sync0sync.c 35.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
/******************************************************
Mutex, the basic synchronization primitive

(c) 1995 Innobase Oy

Created 9/5/1995 Heikki Tuuri
*******************************************************/

#include "sync0sync.h"
#ifdef UNIV_NONINL
#include "sync0sync.ic"
#endif

#include "sync0rw.h"
#include "buf0buf.h"
#include "srv0srv.h"
#include "buf0types.h"

/*
	REASONS FOR IMPLEMENTING THE SPIN LOCK MUTEX
	============================================

Semaphore operations in operating systems are slow: Solaris on a 1993 Sparc
takes 3 microseconds (us) for a lock-unlock pair and Windows NT on a 1995
Pentium takes 20 microseconds for a lock-unlock pair. Therefore, we have to
implement our own efficient spin lock mutex. Future operating systems may
provide efficient spin locks, but we cannot count on that.

Another reason for implementing a spin lock is that on multiprocessor systems
it can be more efficient for a processor to run a loop waiting for the 
semaphore to be released than to switch to a different thread. A thread switch
takes 25 us on both platforms mentioned above. See Gray and Reuter's book
Transaction processing for background.

How long should the spin loop last before suspending the thread? On a
uniprocessor, spinning does not help at all, because if the thread owning the
mutex is not executing, it cannot be released. Spinning actually wastes
resources. 

On a multiprocessor, we do not know if the thread owning the mutex is
executing or not. Thus it would make sense to spin as long as the operation
guarded by the mutex would typically last assuming that the thread is
executing. If the mutex is not released by that time, we may assume that the
thread owning the mutex is not executing and suspend the waiting thread.

A typical operation (where no i/o involved) guarded by a mutex or a read-write
lock may last 1 - 20 us on the current Pentium platform. The longest
operations are the binary searches on an index node.

We conclude that the best choice is to set the spin time at 20 us. Then the
system should work well on a multiprocessor. On a uniprocessor we have to
make sure that thread swithches due to mutex collisions are not frequent,
i.e., they do not happen every 100 us or so, because that wastes too much
resources. If the thread switches are not frequent, the 20 us wasted in spin
loop is not too much. 

Empirical studies on the effect of spin time should be done for different
platforms.

	
	IMPLEMENTATION OF THE MUTEX
	===========================

For background, see Curt Schimmel's book on Unix implementation on modern
architectures. The key points in the implementation are atomicity and
serialization of memory accesses. The test-and-set instruction (XCHG in
Pentium) must be atomic. As new processors may have weak memory models, also
serialization of memory references may be necessary. The successor of Pentium,
P6, has at least one mode where the memory model is weak. As far as we know,
in Pentium all memory accesses are serialized in the program order and we do
not have to worry about the memory model. On other processors there are
special machine instructions called a fence, memory barrier, or storage
barrier (STBAR in Sparc), which can be used to serialize the memory accesses
to happen in program order relative to the fence instruction.

Leslie Lamport has devised a "bakery algorithm" to implement a mutex without
the atomic test-and-set, but his algorithm should be modified for weak memory
models. We do not use Lamport's algorithm, because we guess it is slower than
the atomic test-and-set.

Our mutex implementation works as follows: After that we perform the atomic
test-and-set instruction on the memory word. If the test returns zero, we
know we got the lock first. If the test returns not zero, some other thread
was quicker and got the lock: then we spin in a loop reading the memory word,
waiting it to become zero. It is wise to just read the word in the loop, not
perform numerous test-and-set instructions, because they generate memory
traffic between the cache and the main memory. The read loop can just access
the cache, saving bus bandwidth.

If we cannot acquire the mutex lock in the specified time, we reserve a cell
in the wait array, set the waiters byte in the mutex to 1. To avoid a race
condition, after setting the waiters byte and before suspending the waiting
thread, we still have to check that the mutex is reserved, because it may
have happened that the thread which was holding the mutex has just released
it and did not see the waiters byte set to 1, a case which would lead the
other thread to an infinite wait.

LEMMA 1: After a thread resets the event of the cell it reserves for waiting
========
for a mutex, some thread will eventually call sync_array_signal_object with
the mutex as an argument. Thus no infinite wait is possible.

Proof:	After making the reservation the thread sets the waiters field in the
mutex to 1. Then it checks that the mutex is still reserved by some thread,
or it reserves the mutex for itself. In any case, some thread (which may be
also some earlier thread, not necessarily the one currently holding the mutex)
will set the waiters field to 0 in mutex_exit, and then call
sync_array_signal_object with the mutex as an argument. 
Q.E.D. */

ulint	sync_dummy			= 0;

/* The number of system calls made in this module. Intended for performance
monitoring. */

ulint	mutex_system_call_count		= 0;

/* Number of spin waits on mutexes: for performance monitoring */

ulint	mutex_spin_round_count		= 0;
ulint	mutex_spin_wait_count		= 0;
122
ulint	mutex_os_wait_count		= 0;
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
ulint	mutex_exit_count		= 0;

/* The global array of wait cells for implementation of the database's own
mutexes and read-write locks */
sync_array_t*	sync_primary_wait_array;

/* This variable is set to TRUE when sync_init is called */
ibool	sync_initialized	= FALSE;

/* Global list of database mutexes (not OS mutexes) created. */
UT_LIST_BASE_NODE_T(mutex_t)	mutex_list;

/* Mutex protecting the mutex_list variable */
mutex_t		mutex_list_mutex;

typedef struct sync_level_struct	sync_level_t;
typedef struct sync_thread_struct	sync_thread_t;

/* The latch levels currently owned by threads are stored in this data
structure; the size of this array is OS_THREAD_MAX_N */

sync_thread_t*	sync_thread_level_arrays;

