatar
unknown committed
4015 4016 4017
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4018
  case Item_func::SP_TOUCHES_FUNC:
unknown's avatar
unknown committed
4019 4020 4021
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4022 4023

  case Item_func::SP_CROSSES_FUNC:
unknown's avatar
unknown committed
4024 4025 4026
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4027
  case Item_func::SP_WITHIN_FUNC:
unknown's avatar
unknown committed
4028 4029 4030
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_WITHIN;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4031 4032

  case Item_func::SP_CONTAINS_FUNC:
unknown's avatar
unknown committed
4033 4034 4035
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_CONTAIN;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4036
  case Item_func::SP_OVERLAPS_FUNC:
unknown's avatar
unknown committed
4037 4038 4039
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4040

unknown's avatar
unknown committed
4041 4042 4043
  default:
    break;
  }
4044 4045 4046

end:
  param->thd->mem_root= alloc;
unknown's avatar
unknown committed
4047 4048 4049 4050 4051 4052 4053 4054 4055
  DBUG_RETURN(tree);
}


/******************************************************************************
** Tree manipulation functions
** If tree is 0 it means that the condition can't be tested. It refers
** to a non existent table or to a field in current table with isn't a key.
** The different tree flags:
unknown's avatar
unknown committed
4056 4057
** IMPOSSIBLE:	 Condition is never TRUE
** ALWAYS:	 Condition is always TRUE
unknown's avatar
unknown committed
4058 4059 4060 4061 4062 4063
** MAYBE:	 Condition may exists when tables are read
** MAYBE_KEY:	 Condition refers to a key that may be used in join loop
** KEY_RANGE:	 Condition uses a key
******************************************************************************/

/*
4064 4065
  Add a new key test to a key when scanning through all keys
  This will never be called for same key parts.
unknown's avatar
unknown committed
4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
*/

static SEL_ARG *
sel_add(SEL_ARG *key1,SEL_ARG *key2)
{
  SEL_ARG *root,**key_link;

  if (!key1)
    return key2;
  if (!key2)
    return key1;

  key_link= &root;
  while (key1 && key2)
  {
    if (key1->part < key2->part)
    {
      *key_link= key1;
      key_link= &key1->next_key_part;
      key1=key1->next_key_part;
    }
    else
    {
      *key_link= key2;
      key_link= &key2->next_key_part;
      key2=key2->next_key_part;
    }
  }
  *key_link=key1 ? key1 : key2;
  return root;
}

#define CLONE_KEY1_MAYBE 1
#define CLONE_KEY2_MAYBE 2
#define swap_clone_flag(A) ((A & 1) << 1) | ((A & 2) >> 1)


static SEL_TREE *
tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
{
  DBUG_ENTER("tree_and");
  if (!tree1)
    DBUG_RETURN(tree2);
  if (!tree2)
    DBUG_RETURN(tree1);
  if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
    DBUG_RETURN(tree1);
  if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
    DBUG_RETURN(tree2);
  if (tree1->type == SEL_TREE::MAYBE)
  {
    if (tree2->type == SEL_TREE::KEY)
      tree2->type=SEL_TREE::KEY_SMALLER;
    DBUG_RETURN(tree2);
  }
  if (tree2->type == SEL_TREE::MAYBE)
  {
    tree1->type=SEL_TREE::KEY_SMALLER;
    DBUG_RETURN(tree1);
  }

unknown's avatar
unknown committed
4127 4128
  key_map  result_keys;
  result_keys.clear_all();
unknown's avatar
unknown committed
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141
  /* Join the trees key per key */
  SEL_ARG **key1,**key2,**end;
  for (key1= tree1->keys,key2= tree2->keys,end=key1+param->keys ;
       key1 != end ; key1++,key2++)
  {
    uint flag=0;
    if (*key1 || *key2)
    {
      if (*key1 && !(*key1)->simple_key())
	flag|=CLONE_KEY1_MAYBE;
      if (*key2 && !(*key2)->simple_key())
	flag|=CLONE_KEY2_MAYBE;
      *key1=key_and(*key1,*key2,flag);
4142
      if (*key1 && (*key1)->type == SEL_ARG::IMPOSSIBLE)
unknown's avatar
unknown committed
4143 4144
      {
	tree1->type= SEL_TREE::IMPOSSIBLE;
unknown's avatar
unknown committed
4145
        DBUG_RETURN(tree1);
unknown's avatar
unknown committed
4146
      }
unknown's avatar
unknown committed
4147
      result_keys.set_bit(key1 - tree1->keys);
unknown's avatar
unknown committed
4148
#ifdef EXTRA_DEBUG
4149 4150
      if (*key1)
        (*key1)->test_use_count(*key1);
unknown's avatar
unknown committed
4151 4152 4153
#endif
    }
  }
unknown's avatar
unknown committed
4154 4155
  tree1->keys_map= result_keys;
  /* dispose index_merge if there is a "range" option */
unknown's avatar
unknown committed
4156
  if (!result_keys.is_clear_all())
unknown's avatar
unknown committed
4157 4158 4159 4160 4161 4162 4163
  {
    tree1->merges.empty();
    DBUG_RETURN(tree1);
  }

  /* ok, both trees are index_merge trees */
  imerge_list_and_list(&tree1->merges, &tree2->merges);
unknown's avatar
unknown committed
4164 4165 4166 4167
  DBUG_RETURN(tree1);
}


unknown's avatar
unknown committed
4168
/*
unknown's avatar
unknown committed
4169 4170
  Check if two SEL_TREES can be combined into one (i.e. a single key range
  read can be constructed for "cond_of_tree1 OR cond_of_tree2" ) without
4171
  using index_merge.
unknown's avatar
unknown committed
4172 4173 4174 4175
*/

bool sel_trees_can_be_ored(SEL_TREE *tree1, SEL_TREE *tree2, PARAM* param)
{
unknown's avatar
unknown committed
4176
  key_map common_keys= tree1->keys_map;
unknown's avatar
unknown committed
4177
  DBUG_ENTER("sel_trees_can_be_ored");
4178
  common_keys.intersect(tree2->keys_map);
unknown's avatar
unknown committed
4179

unknown's avatar
unknown committed
4180
  if (common_keys.is_clear_all())
unknown's avatar
unknown committed
4181
    DBUG_RETURN(FALSE);
unknown's avatar
unknown committed
4182 4183

  /* trees have a common key, check if they refer to same key part */
unknown's avatar
unknown committed
4184
  SEL_ARG **key1,**key2;
unknown's avatar
unknown committed
4185
  for (uint key_no=0; key_no < param->keys; key_no++)
unknown's avatar
unknown committed
4186
  {
unknown's avatar
unknown committed
4187
    if (common_keys.is_set(key_no))
unknown's avatar
unknown committed
4188 4189 4190 4191 4192
    {
      key1= tree1->keys + key_no;
      key2= tree2->keys + key_no;
      if ((*key1)->part == (*key2)->part)
      {
unknown's avatar
unknown committed
4193
        DBUG_RETURN(TRUE);
unknown's avatar
unknown committed
4194 4195 4196
      }
    }
  }
unknown's avatar
unknown committed
4197
  DBUG_RETURN(FALSE);
unknown's avatar
unknown committed
4198
}
unknown's avatar
unknown committed
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214

static SEL_TREE *
tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
{
  DBUG_ENTER("tree_or");
  if (!tree1 || !tree2)
    DBUG_RETURN(0);
  if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
    DBUG_RETURN(tree2);
  if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
    DBUG_RETURN(tree1);
  if (tree1->type == SEL_TREE::MAYBE)
    DBUG_RETURN(tree1);				// Can't use this
  if (tree2->type == SEL_TREE::MAYBE)
    DBUG_RETURN(tree2);

unknown's avatar
unknown committed
4215
  SEL_TREE *result= 0;
unknown's avatar
unknown committed
4216 4217
  key_map  result_keys;
  result_keys.clear_all();
unknown's avatar
unknown committed
4218
  if (sel_trees_can_be_ored(tree1, tree2, param))
unknown's avatar
unknown committed
4219
  {
unknown's avatar
unknown committed
4220 4221 4222 4223
    /* Join the trees key per key */
    SEL_ARG **key1,**key2,**end;
    for (key1= tree1->keys,key2= tree2->keys,end= key1+param->keys ;
         key1 != end ; key1++,key2++)
unknown's avatar
unknown committed
4224
    {
unknown's avatar
unknown committed
4225 4226 4227 4228
      *key1=key_or(*key1,*key2);
      if (*key1)
      {
        result=tree1;				// Added to tree1
unknown's avatar
unknown committed
4229
        result_keys.set_bit(key1 - tree1->keys);
unknown's avatar
unknown committed
4230
#ifdef EXTRA_DEBUG
unknown's avatar
unknown committed
4231
        (*key1)->test_use_count(*key1);
unknown's avatar
unknown committed
4232
#endif
unknown's avatar
unknown committed
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
      }
    }
    if (result)
      result->keys_map= result_keys;
  }
  else
  {
    /* ok, two trees have KEY type but cannot be used without index merge */
    if (tree1->merges.is_empty() && tree2->merges.is_empty())
    {
      SEL_IMERGE *merge;
      /* both trees are "range" trees, produce new index merge structure */
      if (!(result= new SEL_TREE()) || !(merge= new SEL_IMERGE()) ||
          (result->merges.push_back(merge)) ||
          (merge->or_sel_tree(param, tree1)) ||
          (merge->or_sel_tree(param, tree2)))
        result= NULL;
      else
        result->type= tree1->type;
    }
    else if (!tree1->merges.is_empty() && !tree2->merges.is_empty())
    {
      if (imerge_list_or_list(param, &tree1->merges, &tree2->merges))
        result= new SEL_TREE(SEL_TREE::ALWAYS);
      else
        result= tree1;
    }
    else
    {
      /* one tree is index merge tree and another is range tree */
      if (tree1->merges.is_empty())
unknown's avatar
unknown committed
4264
        swap_variables(SEL_TREE*, tree1, tree2);
unknown's avatar
unknown committed
4265 4266 4267 4268 4269 4270

      /* add tree2 to tree1->merges, checking if it collapses to ALWAYS */
      if (imerge_list_or_tree(param, &tree1->merges, tree2))
        result= new SEL_TREE(SEL_TREE::ALWAYS);
      else
        result= tree1;
unknown's avatar
unknown committed
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
    }
  }
  DBUG_RETURN(result);
}


/* And key trees where key1->part < key2 -> part */

static SEL_ARG *
and_all_keys(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag)
{
  SEL_ARG *next;
  ulong use_count=key1->use_count;

  if (key1->elements != 1)
  {
    key2->use_count+=key1->elements-1;
    key2->increment_use_count((int) key1->elements-1);
  }
  if (key1->type == SEL_ARG::MAYBE_KEY)
  {
4292 4293
    key1->right= key1->left= &null_element;
    key1->next= key1->prev= 0;
unknown's avatar
unknown committed
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329
  }
  for (next=key1->first(); next ; next=next->next)
  {
    if (next->next_key_part)
    {
      SEL_ARG *tmp=key_and(next->next_key_part,key2,clone_flag);
      if (tmp && tmp->type == SEL_ARG::IMPOSSIBLE)
      {
	key1=key1->tree_delete(next);
	continue;
      }
      next->next_key_part=tmp;
      if (use_count)
	next->increment_use_count(use_count);
    }
    else
      next->next_key_part=key2;
  }
  if (!key1)
    return &null_element;			// Impossible ranges
  key1->use_count++;
  return key1;
}


static SEL_ARG *
key_and(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag)
{
  if (!key1)
    return key2;
  if (!key2)
    return key1;
  if (key1->part != key2->part)
  {
    if (key1->part > key2->part)
    {
4330
      swap_variables(SEL_ARG *, key1, key2);
unknown's avatar
unknown committed
4331 4332 4333 4334 4335
      clone_flag=swap_clone_flag(clone_flag);
    }
    // key1->part < key2->part
    key1->use_count--;
    if (key1->use_count > 0)
4336 4337
      if (!(key1= key1->clone_tree()))
	return 0;				// OOM
unknown's avatar
unknown committed
4338 4339 4340 4341
    return and_all_keys(key1,key2,clone_flag);
  }

  if (((clone_flag & CLONE_KEY2_MAYBE) &&
4342 4343
       !(clone_flag & CLONE_KEY1_MAYBE) &&
       key2->type != SEL_ARG::MAYBE_KEY) ||
unknown's avatar
unknown committed
4344 4345
      key1->type == SEL_ARG::MAYBE_KEY)
  {						// Put simple key in key2
4346
    swap_variables(SEL_ARG *, key1, key2);
unknown's avatar
unknown committed
4347 4348 4349
    clone_flag=swap_clone_flag(clone_flag);
  }

unknown's avatar
unknown committed
4350
  /* If one of the key is MAYBE_KEY then the found region may be smaller */
unknown's avatar
unknown committed
4351 4352 4353 4354 4355
  if (key2->type == SEL_ARG::MAYBE_KEY)
  {
    if (key1->use_count > 1)
    {
      key1->use_count--;
4356 4357
      if (!(key1=key1->clone_tree()))
	return 0;				// OOM
unknown's avatar
unknown committed
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371
      key1->use_count++;
    }
    if (key1->type == SEL_ARG::MAYBE_KEY)
    {						// Both are maybe key
      key1->next_key_part=key_and(key1->next_key_part,key2->next_key_part,
				 clone_flag);
      if (key1->next_key_part &&
	  key1->next_key_part->type == SEL_ARG::IMPOSSIBLE)
	return key1;
    }
    else
    {
      key1->maybe_smaller();
      if (key2->next_key_part)
4372 4373
      {
	key1->use_count--;			// Incremented in and_all_keys
unknown's avatar
unknown committed
4374
	return and_all_keys(key1,key2,clone_flag);
4375
      }
unknown's avatar
unknown committed
4376 4377 4378 4379 4380
      key2->use_count--;			// Key2 doesn't have a tree
    }
    return key1;
  }

4381 4382 4383 4384 4385 4386 4387
  if ((key1->min_flag | key2->min_flag) & GEOM_FLAG)
  {
    key1->free_tree();
    key2->free_tree();
    return 0;					// Can't optimize this
  }

4388 4389 4390
  if ((key1->min_flag | key2->min_flag) & GEOM_FLAG)
  {
    key1->free_tree();
4391 4392 4393 4394
    key2->free_tree();
    return 0;					// Can't optimize this
  }

unknown's avatar
unknown committed
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
  key1->use_count--;
  key2->use_count--;
  SEL_ARG *e1=key1->first(), *e2=key2->first(), *new_tree=0;

  while (e1 && e2)
  {
    int cmp=e1->cmp_min_to_min(e2);
    if (cmp < 0)
    {
      if (get_range(&e1,&e2,key1))
	continue;
    }
    else if (get_range(&e2,&e1,key2))
      continue;
    SEL_ARG *next=key_and(e1->next_key_part,e2->next_key_part,clone_flag);
    e1->increment_use_count(1);
    e2->increment_use_count(1);
    if (!next || next->type != SEL_ARG::IMPOSSIBLE)
    {
      SEL_ARG *new_arg= e1->clone_and(e2);
4415 4416
      if (!new_arg)
	return &null_element;			// End of memory
unknown's avatar
unknown committed
4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467
      new_arg->next_key_part=next;
      if (!new_tree)
      {
	new_tree=new_arg;
      }
      else
	new_tree=new_tree->insert(new_arg);
    }
    if (e1->cmp_max_to_max(e2) < 0)
      e1=e1->next;				// e1 can't overlapp next e2
    else
      e2=e2->next;
  }
  key1->free_tree();
  key2->free_tree();
  if (!new_tree)
    return &null_element;			// Impossible range
  return new_tree;
}


static bool
get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1)
{
  (*e1)=root1->find_range(*e2);			// first e1->min < e2->min
  if ((*e1)->cmp_max_to_min(*e2) < 0)
  {
    if (!((*e1)=(*e1)->next))
      return 1;
    if ((*e1)->cmp_min_to_max(*e2) > 0)
    {
      (*e2)=(*e2)->next;
      return 1;
    }
  }
  return 0;
}


static SEL_ARG *
key_or(SEL_ARG *key1,SEL_ARG *key2)
{
  if (!key1)
  {
    if (key2)
    {
      key2->use_count--;
      key2->free_tree();
    }
    return 0;
  }
4468
  if (!key2)
unknown's avatar
unknown committed
4469 4470 4471 4472 4473 4474 4475 4476
  {
    key1->use_count--;
    key1->free_tree();
    return 0;
  }
  key1->use_count--;
  key2->use_count--;

4477 4478
  if (key1->part != key2->part || 
      (key1->min_flag | key2->min_flag) & GEOM_FLAG)
unknown's avatar
unknown committed
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
  {
    key1->free_tree();
    key2->free_tree();
    return 0;					// Can't optimize this
  }

  // If one of the key is MAYBE_KEY then the found region may be bigger
  if (key1->type == SEL_ARG::MAYBE_KEY)
  {
    key2->free_tree();
    key1->use_count++;
    return key1;
  }
  if (key2->type == SEL_ARG::MAYBE_KEY)
  {
    key1->free_tree();
    key2->use_count++;
    return key2;
  }

  if (key1->use_count > 0)
  {
    if (key2->use_count == 0 || key1->elements > key2->elements)
    {
4503
      swap_variables(SEL_ARG *,key1,key2);
unknown's avatar
unknown committed
4504
    }
4505
    if (key1->use_count > 0 || !(key1=key1->clone_tree()))
4506
      return 0;					// OOM
unknown's avatar
unknown committed
4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
  }

  // Add tree at key2 to tree at key1
  bool key2_shared=key2->use_count != 0;
  key1->maybe_flag|=key2->maybe_flag;

  for (key2=key2->first(); key2; )
  {
    SEL_ARG *tmp=key1->find_range(key2);	// Find key1.min <= key2.min
    int cmp;

    if (!tmp)
    {
      tmp=key1->first();			// tmp.min > key2.min
      cmp= -1;
    }
    else if ((cmp=tmp->cmp_max_to_min(key2)) < 0)
    {						// Found tmp.max < key2.min
      SEL_ARG *next=tmp->next;
      if (cmp == -2 && eq_tree(tmp->next_key_part,key2->next_key_part))
      {
	// Join near ranges like tmp.max < 0 and key2.min >= 0
	SEL_ARG *key2_next=key2->next;
	if (key2_shared)
	{
unknown's avatar
unknown committed
4532
	  if (!(key2=new SEL_ARG(*key2)))
4533
	    return 0;		// out of memory
unknown's avatar
unknown committed
4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
	  key2->increment_use_count(key1->use_count+1);
	  key2->next=key2_next;			// New copy of key2
	}
	key2->copy_min(tmp);
	if (!(key1=key1->tree_delete(tmp)))
	{					// Only one key in tree
	  key1=key2;
	  key1->make_root();
	  key2=key2_next;
	  break;
	}
      }
      if (!(tmp=next))				// tmp.min > key2.min
	break;					// Copy rest of key2
    }
    if (cmp < 0)
    {						// tmp.min > key2.min
      int tmp_cmp;
      if ((tmp_cmp=tmp->cmp_min_to_max(key2)) > 0) // if tmp.min > key2.max
      {
	if (tmp_cmp == 2 && eq_tree(tmp->next_key_part,key2->next_key_part))
	{					// ranges are connected
	  tmp->copy_min_to_min(key2);
	  key1->merge_flags(key2);
	  if (tmp->min_flag & NO_MIN_RANGE &&
	      tmp->max_flag & NO_MAX_RANGE)
	  {
	    if (key1->maybe_flag)
	      return new SEL_ARG(SEL_ARG::MAYBE_KEY);
	    return 0;
	  }
	  key2->increment_use_count(-1);	// Free not used tree
	  key2=key2->next;
	  continue;
	}
	else
	{
	  SEL_ARG *next=key2->next;		// Keys are not overlapping
	  if (key2_shared)
	  {
4574 4575
	    SEL_ARG *cpy= new SEL_ARG(*key2);	// Must make copy
	    if (!cpy)
4576
	      return 0;				// OOM
4577
	    key1=key1->insert(cpy);
unknown's avatar
unknown committed
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
	    key2->increment_use_count(key1->use_count+1);
	  }
	  else
	    key1=key1->insert(key2);		// Will destroy key2_root
	  key2=next;
	  continue;
	}
      }
    }

    // tmp.max >= key2.min && tmp.min <= key.max  (overlapping ranges)
    if (eq_tree(tmp->next_key_part,key2->next_key_part))
    {
      if (tmp->is_same(key2))
      {
	tmp->merge_flags(key2);			// Copy maybe flags
	key2->increment_use_count(-1);		// Free not used tree
      }
      else
      {
	SEL_ARG *last=tmp;
	while (last->next && last->next->cmp_min_to_max(key2) <= 0 &&
	       eq_tree(last->next->next_key_part,key2->next_key_part))
	{
	  SEL_ARG *save=last;
	  last=last->next;
	  key1=key1->tree_delete(save);
	}
unknown's avatar
unknown committed
4606
        last->copy_min(tmp);
unknown's avatar
unknown committed
4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
	if (last->copy_min(key2) || last->copy_max(key2))
	{					// Full range
	  key1->free_tree();
	  for (; key2 ; key2=key2->next)
	    key2->increment_use_count(-1);	// Free not used tree
	  if (key1->maybe_flag)
	    return new SEL_ARG(SEL_ARG::MAYBE_KEY);
	  return 0;
	}
      }
      key2=key2->next;
      continue;
    }

    if (cmp >= 0 && tmp->cmp_min_to_min(key2) < 0)
    {						// tmp.min <= x < key2.min
      SEL_ARG *new_arg=tmp->clone_first(key2);
4624 4625
      if (!new_arg)
	return 0;				// OOM
unknown's avatar
unknown committed
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638
      if ((new_arg->next_key_part= key1->next_key_part))
	new_arg->increment_use_count(key1->use_count+1);
      tmp->copy_min_to_min(key2);
      key1=key1->insert(new_arg);
    }

    // tmp.min >= key2.min && tmp.min <= key2.max
    SEL_ARG key(*key2);				// Get copy we can modify
    for (;;)
    {
      if (tmp->cmp_min_to_min(&key) > 0)
      {						// key.min <= x < tmp.min
	SEL_ARG *new_arg=key.clone_first(tmp);
4639 4640
	if (!new_arg)
	  return 0;				// OOM
unknown's avatar
unknown committed
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
	if ((new_arg->next_key_part=key.next_key_part))
	  new_arg->increment_use_count(key1->use_count+1);
	key1=key1->insert(new_arg);
      }
      if ((cmp=tmp->cmp_max_to_max(&key)) <= 0)
      {						// tmp.min. <= x <= tmp.max
	tmp->maybe_flag|= key.maybe_flag;
	key.increment_use_count(key1->use_count+1);
	tmp->next_key_part=key_or(tmp->next_key_part,key.next_key_part);
	if (!cmp)				// Key2 is ready
	  break;
	key.copy_max_to_min(tmp);
	if (!(tmp=tmp->next))
	{
4655 4656 4657 4658
	  SEL_ARG *tmp2= new SEL_ARG(key);
	  if (!tmp2)
	    return 0;				// OOM
	  key1=key1->insert(tmp2);
unknown's avatar
unknown committed
4659 4660 4661 4662 4663
	  key2=key2->next;
	  goto end;
	}
	if (tmp->cmp_min_to_max(&key) > 0)
	{
4664 4665 4666 4667
	  SEL_ARG *tmp2= new SEL_ARG(key);
	  if (!tmp2)
	    return 0;				// OOM
	  key1=key1->insert(tmp2);
unknown's avatar
unknown committed
4668 4669 4670 4671 4672 4673
	  break;
	}
      }
      else
      {
	SEL_ARG *new_arg=tmp->clone_last(&key); // tmp.min <= x <= key.max
4674 4675
	if (!new_arg)
	  return 0;				// OOM
unknown's avatar
unknown committed
4676 4677
	tmp->copy_max_to_min(&key);
	tmp->increment_use_count(key1->use_count+1);
4678 4679
	/* Increment key count as it may be used for next loop */
	key.increment_use_count(1);
unknown's avatar
unknown committed
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
	new_arg->next_key_part=key_or(tmp->next_key_part,key.next_key_part);
	key1=key1->insert(new_arg);
	break;
      }
    }
    key2=key2->next;
  }

end:
  while (key2)
  {
    SEL_ARG *next=key2->next;
    if (key2_shared)
    {
4694 4695 4696
      SEL_ARG *tmp=new SEL_ARG(*key2);		// Must make copy
      if (!tmp)
	return 0;
unknown's avatar
unknown committed
4697
      key2->increment_use_count(key1->use_count+1);
4698
      key1=key1->insert(tmp);
unknown's avatar
unknown committed
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
    }
    else
      key1=key1->insert(key2);			// Will destroy key2_root
    key2=next;
  }
  key1->use_count++;
  return key1;
}


