opt_range.cc 354 KB
Newer Older
unknown's avatar
unknown committed
1
/* Copyright (C) 2000-2006 MySQL AB
unknown's avatar
unknown committed
2 3 4

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
unknown's avatar
unknown committed
5
   the Free Software Foundation; version 2 of the License.
unknown's avatar
unknown committed
6 7 8 9 10 11 12 13 14 15

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */

unknown's avatar
unknown committed
16 17 18 19 20
/*
  TODO:
  Fix that MAYBE_KEY are stored in the tree so that we can detect use
  of full hash keys for queries like:

unknown's avatar
unknown committed
21 22
  select s.id, kws.keyword_id from sites as s,kws where s.id=kws.site_id and kws.keyword_id in (204,205);

unknown's avatar
unknown committed
23 24
*/

25
/*
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
  This file contains:

  RangeAnalysisModule  
    A module that accepts a condition, index (or partitioning) description, 
    and builds lists of intervals (in index/partitioning space), such that 
    all possible records that match the condition are contained within the 
    intervals.
    The entry point for the range analysis module is get_mm_tree() function.
    
    The lists are returned in form of complicated structure of interlinked
    SEL_TREE/SEL_IMERGE/SEL_ARG objects.
    See check_quick_keys, find_used_partitions for examples of how to walk 
    this structure.
    All direct "users" of this module are located within this file, too.


  PartitionPruningModule
    A module that accepts a partitioned table, condition, and finds which
    partitions we will need to use in query execution. Search down for
    "PartitionPruningModule" for description.
    The module has single entry point - prune_partitions() function.


  Range/index_merge/groupby-minmax optimizer module  
    A module that accepts a table, condition, and returns 
     - a QUICK_*_SELECT object that can be used to retrieve rows that match
       the specified condition, or a "no records will match the condition" 
       statement.

    The module entry points are
      test_quick_select()
      get_quick_select_for_ref()


  Record retrieval code for range/index_merge/groupby-min-max.
    Implementations of QUICK_*_SELECT classes.
62 63
*/

64
#ifdef USE_PRAGMA_IMPLEMENTATION
unknown's avatar
unknown committed
65 66 67 68 69 70 71 72 73 74 75 76
#pragma implementation				// gcc: Class implementation
#endif

#include "mysql_priv.h"
#include <m_ctype.h>
#include "sql_select.h"

#ifndef EXTRA_DEBUG
#define test_rb_tree(A,B) {}
#define test_use_count(A) {}
#endif

77
/*
78
  Convert double value to #rows. Currently this does floor(), and we
79 80
  might consider using round() instead.
*/
81
#define double2rows(x) ((ha_rows)(x))
82

83
static int sel_cmp(Field *f,uchar *a,uchar *b,uint8 a_flag,uint8 b_flag);
unknown's avatar
unknown committed
84

85
static uchar is_null_string[2]= {1,0};
unknown's avatar
unknown committed
86

87
class RANGE_OPT_PARAM;
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/*
  A construction block of the SEL_ARG-graph.
  
  The following description only covers graphs of SEL_ARG objects with 
  sel_arg->type==KEY_RANGE:

  One SEL_ARG object represents an "elementary interval" in form
  
      min_value <=?  table.keypartX  <=? max_value
  
  The interval is a non-empty interval of any kind: with[out] minimum/maximum
  bound, [half]open/closed, single-point interval, etc.

  1. SEL_ARG GRAPH STRUCTURE
  
  SEL_ARG objects are linked together in a graph. The meaning of the graph
  is better demostrated by an example:
  
     tree->keys[i]
      | 
      |             $              $
      |    part=1   $     part=2   $    part=3
      |             $              $
      |  +-------+  $   +-------+  $   +--------+
      |  | kp1<1 |--$-->| kp2=5 |--$-->| kp3=10 |
      |  +-------+  $   +-------+  $   +--------+
      |      |      $              $       |
      |      |      $              $   +--------+
      |      |      $              $   | kp3=12 | 
      |      |      $              $   +--------+ 
      |  +-------+  $              $   
      \->| kp1=2 |--$--------------$-+ 
         +-------+  $              $ |   +--------+
             |      $              $  ==>| kp3=11 |
         +-------+  $              $ |   +--------+
         | kp1=3 |--$--------------$-+       |
         +-------+  $              $     +--------+
             |      $              $     | kp3=14 |
            ...     $              $     +--------+
 
  The entire graph is partitioned into "interval lists".

  An interval list is a sequence of ordered disjoint intervals over the same
  key part. SEL_ARG are linked via "next" and "prev" pointers. Additionally,
  all intervals in the list form an RB-tree, linked via left/right/parent 
  pointers. The RB-tree root SEL_ARG object will be further called "root of the
  interval list".
  
    In the example pic, there are 4 interval lists: 
    "kp<1 OR kp1=2 OR kp1=3", "kp2=5", "kp3=10 OR kp3=12", "kp3=11 OR kp3=13".
    The vertical lines represent SEL_ARG::next/prev pointers.
    
  In an interval list, each member X may have SEL_ARG::next_key_part pointer
  pointing to the root of another interval list Y. The pointed interval list
  must cover a key part with greater number (i.e. Y->part > X->part).
    
    In the example pic, the next_key_part pointers are represented by
    horisontal lines.

  2. SEL_ARG GRAPH SEMANTICS

  It represents a condition in a special form (we don't have a name for it ATM)
  The SEL_ARG::next/prev is "OR", and next_key_part is "AND".
  
  For example, the picture represents the condition in form:
   (kp1 < 1 AND kp2=5 AND (kp3=10 OR kp3=12)) OR 
   (kp1=2 AND (kp3=11 OR kp3=14)) OR 
   (kp1=3 AND (kp3=11 OR kp3=14))


  3. SEL_ARG GRAPH USE

  Use get_mm_tree() to construct SEL_ARG graph from WHERE condition.
  Then walk the SEL_ARG graph and get a list of dijsoint ordered key
  intervals (i.e. intervals in form
  
   (constA1, .., const1_K) < (keypart1,.., keypartK) < (constB1, .., constB_K)

  Those intervals can be used to access the index. The uses are in:
   - check_quick_select() - Walk the SEL_ARG graph and find an estimate of
                            how many table records are contained within all
                            intervals.
   - get_quick_select()   - Walk the SEL_ARG, materialize the key intervals,
                            and create QUICK_RANGE_SELECT object that will
                            read records within these intervals.
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

  4. SPACE COMPLEXITY NOTES 

    SEL_ARG graph is a representation of an ordered disjoint sequence of
    intervals over the ordered set of index tuple values.

    For multi-part keys, one can construct a WHERE expression such that its
    list of intervals will be of combinatorial size. Here is an example:
     
      (keypart1 IN (1,2, ..., n1)) AND 
      (keypart2 IN (1,2, ..., n2)) AND 
      (keypart3 IN (1,2, ..., n3))
    
    For this WHERE clause the list of intervals will have n1*n2*n3 intervals
    of form
     
      (keypart1, keypart2, keypart3) = (k1, k2, k3), where 1 <= k{i} <= n{i}
    
    SEL_ARG graph structure aims to reduce the amount of required space by
    "sharing" the elementary intervals when possible (the pic at the
    beginning of this comment has examples of such sharing). The sharing may 
    prevent combinatorial blowup:

      There are WHERE clauses that have combinatorial-size interval lists but
      will be represented by a compact SEL_ARG graph.
      Example:
        (keypartN IN (1,2, ..., n1)) AND 
        ...
        (keypart2 IN (1,2, ..., n2)) AND 
        (keypart1 IN (1,2, ..., n3))

    but not in all cases:

    - There are WHERE clauses that do have a compact SEL_ARG-graph
      representation but get_mm_tree() and its callees will construct a
      graph of combinatorial size.
      Example:
        (keypart1 IN (1,2, ..., n1)) AND 
        (keypart2 IN (1,2, ..., n2)) AND 
        ...
        (keypartN IN (1,2, ..., n3))

    - There are WHERE clauses for which the minimal possible SEL_ARG graph
      representation will have combinatorial size.
      Example:
        By induction: Let's take any interval on some keypart in the middle:

220
           kp15=c0
221 222 223 224 225 226 227 228
        
        Then let's AND it with this interval 'structure' from preceding and
        following keyparts:

          (kp14=c1 AND kp16=c3) OR keypart14=c2) (*)
        
        We will obtain this SEL_ARG graph:
 
229 230 231 232 233 234 235 236 237 238
             kp14     $      kp15      $      kp16
                      $                $
         +---------+  $   +---------+  $   +---------+
         | kp14=c1 |--$-->| kp15=c0 |--$-->| kp16=c3 |
         +---------+  $   +---------+  $   +---------+
              |       $                $              
         +---------+  $   +---------+  $             
         | kp14=c2 |--$-->| kp15=c0 |  $             
         +---------+  $   +---------+  $             
                      $                $
239
                      
240
       Note that we had to duplicate "kp15=c0" and there was no way to avoid
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
       that. 
       The induction step: AND the obtained expression with another "wrapping"
       expression like (*).
       When the process ends because of the limit on max. number of keyparts 
       we'll have:

         WHERE clause length  is O(3*#max_keyparts)
         SEL_ARG graph size   is O(2^(#max_keyparts/2))

       (it is also possible to construct a case where instead of 2 in 2^n we
        have a bigger constant, e.g. 4, and get a graph with 4^(31/2)= 2^31
        nodes)

    We avoid consuming too much memory by setting a limit on the number of
    SEL_ARG object we can construct during one range analysis invocation.
256 257
*/

unknown's avatar
unknown committed
258 259 260 261 262 263
class SEL_ARG :public Sql_alloc
{
public:
  uint8 min_flag,max_flag,maybe_flag;
  uint8 part;					// Which key part
  uint8 maybe_null;
264 265 266 267 268 269 270 271 272 273 274 275
  /* 
    Number of children of this element in the RB-tree, plus 1 for this
    element itself.
  */
  uint16 elements;
  /*
    Valid only for elements which are RB-tree roots: Number of times this
    RB-tree is referred to (it is referred by SEL_ARG::next_key_part or by
    SEL_TREE::keys[i] or by a temporary SEL_ARG* variable)
  */
  ulong use_count;

unknown's avatar
unknown committed
276
  Field *field;
277
  uchar *min_value,*max_value;			// Pointer to range
unknown's avatar
unknown committed
278

279 280 281
  /*
    eq_tree() requires that left == right == 0 if the type is MAYBE_KEY.
   */
282 283 284 285
  SEL_ARG *left,*right;   /* R-B tree children */
  SEL_ARG *next,*prev;    /* Links for bi-directional interval list */
  SEL_ARG *parent;        /* R-B tree parent */
  SEL_ARG *next_key_part; 
unknown's avatar
unknown committed
286 287 288
  enum leaf_color { BLACK,RED } color;
  enum Type { IMPOSSIBLE, MAYBE, MAYBE_KEY, KEY_RANGE } type;

289
  enum { MAX_SEL_ARGS = 16000 };
290

unknown's avatar
unknown committed
291 292
  SEL_ARG() {}
  SEL_ARG(SEL_ARG &);
293 294
  SEL_ARG(Field *,const uchar *, const uchar *);
  SEL_ARG(Field *field, uint8 part, uchar *min_value, uchar *max_value,
unknown's avatar
unknown committed
295 296
	  uint8 min_flag, uint8 max_flag, uint8 maybe_flag);
  SEL_ARG(enum Type type_arg)
297
    :min_flag(0),elements(1),use_count(1),left(0),right(0),next_key_part(0),
298
    color(BLACK), type(type_arg)
unknown's avatar
unknown committed
299
  {}
unknown's avatar
unknown committed
300 301
  inline bool is_same(SEL_ARG *arg)
  {
302
    if (type != arg->type || part != arg->part)
unknown's avatar
unknown committed
303 304 305 306 307 308 309
      return 0;
    if (type != KEY_RANGE)
      return 1;
    return cmp_min_to_min(arg) == 0 && cmp_max_to_max(arg) == 0;
  }
  inline void merge_flags(SEL_ARG *arg) { maybe_flag|=arg->maybe_flag; }
  inline void maybe_smaller() { maybe_flag=1; }
unknown's avatar
unknown committed
310 311
  /* Return true iff it's a single-point null interval */
  inline bool is_null_interval() { return maybe_null && max_value[0] == 1; } 
unknown's avatar
unknown committed
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
  inline int cmp_min_to_min(SEL_ARG* arg)
  {
    return sel_cmp(field,min_value, arg->min_value, min_flag, arg->min_flag);
  }
  inline int cmp_min_to_max(SEL_ARG* arg)
  {
    return sel_cmp(field,min_value, arg->max_value, min_flag, arg->max_flag);
  }
  inline int cmp_max_to_max(SEL_ARG* arg)
  {
    return sel_cmp(field,max_value, arg->max_value, max_flag, arg->max_flag);
  }
  inline int cmp_max_to_min(SEL_ARG* arg)
  {
    return sel_cmp(field,max_value, arg->min_value, max_flag, arg->min_flag);
  }
  SEL_ARG *clone_and(SEL_ARG* arg)
  {						// Get overlapping range
330
    uchar *new_min,*new_max;
unknown's avatar
unknown committed
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
    uint8 flag_min,flag_max;
    if (cmp_min_to_min(arg) >= 0)
    {
      new_min=min_value; flag_min=min_flag;
    }
    else
    {
      new_min=arg->min_value; flag_min=arg->min_flag; /* purecov: deadcode */
    }
    if (cmp_max_to_max(arg) <= 0)
    {
      new_max=max_value; flag_max=max_flag;
    }
    else
    {
      new_max=arg->max_value; flag_max=arg->max_flag;
    }
    return new SEL_ARG(field, part, new_min, new_max, flag_min, flag_max,
		       test(maybe_flag && arg->maybe_flag));
  }
  SEL_ARG *clone_first(SEL_ARG *arg)
  {						// min <= X < arg->min
    return new SEL_ARG(field,part, min_value, arg->min_value,
		       min_flag, arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX,
		       maybe_flag | arg->maybe_flag);
  }
  SEL_ARG *clone_last(SEL_ARG *arg)
  {						// min <= X <= key_max
    return new SEL_ARG(field, part, min_value, arg->max_value,
		       min_flag, arg->max_flag, maybe_flag | arg->maybe_flag);
  }
362
  SEL_ARG *clone(RANGE_OPT_PARAM *param, SEL_ARG *new_parent, SEL_ARG **next);
unknown's avatar
unknown committed
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402

  bool copy_min(SEL_ARG* arg)
  {						// Get overlapping range
    if (cmp_min_to_min(arg) > 0)
    {
      min_value=arg->min_value; min_flag=arg->min_flag;
      if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
	  (NO_MAX_RANGE | NO_MIN_RANGE))
	return 1;				// Full range
    }
    maybe_flag|=arg->maybe_flag;
    return 0;
  }
  bool copy_max(SEL_ARG* arg)
  {						// Get overlapping range
    if (cmp_max_to_max(arg) <= 0)
    {
      max_value=arg->max_value; max_flag=arg->max_flag;
      if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
	  (NO_MAX_RANGE | NO_MIN_RANGE))
	return 1;				// Full range
    }
    maybe_flag|=arg->maybe_flag;
    return 0;
  }