/* Mutex protecting sync_thread_level_arrays */
mutex_t	sync_thread_mutex;

/* Latching order checks start when this is set TRUE */
ibool	sync_order_checks_on	= FALSE;

/* Dummy mutex used to implement mutex_fence */
mutex_t	dummy_mutex_for_fence;

struct sync_thread_struct{
	os_thread_id_t	id;	/* OS thread id */
	sync_level_t*	levels;	/* level array for this thread; if this is NULL
				this slot is unused */
};

/* Number of slots reserved for each OS thread in the sync level array */
unknown's avatar
unknown committed
162
#define SYNC_THREAD_N_LEVELS	10000
163 164 165 166 167 168 169

struct sync_level_struct{
	void*	latch;	/* pointer to a mutex or an rw-lock; NULL means that
			the slot is empty */
	ulint	level;	/* level of the latch in the latching order */
};

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/**********************************************************************
A noninlined function that reserves a mutex. In ha_innodb.cc we have disabled
inlining of InnoDB functions, and no inlined functions should be called from
there. That is why we need to duplicate the inlined function here. */

void
mutex_enter_noninline(
/*==================*/
	mutex_t*	mutex)	/* in: mutex */
{
	mutex_enter(mutex);
}

/**********************************************************************
Releases a mutex. */

void
mutex_exit_noninline(
/*=================*/
	mutex_t*	mutex)	/* in: mutex */
{
	mutex_exit(mutex);
}

194 195 196 197 198 199 200 201 202 203
/**********************************************************************
Creates, or rather, initializes a mutex object in a specified memory
location (which must be appropriately aligned). The mutex is initialized
in the reset state. Explicit freeing of the mutex with mutex_free is
necessary only if the memory block containing it is freed. */

void
mutex_create_func(
/*==============*/
	mutex_t*	mutex,		/* in: pointer to memory */
204
	const char*	cfile_name,	/* in: file name where created */
205 206
	ulint		cline)		/* in: file line where created */
{
unknown's avatar
unknown committed
207
#if defined(_WIN32) && defined(UNIV_CAN_USE_X86_ASSEMBLER)
208 209 210 211 212
	mutex_reset_lock_word(mutex);
#else	
	os_fast_mutex_init(&(mutex->os_fast_mutex));
	mutex->lock_word = 0;
#endif
unknown's avatar
unknown committed
213
	mutex->event = os_event_create(NULL);
214 215
	mutex_set_waiters(mutex, 0);
	mutex->magic_n = MUTEX_MAGIC_N;
216
#ifdef UNIV_SYNC_DEBUG
217
	mutex->line = 0;
unknown's avatar
unknown committed
218
	mutex->file_name = "not yet reserved";
219
#endif /* UNIV_SYNC_DEBUG */
220
	mutex->level = SYNC_LEVEL_NONE;
221
	mutex->cfile_name = cfile_name;
222 223 224
	mutex->cline = cline;
	
	/* Check that lock_word is aligned; this is important on Intel */
unknown's avatar
unknown committed
225
	ut_ad(((ulint)(&(mutex->lock_word))) % 4 == 0);
226 227 228 229 230 231 232 233 234 235

	/* NOTE! The very first mutexes are not put to the mutex list */

	if ((mutex == &mutex_list_mutex) || (mutex == &sync_thread_mutex)) {

	    	return;
	}
	
	mutex_enter(&mutex_list_mutex);

unknown's avatar
unknown committed
236 237 238 239
        if (UT_LIST_GET_LEN(mutex_list) > 0) {
                ut_a(UT_LIST_GET_FIRST(mutex_list)->magic_n == MUTEX_MAGIC_N);
        }

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
	UT_LIST_ADD_FIRST(list, mutex_list, mutex);

	mutex_exit(&mutex_list_mutex);
}

/**********************************************************************
Calling this function is obligatory only if the memory buffer containing
the mutex is freed. Removes a mutex object from the mutex list. The mutex
is checked to be in the reset state. */

void
mutex_free(
/*=======*/
	mutex_t*	mutex)	/* in: mutex */
{
unknown's avatar
unknown committed
255
#ifdef UNIV_DEBUG
unknown's avatar
unknown committed
256
	ut_a(mutex_validate(mutex));
unknown's avatar
unknown committed
257
#endif /* UNIV_DEBUG */
258 259 260
	ut_a(mutex_get_lock_word(mutex) == 0);
	ut_a(mutex_get_waiters(mutex) == 0);
	
unknown's avatar
unknown committed
261
	if (mutex != &mutex_list_mutex && mutex != &sync_thread_mutex) {
262

unknown's avatar
unknown committed
263
	        mutex_enter(&mutex_list_mutex);
264

unknown's avatar
unknown committed
265 266 267 268 269 270 271 272 273
		if (UT_LIST_GET_PREV(list, mutex)) {
			ut_a(UT_LIST_GET_PREV(list, mutex)->magic_n
							== MUTEX_MAGIC_N);
		}
		if (UT_LIST_GET_NEXT(list, mutex)) {
			ut_a(UT_LIST_GET_NEXT(list, mutex)->magic_n
							== MUTEX_MAGIC_N);
		}
        
unknown's avatar
unknown committed
274 275 276 277
	        UT_LIST_REMOVE(list, mutex_list, mutex);

		mutex_exit(&mutex_list_mutex);
	}
278

unknown's avatar
unknown committed
279 280
	os_event_free(mutex->event);