/* Compare if two trees are equal */

static bool eq_tree(SEL_ARG* a,SEL_ARG *b)
{
  if (a == b)
    return 1;
  if (!a || !b || !a->is_same(b))
    return 0;
  if (a->left != &null_element && b->left != &null_element)
  {
    if (!eq_tree(a->left,b->left))
      return 0;
  }
  else if (a->left != &null_element || b->left != &null_element)
    return 0;
  if (a->right != &null_element && b->right != &null_element)
  {
    if (!eq_tree(a->right,b->right))
      return 0;
  }
  else if (a->right != &null_element || b->right != &null_element)
    return 0;
  if (a->next_key_part != b->next_key_part)
  {						// Sub range
    if (!a->next_key_part != !b->next_key_part ||
	!eq_tree(a->next_key_part, b->next_key_part))
      return 0;
  }
  return 1;
}


SEL_ARG *
SEL_ARG::insert(SEL_ARG *key)
{
  SEL_ARG *element,**par,*last_element;
  LINT_INIT(par); LINT_INIT(last_element);
unknown's avatar
unknown committed
4746

unknown's avatar
unknown committed
4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
  for (element= this; element != &null_element ; )
  {
    last_element=element;
    if (key->cmp_min_to_min(element) > 0)
    {
      par= &element->right; element= element->right;
    }
    else
    {
      par = &element->left; element= element->left;
    }
  }
  *par=key;
  key->parent=last_element;
	/* Link in list */
  if (par == &last_element->left)
  {
    key->next=last_element;
    if ((key->prev=last_element->prev))
      key->prev->next=key;
    last_element->prev=key;
  }
  else
  {
    if ((key->next=last_element->next))
      key->next->prev=key;
    key->prev=last_element;
    last_element->next=key;
  }
  key->left=key->right= &null_element;
  SEL_ARG *root=rb_insert(key);			// rebalance tree
  root->use_count=this->use_count;		// copy root info
  root->elements= this->elements+1;
  root->maybe_flag=this->maybe_flag;
  return root;
}


/*
** Find best key with min <= given key
** Because the call context this should never return 0 to get_range
*/

SEL_ARG *
SEL_ARG::find_range(SEL_ARG *key)
{
  SEL_ARG *element=this,*found=0;

  for (;;)
  {
    if (element == &null_element)
      return found;
    int cmp=element->cmp_min_to_min(key);
    if (cmp == 0)
      return element;
    if (cmp < 0)
    {
      found=element;
      element=element->right;
    }
    else
      element=element->left;
  }
}


/*
4814 4815 4816 4817 4818
  Remove a element from the tree

  SYNOPSIS
    tree_delete()
    key		Key that is to be deleted from tree (this)
unknown's avatar
unknown committed
4819

4820 4821 4822 4823 4824
  NOTE
    This also frees all sub trees that is used by the element

  RETURN
    root of new tree (with key deleted)
unknown's avatar
unknown committed
4825 4826 4827 4828 4829 4830 4831
*/

SEL_ARG *
SEL_ARG::tree_delete(SEL_ARG *key)
{
  enum leaf_color remove_color;
  SEL_ARG *root,*nod,**par,*fix_par;
4832 4833 4834 4835
  DBUG_ENTER("tree_delete");

  root=this;
  this->parent= 0;
unknown's avatar
unknown committed
4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881

  /* Unlink from list */
  if (key->prev)
    key->prev->next=key->next;
  if (key->next)
    key->next->prev=key->prev;
  key->increment_use_count(-1);
  if (!key->parent)
    par= &root;
  else
    par=key->parent_ptr();

  if (key->left == &null_element)
  {
    *par=nod=key->right;
    fix_par=key->parent;
    if (nod != &null_element)
      nod->parent=fix_par;
    remove_color= key->color;
  }
  else if (key->right == &null_element)
  {
    *par= nod=key->left;
    nod->parent=fix_par=key->parent;
    remove_color= key->color;
  }
  else
  {
    SEL_ARG *tmp=key->next;			// next bigger key (exist!)
    nod= *tmp->parent_ptr()= tmp->right;	// unlink tmp from tree
    fix_par=tmp->parent;
    if (nod != &null_element)
      nod->parent=fix_par;
    remove_color= tmp->color;

    tmp->parent=key->parent;			// Move node in place of key
    (tmp->left=key->left)->parent=tmp;
    if ((tmp->right=key->right) != &null_element)
      tmp->right->parent=tmp;
    tmp->color=key->color;
    *par=tmp;
    if (fix_par == key)				// key->right == key->next
      fix_par=tmp;				// new parent of nod
  }

  if (root == &null_element)
4882
    DBUG_RETURN(0);				// Maybe root later
unknown's avatar
unknown committed
4883 4884 4885 4886 4887 4888 4889
  if (remove_color == BLACK)
    root=rb_delete_fixup(root,nod,fix_par);
  test_rb_tree(root,root->parent);

  root->use_count=this->use_count;		// Fix root counters
  root->elements=this->elements-1;
  root->maybe_flag=this->maybe_flag;
4890
  DBUG_RETURN(root);
unknown's avatar
unknown committed
4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065
}


	/* Functions to fix up the tree after insert and delete */

static void left_rotate(SEL_ARG **root,SEL_ARG *leaf)
{
  SEL_ARG *y=leaf->right;
  leaf->right=y->left;
  if (y->left != &null_element)
    y->left->parent=leaf;
  if (!(y->parent=leaf->parent))
    *root=y;
  else
    *leaf->parent_ptr()=y;
  y->left=leaf;
  leaf->parent=y;
}

static void right_rotate(SEL_ARG **root,SEL_ARG *leaf)
{
  SEL_ARG *y=leaf->left;
  leaf->left=y->right;
  if (y->right != &null_element)
    y->right->parent=leaf;
  if (!(y->parent=leaf->parent))
    *root=y;
  else
    *leaf->parent_ptr()=y;
  y->right=leaf;
  leaf->parent=y;
}


SEL_ARG *
SEL_ARG::rb_insert(SEL_ARG *leaf)
{
  SEL_ARG *y,*par,*par2,*root;
  root= this; root->parent= 0;

  leaf->color=RED;
  while (leaf != root && (par= leaf->parent)->color == RED)
  {					// This can't be root or 1 level under
    if (par == (par2= leaf->parent->parent)->left)
    {
      y= par2->right;
      if (y->color == RED)
      {
	par->color=BLACK;
	y->color=BLACK;
	leaf=par2;
	leaf->color=RED;		/* And the loop continues */
      }
      else
      {
	if (leaf == par->right)
	{
	  left_rotate(&root,leaf->parent);
	  par=leaf;			/* leaf is now parent to old leaf */
	}
	par->color=BLACK;
	par2->color=RED;
	right_rotate(&root,par2);
	break;
      }
    }
    else
    {
      y= par2->left;
      if (y->color == RED)
      {
	par->color=BLACK;
	y->color=BLACK;
	leaf=par2;
	leaf->color=RED;		/* And the loop continues */
      }
      else
      {
	if (leaf == par->left)
	{
	  right_rotate(&root,par);
	  par=leaf;
	}
	par->color=BLACK;
	par2->color=RED;
	left_rotate(&root,par2);
	break;
      }
    }
  }
  root->color=BLACK;
  test_rb_tree(root,root->parent);
  return root;
}


SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key,SEL_ARG *par)
{
  SEL_ARG *x,*w;
  root->parent=0;

  x= key;
  while (x != root && x->color == SEL_ARG::BLACK)
  {
    if (x == par->left)
    {
      w=par->right;
      if (w->color == SEL_ARG::RED)
      {
	w->color=SEL_ARG::BLACK;
	par->color=SEL_ARG::RED;
	left_rotate(&root,par);
	w=par->right;
      }
      if (w->left->color == SEL_ARG::BLACK && w->right->color == SEL_ARG::BLACK)
      {
	w->color=SEL_ARG::RED;
	x=par;
      }
      else
      {
	if (w->right->color == SEL_ARG::BLACK)
	{
	  w->left->color=SEL_ARG::BLACK;
	  w->color=SEL_ARG::RED;
	  right_rotate(&root,w);
	  w=par->right;
	}
	w->color=par->color;
	par->color=SEL_ARG::BLACK;
	w->right->color=SEL_ARG::BLACK;
	left_rotate(&root,par);
	x=root;
	break;
      }
    }
    else
    {
      w=par->left;
      if (w->color == SEL_ARG::RED)
      {
	w->color=SEL_ARG::BLACK;
	par->color=SEL_ARG::RED;
	right_rotate(&root,par);
	w=par->left;
      }
      if (w->right->color == SEL_ARG::BLACK && w->left->color == SEL_ARG::BLACK)
      {
	w->color=SEL_ARG::RED;
	x=par;
      }
      else
      {
	if (w->left->color == SEL_ARG::BLACK)
	{
	  w->right->color=SEL_ARG::BLACK;
	  w->color=SEL_ARG::RED;
	  left_rotate(&root,w);
	  w=par->left;
	}
	w->color=par->color;
	par->color=SEL_ARG::BLACK;
	w->left->color=SEL_ARG::BLACK;
	right_rotate(&root,par);
	x=root;
	break;
      }
    }
    par=x->parent;
  }
  x->color=SEL_ARG::BLACK;
  return root;
}


5066
	/* Test that the properties for a red-black tree hold */
unknown's avatar
unknown committed
5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122

#ifdef EXTRA_DEBUG
int test_rb_tree(SEL_ARG *element,SEL_ARG *parent)
{
  int count_l,count_r;

  if (element == &null_element)
    return 0;					// Found end of tree
  if (element->parent != parent)
  {
    sql_print_error("Wrong tree: Parent doesn't point at parent");
    return -1;
  }
  if (element->color == SEL_ARG::RED &&
      (element->left->color == SEL_ARG::RED ||
       element->right->color == SEL_ARG::RED))
  {
    sql_print_error("Wrong tree: Found two red in a row");
    return -1;
  }
  if (element->left == element->right && element->left != &null_element)
  {						// Dummy test
    sql_print_error("Wrong tree: Found right == left");
    return -1;
  }
  count_l=test_rb_tree(element->left,element);
  count_r=test_rb_tree(element->right,element);
  if (count_l >= 0 && count_r >= 0)
  {
    if (count_l == count_r)
      return count_l+(element->color == SEL_ARG::BLACK);
    sql_print_error("Wrong tree: Incorrect black-count: %d - %d",
	    count_l,count_r);
  }
  return -1;					// Error, no more warnings
}

static ulong count_key_part_usage(SEL_ARG *root, SEL_ARG *key)
{
  ulong count= 0;
  for (root=root->first(); root ; root=root->next)
  {
    if (root->next_key_part)
    {
      if (root->next_key_part == key)
	count++;
      if (root->next_key_part->part < key->part)
	count+=count_key_part_usage(root->next_key_part,key);
    }
  }
  return count;
}


void SEL_ARG::test_use_count(SEL_ARG *root)
{
5123
  uint e_count=0;
unknown's avatar
unknown committed
5124 5125
  if (this == root && use_count != 1)
  {
unknown's avatar
unknown committed
5126
    sql_print_information("Use_count: Wrong count %lu for root",use_count);
unknown's avatar
unknown committed
5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138
    return;
  }
  if (this->type != SEL_ARG::KEY_RANGE)
    return;
  for (SEL_ARG *pos=first(); pos ; pos=pos->next)
  {
    e_count++;
    if (pos->next_key_part)
    {
      ulong count=count_key_part_usage(root,pos->next_key_part);
      if (count > pos->next_key_part->use_count)
      {
unknown's avatar
unknown committed
5139
	sql_print_information("Use_count: Wrong count for key at 0x%lx, %lu should be %lu",
unknown's avatar
unknown committed
5140 5141 5142 5143 5144 5145 5146
			pos,pos->next_key_part->use_count,count);
	return;
      }
      pos->next_key_part->test_use_count(root);
    }
  }
  if (e_count != elements)
unknown's avatar
unknown committed
5147
    sql_print_warning("Wrong use count: %u (should be %u) for tree at 0x%lx",
5148
		    e_count, elements, (gptr) this);
unknown's avatar
unknown committed
5149 5150 5151 5152 5153
}

#endif


5154 5155 5156 5157 5158 5159 5160 5161 5162 5163
/*
  Calculate estimate of number records that will be retrieved by a range
  scan on given index using given SEL_ARG intervals tree.
  SYNOPSIS
    check_quick_select
      param  Parameter from test_quick_select
      idx    Number of index to use in PARAM::key SEL_TREE::key
      tree   Transformed selection condition, tree->key[idx] holds intervals
             tree to be used for scanning.
  NOTES
unknown's avatar
unknown committed
5164
    param->is_ror_scan is set to reflect if the key scan is a ROR (see
5165
    is_key_scan_ror function for more info)
unknown's avatar
unknown committed
5166
    param->table->quick_*, param->range_count (and maybe others) are
5167
    updated with data of given key scan, see check_quick_keys for details.
unknown's avatar
unknown committed
5168 5169

  RETURN
5170
    Estimate # of records to be retrieved.
unknown's avatar
unknown committed
5171
    HA_POS_ERROR if estimate calculation failed due to table handler problems.
unknown's avatar
unknown committed
5172

5173
*/
unknown's avatar
unknown committed
5174 5175 5176 5177 5178

static ha_rows
check_quick_select(PARAM *param,uint idx,SEL_ARG *tree)
{
  ha_rows records;
5179 5180
  bool    cpk_scan;
  uint key;
unknown's avatar
unknown committed
5181
  DBUG_ENTER("check_quick_select");
unknown's avatar
unknown committed
5182

unknown's avatar
unknown committed
5183
  param->is_ror_scan= FALSE;
unknown's avatar
unknown committed
5184

unknown's avatar
unknown committed
5185 5186
  if (!tree)
    DBUG_RETURN(HA_POS_ERROR);			// Can't use it
unknown's avatar
unknown committed
5187 5188
  param->max_key_part=0;
  param->range_count=0;
5189 5190
  key= param->real_keynr[idx];

unknown's avatar
unknown committed
5191 5192 5193 5194
  if (tree->type == SEL_ARG::IMPOSSIBLE)
    DBUG_RETURN(0L);				// Impossible select. return
  if (tree->type != SEL_ARG::KEY_RANGE || tree->part != 0)
    DBUG_RETURN(HA_POS_ERROR);				// Don't use tree
5195 5196 5197 5198 5199

  enum ha_key_alg key_alg= param->table->key_info[key].algorithm;
  if ((key_alg != HA_KEY_ALG_BTREE) && (key_alg!= HA_KEY_ALG_UNDEF))
  {
    /* Records are not ordered by rowid for other types of indexes. */
unknown's avatar
unknown committed
5200
    cpk_scan= FALSE;
5201 5202 5203 5204 5205 5206 5207
  }
  else
  {
    /*
      Clustered PK scan is a special case, check_quick_keys doesn't recognize
      CPK scans as ROR scans (while actually any CPK scan is a ROR scan).
    */
5208 5209
    cpk_scan= ((param->table->s->primary_key == param->real_keynr[idx]) &&
               param->table->file->primary_key_is_clustered());
unknown's avatar
unknown committed
5210
    param->is_ror_scan= !cpk_scan;
5211 5212
  }

unknown's avatar
unknown committed
5213 5214
  records=check_quick_keys(param,idx,tree,param->min_key,0,param->max_key,0);
  if (records != HA_POS_ERROR)
unknown's avatar
unknown committed
5215
  {
5216
    param->table->quick_keys.set_bit(key);
unknown's avatar
unknown committed
5217 5218
    param->table->quick_rows[key]=records;
    param->table->quick_key_parts[key]=param->max_key_part+1;
unknown's avatar
unknown committed
5219

5220
    if (cpk_scan)
unknown's avatar
unknown committed
5221
      param->is_ror_scan= TRUE;
unknown's avatar
unknown committed
5222
  }
5223 5224
  if (param->table->file->index_flags(key, 0, TRUE) & HA_KEY_SCAN_NOT_ROR)
    param->is_ror_scan= FALSE;
5225
  DBUG_PRINT("exit", ("Records: %lu", (ulong) records));
unknown's avatar
unknown committed
5226 5227 5228 5229
  DBUG_RETURN(records);
}


5230
/*
unknown's avatar
unknown committed
5231 5232
  Recursively calculate estimate of # rows that will be retrieved by
  key scan on key idx.
5233 5234
  SYNOPSIS
    check_quick_keys()
5235
      param         Parameter from test_quick select function.
unknown's avatar
unknown committed
5236
      idx           Number of key to use in PARAM::keys in list of used keys
5237 5238 5239
                    (param->real_keynr[idx] holds the key number in table)
      key_tree      SEL_ARG tree being examined.
      min_key       Buffer with partial min key value tuple
unknown's avatar
unknown committed
5240
      min_key_flag
5241
      max_key       Buffer with partial max key value tuple
5242 5243
      max_key_flag

5244
  NOTES
unknown's avatar
unknown committed
5245 5246
    The function does the recursive descent on the tree via SEL_ARG::left,
    SEL_ARG::right, and SEL_ARG::next_key_part edges. The #rows estimates
5247 5248
    are calculated using records_in_range calls at the leaf nodes and then
    summed.
5249

5250 5251
    param->min_key and param->max_key are used to hold prefixes of key value
    tuples.
5252 5253

    The side effects are:
unknown's avatar
unknown committed
5254

5255 5256
    param->max_key_part is updated to hold the maximum number of key parts used
      in scan minus 1.
unknown's avatar
unknown committed
5257 5258

    param->range_count is incremented if the function finds a range that
5259
      wasn't counted by the caller.
unknown's avatar
unknown committed
5260

5261 5262 5263
    param->is_ror_scan is cleared if the function detects that the key scan is
      not a Rowid-Ordered Retrieval scan ( see comments for is_key_scan_ror
      function for description of which key scans are ROR scans)
5264 5265
*/

unknown's avatar
unknown committed
5266 5267 5268 5269 5270
static ha_rows
check_quick_keys(PARAM *param,uint idx,SEL_ARG *key_tree,
		 char *min_key,uint min_key_flag, char *max_key,
		 uint max_key_flag)
{
unknown's avatar
unknown committed
5271 5272 5273
  ha_rows records=0, tmp;
  uint tmp_min_flag, tmp_max_flag, keynr, min_key_length, max_key_length;
  char *tmp_min_key, *tmp_max_key;
unknown's avatar
unknown committed
5274 5275 5276 5277

  param->max_key_part=max(param->max_key_part,key_tree->part);
  if (key_tree->left != &null_element)
  {
5278 5279 5280 5281 5282 5283
    /*
      There are at least two intervals for current key part, i.e. condition
      was converted to something like
        (keyXpartY less/equals c1) OR (keyXpartY more/equals c2).
      This is not a ROR scan if the key is not Clustered Primary Key.
    */
unknown's avatar
unknown committed
5284
    param->is_ror_scan= FALSE;
unknown's avatar
unknown committed
5285 5286 5287 5288 5289 5290
    records=check_quick_keys(param,idx,key_tree->left,min_key,min_key_flag,
			     max_key,max_key_flag);
    if (records == HA_POS_ERROR)			// Impossible
      return records;
  }

unknown's avatar
unknown committed
5291 5292
  tmp_min_key= min_key;
  tmp_max_key= max_key;
unknown's avatar
unknown committed
5293
  key_tree->store(param->key[idx][key_tree->part].store_length,
unknown's avatar
unknown committed
5294
		  &tmp_min_key,min_key_flag,&tmp_max_key,max_key_flag);
unknown's avatar
unknown committed
5295 5296
  min_key_length= (uint) (tmp_min_key- param->min_key);
  max_key_length= (uint) (tmp_max_key- param->max_key);
unknown's avatar
unknown committed
5297

5298 5299
  if (param->is_ror_scan)
  {
unknown's avatar
unknown committed
5300
    /*
5301
      If the index doesn't cover entire key, mark the scan as non-ROR scan.
5302
      Actually we're cutting off some ROR scans here.
5303 5304 5305
    */
    uint16 fieldnr= param->table->key_info[param->real_keynr[idx]].
                    key_part[key_tree->part].fieldnr - 1;
unknown's avatar
unknown committed
5306
    if (param->table->field[fieldnr]->key_length() !=
5307
        param->key[idx][key_tree->part].length)
unknown's avatar
unknown committed
5308
      param->is_ror_scan= FALSE;
5309 5310
  }

unknown's avatar
unknown committed
5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323
  if (key_tree->next_key_part &&
      key_tree->next_key_part->part == key_tree->part+1 &&
      key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
  {						// const key as prefix
    if (min_key_length == max_key_length &&
	!memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) &&
	!key_tree->min_flag && !key_tree->max_flag)
    {
      tmp=check_quick_keys(param,idx,key_tree->next_key_part,
			   tmp_min_key, min_key_flag | key_tree->min_flag,
			   tmp_max_key, max_key_flag | key_tree->max_flag);
      goto end;					// Ugly, but efficient
    }
5324
    else
5325 5326
    {
      /* The interval for current key part is not c1 <= keyXpartY <= c1 */
unknown's avatar
unknown committed
5327
      param->is_ror_scan= FALSE;
5328
    }
5329

unknown's avatar
unknown committed
5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
    tmp_min_flag=key_tree->min_flag;
    tmp_max_flag=key_tree->max_flag;
    if (!tmp_min_flag)
      key_tree->next_key_part->store_min_key(param->key[idx], &tmp_min_key,
					     &tmp_min_flag);
    if (!tmp_max_flag)
      key_tree->next_key_part->store_max_key(param->key[idx], &tmp_max_key,
					     &tmp_max_flag);
    min_key_length= (uint) (tmp_min_key- param->min_key);
    max_key_length= (uint) (tmp_max_key- param->max_key);
  }
  else
  {
    tmp_min_flag=min_key_flag | key_tree->min_flag;
    tmp_max_flag=max_key_flag | key_tree->max_flag;
  }

  keynr=param->real_keynr[idx];
unknown's avatar
unknown committed
5348
  param->range_count++;
unknown's avatar
unknown committed
5349 5350
  if (!tmp_min_flag && ! tmp_max_flag &&
      (uint) key_tree->part+1 == param->table->key_info[keynr].key_parts &&
5351 5352
      (param->table->key_info[keynr].flags & (HA_NOSAME | HA_END_SPACE_KEY)) ==
      HA_NOSAME &&
unknown's avatar
unknown committed
5353 5354 5355 5356
      min_key_length == max_key_length &&
      !memcmp(param->min_key,param->max_key,min_key_length))
    tmp=1;					// Max one record
  else
unknown's avatar
unknown committed
5357
  {
5358 5359
    if (param->is_ror_scan)
    {
5360 5361 5362 5363 5364 5365 5366 5367 5368
      /*
        If we get here, the condition on the key was converted to form
        "(keyXpart1 = c1) AND ... AND (keyXpart{key_tree->part - 1} = cN) AND
          somecond(keyXpart{key_tree->part})"
        Check if
          somecond is "keyXpart{key_tree->part} = const" and
          uncovered "tail" of KeyX parts is either empty or is identical to
          first members of clustered primary key.
      */
5369 5370
      if (!(min_key_length == max_key_length &&
            !memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) &&
unknown's avatar
unknown committed
5371
            !key_tree->min_flag && !key_tree->max_flag &&
5372
            is_key_scan_ror(param, keynr, key_tree->part + 1)))
unknown's avatar
unknown committed
5373
        param->is_ror_scan= FALSE;
5374 5375
    }

unknown's avatar
unknown committed
5376
    if (tmp_min_flag & GEOM_FLAG)
unknown's avatar
unknown committed
5377
    {
unknown's avatar
unknown committed
5378 5379 5380 5381 5382 5383 5384 5385
      key_range min_range;
      min_range.key=    (byte*) param->min_key;
      min_range.length= min_key_length;
      /* In this case tmp_min_flag contains the handler-read-function */
      min_range.flag=   (ha_rkey_function) (tmp_min_flag ^ GEOM_FLAG);

      tmp= param->table->file->records_in_range(keynr, &min_range,
                                                (key_range*) 0);
unknown's avatar
unknown committed
5386 5387 5388
    }
    else
    {
unknown's avatar
unknown committed
5389 5390 5391 5392 5393 5394
      key_range min_range, max_range;

      min_range.key=    (byte*) param->min_key;
      min_range.length= min_key_length;
      min_range.flag=   (tmp_min_flag & NEAR_MIN ? HA_READ_AFTER_KEY :
                         HA_READ_KEY_EXACT);
unknown's avatar
unknown committed
5395
      max_range.key=    (byte*) param->max_key;
unknown's avatar
unknown committed
5396 5397 5398 5399 5400 5401 5402 5403
      max_range.length= max_key_length;
      max_range.flag=   (tmp_max_flag & NEAR_MAX ?
                         HA_READ_BEFORE_KEY : HA_READ_AFTER_KEY);
      tmp=param->table->file->records_in_range(keynr,
                                               (min_key_length ? &min_range :
                                                (key_range*) 0),
                                               (max_key_length ? &max_range :
                                                (key_range*) 0));
unknown's avatar
unknown committed
5404 5405
    }
  }
unknown's avatar
unknown committed
5406 5407 5408 5409 5410 5411
 end:
  if (tmp == HA_POS_ERROR)			// Impossible range
    return tmp;
  records+=tmp;
  if (key_tree->right != &null_element)
  {
5412 5413 5414 5415 5416 5417
    /*
      There are at least two intervals for current key part, i.e. condition
      was converted to something like
        (keyXpartY less/equals c1) OR (keyXpartY more/equals c2).
      This is not a ROR scan if the key is not Clustered Primary Key.
    */
unknown's avatar
unknown committed
5418
    param->is_ror_scan= FALSE;
unknown's avatar
unknown committed
5419 5420 5421 5422 5423 5424 5425 5426 5427
    tmp=check_quick_keys(param,idx,key_tree->right,min_key,min_key_flag,
			 max_key,max_key_flag);
    if (tmp == HA_POS_ERROR)
      return tmp;
    records+=tmp;
  }
  return records;
}

5428

5429
/*
unknown's avatar
unknown committed
5430
  Check if key scan on given index with equality conditions on first n key
5431 5432 5433 5434
  parts is a ROR scan.