  void copy_min_to_min(SEL_ARG *arg)
  {
    min_value=arg->min_value; min_flag=arg->min_flag;
  }
  void copy_min_to_max(SEL_ARG *arg)
  {
    max_value=arg->min_value;
    max_flag=arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX;
  }
  void copy_max_to_min(SEL_ARG *arg)
  {
    min_value=arg->max_value;
    min_flag=arg->max_flag & NEAR_MAX ? 0 : NEAR_MIN;
  }
unknown's avatar
unknown committed
403
  /* returns a number of keypart values (0 or 1) appended to the key buffer */
404
  int store_min(uint length, uchar **min_key,uint min_key_flag)
unknown's avatar
unknown committed
405
  {
unknown's avatar
unknown committed
406 407 408
    if ((min_flag & GEOM_FLAG) ||
        (!(min_flag & NO_MIN_RANGE) &&
	!(min_key_flag & (NO_MIN_RANGE | NEAR_MIN))))
unknown's avatar
unknown committed
409 410 411 412
    {
      if (maybe_null && *min_value)
      {
	**min_key=1;
unknown's avatar
unknown committed
413
	bzero(*min_key+1,length-1);
unknown's avatar
unknown committed
414 415
      }
      else
unknown's avatar
unknown committed
416 417
	memcpy(*min_key,min_value,length);
      (*min_key)+= length;
418
      return 1;
unknown's avatar
unknown committed
419
    }
420
    return 0;
421
  }
unknown's avatar
unknown committed
422
  /* returns a number of keypart values (0 or 1) appended to the key buffer */
423
  int store_max(uint length, uchar **max_key, uint max_key_flag)
unknown's avatar
unknown committed
424 425 426 427 428 429 430
  {
    if (!(max_flag & NO_MAX_RANGE) &&
	!(max_key_flag & (NO_MAX_RANGE | NEAR_MAX)))
    {
      if (maybe_null && *max_value)
      {
	**max_key=1;
unknown's avatar
unknown committed
431
	bzero(*max_key+1,length-1);
unknown's avatar
unknown committed
432 433
      }
      else
unknown's avatar
unknown committed
434 435
	memcpy(*max_key,max_value,length);
      (*max_key)+= length;
436
      return 1;
unknown's avatar
unknown committed
437
    }
438
    return 0;
unknown's avatar
unknown committed
439 440
  }

unknown's avatar
unknown committed
441
  /* returns a number of keypart values appended to the key buffer */
442
  int store_min_key(KEY_PART *key, uchar **range_key, uint *range_key_flag)
unknown's avatar
unknown committed
443 444
  {
    SEL_ARG *key_tree= first();
445 446
    uint res= key_tree->store_min(key[key_tree->part].store_length,
                                  range_key, *range_key_flag);
unknown's avatar
unknown committed
447 448 449 450 451
    *range_key_flag|= key_tree->min_flag;
    if (key_tree->next_key_part &&
	key_tree->next_key_part->part == key_tree->part+1 &&
	!(*range_key_flag & (NO_MIN_RANGE | NEAR_MIN)) &&
	key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
452 453 454
      res+= key_tree->next_key_part->store_min_key(key, range_key,
                                                   range_key_flag);
    return res;
unknown's avatar
unknown committed
455 456
  }

unknown's avatar
unknown committed
457
  /* returns a number of keypart values appended to the key buffer */
458
  int store_max_key(KEY_PART *key, uchar **range_key, uint *range_key_flag)
unknown's avatar
unknown committed
459 460
  {
    SEL_ARG *key_tree= last();
461 462
    uint res=key_tree->store_max(key[key_tree->part].store_length,
                                 range_key, *range_key_flag);
unknown's avatar
unknown committed
463 464 465 466 467
    (*range_key_flag)|= key_tree->max_flag;
    if (key_tree->next_key_part &&
	key_tree->next_key_part->part == key_tree->part+1 &&
	!(*range_key_flag & (NO_MAX_RANGE | NEAR_MAX)) &&
	key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
468 469 470
      res+= key_tree->next_key_part->store_max_key(key, range_key,
                                                   range_key_flag);
    return res;
unknown's avatar
unknown committed
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
  }

  SEL_ARG *insert(SEL_ARG *key);
  SEL_ARG *tree_delete(SEL_ARG *key);
  SEL_ARG *find_range(SEL_ARG *key);
  SEL_ARG *rb_insert(SEL_ARG *leaf);
  friend SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key, SEL_ARG *par);
#ifdef EXTRA_DEBUG
  friend int test_rb_tree(SEL_ARG *element,SEL_ARG *parent);
  void test_use_count(SEL_ARG *root);
#endif
  SEL_ARG *first();
  SEL_ARG *last();
  void make_root();
  inline bool simple_key()
  {
    return !next_key_part && elements == 1;
  }
  void increment_use_count(long count)
  {
    if (next_key_part)
    {
      next_key_part->use_count+=count;
      count*= (next_key_part->use_count-count);
      for (SEL_ARG *pos=next_key_part->first(); pos ; pos=pos->next)
	if (pos->next_key_part)
	  pos->increment_use_count(count);
    }
  }
  void free_tree()
  {
    for (SEL_ARG *pos=first(); pos ; pos=pos->next)
      if (pos->next_key_part)
      {
	pos->next_key_part->use_count--;
	pos->next_key_part->free_tree();
      }
  }

  inline SEL_ARG **parent_ptr()
  {
    return parent->left == this ? &parent->left : &parent->right;
  }
unknown's avatar
unknown committed
514

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531

  /*
    Check if this SEL_ARG object represents a single-point interval

    SYNOPSIS
      is_singlepoint()
    
    DESCRIPTION
      Check if this SEL_ARG object (not tree) represents a single-point
      interval, i.e. if it represents a "keypart = const" or 
      "keypart IS NULL".

    RETURN
      TRUE   This SEL_ARG object represents a singlepoint interval
      FALSE  Otherwise
  */

unknown's avatar
unknown committed
532 533
  bool is_singlepoint()
  {
534 535 536 537 538 539
    /* 
      Check for NEAR_MIN ("strictly less") and NO_MIN_RANGE (-inf < field) 
      flags, and the same for right edge.
    */
    if (min_flag || max_flag)
      return FALSE;
540 541
    uchar *min_val= min_value;
    uchar *max_val= max_value;
542 543 544 545 546 547 548 549 550 551 552 553 554

    if (maybe_null)
    {
      /* First byte is a NULL value indicator */
      if (*min_val != *max_val)
        return FALSE;

      if (*min_val)
        return TRUE; /* This "x IS NULL" */
      min_val++;
      max_val++;
    }
    return !field->key_cmp(min_val, max_val);
unknown's avatar
unknown committed
555
  }
556
  SEL_ARG *clone_tree(RANGE_OPT_PARAM *param);
unknown's avatar
unknown committed
557 558
};

unknown's avatar
unknown committed
559
class SEL_IMERGE;
unknown's avatar
unknown committed
560

561

unknown's avatar
unknown committed
562 563 564
class SEL_TREE :public Sql_alloc
{
public:
565 566 567 568 569
  /*
    Starting an effort to document this field:
    (for some i, keys[i]->type == SEL_ARG::IMPOSSIBLE) => 
       (type == SEL_TREE::IMPOSSIBLE)
  */
unknown's avatar
unknown committed
570 571
  enum Type { IMPOSSIBLE, ALWAYS, MAYBE, KEY, KEY_SMALLER } type;
  SEL_TREE(enum Type type_arg) :type(type_arg) {}
unknown's avatar
unknown committed
572
  SEL_TREE() :type(KEY)
unknown's avatar
unknown committed
573
  {
unknown's avatar
unknown committed
574
    keys_map.clear_all();
unknown's avatar
unknown committed
575 576
    bzero((char*) keys,sizeof(keys));
  }
577
  SEL_TREE(SEL_TREE *arg, RANGE_OPT_PARAM *param);
578 579 580 581 582 583
  /*
    Note: there may exist SEL_TREE objects with sel_tree->type=KEY and
    keys[i]=0 for all i. (SergeyP: it is not clear whether there is any
    merit in range analyzer functions (e.g. get_mm_parts) returning a
    pointer to such SEL_TREE instead of NULL)
  */
unknown's avatar
unknown committed
584
  SEL_ARG *keys[MAX_KEY];
585 586
  key_map keys_map;        /* bitmask of non-NULL elements in keys */

unknown's avatar
unknown committed
587 588
  /*
    Possible ways to read rows using index_merge. The list is non-empty only
589 590 591
    if type==KEY. Currently can be non empty only if keys_map.is_clear_all().
  */
  List<SEL_IMERGE> merges;
unknown's avatar
unknown committed
592

593 594
  /* The members below are filled/used only after get_mm_tree is done */
  key_map ror_scans_map;   /* bitmask of ROR scan-able elements in keys */
595
  uint    n_ror_scans;     /* number of set bits in ror_scans_map */
596 597 598 599

  struct st_ror_scan_info **ror_scans;     /* list of ROR key scans */
  struct st_ror_scan_info **ror_scans_end; /* last ROR scan */
  /* Note that #records for each key scan is stored in table->quick_rows */
unknown's avatar
unknown committed
600 601
};

unknown's avatar
unknown committed
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
class RANGE_OPT_PARAM
{
public:
  THD	*thd;   /* Current thread handle */
  TABLE *table; /* Table being analyzed */
  COND *cond;   /* Used inside get_mm_tree(). */
  table_map prev_tables;
  table_map read_tables;
  table_map current_table; /* Bit of the table being analyzed */

  /* Array of parts of all keys for which range analysis is performed */
  KEY_PART *key_parts;
  KEY_PART *key_parts_end;
  MEM_ROOT *mem_root; /* Memory that will be freed when range analysis completes */
  MEM_ROOT *old_root; /* Memory that will last until the query end */
  /*
    Number of indexes used in range analysis (In SEL_TREE::keys only first
    #keys elements are not empty)
  */
  uint keys;
  
  /* 
    If true, the index descriptions describe real indexes (and it is ok to
    call field->optimize_range(real_keynr[...], ...).
    Otherwise index description describes fake indexes.
  */
  bool using_real_indexes;
  
630 631
  bool remove_jump_scans;
  
unknown's avatar
unknown committed
632 633 634 635 636
  /*
    used_key_no -> table_key_no translation table. Only makes sense if
    using_real_indexes==TRUE
  */
  uint real_keynr[MAX_KEY];
637 638
  /* Number of SEL_ARG objects allocated by SEL_ARG::clone_tree operations */
  uint alloced_sel_args; 
unknown's avatar
unknown committed
639
};
unknown's avatar
unknown committed
640

unknown's avatar
unknown committed
641 642 643
class PARAM : public RANGE_OPT_PARAM
{
public:
644
  KEY_PART *key[MAX_KEY]; /* First key parts of keys used in the query */
645 646
  longlong baseflag;
  uint max_key_part, range_count;
unknown's avatar
unknown committed
647

648
  uchar min_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH],
unknown's avatar
unknown committed
649
    max_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH];
650
  bool quick;				// Don't calulate possible keys
651

unknown's avatar
unknown committed
652
  uint fields_bitmap_size;
653
  MY_BITMAP needed_fields;    /* bitmask of fields needed by the query */
654
  MY_BITMAP tmp_covered_fields;
655 656 657

  key_map *needed_reg;        /* ptr to SQL_SELECT::needed_reg */

658 659
  uint *imerge_cost_buff;     /* buffer for index_merge cost estimates */
  uint imerge_cost_buff_size; /* size of the buffer */
unknown's avatar
unknown committed
660

661
  /* TRUE if last checked tree->key can be used for ROR-scan */
unknown's avatar
unknown committed
662
  bool is_ror_scan;
663 664
  /* Number of ranges in the last checked tree->key */
  uint n_ranges;
unknown's avatar
unknown committed
665
  uint8 first_null_comp; /* first null component if any, 0 - otherwise */
unknown's avatar
unknown committed
666
};
unknown's avatar
unknown committed
667

668 669 670 671 672
class TABLE_READ_PLAN;
  class TRP_RANGE;
  class TRP_ROR_INTERSECT;
  class TRP_ROR_UNION;
  class TRP_ROR_INDEX_MERGE;
673
  class TRP_GROUP_MIN_MAX;
674 675 676

struct st_ror_scan_info;

unknown's avatar
unknown committed
677
static SEL_TREE * get_mm_parts(RANGE_OPT_PARAM *param,COND *cond_func,Field *field,
unknown's avatar
unknown committed
678 679
			       Item_func::Functype type,Item *value,
			       Item_result cmp_type);
unknown's avatar
unknown committed
680
static SEL_ARG *get_mm_leaf(RANGE_OPT_PARAM *param,COND *cond_func,Field *field,
681
			    KEY_PART *key_part,
unknown's avatar
unknown committed
682
			    Item_func::Functype type,Item *value);
unknown's avatar
unknown committed
683
static SEL_TREE *get_mm_tree(RANGE_OPT_PARAM *param,COND *cond);
684 685

static bool is_key_scan_ror(PARAM *param, uint keynr, uint8 nparts);
unknown's avatar
unknown committed
686
static ha_rows check_quick_select(PARAM *param,uint index,SEL_ARG *key_tree,
687
                                  bool update_tbl_stats);
unknown's avatar
unknown committed
688
static ha_rows check_quick_keys(PARAM *param,uint index,SEL_ARG *key_tree,
689 690
                                uchar *min_key, uint min_key_flag, int,
                                uchar *max_key, uint max_key_flag, int);
unknown's avatar
unknown committed
691

unknown's avatar
unknown committed
692
QUICK_RANGE_SELECT *get_quick_select(PARAM *param,uint index,
unknown's avatar
unknown committed
693
                                     SEL_ARG *key_tree,
unknown's avatar
unknown committed
694
                                     MEM_ROOT *alloc = NULL);
695
static TRP_RANGE *get_key_scans_params(PARAM *param, SEL_TREE *tree,
unknown's avatar
unknown committed
696
                                       bool index_read_must_be_used,
697
                                       bool update_tbl_stats,
698 699 700 701 702 703
                                       double read_time);
static
TRP_ROR_INTERSECT *get_best_ror_intersect(const PARAM *param, SEL_TREE *tree,
                                          double read_time,
                                          bool *are_all_covering);
static
unknown's avatar
unknown committed
704 705
TRP_ROR_INTERSECT *get_best_covering_ror_intersect(PARAM *param,
                                                   SEL_TREE *tree,
706 707 708 709
                                                   double read_time);
static
TABLE_READ_PLAN *get_best_disjunct_quick(PARAM *param, SEL_IMERGE *imerge,
                                         double read_time);
710 711
static
TRP_GROUP_MIN_MAX *get_best_group_min_max(PARAM *param, SEL_TREE *tree);
unknown's avatar
unknown committed
712
static double get_index_only_read_time(const PARAM* param, ha_rows records,
713 714
                                       int keynr);