unknown's avatar
unknown committed
281
#if !defined(_WIN32) || !defined(UNIV_CAN_USE_X86_ASSEMBLER) 
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
	os_fast_mutex_free(&(mutex->os_fast_mutex));
#endif
	/* If we free the mutex protecting the mutex list (freeing is
	not necessary), we have to reset the magic number AFTER removing
	it from the list. */
	
	mutex->magic_n = 0;
}

/************************************************************************
Tries to lock the mutex for the current thread. If the lock is not acquired
immediately, returns with return value 1. */

ulint
mutex_enter_nowait(
/*===============*/
298 299
					/* out: 0 if succeed, 1 if not */
	mutex_t*	mutex,		/* in: pointer to mutex */
300
	const char*	file_name __attribute__((unused)),
301
					/* in: file name where mutex
302
					requested */
303
	ulint		line __attribute__((unused)))
304
					/* in: line where requested */
305 306 307 308 309
{
	ut_ad(mutex_validate(mutex));

	if (!mutex_test_and_set(mutex)) {

unknown's avatar
unknown committed
310
#ifdef UNIV_SYNC_DEBUG
311
		mutex_set_debug_info(mutex, file_name, line);
unknown's avatar
unknown committed
312
#endif
313

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
		return(0);	/* Succeeded! */
	}

	return(1);
}

/**********************************************************************
Checks that the mutex has been initialized. */

ibool
mutex_validate(
/*===========*/
	mutex_t*	mutex)
{
	ut_a(mutex);
	ut_a(mutex->magic_n == MUTEX_MAGIC_N);

	return(TRUE);
}

/**********************************************************************
Sets the waiters field in a mutex. */

void
mutex_set_waiters(
/*==============*/
	mutex_t*	mutex,	/* in: mutex */
	ulint		n)	/* in: value to set */		
{
volatile ulint*	ptr;		/* declared volatile to ensure that
				the value is stored to memory */
	ut_ad(mutex);

	ptr = &(mutex->waiters);

	*ptr = n;		/* Here we assume that the write of a single
				word in memory is atomic */
}

/**********************************************************************
Reserves a mutex for the current thread. If the mutex is reserved, the
function spins a preset time (controlled by SYNC_SPIN_ROUNDS), waiting
for the mutex before suspending the thread. */

void
mutex_spin_wait(
/*============*/
361 362 363 364
        mutex_t*	   mutex,     	/* in: pointer to mutex */
	const char*	   file_name, 	/* in: file name where
					mutex requested */
	ulint		   line)	/* in: line where requested */
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
{
        ulint    index; /* index of the reserved wait cell */
        ulint    i;   	/* spin round count */
        
        ut_ad(mutex);

mutex_loop:

        i = 0;

        /* Spin waiting for the lock word to become zero. Note that we do not
	have to assume that the read access to the lock word is atomic, as the
	actual locking is always committed with atomic test-and-set. In
	reality, however, all processors probably have an atomic read of a
	memory word. */
        
spin_loop:
	mutex_spin_wait_count++;

        while (mutex_get_lock_word(mutex) != 0 && i < SYNC_SPIN_ROUNDS) {

        	if (srv_spin_wait_delay) {
        		ut_delay(ut_rnd_interval(0, srv_spin_wait_delay));
        	}
        
             	i++;
        }

	if (i == SYNC_SPIN_ROUNDS) {
		os_thread_yield();
	}

	if (srv_print_latch_waits) {
398 399
		fprintf(stderr,
	"Thread %lu spin wait mutex at %p cfile %s cline %lu rnds %lu\n",
unknown's avatar
unknown committed
400
		(ulong) os_thread_pf(os_thread_get_curr_id()), mutex,
401
		mutex->cfile_name, (ulong) mutex->cline, (ulong) i);
402 403 404 405 406 407 408
	}

	mutex_spin_round_count += i;

        if (mutex_test_and_set(mutex) == 0) {
		/* Succeeded! */

unknown's avatar
unknown committed
409
#ifdef UNIV_SYNC_DEBUG
410
		mutex_set_debug_info(mutex, file_name, line);
unknown's avatar
unknown committed
411
#endif
412 413 414

                return;
   	}
415 416 417 418 419 420 421 422 423

	/* We may end up with a situation where lock_word is
	0 but the OS fast mutex is still reserved. On FreeBSD
	the OS does not seem to schedule a thread which is constantly
	calling pthread_mutex_trylock (in mutex_test_and_set
	implementation). Then we could end up spinning here indefinitely.
	The following 'i++' stops this infinite spin. */

	i++;
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
        
	if (i < SYNC_SPIN_ROUNDS) {

		goto spin_loop;
	}

        sync_array_reserve_cell(sync_primary_wait_array, mutex,
        			SYNC_MUTEX,
				file_name, line,
				&index);

	mutex_system_call_count++;

	/* The memory order of the array reservation and the change in the
	waiters field is important: when we suspend a thread, we first
	reserve the cell and then set waiters field to 1. When threads are
	released in mutex_exit, the waiters field is first set to zero and
	then the event is set to the signaled state. */
        
	mutex_set_waiters(mutex, 1);

445 446 447
	/* Try to reserve still a few times */
	for (i = 0; i < 4; i++) {
            if (mutex_test_and_set(mutex) == 0) {
448 449 450 451 452

                /* Succeeded! Free the reserved wait cell */

                sync_array_free_cell(sync_primary_wait_array, index);
                
unknown's avatar
unknown committed
453
#ifdef UNIV_SYNC_DEBUG
454
		mutex_set_debug_info(mutex, file_name, line);
unknown's avatar
unknown committed
455
#endif
456 457

		if (srv_print_latch_waits) {
458 459 460
			fprintf(stderr,
				"Thread %lu spin wait succeeds at 2:"
				" mutex at %p\n",
461
			(ulong) os_thread_pf(os_thread_get_curr_id()),
unknown's avatar
unknown committed
462
			mutex);
463 464 465 466 467 468 469
		}
		
                return;