  SYNOPSIS
    is_key_scan_ror()
unknown's avatar
unknown committed
5435
      param  Parameter from test_quick_select
5436 5437 5438 5439
      keynr  Number of key in the table. The key must not be a clustered
             primary key.
      nparts Number of first key parts for which equality conditions
             are present.
unknown's avatar
unknown committed
5440

5441 5442 5443
  NOTES
    ROR (Rowid Ordered Retrieval) key scan is a key scan that produces
    ordered sequence of rowids (ha_xxx::cmp_ref is the comparison function)
unknown's avatar
unknown committed
5444

5445 5446 5447
    An index scan is a ROR scan if it is done using a condition in form

        "key1_1=c_1 AND ... AND key1_n=c_n"  (1)
unknown's avatar
unknown committed
5448

5449 5450
    where the index is defined on (key1_1, ..., key1_N [,a_1, ..., a_n])

unknown's avatar
unknown committed
5451
    and the table has a clustered Primary Key
5452

unknown's avatar
unknown committed
5453
    PRIMARY KEY(a_1, ..., a_n, b1, ..., b_k) with first key parts being
5454
    identical to uncovered parts ot the key being scanned (2)
unknown's avatar
unknown committed
5455 5456

    Scans on HASH indexes are not ROR scans,
5457 5458 5459 5460 5461 5462
    any range scan on clustered primary key is ROR scan  (3)

    Check (1) is made in check_quick_keys()
    Check (3) is made check_quick_select()
    Check (2) is made by this function.

unknown's avatar
unknown committed
5463
  RETURN
unknown's avatar
unknown committed
5464 5465
    TRUE  If the scan is ROR-scan
    FALSE otherwise
5466
*/
5467

5468 5469 5470 5471
static bool is_key_scan_ror(PARAM *param, uint keynr, uint8 nparts)
{
  KEY *table_key= param->table->key_info + keynr;
  KEY_PART_INFO *key_part= table_key->key_part + nparts;
5472 5473 5474
  KEY_PART_INFO *key_part_end= (table_key->key_part +
                                table_key->key_parts);
  uint pk_number;
unknown's avatar
unknown committed
5475

5476
  if (key_part == key_part_end)
unknown's avatar
unknown committed
5477
    return TRUE;
5478
  pk_number= param->table->s->primary_key;
5479
  if (!param->table->file->primary_key_is_clustered() || pk_number == MAX_KEY)
unknown's avatar
unknown committed
5480
    return FALSE;
5481 5482

  KEY_PART_INFO *pk_part= param->table->key_info[pk_number].key_part;
unknown's avatar
unknown committed
5483
  KEY_PART_INFO *pk_part_end= pk_part +
5484
                              param->table->key_info[pk_number].key_parts;
unknown's avatar
unknown committed
5485 5486
  for (;(key_part!=key_part_end) && (pk_part != pk_part_end);
       ++key_part, ++pk_part)
5487
  {
unknown's avatar
unknown committed
5488
    if ((key_part->field != pk_part->field) ||
5489
        (key_part->length != pk_part->length))
unknown's avatar
unknown committed
5490
      return FALSE;
unknown's avatar
unknown committed
5491
  }
5492
  return (key_part == key_part_end);
unknown's avatar
unknown committed
5493 5494 5495
}


5496 5497
/*
  Create a QUICK_RANGE_SELECT from given key and SEL_ARG tree for that key.
unknown's avatar
unknown committed
5498

5499 5500
  SYNOPSIS
    get_quick_select()
unknown's avatar
unknown committed
5501
      param
5502
      idx          Index of used key in param->key.
unknown's avatar
unknown committed
5503 5504
      key_tree     SEL_ARG tree for the used key
      parent_alloc If not NULL, use it to allocate memory for
5505
                   quick select data. Otherwise use quick->alloc.
5506
  NOTES
5507
    The caller must call QUICK_SELECT::init for returned quick select
5508

5509
    CAUTION! This function may change thd->mem_root to a MEM_ROOT which will be
5510
    deallocated when the returned quick select is deleted.
5511 5512 5513 5514

  RETURN
    NULL on error
    otherwise created quick select
5515
*/
5516

unknown's avatar
unknown committed
5517 5518 5519
QUICK_RANGE_SELECT *
get_quick_select(PARAM *param,uint idx,SEL_ARG *key_tree,
                 MEM_ROOT *parent_alloc)
unknown's avatar
unknown committed
5520
{
unknown's avatar
unknown committed
5521
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
5522
  DBUG_ENTER("get_quick_select");
unknown's avatar
unknown committed
5523 5524 5525 5526 5527 5528 5529 5530 5531

  if (param->table->key_info[param->real_keynr[idx]].flags & HA_SPATIAL)
    quick=new QUICK_RANGE_SELECT_GEOM(param->thd, param->table,
                                      param->real_keynr[idx],
                                      test(parent_alloc),
                                      parent_alloc);
  else
    quick=new QUICK_RANGE_SELECT(param->thd, param->table,
                                 param->real_keynr[idx],
unknown's avatar
unknown committed
5532
                                 test(parent_alloc));
unknown's avatar
unknown committed
5533

unknown's avatar
unknown committed
5534
  if (quick)
unknown's avatar
unknown committed
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545
  {
    if (quick->error ||
	get_quick_keys(param,quick,param->key[idx],key_tree,param->min_key,0,
		       param->max_key,0))
    {
      delete quick;
      quick=0;
    }
    else
    {
      quick->key_parts=(KEY_PART*)
unknown's avatar
unknown committed
5546 5547 5548 5549
        memdup_root(parent_alloc? parent_alloc : &quick->alloc,
                    (char*) param->key[idx],
                    sizeof(KEY_PART)*
                    param->table->key_info[param->real_keynr[idx]].key_parts);
unknown's avatar
unknown committed
5550
    }
unknown's avatar
unknown committed
5551
  }
unknown's avatar
unknown committed
5552 5553 5554 5555 5556 5557 5558
  DBUG_RETURN(quick);
}


/*
** Fix this to get all possible sub_ranges
*/
unknown's avatar
unknown committed
5559 5560
bool
get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key,
unknown's avatar
unknown committed
5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573
	       SEL_ARG *key_tree,char *min_key,uint min_key_flag,
	       char *max_key, uint max_key_flag)
{
  QUICK_RANGE *range;
  uint flag;

  if (key_tree->left != &null_element)
  {
    if (get_quick_keys(param,quick,key,key_tree->left,
		       min_key,min_key_flag, max_key, max_key_flag))
      return 1;
  }
  char *tmp_min_key=min_key,*tmp_max_key=max_key;
unknown's avatar
unknown committed
5574
  key_tree->store(key[key_tree->part].store_length,
unknown's avatar
unknown committed
5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
		  &tmp_min_key,min_key_flag,&tmp_max_key,max_key_flag);

  if (key_tree->next_key_part &&
      key_tree->next_key_part->part == key_tree->part+1 &&
      key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
  {						  // const key as prefix
    if (!((tmp_min_key - min_key) != (tmp_max_key - max_key) ||
	  memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) ||
	  key_tree->min_flag || key_tree->max_flag))
    {
      if (get_quick_keys(param,quick,key,key_tree->next_key_part,
			 tmp_min_key, min_key_flag | key_tree->min_flag,
			 tmp_max_key, max_key_flag | key_tree->max_flag))
	return 1;
      goto end;					// Ugly, but efficient
    }
    {
      uint tmp_min_flag=key_tree->min_flag,tmp_max_flag=key_tree->max_flag;
      if (!tmp_min_flag)
	key_tree->next_key_part->store_min_key(key, &tmp_min_key,
					       &tmp_min_flag);
      if (!tmp_max_flag)
	key_tree->next_key_part->store_max_key(key, &tmp_max_key,
					       &tmp_max_flag);
      flag=tmp_min_flag | tmp_max_flag;
    }
  }
  else
unknown's avatar
unknown committed
5603 5604 5605 5606
  {
    flag = (key_tree->min_flag & GEOM_FLAG) ?
      key_tree->min_flag : key_tree->min_flag | key_tree->max_flag;
  }
unknown's avatar
unknown committed
5607

5608 5609 5610 5611 5612
  /*
    Ensure that some part of min_key and max_key are used.  If not,
    regard this as no lower/upper range
  */
  if ((flag & GEOM_FLAG) == 0)
unknown's avatar
unknown committed
5613 5614 5615 5616 5617 5618 5619 5620 5621 5622
  {
    if (tmp_min_key != param->min_key)
      flag&= ~NO_MIN_RANGE;
    else
      flag|= NO_MIN_RANGE;
    if (tmp_max_key != param->max_key)
      flag&= ~NO_MAX_RANGE;
    else
      flag|= NO_MAX_RANGE;
  }
unknown's avatar
unknown committed
5623 5624 5625 5626 5627 5628 5629 5630
  if (flag == 0)
  {
    uint length= (uint) (tmp_min_key - param->min_key);
    if (length == (uint) (tmp_max_key - param->max_key) &&
	!memcmp(param->min_key,param->max_key,length))
    {
      KEY *table_key=quick->head->key_info+quick->index;
      flag=EQ_RANGE;
5631 5632
      if ((table_key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME &&
	  key->part == table_key->key_parts-1)
5633 5634 5635 5636 5637 5638 5639 5640 5641
      {
	if (!(table_key->flags & HA_NULL_PART_KEY) ||
	    !null_part_in_key(key,
			      param->min_key,
			      (uint) (tmp_min_key - param->min_key)))
	  flag|= UNIQUE_RANGE;
	else
	  flag|= NULL_RANGE;
      }
unknown's avatar
unknown committed
5642 5643 5644 5645
    }
  }

  /* Get range for retrieving rows in QUICK_SELECT::get_next */
5646
  if (!(range= new QUICK_RANGE((const char *) param->min_key,
5647
			       (uint) (tmp_min_key - param->min_key),
5648
			       (const char *) param->max_key,
5649 5650
			       (uint) (tmp_max_key - param->max_key),
			       flag)))
5651 5652
    return 1;			// out of memory

unknown's avatar
unknown committed
5653 5654
  set_if_bigger(quick->max_used_key_length,range->min_length);
  set_if_bigger(quick->max_used_key_length,range->max_length);
unknown's avatar
unknown committed
5655
  set_if_bigger(quick->used_key_parts, (uint) key_tree->part+1);
5656 5657 5658
  if (insert_dynamic(&quick->ranges, (gptr)&range))
    return 1;

unknown's avatar
unknown committed
5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670
 end:
  if (key_tree->right != &null_element)
    return get_quick_keys(param,quick,key,key_tree->right,
			  min_key,min_key_flag,
			  max_key,max_key_flag);
  return 0;
}

/*
  Return 1 if there is only one range and this uses the whole primary key
*/

unknown's avatar
unknown committed
5671
bool QUICK_RANGE_SELECT::unique_key_range()
unknown's avatar
unknown committed
5672 5673 5674
{
  if (ranges.elements == 1)
  {
5675 5676
    QUICK_RANGE *tmp= *((QUICK_RANGE**)ranges.buffer);
    if ((tmp->flag & (EQ_RANGE | NULL_RANGE)) == EQ_RANGE)
unknown's avatar
unknown committed
5677 5678
    {
      KEY *key=head->key_info+index;
5679
      return ((key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME &&
unknown's avatar
unknown committed
5680 5681 5682 5683 5684 5685
	      key->key_length == tmp->min_length);
    }
  }
  return 0;
}

5686

unknown's avatar
unknown committed
5687
/* Returns TRUE if any part of the key is NULL */
5688 5689 5690

static bool null_part_in_key(KEY_PART *key_part, const char *key, uint length)
{
unknown's avatar
unknown committed
5691
  for (const char *end=key+length ;
5692
       key < end;
unknown's avatar
unknown committed
5693
       key+= key_part++->store_length)
5694
  {
unknown's avatar
unknown committed
5695 5696
    if (key_part->null_bit && *key)
      return 1;
5697 5698 5699 5700
  }
  return 0;
}

unknown's avatar
unknown committed
5701

5702 5703
bool QUICK_SELECT_I::check_if_keys_used(List<Item> *fields)
{
unknown's avatar
unknown committed
5704
  return check_if_key_used(head, index, *fields);
5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742
}

bool QUICK_INDEX_MERGE_SELECT::check_if_keys_used(List<Item> *fields)
{
  QUICK_RANGE_SELECT *quick;
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  while ((quick= it++))
  {
    if (check_if_key_used(head, quick->index, *fields))
      return 1;
  }
  return 0;
}

bool QUICK_ROR_INTERSECT_SELECT::check_if_keys_used(List<Item> *fields)
{
  QUICK_RANGE_SELECT *quick;
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  while ((quick= it++))
  {
    if (check_if_key_used(head, quick->index, *fields))
      return 1;
  }
  return 0;
}

bool QUICK_ROR_UNION_SELECT::check_if_keys_used(List<Item> *fields)
{
  QUICK_SELECT_I *quick;
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  while ((quick= it++))
  {
    if (quick->check_if_keys_used(fields))
      return 1;
  }
  return 0;
}

unknown's avatar
unknown committed
5743

unknown's avatar
unknown committed
5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760
/*
  Create quick select from ref/ref_or_null scan.
  SYNOPSIS
    get_quick_select_for_ref()
      thd      Thread handle
      table    Table to access
      ref      ref[_or_null] scan parameters
      records  Estimate of number of records (needed only to construct 
               quick select)
  NOTES
    This allocates things in a new memory root, as this may be called many
    times during a query.
  
  RETURN 
    Quick select that retrieves the same rows as passed ref scan
    NULL on error.
*/
unknown's avatar
unknown committed
5761

unknown's avatar
unknown committed
5762
QUICK_RANGE_SELECT *get_quick_select_for_ref(THD *thd, TABLE *table,
unknown's avatar
unknown committed
5763
                                             TABLE_REF *ref, ha_rows records)
unknown's avatar
unknown committed
5764
{
5765 5766
  MEM_ROOT *old_root= thd->mem_root;
  /* The following call may change thd->mem_root */
unknown's avatar
unknown committed
5767
  QUICK_RANGE_SELECT *quick= new QUICK_RANGE_SELECT(thd, table, ref->key, 0);
5768 5769
  /* save mem_root set by QUICK_RANGE_SELECT constructor */
  MEM_ROOT *alloc= thd->mem_root;
unknown's avatar
unknown committed
5770 5771
  KEY *key_info = &table->key_info[ref->key];
  KEY_PART *key_part;
unknown's avatar
unknown committed
5772
  QUICK_RANGE *range;
unknown's avatar
unknown committed
5773
  uint part;
5774 5775 5776 5777 5778
  /*
    return back default mem_root (thd->mem_root) changed by
    QUICK_RANGE_SELECT constructor
  */
  thd->mem_root= old_root;
unknown's avatar
unknown committed
5779 5780

  if (!quick)
5781
    return 0;			/* no ranges found */
unknown's avatar
unknown committed
5782
  if (quick->init())
unknown's avatar
unknown committed
5783 5784
  {
    delete quick;
unknown's avatar
unknown committed
5785
    goto err;
unknown's avatar
unknown committed
5786
  }
unknown's avatar
unknown committed
5787
  quick->records= records;
5788

unknown's avatar
unknown committed
5789
  if (cp_buffer_from_ref(thd,ref) && thd->is_fatal_error ||
5790
      !(range= new(alloc) QUICK_RANGE()))
unknown's avatar
unknown committed
5791
    goto err;                                   // out of memory
5792

unknown's avatar
unknown committed
5793 5794 5795
  range->min_key=range->max_key=(char*) ref->key_buff;
  range->min_length=range->max_length=ref->key_length;
  range->flag= ((ref->key_length == key_info->key_length &&
5796 5797
		 (key_info->flags & (HA_NOSAME | HA_END_SPACE_KEY)) ==
		 HA_NOSAME) ? EQ_RANGE : 0);
unknown's avatar
unknown committed
5798 5799

  if (!(quick->key_parts=key_part=(KEY_PART *)
5800
	alloc_root(&quick->alloc,sizeof(KEY_PART)*ref->key_parts)))
unknown's avatar
unknown committed
5801 5802 5803 5804 5805 5806
    goto err;

  for (part=0 ; part < ref->key_parts ;part++,key_part++)
  {
    key_part->part=part;
    key_part->field=        key_info->key_part[part].field;
unknown's avatar
unknown committed
5807 5808
    key_part->length=  	    key_info->key_part[part].length;
    key_part->store_length= key_info->key_part[part].store_length;
unknown's avatar
unknown committed
5809 5810
    key_part->null_bit=     key_info->key_part[part].null_bit;
  }
unknown's avatar
unknown committed
5811
  if (insert_dynamic(&quick->ranges,(gptr)&range))
5812 5813
    goto err;

unknown's avatar
unknown committed
5814
  /*
5815 5816 5817 5818 5819
     Add a NULL range if REF_OR_NULL optimization is used.
     For example:
       if we have "WHERE A=2 OR A IS NULL" we created the (A=2) range above
       and have ref->null_ref_key set. Will create a new NULL range here.
  */
5820 5821 5822 5823 5824
  if (ref->null_ref_key)
  {
    QUICK_RANGE *null_range;

    *ref->null_ref_key= 1;		// Set null byte then create a range
5825 5826 5827 5828 5829
    if (!(null_range= new (alloc) QUICK_RANGE((char*)ref->key_buff,
                                              ref->key_length,
                                              (char*)ref->key_buff,
                                              ref->key_length,
                                              EQ_RANGE)))
5830 5831
      goto err;
    *ref->null_ref_key= 0;		// Clear null byte
unknown's avatar
unknown committed
5832
    if (insert_dynamic(&quick->ranges,(gptr)&null_range))
5833 5834 5835 5836
      goto err;
  }

  return quick;
unknown's avatar
unknown committed
5837 5838 5839 5840 5841 5842

err:
  delete quick;
  return 0;
}

unknown's avatar
unknown committed
5843 5844

/*
unknown's avatar
unknown committed
5845 5846 5847 5848 5849 5850
  Perform key scans for all used indexes (except CPK), get rowids and merge 
  them into an ordered non-recurrent sequence of rowids.
  
  The merge/duplicate removal is performed using Unique class. We put all
  rowids into Unique, get the sorted sequence and destroy the Unique.
  
unknown's avatar
unknown committed
5851
  If table has a clustered primary key that covers all rows (TRUE for bdb
5852
     and innodb currently) and one of the index_merge scans is a scan on PK,
unknown's avatar
unknown committed
5853
  then
unknown's avatar
unknown committed
5854 5855
    rows that will be retrieved by PK scan are not put into Unique and 
    primary key scan is not performed here, it is performed later separately.
unknown's avatar
unknown committed
5856

5857 5858 5859
  RETURN
    0     OK
    other error
unknown's avatar
unknown committed
5860
*/
5861

unknown's avatar
unknown committed
5862
int QUICK_INDEX_MERGE_SELECT::read_keys_and_merge()
unknown's avatar
unknown committed
5863
{
unknown's avatar
unknown committed
5864 5865
  List_iterator_fast<QUICK_RANGE_SELECT> cur_quick_it(quick_selects);
  QUICK_RANGE_SELECT* cur_quick;
5866
  int result;
unknown's avatar
unknown committed
5867
  Unique *unique;
5868
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::prepare_unique");
unknown's avatar
unknown committed
5869

5870
  /* We're going to just read rowids. */
5871 5872
  if (head->file->extra(HA_EXTRA_KEYREAD))
    DBUG_RETURN(1);
5873

unknown's avatar
unknown committed
5874 5875
  /*
    Make innodb retrieve all PK member fields, so
5876
     * ha_innobase::position (which uses them) call works.
5877
     * We can filter out rows that will be retrieved by clustered PK.
5878
    (This also creates a deficiency - it is possible that we will retrieve
5879
     parts of key that are not used by current query at all.)
5880
  */
5881
  if (head->file->ha_retrieve_all_pk())
5882
    DBUG_RETURN(1);
5883

unknown's avatar
unknown committed
5884 5885
  cur_quick_it.rewind();
  cur_quick= cur_quick_it++;
5886
  DBUG_ASSERT(cur_quick != 0);
unknown's avatar
unknown committed
5887 5888 5889 5890 5891
  
  /*
    We reuse the same instance of handler so we need to call both init and 
    reset here.
  */
unknown's avatar
unknown committed
5892
  if (cur_quick->init() || cur_quick->reset())
unknown's avatar
unknown committed
5893
    DBUG_RETURN(1);
5894

5895
  unique= new Unique(refpos_order_cmp, (void *)head->file,
5896
                     head->file->ref_length,
5897
                     thd->variables.sortbuff_size);
5898 5899
  if (!unique)
    DBUG_RETURN(1);
unknown's avatar
unknown committed
5900
  for (;;)
5901
  {
unknown's avatar
unknown committed
5902
    while ((result= cur_quick->get_next()) == HA_ERR_END_OF_FILE)
5903
    {
unknown's avatar
unknown committed
5904 5905 5906
      cur_quick->range_end();
      cur_quick= cur_quick_it++;
      if (!cur_quick)
unknown's avatar
unknown committed
5907
        break;
5908

unknown's avatar
unknown committed
5909 5910
      if (cur_quick->file->inited != handler::NONE) 
        cur_quick->file->ha_index_end();
unknown's avatar
unknown committed
5911
      if (cur_quick->init() || cur_quick->reset())
5912
        DBUG_RETURN(1);
unknown's avatar
unknown committed
5913 5914 5915
    }

    if (result)
unknown's avatar
unknown committed
5916
    {
5917
      if (result != HA_ERR_END_OF_FILE)
unknown's avatar
unknown committed
5918 5919
      {
        cur_quick->range_end();
5920
        DBUG_RETURN(result);
unknown's avatar
unknown committed
5921
      }
5922
      break;
unknown's avatar
unknown committed
5923
    }
unknown's avatar
unknown committed
5924

5925 5926
    if (thd->killed)
      DBUG_RETURN(1);
unknown's avatar
unknown committed
5927

5928
    /* skip row if it will be retrieved by clustered PK scan */
5929 5930
    if (pk_quick_select && pk_quick_select->row_in_ranges())
      continue;
5931

unknown's avatar
unknown committed
5932 5933
    cur_quick->file->position(cur_quick->record);
    result= unique->unique_add((char*)cur_quick->file->ref);
5934
    if (result)
5935 5936
      DBUG_RETURN(1);

unknown's avatar
unknown committed
5937
  }
unknown's avatar
unknown committed
5938

5939 5940
  /* ok, all row ids are in Unique */
  result= unique->get(head);
unknown's avatar
unknown committed
5941
  delete unique;
unknown's avatar
unknown committed
5942
  doing_pk_scan= FALSE;
unknown's avatar
unknown committed
5943 5944
  /* start table scan */
  init_read_record(&read_record, thd, head, (SQL_SELECT*) 0, 1, 1);
5945 5946
  /* index_merge currently doesn't support "using index" at all */
  head->file->extra(HA_EXTRA_NO_KEYREAD);
5947

5948 5949 5950
  DBUG_RETURN(result);
}

5951

5952 5953 5954
/*
  Get next row for index_merge.
  NOTES
5955 5956 5957 5958
    The rows are read from
      1. rowids stored in Unique.
      2. QUICK_RANGE_SELECT with clustered primary key (if any).
    The sets of rows retrieved in 1) and 2) are guaranteed to be disjoint.
5959
*/
5960

5961 5962
int QUICK_INDEX_MERGE_SELECT::get_next()
{
5963
  int result;
5964
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::get_next");
unknown's avatar
unknown committed
5965

5966 5967 5968 5969 5970 5971 5972 5973 5974
  if (doing_pk_scan)
    DBUG_RETURN(pk_quick_select->get_next());

  result= read_record.read_record(&read_record);

  if (result == -1)
  {
    result= HA_ERR_END_OF_FILE;
    end_read_record(&read_record);
5975
    /* All rows from Unique have been retrieved, do a clustered PK scan */
unknown's avatar
unknown committed
5976
    if (pk_quick_select)
5977
    {
unknown's avatar
unknown committed
5978
      doing_pk_scan= TRUE;
unknown's avatar
unknown committed
5979
      if ((result= pk_quick_select->init()) || (result= pk_quick_select->reset()))
5980 5981 5982 5983 5984 5985
        DBUG_RETURN(result);
      DBUG_RETURN(pk_quick_select->get_next());
    }
  }

  DBUG_RETURN(result);
unknown's avatar
unknown committed
5986 5987
}

5988 5989

/*
unknown's avatar
unknown committed
5990
  Retrieve next record.
5991
  SYNOPSIS
unknown's avatar
unknown committed
5992 5993
     QUICK_ROR_INTERSECT_SELECT::get_next()

5994
  NOTES
5995 5996
    Invariant on enter/exit: all intersected selects have retrieved all index
    records with rowid <= some_rowid_val and no intersected select has
5997 5998 5999 6000
    retrieved any index records with rowid > some_rowid_val.
    We start fresh and loop until we have retrieved the same rowid in each of
    the key scans or we got an error.

unknown's avatar
unknown committed
6001
    If a Clustered PK scan is present, it is used only to check if row
6002 6003 6004 6005 6006
    satisfies its condition (and never used for row retrieval).