unknown's avatar
unknown committed
715
#ifndef DBUG_OFF
716 717
static void print_sel_tree(PARAM *param, SEL_TREE *tree, key_map *tree_map,
                           const char *msg);
unknown's avatar
unknown committed
718 719
static void print_ror_scans_arr(TABLE *table, const char *msg,
                                struct st_ror_scan_info **start,
720 721
                                struct st_ror_scan_info **end);
static void print_quick(QUICK_SELECT_I *quick, const key_map *needed_reg);
unknown's avatar
unknown committed
722
#endif
723

unknown's avatar
unknown committed
724 725
static SEL_TREE *tree_and(RANGE_OPT_PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2);
static SEL_TREE *tree_or(RANGE_OPT_PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2);
unknown's avatar
unknown committed
726
static SEL_ARG *sel_add(SEL_ARG *key1,SEL_ARG *key2);
727 728 729
static SEL_ARG *key_or(RANGE_OPT_PARAM *param, SEL_ARG *key1, SEL_ARG *key2);
static SEL_ARG *key_and(RANGE_OPT_PARAM *param, SEL_ARG *key1, SEL_ARG *key2,
                        uint clone_flag);
unknown's avatar
unknown committed
730
static bool get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1);
unknown's avatar
unknown committed
731
bool get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key,
732 733
                    SEL_ARG *key_tree, uchar *min_key,uint min_key_flag,
                    uchar *max_key,uint max_key_flag);
unknown's avatar
unknown committed
734 735 736
static bool eq_tree(SEL_ARG* a,SEL_ARG *b);

static SEL_ARG null_element(SEL_ARG::IMPOSSIBLE);
737
static bool null_part_in_key(KEY_PART *key_part, const uchar *key,
unknown's avatar
unknown committed
738
                             uint length);
unknown's avatar
unknown committed
739
bool sel_trees_can_be_ored(SEL_TREE *tree1, SEL_TREE *tree2, RANGE_OPT_PARAM* param);
unknown's avatar
unknown committed
740 741 742


/*
unknown's avatar
unknown committed
743
  SEL_IMERGE is a list of possible ways to do index merge, i.e. it is
unknown's avatar
unknown committed
744
  a condition in the following form:
unknown's avatar
unknown committed
745
   (t_1||t_2||...||t_N) && (next)
unknown's avatar
unknown committed
746

unknown's avatar
unknown committed
747
  where all t_i are SEL_TREEs, next is another SEL_IMERGE and no pair
unknown's avatar
unknown committed
748 749 750 751 752 753 754 755 756 757 758
  (t_i,t_j) contains SEL_ARGS for the same index.

  SEL_TREE contained in SEL_IMERGE always has merges=NULL.

  This class relies on memory manager to do the cleanup.
*/

class SEL_IMERGE : public Sql_alloc
{
  enum { PREALLOCED_TREES= 10};
public:
unknown's avatar
unknown committed
759
  SEL_TREE *trees_prealloced[PREALLOCED_TREES];
unknown's avatar
unknown committed
760 761 762 763 764 765 766 767 768 769 770
  SEL_TREE **trees;             /* trees used to do index_merge   */
  SEL_TREE **trees_next;        /* last of these trees            */
  SEL_TREE **trees_end;         /* end of allocated space         */

  SEL_ARG  ***best_keys;        /* best keys to read in SEL_TREEs */

  SEL_IMERGE() :
    trees(&trees_prealloced[0]),
    trees_next(trees),
    trees_end(trees + PREALLOCED_TREES)
  {}
771
  SEL_IMERGE (SEL_IMERGE *arg, RANGE_OPT_PARAM *param);
unknown's avatar
unknown committed
772 773 774
  int or_sel_tree(RANGE_OPT_PARAM *param, SEL_TREE *tree);
  int or_sel_tree_with_checks(RANGE_OPT_PARAM *param, SEL_TREE *new_tree);
  int or_sel_imerge_with_checks(RANGE_OPT_PARAM *param, SEL_IMERGE* imerge);
unknown's avatar
unknown committed
775 776 777
};


unknown's avatar
unknown committed
778
/*
unknown's avatar
unknown committed
779 780
  Add SEL_TREE to this index_merge without any checks,

unknown's avatar
unknown committed
781 782
  NOTES
    This function implements the following:
unknown's avatar
unknown committed
783 784 785 786 787 788 789
      (x_1||...||x_N) || t = (x_1||...||x_N||t), where x_i, t are SEL_TREEs

  RETURN
     0 - OK
    -1 - Out of memory.
*/

unknown's avatar
unknown committed
790
int SEL_IMERGE::or_sel_tree(RANGE_OPT_PARAM *param, SEL_TREE *tree)
unknown's avatar
unknown committed
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
{
  if (trees_next == trees_end)
  {
    const int realloc_ratio= 2;		/* Double size for next round */
    uint old_elements= (trees_end - trees);
    uint old_size= sizeof(SEL_TREE**) * old_elements;
    uint new_size= old_size * realloc_ratio;
    SEL_TREE **new_trees;
    if (!(new_trees= (SEL_TREE**)alloc_root(param->mem_root, new_size)))
      return -1;
    memcpy(new_trees, trees, old_size);
    trees=      new_trees;
    trees_next= trees + old_elements;
    trees_end=  trees + old_elements * realloc_ratio;
  }
  *(trees_next++)= tree;
  return 0;
}


/*
  Perform OR operation on this SEL_IMERGE and supplied SEL_TREE new_tree,
  combining new_tree with one of the trees in this SEL_IMERGE if they both
  have SEL_ARGs for the same key.
unknown's avatar
unknown committed
815

unknown's avatar
unknown committed
816 817 818 819 820
  SYNOPSIS
    or_sel_tree_with_checks()
      param    PARAM from SQL_SELECT::test_quick_select
      new_tree SEL_TREE with type KEY or KEY_SMALLER.

unknown's avatar
unknown committed
821
  NOTES
unknown's avatar
unknown committed
822
    This does the following:
unknown's avatar
unknown committed
823 824
    (t_1||...||t_k)||new_tree =
     either
unknown's avatar
unknown committed
825 826 827
       = (t_1||...||t_k||new_tree)
     or
       = (t_1||....||(t_j|| new_tree)||...||t_k),
unknown's avatar
unknown committed
828

unknown's avatar
unknown committed
829
     where t_i, y are SEL_TREEs.
unknown's avatar
unknown committed
830 831
    new_tree is combined with the first t_j it has a SEL_ARG on common
    key with. As a consequence of this, choice of keys to do index_merge
unknown's avatar
unknown committed
832 833
    read may depend on the order of conditions in WHERE part of the query.

unknown's avatar
unknown committed
834
  RETURN
unknown's avatar
unknown committed
835
    0  OK
unknown's avatar
unknown committed
836
    1  One of the trees was combined with new_tree to SEL_TREE::ALWAYS,
unknown's avatar
unknown committed
837 838 839 840
       and (*this) should be discarded.
   -1  An error occurred.
*/

unknown's avatar
unknown committed
841
int SEL_IMERGE::or_sel_tree_with_checks(RANGE_OPT_PARAM *param, SEL_TREE *new_tree)
unknown's avatar
unknown committed
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
{
  for (SEL_TREE** tree = trees;
       tree != trees_next;
       tree++)
  {
    if (sel_trees_can_be_ored(*tree, new_tree, param))
    {
      *tree = tree_or(param, *tree, new_tree);
      if (!*tree)
        return 1;
      if (((*tree)->type == SEL_TREE::MAYBE) ||
          ((*tree)->type == SEL_TREE::ALWAYS))
        return 1;
      /* SEL_TREE::IMPOSSIBLE is impossible here */
      return 0;
    }
  }

860
  /* New tree cannot be combined with any of existing trees. */
unknown's avatar
unknown committed
861 862 863 864 865 866 867 868 869
  return or_sel_tree(param, new_tree);
}


/*
  Perform OR operation on this index_merge and supplied index_merge list.

  RETURN
    0 - OK
unknown's avatar
unknown committed
870
    1 - One of conditions in result is always TRUE and this SEL_IMERGE
unknown's avatar
unknown committed
871 872 873 874
        should be discarded.
   -1 - An error occurred
*/

unknown's avatar
unknown committed
875
int SEL_IMERGE::or_sel_imerge_with_checks(RANGE_OPT_PARAM *param, SEL_IMERGE* imerge)
unknown's avatar
unknown committed
876 877 878 879 880 881 882 883 884 885 886 887
{
  for (SEL_TREE** tree= imerge->trees;
       tree != imerge->trees_next;
       tree++)
  {
    if (or_sel_tree_with_checks(param, *tree))
      return 1;
  }
  return 0;
}


888
SEL_TREE::SEL_TREE(SEL_TREE *arg, RANGE_OPT_PARAM *param): Sql_alloc()
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
{
  keys_map= arg->keys_map;
  type= arg->type;
  for (int idx= 0; idx < MAX_KEY; idx++)
  {
    if ((keys[idx]= arg->keys[idx]))
      keys[idx]->increment_use_count(1);
  }

  List_iterator<SEL_IMERGE> it(arg->merges);
  for (SEL_IMERGE *el= it++; el; el= it++)
  {
    SEL_IMERGE *merge= new SEL_IMERGE(el, param);
    if (!merge || merge->trees == merge->trees_next)
    {
      merges.empty();
      return;
    }
    merges.push_back (merge);
  }
}


912
SEL_IMERGE::SEL_IMERGE (SEL_IMERGE *arg, RANGE_OPT_PARAM *param) : Sql_alloc()
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
{
  uint elements= (arg->trees_end - arg->trees);
  if (elements > PREALLOCED_TREES)
  {
    uint size= elements * sizeof (SEL_TREE **);
    if (!(trees= (SEL_TREE **)alloc_root(param->mem_root, size)))
      goto mem_err;
  }
  else
    trees= &trees_prealloced[0];

  trees_next= trees;
  trees_end= trees + elements;

  for (SEL_TREE **tree = trees, **arg_tree= arg->trees; tree < trees_end; 
       tree++, arg_tree++)
  {
    if (!(*tree= new SEL_TREE(*arg_tree, param)))
      goto mem_err;
  }

  return;

mem_err:
  trees= &trees_prealloced[0];
  trees_next= trees;
  trees_end= trees;
}


unknown's avatar
unknown committed
943
/*
944
  Perform AND operation on two index_merge lists and store result in *im1.
unknown's avatar
unknown committed
945 946 947 948 949 950 951 952 953 954 955
*/

inline void imerge_list_and_list(List<SEL_IMERGE> *im1, List<SEL_IMERGE> *im2)
{
  im1->concat(im2);
}


/*
  Perform OR operation on 2 index_merge lists, storing result in first list.

unknown's avatar
unknown committed
956
  NOTES
unknown's avatar
unknown committed
957 958 959
    The following conversion is implemented:
     (a_1 &&...&& a_N)||(b_1 &&...&& b_K) = AND_i,j(a_i || b_j) =>
      => (a_1||b_1).
unknown's avatar
unknown committed
960 961

    i.e. all conjuncts except the first one are currently dropped.
unknown's avatar
unknown committed
962 963
    This is done to avoid producing N*K ways to do index_merge.

unknown's avatar
unknown committed
964
    If (a_1||b_1) produce a condition that is always TRUE, NULL is returned
unknown's avatar
unknown committed
965
    and index_merge is discarded (while it is actually possible to try
966
    harder).
unknown's avatar
unknown committed
967

968 969
    As a consequence of this, choice of keys to do index_merge read may depend
    on the order of conditions in WHERE part of the query.
unknown's avatar
unknown committed
970 971

  RETURN
972
    0     OK, result is stored in *im1
unknown's avatar
unknown committed
973 974 975
    other Error, both passed lists are unusable
*/

unknown's avatar
unknown committed
976
int imerge_list_or_list(RANGE_OPT_PARAM *param,
unknown's avatar
unknown committed
977 978 979 980 981 982
                        List<SEL_IMERGE> *im1,
                        List<SEL_IMERGE> *im2)
{
  SEL_IMERGE *imerge= im1->head();
  im1->empty();
  im1->push_back(imerge);
unknown's avatar
unknown committed
983

unknown's avatar
unknown committed
984 985 986 987 988 989 990 991
  return imerge->or_sel_imerge_with_checks(param, im2->head());
}


/*
  Perform OR operation on index_merge list and key tree.