                /* Note that in this case we leave the waiters field
                set to 1. We cannot reset it to zero, as we do not know
                if there are other waiters. */
470
            }
471 472 473 474 475 476 477
        }

        /* Now we know that there has been some thread holding the mutex
        after the change in the wait array and the waiters field was made.
	Now there is no risk of infinite wait on the event. */

	if (srv_print_latch_waits) {
478 479
		fprintf(stderr,
	"Thread %lu OS wait mutex at %p cfile %s cline %lu rnds %lu\n",
unknown's avatar
unknown committed
480
		(ulong) os_thread_pf(os_thread_get_curr_id()), mutex,
481
		mutex->cfile_name, (ulong) mutex->cline, (ulong) i);
482 483 484
	}
	
	mutex_system_call_count++;
485 486
	mutex_os_wait_count++;

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
        sync_array_wait_event(sync_primary_wait_array, index);

        goto mutex_loop;        
}

/**********************************************************************
Releases the threads waiting in the primary wait array for this mutex. */

void
mutex_signal_object(
/*================*/
	mutex_t*	mutex)	/* in: mutex */
{
	mutex_set_waiters(mutex, 0);

	/* The memory order of resetting the waiters field and
	signaling the object is important. See LEMMA 1 above. */
unknown's avatar
unknown committed
504 505
	os_event_set(mutex->event);
	sync_array_object_signalled(sync_primary_wait_array);
506 507
}

508
#ifdef UNIV_SYNC_DEBUG
509 510 511 512 513 514 515
/**********************************************************************
Sets the debug information for a reserved mutex. */

void
mutex_set_debug_info(
/*=================*/
	mutex_t*	mutex,		/* in: mutex */
unknown's avatar
unknown committed
516
	const char*	file_name,	/* in: file where requested */
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
	ulint		line)		/* in: line where requested */
{
	ut_ad(mutex);
	ut_ad(file_name);

	sync_thread_add_level(mutex, mutex->level);

	mutex->file_name = file_name;
	mutex->line 	 = line;
	mutex->thread_id = os_thread_get_curr_id();
}	

/**********************************************************************
Gets the debug information for a reserved mutex. */

void
mutex_get_debug_info(
/*=================*/
	mutex_t*	mutex,		/* in: mutex */
536
	const char**	file_name,	/* out: file where requested */
537 538 539 540 541 542 543 544 545
	ulint*		line,		/* out: line where requested */
	os_thread_id_t* thread_id)	/* out: id of the thread which owns
					the mutex */
{
	ut_ad(mutex);

	*file_name = mutex->file_name;
	*line	   = mutex->line;
	*thread_id = mutex->thread_id;
546 547
}
#endif /* UNIV_SYNC_DEBUG */
548 549 550 551 552 553 554 555 556 557 558 559 560

/**********************************************************************
Sets the mutex latching level field. */

void
mutex_set_level(
/*============*/
	mutex_t*	mutex,	/* in: mutex */
	ulint		level)	/* in: level */
{
	mutex->level = level;
}

561
#ifdef UNIV_SYNC_DEBUG
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
/**********************************************************************
Checks that the current thread owns the mutex. Works only in the debug
version. */

ibool
mutex_own(
/*======*/
				/* out: TRUE if owns */
	mutex_t*	mutex)	/* in: mutex */
{
	ut_a(mutex_validate(mutex));

	if (mutex_get_lock_word(mutex) != 1) {

		return(FALSE);
	}
	
unknown's avatar
unknown committed
579
	if (!os_thread_eq(mutex->thread_id, os_thread_get_curr_id())) {
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594

		return(FALSE);
	}

	return(TRUE);
}

/**********************************************************************
Prints debug info of currently reserved mutexes. */

void
mutex_list_print_info(void)
/*=======================*/
{
	mutex_t*	mutex;
595
	const char*	file_name;
596 597 598 599
	ulint		line;
	os_thread_id_t	thread_id;
	ulint		count		= 0;

600 601 602
	fputs("----------\n"
		"MUTEX INFO\n"
		"----------\n", stderr);
603 604 605 606 607 608 609 610 611

	mutex_enter(&mutex_list_mutex);

	mutex = UT_LIST_GET_FIRST(mutex_list);

	while (mutex != NULL) {
		count++;

		if (mutex_get_lock_word(mutex) != 0) {
612 613
		    	mutex_get_debug_info(mutex, &file_name, &line,
								&thread_id);
614 615 616
			fprintf(stderr,
			"Locked mutex: addr %p thread %ld file %s line %ld\n",
				mutex, os_thread_pf(thread_id),
unknown's avatar
unknown committed
617
				file_name, line);
618 619 620 621 622
		}

		mutex = UT_LIST_GET_NEXT(list, mutex);
	}

623
	fprintf(stderr, "Total number of mutexes %ld\n", count);
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
	
	mutex_exit(&mutex_list_mutex);
}

/**********************************************************************
Counts currently reserved mutexes. Works only in the debug version. */

ulint
mutex_n_reserved(void)
/*==================*/
{
	mutex_t*	mutex;
	ulint		count		= 0;

	mutex_enter(&mutex_list_mutex);

	mutex = UT_LIST_GET_FIRST(mutex_list);

	while (mutex != NULL) {
		if (mutex_get_lock_word(mutex) != 0) {

			count++;
		}

		mutex = UT_LIST_GET_NEXT(list, mutex);
	}

	mutex_exit(&mutex_list_mutex);

	ut_a(count >= 1);

	return(count - 1); /* Subtract one, because this function itself
			   was holding one mutex (mutex_list_mutex) */
}