  RETURN
   0     - Ok
   other - Error code if any error occurred.
6007 6008 6009 6010 6011 6012 6013 6014 6015
*/

int QUICK_ROR_INTERSECT_SELECT::get_next()
{
  List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
  QUICK_RANGE_SELECT* quick;
  int error, cmp;
  uint last_rowid_count=0;
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::get_next");
unknown's avatar
unknown committed
6016

6017 6018 6019 6020 6021 6022 6023 6024 6025 6026
  /* Get a rowid for first quick and save it as a 'candidate' */
  quick= quick_it++;
  if (cpk_quick)
  {
    do {
      error= quick->get_next();
    }while (!error && !cpk_quick->row_in_ranges());
  }
  else
    error= quick->get_next();
unknown's avatar
unknown committed
6027

6028 6029 6030 6031 6032 6033
  if (error)
    DBUG_RETURN(error);

  quick->file->position(quick->record);
  memcpy(last_rowid, quick->file->ref, head->file->ref_length);
  last_rowid_count= 1;
unknown's avatar
unknown committed
6034

6035 6036 6037 6038 6039 6040 6041
  while (last_rowid_count < quick_selects.elements)
  {
    if (!(quick= quick_it++))
    {
      quick_it.rewind();
      quick= quick_it++;
    }
unknown's avatar
unknown committed
6042

6043 6044 6045 6046
    do {
      if ((error= quick->get_next()))
        DBUG_RETURN(error);
      quick->file->position(quick->record);
unknown's avatar
unknown committed
6047
      cmp= head->file->cmp_ref(quick->file->ref, last_rowid);
6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062
    } while (cmp < 0);

    /* Ok, current select 'caught up' and returned ref >= cur_ref */
    if (cmp > 0)
    {
      /* Found a row with ref > cur_ref. Make it a new 'candidate' */
      if (cpk_quick)
      {
        while (!cpk_quick->row_in_ranges())
        {
          if ((error= quick->get_next()))
            DBUG_RETURN(error);
        }
      }
      memcpy(last_rowid, quick->file->ref, head->file->ref_length);
unknown's avatar
unknown committed
6063
      last_rowid_count= 1;
6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078
    }
    else
    {
      /* current 'candidate' row confirmed by this select */
      last_rowid_count++;
    }
  }

  /* We get here iff we got the same row ref in all scans. */
  if (need_to_fetch_row)
    error= head->file->rnd_pos(head->record[0], last_rowid);
  DBUG_RETURN(error);
}


unknown's avatar
unknown committed
6079 6080
/*
  Retrieve next record.
6081 6082
  SYNOPSIS
    QUICK_ROR_UNION_SELECT::get_next()
unknown's avatar
unknown committed
6083

6084
  NOTES
unknown's avatar
unknown committed
6085 6086
    Enter/exit invariant:
    For each quick select in the queue a {key,rowid} tuple has been
6087
    retrieved but the corresponding row hasn't been passed to output.
6088

unknown's avatar
unknown committed
6089
  RETURN
6090 6091
   0     - Ok
   other - Error code if any error occurred.
6092 6093 6094 6095 6096 6097 6098 6099
*/

int QUICK_ROR_UNION_SELECT::get_next()
{
  int error, dup_row;
  QUICK_SELECT_I *quick;
  byte *tmp;
  DBUG_ENTER("QUICK_ROR_UNION_SELECT::get_next");
unknown's avatar
unknown committed
6100

6101 6102 6103 6104
  do
  {
    if (!queue.elements)
      DBUG_RETURN(HA_ERR_END_OF_FILE);
6105
    /* Ok, we have a queue with >= 1 scans */
6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121

    quick= (QUICK_SELECT_I*)queue_top(&queue);
    memcpy(cur_rowid, quick->last_rowid, rowid_length);

    /* put into queue rowid from the same stream as top element */
    if ((error= quick->get_next()))
    {
      if (error != HA_ERR_END_OF_FILE)
        DBUG_RETURN(error);
      queue_remove(&queue, 0);
    }
    else
    {
      quick->save_last_pos();
      queue_replaced(&queue);
    }
unknown's avatar
unknown committed
6122

6123 6124 6125
    if (!have_prev_rowid)
    {
      /* No rows have been returned yet */
unknown's avatar
unknown committed
6126 6127
      dup_row= FALSE;
      have_prev_rowid= TRUE;
6128 6129 6130 6131
    }
    else
      dup_row= !head->file->cmp_ref(cur_rowid, prev_rowid);
  }while (dup_row);
unknown's avatar
unknown committed
6132

6133 6134 6135 6136 6137 6138 6139 6140
  tmp= cur_rowid;
  cur_rowid= prev_rowid;
  prev_rowid= tmp;

  error= head->file->rnd_pos(quick->record, prev_rowid);
  DBUG_RETURN(error);
}

unknown's avatar
unknown committed
6141
int QUICK_RANGE_SELECT::reset()
unknown's avatar
unknown committed
6142 6143 6144
{
  uint  mrange_bufsiz;
  byte  *mrange_buff;
unknown's avatar
unknown committed
6145 6146 6147
  DBUG_ENTER("QUICK_RANGE_SELECT::reset");
  next=0;
  range= NULL;
6148
  in_range= FALSE;
unknown's avatar
unknown committed
6149
  cur_range= (QUICK_RANGE**) ranges.buffer;
unknown's avatar
unknown committed
6150

6151
  if (file->inited == handler::NONE && (error= file->ha_index_init(index,1)))
unknown's avatar
unknown committed
6152
    DBUG_RETURN(error);
unknown's avatar
unknown committed
6153
 
unknown's avatar
unknown committed
6154 6155 6156 6157 6158 6159 6160
  /* Do not allocate the buffers twice. */
  if (multi_range_length)
  {
    DBUG_ASSERT(multi_range_length == min(multi_range_count, ranges.elements));
    DBUG_RETURN(0);
  }

unknown's avatar
unknown committed
6161 6162
  /* Allocate the ranges array. */
  DBUG_ASSERT(ranges.elements);
unknown's avatar
unknown committed
6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178
  multi_range_length= min(multi_range_count, ranges.elements);
  DBUG_ASSERT(multi_range_length > 0);
  while (multi_range_length && ! (multi_range= (KEY_MULTI_RANGE*)
                                  my_malloc(multi_range_length *
                                            sizeof(KEY_MULTI_RANGE),
                                            MYF(MY_WME))))
  {
    /* Try to shrink the buffers until it is 0. */
    multi_range_length/= 2;
  }
  if (! multi_range)
  {
    multi_range_length= 0;
    DBUG_RETURN(HA_ERR_OUT_OF_MEM);
  }

unknown's avatar
unknown committed
6179
  /* Allocate the handler buffer if necessary.  */
unknown's avatar
unknown committed
6180 6181 6182
  if (file->table_flags() & HA_NEED_READ_RANGE_BUFFER)
  {
    mrange_bufsiz= min(multi_range_bufsiz,
unknown's avatar
merge  
unknown committed
6183
                       (QUICK_SELECT_I::records + 1)* head->s->reclength);
unknown's avatar
unknown committed
6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205

    while (mrange_bufsiz &&
           ! my_multi_malloc(MYF(MY_WME),
                             &multi_range_buff, sizeof(*multi_range_buff),
                             &mrange_buff, mrange_bufsiz,
                             NullS))
    {
      /* Try to shrink the buffers until both are 0. */
      mrange_bufsiz/= 2;
    }
    if (! multi_range_buff)
    {
      my_free((char*) multi_range, MYF(0));
      multi_range= NULL;
      multi_range_length= 0;
      DBUG_RETURN(HA_ERR_OUT_OF_MEM);
    }

    /* Initialize the handler buffer. */
    multi_range_buff->buffer= mrange_buff;
    multi_range_buff->buffer_end= mrange_buff + mrange_bufsiz;
    multi_range_buff->end_of_used_area= mrange_buff;
unknown's avatar
unknown committed
6206 6207 6208 6209 6210 6211 6212 6213
#ifdef HAVE_purify
    /*
      We need this until ndb will use the buffer efficiently
      (Now ndb stores  complete row in here, instead of only the used fields
      which gives us valgrind warnings in compare_record[])
    */
    bzero((char*) mrange_buff, mrange_bufsiz);
#endif
unknown's avatar
unknown committed
6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
  }
  DBUG_RETURN(0);
}


/*
  Get next possible record using quick-struct.

  SYNOPSIS
    QUICK_RANGE_SELECT::get_next()

  NOTES
    Record is read into table->record[0]

  RETURN
    0			Found row
    HA_ERR_END_OF_FILE	No (more) rows in range
    #			Error code
*/
unknown's avatar
unknown committed
6233

unknown's avatar
unknown committed
6234
int QUICK_RANGE_SELECT::get_next()
unknown's avatar
unknown committed
6235
{
unknown's avatar
unknown committed
6236 6237 6238 6239
  int             result;
  KEY_MULTI_RANGE *mrange;
  key_range       *start_key;
  key_range       *end_key;
unknown's avatar
unknown committed
6240
  DBUG_ENTER("QUICK_RANGE_SELECT::get_next");
unknown's avatar
unknown committed
6241 6242 6243
  DBUG_ASSERT(multi_range_length && multi_range &&
              (cur_range >= (QUICK_RANGE**) ranges.buffer) &&
              (cur_range <= (QUICK_RANGE**) ranges.buffer + ranges.elements));
unknown's avatar
unknown committed
6244 6245 6246

  for (;;)
  {
unknown's avatar
unknown committed
6247
    if (in_range)
unknown's avatar
unknown committed
6248
    {
unknown's avatar
unknown committed
6249 6250
      /* We did already start to read this key. */
      result= file->read_multi_range_next(&mrange);
unknown's avatar
unknown committed
6251
      if (result != HA_ERR_END_OF_FILE)
unknown's avatar
unknown committed
6252 6253
      {
        in_range= ! result;
6254
	DBUG_RETURN(result);
unknown's avatar
unknown committed
6255
      }
unknown's avatar
unknown committed
6256
    }
unknown's avatar
unknown committed
6257

unknown's avatar
unknown committed
6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287
    uint count= min(multi_range_length, ranges.elements -
                    (cur_range - (QUICK_RANGE**) ranges.buffer));
    if (count == 0)
    {
      /* Ranges have already been used up before. None is left for read. */
      in_range= FALSE;
      DBUG_RETURN(HA_ERR_END_OF_FILE);
    }
    KEY_MULTI_RANGE *mrange_slot, *mrange_end;
    for (mrange_slot= multi_range, mrange_end= mrange_slot+count;
         mrange_slot < mrange_end;
         mrange_slot++)
    {
      start_key= &mrange_slot->start_key;
      end_key= &mrange_slot->end_key;
      range= *(cur_range++);

      start_key->key=    (const byte*) range->min_key;
      start_key->length= range->min_length;
      start_key->flag=   ((range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY :
                          (range->flag & EQ_RANGE) ?
                          HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT);
      end_key->key=      (const byte*) range->max_key;
      end_key->length=   range->max_length;
      /*
        We use HA_READ_AFTER_KEY here because if we are reading on a key
        prefix. We want to find all keys with this prefix.
      */
      end_key->flag=     (range->flag & NEAR_MAX ? HA_READ_BEFORE_KEY :
                          HA_READ_AFTER_KEY);
unknown's avatar
unknown committed
6288

unknown's avatar
unknown committed
6289 6290
      mrange_slot->range_flag= range->flag;
    }
unknown's avatar
unknown committed
6291

unknown's avatar
unknown committed
6292 6293
    result= file->read_multi_range_first(&mrange, multi_range, count,
                                         sorted, multi_range_buff);
unknown's avatar
unknown committed
6294
    if (result != HA_ERR_END_OF_FILE)
unknown's avatar
unknown committed
6295 6296
    {
      in_range= ! result;
unknown's avatar
unknown committed
6297
      DBUG_RETURN(result);
unknown's avatar
unknown committed
6298 6299
    }
    in_range= FALSE; /* No matching rows; go to next set of ranges. */
unknown's avatar
unknown committed
6300 6301 6302
  }
}

6303

6304 6305 6306 6307 6308 6309
/*
  Get the next record with a different prefix.

  SYNOPSIS
    QUICK_RANGE_SELECT::get_next_prefix()
    prefix_length  length of cur_prefix
6310
    cur_prefix     prefix of a key to be searched for
6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342

  DESCRIPTION
    Each subsequent call to the method retrieves the first record that has a
    prefix with length prefix_length different from cur_prefix, such that the
    record with the new prefix is within the ranges described by
    this->ranges. The record found is stored into the buffer pointed by
    this->record.
    The method is useful for GROUP-BY queries with range conditions to
    discover the prefix of the next group that satisfies the range conditions.

  TODO
    This method is a modified copy of QUICK_RANGE_SELECT::get_next(), so both
    methods should be unified into a more general one to reduce code
    duplication.

  RETURN
    0                  on success
    HA_ERR_END_OF_FILE if returned all keys
    other              if some error occurred
*/

int QUICK_RANGE_SELECT::get_next_prefix(uint prefix_length, byte *cur_prefix)
{
  DBUG_ENTER("QUICK_RANGE_SELECT::get_next_prefix");

  for (;;)
  {
    int result;
    key_range start_key, end_key;
    if (range)
    {
      /* Read the next record in the same range with prefix after cur_prefix. */
6343
      DBUG_ASSERT(cur_prefix != 0);
6344 6345 6346 6347 6348 6349
      result= file->index_read(record, cur_prefix, prefix_length,
                               HA_READ_AFTER_KEY);
      if (result || (file->compare_key(file->end_range) <= 0))
        DBUG_RETURN(result);
    }

unknown's avatar
unknown committed
6350 6351 6352 6353 6354 6355 6356 6357
    uint count= ranges.elements - (cur_range - (QUICK_RANGE**) ranges.buffer);
    if (count == 0)
    {
      /* Ranges have already been used up before. None is left for read. */
      range= 0;
      DBUG_RETURN(HA_ERR_END_OF_FILE);
    }
    range= *(cur_range++);
6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386

    start_key.key=    (const byte*) range->min_key;
    start_key.length= min(range->min_length, prefix_length);
    start_key.flag=   ((range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY :
		       (range->flag & EQ_RANGE) ?
		       HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT);
    end_key.key=      (const byte*) range->max_key;
    end_key.length=   min(range->max_length, prefix_length);
    /*
      We use READ_AFTER_KEY here because if we are reading on a key
      prefix we want to find all keys with this prefix
    */
    end_key.flag=     (range->flag & NEAR_MAX ? HA_READ_BEFORE_KEY :
		       HA_READ_AFTER_KEY);

    result= file->read_range_first(range->min_length ? &start_key : 0,
				   range->max_length ? &end_key : 0,
                                   test(range->flag & EQ_RANGE),
				   sorted);
    if (range->flag == (UNIQUE_RANGE | EQ_RANGE))
      range=0;				// Stop searching

    if (result != HA_ERR_END_OF_FILE)
      DBUG_RETURN(result);
    range=0;				// No matching rows; go to next range
  }
}


unknown's avatar
unknown committed
6387
/* Get next for geometrical indexes */
unknown's avatar
unknown committed
6388

unknown's avatar
unknown committed
6389
int QUICK_RANGE_SELECT_GEOM::get_next()
unknown's avatar
unknown committed
6390
{
unknown's avatar
unknown committed
6391
  DBUG_ENTER("QUICK_RANGE_SELECT_GEOM::get_next");
unknown's avatar
unknown committed
6392

unknown's avatar
unknown committed
6393
  for (;;)
unknown's avatar
unknown committed
6394
  {
unknown's avatar
unknown committed
6395 6396
    int result;
    if (range)
unknown's avatar
unknown committed
6397
    {
unknown's avatar
unknown committed
6398 6399 6400 6401 6402
      // Already read through key
      result= file->index_next_same(record, (byte*) range->min_key,
				    range->min_length);
      if (result != HA_ERR_END_OF_FILE)
	DBUG_RETURN(result);
unknown's avatar
unknown committed
6403
    }
unknown's avatar
unknown committed
6404

unknown's avatar
unknown committed
6405 6406 6407 6408 6409 6410 6411 6412
    uint count= ranges.elements - (cur_range - (QUICK_RANGE**) ranges.buffer);
    if (count == 0)
    {
      /* Ranges have already been used up before. None is left for read. */
      range= 0;
      DBUG_RETURN(HA_ERR_END_OF_FILE);
    }
    range= *(cur_range++);
unknown's avatar
unknown committed
6413 6414 6415 6416 6417

    result= file->index_read(record,
			     (byte*) range->min_key,
			     range->min_length,
			     (ha_rkey_function)(range->flag ^ GEOM_FLAG));
6418
    if (result != HA_ERR_KEY_NOT_FOUND && result != HA_ERR_END_OF_FILE)
unknown's avatar
unknown committed
6419 6420
      DBUG_RETURN(result);
    range=0;				// Not found, to next range
unknown's avatar
unknown committed
6421 6422 6423
  }
}

unknown's avatar
unknown committed
6424

6425 6426 6427 6428
/*
  Check if current row will be retrieved by this QUICK_RANGE_SELECT

  NOTES
unknown's avatar
unknown committed
6429 6430
    It is assumed that currently a scan is being done on another index
    which reads all necessary parts of the index that is scanned by this
6431
    quick select.
unknown's avatar
unknown committed
6432
    The implementation does a binary search on sorted array of disjoint
6433 6434
    ranges, without taking size of range into account.

unknown's avatar
unknown committed
6435
    This function is used to filter out clustered PK scan rows in
6436 6437
    index_merge quick select.

6438
  RETURN
unknown's avatar
unknown committed
6439 6440
    TRUE  if current row will be retrieved by this quick select
    FALSE if not
6441 6442 6443 6444 6445 6446 6447 6448 6449 6450
*/

bool QUICK_RANGE_SELECT::row_in_ranges()
{
  QUICK_RANGE *range;
  uint min= 0;
  uint max= ranges.elements - 1;
  uint mid= (max + min)/2;

  while (min != max)
unknown's avatar
unknown committed
6451
  {
6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464
    if (cmp_next(*(QUICK_RANGE**)dynamic_array_ptr(&ranges, mid)))
    {
      /* current row value > mid->max */
      min= mid + 1;
    }
    else
      max= mid;
    mid= (min + max) / 2;
  }
  range= *(QUICK_RANGE**)dynamic_array_ptr(&ranges, mid);
  return (!cmp_next(range) && !cmp_prev(range));
}

6465
/*
6466 6467 6468 6469 6470 6471 6472
  This is a hack: we inherit from QUICK_SELECT so that we can use the
  get_next() interface, but we have to hold a pointer to the original
  QUICK_SELECT because its data are used all over the place.  What
  should be done is to factor out the data that is needed into a base
  class (QUICK_SELECT), and then have two subclasses (_ASC and _DESC)
  which handle the ranges and implement the get_next() function.  But
  for now, this seems to work right at least.
6473
 */
unknown's avatar
unknown committed
6474

unknown's avatar
unknown committed
6475
QUICK_SELECT_DESC::QUICK_SELECT_DESC(QUICK_RANGE_SELECT *q,
unknown's avatar
unknown committed
6476 6477
                                     uint used_key_parts)
 : QUICK_RANGE_SELECT(*q), rev_it(rev_ranges)
6478
{
unknown's avatar
unknown committed
6479
  QUICK_RANGE *r;
unknown's avatar
unknown committed
6480

6481 6482
  QUICK_RANGE **pr= (QUICK_RANGE**)ranges.buffer;
  QUICK_RANGE **last_range= pr + ranges.elements;
unknown's avatar
unknown committed
6483 6484
  for (; pr!=last_range; pr++)
    rev_ranges.push_front(*pr);
unknown's avatar
unknown committed
6485

unknown's avatar
unknown committed
6486
  /* Remove EQ_RANGE flag for keys that are not using the full key */
unknown's avatar
unknown committed
6487
  for (r = rev_it++; r; r = rev_it++)
unknown's avatar
unknown committed
6488 6489 6490 6491 6492 6493 6494 6495
  {
    if ((r->flag & EQ_RANGE) &&
	head->key_info[index].key_length != r->max_length)
      r->flag&= ~EQ_RANGE;
  }
  rev_it.rewind();
  q->dont_free=1;				// Don't free shared mem
  delete q;
6496 6497
}

unknown's avatar
unknown committed
6498

6499 6500 6501 6502 6503 6504
int QUICK_SELECT_DESC::get_next()
{
  DBUG_ENTER("QUICK_SELECT_DESC::get_next");