  RETURN
992
    0     OK, result is stored in *im1.
unknown's avatar
unknown committed
993 994 995
    other Error
*/

unknown's avatar
unknown committed
996
int imerge_list_or_tree(RANGE_OPT_PARAM *param,
unknown's avatar
unknown committed
997 998 999 1000 1001
                        List<SEL_IMERGE> *im1,
                        SEL_TREE *tree)
{
  SEL_IMERGE *imerge;
  List_iterator<SEL_IMERGE> it(*im1);
1002
  bool tree_used= FALSE;
unknown's avatar
unknown committed
1003
  while ((imerge= it++))
unknown's avatar
unknown committed
1004
  {
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
    SEL_TREE *or_tree;
    if (tree_used)
    {
      or_tree= new SEL_TREE (tree, param);
      if (!or_tree ||
          (or_tree->keys_map.is_clear_all() && or_tree->merges.is_empty()))
        return FALSE;
    }
    else
      or_tree= tree;

    if (imerge->or_sel_tree_with_checks(param, or_tree))
unknown's avatar
unknown committed
1017
      it.remove();
1018
    tree_used= TRUE;
unknown's avatar
unknown committed
1019 1020 1021
  }
  return im1->is_empty();
}
unknown's avatar
unknown committed
1022

1023

unknown's avatar
unknown committed
1024
/***************************************************************************
unknown's avatar
unknown committed
1025
** Basic functions for SQL_SELECT and QUICK_RANGE_SELECT
unknown's avatar
unknown committed
1026 1027 1028 1029 1030 1031 1032 1033 1034
***************************************************************************/

	/* make a select from mysql info
	   Error is set as following:
	   0 = ok
	   1 = Got some error (out of memory?)
	   */

SQL_SELECT *make_select(TABLE *head, table_map const_tables,
unknown's avatar
unknown committed
1035 1036 1037
			table_map read_tables, COND *conds,
                        bool allow_null_cond,
                        int *error)
unknown's avatar
unknown committed
1038 1039 1040 1041 1042
{
  SQL_SELECT *select;
  DBUG_ENTER("make_select");

  *error=0;
1043 1044

  if (!conds && !allow_null_cond)
unknown's avatar
unknown committed
1045 1046 1047
    DBUG_RETURN(0);
  if (!(select= new SQL_SELECT))
  {
1048 1049
    *error= 1;			// out of memory
    DBUG_RETURN(0);		/* purecov: inspected */
unknown's avatar
unknown committed
1050 1051 1052 1053 1054 1055
  }
  select->read_tables=read_tables;
  select->const_tables=const_tables;
  select->head=head;
  select->cond=conds;

unknown's avatar
unknown committed
1056
  if (head->sort.io_cache)
unknown's avatar
unknown committed
1057
  {
unknown's avatar
unknown committed
1058
    select->file= *head->sort.io_cache;
unknown's avatar
unknown committed
1059 1060
    select->records=(ha_rows) (select->file.end_of_file/
			       head->file->ref_length);
1061
    my_free(head->sort.io_cache, MYF(0));
unknown's avatar
unknown committed
1062
    head->sort.io_cache=0;
unknown's avatar
unknown committed
1063 1064 1065 1066 1067 1068 1069
  }
  DBUG_RETURN(select);
}


SQL_SELECT::SQL_SELECT() :quick(0),cond(0),free_cond(0)
{
unknown's avatar
unknown committed
1070
  quick_keys.clear_all(); needed_reg.clear_all();
unknown's avatar
unknown committed
1071 1072 1073 1074
  my_b_clear(&file);
}


1075
void SQL_SELECT::cleanup()
unknown's avatar
unknown committed
1076 1077
{
  delete quick;
1078
  quick= 0;
unknown's avatar
unknown committed
1079
  if (free_cond)
1080 1081
  {
    free_cond=0;
unknown's avatar
unknown committed
1082
    delete cond;
1083
    cond= 0;
unknown's avatar
unknown committed
1084
  }
unknown's avatar
unknown committed
1085 1086 1087
  close_cached_file(&file);
}

1088 1089 1090 1091 1092 1093

SQL_SELECT::~SQL_SELECT()
{
  cleanup();
}

unknown's avatar
unknown committed
1094
#undef index					// Fix for Unixware 7
unknown's avatar
unknown committed
1095

unknown's avatar
unknown committed
1096 1097 1098 1099 1100
QUICK_SELECT_I::QUICK_SELECT_I()
  :max_used_key_length(0),
   used_key_parts(0)
{}

unknown's avatar
unknown committed
1101
QUICK_RANGE_SELECT::QUICK_RANGE_SELECT(THD *thd, TABLE *table, uint key_nr,
unknown's avatar
unknown committed
1102
                                       bool no_alloc, MEM_ROOT *parent_alloc)
1103
  :dont_free(0),error(0),free_file(0),in_range(0),cur_range(NULL),last_range(0)
unknown's avatar
unknown committed
1104
{
1105 1106 1107 1108
  my_bitmap_map *bitmap;
  DBUG_ENTER("QUICK_RANGE_SELECT::QUICK_RANGE_SELECT");

  in_ror_merged_scan= 0;
unknown's avatar
unknown committed
1109
  sorted= 0;
unknown's avatar
unknown committed
1110 1111
  index= key_nr;
  head=  table;
unknown's avatar
unknown committed
1112
  key_part_info= head->key_info[index].key_part;
1113
  my_init_dynamic_array(&ranges, sizeof(QUICK_RANGE*), 16, 16);
unknown's avatar
unknown committed
1114

unknown's avatar
unknown committed
1115
  /* 'thd' is not accessible in QUICK_RANGE_SELECT::reset(). */
unknown's avatar
unknown committed
1116 1117 1118 1119 1120 1121
  multi_range_bufsiz= thd->variables.read_rnd_buff_size;
  multi_range_count= thd->variables.multi_range_count;
  multi_range_length= 0;
  multi_range= NULL;
  multi_range_buff= NULL;

unknown's avatar
unknown committed
1122
  if (!no_alloc && !parent_alloc)
unknown's avatar
unknown committed
1123
  {
1124 1125
    // Allocates everything through the internal memroot
    init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
unknown's avatar
unknown committed
1126
    thd->mem_root= &alloc;
unknown's avatar
unknown committed
1127 1128 1129
  }
  else
    bzero((char*) &alloc,sizeof(alloc));
unknown's avatar
unknown committed
1130 1131
  file= head->file;
  record= head->record[0];
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
  save_read_set= head->read_set;
  save_write_set= head->write_set;

  /* Allocate a bitmap for used columns */
  if (!(bitmap= (my_bitmap_map*) my_malloc(head->s->column_bitmap_size,
                                           MYF(MY_WME))))
  {
    column_bitmap.bitmap= 0;
    error= 1;
  }
  else
    bitmap_init(&column_bitmap, bitmap, head->s->fields, FALSE);
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
1145 1146
}

unknown's avatar
unknown committed
1147

unknown's avatar
unknown committed
1148 1149
int QUICK_RANGE_SELECT::init()
{
unknown's avatar
unknown committed
1150
  DBUG_ENTER("QUICK_RANGE_SELECT::init");
unknown's avatar
unknown committed
1151

1152 1153
  if (file->inited != handler::NONE)
    file->ha_index_or_rnd_end();
1154
  DBUG_RETURN(FALSE);
unknown's avatar
unknown committed
1155 1156 1157 1158 1159 1160
}


void QUICK_RANGE_SELECT::range_end()
{
  if (file->inited != handler::NONE)
1161
    file->ha_index_or_rnd_end();
unknown's avatar
unknown committed
1162 1163
}

unknown's avatar
unknown committed
1164

unknown's avatar
unknown committed
1165
QUICK_RANGE_SELECT::~QUICK_RANGE_SELECT()
unknown's avatar
unknown committed
1166
{
1167
  DBUG_ENTER("QUICK_RANGE_SELECT::~QUICK_RANGE_SELECT");
unknown's avatar
unknown committed
1168 1169
  if (!dont_free)
  {
unknown's avatar
unknown committed
1170 1171
    /* file is NULL for CPK scan on covering ROR-intersection */
    if (file) 
1172
    {
unknown's avatar
unknown committed
1173
      range_end();
unknown's avatar
unknown committed
1174 1175 1176 1177 1178
      if (head->key_read)
      {
        head->key_read= 0;
        file->extra(HA_EXTRA_NO_KEYREAD);
      }
unknown's avatar
unknown committed
1179 1180
      if (free_file)
      {
unknown's avatar
unknown committed
1181
        DBUG_PRINT("info", ("Freeing separate handler 0x%lx (free: %d)", (long) file,
unknown's avatar
unknown committed
1182
                            free_file));
1183
        file->ha_external_lock(current_thd, F_UNLCK);
unknown's avatar
unknown committed
1184
        file->close();
1185
        delete file;
unknown's avatar
unknown committed
1186
      }
unknown's avatar
unknown committed
1187
    }
unknown's avatar
unknown committed
1188
    delete_dynamic(&ranges); /* ranges are allocated in alloc */
unknown's avatar
unknown committed
1189
    free_root(&alloc,MYF(0));
1190
    my_free((char*) column_bitmap.bitmap, MYF(MY_ALLOW_ZERO_PTR));
unknown's avatar
unknown committed
1191
  }
1192 1193 1194
  head->column_bitmaps_set(save_read_set, save_write_set);
  x_free(multi_range);
  x_free(multi_range_buff);
unknown's avatar
unknown committed
1195
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
1196 1197
}

unknown's avatar
unknown committed
1198

unknown's avatar
unknown committed
1199
QUICK_INDEX_MERGE_SELECT::QUICK_INDEX_MERGE_SELECT(THD *thd_param,
unknown's avatar
unknown committed
1200
                                                   TABLE *table)
unknown's avatar
unknown committed
1201
  :pk_quick_select(NULL), thd(thd_param)
unknown's avatar
unknown committed
1202
{
1203
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::QUICK_INDEX_MERGE_SELECT");
unknown's avatar
unknown committed
1204 1205
  index= MAX_KEY;
  head= table;
1206
  bzero(&read_record, sizeof(read_record));
1207
  init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
1208
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
1209 1210 1211 1212
}

int QUICK_INDEX_MERGE_SELECT::init()
{
unknown's avatar
unknown committed
1213 1214
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::init");
  DBUG_RETURN(0);
unknown's avatar
unknown committed
1215 1216
}

1217
int QUICK_INDEX_MERGE_SELECT::reset()
unknown's avatar
unknown committed
1218
{
1219
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::reset");
unknown's avatar
unknown committed
1220
  DBUG_RETURN(read_keys_and_merge());
unknown's avatar
unknown committed
1221 1222
}

unknown's avatar
unknown committed
1223
bool
unknown's avatar
unknown committed
1224 1225
QUICK_INDEX_MERGE_SELECT::push_quick_back(QUICK_RANGE_SELECT *quick_sel_range)
{
unknown's avatar
unknown committed
1226 1227
  /*
    Save quick_select that does scan on clustered primary key as it will be
1228
    processed separately.
1229
  */
unknown's avatar
unknown committed
1230
  if (head->file->primary_key_is_clustered() &&
1231
      quick_sel_range->index == head->s->primary_key)
1232 1233 1234 1235
    pk_quick_select= quick_sel_range;
  else
    return quick_selects.push_back(quick_sel_range);
  return 0;
unknown's avatar
unknown committed
1236 1237 1238 1239
}

QUICK_INDEX_MERGE_SELECT::~QUICK_INDEX_MERGE_SELECT()
{
unknown's avatar
unknown committed
1240 1241
  List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
  QUICK_RANGE_SELECT* quick;
1242
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::~QUICK_INDEX_MERGE_SELECT");
unknown's avatar
unknown committed
1243 1244 1245
  quick_it.rewind();
  while ((quick= quick_it++))
    quick->file= NULL;
unknown's avatar
unknown committed
1246
  quick_selects.delete_elements();
1247
  delete pk_quick_select;
unknown's avatar
unknown committed
1248
  free_root(&alloc,MYF(0));
1249
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
1250 1251
}

1252 1253 1254 1255 1256

QUICK_ROR_INTERSECT_SELECT::QUICK_ROR_INTERSECT_SELECT(THD *thd_param,
                                                       TABLE *table,
                                                       bool retrieve_full_rows,
                                                       MEM_ROOT *parent_alloc)
unknown's avatar
unknown committed
1257
  : cpk_quick(NULL), thd(thd_param), need_to_fetch_row(retrieve_full_rows),
unknown's avatar
unknown committed
1258
    scans_inited(FALSE)
1259 1260
{
  index= MAX_KEY;
unknown's avatar
unknown committed
1261
  head= table;
1262 1263
  record= head->record[0];
  if (!parent_alloc)
1264
    init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
1265 1266
  else
    bzero(&alloc, sizeof(MEM_ROOT));
1267 1268
  last_rowid= (uchar*) alloc_root(parent_alloc? parent_alloc : &alloc,
                                  head->file->ref_length);
1269 1270
}

1271

unknown's avatar
unknown committed
1272
/*
1273 1274 1275
  Do post-constructor initialization.
  SYNOPSIS
    QUICK_ROR_INTERSECT_SELECT::init()
unknown's avatar
unknown committed
1276

1277 1278 1279 1280 1281
  RETURN
    0      OK
    other  Error code
*/

1282 1283
int QUICK_ROR_INTERSECT_SELECT::init()
{
unknown's avatar
unknown committed
1284 1285 1286
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::init");
 /* Check if last_rowid was successfully allocated in ctor */
  DBUG_RETURN(!last_rowid);
1287 1288 1289 1290
}


/*
1291 1292 1293 1294
  Initialize this quick select to be a ROR-merged scan.

  SYNOPSIS
    QUICK_RANGE_SELECT::init_ror_merged_scan()
unknown's avatar
unknown committed
1295
      reuse_handler If TRUE, use head->file, otherwise create a separate
1296 1297 1298 1299
                    handler object

  NOTES
    This function creates and prepares for subsequent use a separate handler
unknown's avatar
unknown committed
1300
    object if it can't reuse head->file. The reason for this is that during
1301 1302 1303
    ROR-merge several key scans are performed simultaneously, and a single
    handler is only capable of preserving context of a single key scan.

unknown's avatar
unknown committed
1304
    In ROR-merge the quick select doing merge does full records retrieval,
1305
    merged quick selects read only keys.
unknown's avatar
unknown committed
1306 1307

  RETURN
1308 1309 1310 1311
    0  ROR child scan initialized, ok to use.
    1  error
*/

1312
int QUICK_RANGE_SELECT::init_ror_merged_scan(bool reuse_handler)
1313
{
1314
  handler *save_file= file, *org_file;
unknown's avatar
unknown committed
1315
  THD *thd;
1316
  DBUG_ENTER("QUICK_RANGE_SELECT::init_ror_merged_scan");
unknown's avatar
unknown committed
1317

1318
  in_ror_merged_scan= 1;
1319 1320
  if (reuse_handler)
  {
1321 1322
    DBUG_PRINT("info", ("Reusing handler 0x%lx", (long) file));
    if (init() || reset())
1323 1324 1325
    {
      DBUG_RETURN(1);
    }
1326 1327
    head->column_bitmaps_set(&column_bitmap, &column_bitmap);
    goto end;
1328 1329 1330 1331 1332 1333 1334 1335
  }

  /* Create a separate handler object for this quick select */
  if (free_file)
  {
    /* already have own 'handler' object. */
    DBUG_RETURN(0);
  }
unknown's avatar
unknown committed
1336

unknown's avatar
unknown committed
1337
  thd= head->in_use;
unknown's avatar
unknown committed
1338
  if (!(file= head->file->clone(thd->mem_root)))
1339
  {
1340 1341 1342 1343 1344 1345 1346
    /* 
      Manually set the error flag. Note: there seems to be quite a few
      places where a failure could cause the server to "hang" the client by
      sending no response to a query. ATM those are not real errors because 
      the storage engine calls in question happen to never fail with the 
      existing storage engines. 
    */
1347
    my_error(ER_OUT_OF_RESOURCES, MYF(0)); /* purecov: inspected */
unknown's avatar
unknown committed
1348
    /* Caller will free the memory */
unknown's avatar
unknown committed
1349
    goto failure;  /* purecov: inspected */
1350
  }
1351 1352 1353

  head->column_bitmaps_set(&column_bitmap, &column_bitmap);

1354
  if (file->ha_external_lock(thd, F_RDLCK))
unknown's avatar
unknown committed
1355
    goto failure;
unknown's avatar
unknown committed
1356

1357
  if (init() || reset())
1358
  {
1359
    file->ha_external_lock(thd, F_UNLCK);
1360 1361 1362
    file->close();
    goto failure;
  }
unknown's avatar
unknown committed
1363
  free_file= TRUE;
1364
  last_rowid= file->ref;
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

end:
  /*
    We are only going to read key fields and call position() on 'file'
    The following sets head->tmp_set to only use this key and then updates
    head->read_set and head->write_set to use this bitmap.
    The now bitmap is stored in 'column_bitmap' which is used in ::get_next()
  */
  org_file= head->file;
  head->file= file;
  /* We don't have to set 'head->keyread' here as the 'file' is unique */
unknown's avatar
unknown committed
1376 1377 1378 1379 1380
  if (!head->no_keyread)
  {
    head->key_read= 1;
    head->mark_columns_used_by_index(index);
  }
1381 1382 1383 1384 1385
  head->prepare_for_position();
  head->file= org_file;
  bitmap_copy(&column_bitmap, head->read_set);
  head->column_bitmaps_set(&column_bitmap, &column_bitmap);