/**********************************************************************
Returns TRUE if no mutex or rw-lock is currently locked. Works only in
the debug version. */

ibool
sync_all_freed(void)
/*================*/
{
667
	return(mutex_n_reserved() + rw_lock_n_locked() == 0);
668
}
669
#endif /* UNIV_SYNC_DEBUG */
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703

/**********************************************************************
Gets the value in the nth slot in the thread level arrays. */
static
sync_thread_t*
sync_thread_level_arrays_get_nth(
/*=============================*/
			/* out: pointer to thread slot */
	ulint	n)	/* in: slot number */
{
	ut_ad(n < OS_THREAD_MAX_N);

	return(sync_thread_level_arrays + n);
}

/**********************************************************************
Looks for the thread slot for the calling thread. */
static
sync_thread_t*
sync_thread_level_arrays_find_slot(void)
/*====================================*/
			/* out: pointer to thread slot, NULL if not found */
	
{
	sync_thread_t*	slot;
	os_thread_id_t	id;
	ulint		i;

	id = os_thread_get_curr_id();

	for (i = 0; i < OS_THREAD_MAX_N; i++) {

		slot = sync_thread_level_arrays_get_nth(i);

unknown's avatar
unknown committed
704
		if (slot->levels && os_thread_eq(slot->id, id)) {
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780

			return(slot);
		}
	}

	return(NULL);
}

/**********************************************************************
Looks for an unused thread slot. */
static
sync_thread_t*
sync_thread_level_arrays_find_free(void)
/*====================================*/
			/* out: pointer to thread slot */
	
{
	sync_thread_t*	slot;
	ulint		i;

	for (i = 0; i < OS_THREAD_MAX_N; i++) {

		slot = sync_thread_level_arrays_get_nth(i);

		if (slot->levels == NULL) {

			return(slot);
		}
	}

	return(NULL);
}

/**********************************************************************
Gets the value in the nth slot in the thread level array. */
static
sync_level_t*
sync_thread_levels_get_nth(
/*=======================*/
				/* out: pointer to level slot */
	sync_level_t*	arr,	/* in: pointer to level array for an OS
				thread */
	ulint		n)	/* in: slot number */
{
	ut_ad(n < SYNC_THREAD_N_LEVELS);

	return(arr + n);
}

/**********************************************************************
Checks if all the level values stored in the level array are greater than
the given limit. */
static
ibool
sync_thread_levels_g(
/*=================*/
				/* out: TRUE if all greater */
	sync_level_t*	arr,	/* in: pointer to level array for an OS
				thread */
	ulint		limit)	/* in: level limit */
{
	sync_level_t*	slot;
	rw_lock_t*	lock;
	mutex_t*	mutex;
	ulint		i;

	for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) {

		slot = sync_thread_levels_get_nth(arr, i);

		if (slot->latch != NULL) {
			if (slot->level <= limit) {

				lock = slot->latch;
				mutex = slot->latch;

781
				fprintf(stderr,
782
	"InnoDB error: sync levels should be > %lu but a level is %lu\n",
783
				(ulong) limit, (ulong) slot->level);
784 785

				if (mutex->magic_n == MUTEX_MAGIC_N) {
786 787 788
					fprintf(stderr,
						"Mutex created at %s %lu\n",
						mutex->cfile_name,
789
						(ulong) mutex->cline);
790 791

					if (mutex_get_lock_word(mutex) != 0) {
792
#ifdef UNIV_SYNC_DEBUG
793
						const char*	file_name;
794 795
						ulint		line;
						os_thread_id_t	thread_id;
796 797 798 799

		    				mutex_get_debug_info(mutex,
						&file_name, &line, &thread_id);

800 801
						fprintf(stderr,
		"InnoDB: Locked mutex: addr %p thread %ld file %s line %ld\n",
unknown's avatar
unknown committed
802
		mutex, os_thread_pf(thread_id), file_name, (ulong) line);
803 804 805 806
#else /* UNIV_SYNC_DEBUG */
						fprintf(stderr,
		"InnoDB: Locked mutex: addr %p\n", mutex);
#endif /* UNIV_SYNC_DEBUG */
807
					} else {
808
						fputs("Not locked\n", stderr);
809 810
					}	
				} else {
811
#ifdef UNIV_SYNC_DEBUG
812
					rw_lock_print(lock);
813
#endif /* UNIV_SYNC_DEBUG */
814 815
				}
								
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
				return(FALSE);
			}
		}
	}

	return(TRUE);
}

/**********************************************************************
Checks if the level value is stored in the level array. */
static
ibool
sync_thread_levels_contain(
/*=======================*/
				/* out: TRUE if stored */
	sync_level_t*	arr,	/* in: pointer to level array for an OS
				thread */
	ulint		level)	/* in: level */
{
	sync_level_t*	slot;
	ulint		i;

	for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) {

		slot = sync_thread_levels_get_nth(arr, i);

		if (slot->latch != NULL) {
			if (slot->level == level) {

				return(TRUE);
			}
		}
	}

	return(FALSE);
}

/**********************************************************************
Checks that the level array for the current thread is empty. */

ibool
sync_thread_levels_empty_gen(
/*=========================*/
					/* out: TRUE if empty except the
					exceptions specified below */
	ibool	dict_mutex_allowed)	/* in: TRUE if dictionary mutex is
					allowed to be owned by the thread,
					also purge_is_running mutex is
					allowed */
{
	sync_level_t*	arr;
	sync_thread_t*	thread_slot;
	sync_level_t*	slot;
	ulint		i;