  /* The max key is handled as follows:
   *   - if there is NO_MAX_RANGE, start at the end and move backwards
unknown's avatar
unknown committed
6505 6506
   *   - if it is an EQ_RANGE, which means that max key covers the entire
   *     key, go directly to the key and read through it (sorting backwards is
6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518
   *     same as sorting forwards)
   *   - if it is NEAR_MAX, go to the key or next, step back once, and
   *     move backwards
   *   - otherwise (not NEAR_MAX == include the key), go after the key,
   *     step back once, and move backwards
   */

  for (;;)
  {
    int result;
    if (range)
    {						// Already read through key
unknown's avatar
unknown committed
6519 6520 6521
      result = ((range->flag & EQ_RANGE)
		? file->index_next_same(record, (byte*) range->min_key,
					range->min_length) :
6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536
		file->index_prev(record));
      if (!result)
      {
	if (cmp_prev(*rev_it.ref()) == 0)
	  DBUG_RETURN(0);
      }
      else if (result != HA_ERR_END_OF_FILE)
	DBUG_RETURN(result);
    }

    if (!(range=rev_it++))
      DBUG_RETURN(HA_ERR_END_OF_FILE);		// All ranges used

    if (range->flag & NO_MAX_RANGE)		// Read last record
    {
6537 6538 6539
      int local_error;
      if ((local_error=file->index_last(record)))
	DBUG_RETURN(local_error);		// Empty table
6540 6541 6542 6543 6544 6545
      if (cmp_prev(range) == 0)
	DBUG_RETURN(0);
      range=0;			// No matching records; go to next range
      continue;
    }

unknown's avatar
unknown committed
6546
    if (range->flag & EQ_RANGE)
6547 6548 6549 6550 6551 6552
    {
      result = file->index_read(record, (byte*) range->max_key,
				range->max_length, HA_READ_KEY_EXACT);
    }
    else
    {
6553 6554 6555 6556 6557
      DBUG_ASSERT(range->flag & NEAR_MAX || range_reads_after_key(range));
      result=file->index_read(record, (byte*) range->max_key,
			      range->max_length,
			      ((range->flag & NEAR_MAX) ?
			       HA_READ_BEFORE_KEY : HA_READ_PREFIX_LAST_OR_PREV));
6558 6559 6560
    }
    if (result)
    {
6561
      if (result != HA_ERR_KEY_NOT_FOUND && result != HA_ERR_END_OF_FILE)
6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575
	DBUG_RETURN(result);
      range=0;					// Not found, to next range
      continue;
    }
    if (cmp_prev(range) == 0)
    {
      if (range->flag == (UNIQUE_RANGE | EQ_RANGE))
	range = 0;				// Stop searching
      DBUG_RETURN(0);				// Found key is in range
    }
    range = 0;					// To next range
  }
}

6576

unknown's avatar
unknown committed
6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617
/*
  Compare if found key is over max-value
  Returns 0 if key <= range->max_key
*/

int QUICK_RANGE_SELECT::cmp_next(QUICK_RANGE *range_arg)
{
  if (range_arg->flag & NO_MAX_RANGE)
    return 0;                                   /* key can't be to large */

  KEY_PART *key_part=key_parts;
  uint store_length;

  for (char *key=range_arg->max_key, *end=key+range_arg->max_length;
       key < end;
       key+= store_length, key_part++)
  {
    int cmp;
    store_length= key_part->store_length;
    if (key_part->null_bit)
    {
      if (*key)
      {
        if (!key_part->field->is_null())
          return 1;
        continue;
      }
      else if (key_part->field->is_null())
        return 0;
      key++;					// Skip null byte
      store_length--;
    }
    if ((cmp=key_part->field->key_cmp((byte*) key, key_part->length)) < 0)
      return 0;
    if (cmp > 0)
      return 1;
  }
  return (range_arg->flag & NEAR_MAX) ? 1 : 0;          // Exact match
}


6618
/*
6619 6620 6621
  Returns 0 if found key is inside range (found key >= range->min_key).
*/

6622
int QUICK_RANGE_SELECT::cmp_prev(QUICK_RANGE *range_arg)
6623
{
unknown's avatar
unknown committed
6624
  int cmp;
6625
  if (range_arg->flag & NO_MIN_RANGE)
unknown's avatar
unknown committed
6626
    return 0;					/* key can't be to small */
6627

unknown's avatar
unknown committed
6628 6629
  cmp= key_cmp(key_part_info, (byte*) range_arg->min_key,
               range_arg->min_length);
unknown's avatar
unknown committed
6630 6631 6632
  if (cmp > 0 || cmp == 0 && !(range_arg->flag & NEAR_MIN))
    return 0;
  return 1;                                     // outside of range
6633 6634
}

6635

6636
/*
unknown's avatar
unknown committed
6637
 * TRUE if this range will require using HA_READ_AFTER_KEY
unknown's avatar
unknown committed
6638
   See comment in get_next() about this
6639
 */
unknown's avatar
unknown committed
6640

6641
bool QUICK_SELECT_DESC::range_reads_after_key(QUICK_RANGE *range_arg)
6642
{
unknown's avatar
unknown committed
6643
  return ((range_arg->flag & (NO_MAX_RANGE | NEAR_MAX)) ||
6644
	  !(range_arg->flag & EQ_RANGE) ||
unknown's avatar
unknown committed
6645
	  head->key_info[index].key_length != range_arg->max_length) ? 1 : 0;
6646 6647
}

6648

unknown's avatar
unknown committed
6649
/* TRUE if we are reading over a key that may have a NULL value */
unknown's avatar
unknown committed
6650

unknown's avatar
unknown committed
6651
#ifdef NOT_USED
6652
bool QUICK_SELECT_DESC::test_if_null_range(QUICK_RANGE *range_arg,
unknown's avatar
unknown committed
6653 6654
					   uint used_key_parts)
{
unknown's avatar
unknown committed
6655
  uint offset, end;
unknown's avatar
unknown committed
6656 6657 6658
  KEY_PART *key_part = key_parts,
           *key_part_end= key_part+used_key_parts;

6659
  for (offset= 0,  end = min(range_arg->min_length, range_arg->max_length) ;
unknown's avatar
unknown committed
6660
       offset < end && key_part != key_part_end ;
unknown's avatar
unknown committed
6661
       offset+= key_part++->store_length)
unknown's avatar
unknown committed
6662
  {
6663 6664
    if (!memcmp((char*) range_arg->min_key+offset,
		(char*) range_arg->max_key+offset,
unknown's avatar
unknown committed
6665
		key_part->store_length))
unknown's avatar
unknown committed
6666
      continue;
unknown's avatar
unknown committed
6667 6668

    if (key_part->null_bit && range_arg->min_key[offset])
unknown's avatar
unknown committed
6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680
      return 1;				// min_key is null and max_key isn't
    // Range doesn't cover NULL. This is ok if there is no more null parts
    break;
  }
  /*
    If the next min_range is > NULL, then we can use this, even if
    it's a NULL key
    Example:  SELECT * FROM t1 WHERE a = 2 AND b >0 ORDER BY a DESC,b DESC;

  */
  if (key_part != key_part_end && key_part->null_bit)
  {
6681
    if (offset >= range_arg->min_length || range_arg->min_key[offset])
unknown's avatar
unknown committed
6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693
      return 1;					// Could be null
    key_part++;
  }
  /*
    If any of the key parts used in the ORDER BY could be NULL, we can't
    use the key to sort the data.
  */
  for (; key_part != key_part_end ; key_part++)
    if (key_part->null_bit)
      return 1;					// Covers null part
  return 0;
}
unknown's avatar
unknown committed
6694
#endif
unknown's avatar
unknown committed
6695 6696


6697 6698 6699 6700 6701 6702 6703 6704 6705
void QUICK_RANGE_SELECT::add_info_string(String *str)
{
  KEY *key_info= head->key_info + index;
  str->append(key_info->name);
}

void QUICK_INDEX_MERGE_SELECT::add_info_string(String *str)
{
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
6706
  bool first= TRUE;
6707
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
6708
  str->append(STRING_WITH_LEN("sort_union("));
6709 6710 6711 6712 6713
  while ((quick= it++))
  {
    if (!first)
      str->append(',');
    else
unknown's avatar
unknown committed
6714
      first= FALSE;
6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726
    quick->add_info_string(str);
  }
  if (pk_quick_select)
  {
    str->append(',');
    pk_quick_select->add_info_string(str);
  }
  str->append(')');
}

void QUICK_ROR_INTERSECT_SELECT::add_info_string(String *str)
{
unknown's avatar
unknown committed
6727
  bool first= TRUE;
6728 6729
  QUICK_RANGE_SELECT *quick;
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
6730
  str->append(STRING_WITH_LEN("intersect("));
6731 6732 6733 6734 6735
  while ((quick= it++))
  {
    KEY *key_info= head->key_info + quick->index;
    if (!first)
      str->append(',');
unknown's avatar
unknown committed
6736
    else
unknown's avatar
unknown committed
6737
      first= FALSE;
6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750
    str->append(key_info->name);
  }
  if (cpk_quick)
  {
    KEY *key_info= head->key_info + cpk_quick->index;
    str->append(',');
    str->append(key_info->name);
  }
  str->append(')');
}

void QUICK_ROR_UNION_SELECT::add_info_string(String *str)
{
unknown's avatar
unknown committed
6751
  bool first= TRUE;
6752 6753
  QUICK_SELECT_I *quick;
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
6754
  str->append(STRING_WITH_LEN("union("));
6755 6756 6757 6758 6759
  while ((quick= it++))
  {
    if (!first)
      str->append(',');
    else
unknown's avatar
unknown committed
6760
      first= FALSE;
6761 6762 6763 6764 6765 6766
    quick->add_info_string(str);
  }
  str->append(')');
}


unknown's avatar
unknown committed
6767
void QUICK_RANGE_SELECT::add_keys_and_lengths(String *key_names,
6768
                                              String *used_lengths)
6769 6770 6771 6772 6773 6774 6775 6776 6777
{
  char buf[64];
  uint length;
  KEY *key_info= head->key_info + index;
  key_names->append(key_info->name);
  length= longlong2str(max_used_key_length, buf, 10) - buf;
  used_lengths->append(buf, length);
}

6778 6779
void QUICK_INDEX_MERGE_SELECT::add_keys_and_lengths(String *key_names,
                                                    String *used_lengths)
6780 6781 6782
{
  char buf[64];
  uint length;
unknown's avatar
unknown committed
6783
  bool first= TRUE;
6784
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
6785

6786 6787 6788
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  while ((quick= it++))
  {
6789
    if (first)
unknown's avatar
unknown committed
6790
      first= FALSE;
6791 6792
    else
    {
6793 6794
      key_names->append(',');
      used_lengths->append(',');
6795
    }
unknown's avatar
unknown committed
6796

6797 6798
    KEY *key_info= head->key_info + quick->index;
    key_names->append(key_info->name);
6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812
    length= longlong2str(quick->max_used_key_length, buf, 10) - buf;
    used_lengths->append(buf, length);
  }
  if (pk_quick_select)
  {
    KEY *key_info= head->key_info + pk_quick_select->index;
    key_names->append(',');
    key_names->append(key_info->name);
    length= longlong2str(pk_quick_select->max_used_key_length, buf, 10) - buf;
    used_lengths->append(',');
    used_lengths->append(buf, length);
  }
}

6813 6814
void QUICK_ROR_INTERSECT_SELECT::add_keys_and_lengths(String *key_names,
                                                      String *used_lengths)
6815 6816 6817
{
  char buf[64];
  uint length;
unknown's avatar
unknown committed
6818
  bool first= TRUE;
6819 6820 6821 6822 6823 6824
  QUICK_RANGE_SELECT *quick;
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  while ((quick= it++))
  {
    KEY *key_info= head->key_info + quick->index;
    if (first)
unknown's avatar
unknown committed
6825
      first= FALSE;
6826
    else
6827 6828
    {
      key_names->append(',');
6829
      used_lengths->append(',');
6830 6831
    }
    key_names->append(key_info->name);
6832 6833 6834
    length= longlong2str(quick->max_used_key_length, buf, 10) - buf;
    used_lengths->append(buf, length);
  }
unknown's avatar
unknown committed
6835

6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846
  if (cpk_quick)
  {
    KEY *key_info= head->key_info + cpk_quick->index;
    key_names->append(',');
    key_names->append(key_info->name);
    length= longlong2str(cpk_quick->max_used_key_length, buf, 10) - buf;
    used_lengths->append(',');
    used_lengths->append(buf, length);
  }
}

6847 6848
void QUICK_ROR_UNION_SELECT::add_keys_and_lengths(String *key_names,
                                                  String *used_lengths)
6849
{
unknown's avatar
unknown committed
6850
  bool first= TRUE;
6851 6852 6853 6854 6855
  QUICK_SELECT_I *quick;
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  while ((quick= it++))
  {
    if (first)
unknown's avatar
unknown committed
6856
      first= FALSE;
6857
    else
unknown's avatar
unknown committed
6858
    {
6859 6860 6861
      used_lengths->append(',');
      key_names->append(',');
    }
6862
    quick->add_keys_and_lengths(key_names, used_lengths);
6863 6864 6865
  }
}

6866 6867 6868 6869 6870 6871 6872 6873 6874

/*******************************************************************************
* Implementation of QUICK_GROUP_MIN_MAX_SELECT
*******************************************************************************/

static inline uint get_field_keypart(KEY *index, Field *field);
static inline SEL_ARG * get_index_range_tree(uint index, SEL_TREE* range_tree,
                                             PARAM *param, uint *param_idx);
static bool
6875
get_constant_key_infix(KEY *index_info, SEL_ARG *index_range_tree,
6876
                       KEY_PART_INFO *first_non_group_part,
6877 6878 6879 6880
                       KEY_PART_INFO *min_max_arg_part,
                       KEY_PART_INFO *last_part, THD *thd,
                       byte *key_infix, uint *key_infix_len,
                       KEY_PART_INFO **first_non_infix_part);
6881
static bool
6882 6883
check_group_min_max_predicates(COND *cond, Item_field *min_max_arg_item,
                               Field::imagetype image_type);
6884

6885 6886 6887 6888 6889 6890
static void
cost_group_min_max(TABLE* table, KEY *index_info, uint used_key_parts,
                   uint group_key_parts, SEL_TREE *range_tree,
                   SEL_ARG *index_tree, ha_rows quick_prefix_records,
                   bool have_min, bool have_max,
                   double *read_cost, ha_rows *records);
6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916

/*
  Test if this access method is applicable to a GROUP query with MIN/MAX
  functions, and if so, construct a new TRP object.

  SYNOPSIS
    get_best_group_min_max()
    param    Parameter from test_quick_select
    sel_tree Range tree generated by get_mm_tree

  DESCRIPTION
    Test whether a query can be computed via a QUICK_GROUP_MIN_MAX_SELECT.
    Queries computable via a QUICK_GROUP_MIN_MAX_SELECT must satisfy the
    following conditions:
    A) Table T has at least one compound index I of the form:
       I = <A_1, ...,A_k, [B_1,..., B_m], C, [D_1,...,D_n]>
    B) Query conditions:
    B0. Q is over a single table T.
    B1. The attributes referenced by Q are a subset of the attributes of I.
    B2. All attributes QA in Q can be divided into 3 overlapping groups:
        - SA = {S_1, ..., S_l, [C]} - from the SELECT clause, where C is
          referenced by any number of MIN and/or MAX functions if present.
        - WA = {W_1, ..., W_p} - from the WHERE clause
        - GA = <G_1, ..., G_k> - from the GROUP BY clause (if any)
             = SA              - if Q is a DISTINCT query (based on the
                                 equivalence of DISTINCT and GROUP queries.
unknown's avatar
unknown committed
6917 6918
        - NGA = QA - (GA union C) = {NG_1, ..., NG_m} - the ones not in
          GROUP BY and not referenced by MIN/MAX functions.
6919
        with the following properties specified below.
6920 6921
    B3. If Q has a GROUP BY WITH ROLLUP clause the access method is not 
        applicable.
6922 6923 6924 6925 6926 6927 6928 6929 6930 6931

    SA1. There is at most one attribute in SA referenced by any number of
         MIN and/or MAX functions which, which if present, is denoted as C.
    SA2. The position of the C attribute in the index is after the last A_k.
    SA3. The attribute C can be referenced in the WHERE clause only in
         predicates of the forms:
         - (C {< | <= | > | >= | =} const)
         - (const {< | <= | > | >= | =} C)
         - (C between const_i and const_j)
         - C IS NULL
6932 6933
         - C IS NOT NULL
         - C != const
6934 6935 6936
    SA4. If Q has a GROUP BY clause, there are no other aggregate functions
         except MIN and MAX. For queries with DISTINCT, aggregate functions
         are allowed.
6937
    SA5. The select list in DISTINCT queries should not contain expressions.
6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966
    GA1. If Q has a GROUP BY clause, then GA is a prefix of I. That is, if
         G_i = A_j => i = j.
    GA2. If Q has a DISTINCT clause, then there is a permutation of SA that
         forms a prefix of I. This permutation is used as the GROUP clause
         when the DISTINCT query is converted to a GROUP query.
    GA3. The attributes in GA may participate in arbitrary predicates, divided
         into two groups:
         - RNG(G_1,...,G_q ; where q <= k) is a range condition over the
           attributes of a prefix of GA
         - PA(G_i1,...G_iq) is an arbitrary predicate over an arbitrary subset
           of GA. Since P is applied to only GROUP attributes it filters some
           groups, and thus can be applied after the grouping.
    GA4. There are no expressions among G_i, just direct column references.
    NGA1.If in the index I there is a gap between the last GROUP attribute G_k,
         and the MIN/MAX attribute C, then NGA must consist of exactly the index
         attributes that constitute the gap. As a result there is a permutation
         of NGA that coincides with the gap in the index <B_1, ..., B_m>.
    NGA2.If BA <> {}, then the WHERE clause must contain a conjunction EQ of
         equality conditions for all NG_i of the form (NG_i = const) or
         (const = NG_i), such that each NG_i is referenced in exactly one
         conjunct. Informally, the predicates provide constants to fill the
         gap in the index.
    WA1. There are no other attributes in the WHERE clause except the ones
         referenced in predicates RNG, PA, PC, EQ defined above. Therefore
         WA is subset of (GA union NGA union C) for GA,NGA,C that pass the above
         tests. By transitivity then it also follows that each WA_i participates
         in the index I (if this was already tested for GA, NGA and C).

    C) Overall query form:
6967 6968 6969 6970
       SELECT EXPR([A_1,...,A_k], [B_1,...,B_m], [MIN(C)], [MAX(C)])
         FROM T
        WHERE [RNG(A_1,...,A_p ; where p <= k)]
         [AND EQ(B_1,...,B_m)]
6971 6972
         [AND PC(C)]
         [AND PA(A_i1,...,A_iq)]
6973 6974 6975 6976
       GROUP BY A_1,...,A_k
       [HAVING PH(A_1, ..., B_1,..., C)]
    where EXPR(...) is an arbitrary expression over some or all SELECT fields,
    or:
6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005
       SELECT DISTINCT A_i1,...,A_ik
         FROM T
        WHERE [RNG(A_1,...,A_p ; where p <= k)]
         [AND PA(A_i1,...,A_iq)];

  NOTES
    If the current query satisfies the conditions above, and if
    (mem_root! = NULL), then the function constructs and returns a new TRP
    object, that is later used to construct a new QUICK_GROUP_MIN_MAX_SELECT.
    If (mem_root == NULL), then the function only tests whether the current
    query satisfies the conditions above, and, if so, sets
    is_applicable = TRUE.

    Queries with DISTINCT for which index access can be used are transformed
    into equivalent group-by queries of the form:

    SELECT A_1,...,A_k FROM T
     WHERE [RNG(A_1,...,A_p ; where p <= k)]
      [AND PA(A_i1,...,A_iq)]
    GROUP BY A_1,...,A_k;

    The group-by list is a permutation of the select attributes, according
    to their order in the index.

  TODO
  - What happens if the query groups by the MIN/MAX field, and there is no
    other field as in: "select min(a) from t1 group by a" ?
  - We assume that the general correctness of the GROUP-BY query was checked
    before this point. Is this correct, or do we have to check it completely?
7006 7007
  - Lift the limitation in condition (B3), that is, make this access method 
    applicable to ROLLUP queries.
7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046

  RETURN
    If mem_root != NULL
    - valid TRP_GROUP_MIN_MAX object if this QUICK class can be used for
      the query
    -  NULL o/w.
    If mem_root == NULL
    - NULL
*/

static TRP_GROUP_MIN_MAX *
get_best_group_min_max(PARAM *param, SEL_TREE *tree)
{
  THD *thd= param->thd;
  JOIN *join= thd->lex->select_lex.join;
  TABLE *table= param->table;
  bool have_min= FALSE;              /* TRUE if there is a MIN function. */
  bool have_max= FALSE;              /* TRUE if there is a MAX function. */
  Item_field *min_max_arg_item= NULL;/* The argument of all MIN/MAX functions.*/
  KEY_PART_INFO *min_max_arg_part= NULL; /* The corresponding keypart. */
  uint group_prefix_len= 0; /* Length (in bytes) of the key prefix. */
  KEY *index_info= NULL;    /* The index chosen for data access. */
  uint index= 0;            /* The id of the chosen index. */
  uint group_key_parts= 0;  /* Number of index key parts in the group prefix. */
  uint used_key_parts= 0;   /* Number of index key parts used for access. */
  byte key_infix[MAX_KEY_LENGTH]; /* Constants from equality predicates.*/
  uint key_infix_len= 0;          /* Length of key_infix. */
  TRP_GROUP_MIN_MAX *read_plan= NULL; /* The eventually constructed TRP. */
  uint key_part_nr;
  ORDER *tmp_group;
  Item *item;
  Item_field *item_field;
  DBUG_ENTER("get_best_group_min_max");

  /* Perform few 'cheap' tests whether this access method is applicable. */
  if (!join || (thd->lex->sql_command != SQLCOM_SELECT))
    DBUG_RETURN(NULL);        /* This is not a select statement. */
  if ((join->tables != 1) ||  /* The query must reference one table. */
      ((!join->group_list) && /* Neither GROUP BY nor a DISTINCT query. */
7047 7048
       (!join->select_distinct)) ||
      (thd->lex->select_lex.olap == ROLLUP_TYPE)) /* Check (B3) for ROLLUP */
7049
    DBUG_RETURN(NULL);
7050
  if (table->s->keys == 0)        /* There are no indexes to use. */
7051 7052 7053
    DBUG_RETURN(NULL);

  /* Analyze the query in more detail. */
7054
  List_iterator<Item> select_items_it(join->fields_list);
7055

7056
  /* Check (SA1,SA4) and store the only MIN/MAX argument - the C attribute.*/
unknown's avatar
unknown committed
7057
  if (join->make_sum_func_list(join->all_fields, join->fields_list, 1))
7058 7059
    DBUG_RETURN(NULL);
  if (join->sum_funcs[0])
7060
  {
7061 7062 7063
    Item_sum *min_max_item;
    Item_sum **func_ptr= join->sum_funcs;
    while ((min_max_item= *(func_ptr++)))
7064
    {
7065 7066 7067 7068 7069
      if (min_max_item->sum_func() == Item_sum::MIN_FUNC)
        have_min= TRUE;
      else if (min_max_item->sum_func() == Item_sum::MAX_FUNC)
        have_max= TRUE;
      else
7070 7071
        DBUG_RETURN(NULL);

7072 7073
      Item *expr= min_max_item->args[0];    /* The argument of MIN/MAX. */
      if (expr->type() == Item::FIELD_ITEM) /* Is it an attribute? */
7074
      {
7075 7076 7077 7078
        if (! min_max_arg_item)
          min_max_arg_item= (Item_field*) expr;
        else if (! min_max_arg_item->eq(expr, 1))
          DBUG_RETURN(NULL);
7079
      }
7080 7081
      else
        DBUG_RETURN(NULL);
7082
    }
7083
  }
7084

7085 7086 7087 7088
  /* Check (SA5). */
  if (join->select_distinct)
  {
    while ((item= select_items_it++))
7089
    {
7090 7091
      if (item->type() != Item::FIELD_ITEM)
        DBUG_RETURN(NULL);
7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107
    }
  }

  /* Check (GA4) - that there are no expressions among the group attributes. */
  for (tmp_group= join->group_list; tmp_group; tmp_group= tmp_group->next)
  {
    if ((*tmp_group->item)->type() != Item::FIELD_ITEM)
      DBUG_RETURN(NULL);
  }

