treenode.cc 14.3 KB
Newer Older
1 2 3 4 5 6
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
#ident "Copyright (c) 2007-2012 Tokutek Inc.  All rights reserved."
#ident "The technology is licensed by the Massachusetts Institute of Technology, Rutgers State University of New Jersey, and the Research Foundation of State University of New York at Stony Brook under United States of America Serial No. 11/760379 and to the patents and/or patent applications resulting from it."

7 8
#include <toku_race_tools.h>

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
void treenode::mutex_lock(void) {
    toku_mutex_lock(&m_mutex);
}

void treenode::mutex_unlock(void) {
    toku_mutex_unlock(&m_mutex);
}

void treenode::init(comparator *cmp) {
    m_txnid = TXNID_NONE;
    m_is_root = false;
    m_is_empty = true;
    m_cmp = cmp;
    // use an adaptive mutex at each node since we expect the time the
    // lock is held to be relatively short compared to a context switch.
    // indeed, this improves performance at high thread counts considerably.
25
    memset(&m_mutex, 0, sizeof(toku_mutex_t));
26 27 28 29 30
    toku_pthread_mutexattr_t attr;
    toku_mutexattr_init(&attr);
    toku_mutexattr_settype(&attr, TOKU_MUTEX_ADAPTIVE);
    toku_mutex_init(&m_mutex, &attr);
    toku_mutexattr_destroy(&attr);
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
    m_left_child.set(nullptr);
    m_right_child.set(nullptr);
}

void treenode::init_root(comparator *cmp) {
    init(cmp);
    m_is_root = true;
}

void treenode::set_range_and_txnid(const keyrange &range, TXNID txnid) {
    // allocates a new copy of the range for this node
    m_range.create_copy(range);
    m_txnid = txnid;
    m_is_empty = false;
}

bool treenode::is_root(void) {
    return m_is_root;
}

bool treenode::is_empty(void) {
    return m_is_empty;
}

bool treenode::range_overlaps(const keyrange &range) {
    return m_range.overlaps(m_cmp, range);
}

treenode *treenode::alloc(comparator *cmp, const keyrange &range, TXNID txnid) {
    treenode *XCALLOC(node);
    node->init(cmp);
    node->set_range_and_txnid(range, txnid);
    return node;
}

void treenode::swap_in_place(treenode *node1, treenode *node2) {
    keyrange tmp_range = node1->m_range;
    TXNID tmp_txnid = node1->m_txnid;
    node1->m_range = node2->m_range;
    node1->m_txnid = node2->m_txnid;
    node2->m_range = tmp_range;
    node2->m_txnid = tmp_txnid;
}

void treenode::free(treenode *node) {
    // destroy the range, freeing any copied keys
    node->m_range.destroy();

    // the root is simply marked as empty.
    if (node->is_root()) {
        toku_mutex_assert_locked(&node->m_mutex);
        node->m_is_empty = true;
    } else {
        toku_mutex_assert_unlocked(&node->m_mutex);
        toku_mutex_destroy(&node->m_mutex);
        toku_free(node);
    }
}

uint32_t treenode::get_depth_estimate(void) const {
    const uint32_t left_est = m_left_child.depth_est;
    const uint32_t right_est = m_right_child.depth_est;
    return (left_est > right_est ? left_est : right_est) + 1;
}

treenode *treenode::find_node_with_overlapping_child(const keyrange &range,
        const keyrange::comparison *cmp_hint) {

    // determine which child to look at based on a comparison. if we were
    // given a comparison hint, use that. otherwise, compare them now.
    keyrange::comparison c = cmp_hint ? *cmp_hint : range.compare(m_cmp, m_range);

    treenode *child;
    if (c == keyrange::comparison::LESS_THAN) {
        child = lock_and_rebalance_left();
    } else {
        // The caller (locked_keyrange::acquire) handles the case where
        // the root of the locked_keyrange is the node that overlaps.
        // range is guaranteed not to overlap this node.
        invariant(c == keyrange::comparison::GREATER_THAN);
        child = lock_and_rebalance_right();
    }