	if (!sync_order_checks_on) {

		return(TRUE);
	}

	mutex_enter(&sync_thread_mutex);

	thread_slot = sync_thread_level_arrays_find_slot();

	if (thread_slot == NULL) {

		mutex_exit(&sync_thread_mutex);

		return(TRUE);
	}

	arr = thread_slot->levels;

	for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) {

		slot = sync_thread_levels_get_nth(arr, i);

		if (slot->latch != NULL && (!dict_mutex_allowed ||
				(slot->level != SYNC_DICT
unknown's avatar
unknown committed
895
				&& slot->level != SYNC_DICT_OPERATION))) {
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943

			mutex_exit(&sync_thread_mutex);
			ut_error;

			return(FALSE);
		}
	}

	mutex_exit(&sync_thread_mutex);

	return(TRUE);
}

/**********************************************************************
Checks that the level array for the current thread is empty. */

ibool
sync_thread_levels_empty(void)
/*==========================*/
			/* out: TRUE if empty */
{
	return(sync_thread_levels_empty_gen(FALSE));
}

/**********************************************************************
Adds a latch and its level in the thread level array. Allocates the memory
for the array if called first time for this OS thread. Makes the checks
against other latch levels stored in the array for this thread. */

void
sync_thread_add_level(
/*==================*/
	void*	latch,	/* in: pointer to a mutex or an rw-lock */
	ulint	level)	/* in: level in the latching order; if SYNC_LEVEL_NONE,
			nothing is done */
{
	sync_level_t*	array;
	sync_level_t*	slot;
	sync_thread_t*	thread_slot;
	ulint		i;
	
	if (!sync_order_checks_on) {

		return;
	}

	if ((latch == (void*)&sync_thread_mutex)
	    || (latch == (void*)&mutex_list_mutex)
944
#ifdef UNIV_SYNC_DEBUG
945
	    || (latch == (void*)&rw_lock_debug_mutex)
946
#endif /* UNIV_SYNC_DEBUG */
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
	    || (latch == (void*)&rw_lock_list_mutex)) {

		return;
	}

	if (level == SYNC_LEVEL_NONE) {

		return;
	}

	mutex_enter(&sync_thread_mutex);

	thread_slot = sync_thread_level_arrays_find_slot();

	if (thread_slot == NULL) {
		/* We have to allocate the level array for a new thread */
		array = ut_malloc(sizeof(sync_level_t) * SYNC_THREAD_N_LEVELS);
	
		thread_slot = sync_thread_level_arrays_find_free();
	
 		thread_slot->id = os_thread_get_curr_id();
		thread_slot->levels = array;
		
		for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) {

			slot = sync_thread_levels_get_nth(array, i);

			slot->latch = NULL;
		}
	}

	array = thread_slot->levels;
unknown's avatar
unknown committed
979
	
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
	/* NOTE that there is a problem with _NODE and _LEAF levels: if the
	B-tree height changes, then a leaf can change to an internal node
	or the other way around. We do not know at present if this can cause
	unnecessary assertion failures below. */