1386 1387 1388
  DBUG_RETURN(0);

failure:
1389 1390
  head->column_bitmaps_set(save_read_set, save_write_set);
  delete file;
1391 1392 1393 1394
  file= save_file;
  DBUG_RETURN(1);
}

1395 1396 1397 1398 1399

/*
  Initialize this quick select to be a part of a ROR-merged scan.
  SYNOPSIS
    QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan()
unknown's avatar
unknown committed
1400
      reuse_handler If TRUE, use head->file, otherwise create separate
1401
                    handler object.
unknown's avatar
unknown committed
1402
  RETURN
1403 1404 1405 1406
    0     OK
    other error code
*/
int QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan(bool reuse_handler)
1407 1408 1409
{
  List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
  QUICK_RANGE_SELECT* quick;
1410
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan");
1411 1412

  /* Initialize all merged "children" quick selects */
unknown's avatar
unknown committed
1413
  DBUG_ASSERT(!need_to_fetch_row || reuse_handler);
1414 1415 1416
  if (!need_to_fetch_row && reuse_handler)
  {
    quick= quick_it++;
unknown's avatar
unknown committed
1417
    /*
1418
      There is no use of this->file. Use it for the first of merged range
1419 1420
      selects.
    */
unknown's avatar
unknown committed
1421
    if (quick->init_ror_merged_scan(TRUE))
1422 1423 1424
      DBUG_RETURN(1);
    quick->file->extra(HA_EXTRA_KEYREAD_PRESERVE_FIELDS);
  }
unknown's avatar
unknown committed
1425
  while ((quick= quick_it++))
1426
  {
unknown's avatar
unknown committed
1427
    if (quick->init_ror_merged_scan(FALSE))
1428 1429
      DBUG_RETURN(1);
    quick->file->extra(HA_EXTRA_KEYREAD_PRESERVE_FIELDS);
1430
    /* All merged scans share the same record buffer in intersection. */
1431 1432 1433
    quick->record= head->record[0];
  }

unknown's avatar
unknown committed
1434
  if (need_to_fetch_row && head->file->ha_rnd_init(1))
1435 1436 1437 1438 1439 1440 1441
  {
    DBUG_PRINT("error", ("ROR index_merge rnd_init call failed"));
    DBUG_RETURN(1);
  }
  DBUG_RETURN(0);
}

1442

unknown's avatar
unknown committed
1443
/*
1444 1445 1446 1447 1448 1449 1450 1451
  Initialize quick select for row retrieval.
  SYNOPSIS
    reset()
  RETURN
    0      OK
    other  Error code
*/

1452 1453 1454
int QUICK_ROR_INTERSECT_SELECT::reset()
{
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::reset");
unknown's avatar
unknown committed
1455 1456
  if (!scans_inited && init_ror_merged_scan(TRUE))
    DBUG_RETURN(1);
unknown's avatar
unknown committed
1457
  scans_inited= TRUE;
unknown's avatar
unknown committed
1458 1459 1460 1461 1462
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  QUICK_RANGE_SELECT *quick;
  while ((quick= it++))
    quick->reset();
  DBUG_RETURN(0);
1463 1464
}

1465 1466 1467

/*
  Add a merged quick select to this ROR-intersection quick select.
unknown's avatar
unknown committed
1468

1469 1470 1471 1472 1473 1474
  SYNOPSIS
    QUICK_ROR_INTERSECT_SELECT::push_quick_back()
      quick Quick select to be added. The quick select must return
            rows in rowid order.
  NOTES
    This call can only be made before init() is called.
unknown's avatar
unknown committed
1475

1476
  RETURN
unknown's avatar
unknown committed
1477
    FALSE OK
unknown's avatar
unknown committed
1478
    TRUE  Out of memory.
1479 1480
*/

unknown's avatar
unknown committed
1481
bool
1482 1483
QUICK_ROR_INTERSECT_SELECT::push_quick_back(QUICK_RANGE_SELECT *quick)
{
1484
  return quick_selects.push_back(quick);
1485 1486 1487
}

QUICK_ROR_INTERSECT_SELECT::~QUICK_ROR_INTERSECT_SELECT()
unknown's avatar
unknown committed
1488
{
1489
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::~QUICK_ROR_INTERSECT_SELECT");
unknown's avatar
unknown committed
1490
  quick_selects.delete_elements();
1491 1492
  delete cpk_quick;
  free_root(&alloc,MYF(0));
unknown's avatar
unknown committed
1493 1494
  if (need_to_fetch_row && head->file->inited != handler::NONE)
    head->file->ha_rnd_end();
1495 1496 1497
  DBUG_VOID_RETURN;
}

unknown's avatar
unknown committed
1498

1499 1500
QUICK_ROR_UNION_SELECT::QUICK_ROR_UNION_SELECT(THD *thd_param,
                                               TABLE *table)
unknown's avatar
unknown committed
1501
  : thd(thd_param), scans_inited(FALSE)
1502 1503 1504 1505 1506 1507
{
  index= MAX_KEY;
  head= table;
  rowid_length= table->file->ref_length;
  record= head->record[0];
  init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
unknown's avatar
unknown committed
1508
  thd_param->mem_root= &alloc;
1509 1510
}

1511 1512 1513 1514 1515

/*
  Do post-constructor initialization.
  SYNOPSIS
    QUICK_ROR_UNION_SELECT::init()
unknown's avatar
unknown committed
1516

1517 1518 1519 1520 1521
  RETURN
    0      OK
    other  Error code
*/

1522 1523
int QUICK_ROR_UNION_SELECT::init()
{
unknown's avatar
unknown committed
1524
  DBUG_ENTER("QUICK_ROR_UNION_SELECT::init");
1525
  if (init_queue(&queue, quick_selects.elements, 0,
unknown's avatar
unknown committed
1526
                 FALSE , QUICK_ROR_UNION_SELECT::queue_cmp,
1527 1528 1529
                 (void*) this))
  {
    bzero(&queue, sizeof(QUEUE));
unknown's avatar
unknown committed
1530
    DBUG_RETURN(1);
1531
  }
unknown's avatar
unknown committed
1532

1533
  if (!(cur_rowid= (uchar*) alloc_root(&alloc, 2*head->file->ref_length)))
unknown's avatar
unknown committed
1534
    DBUG_RETURN(1);
1535
  prev_rowid= cur_rowid + head->file->ref_length;
unknown's avatar
unknown committed
1536
  DBUG_RETURN(0);
1537 1538
}

1539

1540
/*
unknown's avatar
unknown committed
1541
  Comparison function to be used QUICK_ROR_UNION_SELECT::queue priority
1542 1543
  queue.

1544 1545 1546 1547 1548 1549
  SYNPOSIS
    QUICK_ROR_UNION_SELECT::queue_cmp()
      arg   Pointer to QUICK_ROR_UNION_SELECT
      val1  First merged select
      val2  Second merged select
*/
unknown's avatar
unknown committed
1550

1551
int QUICK_ROR_UNION_SELECT::queue_cmp(void *arg, uchar *val1, uchar *val2)
1552
{
1553
  QUICK_ROR_UNION_SELECT *self= (QUICK_ROR_UNION_SELECT*)arg;
1554 1555 1556 1557
  return self->head->file->cmp_ref(((QUICK_SELECT_I*)val1)->last_rowid,
                                   ((QUICK_SELECT_I*)val2)->last_rowid);
}

1558

unknown's avatar
unknown committed
1559
/*
1560 1561 1562
  Initialize quick select for row retrieval.
  SYNOPSIS
    reset()
unknown's avatar
unknown committed
1563

1564 1565 1566 1567 1568
  RETURN
    0      OK
    other  Error code
*/

1569 1570
int QUICK_ROR_UNION_SELECT::reset()
{
1571
  QUICK_SELECT_I *quick;
1572 1573
  int error;
  DBUG_ENTER("QUICK_ROR_UNION_SELECT::reset");
unknown's avatar
unknown committed
1574
  have_prev_rowid= FALSE;
unknown's avatar
unknown committed
1575 1576 1577 1578 1579 1580 1581 1582
  if (!scans_inited)
  {
    List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
    while ((quick= it++))
    {
      if (quick->init_ror_merged_scan(FALSE))
        DBUG_RETURN(1);
    }
unknown's avatar
unknown committed
1583
    scans_inited= TRUE;
unknown's avatar
unknown committed
1584 1585
  }
  queue_remove_all(&queue);
unknown's avatar
unknown committed
1586 1587
  /*
    Initialize scans for merged quick selects and put all merged quick
1588 1589 1590 1591 1592
    selects into the queue.
  */
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  while ((quick= it++))
  {
unknown's avatar
unknown committed
1593
    if (quick->reset())
unknown's avatar
unknown committed
1594
      DBUG_RETURN(1);
1595 1596 1597 1598
    if ((error= quick->get_next()))
    {
      if (error == HA_ERR_END_OF_FILE)
        continue;
unknown's avatar
unknown committed
1599
      DBUG_RETURN(error);
1600 1601
    }
    quick->save_last_pos();
1602
    queue_insert(&queue, (uchar*)quick);
1603 1604
  }

unknown's avatar
unknown committed
1605
  if (head->file->ha_rnd_init(1))
1606 1607 1608 1609 1610 1611 1612 1613 1614
  {
    DBUG_PRINT("error", ("ROR index_merge rnd_init call failed"));
    DBUG_RETURN(1);
  }

  DBUG_RETURN(0);
}


unknown's avatar
unknown committed
1615
bool
1616 1617 1618 1619 1620 1621 1622 1623 1624
QUICK_ROR_UNION_SELECT::push_quick_back(QUICK_SELECT_I *quick_sel_range)
{
  return quick_selects.push_back(quick_sel_range);
}

QUICK_ROR_UNION_SELECT::~QUICK_ROR_UNION_SELECT()
{
  DBUG_ENTER("QUICK_ROR_UNION_SELECT::~QUICK_ROR_UNION_SELECT");
  delete_queue(&queue);
unknown's avatar
unknown committed
1625
  quick_selects.delete_elements();
1626 1627
  if (head->file->inited != handler::NONE)
    head->file->ha_rnd_end();
1628 1629
  free_root(&alloc,MYF(0));
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
1630 1631
}

1632

unknown's avatar
unknown committed
1633 1634
QUICK_RANGE::QUICK_RANGE()
  :min_key(0),max_key(0),min_length(0),max_length(0),
unknown's avatar
unknown committed
1635 1636
   flag(NO_MIN_RANGE | NO_MAX_RANGE),
  min_keypart_map(0), max_keypart_map(0)
unknown's avatar
unknown committed
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
{}

SEL_ARG::SEL_ARG(SEL_ARG &arg) :Sql_alloc()
{
  type=arg.type;
  min_flag=arg.min_flag;
  max_flag=arg.max_flag;
  maybe_flag=arg.maybe_flag;
  maybe_null=arg.maybe_null;
  part=arg.part;
  field=arg.field;
  min_value=arg.min_value;
  max_value=arg.max_value;
  next_key_part=arg.next_key_part;
  use_count=1; elements=1;
}


inline void SEL_ARG::make_root()
{
  left=right= &null_element;
  color=BLACK;
  next=prev=0;
  use_count=0; elements=1;
}

1663 1664
SEL_ARG::SEL_ARG(Field *f,const uchar *min_value_arg,
                 const uchar *max_value_arg)
unknown's avatar
unknown committed
1665
  :min_flag(0), max_flag(0), maybe_flag(0), maybe_null(f->real_maybe_null()),
1666 1667
   elements(1), use_count(1), field(f), min_value((uchar*) min_value_arg),
   max_value((uchar*) max_value_arg), next(0),prev(0),
unknown's avatar
unknown committed
1668 1669 1670 1671 1672
   next_key_part(0),color(BLACK),type(KEY_RANGE)
{
  left=right= &null_element;
}

1673 1674
SEL_ARG::SEL_ARG(Field *field_,uint8 part_,
                 uchar *min_value_, uchar *max_value_,
unknown's avatar
unknown committed
1675 1676 1677 1678 1679 1680 1681 1682 1683
		 uint8 min_flag_,uint8 max_flag_,uint8 maybe_flag_)
  :min_flag(min_flag_),max_flag(max_flag_),maybe_flag(maybe_flag_),
   part(part_),maybe_null(field_->real_maybe_null()), elements(1),use_count(1),
   field(field_), min_value(min_value_), max_value(max_value_),
   next(0),prev(0),next_key_part(0),color(BLACK),type(KEY_RANGE)
{
  left=right= &null_element;
}

1684 1685
SEL_ARG *SEL_ARG::clone(RANGE_OPT_PARAM *param, SEL_ARG *new_parent, 
                        SEL_ARG **next_arg)
unknown's avatar
unknown committed
1686 1687
{
  SEL_ARG *tmp;
unknown's avatar
unknown committed
1688 1689 1690 1691 1692

  /* Bail out if we have already generated too many SEL_ARGs */
  if (++param->alloced_sel_args > MAX_SEL_ARGS)
    return 0;

unknown's avatar
unknown committed
1693 1694
  if (type != KEY_RANGE)
  {
unknown's avatar
unknown committed
1695
    if (!(tmp= new (param->mem_root) SEL_ARG(type)))
1696
      return 0;					// out of memory
unknown's avatar
unknown committed
1697 1698 1699 1700 1701 1702
    tmp->prev= *next_arg;			// Link into next/prev chain
    (*next_arg)->next=tmp;
    (*next_arg)= tmp;
  }
  else
  {
unknown's avatar
unknown committed
1703 1704
    if (!(tmp= new (param->mem_root) SEL_ARG(field,part, min_value,max_value,
                                             min_flag, max_flag, maybe_flag)))
1705
      return 0;					// OOM
unknown's avatar
unknown committed
1706 1707 1708
    tmp->parent=new_parent;
    tmp->next_key_part=next_key_part;
    if (left != &null_element)
unknown's avatar
unknown committed
1709 1710
      if (!(tmp->left=left->clone(param, tmp, next_arg)))
	return 0;				// OOM
unknown's avatar
unknown committed
1711 1712 1713 1714 1715 1716

    tmp->prev= *next_arg;			// Link into next/prev chain
    (*next_arg)->next=tmp;
    (*next_arg)= tmp;

    if (right != &null_element)
unknown's avatar
unknown committed
1717
      if (!(tmp->right= right->clone(param, tmp, next_arg)))
1718
	return 0;				// OOM
unknown's avatar
unknown committed
1719 1720
  }
  increment_use_count(1);
1721
  tmp->color= color;
1722
  tmp->elements= this->elements;
unknown's avatar
unknown committed
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
  return tmp;
}