    // if the search would lead us to an empty subtree (child == nullptr),
    // or the child overlaps, then we know this node is the parent we want.
    // otherwise we need to recur into that child.
    if (child == nullptr) {
        return this;
    } else {
        c = range.compare(m_cmp, child->m_range);
        if (c == keyrange::comparison::EQUALS || c == keyrange::comparison::OVERLAPS) {
            child->mutex_unlock();
            return this;
        } else {
            // unlock this node before recurring into the locked child,
            // passing in a comparison hint since we just comapred range
            // to the child's range.
            mutex_unlock();
            return child->find_node_with_overlapping_child(range, &c);
        }
    }
}

template <class F>
void treenode::traverse_overlaps(const keyrange &range, F *function) {
    keyrange::comparison c = range.compare(m_cmp, m_range);
    if (c == keyrange::comparison::EQUALS) {
        // Doesn't matter if fn wants to keep going, there
        // is nothing left, so return.
        function->fn(m_range, m_txnid);
        return;
    }

    treenode *left = m_left_child.get_locked();
    if (left) {
        if (c != keyrange::comparison::GREATER_THAN) {
            // Target range is less than this node, or it overlaps this
            // node.  There may be something on the left.
            left->traverse_overlaps(range, function);
        }
        left->mutex_unlock();
    }

    if (c == keyrange::comparison::OVERLAPS) {
        bool keep_going = function->fn(m_range, m_txnid);
        if (!keep_going) {
            return;
        }
    }

    treenode *right = m_right_child.get_locked();
    if (right) {
        if (c != keyrange::comparison::LESS_THAN) {
            // Target range is greater than this node, or it overlaps this
            // node.  There may be something on the right.
            right->traverse_overlaps(range, function);
        }
        right->mutex_unlock();
    }
}

void treenode::insert(const keyrange &range, TXNID txnid) {
    // choose a child to check. if that child is null, then insert the new node there.
    // otherwise recur down that child's subtree
    keyrange::comparison c = range.compare(m_cmp, m_range);
    if (c == keyrange::comparison::LESS_THAN) {
177
        treenode *left_child = lock_and_rebalance_left();
178 179 180 181 182 183 184 185 186
        if (left_child == nullptr) {
            left_child = treenode::alloc(m_cmp, range, txnid);
            m_left_child.set(left_child);
        } else {
            left_child->insert(range, txnid);
            left_child->mutex_unlock();
        }
    } else {
        invariant(c == keyrange::comparison::GREATER_THAN);
187
        treenode *right_child = lock_and_rebalance_right();
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        if (right_child == nullptr) {
            right_child = treenode::alloc(m_cmp, range, txnid);
            m_right_child.set(right_child);
        } else {
            right_child->insert(range, txnid);
            right_child->mutex_unlock();
        }
    }
}

treenode *treenode::find_child_at_extreme(int direction, treenode **parent) {
    treenode *child = direction > 0 ?
        m_right_child.get_locked() : m_left_child.get_locked();

    if (child) {
        *parent = this;
        treenode *child_extreme = child->find_child_at_extreme(direction, parent);
        child->mutex_unlock();
        return child_extreme;
    } else {
        return this;
    }
}

treenode *treenode::find_leftmost_child(treenode **parent) {
    return find_child_at_extreme(-1, parent);
}

treenode *treenode::find_rightmost_child(treenode **parent) {
    return find_child_at_extreme(1, parent);
}

treenode *treenode::remove_root_of_subtree() {
    // if this node has no children, just free it and return null
    if (m_left_child.ptr == nullptr && m_right_child.ptr == nullptr) {
        // treenode::free requires that non-root nodes are unlocked
        if (!is_root()) {
            mutex_unlock();
        }
        treenode::free(this);
        return nullptr;
    }
    
    // we have a child, so get either the in-order successor or
    // predecessor of this node to be our replacement.
    // replacement_parent is updated by the find functions as
    // they recur down the tree, so initialize it to this.
    treenode *child, *replacement;
    treenode *replacement_parent = this;
    if (m_left_child.ptr != nullptr) {
        child = m_left_child.get_locked();
        replacement = child->find_rightmost_child(&replacement_parent);
        invariant(replacement == child || replacement_parent != this);

        // detach the replacement from its parent
        if (replacement_parent == this) {
            m_left_child = replacement->m_left_child;
        } else {
            replacement_parent->m_right_child = replacement->m_left_child;
        }
    } else {
        child = m_right_child.get_locked();
        replacement = child->find_leftmost_child(&replacement_parent);
        invariant(replacement == child || replacement_parent != this);

        // detach the replacement from its parent
        if (replacement_parent == this) {
            m_right_child = replacement->m_right_child;
        } else {
            replacement_parent->m_left_child = replacement->m_right_child;
        }
    }
    child->mutex_unlock();

    // swap in place with the detached replacement, then destroy it
    treenode::swap_in_place(replacement, this);
    treenode::free(replacement);

    return this;
}

269
void treenode::recursive_remove(void) {
270 271
    treenode *left = m_left_child.ptr;
    if (left) {
272
        left->recursive_remove();
273 274 275 276 277
    }
    m_left_child.set(nullptr);

    treenode *right = m_right_child.ptr;
    if (right) {
278
        right->recursive_remove();
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
    }
    m_right_child.set(nullptr);