  /*
    Check that table has at least one compound index such that the conditions
    (GA1,GA2) are all TRUE. If there is more than one such index, select the
    first one. Here we set the variables: group_prefix_len and index_info.
  */
  KEY *cur_index_info= table->key_info;
7108
  KEY *cur_index_info_end= cur_index_info + table->s->keys;
7109
  KEY_PART_INFO *cur_part= NULL;
7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128
  KEY_PART_INFO *end_part; /* Last part for loops. */
  /* Last index part. */
  KEY_PART_INFO *last_part= NULL;
  KEY_PART_INFO *first_non_group_part= NULL;
  KEY_PART_INFO *first_non_infix_part= NULL;
  uint key_infix_parts= 0;
  uint cur_group_key_parts= 0;
  uint cur_group_prefix_len= 0;
  /* Cost-related variables for the best index so far. */
  double best_read_cost= DBL_MAX;
  ha_rows best_records= 0;
  SEL_ARG *best_index_tree= NULL;
  ha_rows best_quick_prefix_records= 0;
  uint best_param_idx= 0;
  double cur_read_cost= DBL_MAX;
  ha_rows cur_records;
  SEL_ARG *cur_index_tree= NULL;
  ha_rows cur_quick_prefix_records= 0;
  uint cur_param_idx;
unknown's avatar
unknown committed
7129
  key_map cur_used_key_parts;
unknown's avatar
unknown committed
7130
  uint pk= param->table->s->primary_key;
7131 7132 7133 7134 7135 7136 7137

  for (uint cur_index= 0 ; cur_index_info != cur_index_info_end ;
       cur_index_info++, cur_index++)
  {
    /* Check (B1) - if current index is covering. */
    if (!table->used_keys.is_set(cur_index))
      goto next_index;
7138

unknown's avatar
unknown committed
7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162
    /*
      If the current storage manager is such that it appends the primary key to
      each index, then the above condition is insufficient to check if the
      index is covering. In such cases it may happen that some fields are
      covered by the PK index, but not by the current index. Since we can't
      use the concatenation of both indexes for index lookup, such an index
      does not qualify as covering in our case. If this is the case, below
      we check that all query fields are indeed covered by 'cur_index'.
    */
    if (pk < MAX_KEY && cur_index != pk &&
        (table->file->table_flags() & HA_PRIMARY_KEY_IN_READ_INDEX))
    {
      /* For each table field */
      for (uint i= 0; i < table->s->fields; i++)
      {
        Field *cur_field= table->field[i];
        /*
          If the field is used in the current query, check that the
          field is covered by some keypart of the current index.
        */
        if (thd->query_id == cur_field->query_id)
        {
          KEY_PART_INFO *key_part= cur_index_info->key_part;
          KEY_PART_INFO *key_part_end= key_part + cur_index_info->key_parts;
7163
          for (;;)
unknown's avatar
unknown committed
7164 7165 7166
          {
            if (key_part->field == cur_field)
              break;
7167 7168
            if (++key_part == key_part_end)
              goto next_index;                  // Field was not part of key
unknown's avatar
unknown committed
7169 7170 7171 7172 7173
          }
        }
      }
    }

7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194
    /*
      Check (GA1) for GROUP BY queries.
    */
    if (join->group_list)
    {
      cur_part= cur_index_info->key_part;
      end_part= cur_part + cur_index_info->key_parts;
      /* Iterate in parallel over the GROUP list and the index parts. */
      for (tmp_group= join->group_list; tmp_group && (cur_part != end_part);
           tmp_group= tmp_group->next, cur_part++)
      {
        /*
          TODO:
          tmp_group::item is an array of Item, is it OK to consider only the
          first Item? If so, then why? What is the array for?
        */
        /* Above we already checked that all group items are fields. */
        DBUG_ASSERT((*tmp_group->item)->type() == Item::FIELD_ITEM);
        Item_field *group_field= (Item_field *) (*tmp_group->item);
        if (group_field->field->eq(cur_part->field))
        {
7195 7196
          cur_group_prefix_len+= cur_part->store_length;
          ++cur_group_key_parts;
7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211
        }
        else
          goto next_index;
      }
    }
    /*
      Check (GA2) if this is a DISTINCT query.
      If GA2, then Store a new ORDER object in group_fields_array at the
      position of the key part of item_field->field. Thus we get the ORDER
      objects for each field ordered as the corresponding key parts.
      Later group_fields_array of ORDER objects is used to convert the query
      to a GROUP query.
    */
    else if (join->select_distinct)
    {
7212
      select_items_it.rewind();
unknown's avatar
unknown committed
7213
      cur_used_key_parts.clear_all();
7214
      while ((item= select_items_it++))
7215
      {
7216
        item_field= (Item_field*) item; /* (SA5) already checked above. */
7217 7218
        /* Find the order of the key part in the index. */
        key_part_nr= get_field_keypart(cur_index_info, item_field->field);
unknown's avatar
unknown committed
7219 7220 7221 7222 7223 7224
        /*
          Check if this attribute was already present in the select list.
          If it was present, then its corresponding key part was alredy used.
        */
        if (cur_used_key_parts.is_set(key_part_nr))
          continue;
7225
        if (key_part_nr < 1 || key_part_nr > join->fields_list.elements)
7226 7227
          goto next_index;
        cur_part= cur_index_info->key_part + key_part_nr - 1;
7228
        cur_group_prefix_len+= cur_part->store_length;
unknown's avatar
unknown committed
7229 7230
        cur_used_key_parts.set_bit(key_part_nr);
        ++cur_group_key_parts;
7231 7232 7233 7234 7235 7236 7237 7238 7239
      }
    }
    else
      DBUG_ASSERT(FALSE);

    /* Check (SA2). */
    if (min_max_arg_item)
    {
      key_part_nr= get_field_keypart(cur_index_info, min_max_arg_item->field);
7240
      if (key_part_nr <= cur_group_key_parts)
7241 7242 7243 7244 7245 7246 7247 7248
        goto next_index;
      min_max_arg_part= cur_index_info->key_part + key_part_nr - 1;
    }

    /*
      Check (NGA1, NGA2) and extract a sequence of constants to be used as part
      of all search keys.
    */
7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270

    /*
      If there is MIN/MAX, each keypart between the last group part and the
      MIN/MAX part must participate in one equality with constants, and all
      keyparts after the MIN/MAX part must not be referenced in the query.

      If there is no MIN/MAX, the keyparts after the last group part can be
      referenced only in equalities with constants, and the referenced keyparts
      must form a sequence without any gaps that starts immediately after the
      last group keypart.
    */
    last_part= cur_index_info->key_part + cur_index_info->key_parts;
    first_non_group_part= (cur_group_key_parts < cur_index_info->key_parts) ?
                          cur_index_info->key_part + cur_group_key_parts :
                          NULL;
    first_non_infix_part= min_max_arg_part ?
                          (min_max_arg_part < last_part) ?
                             min_max_arg_part + 1 :
                             NULL :
                           NULL;
    if (first_non_group_part &&
        (!min_max_arg_part || (min_max_arg_part - first_non_group_part > 0)))
7271
    {
7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288
      if (tree)
      {
        uint dummy;
        SEL_ARG *index_range_tree= get_index_range_tree(cur_index, tree, param,
                                                        &dummy);
        if (!get_constant_key_infix(cur_index_info, index_range_tree,
                                    first_non_group_part, min_max_arg_part,
                                    last_part, thd, key_infix, &key_infix_len,
                                    &first_non_infix_part))
          goto next_index;
      }
      else if (min_max_arg_part &&
               (min_max_arg_part - first_non_group_part > 0))
        /*
          There is a gap but no range tree, thus no predicates at all for the
          non-group keyparts.
        */
7289 7290 7291
        goto next_index;
    }

7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304
    /*
      Test (WA1) partially - that no other keypart after the last infix part is
      referenced in the query.
    */
    if (first_non_infix_part)
    {
      for (cur_part= first_non_infix_part; cur_part != last_part; cur_part++)
      {
        if (cur_part->field->query_id == thd->query_id)
          goto next_index;
      }
    }

7305
    /* If we got to this point, cur_index_info passes the test. */
7306 7307 7308
    key_infix_parts= key_infix_len ?
                     (first_non_infix_part - first_non_group_part) : 0;
    used_key_parts= cur_group_key_parts + key_infix_parts;
7309

7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323
    /* Compute the cost of using this index. */
    if (tree)
    {
      /* Find the SEL_ARG sub-tree that corresponds to the chosen index. */
      cur_index_tree= get_index_range_tree(cur_index, tree, param,
                                           &cur_param_idx);
      /* Check if this range tree can be used for prefix retrieval. */
      cur_quick_prefix_records= check_quick_select(param, cur_param_idx,
                                                    cur_index_tree);
    }
    cost_group_min_max(table, cur_index_info, used_key_parts,
                       cur_group_key_parts, tree, cur_index_tree,
                       cur_quick_prefix_records, have_min, have_max,
                       &cur_read_cost, &cur_records);
unknown's avatar
unknown committed
7324 7325 7326 7327 7328 7329
    /*
      If cur_read_cost is lower than best_read_cost use cur_index.
      Do not compare doubles directly because they may have different
      representations (64 vs. 80 bits).
    */
    if (cur_read_cost < best_read_cost - (DBL_EPSILON * cur_read_cost))
7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340
    {
      index_info= cur_index_info;
      index= cur_index;
      best_read_cost= cur_read_cost;
      best_records= cur_records;
      best_index_tree= cur_index_tree;
      best_quick_prefix_records= cur_quick_prefix_records;
      best_param_idx= cur_param_idx;
      group_key_parts= cur_group_key_parts;
      group_prefix_len= cur_group_prefix_len;
    }
7341 7342

  next_index:
7343 7344
    cur_group_key_parts= 0;
    cur_group_prefix_len= 0;
7345 7346 7347 7348
  }
  if (!index_info) /* No usable index found. */
    DBUG_RETURN(NULL);

7349 7350 7351
  /* Check (SA3) for the where clause. */
  if (join->conds && min_max_arg_item &&
      !check_group_min_max_predicates(join->conds, min_max_arg_item,
7352 7353
                                      (index_info->flags & HA_SPATIAL) ?
                                      Field::itMBR : Field::itRAW))
7354 7355 7356 7357
    DBUG_RETURN(NULL);

  /* The query passes all tests, so construct a new TRP object. */
  read_plan= new (param->mem_root)
7358 7359 7360 7361
                 TRP_GROUP_MIN_MAX(have_min, have_max, min_max_arg_part,
                                   group_prefix_len, used_key_parts,
                                   group_key_parts, index_info, index,
                                   key_infix_len,
7362
                                   (key_infix_len > 0) ? key_infix : NULL,
7363
                                   tree, best_index_tree, best_param_idx,
7364
                                   best_quick_prefix_records);
7365 7366 7367 7368 7369
  if (read_plan)
  {
    if (tree && read_plan->quick_prefix_records == 0)
      DBUG_RETURN(NULL);

7370 7371 7372
    read_plan->read_cost= best_read_cost;
    read_plan->records=   best_records;

7373 7374 7375 7376 7377 7378 7379 7380 7381 7382
    DBUG_PRINT("info",
               ("Returning group min/max plan: cost: %g, records: %lu",
                read_plan->read_cost, (ulong) read_plan->records));
  }

  DBUG_RETURN(read_plan);
}


/*
7383 7384
  Check that the MIN/MAX attribute participates only in range predicates
  with constants.
7385 7386 7387 7388 7389 7390

  SYNOPSIS
    check_group_min_max_predicates()
    cond              tree (or subtree) describing all or part of the WHERE
                      clause being analyzed
    min_max_arg_item  the field referenced by the MIN/MAX function(s)
7391
    min_max_arg_part  the keypart of the MIN/MAX argument if any
7392 7393 7394

  DESCRIPTION
    The function walks recursively over the cond tree representing a WHERE
7395
    clause, and checks condition (SA3) - if a field is referenced by a MIN/MAX
7396 7397
    aggregate function, it is referenced only by one of the following
    predicates: {=, !=, <, <=, >, >=, between, is null, is not null}.
7398 7399 7400 7401 7402 7403 7404

  RETURN
    TRUE  if cond passes the test
    FALSE o/w
*/

static bool
7405 7406
check_group_min_max_predicates(COND *cond, Item_field *min_max_arg_item,
                               Field::imagetype image_type)
7407 7408
{
  DBUG_ENTER("check_group_min_max_predicates");
7409
  DBUG_ASSERT(cond && min_max_arg_item);
7410 7411 7412 7413 7414 7415 7416 7417 7418

  Item::Type cond_type= cond->type();
  if (cond_type == Item::COND_ITEM) /* 'AND' or 'OR' */
  {
    DBUG_PRINT("info", ("Analyzing: %s", ((Item_func*) cond)->func_name()));
    List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
    Item *and_or_arg;
    while ((and_or_arg= li++))
    {
unknown's avatar
unknown committed
7419
      if (!check_group_min_max_predicates(and_or_arg, min_max_arg_item,
7420
                                         image_type))
7421 7422 7423 7424 7425
        DBUG_RETURN(FALSE);
    }
    DBUG_RETURN(TRUE);
  }

7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438
  /*
    TODO:
    This is a very crude fix to handle sub-selects in the WHERE clause
    (Item_subselect objects). With the test below we rule out from the
    optimization all queries with subselects in the WHERE clause. What has to
    be done, is that here we should analyze whether the subselect references
    the MIN/MAX argument field, and disallow the optimization only if this is
    so.
  */
  if (cond_type == Item::SUBSELECT_ITEM)
    DBUG_RETURN(FALSE);
  
  /* We presume that at this point there are no other Items than functions. */
7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451
  DBUG_ASSERT(cond_type == Item::FUNC_ITEM);

  /* Test if cond references only group-by or non-group fields. */
  Item_func *pred= (Item_func*) cond;
  Item **arguments= pred->arguments();
  Item *cur_arg;
  DBUG_PRINT("info", ("Analyzing: %s", pred->func_name()));
  for (uint arg_idx= 0; arg_idx < pred->argument_count (); arg_idx++)
  {
    cur_arg= arguments[arg_idx];
    DBUG_PRINT("info", ("cur_arg: %s", cur_arg->full_name()));
    if (cur_arg->type() == Item::FIELD_ITEM)
    {
7452
      if (min_max_arg_item->eq(cur_arg, 1)) 
7453 7454 7455
      {
       /*
         If pred references the MIN/MAX argument, check whether pred is a range
7456
         condition that compares the MIN/MAX argument with a constant.
7457 7458
       */
        Item_func::Functype pred_type= pred->functype();
7459 7460 7461 7462 7463 7464 7465 7466 7467 7468
        if (pred_type != Item_func::EQUAL_FUNC     &&
            pred_type != Item_func::LT_FUNC        &&
            pred_type != Item_func::LE_FUNC        &&
            pred_type != Item_func::GT_FUNC        &&
            pred_type != Item_func::GE_FUNC        &&
            pred_type != Item_func::BETWEEN        &&
            pred_type != Item_func::ISNULL_FUNC    &&
            pred_type != Item_func::ISNOTNULL_FUNC &&
            pred_type != Item_func::EQ_FUNC        &&
            pred_type != Item_func::NE_FUNC)
7469 7470 7471 7472
          DBUG_RETURN(FALSE);

        /* Check that pred compares min_max_arg_item with a constant. */
        Item *args[3];
7473
        bzero(args, 3 * sizeof(Item*));
7474 7475 7476 7477
        bool inv;
        /* Test if this is a comparison of a field and a constant. */
        if (!simple_pred(pred, args, &inv))
          DBUG_RETURN(FALSE);
7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496

        /* Check for compatible string comparisons - similar to get_mm_leaf. */
        if (args[0] && args[1] && !args[2] && // this is a binary function
            min_max_arg_item->result_type() == STRING_RESULT &&
            /*
              Don't use an index when comparing strings of different collations.
            */
            ((args[1]->result_type() == STRING_RESULT &&
              image_type == Field::itRAW &&
              ((Field_str*) min_max_arg_item->field)->charset() !=
              pred->compare_collation())
             ||
             /*
               We can't always use indexes when comparing a string index to a
               number.
             */
             (args[1]->result_type() != STRING_RESULT &&
              min_max_arg_item->field->cmp_type() != args[1]->result_type())))
          DBUG_RETURN(FALSE);
7497 7498 7499 7500
      }
    }
    else if (cur_arg->type() == Item::FUNC_ITEM)
    {
unknown's avatar
unknown committed
7501
      if (!check_group_min_max_predicates(cur_arg, min_max_arg_item,
7502
                                         image_type))
7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521
        DBUG_RETURN(FALSE);
    }
    else if (cur_arg->const_item())
    {
      DBUG_RETURN(TRUE);
    }
    else
      DBUG_RETURN(FALSE);
  }

  DBUG_RETURN(TRUE);
}


/*
  Extract a sequence of constants from a conjunction of equality predicates.

  SYNOPSIS
    get_constant_key_infix()
7522 7523 7524 7525 7526 7527 7528 7529 7530
    index_info             [in]  Descriptor of the chosen index.
    index_range_tree       [in]  Range tree for the chosen index
    first_non_group_part   [in]  First index part after group attribute parts
    min_max_arg_part       [in]  The keypart of the MIN/MAX argument if any
    last_part              [in]  Last keypart of the index
    thd                    [in]  Current thread
    key_infix              [out] Infix of constants to be used for index lookup
    key_infix_len          [out] Lenghth of the infix
    first_non_infix_part   [out] The first keypart after the infix (if any)
7531 7532 7533
    
  DESCRIPTION
    Test conditions (NGA1, NGA2) from get_best_group_min_max(). Namely,
unknown's avatar
unknown committed
7534 7535
    for each keypart field NGF_i not in GROUP-BY, check that there is a
    constant equality predicate among conds with the form (NGF_i = const_ci) or
7536 7537
    (const_ci = NGF_i).
    Thus all the NGF_i attributes must fill the 'gap' between the last group-by
7538 7539 7540 7541 7542 7543
    attribute and the MIN/MAX attribute in the index (if present). If these
    conditions hold, copy each constant from its corresponding predicate into
    key_infix, in the order its NG_i attribute appears in the index, and update
    key_infix_len with the total length of the key parts in key_infix.

  RETURN
7544
    TRUE  if the index passes the test
7545 7546 7547 7548
    FALSE o/w
*/

static bool
7549
get_constant_key_infix(KEY *index_info, SEL_ARG *index_range_tree,
7550
                       KEY_PART_INFO *first_non_group_part,
7551 7552 7553 7554
                       KEY_PART_INFO *min_max_arg_part,
                       KEY_PART_INFO *last_part, THD *thd,
                       byte *key_infix, uint *key_infix_len,
                       KEY_PART_INFO **first_non_infix_part)
7555 7556 7557
{
  SEL_ARG       *cur_range;
  KEY_PART_INFO *cur_part;
7558 7559
  /* End part for the first loop below. */
  KEY_PART_INFO *end_part= min_max_arg_part ? min_max_arg_part : last_part;
7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576

  *key_infix_len= 0;
  byte *key_ptr= key_infix;
  for (cur_part= first_non_group_part; cur_part != end_part; cur_part++)
  {
    /*
      Find the range tree for the current keypart. We assume that
      index_range_tree points to the leftmost keypart in the index.
    */
    for (cur_range= index_range_tree; cur_range;
         cur_range= cur_range->next_key_part)
    {
      if (cur_range->field->eq(cur_part->field))
        break;
    }
    if (!cur_range)
    {
7577 7578 7579 7580 7581 7582 7583
      if (min_max_arg_part)
        return FALSE; /* The current keypart has no range predicates at all. */
      else
      {
        *first_non_infix_part= cur_part;
        return TRUE;
      }
7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607
    }

    /* Check that the current range tree is a single point interval. */
    if (cur_range->prev || cur_range->next)
      return FALSE; /* This is not the only range predicate for the field. */
    if ((cur_range->min_flag & NO_MIN_RANGE) ||
        (cur_range->max_flag & NO_MAX_RANGE) ||
        (cur_range->min_flag & NEAR_MIN) || (cur_range->max_flag & NEAR_MAX))
      return FALSE;

    uint field_length= cur_part->store_length;
    if ((cur_range->maybe_null &&
         cur_range->min_value[0] && cur_range->max_value[0])
        ||
        (memcmp(cur_range->min_value, cur_range->max_value, field_length) == 0))
    { /* cur_range specifies 'IS NULL' or an equality condition. */
      memcpy(key_ptr, cur_range->min_value, field_length);
      key_ptr+= field_length;
      *key_infix_len+= field_length;
    }
    else
      return FALSE;
  }

7608 7609 7610
  if (!min_max_arg_part && (cur_part == last_part))
    *first_non_infix_part= last_part;

7611 7612 7613 7614
  return TRUE;
}


7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634
/*
  Find the key part referenced by a field.

  SYNOPSIS
    get_field_keypart()
    index  descriptor of an index
    field  field that possibly references some key part in index

  NOTES
    The return value can be used to get a KEY_PART_INFO pointer by
    part= index->key_part + get_field_keypart(...) - 1;

  RETURN
    Positive number which is the consecutive number of the key part, or
    0 if field does not reference any index field.
*/

static inline uint
get_field_keypart(KEY *index, Field *field)
{
7635
  KEY_PART_INFO *part, *end;
7636

7637
  for (part= index->key_part, end= part + index->key_parts; part < end; part++)
7638 7639
  {
    if (field->eq(part->field))
unknown's avatar
unknown committed
7640
      return part - index->key_part + 1;
7641
  }
7642
  return 0;
7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683
}


/*
  Find the SEL_ARG sub-tree that corresponds to the chosen index.

  SYNOPSIS
    get_index_range_tree()
    index     [in]  The ID of the index being looked for
    range_tree[in]  Tree of ranges being searched
    param     [in]  PARAM from SQL_SELECT::test_quick_select
    param_idx [out] Index in the array PARAM::key that corresponds to 'index'

  DESCRIPTION

    A SEL_TREE contains range trees for all usable indexes. This procedure
    finds the SEL_ARG sub-tree for 'index'. The members of a SEL_TREE are
    ordered in the same way as the members of PARAM::key, thus we first find
    the corresponding index in the array PARAM::key. This index is returned
    through the variable param_idx, to be used later as argument of
    check_quick_select().

  RETURN
    Pointer to the SEL_ARG subtree that corresponds to index.
*/

SEL_ARG * get_index_range_tree(uint index, SEL_TREE* range_tree, PARAM *param,
                               uint *param_idx)
{
  uint idx= 0; /* Index nr in param->key_parts */
  while (idx < param->keys)
  {
    if (index == param->real_keynr[idx])
      break;
    idx++;
  }
  *param_idx= idx;
  return(range_tree->keys[idx]);
}


7684
/*
7685
  Compute the cost of a quick_group_min_max_select for a particular index.
7686 7687

  SYNOPSIS
7688 7689 7690 7691 7692 7693 7694
    cost_group_min_max()
    table                [in] The table being accessed
    index_info           [in] The index used to access the table
    used_key_parts       [in] Number of key parts used to access the index
    group_key_parts      [in] Number of index key parts in the group prefix
    range_tree           [in] Tree of ranges for all indexes
    index_tree           [in] The range tree for the current index
unknown's avatar
unknown committed
7695 7696
    quick_prefix_records [in] Number of records retrieved by the internally
			      used quick range select if any
7697 7698 7699 7700
    have_min             [in] True if there is a MIN function
    have_max             [in] True if there is a MAX function
    read_cost           [out] The cost to retrieve rows via this quick select
    records             [out] The number of rows retrieved
7701 7702

  DESCRIPTION
unknown's avatar
unknown committed
7703 7704
    This method computes the access cost of a TRP_GROUP_MIN_MAX instance and
    the number of rows returned. It updates this->read_cost and this->records.
7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743

  NOTES
    The cost computation distinguishes several cases:
    1) No equality predicates over non-group attributes (thus no key_infix).
       If groups are bigger than blocks on the average, then we assume that it
       is very unlikely that block ends are aligned with group ends, thus even
       if we look for both MIN and MAX keys, all pairs of neighbor MIN/MAX
       keys, except for the first MIN and the last MAX keys, will be in the
       same block.  If groups are smaller than blocks, then we are going to
       read all blocks.
    2) There are equality predicates over non-group attributes.
       In this case the group prefix is extended by additional constants, and
       as a result the min/max values are inside sub-groups of the original
       groups. The number of blocks that will be read depends on whether the
       ends of these sub-groups will be contained in the same or in different
       blocks. We compute the probability for the two ends of a subgroup to be
       in two different blocks as the ratio of:
       - the number of positions of the left-end of a subgroup inside a group,
         such that the right end of the subgroup is past the end of the buffer
         containing the left-end, and
       - the total number of possible positions for the left-end of the
         subgroup, which is the number of keys in the containing group.
       We assume it is very unlikely that two ends of subsequent subgroups are
       in the same block.
    3) The are range predicates over the group attributes.
       Then some groups may be filtered by the range predicates. We use the
       selectivity of the range predicates to decide how many groups will be
       filtered.