SEL_ARG *SEL_ARG::first()
{
  SEL_ARG *next_arg=this;
  if (!next_arg->left)
    return 0;					// MAYBE_KEY
  while (next_arg->left != &null_element)
    next_arg=next_arg->left;
  return next_arg;
}

SEL_ARG *SEL_ARG::last()
{
  SEL_ARG *next_arg=this;
  if (!next_arg->right)
    return 0;					// MAYBE_KEY
  while (next_arg->right != &null_element)
    next_arg=next_arg->right;
  return next_arg;
}

1746

unknown's avatar
unknown committed
1747 1748 1749
/*
  Check if a compare is ok, when one takes ranges in account
  Returns -2 or 2 if the ranges where 'joined' like  < 2 and >= 2
1750
*/
unknown's avatar
unknown committed
1751

1752 1753
static int sel_cmp(Field *field, uchar *a, uchar *b, uint8 a_flag,
                   uint8 b_flag)
unknown's avatar
unknown committed
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
{
  int cmp;
  /* First check if there was a compare to a min or max element */
  if (a_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
  {
    if ((a_flag & (NO_MIN_RANGE | NO_MAX_RANGE)) ==
	(b_flag & (NO_MIN_RANGE | NO_MAX_RANGE)))
      return 0;
    return (a_flag & NO_MIN_RANGE) ? -1 : 1;
  }
  if (b_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
    return (b_flag & NO_MIN_RANGE) ? 1 : -1;

  if (field->real_maybe_null())			// If null is part of key
  {
    if (*a != *b)
    {
      return *a ? -1 : 1;
    }
    if (*a)
      goto end;					// NULL where equal
unknown's avatar
unknown committed
1775
    a++; b++;					// Skip NULL marker
unknown's avatar
unknown committed
1776
  }
1777
  cmp=field->key_cmp(a , b);
unknown's avatar
unknown committed
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
  if (cmp) return cmp < 0 ? -1 : 1;		// The values differed

  // Check if the compared equal arguments was defined with open/closed range
 end:
  if (a_flag & (NEAR_MIN | NEAR_MAX))
  {
    if ((a_flag & (NEAR_MIN | NEAR_MAX)) == (b_flag & (NEAR_MIN | NEAR_MAX)))
      return 0;
    if (!(b_flag & (NEAR_MIN | NEAR_MAX)))
      return (a_flag & NEAR_MIN) ? 2 : -2;
    return (a_flag & NEAR_MIN) ? 1 : -1;
  }
  if (b_flag & (NEAR_MIN | NEAR_MAX))
    return (b_flag & NEAR_MIN) ? -2 : 2;
  return 0;					// The elements where equal
}


1796
SEL_ARG *SEL_ARG::clone_tree(RANGE_OPT_PARAM *param)
unknown's avatar
unknown committed
1797 1798 1799
{
  SEL_ARG tmp_link,*next_arg,*root;
  next_arg= &tmp_link;
1800 1801
  if (!(root= clone(param, (SEL_ARG *) 0, &next_arg)))
    return 0;
unknown's avatar
unknown committed
1802 1803
  next_arg->next=0;				// Fix last link
  tmp_link.next->prev=0;			// Fix first link
1804 1805
  if (root)					// If not OOM
    root->use_count= 0;
unknown's avatar
unknown committed
1806 1807 1808
  return root;
}

1809

1810
/*
unknown's avatar
unknown committed
1811
  Find the best index to retrieve first N records in given order
1812 1813 1814 1815 1816 1817 1818 1819

  SYNOPSIS
    get_index_for_order()
      table  Table to be accessed
      order  Required ordering
      limit  Number of records that will be retrieved

  DESCRIPTION
unknown's avatar
unknown committed
1820 1821 1822 1823
    Find the best index that allows to retrieve first #limit records in the 
    given order cheaper then one would retrieve them using full table scan.

  IMPLEMENTATION
1824
    Run through all table indexes and find the shortest index that allows
unknown's avatar
unknown committed
1825 1826
    records to be retrieved in given order. We look for the shortest index
    as we will have fewer index pages to read with it.
1827 1828 1829 1830 1831

    This function is used only by UPDATE/DELETE, so we take into account how
    the UPDATE/DELETE code will work:
     * index can only be scanned in forward direction
     * HA_EXTRA_KEYREAD will not be used
unknown's avatar
unknown committed
1832
    Perhaps these assumptions could be relaxed.
1833 1834

  RETURN
unknown's avatar
unknown committed
1835
    Number of the index that produces the required ordering in the cheapest way
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
    MAX_KEY if no such index was found.
*/

uint get_index_for_order(TABLE *table, ORDER *order, ha_rows limit)
{
  uint idx;
  uint match_key= MAX_KEY, match_key_len= MAX_KEY_LENGTH + 1;
  ORDER *ord;
  
  for (ord= order; ord; ord= ord->next)
    if (!ord->asc)
      return MAX_KEY;

unknown's avatar
unknown committed
1849
  for (idx= 0; idx < table->s->keys; idx++)
1850 1851 1852 1853
  {
    if (!(table->keys_in_use_for_query.is_set(idx)))
      continue;
    KEY_PART_INFO *keyinfo= table->key_info[idx].key_part;
1854
    uint n_parts=  table->key_info[idx].key_parts;
1855 1856 1857 1858 1859 1860 1861 1862 1863
    uint partno= 0;
    
    /* 
      The below check is sufficient considering we now have either BTREE 
      indexes (records are returned in order for any index prefix) or HASH 
      indexes (records are not returned in order for any index prefix).
    */
    if (!(table->file->index_flags(idx, 0, 1) & HA_READ_ORDER))
      continue;
1864
    for (ord= order; ord && partno < n_parts; ord= ord->next, partno++)
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
    {
      Item *item= order->item[0];
      if (!(item->type() == Item::FIELD_ITEM &&
           ((Item_field*)item)->field->eq(keyinfo[partno].field)))
        break;
    }
    
    if (!ord && table->key_info[idx].key_length < match_key_len)
    {
      /* 
        Ok, the ordering is compatible and this key is shorter then
        previous match (we want shorter keys as we'll have to read fewer
        index pages for the same number of records)
      */
      match_key= idx;
      match_key_len= table->key_info[idx].key_length;
    }
  }

  if (match_key != MAX_KEY)
  {
    /* 
      Found an index that allows records to be retrieved in the requested 
      order. Now we'll check if using the index is cheaper then doing a table
      scan.
    */
    double full_scan_time= table->file->scan_time();
    double index_scan_time= table->file->read_time(match_key, 1, limit);
    if (index_scan_time > full_scan_time)
      match_key= MAX_KEY;
  }
  return match_key;
}


unknown's avatar
unknown committed
1900
/*
unknown's avatar
unknown committed
1901
  Table rows retrieval plan. Range optimizer creates QUICK_SELECT_I-derived
1902 1903 1904 1905 1906
  objects from table read plans.
*/
class TABLE_READ_PLAN
{
public:
unknown's avatar
unknown committed
1907 1908
  /*
    Plan read cost, with or without cost of full row retrieval, depending
1909 1910
    on plan creation parameters.
  */
unknown's avatar
unknown committed
1911
  double read_cost;
1912
  ha_rows records; /* estimate of #rows to be examined */
unknown's avatar
unknown committed
1913

unknown's avatar
unknown committed
1914 1915
  /*
    If TRUE, the scan returns rows in rowid order. This is used only for
1916 1917
    scans that can be both ROR and non-ROR.
  */
1918
  bool is_ror;
unknown's avatar
unknown committed
1919

1920 1921 1922 1923 1924
  /*
    Create quick select for this plan.
    SYNOPSIS
     make_quick()
       param               Parameter from test_quick_select
unknown's avatar
unknown committed
1925
       retrieve_full_rows  If TRUE, created quick select will do full record
1926 1927
                           retrieval.
       parent_alloc        Memory pool to use, if any.
unknown's avatar
unknown committed
1928

1929 1930
    NOTES
      retrieve_full_rows is ignored by some implementations.
unknown's avatar
unknown committed
1931 1932

    RETURN
1933 1934 1935
      created quick select
      NULL on any error.
  */
1936 1937 1938 1939
  virtual QUICK_SELECT_I *make_quick(PARAM *param,
                                     bool retrieve_full_rows,
                                     MEM_ROOT *parent_alloc=NULL) = 0;

1940
  /* Table read plans are allocated on MEM_ROOT and are never deleted */
1941 1942
  static void *operator new(size_t size, MEM_ROOT *mem_root)
  { return (void*) alloc_root(mem_root, (uint) size); }
unknown's avatar
unknown committed
1943
  static void operator delete(void *ptr,size_t size) { TRASH(ptr, size); }
1944
  static void operator delete(void *ptr, MEM_ROOT *mem_root) { /* Never called */ }
1945 1946
  virtual ~TABLE_READ_PLAN() {}               /* Remove gcc warning */

1947 1948 1949 1950 1951 1952 1953
};

class TRP_ROR_INTERSECT;
class TRP_ROR_UNION;
class TRP_INDEX_MERGE;


1954
/*
unknown's avatar
unknown committed
1955
  Plan for a QUICK_RANGE_SELECT scan.
1956 1957 1958
  TRP_RANGE::make_quick ignores retrieve_full_rows parameter because
  QUICK_RANGE_SELECT doesn't distinguish between 'index only' scans and full
  record retrieval scans.
unknown's avatar
unknown committed
1959
*/
unknown's avatar
unknown committed
1960

1961
class TRP_RANGE : public TABLE_READ_PLAN
unknown's avatar
unknown committed
1962
{
1963
public:
1964 1965
  SEL_ARG *key; /* set of intervals to be used in "range" method retrieval */
  uint     key_idx; /* key number in PARAM::key */
unknown's avatar
unknown committed
1966

unknown's avatar
unknown committed
1967
  TRP_RANGE(SEL_ARG *key_arg, uint idx_arg)
1968 1969
   : key(key_arg), key_idx(idx_arg)
  {}
1970
  virtual ~TRP_RANGE() {}                     /* Remove gcc warning */
unknown's avatar
unknown committed
1971

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
                             MEM_ROOT *parent_alloc)
  {
    DBUG_ENTER("TRP_RANGE::make_quick");
    QUICK_RANGE_SELECT *quick;
    if ((quick= get_quick_select(param, key_idx, key, parent_alloc)))
    {
      quick->records= records;
      quick->read_time= read_cost;
    }
    DBUG_RETURN(quick);
  }
};
unknown's avatar
unknown committed
1985 1986


1987 1988
/* Plan for QUICK_ROR_INTERSECT_SELECT scan. */

1989 1990 1991
class TRP_ROR_INTERSECT : public TABLE_READ_PLAN
{
public:
1992 1993
  TRP_ROR_INTERSECT() {}                      /* Remove gcc warning */
  virtual ~TRP_ROR_INTERSECT() {}             /* Remove gcc warning */
unknown's avatar
unknown committed
1994
  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
1995
                             MEM_ROOT *parent_alloc);
unknown's avatar
unknown committed
1996

1997
  /* Array of pointers to ROR range scans used in this intersection */
1998
  struct st_ror_scan_info **first_scan;
1999 2000
  struct st_ror_scan_info **last_scan; /* End of the above array */
  struct st_ror_scan_info *cpk_scan;  /* Clustered PK scan, if there is one */
unknown's avatar
unknown committed
2001
  bool is_covering; /* TRUE if no row retrieval phase is necessary */
2002
  double index_scan_costs; /* SUM(cost(index_scan)) */
2003 2004
};

2005

unknown's avatar
unknown committed
2006
/*
2007 2008
  Plan for QUICK_ROR_UNION_SELECT scan.
  QUICK_ROR_UNION_SELECT always retrieves full rows, so retrieve_full_rows
unknown's avatar
unknown committed
2009
  is ignored by make_quick.
2010
*/
2011

2012 2013 2014
class TRP_ROR_UNION : public TABLE_READ_PLAN
{
public:
2015 2016
  TRP_ROR_UNION() {}                          /* Remove gcc warning */
  virtual ~TRP_ROR_UNION() {}                 /* Remove gcc warning */
unknown's avatar
unknown committed
2017
  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
2018
                             MEM_ROOT *parent_alloc);
2019 2020
  TABLE_READ_PLAN **first_ror; /* array of ptrs to plans for merged scans */
  TABLE_READ_PLAN **last_ror;  /* end of the above array */
2021 2022
};

2023 2024 2025 2026

/*
  Plan for QUICK_INDEX_MERGE_SELECT scan.
  QUICK_ROR_INTERSECT_SELECT always retrieves full rows, so retrieve_full_rows
unknown's avatar
unknown committed
2027
  is ignored by make_quick.
2028 2029
*/

2030 2031 2032
class TRP_INDEX_MERGE : public TABLE_READ_PLAN
{
public:
2033 2034
  TRP_INDEX_MERGE() {}                        /* Remove gcc warning */
  virtual ~TRP_INDEX_MERGE() {}               /* Remove gcc warning */
unknown's avatar
unknown committed
2035
  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
2036
                             MEM_ROOT *parent_alloc);
2037 2038
  TRP_RANGE **range_scans; /* array of ptrs to plans of merged scans */
  TRP_RANGE **range_scans_end; /* end of the array */
2039 2040 2041
};


2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
/*
  Plan for a QUICK_GROUP_MIN_MAX_SELECT scan. 
*/

class TRP_GROUP_MIN_MAX : public TABLE_READ_PLAN
{
private:
  bool have_min, have_max;
  KEY_PART_INFO *min_max_arg_part;
  uint group_prefix_len;
  uint used_key_parts;
  uint group_key_parts;
  KEY *index_info;
  uint index;
  uint key_infix_len;
2057
  uchar key_infix[MAX_KEY_LENGTH];
2058 2059 2060 2061 2062 2063 2064
  SEL_TREE *range_tree; /* Represents all range predicates in the query. */
  SEL_ARG  *index_tree; /* The SEL_ARG sub-tree corresponding to index_info. */
  uint param_idx; /* Index of used key in param->key. */
  /* Number of records selected by the ranges in index_tree. */
public:
  ha_rows quick_prefix_records;
public:
2065 2066 2067 2068
  TRP_GROUP_MIN_MAX(bool have_min_arg, bool have_max_arg,
                    KEY_PART_INFO *min_max_arg_part_arg,
                    uint group_prefix_len_arg, uint used_key_parts_arg,
                    uint group_key_parts_arg, KEY *index_info_arg,
2069
                    uint index_arg, uint key_infix_len_arg,
2070
                    uchar *key_infix_arg,
2071 2072 2073 2074 2075 2076 2077 2078 2079
                    SEL_TREE *tree_arg, SEL_ARG *index_tree_arg,
                    uint param_idx_arg, ha_rows quick_prefix_records_arg)
  : have_min(have_min_arg), have_max(have_max_arg),
    min_max_arg_part(min_max_arg_part_arg),
    group_prefix_len(group_prefix_len_arg), used_key_parts(used_key_parts_arg),
    group_key_parts(group_key_parts_arg), index_info(index_info_arg),
    index(index_arg), key_infix_len(key_infix_len_arg), range_tree(tree_arg),
    index_tree(index_tree_arg), param_idx(param_idx_arg),
    quick_prefix_records(quick_prefix_records_arg)
2080 2081 2082 2083
    {
      if (key_infix_len)
        memcpy(this->key_infix, key_infix_arg, key_infix_len);
    }
2084
  virtual ~TRP_GROUP_MIN_MAX() {}             /* Remove gcc warning */
2085 2086 2087 2088 2089 2090