	if (level == SYNC_NO_ORDER_CHECK) {
		/* Do no order checking */

	} else if (level == SYNC_MEM_POOL) {
		ut_a(sync_thread_levels_g(array, SYNC_MEM_POOL));
	} else if (level == SYNC_MEM_HASH) {
		ut_a(sync_thread_levels_g(array, SYNC_MEM_HASH));
	} else if (level == SYNC_RECV) {
		ut_a(sync_thread_levels_g(array, SYNC_RECV));
	} else if (level == SYNC_LOG) {
		ut_a(sync_thread_levels_g(array, SYNC_LOG));
996 997
	} else if (level == SYNC_THR_LOCAL) {
		ut_a(sync_thread_levels_g(array, SYNC_THR_LOCAL));
998 999 1000
	} else if (level == SYNC_ANY_LATCH) {
		ut_a(sync_thread_levels_g(array, SYNC_ANY_LATCH));
	} else if (level == SYNC_TRX_SYS_HEADER) {
unknown's avatar
unknown committed
1001
		ut_a(sync_thread_levels_g(array, SYNC_TRX_SYS_HEADER));
1002 1003
	} else if (level == SYNC_DOUBLEWRITE) {
		ut_a(sync_thread_levels_g(array, SYNC_DOUBLEWRITE));
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	} else if (level == SYNC_BUF_BLOCK) {
		ut_a((sync_thread_levels_contain(array, SYNC_BUF_POOL)
			&& sync_thread_levels_g(array, SYNC_BUF_BLOCK - 1))
		     || sync_thread_levels_g(array, SYNC_BUF_BLOCK));
	} else if (level == SYNC_BUF_POOL) {
		ut_a(sync_thread_levels_g(array, SYNC_BUF_POOL));
	} else if (level == SYNC_SEARCH_SYS) {
		ut_a(sync_thread_levels_g(array, SYNC_SEARCH_SYS));
	} else if (level == SYNC_TRX_LOCK_HEAP) {
		ut_a(sync_thread_levels_g(array, SYNC_TRX_LOCK_HEAP));
	} else if (level == SYNC_REC_LOCK) {
		ut_a((sync_thread_levels_contain(array, SYNC_KERNEL)
			&& sync_thread_levels_g(array, SYNC_REC_LOCK - 1))
		     || sync_thread_levels_g(array, SYNC_REC_LOCK));
	} else if (level == SYNC_KERNEL) {
		ut_a(sync_thread_levels_g(array, SYNC_KERNEL));
	} else if (level == SYNC_IBUF_BITMAP) {
		ut_a((sync_thread_levels_contain(array, SYNC_IBUF_BITMAP_MUTEX)
		         && sync_thread_levels_g(array, SYNC_IBUF_BITMAP - 1))
		     || sync_thread_levels_g(array, SYNC_IBUF_BITMAP));
	} else if (level == SYNC_IBUF_BITMAP_MUTEX) {
		ut_a(sync_thread_levels_g(array, SYNC_IBUF_BITMAP_MUTEX));
	} else if (level == SYNC_FSP_PAGE) {
		ut_a(sync_thread_levels_contain(array, SYNC_FSP));
	} else if (level == SYNC_FSP) {
		ut_a(sync_thread_levels_contain(array, SYNC_FSP)
		     || sync_thread_levels_g(array, SYNC_FSP));
1031 1032
	} else if (level == SYNC_EXTERN_STORAGE) {
		ut_a(TRUE);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	} else if (level == SYNC_TRX_UNDO_PAGE) {
		ut_a(sync_thread_levels_contain(array, SYNC_TRX_UNDO)
		     || sync_thread_levels_contain(array, SYNC_RSEG)
		     || sync_thread_levels_contain(array, SYNC_PURGE_SYS)
		     || sync_thread_levels_g(array, SYNC_TRX_UNDO_PAGE));
	} else if (level == SYNC_RSEG_HEADER) {
		ut_a(sync_thread_levels_contain(array, SYNC_RSEG));
	} else if (level == SYNC_RSEG_HEADER_NEW) {
		ut_a(sync_thread_levels_contain(array, SYNC_KERNEL)
		     && sync_thread_levels_contain(array, SYNC_FSP_PAGE));
	} else if (level == SYNC_RSEG) {
		ut_a(sync_thread_levels_g(array, SYNC_RSEG));
	} else if (level == SYNC_TRX_UNDO) {
		ut_a(sync_thread_levels_g(array, SYNC_TRX_UNDO));
	} else if (level == SYNC_PURGE_LATCH) {
		ut_a(sync_thread_levels_g(array, SYNC_PURGE_LATCH));
	} else if (level == SYNC_PURGE_SYS) {
		ut_a(sync_thread_levels_g(array, SYNC_PURGE_SYS));
	} else if (level == SYNC_TREE_NODE) {
		ut_a(sync_thread_levels_contain(array, SYNC_INDEX_TREE)
unknown's avatar
unknown committed
1053
		     || sync_thread_levels_contain(array, SYNC_DICT_OPERATION)
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
		     || sync_thread_levels_g(array, SYNC_TREE_NODE - 1));
	} else if (level == SYNC_TREE_NODE_FROM_HASH) {
		ut_a(1);
	} else if (level == SYNC_TREE_NODE_NEW) {
		ut_a(sync_thread_levels_contain(array, SYNC_FSP_PAGE)
		     || sync_thread_levels_contain(array, SYNC_IBUF_MUTEX));
	} else if (level == SYNC_INDEX_TREE) {
		ut_a((sync_thread_levels_contain(array, SYNC_IBUF_MUTEX)
		      && sync_thread_levels_contain(array, SYNC_FSP)
		      && sync_thread_levels_g(array, SYNC_FSP_PAGE - 1))
		     || sync_thread_levels_g(array, SYNC_TREE_NODE - 1));
	} else if (level == SYNC_IBUF_MUTEX) {
		ut_a(sync_thread_levels_g(array, SYNC_FSP_PAGE - 1));
	} else if (level == SYNC_IBUF_PESS_INSERT_MUTEX) {
		ut_a(sync_thread_levels_g(array, SYNC_FSP - 1)
		     && !sync_thread_levels_contain(array, SYNC_IBUF_MUTEX));
	} else if (level == SYNC_IBUF_HEADER) {
		ut_a(sync_thread_levels_g(array, SYNC_FSP - 1)
		     && !sync_thread_levels_contain(array, SYNC_IBUF_MUTEX)
		     && !sync_thread_levels_contain(array,
						SYNC_IBUF_PESS_INSERT_MUTEX));
1075 1076
	} else if (level == SYNC_DICT_AUTOINC_MUTEX) {
		ut_a(sync_thread_levels_g(array, SYNC_DICT_AUTOINC_MUTEX));
unknown's avatar
unknown committed
1077 1078
	} else if (level == SYNC_DICT_OPERATION) {
		ut_a(sync_thread_levels_g(array, SYNC_DICT_OPERATION));
1079 1080 1081
	} else if (level == SYNC_DICT_HEADER) {
		ut_a(sync_thread_levels_g(array, SYNC_DICT_HEADER));
	} else if (level == SYNC_DICT) {
1082 1083
		ut_a(buf_debug_prints
		     || sync_thread_levels_g(array, SYNC_DICT));
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	} else {
		ut_error;
	}

	for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) {

		slot = sync_thread_levels_get_nth(array, i);

		if (slot->latch == NULL) {
			slot->latch = latch;
			slot->level = level;

			break;
		}
	}

	ut_a(i < SYNC_THREAD_N_LEVELS);

	mutex_exit(&sync_thread_mutex);
}
	
/**********************************************************************
Removes a latch from the thread level array if it is found there. */

ibool
sync_thread_reset_level(
/*====================*/
			/* out: TRUE if found from the array; it is an error
			if the latch is not found */
	void*	latch)	/* in: pointer to a mutex or an rw-lock */
{
	sync_level_t*	array;
	sync_level_t*	slot;
	sync_thread_t*	thread_slot;
	ulint		i;
	