  TODO
     - Take into account the optional range predicates over the MIN/MAX
       argument.
     - Check if we have a PK index and we use all cols - then each key is a
       group, and it will be better to use an index scan.

  RETURN
    None
*/

7744 7745 7746 7747 7748
void cost_group_min_max(TABLE* table, KEY *index_info, uint used_key_parts,
                        uint group_key_parts, SEL_TREE *range_tree,
                        SEL_ARG *index_tree, ha_rows quick_prefix_records,
                        bool have_min, bool have_max,
                        double *read_cost, ha_rows *records)
7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760
{
  uint table_records;
  uint num_groups;
  uint num_blocks;
  uint keys_per_block;
  uint keys_per_group;
  uint keys_per_subgroup; /* Average number of keys in sub-groups */
                          /* formed by a key infix. */
  double p_overlap; /* Probability that a sub-group overlaps two blocks. */
  double quick_prefix_selectivity;
  double io_cost;
  double cpu_cost= 0; /* TODO: CPU cost of index_read calls? */
unknown's avatar
unknown committed
7761
  DBUG_ENTER("cost_group_min_max");
unknown's avatar
unknown committed
7762

7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780
  table_records= table->file->records;
  keys_per_block= (table->file->block_size / 2 /
                   (index_info->key_length + table->file->ref_length)
                        + 1);
  num_blocks= (table_records / keys_per_block) + 1;

  /* Compute the number of keys in a group. */
  keys_per_group= index_info->rec_per_key[group_key_parts - 1];
  if (keys_per_group == 0) /* If there is no statistics try to guess */
    /* each group contains 10% of all records */
    keys_per_group= (table_records / 10) + 1;
  num_groups= (table_records / keys_per_group) + 1;

  /* Apply the selectivity of the quick select for group prefixes. */
  if (range_tree && (quick_prefix_records != HA_POS_ERROR))
  {
    quick_prefix_selectivity= (double) quick_prefix_records /
                              (double) table_records;
unknown's avatar
unknown committed
7781
    num_groups= (uint) rint(num_groups * quick_prefix_selectivity);
7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812
  }

  if (used_key_parts > group_key_parts)
  { /*
      Compute the probability that two ends of a subgroup are inside
      different blocks.
    */
    keys_per_subgroup= index_info->rec_per_key[used_key_parts - 1];
    if (keys_per_subgroup >= keys_per_block) /* If a subgroup is bigger than */
      p_overlap= 1.0;       /* a block, it will overlap at least two blocks. */
    else
    {
      double blocks_per_group= (double) num_blocks / (double) num_groups;
      p_overlap= (blocks_per_group * (keys_per_subgroup - 1)) / keys_per_group;
      p_overlap= min(p_overlap, 1.0);
    }
    io_cost= (double) min(num_groups * (1 + p_overlap), num_blocks);
  }
  else
    io_cost= (keys_per_group > keys_per_block) ?
             (have_min && have_max) ? (double) (num_groups + 1) :
                                      (double) num_groups :
             (double) num_blocks;

  /*
    TODO: If there is no WHERE clause and no other expressions, there should be
    no CPU cost. We leave it here to make this cost comparable to that of index
    scan as computed in SQL_SELECT::test_quick_select().
  */
  cpu_cost= (double) num_groups / TIME_FOR_COMPARE;

7813
  *read_cost= io_cost + cpu_cost;
7814
  *records= num_groups;
7815 7816

  DBUG_PRINT("info",
7817 7818
             ("table rows=%u, keys/block=%u, keys/group=%u, result rows=%u, blocks=%u",
              table_records, keys_per_block, keys_per_group, *records,
7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851
              num_blocks));
  DBUG_VOID_RETURN;
}


/*
  Construct a new quick select object for queries with group by with min/max.

  SYNOPSIS
    TRP_GROUP_MIN_MAX::make_quick()
    param              Parameter from test_quick_select
    retrieve_full_rows ignored
    parent_alloc       Memory pool to use, if any.

  NOTES
    Make_quick ignores the retrieve_full_rows parameter because
    QUICK_GROUP_MIN_MAX_SELECT always performs 'index only' scans.
    The other parameter are ignored as well because all necessary
    data to create the QUICK object is computed at this TRP creation
    time.

  RETURN
    New QUICK_GROUP_MIN_MAX_SELECT object if successfully created,
    NULL o/w.
*/

QUICK_SELECT_I *
TRP_GROUP_MIN_MAX::make_quick(PARAM *param, bool retrieve_full_rows,
                              MEM_ROOT *parent_alloc)
{
  QUICK_GROUP_MIN_MAX_SELECT *quick;
  DBUG_ENTER("TRP_GROUP_MIN_MAX::make_quick");

7852 7853 7854 7855 7856
  quick= new QUICK_GROUP_MIN_MAX_SELECT(param->table,
                                        param->thd->lex->select_lex.join,
                                        have_min, have_max, min_max_arg_part,
                                        group_prefix_len, used_key_parts,
                                        index_info, index, read_cost, records,
unknown's avatar
unknown committed
7857 7858
                                        key_infix_len, key_infix,
                                        parent_alloc);
7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874
  if (!quick)
    DBUG_RETURN(NULL);

  if (quick->init())
  {
    delete quick;
    DBUG_RETURN(NULL);
  }

  if (range_tree)
  {
    DBUG_ASSERT(quick_prefix_records > 0);
    if (quick_prefix_records == HA_POS_ERROR)
      quick->quick_prefix_select= NULL; /* Can't construct a quick select. */
    else
      /* Make a QUICK_RANGE_SELECT to be used for group prefix retrieval. */
7875 7876
      quick->quick_prefix_select= get_quick_select(param, param_idx,
                                                   index_tree,
7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898
                                                   &quick->alloc);

    /*
      Extract the SEL_ARG subtree that contains only ranges for the MIN/MAX
      attribute, and create an array of QUICK_RANGES to be used by the
      new quick select.
    */
    if (min_max_arg_part)
    {
      SEL_ARG *min_max_range= index_tree;
      while (min_max_range) /* Find the tree for the MIN/MAX key part. */
      {
        if (min_max_range->field->eq(min_max_arg_part->field))
          break;
        min_max_range= min_max_range->next_key_part;
      }
      /* Scroll to the leftmost interval for the MIN/MAX argument. */
      while (min_max_range && min_max_range->prev)
        min_max_range= min_max_range->prev;
      /* Create an array of QUICK_RANGEs for the MIN/MAX argument. */
      while (min_max_range)
      {
7899
        if (quick->add_range(min_max_range))
7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941
        {
          delete quick;
          quick= NULL;
          DBUG_RETURN(NULL);
        }
        min_max_range= min_max_range->next;
      }
    }
  }
  else
    quick->quick_prefix_select= NULL;

  quick->update_key_stat();

  DBUG_RETURN(quick);
}


/*
  Construct new quick select for group queries with min/max.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::QUICK_GROUP_MIN_MAX_SELECT()
    table             The table being accessed
    join              Descriptor of the current query
    have_min          TRUE if the query selects a MIN function
    have_max          TRUE if the query selects a MAX function
    min_max_arg_part  The only argument field of all MIN/MAX functions
    group_prefix_len  Length of all key parts in the group prefix
    prefix_key_parts  All key parts in the group prefix
    index_info        The index chosen for data access
    use_index         The id of index_info
    read_cost         Cost of this access method
    records           Number of records returned
    key_infix_len     Length of the key infix appended to the group prefix
    key_infix         Infix of constants from equality predicates
    parent_alloc      Memory pool for this and quick_prefix_select data

  RETURN
    None
*/

unknown's avatar
unknown committed
7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954
QUICK_GROUP_MIN_MAX_SELECT::
QUICK_GROUP_MIN_MAX_SELECT(TABLE *table, JOIN *join_arg, bool have_min_arg,
                           bool have_max_arg,
                           KEY_PART_INFO *min_max_arg_part_arg,
                           uint group_prefix_len_arg,
                           uint used_key_parts_arg, KEY *index_info_arg,
                           uint use_index, double read_cost_arg,
                           ha_rows records_arg, uint key_infix_len_arg,
                           byte *key_infix_arg, MEM_ROOT *parent_alloc)
  :join(join_arg), index_info(index_info_arg),
   group_prefix_len(group_prefix_len_arg), have_min(have_min_arg),
   have_max(have_max_arg), seen_first_key(FALSE),
   min_max_arg_part(min_max_arg_part_arg), key_infix(key_infix_arg),
7955 7956
   key_infix_len(key_infix_len_arg), min_functions_it(NULL),
   max_functions_it(NULL)
7957 7958 7959 7960 7961 7962
{
  head=       table;
  file=       head->file;
  index=      use_index;
  record=     head->record[0];
  tmp_record= head->record[1];
7963 7964 7965
  read_time= read_cost_arg;
  records= records_arg;
  used_key_parts= used_key_parts_arg;
7966 7967 7968
  real_prefix_len= group_prefix_len + key_infix_len;
  group_prefix= NULL;
  min_max_arg_len= min_max_arg_part ? min_max_arg_part->store_length : 0;
unknown's avatar
unknown committed
7969 7970 7971 7972 7973 7974

  /*
    We can't have parent_alloc set as the init function can't handle this case
    yet.
  */
  DBUG_ASSERT(!parent_alloc);
7975 7976 7977
  if (!parent_alloc)
  {
    init_sql_alloc(&alloc, join->thd->variables.range_alloc_block_size, 0);
unknown's avatar
unknown committed
7978
    join->thd->mem_root= &alloc;
7979 7980
  }
  else
7981
    bzero(&alloc, sizeof(MEM_ROOT));            // ensure that it's not used
7982 7983 7984 7985 7986 7987 7988 7989 7990
}


/*
  Do post-constructor initialization.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::init()
  
7991 7992 7993 7994 7995 7996
  DESCRIPTION
    The method performs initialization that cannot be done in the constructor
    such as memory allocations that may fail. It allocates memory for the
    group prefix and inifix buffers, and for the lists of MIN/MAX item to be
    updated during execution.

7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031
  RETURN
    0      OK
    other  Error code
*/

int QUICK_GROUP_MIN_MAX_SELECT::init()
{
  if (group_prefix) /* Already initialized. */
    return 0;

  if (!(last_prefix= (byte*) alloc_root(&alloc, group_prefix_len)))
      return 1;
  /*
    We may use group_prefix to store keys with all select fields, so allocate
    enough space for it.
  */
  if (!(group_prefix= (byte*) alloc_root(&alloc,
                                         real_prefix_len + min_max_arg_len)))
    return 1;

  if (key_infix_len > 0)
  {
    /*
      The memory location pointed to by key_infix will be deleted soon, so
      allocate a new buffer and copy the key_infix into it.
    */
    byte *tmp_key_infix= (byte*) alloc_root(&alloc, key_infix_len);
    if (!tmp_key_infix)
      return 1;
    memcpy(tmp_key_infix, this->key_infix, key_infix_len);
    this->key_infix= tmp_key_infix;
  }

  if (min_max_arg_part)
  {
unknown's avatar
unknown committed
8032
    if (my_init_dynamic_array(&min_max_ranges, sizeof(QUICK_RANGE*), 16, 16))
8033 8034
      return 1;

8035 8036
    if (have_min)
    {
unknown's avatar
unknown committed
8037
      if (!(min_functions= new List<Item_sum>))
8038 8039 8040 8041 8042 8043
        return 1;
    }
    else
      min_functions= NULL;
    if (have_max)
    {
unknown's avatar
unknown committed
8044
      if (!(max_functions= new List<Item_sum>))
8045 8046 8047 8048
        return 1;
    }
    else
      max_functions= NULL;
8049

8050 8051 8052
    Item_sum *min_max_item;
    Item_sum **func_ptr= join->sum_funcs;
    while ((min_max_item= *(func_ptr++)))
8053
    {
8054 8055 8056 8057
      if (have_min && (min_max_item->sum_func() == Item_sum::MIN_FUNC))
        min_functions->push_back(min_max_item);
      else if (have_max && (min_max_item->sum_func() == Item_sum::MAX_FUNC))
        max_functions->push_back(min_max_item);
8058 8059
    }

8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070
    if (have_min)
    {
      if (!(min_functions_it= new List_iterator<Item_sum>(*min_functions)))
        return 1;
    }

    if (have_max)
    {
      if (!(max_functions_it= new List_iterator<Item_sum>(*max_functions)))
        return 1;
    }
8071
  }
unknown's avatar
unknown committed
8072 8073
  else
    min_max_ranges.elements= 0;
8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086

  return 0;
}


QUICK_GROUP_MIN_MAX_SELECT::~QUICK_GROUP_MIN_MAX_SELECT()
{
  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::~QUICK_GROUP_MIN_MAX_SELECT");
  if (file->inited != handler::NONE) 
    file->ha_index_end();
  if (min_max_arg_part)
    delete_dynamic(&min_max_ranges);
  free_root(&alloc,MYF(0));
8087 8088
  delete min_functions_it;
  delete max_functions_it;
8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107
  delete quick_prefix_select;
  DBUG_VOID_RETURN; 
}


/*
  Eventually create and add a new quick range object.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::add_range()
    sel_range  Range object from which a 

  NOTES
    Construct a new QUICK_RANGE object from a SEL_ARG object, and
    add it to the array min_max_ranges. If sel_arg is an infinite
    range, e.g. (x < 5 or x > 4), then skip it and do not construct
    a quick range.

  RETURN
8108 8109
    FALSE on success
    TRUE  otherwise
8110 8111 8112 8113 8114 8115 8116 8117
*/

bool QUICK_GROUP_MIN_MAX_SELECT::add_range(SEL_ARG *sel_range)
{
  QUICK_RANGE *range;
  uint range_flag= sel_range->min_flag | sel_range->max_flag;

  /* Skip (-inf,+inf) ranges, e.g. (x < 5 or x > 4). */
unknown's avatar
unknown committed
8118
  if ((range_flag & NO_MIN_RANGE) && (range_flag & NO_MAX_RANGE))
8119
    return FALSE;
8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134

  if (!(sel_range->min_flag & NO_MIN_RANGE) &&
      !(sel_range->max_flag & NO_MAX_RANGE))
  {
    if (sel_range->maybe_null &&
        sel_range->min_value[0] && sel_range->max_value[0])
      range_flag|= NULL_RANGE; /* IS NULL condition */
    else if (memcmp(sel_range->min_value, sel_range->max_value,
                    min_max_arg_len) == 0)
      range_flag|= EQ_RANGE;  /* equality condition */
  }
  range= new QUICK_RANGE(sel_range->min_value, min_max_arg_len,
                         sel_range->max_value, min_max_arg_len,
                         range_flag);
  if (!range)
8135
    return TRUE;
8136
  if (insert_dynamic(&min_max_ranges, (gptr)&range))
8137 8138
    return TRUE;
  return FALSE;
8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167
}


/*
  Determine the total number and length of the keys that will be used for
  index lookup.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::update_key_stat()

  DESCRIPTION
    The total length of the keys used for index lookup depends on whether
    there are any predicates referencing the min/max argument, and/or if
    the min/max argument field can be NULL.
    This function does an optimistic analysis whether the search key might
    be extended by a constant for the min/max keypart. It is 'optimistic'
    because during actual execution it may happen that a particular range
    is skipped, and then a shorter key will be used. However this is data
    dependent and can't be easily estimated here.

  RETURN
    None
*/

void QUICK_GROUP_MIN_MAX_SELECT::update_key_stat()
{
  max_used_key_length= real_prefix_len;
  if (min_max_ranges.elements > 0)
  {
8168
    QUICK_RANGE *cur_range;
8169 8170 8171 8172 8173 8174 8175
    if (have_min)
    { /* Check if the right-most range has a lower boundary. */
      get_dynamic(&min_max_ranges, (gptr)&cur_range,
                  min_max_ranges.elements - 1);
      if (!(cur_range->flag & NO_MIN_RANGE))
      {
        max_used_key_length+= min_max_arg_len;
8176
        used_key_parts++;
8177 8178 8179 8180 8181 8182 8183 8184 8185
        return;
      }
    }
    if (have_max)
    { /* Check if the left-most range has an upper boundary. */
      get_dynamic(&min_max_ranges, (gptr)&cur_range, 0);
      if (!(cur_range->flag & NO_MAX_RANGE))
      {
        max_used_key_length+= min_max_arg_len;
8186
        used_key_parts++;
8187 8188 8189 8190
        return;
      }
    }
  }
8191 8192
  else if (have_min && min_max_arg_part &&
           min_max_arg_part->field->real_maybe_null())
8193
  {
8194 8195 8196 8197 8198 8199 8200 8201
    /*
      If a MIN/MAX argument value is NULL, we can quickly determine
      that we're in the beginning of the next group, because NULLs
      are always < any other value. This allows us to quickly
      determine the end of the current group and jump to the next
      group (see next_min()) and thus effectively increases the
      usable key length.
    */
8202
    max_used_key_length+= min_max_arg_len;
8203
    used_key_parts++;
8204 8205 8206 8207 8208 8209 8210 8211 8212 8213
  }
}


/*
  Initialize a quick group min/max select for key retrieval.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::reset()

8214 8215 8216 8217
  DESCRIPTION
    Initialize the index chosen for access and find and store the prefix
    of the last group. The method is expensive since it performs disk access.

8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228
  RETURN
    0      OK
    other  Error code
*/

int QUICK_GROUP_MIN_MAX_SELECT::reset(void)
{
  int result;
  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::reset");

  file->extra(HA_EXTRA_KEYREAD); /* We need only the key attributes */
8229
  result= file->ha_index_init(index, 1);
8230
  result= file->index_last(record);
unknown's avatar
unknown committed
8231 8232
  if (result == HA_ERR_END_OF_FILE)
    DBUG_RETURN(0);
8233 8234
  if (result)
    DBUG_RETURN(result);
unknown's avatar
unknown committed
8235 8236
  if (quick_prefix_select && quick_prefix_select->reset())
    DBUG_RETURN(1);
8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275
  /* Save the prefix of the last group. */
  key_copy(last_prefix, record, index_info, group_prefix_len);

  DBUG_RETURN(0);
}



/* 
  Get the next key containing the MIN and/or MAX key for the next group.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::get_next()

  DESCRIPTION
    The method finds the next subsequent group of records that satisfies the
    query conditions and finds the keys that contain the MIN/MAX values for
    the key part referenced by the MIN/MAX function(s). Once a group and its
    MIN/MAX values are found, store these values in the Item_sum objects for
    the MIN/MAX functions. The rest of the values in the result row are stored
    in the Item_field::result_field of each select field. If the query does
    not contain MIN and/or MAX functions, then the function only finds the
    group prefix, which is a query answer itself.

  NOTES
    If both MIN and MAX are computed, then we use the fact that if there is
    no MIN key, there can't be a MAX key as well, so we can skip looking
    for a MAX key in this case.

  RETURN
    0                  on success
    HA_ERR_END_OF_FILE if returned all keys
    other              if some error occurred
*/

int QUICK_GROUP_MIN_MAX_SELECT::get_next()
{
  int min_res= 0;
  int max_res= 0;
unknown's avatar
unknown committed
8276 8277 8278 8279 8280 8281 8282
#ifdef HPUX11
  /*
    volatile is required by a bug in the HP compiler due to which the
    last test of result fails.
  */
  volatile int result;
#else
8283
  int result;
unknown's avatar
unknown committed
8284
#endif
8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304
  int is_last_prefix;

  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::get_next");

  /*
    Loop until a group is found that satisfies all query conditions or the last
    group is reached.
  */
  do
  {
    result= next_prefix();
    /*
      Check if this is the last group prefix. Notice that at this point
      this->record contains the current prefix in record format.
    */
    is_last_prefix= key_cmp(index_info->key_part, last_prefix,
                            group_prefix_len);
    DBUG_ASSERT(is_last_prefix <= 0);
    if (result == HA_ERR_KEY_NOT_FOUND)
      continue;
8305
    if (result)
8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324
      break;

    if (have_min)
    {
      min_res= next_min();
      if (min_res == 0)
        update_min_result();
    }
    /* If there is no MIN in the group, there is no MAX either. */
    if ((have_max && !have_min) ||
        (have_max && have_min && (min_res == 0)))
    {
      max_res= next_max();
      if (max_res == 0)
        update_max_result();
      /* If a MIN was found, a MAX must have been found as well. */
      DBUG_ASSERT((have_max && !have_min) ||
                  (have_max && have_min && (max_res == 0)));
    }
8325
    /*
unknown's avatar
unknown committed
8326
      If this is just a GROUP BY or DISTINCT without MIN or MAX and there
8327 8328 8329 8330 8331 8332 8333
      are equality predicates for the key parts after the group, find the
      first sub-group with the extended prefix.
    */
    if (!have_min && !have_max && key_infix_len > 0)
      result= file->index_read(record, group_prefix, real_prefix_len,
                               HA_READ_KEY_EXACT);

8334
    result= have_min ? min_res : have_max ? max_res : result;
8335 8336
  } while ((result == HA_ERR_KEY_NOT_FOUND || result == HA_ERR_END_OF_FILE) &&
           is_last_prefix != 0);
8337 8338

  if (result == 0)
8339
  {
8340 8341 8342 8343 8344 8345 8346
    /*
      Partially mimic the behavior of end_select_send. Copy the
      field data from Item_field::field into Item_field::result_field
      of each non-aggregated field (the group fields, and optionally
      other fields in non-ANSI SQL mode).
    */
    copy_fields(&join->tmp_table_param);
8347
  }
8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361
  else if (result == HA_ERR_KEY_NOT_FOUND)
    result= HA_ERR_END_OF_FILE;

  DBUG_RETURN(result);
}


/*
  Retrieve the minimal key in the next group.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_min()

  DESCRIPTION
8362 8363
    Find the minimal key within this group such that the key satisfies the query
    conditions and NULL semantics. The found key is loaded into this->record.
8364 8365 8366 8367 8368 8369 8370 8371 8372 8373

  IMPLEMENTATION
    Depending on the values of min_max_ranges.elements, key_infix_len, and
    whether there is a  NULL in the MIN field, this function may directly
    return without any data access. In this case we use the key loaded into
    this->record by the call to this->next_prefix() just before this call.

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if no MIN key was found that fulfills all conditions.
8374
    HA_ERR_END_OF_FILE   - "" -
8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390
    other                if some error occurred
*/

int QUICK_GROUP_MIN_MAX_SELECT::next_min()
{
  int result= 0;
  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_min");

  /* Find the MIN key using the eventually extended group prefix. */
  if (min_max_ranges.elements > 0)
  {
    if ((result= next_min_in_range()))
      DBUG_RETURN(result);
  }
  else
  {
unknown's avatar
unknown committed
8391
    /* Apply the constant equality conditions to the non-group select fields */
8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424
    if (key_infix_len > 0)
    {
      if ((result= file->index_read(record, group_prefix, real_prefix_len,
                                    HA_READ_KEY_EXACT)))
        DBUG_RETURN(result);
    }

    /*
      If the min/max argument field is NULL, skip subsequent rows in the same
      group with NULL in it. Notice that:
      - if the first row in a group doesn't have a NULL in the field, no row
      in the same group has (because NULL < any other value),
      - min_max_arg_part->field->ptr points to some place in 'record'.
    */
    if (min_max_arg_part && min_max_arg_part->field->is_null())
    {
      /* Find the first subsequent record without NULL in the MIN/MAX field. */
      key_copy(tmp_record, record, index_info, 0);
      result= file->index_read(record, tmp_record,
                               real_prefix_len + min_max_arg_len,
                               HA_READ_AFTER_KEY);
      /*
        Check if the new record belongs to the current group by comparing its
        prefix with the group's prefix. If it is from the next group, then the
        whole group has NULLs in the MIN/MAX field, so use the first record in
        the group as a result.
        TODO:
        It is possible to reuse this new record as the result candidate for the
        next call to next_min(), and to save one lookup in the next call. For
        this add a new member 'this->next_group_prefix'.
      */
      if (!result)
      {
unknown's avatar
unknown committed
8425
        if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
8426
          key_restore(record, tmp_record, index_info, 0);
unknown's avatar
unknown committed
8427
      }
8428
      else if (result == HA_ERR_KEY_NOT_FOUND || result == HA_ERR_END_OF_FILE)
8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447
        result= 0; /* There is a result in any case. */
    }
  }

  /*
    If the MIN attribute is non-nullable, this->record already contains the
    MIN key in the group, so just return.
  */
  DBUG_RETURN(result);
}


/* 
  Retrieve the maximal key in the next group.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_max()

  DESCRIPTION
8448
    Lookup the maximal key of the group, and store it into this->record.
8449 8450 8451 8452

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if no MAX key was found that fulfills all conditions.
8453
    HA_ERR_END_OF_FILE	 - "" -
8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553
    other                if some error occurred
*/

int QUICK_GROUP_MIN_MAX_SELECT::next_max()
{
  int result;

  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_max");

  /* Get the last key in the (possibly extended) group. */
  if (min_max_ranges.elements > 0)
    result= next_max_in_range();
  else
    result= file->index_read(record, group_prefix, real_prefix_len,
                             HA_READ_PREFIX_LAST);
  DBUG_RETURN(result);
}


/*
  Determine the prefix of the next group.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_prefix()

  DESCRIPTION
    Determine the prefix of the next group that satisfies the query conditions.
    If there is a range condition referencing the group attributes, use a
    QUICK_RANGE_SELECT object to retrieve the *first* key that satisfies the
    condition. If there is a key infix of constants, append this infix
    immediately after the group attributes. The possibly extended prefix is
    stored in this->group_prefix. The first key of the found group is stored in
    this->record, on which relies this->next_min().