  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
                             MEM_ROOT *parent_alloc);
};


unknown's avatar
unknown committed
2091
/*
2092
  Fill param->needed_fields with bitmap of fields used in the query.
unknown's avatar
unknown committed
2093
  SYNOPSIS
2094 2095
    fill_used_fields_bitmap()
      param Parameter from test_quick_select function.
unknown's avatar
unknown committed
2096

2097 2098 2099
  NOTES
    Clustered PK members are not put into the bitmap as they are implicitly
    present in all keys (and it is impossible to avoid reading them).
unknown's avatar
unknown committed
2100 2101 2102
  RETURN
    0  Ok
    1  Out of memory.
2103 2104 2105 2106 2107
*/

static int fill_used_fields_bitmap(PARAM *param)
{
  TABLE *table= param->table;
2108
  my_bitmap_map *tmp;
2109
  uint pk;
2110
  param->tmp_covered_fields.bitmap= 0;
2111 2112 2113 2114
  param->fields_bitmap_size= table->s->column_bitmap_size;
  if (!(tmp= (my_bitmap_map*) alloc_root(param->mem_root,
                                  param->fields_bitmap_size)) ||
      bitmap_init(&param->needed_fields, tmp, table->s->fields, FALSE))
2115
    return 1;
unknown's avatar
unknown committed
2116

2117 2118
  bitmap_copy(&param->needed_fields, table->read_set);
  bitmap_union(&param->needed_fields, table->write_set);
2119

2120
  pk= param->table->s->primary_key;
2121
  if (pk != MAX_KEY && param->table->file->primary_key_is_clustered())
2122
  {
2123
    /* The table uses clustered PK and it is not internally generated */
2124
    KEY_PART_INFO *key_part= param->table->key_info[pk].key_part;
unknown's avatar
unknown committed
2125
    KEY_PART_INFO *key_part_end= key_part +
2126
                                 param->table->key_info[pk].key_parts;
unknown's avatar
unknown committed
2127
    for (;key_part != key_part_end; ++key_part)
2128
      bitmap_clear_bit(&param->needed_fields, key_part->fieldnr-1);
2129 2130 2131 2132 2133
  }
  return 0;
}


unknown's avatar
unknown committed
2134
/*
unknown's avatar
unknown committed
2135
  Test if a key can be used in different ranges
unknown's avatar
unknown committed
2136 2137

  SYNOPSIS
2138 2139 2140 2141 2142
    SQL_SELECT::test_quick_select()
      thd               Current thread
      keys_to_use       Keys to use for range retrieval
      prev_tables       Tables assumed to be already read when the scan is
                        performed (but not read at the moment of this call)
unknown's avatar
unknown committed
2143 2144 2145
      limit             Query limit
      force_quick_range Prefer to use range (instead of full table scan) even
                        if it is more expensive.
2146 2147 2148 2149 2150

  NOTES
    Updates the following in the select parameter:
      needed_reg - Bits for keys with may be used if all prev regs are read
      quick      - Parameter to use when reading records.
unknown's avatar
unknown committed
2151

2152
    In the table struct the following information is updated:
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
      quick_keys           - Which keys can be used
      quick_rows           - How many rows the key matches
      quick_condition_rows - E(# rows that will satisfy the table condition)

  IMPLEMENTATION
    quick_condition_rows value is obtained as follows:
      
      It is a minimum of E(#output rows) for all considered table access
      methods (range and index_merge accesses over various indexes).
    
    The obtained value is not a true E(#rows that satisfy table condition)
    but rather a pessimistic estimate. To obtain a true E(#...) one would
    need to combine estimates of various access methods, taking into account
    correlations between sets of rows they will return.
    
    For example, if values of tbl.key1 and tbl.key2 are independent (a right
unknown's avatar
unknown committed
2169
    assumption if we have no information about their correlation) then the
2170 2171 2172
    correct estimate will be:
    
      E(#rows("tbl.key1 < c1 AND tbl.key2 < c2")) = 
unknown's avatar
unknown committed
2173
      = E(#rows(tbl.key1 < c1)) / total_rows(tbl) * E(#rows(tbl.key2 < c2)
2174

unknown's avatar
unknown committed
2175 2176 2177 2178 2179
    which is smaller than 
      
       MIN(E(#rows(tbl.key1 < c1), E(#rows(tbl.key2 < c2)))

    which is currently produced.
unknown's avatar
unknown committed
2180

2181
  TODO
2182 2183 2184 2185 2186 2187 2188
   * Change the value returned in quick_condition_rows from a pessimistic
     estimate to true E(#rows that satisfy table condition). 
     (we can re-use some of E(#rows) calcuation code from index_merge/intersection 
      for this)
   
   * Check if this function really needs to modify keys_to_use, and change the
     code to pass it by reference if it doesn't.
2189

2190 2191 2192
   * In addition to force_quick_range other means can be (an usually are) used
     to make this function prefer range over full table scan. Figure out if
     force_quick_range is really needed.
unknown's avatar
unknown committed
2193

2194 2195 2196 2197
  RETURN
   -1 if impossible select (i.e. certainly no rows will be selected)
    0 if can't use quick_select
    1 if found usable ranges and quick select has been successfully created.
unknown's avatar
unknown committed
2198
*/
unknown's avatar
unknown committed
2199

2200 2201
int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
				  table_map prev_tables,
unknown's avatar
unknown committed
2202 2203 2204 2205
				  ha_rows limit, bool force_quick_range)
{
  uint idx;
  double scan_time;
2206
  DBUG_ENTER("SQL_SELECT::test_quick_select");
unknown's avatar
unknown committed
2207
  DBUG_PRINT("enter",("keys_to_use: %lu  prev_tables: %lu  const_tables: %lu",
unknown's avatar
unknown committed
2208
		      (ulong) keys_to_use.to_ulonglong(), (ulong) prev_tables,
unknown's avatar
unknown committed
2209
		      (ulong) const_tables));
2210
  DBUG_PRINT("info", ("records: %lu", (ulong) head->file->stats.records));
unknown's avatar
unknown committed
2211 2212
  delete quick;
  quick=0;
2213 2214
  needed_reg.clear_all();
  quick_keys.clear_all();
unknown's avatar
unknown committed
2215 2216
  if (keys_to_use.is_clear_all())
    DBUG_RETURN(0);
2217
  records= head->file->stats.records;
unknown's avatar
unknown committed
2218 2219
  if (!records)
    records++;					/* purecov: inspected */
2220 2221
  scan_time= (double) records / TIME_FOR_COMPARE + 1;
  read_time= (double) head->file->scan_time() + scan_time + 1.1;
2222 2223
  if (head->force_index)
    scan_time= read_time= DBL_MAX;
unknown's avatar
unknown committed
2224
  if (limit < records)
2225
    read_time= (double) records + scan_time + 1; // Force to use index
unknown's avatar
unknown committed
2226
  else if (read_time <= 2.0 && !force_quick_range)
2227
    DBUG_RETURN(0);				/* No need for quick select */
unknown's avatar
unknown committed
2228

2229
  DBUG_PRINT("info",("Time to scan table: %g", read_time));
unknown's avatar
unknown committed
2230

2231 2232
  keys_to_use.intersect(head->keys_in_use_for_query);
  if (!keys_to_use.is_clear_all())
unknown's avatar
unknown committed
2233
  {
2234
#ifndef EMBEDDED_LIBRARY                      // Avoid compiler warning
unknown's avatar
unknown committed
2235
    uchar buff[STACK_BUFF_ALLOC];
2236
#endif
2237
    MEM_ROOT alloc;
2238
    SEL_TREE *tree= NULL;
unknown's avatar
unknown committed
2239
    KEY_PART *key_parts;
unknown's avatar
unknown committed
2240
    KEY *key_info;
unknown's avatar
unknown committed
2241
    PARAM param;
unknown's avatar
unknown committed
2242

unknown's avatar
unknown committed
2243
    if (check_stack_overrun(thd, 2*STACK_MIN_SIZE, buff))
2244 2245
      DBUG_RETURN(0);                           // Fatal error flag is set

unknown's avatar
unknown committed
2246
    /* set up parameter that is passed to all functions */
2247
    param.thd= thd;
2248
    param.baseflag= head->file->ha_table_flags();
unknown's avatar
unknown committed
2249 2250 2251 2252 2253
    param.prev_tables=prev_tables | const_tables;
    param.read_tables=read_tables;
    param.current_table= head->map;
    param.table=head;
    param.keys=0;
2254
    param.mem_root= &alloc;
2255
    param.old_root= thd->mem_root;
2256
    param.needed_reg= &needed_reg;
2257
    param.imerge_cost_buff_size= 0;
unknown's avatar
unknown committed
2258
    param.using_real_indexes= TRUE;
2259
    param.remove_jump_scans= TRUE;
unknown's avatar
unknown committed
2260

unknown's avatar
unknown committed
2261
    thd->no_errors=1;				// Don't warn about NULL
2262
    init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
2263 2264 2265 2266
    if (!(param.key_parts= (KEY_PART*) alloc_root(&alloc,
                                                  sizeof(KEY_PART)*
                                                  head->s->key_parts)) ||
        fill_used_fields_bitmap(&param))
unknown's avatar
unknown committed
2267
    {
unknown's avatar
unknown committed
2268
      thd->no_errors=0;
2269
      free_root(&alloc,MYF(0));			// Return memory & allocator
unknown's avatar
unknown committed
2270 2271 2272
      DBUG_RETURN(0);				// Can't use range
    }
    key_parts= param.key_parts;
2273
    thd->mem_root= &alloc;
unknown's avatar
unknown committed
2274 2275 2276 2277

    /*
      Make an array with description of all key parts of all table keys.
      This is used in get_mm_parts function.
2278
    */
unknown's avatar
unknown committed
2279
    key_info= head->key_info;
2280
    for (idx=0 ; idx < head->s->keys ; idx++, key_info++)
unknown's avatar
unknown committed
2281
    {
unknown's avatar
unknown committed
2282
      KEY_PART_INFO *key_part_info;
2283
      if (!keys_to_use.is_set(idx))
unknown's avatar
unknown committed
2284 2285 2286 2287 2288
	continue;
      if (key_info->flags & HA_FULLTEXT)
	continue;    // ToDo: ft-keys in non-ft ranges, if possible   SerG

      param.key[param.keys]=key_parts;
unknown's avatar
unknown committed
2289 2290 2291
      key_part_info= key_info->key_part;
      for (uint part=0 ; part < key_info->key_parts ;
	   part++, key_parts++, key_part_info++)
unknown's avatar
unknown committed
2292
      {
unknown's avatar
unknown committed
2293 2294 2295 2296 2297 2298
	key_parts->key=		 param.keys;
	key_parts->part=	 part;
	key_parts->length=       key_part_info->length;
	key_parts->store_length= key_part_info->store_length;
	key_parts->field=	 key_part_info->field;
	key_parts->null_bit=	 key_part_info->null_bit;
2299
        key_parts->image_type =
unknown's avatar
unknown committed
2300
          (key_info->flags & HA_SPATIAL) ? Field::itMBR : Field::itRAW;
2301 2302
        /* Only HA_PART_KEY_SEG is used */
        key_parts->flag=         (uint8) key_part_info->key_part_flag;
unknown's avatar
unknown committed
2303 2304 2305 2306
      }
      param.real_keynr[param.keys++]=idx;
    }
    param.key_parts_end=key_parts;
2307
    param.alloced_sel_args= 0;
unknown's avatar
unknown committed
2308

unknown's avatar
unknown committed
2309
    /* Calculate cost of full index read for the shortest covering index */
2310
    if (!head->covering_keys.is_clear_all())
unknown's avatar
unknown committed
2311
    {
2312
      int key_for_use= find_shortest_key(head, &head->covering_keys);
2313 2314 2315
      double key_read_time= (get_index_only_read_time(&param, records,
                                                     key_for_use) +
                             (double) records / TIME_FOR_COMPARE);
unknown's avatar
unknown committed
2316 2317 2318 2319 2320
      DBUG_PRINT("info",  ("'all'+'using index' scan will be using key %d, "
                           "read time %g", key_for_use, key_read_time));
      if (key_read_time < read_time)
        read_time= key_read_time;
    }
unknown's avatar
unknown committed
2321

2322 2323 2324 2325 2326
    TABLE_READ_PLAN *best_trp= NULL;
    TRP_GROUP_MIN_MAX *group_trp;
    double best_read_time= read_time;

    if (cond)
unknown's avatar
unknown committed
2327
    {
unknown's avatar
unknown committed
2328 2329 2330 2331 2332 2333 2334 2335
      if ((tree= get_mm_tree(&param,cond)))
      {
        if (tree->type == SEL_TREE::IMPOSSIBLE)
        {
          records=0L;                      /* Return -1 from this function. */
          read_time= (double) HA_POS_ERROR;
          goto free_mem;
        }
2336 2337 2338 2339 2340 2341
        /*
          If the tree can't be used for range scans, proceed anyway, as we
          can construct a group-min-max quick select
        */
        if (tree->type != SEL_TREE::KEY && tree->type != SEL_TREE::KEY_SMALLER)
          tree= NULL;
unknown's avatar
unknown committed
2342
      }
2343 2344 2345 2346 2347 2348 2349
    }

    /*
      Try to construct a QUICK_GROUP_MIN_MAX_SELECT.
      Notice that it can be constructed no matter if there is a range tree.
    */
    group_trp= get_best_group_min_max(&param, tree);
2350
    if (group_trp)
2351
    {
2352 2353 2354 2355 2356 2357 2358
      param.table->quick_condition_rows= min(group_trp->records,
                                             head->file->stats.records);
      if (group_trp->read_cost < best_read_time)
      {
        best_trp= group_trp;
        best_read_time= best_trp->read_cost;
      }
2359 2360 2361
    }

    if (tree)
unknown's avatar
unknown committed
2362
    {
unknown's avatar
unknown committed
2363 2364 2365
      /*
        It is possible to use a range-based quick select (but it might be
        slower than 'all' table scan).
2366 2367
      */
      if (tree->merges.is_empty())
unknown's avatar
unknown committed
2368
      {
2369 2370 2371 2372 2373
        TRP_RANGE         *range_trp;
        TRP_ROR_INTERSECT *rori_trp;
        bool can_build_covering= FALSE;