    // we do not take locks on the way down, so we know non-root nodes
    // are unlocked here and the caller is required to pass a locked
    // root, so this free is correct.
    treenode::free(this);
}

treenode *treenode::remove(const keyrange &range) {
    treenode *child;
    // if the range is equal to this node's range, then just remove
    // the root of this subtree. otherwise search down the tree
    // in either the left or right children.
    keyrange::comparison c = range.compare(m_cmp, m_range);
    switch (c) {
    case keyrange::comparison::EQUALS:
        return remove_root_of_subtree();
    case keyrange::comparison::LESS_THAN:
        child = m_left_child.get_locked();
        invariant_notnull(child);
        child = child->remove(range);

        // unlock the child if there still is one.
        // regardless, set the right child pointer
        if (child) {
            child->mutex_unlock();
        }
        m_left_child.set(child);
        break;
    case keyrange::comparison::GREATER_THAN:
        child = m_right_child.get_locked();
        invariant_notnull(child);
        child = child->remove(range);

        // unlock the child if there still is one.
        // regardless, set the right child pointer
        if (child) {
            child->mutex_unlock();
        }
        m_right_child.set(child);
        break;
    case keyrange::comparison::OVERLAPS:
        // shouldn't be overlapping, since the tree is
        // non-overlapping and this range must exist
        abort();
    }

    return this;
}

bool treenode::left_imbalanced(int threshold) const {
    uint32_t left_depth = m_left_child.depth_est;
    uint32_t right_depth = m_right_child.depth_est;
    return m_left_child.ptr != nullptr && left_depth > threshold + right_depth;
}

bool treenode::right_imbalanced(int threshold) const {
    uint32_t left_depth = m_left_child.depth_est;
    uint32_t right_depth = m_right_child.depth_est;
    return m_right_child.ptr != nullptr && right_depth > threshold + left_depth;
}

// effect: rebalances the subtree rooted at this node
//         using AVL style O(1) rotations. unlocks this
//         node if it is not the new root of the subtree.
// requires: node is locked by this thread, children are not
// returns: locked root node of the rebalanced tree
treenode *treenode::maybe_rebalance(void) {
    // if we end up not rotating at all, the new root is this
    treenode *new_root = this;
    treenode *child = nullptr;

    if (left_imbalanced(IMBALANCE_THRESHOLD)) {
        child = m_left_child.get_locked();
        if (child->right_imbalanced(0)) {
            treenode *grandchild = child->m_right_child.get_locked();

            child->m_right_child = grandchild->m_left_child;
            grandchild->m_left_child.set(child);

            m_left_child = grandchild->m_right_child;
            grandchild->m_right_child.set(this);

            new_root = grandchild;
        } else {
            m_left_child = child->m_right_child;
            child->m_right_child.set(this);
            new_root = child;
        }
    } else if (right_imbalanced(IMBALANCE_THRESHOLD)) {
        child = m_right_child.get_locked();
        if (child->left_imbalanced(0)) {
            treenode *grandchild = child->m_left_child.get_locked();

            child->m_left_child = grandchild->m_right_child;
            grandchild->m_right_child.set(child);

            m_right_child = grandchild->m_left_child;
            grandchild->m_left_child.set(this);

            new_root = grandchild;
        } else {
            m_right_child = child->m_left_child;
            child->m_left_child.set(this);
            new_root = child;
        }
    }

    // up to three nodes may be locked.
    // - this
    // - child
    // - grandchild (but if it is locked, its the new root)
    //
    // one of them is the new root. we unlock everything except the new root.
    if (child && child != new_root) {
395
        TOKU_VALGRIND_RESET_MUTEX_ORDERING_INFO(&child->m_mutex);
396 397 398
        child->mutex_unlock();
    }
    if (this != new_root) {
399
        TOKU_VALGRIND_RESET_MUTEX_ORDERING_INFO(&m_mutex);
400 401
        mutex_unlock();
    }
402
    TOKU_VALGRIND_RESET_MUTEX_ORDERING_INFO(&new_root->m_mutex);
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
    return new_root;
}


treenode *treenode::lock_and_rebalance_left(void) {
    treenode *child = m_left_child.get_locked();
    if (child) {
        treenode *new_root = child->maybe_rebalance();
        m_left_child.set(new_root);
        child = new_root;
    }
    return child;
}

treenode *treenode::lock_and_rebalance_right(void) {
    treenode *child = m_right_child.get_locked();
    if (child) {
        treenode *new_root = child->maybe_rebalance();
        m_right_child.set(new_root);
        child = new_root;
    }
    return child;
}

void treenode::child_ptr::set(treenode *node) {
    ptr = node;
    depth_est = ptr ? ptr->get_depth_estimate() : 0;
}

treenode *treenode::child_ptr::get_locked(void) {
    if (ptr) {
        ptr->mutex_lock();
        depth_est = ptr->get_depth_estimate();
    }
    return ptr;
}