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if there is no key with the formed prefix
    HA_ERR_END_OF_FILE   if there are no more keys
    other                if some error occurred
*/
int QUICK_GROUP_MIN_MAX_SELECT::next_prefix()
{
  int result;
  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_prefix");

  if (quick_prefix_select)
  {
    byte *cur_prefix= seen_first_key ? group_prefix : NULL;
    if ((result= quick_prefix_select->get_next_prefix(group_prefix_len,
                                                      cur_prefix)))
      DBUG_RETURN(result);
    seen_first_key= TRUE;
  }
  else
  {
    if (!seen_first_key)
    {
      result= file->index_first(record);
      if (result)
        DBUG_RETURN(result);
      seen_first_key= TRUE;
    }
    else
    {
      /* Load the first key in this group into record. */
      result= file->index_read(record, group_prefix, group_prefix_len,
                               HA_READ_AFTER_KEY);
      if (result)
        DBUG_RETURN(result);
    }
  }

  /* Save the prefix of this group for subsequent calls. */
  key_copy(group_prefix, record, index_info, group_prefix_len);
  /* Append key_infix to group_prefix. */
  if (key_infix_len > 0)
    memcpy(group_prefix + group_prefix_len,
           key_infix, key_infix_len);

  DBUG_RETURN(0);
}


/*
  Find the minimal key in a group that satisfies some range conditions for the
  min/max argument field.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_min_in_range()

  DESCRIPTION
    Given the sequence of ranges min_max_ranges, find the minimal key that is
    in the left-most possible range. If there is no such key, then the current
    group does not have a MIN key that satisfies the WHERE clause. If a key is
    found, its value is stored in this->record.

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if there is no key with the given prefix in any of
                         the ranges
8554
    HA_ERR_END_OF_FILE   - "" -
8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576
    other                if some error
*/

int QUICK_GROUP_MIN_MAX_SELECT::next_min_in_range()
{
  ha_rkey_function find_flag;
  uint search_prefix_len;
  QUICK_RANGE *cur_range;
  bool found_null= FALSE;
  int result= HA_ERR_KEY_NOT_FOUND;

  DBUG_ASSERT(min_max_ranges.elements > 0);

  for (uint range_idx= 0; range_idx < min_max_ranges.elements; range_idx++)
  { /* Search from the left-most range to the right. */
    get_dynamic(&min_max_ranges, (gptr)&cur_range, range_idx);

    /*
      If the current value for the min/max argument is bigger than the right
      boundary of cur_range, there is no need to check this range.
    */
    if (range_idx != 0 && !(cur_range->flag & NO_MAX_RANGE) &&
8577
        (key_cmp(min_max_arg_part, (const byte*) cur_range->max_key,
8578
                 min_max_arg_len) == 1))
8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598
      continue;

    if (cur_range->flag & NO_MIN_RANGE)
    {
      find_flag= HA_READ_KEY_EXACT;
      search_prefix_len= real_prefix_len;
    }
    else
    {
      /* Extend the search key with the lower boundary for this range. */
      memcpy(group_prefix + real_prefix_len, cur_range->min_key,
             cur_range->min_length);
      search_prefix_len= real_prefix_len + min_max_arg_len;
      find_flag= (cur_range->flag & (EQ_RANGE | NULL_RANGE)) ?
                 HA_READ_KEY_EXACT : (cur_range->flag & NEAR_MIN) ?
                 HA_READ_AFTER_KEY : HA_READ_KEY_OR_NEXT;
    }

    result= file->index_read(record, group_prefix, search_prefix_len,
                             find_flag);
8599
    if (result)
8600
    {
8601 8602 8603 8604
      if ((result == HA_ERR_KEY_NOT_FOUND || result == HA_ERR_END_OF_FILE) &&
          (cur_range->flag & (EQ_RANGE | NULL_RANGE)))
        continue; /* Check the next range. */

8605 8606 8607 8608 8609
      /*
        In all other cases (HA_ERR_*, HA_READ_KEY_EXACT with NO_MIN_RANGE,
        HA_READ_AFTER_KEY, HA_READ_KEY_OR_NEXT) if the lookup failed for this
        range, it can't succeed for any other subsequent range.
      */
8610
      break;
8611
    }
8612 8613 8614 8615 8616 8617

    /* A key was found. */
    if (cur_range->flag & EQ_RANGE)
      break; /* No need to perform the checks below for equal keys. */

    if (cur_range->flag & NULL_RANGE)
8618 8619 8620 8621 8622 8623
    {
      /*
        Remember this key, and continue looking for a non-NULL key that
        satisfies some other condition.
      */
      memcpy(tmp_record, record, head->s->rec_buff_length);
8624 8625 8626 8627 8628 8629 8630
      found_null= TRUE;
      continue;
    }

    /* Check if record belongs to the current group. */
    if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
    {
8631
      result= HA_ERR_KEY_NOT_FOUND;
8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648
      continue;
    }

    /* If there is an upper limit, check if the found key is in the range. */
    if ( !(cur_range->flag & NO_MAX_RANGE) )
    {
      /* Compose the MAX key for the range. */
      byte *max_key= (byte*) my_alloca(real_prefix_len + min_max_arg_len);
      memcpy(max_key, group_prefix, real_prefix_len);
      memcpy(max_key + real_prefix_len, cur_range->max_key,
             cur_range->max_length);
      /* Compare the found key with max_key. */
      int cmp_res= key_cmp(index_info->key_part, max_key,
                           real_prefix_len + min_max_arg_len);
      if (!((cur_range->flag & NEAR_MAX) && (cmp_res == -1) ||
            (cmp_res <= 0)))
      {
8649
        result= HA_ERR_KEY_NOT_FOUND;
8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663
        continue;
      }
    }
    /* If we got to this point, the current key qualifies as MIN. */
    DBUG_ASSERT(result == 0);
    break;
  }
  /*
    If there was a key with NULL in the MIN/MAX field, and there was no other
    key without NULL from the same group that satisfies some other condition,
    then use the key with the NULL.
  */
  if (found_null && result)
  {
8664
    memcpy(record, tmp_record, head->s->rec_buff_length);
8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687
    result= 0;
  }
  return result;
}


/*
  Find the maximal key in a group that satisfies some range conditions for the
  min/max argument field.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_max_in_range()

  DESCRIPTION
    Given the sequence of ranges min_max_ranges, find the maximal key that is
    in the right-most possible range. If there is no such key, then the current
    group does not have a MAX key that satisfies the WHERE clause. If a key is
    found, its value is stored in this->record.

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if there is no key with the given prefix in any of
                         the ranges
8688
    HA_ERR_END_OF_FILE   - "" -
8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710
    other                if some error
*/

int QUICK_GROUP_MIN_MAX_SELECT::next_max_in_range()
{
  ha_rkey_function find_flag;
  uint search_prefix_len;
  QUICK_RANGE *cur_range;
  int result;

  DBUG_ASSERT(min_max_ranges.elements > 0);

  for (uint range_idx= min_max_ranges.elements; range_idx > 0; range_idx--)
  { /* Search from the right-most range to the left. */
    get_dynamic(&min_max_ranges, (gptr)&cur_range, range_idx - 1);

    /*
      If the current value for the min/max argument is smaller than the left
      boundary of cur_range, there is no need to check this range.
    */
    if (range_idx != min_max_ranges.elements &&
        !(cur_range->flag & NO_MIN_RANGE) &&
8711
        (key_cmp(min_max_arg_part, (const byte*) cur_range->min_key,
8712
                 min_max_arg_len) == -1))
8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733
      continue;

    if (cur_range->flag & NO_MAX_RANGE)
    {
      find_flag= HA_READ_PREFIX_LAST;
      search_prefix_len= real_prefix_len;
    }
    else
    {
      /* Extend the search key with the upper boundary for this range. */
      memcpy(group_prefix + real_prefix_len, cur_range->max_key,
             cur_range->max_length);
      search_prefix_len= real_prefix_len + min_max_arg_len;
      find_flag= (cur_range->flag & EQ_RANGE) ?
                 HA_READ_KEY_EXACT : (cur_range->flag & NEAR_MAX) ?
                 HA_READ_BEFORE_KEY : HA_READ_PREFIX_LAST_OR_PREV;
    }

    result= file->index_read(record, group_prefix, search_prefix_len,
                             find_flag);

unknown's avatar
unknown committed
8734 8735
    if (result)
    {
8736 8737 8738 8739
      if ((result == HA_ERR_KEY_NOT_FOUND || result == HA_ERR_END_OF_FILE) &&
          (cur_range->flag & EQ_RANGE))
        continue; /* Check the next range. */

8740 8741 8742 8743 8744
      /*
        In no key was found with this upper bound, there certainly are no keys
        in the ranges to the left.
      */
      return result;
unknown's avatar
unknown committed
8745
    }
8746 8747
    /* A key was found. */
    if (cur_range->flag & EQ_RANGE)
unknown's avatar
unknown committed
8748
      return 0; /* No need to perform the checks below for equal keys. */
8749 8750 8751

    /* Check if record belongs to the current group. */
    if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
unknown's avatar
unknown committed
8752
      continue;                                 // Row not found
8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840

    /* If there is a lower limit, check if the found key is in the range. */
    if ( !(cur_range->flag & NO_MIN_RANGE) )
    {
      /* Compose the MIN key for the range. */
      byte *min_key= (byte*) my_alloca(real_prefix_len + min_max_arg_len);
      memcpy(min_key, group_prefix, real_prefix_len);
      memcpy(min_key + real_prefix_len, cur_range->min_key,
             cur_range->min_length);
      /* Compare the found key with min_key. */
      int cmp_res= key_cmp(index_info->key_part, min_key,
                           real_prefix_len + min_max_arg_len);
      if (!((cur_range->flag & NEAR_MIN) && (cmp_res == 1) ||
            (cmp_res >= 0)))
        continue;
    }
    /* If we got to this point, the current key qualifies as MAX. */
    return result;
  }
  return HA_ERR_KEY_NOT_FOUND;
}


/*
  Update all MIN function results with the newly found value.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::update_min_result()

  DESCRIPTION
    The method iterates through all MIN functions and updates the result value
    of each function by calling Item_sum::reset(), which in turn picks the new
    result value from this->head->record[0], previously updated by
    next_min(). The updated value is stored in a member variable of each of the
    Item_sum objects, depending on the value type.

  IMPLEMENTATION
    The update must be done separately for MIN and MAX, immediately after
    next_min() was called and before next_max() is called, because both MIN and
    MAX take their result value from the same buffer this->head->record[0]
    (i.e.  this->record).

  RETURN
    None
*/

void QUICK_GROUP_MIN_MAX_SELECT::update_min_result()
{
  Item_sum *min_func;

  min_functions_it->rewind();
  while ((min_func= (*min_functions_it)++))
    min_func->reset();
}


/*
  Update all MAX function results with the newly found value.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::update_max_result()

  DESCRIPTION
    The method iterates through all MAX functions and updates the result value
    of each function by calling Item_sum::reset(), which in turn picks the new
    result value from this->head->record[0], previously updated by
    next_max(). The updated value is stored in a member variable of each of the
    Item_sum objects, depending on the value type.

  IMPLEMENTATION
    The update must be done separately for MIN and MAX, immediately after
    next_max() was called, because both MIN and MAX take their result value
    from the same buffer this->head->record[0] (i.e.  this->record).

  RETURN
    None
*/

void QUICK_GROUP_MIN_MAX_SELECT::update_max_result()
{
  Item_sum *max_func;

  max_functions_it->rewind();
  while ((max_func= (*max_functions_it)++))
    max_func->reset();
}


8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855
/*
  Append comma-separated list of keys this quick select uses to key_names;
  append comma-separated list of corresponding used lengths to used_lengths.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::add_keys_and_lengths()
    key_names    [out] Names of used indexes
    used_lengths [out] Corresponding lengths of the index names

  DESCRIPTION
    This method is used by select_describe to extract the names of the
    indexes used by a quick select.

*/

8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866
void QUICK_GROUP_MIN_MAX_SELECT::add_keys_and_lengths(String *key_names,
                                                      String *used_lengths)
{
  char buf[64];
  uint length;
  key_names->append(index_info->name);
  length= longlong2str(max_used_key_length, buf, 10) - buf;
  used_lengths->append(buf, length);
}


8867
#ifndef DBUG_OFF
8868

8869 8870 8871 8872 8873 8874 8875 8876 8877
static void print_sel_tree(PARAM *param, SEL_TREE *tree, key_map *tree_map,
                           const char *msg)
{
  SEL_ARG **key,**end;
  int idx;
  char buff[1024];
  DBUG_ENTER("print_sel_tree");
  if (! _db_on_)
    DBUG_VOID_RETURN;
8878

8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893
  String tmp(buff,sizeof(buff),&my_charset_bin);
  tmp.length(0);
  for (idx= 0,key=tree->keys, end=key+param->keys ;
       key != end ;
       key++,idx++)
  {
    if (tree_map->is_set(idx))
    {
      uint keynr= param->real_keynr[idx];
      if (tmp.length())
        tmp.append(',');
      tmp.append(param->table->key_info[keynr].name);
    }
  }
  if (!tmp.length())
8894
    tmp.append(STRING_WITH_LEN("(empty)"));
8895

8896
  DBUG_PRINT("info", ("SEL_TREE %p (%s) scans:%s", tree, msg, tmp.ptr()));
8897

8898 8899
  DBUG_VOID_RETURN;
}
8900

8901 8902 8903 8904

static void print_ror_scans_arr(TABLE *table, const char *msg,
                                struct st_ror_scan_info **start,
                                struct st_ror_scan_info **end)
8905
{
8906 8907 8908 8909 8910 8911 8912
  DBUG_ENTER("print_ror_scans");
  if (! _db_on_)
    DBUG_VOID_RETURN;

  char buff[1024];
  String tmp(buff,sizeof(buff),&my_charset_bin);
  tmp.length(0);
unknown's avatar
unknown committed
8913
  for (;start != end; start++)
8914
  {
8915 8916 8917
    if (tmp.length())
      tmp.append(',');
    tmp.append(table->key_info[(*start)->keynr].name);
8918
  }
8919
  if (!tmp.length())
8920
    tmp.append(STRING_WITH_LEN("(empty)"));
8921 8922
  DBUG_PRINT("info", ("ROR key scans (%s): %s", msg, tmp.ptr()));
  DBUG_VOID_RETURN;
8923 8924 8925
}


unknown's avatar
unknown committed
8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936
/*****************************************************************************
** Print a quick range for debugging
** TODO:
** This should be changed to use a String to store each row instead
** of locking the DEBUG stream !
*****************************************************************************/

static void
print_key(KEY_PART *key_part,const char *key,uint used_length)
{
  char buff[1024];
unknown's avatar
unknown committed
8937
  const char *key_end= key+used_length;
unknown's avatar
unknown committed
8938
  String tmp(buff,sizeof(buff),&my_charset_bin);
unknown's avatar
unknown committed
8939
  uint store_length;
unknown's avatar
unknown committed
8940

unknown's avatar
unknown committed
8941
  for (; key < key_end; key+=store_length, key_part++)
unknown's avatar
unknown committed
8942
  {
unknown's avatar
unknown committed
8943 8944 8945
    Field *field=      key_part->field;
    store_length= key_part->store_length;

unknown's avatar
unknown committed
8946 8947
    if (field->real_maybe_null())
    {
unknown's avatar
unknown committed
8948
      if (*key)
unknown's avatar
unknown committed
8949 8950 8951 8952
      {
	fwrite("NULL",sizeof(char),4,DBUG_FILE);
	continue;
      }
unknown's avatar
unknown committed
8953 8954
      key++;					// Skip null byte
      store_length--;
unknown's avatar
unknown committed
8955
    }
8956
    field->set_key_image((char*) key, key_part->length);
unknown's avatar
unknown committed
8957 8958 8959 8960
    if (field->type() == MYSQL_TYPE_BIT)
      (void) field->val_int_as_str(&tmp, 1);
    else
      field->val_str(&tmp);
unknown's avatar
unknown committed
8961
    fwrite(tmp.ptr(),sizeof(char),tmp.length(),DBUG_FILE);
unknown's avatar
unknown committed
8962 8963
    if (key+store_length < key_end)
      fputc('/',DBUG_FILE);
unknown's avatar
unknown committed
8964 8965 8966
  }
}

unknown's avatar
unknown committed
8967

8968
static void print_quick(QUICK_SELECT_I *quick, const key_map *needed_reg)
unknown's avatar
unknown committed
8969
{
8970
  char buf[MAX_KEY/8+1];
8971
  DBUG_ENTER("print_quick");
unknown's avatar
unknown committed
8972 8973
  if (! _db_on_ || !quick)
    DBUG_VOID_RETURN;
8974
  DBUG_LOCK_FILE;
unknown's avatar
unknown committed
8975

unknown's avatar
unknown committed
8976
  quick->dbug_dump(0, TRUE);
8977
  fprintf(DBUG_FILE,"other_keys: 0x%s:\n", needed_reg->print(buf));
unknown's avatar
unknown committed
8978

8979
  DBUG_UNLOCK_FILE;
unknown's avatar
unknown committed
8980 8981 8982
  DBUG_VOID_RETURN;
}

unknown's avatar
unknown committed
8983

8984
static void print_rowid(byte* val, int len)
unknown's avatar
unknown committed
8985
{
8986
  byte *pb;
unknown's avatar
unknown committed
8987
  DBUG_LOCK_FILE;
8988 8989 8990 8991 8992 8993 8994 8995 8996 8997
  fputc('\"', DBUG_FILE);
  for (pb= val; pb!= val + len; ++pb)
    fprintf(DBUG_FILE, "%c", *pb);
  fprintf(DBUG_FILE, "\", hex: ");

  for (pb= val; pb!= val + len; ++pb)
    fprintf(DBUG_FILE, "%x ", *pb);
  fputc('\n', DBUG_FILE);
  DBUG_UNLOCK_FILE;
}
8998

8999 9000 9001 9002
void QUICK_RANGE_SELECT::dbug_dump(int indent, bool verbose)
{
  fprintf(DBUG_FILE, "%*squick range select, key %s, length: %d\n",
	  indent, "", head->key_info[index].name, max_used_key_length);
unknown's avatar
unknown committed
9003

9004
  if (verbose)
unknown's avatar
unknown committed
9005
  {
9006 9007
    QUICK_RANGE *range;
    QUICK_RANGE **pr= (QUICK_RANGE**)ranges.buffer;
unknown's avatar
unknown committed
9008
    QUICK_RANGE **last_range= pr + ranges.elements;
9009
    for (; pr!=last_range; ++pr)
unknown's avatar
unknown committed
9010
    {
9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021
      fprintf(DBUG_FILE, "%*s", indent + 2, "");
      range= *pr;
      if (!(range->flag & NO_MIN_RANGE))
      {
        print_key(key_parts,range->min_key,range->min_length);
        if (range->flag & NEAR_MIN)
	  fputs(" < ",DBUG_FILE);
        else
	  fputs(" <= ",DBUG_FILE);
      }
      fputs("X",DBUG_FILE);
unknown's avatar
unknown committed
9022

9023 9024 9025 9026 9027 9028 9029 9030 9031
      if (!(range->flag & NO_MAX_RANGE))
      {
        if (range->flag & NEAR_MAX)
	  fputs(" < ",DBUG_FILE);
        else
	  fputs(" <= ",DBUG_FILE);
        print_key(key_parts,range->max_key,range->max_length);
      }
      fputs("\n",DBUG_FILE);
unknown's avatar
unknown committed
9032 9033
    }
  }
9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045
}

void QUICK_INDEX_MERGE_SELECT::dbug_dump(int indent, bool verbose)
{
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  QUICK_RANGE_SELECT *quick;
  fprintf(DBUG_FILE, "%*squick index_merge select\n", indent, "");
  fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
  while ((quick= it++))
    quick->dbug_dump(indent+2, verbose);
  if (pk_quick_select)
  {
unknown's avatar
unknown committed
9046
    fprintf(DBUG_FILE, "%*sclustered PK quick:\n", indent, "");
9047 9048 9049 9050 9051 9052 9053 9054 9055
    pk_quick_select->dbug_dump(indent+2, verbose);
  }
  fprintf(DBUG_FILE, "%*s}\n", indent, "");
}

void QUICK_ROR_INTERSECT_SELECT::dbug_dump(int indent, bool verbose)
{
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
9056
  fprintf(DBUG_FILE, "%*squick ROR-intersect select, %scovering\n",
9057 9058 9059
          indent, "", need_to_fetch_row? "":"non-");
  fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
  while ((quick= it++))
unknown's avatar
unknown committed
9060
    quick->dbug_dump(indent+2, verbose);
9061 9062
  if (cpk_quick)
  {
unknown's avatar
unknown committed
9063
    fprintf(DBUG_FILE, "%*sclustered PK quick:\n", indent, "");
9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077
    cpk_quick->dbug_dump(indent+2, verbose);
  }
  fprintf(DBUG_FILE, "%*s}\n", indent, "");
}

void QUICK_ROR_UNION_SELECT::dbug_dump(int indent, bool verbose)
{
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  QUICK_SELECT_I *quick;
  fprintf(DBUG_FILE, "%*squick ROR-union select\n", indent, "");
  fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
  while ((quick= it++))
    quick->dbug_dump(indent+2, verbose);
  fprintf(DBUG_FILE, "%*s}\n", indent, "");
unknown's avatar
unknown committed
9078 9079
}

9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123

/*
  Print quick select information to DBUG_FILE.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::dbug_dump()
    indent  Indentation offset
    verbose If TRUE show more detailed output.

  DESCRIPTION
    Print the contents of this quick select to DBUG_FILE. The method also
    calls dbug_dump() for the used quick select if any.

  IMPLEMENTATION
    Caller is responsible for locking DBUG_FILE before this call and unlocking
    it afterwards.

  RETURN
    None
*/

void QUICK_GROUP_MIN_MAX_SELECT::dbug_dump(int indent, bool verbose)
{
  fprintf(DBUG_FILE,
          "%*squick_group_min_max_select: index %s (%d), length: %d\n",
	  indent, "", index_info->name, index, max_used_key_length);
  if (key_infix_len > 0)
  {
    fprintf(DBUG_FILE, "%*susing key_infix with length %d:\n",
            indent, "", key_infix_len);
  }
  if (quick_prefix_select)
  {
    fprintf(DBUG_FILE, "%*susing quick_range_select:\n", indent, "");
    quick_prefix_select->dbug_dump(indent + 2, verbose);
  }
  if (min_max_ranges.elements > 0)
  {
    fprintf(DBUG_FILE, "%*susing %d quick_ranges for MIN/MAX:\n",
            indent, "", min_max_ranges.elements);
  }
}


unknown's avatar
unknown committed
9124
#endif /* NOT_USED */
unknown's avatar
unknown committed
9125 9126

/*****************************************************************************
9127
** Instantiate templates
unknown's avatar
unknown committed
9128 9129
*****************************************************************************/

9130
#ifdef HAVE_EXPLICIT_TEMPLATE_INSTANTIATION
unknown's avatar
unknown committed
9131 9132 9133
template class List<QUICK_RANGE>;
template class List_iterator<QUICK_RANGE>;
#endif