	if (!sync_order_checks_on) {

		return(FALSE);
	}

	if ((latch == (void*)&sync_thread_mutex)
	    || (latch == (void*)&mutex_list_mutex)
1127
#ifdef UNIV_SYNC_DEBUG
1128
	    || (latch == (void*)&rw_lock_debug_mutex)
1129
#endif /* UNIV_SYNC_DEBUG */
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	    || (latch == (void*)&rw_lock_list_mutex)) {

		return(FALSE);
	}

	mutex_enter(&sync_thread_mutex);

	thread_slot = sync_thread_level_arrays_find_slot();

	if (thread_slot == NULL) {

		ut_error;

		mutex_exit(&sync_thread_mutex);
		return(FALSE);
	}

	array = thread_slot->levels;
	
	for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) {

		slot = sync_thread_levels_get_nth(array, i);

		if (slot->latch == latch) {
			slot->latch = NULL;

			mutex_exit(&sync_thread_mutex);

			return(TRUE);
		}
	}

	ut_error;

	mutex_exit(&sync_thread_mutex);

	return(FALSE);
}
	
/**********************************************************************
Initializes the synchronization data structures. */

void
sync_init(void)
/*===========*/
{
	sync_thread_t*	thread_slot;
	ulint		i;
	
	ut_a(sync_initialized == FALSE);

	sync_initialized = TRUE;

	/* Create the primary system wait array which is protected by an OS
	mutex */

	sync_primary_wait_array = sync_array_create(OS_THREAD_MAX_N,
						    SYNC_ARRAY_OS_MUTEX);	

	/* Create the thread latch level array where the latch levels
	are stored for each OS thread */

	sync_thread_level_arrays = ut_malloc(OS_THREAD_MAX_N
						* sizeof(sync_thread_t));
	for (i = 0; i < OS_THREAD_MAX_N; i++) {

		thread_slot = sync_thread_level_arrays_get_nth(i);
		thread_slot->levels = NULL;
	}

        /* Init the mutex list and create the mutex to protect it. */

	UT_LIST_INIT(mutex_list);
        mutex_create(&mutex_list_mutex);
        mutex_set_level(&mutex_list_mutex, SYNC_NO_ORDER_CHECK);

        mutex_create(&sync_thread_mutex);
        mutex_set_level(&sync_thread_mutex, SYNC_NO_ORDER_CHECK);
        
	/* Init the rw-lock list and create the mutex to protect it. */

	UT_LIST_INIT(rw_lock_list);
        mutex_create(&rw_lock_list_mutex);
        mutex_set_level(&rw_lock_list_mutex, SYNC_NO_ORDER_CHECK);

1215
#ifdef UNIV_SYNC_DEBUG
1216 1217 1218 1219 1220
        mutex_create(&rw_lock_debug_mutex);
        mutex_set_level(&rw_lock_debug_mutex, SYNC_NO_ORDER_CHECK);

	rw_lock_debug_event = os_event_create(NULL);
	rw_lock_debug_waiters = FALSE;
1221
#endif /* UNIV_SYNC_DEBUG */
1222 1223 1224
}

/**********************************************************************
unknown's avatar
unknown committed
1225 1226
Frees the resources in InnoDB's own synchronization data structures. Use
os_sync_free() after calling this. */
1227 1228 1229 1230 1231

void
sync_close(void)
/*===========*/
{
unknown's avatar
unknown committed
1232 1233
	mutex_t*	mutex;

1234
	sync_array_free(sync_primary_wait_array);
unknown's avatar
unknown committed
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

	mutex = UT_LIST_GET_FIRST(mutex_list);

	while (mutex) {
	        mutex_free(mutex);
		mutex = UT_LIST_GET_FIRST(mutex_list);
	}

	mutex_free(&mutex_list_mutex);
	mutex_free(&sync_thread_mutex);	
1245 1246 1247 1248 1249 1250
}

/***********************************************************************
Prints wait info of the sync system. */

void
unknown's avatar
unknown committed
1251 1252
sync_print_wait_info(
/*=================*/
1253
	FILE*	file)		/* in: file where to print */
1254
{
1255
#ifdef UNIV_SYNC_DEBUG
1256
	fprintf(stderr, "Mutex exits %lu, rws exits %lu, rwx exits %lu\n",
1257 1258
		mutex_exit_count, rw_s_exit_count, rw_x_exit_count);
#endif
unknown's avatar
unknown committed
1259

1260
	fprintf(file,
1261 1262
"Mutex spin waits %lu, rounds %lu, OS waits %lu\n"
"RW-shared spins %lu, OS waits %lu; RW-excl spins %lu, OS waits %lu\n",
1263 1264 1265 1266 1267 1268 1269
			(ulong) mutex_spin_wait_count,
		        (ulong) mutex_spin_round_count,
			(ulong) mutex_os_wait_count,
			(ulong) rw_s_spin_wait_count,
		        (ulong) rw_s_os_wait_count,
			(ulong) rw_x_spin_wait_count,
		        (ulong) rw_x_os_wait_count);
1270 1271 1272 1273 1274 1275
}

/***********************************************************************
Prints info of the sync system. */

void
unknown's avatar
unknown committed
1276 1277
sync_print(
/*=======*/
1278
	FILE*	file)		/* in: file where to print */
1279
{
1280
#ifdef UNIV_SYNC_DEBUG
1281
	mutex_list_print_info();
unknown's avatar
unknown committed
1282

1283
	rw_lock_list_print_info();
1284
#endif /* UNIV_SYNC_DEBUG */
unknown's avatar
unknown committed
1285

1286
	sync_array_print_info(file, sync_primary_wait_array);
unknown's avatar
unknown committed
1287

1288
	sync_print_wait_info(file);
1289
}