        /* Get best 'range' plan and prepare data for making other plans */
2374
        if ((range_trp= get_key_scans_params(&param, tree, FALSE, TRUE,
2375 2376 2377 2378 2379 2380
                                             best_read_time)))
        {
          best_trp= range_trp;
          best_read_time= best_trp->read_cost;
        }

unknown's avatar
unknown committed
2381
        /*
2382 2383 2384
          Simultaneous key scans and row deletes on several handler
          objects are not allowed so don't use ROR-intersection for
          table deletes.
unknown's avatar
unknown committed
2385
        */
2386
        if ((thd->lex->sql_command != SQLCOM_DELETE))
unknown's avatar
unknown committed
2387
        {
unknown's avatar
unknown committed
2388
          /*
2389 2390
            Get best non-covering ROR-intersection plan and prepare data for
            building covering ROR-intersection.
unknown's avatar
unknown committed
2391
          */
2392 2393
          if ((rori_trp= get_best_ror_intersect(&param, tree, best_read_time,
                                                &can_build_covering)))
unknown's avatar
unknown committed
2394
          {
2395 2396
            best_trp= rori_trp;
            best_read_time= best_trp->read_cost;
unknown's avatar
unknown committed
2397 2398
            /*
              Try constructing covering ROR-intersect only if it looks possible
2399 2400
              and worth doing.
            */
2401 2402 2403 2404
            if (!rori_trp->is_covering && can_build_covering &&
                (rori_trp= get_best_covering_ror_intersect(&param, tree,
                                                           best_read_time)))
              best_trp= rori_trp;
unknown's avatar
unknown committed
2405 2406
          }
        }
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
      }
      else
      {
        /* Try creating index_merge/ROR-union scan. */
        SEL_IMERGE *imerge;
        TABLE_READ_PLAN *best_conj_trp= NULL, *new_conj_trp;
        LINT_INIT(new_conj_trp); /* no empty index_merge lists possible */
        DBUG_PRINT("info",("No range reads possible,"
                           " trying to construct index_merge"));
        List_iterator_fast<SEL_IMERGE> it(tree->merges);
        while ((imerge= it++))
unknown's avatar
unknown committed
2418
        {
2419
          new_conj_trp= get_best_disjunct_quick(&param, imerge, best_read_time);
2420 2421 2422
          if (new_conj_trp)
            set_if_smaller(param.table->quick_condition_rows, 
                           new_conj_trp->records);
2423 2424 2425
          if (!best_conj_trp || (new_conj_trp && new_conj_trp->read_cost <
                                 best_conj_trp->read_cost))
            best_conj_trp= new_conj_trp;
2426
        }
2427 2428 2429 2430
        if (best_conj_trp)
          best_trp= best_conj_trp;
      }
    }
unknown's avatar
unknown committed
2431

2432
    thd->mem_root= param.old_root;
2433 2434 2435 2436 2437 2438 2439 2440 2441

    /* If we got a read plan, create a quick select from it. */
    if (best_trp)
    {
      records= best_trp->records;
      if (!(quick= best_trp->make_quick(&param, TRUE)) || quick->init())
      {
        delete quick;
        quick= NULL;
unknown's avatar
unknown committed
2442 2443
      }
    }
2444 2445

  free_mem:
2446
    free_root(&alloc,MYF(0));			// Return memory & allocator
2447
    thd->mem_root= param.old_root;
unknown's avatar
unknown committed
2448
    thd->no_errors=0;
unknown's avatar
unknown committed
2449
  }
unknown's avatar
unknown committed
2450

2451
  DBUG_EXECUTE("info", print_quick(quick, &needed_reg););
unknown's avatar
unknown committed
2452

unknown's avatar
unknown committed
2453 2454 2455 2456 2457 2458 2459
  /*
    Assume that if the user is using 'limit' we will only need to scan
    limit rows if we are using a key
  */
  DBUG_RETURN(records ? test(quick) : -1);
}

unknown's avatar
unknown committed
2460
/****************************************************************************
unknown's avatar
unknown committed
2461
 * Partition pruning module
unknown's avatar
unknown committed
2462 2463 2464
 ****************************************************************************/
#ifdef WITH_PARTITION_STORAGE_ENGINE

2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
/*
  PartitionPruningModule

  This part of the code does partition pruning. Partition pruning solves the
  following problem: given a query over partitioned tables, find partitions
  that we will not need to access (i.e. partitions that we can assume to be
  empty) when executing the query.
  The set of partitions to prune doesn't depend on which query execution
  plan will be used to execute the query.
  
  HOW IT WORKS
  
  Partition pruning module makes use of RangeAnalysisModule. The following
  examples show how the problem of partition pruning can be reduced to the 
  range analysis problem:
  
  EXAMPLE 1
    Consider a query:
    
      SELECT * FROM t1 WHERE (t1.a < 5 OR t1.a = 10) AND t1.a > 3 AND t1.b='z'
    
    where table t1 is partitioned using PARTITION BY RANGE(t1.a).  An apparent
    way to find the used (i.e. not pruned away) partitions is as follows:
    
    1. analyze the WHERE clause and extract the list of intervals over t1.a
       for the above query we will get this list: {(3 < t1.a < 5), (t1.a=10)}

    2. for each interval I
       {
         find partitions that have non-empty intersection with I;
         mark them as used;
       }
       
  EXAMPLE 2
    Suppose the table is partitioned by HASH(part_func(t1.a, t1.b)). Then
    we need to:

    1. Analyze the WHERE clause and get a list of intervals over (t1.a, t1.b).
       The list of intervals we'll obtain will look like this:
       ((t1.a, t1.b) = (1,'foo')),
       ((t1.a, t1.b) = (2,'bar')), 
2506
       ((t1,a, t1.b) > (10,'zz'))
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
       
    2. for each interval I 
       {
         if (the interval has form "(t1.a, t1.b) = (const1, const2)" )
         {
           calculate HASH(part_func(t1.a, t1.b));
           find which partition has records with this hash value and mark
             it as used;
         }
         else
         {
           mark all partitions as used; 
           break;
         }
       }

   For both examples the step #1 is exactly what RangeAnalysisModule could
   be used to do, if it was provided with appropriate index description
   (array of KEY_PART structures). 
   In example #1, we need to provide it with description of index(t1.a), 
   in example #2, we need to provide it with description of index(t1.a, t1.b).
   
   These index descriptions are further called "partitioning index
   descriptions". Note that it doesn't matter if such indexes really exist,
   as range analysis module only uses the description.
   
   Putting it all together, partitioning module works as follows:
   
   prune_partitions() {
2536
     call create_partition_index_description();
2537 2538 2539 2540 2541 2542 2543 2544 2545

     call get_mm_tree(); // invoke the RangeAnalysisModule
     
     // analyze the obtained interval list and get used partitions 
     call find_used_partitions();
  }

*/

unknown's avatar
unknown committed
2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
struct st_part_prune_param;
struct st_part_opt_info;

typedef void (*mark_full_part_func)(partition_info*, uint32);

/*
  Partition pruning operation context
*/
typedef struct st_part_prune_param
{
2556
  RANGE_OPT_PARAM range_param; /* Range analyzer parameters */
unknown's avatar
unknown committed
2557

unknown's avatar
unknown committed
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
  /***************************************************************
   Following fields are filled in based solely on partitioning 
   definition and not modified after that:
   **************************************************************/
  partition_info *part_info; /* Copy of table->part_info */
  /* Function to get partition id from partitioning fields only */
  get_part_id_func get_top_partition_id_func;
  /* Function to mark a partition as used (w/all subpartitions if they exist)*/
  mark_full_part_func mark_full_partition_used;
 
  /* Partitioning 'index' description, array of key parts */
  KEY_PART *key;
  
  /*
    Number of fields in partitioning 'index' definition created for
    partitioning (0 if partitioning 'index' doesn't include partitioning
    fields)
  */
  uint part_fields;
  uint subpart_fields; /* Same as above for subpartitioning */
  
  /* 
    Number of the last partitioning field keypart in the index, or -1 if
    partitioning index definition doesn't include partitioning fields.
  */
  int last_part_partno;
  int last_subpart_partno; /* Same as above for supartitioning */

  /*
    is_part_keypart[i] == test(keypart #i in partitioning index is a member
                               used in partitioning)
    Used to maintain current values of cur_part_fields and cur_subpart_fields
  */
  my_bool *is_part_keypart;
  /* Same as above for subpartitioning */
  my_bool *is_subpart_keypart;

  /***************************************************************
   Following fields form find_used_partitions() recursion context:
   **************************************************************/
  SEL_ARG **arg_stack;     /* "Stack" of SEL_ARGs */
  SEL_ARG **arg_stack_end; /* Top of the stack    */
  /* Number of partitioning fields for which we have a SEL_ARG* in arg_stack */
  uint cur_part_fields;
  /* Same as cur_part_fields, but for subpartitioning */
  uint cur_subpart_fields;
2604

unknown's avatar
unknown committed
2605 2606 2607 2608 2609
  /* Iterator to be used to obtain the "current" set of used partitions */
  PARTITION_ITERATOR part_iter;

  /* Initialized bitmap of no_subparts size */
  MY_BITMAP subparts_bitmap;
unknown's avatar
unknown committed
2610 2611
} PART_PRUNE_PARAM;

2612
static bool create_partition_index_description(PART_PRUNE_PARAM *prune_par);
unknown's avatar
unknown committed
2613
static int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree);
2614 2615 2616 2617
static int find_used_partitions_imerge(PART_PRUNE_PARAM *ppar,
                                       SEL_IMERGE *imerge);
static int find_used_partitions_imerge_list(PART_PRUNE_PARAM *ppar,
                                            List<SEL_IMERGE> &merges);
unknown's avatar
unknown committed
2618 2619 2620 2621 2622 2623
static void mark_all_partitions_as_used(partition_info *part_info);

#ifndef DBUG_OFF
static void print_partitioning_index(KEY_PART *parts, KEY_PART *parts_end);
static void dbug_print_field(Field *field);
static void dbug_print_segment_range(SEL_ARG *arg, KEY_PART *part);
2624
static void dbug_print_singlepoint_range(SEL_ARG **start, uint num);
unknown's avatar
unknown committed
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
#endif


/*
  Perform partition pruning for a given table and condition.

  SYNOPSIS
    prune_partitions()
      thd           Thread handle
      table         Table to perform partition pruning for
      pprune_cond   Condition to use for partition pruning
  
  DESCRIPTION
    This function assumes that all partitions are marked as unused when it
    is invoked. The function analyzes the condition, finds partitions that
    need to be used to retrieve the records that match the condition, and 
    marks them as used by setting appropriate bit in part_info->used_partitions
    In the worst case all partitions are marked as used.

  NOTE
    This function returns promptly if called for non-partitioned table.

  RETURN
    TRUE   We've inferred that no partitions need to be used (i.e. no table
           records will satisfy pprune_cond)
    FALSE  Otherwise
*/

bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond)
{
  bool retval= FALSE;
  partition_info *part_info = table->part_info;
  DBUG_ENTER("prune_partitions");

  if (!part_info)
    DBUG_RETURN(FALSE); /* not a partitioned table */
  
  if (!pprune_cond)
  {
    mark_all_partitions_as_used(part_info);
    DBUG_RETURN(FALSE);
  }
  
  PART_PRUNE_PARAM prune_param;
  MEM_ROOT alloc;
  RANGE_OPT_PARAM  *range_par= &prune_param.range_param;
2671
  my_bitmap_map *old_read_set, *old_write_set;
unknown's avatar
unknown committed
2672 2673 2674 2675 2676 2677

  prune_param.part_info= part_info;
  init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
  range_par->mem_root= &alloc;
  range_par->old_root= thd->mem_root;

2678
  if (create_partition_index_description(&prune_param))
unknown's avatar
unknown committed
2679 2680 2681 2682 2683 2684
  {
    mark_all_partitions_as_used(part_info);
    free_root(&alloc,MYF(0));		// Return memory & allocator
    DBUG_RETURN(FALSE);
  }
  
2685 2686
  old_write_set= dbug_tmp_use_all_columns(table, table->write_set);
  old_read_set=  dbug_tmp_use_all_columns(table, table->read_set);
unknown's avatar
unknown committed
2687 2688 2689 2690 2691 2692 2693 2694
  range_par->thd= thd;
  range_par->table= table;
  /* range_par->cond doesn't need initialization */
  range_par->prev_tables= range_par->read_tables= 0;
  range_par->current_table= table->map;

  range_par->keys= 1; // one index
  range_par->using_real_indexes= FALSE;
2695
  range_par->remove_jump_scans= FALSE;
unknown's avatar
unknown committed
2696
  range_par->real_keynr[0]= 0;
2697
  range_par->alloced_sel_args= 0;
unknown's avatar
unknown committed
2698 2699 2700

  thd->no_errors=1;				// Don't warn about NULL
  thd->mem_root=&alloc;
unknown's avatar
unknown committed
2701 2702 2703

  bitmap_clear_all(&part_info->used_partitions);

unknown's avatar
unknown committed
2704 2705 2706 2707 2708
  prune_param.key= prune_param.range_param.key_parts;
  SEL_TREE *tree;
  int res;

  tree= get_mm_tree(range_par, pprune_cond);
2709
  if (!tree)
unknown's avatar
unknown committed
2710 2711 2712 2713 2714 2715 2716
    goto all_used;

  if (tree->type == SEL_TREE::IMPOSSIBLE)
  {
    retval= TRUE;
    goto end;
  }
2717 2718 2719

  if (tree->type != SEL_TREE::KEY && tree->type != SEL_TREE::KEY_SMALLER)
    goto all_used;
2720

unknown's avatar
unknown committed
2721 2722
  if (tree->merges.is_empty())
  {
2723
    /* Range analysis has produced a single list of intervals. */
unknown's avatar
unknown committed
2724 2725 2726
    prune_param.arg_stack_end= prune_param.arg_stack;
    prune_param.cur_part_fields= 0;
    prune_param.cur_subpart_fields= 0;
unknown's avatar
unknown committed
2727
    init_all_partitions_iterator(part_info, &prune_param.part_iter);
unknown's avatar
unknown committed
2728 2729 2730 2731 2732 2733
    if (!tree->keys[0] || (-1 == (res= find_used_partitions(&prune_param,
                                                            tree->keys[0]))))
      goto all_used;
  }
  else
  {
2734 2735
    if (tree->merges.elements == 1)
    {
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
      /* 
        Range analysis has produced a "merge" of several intervals lists, a 
        SEL_TREE that represents an expression in form         
          sel_imerge = (tree1 OR tree2 OR ... OR treeN)
        that cannot be reduced to one tree. This can only happen when 
        partitioning index has several keyparts and the condition is OR of
        conditions that refer to different key parts. For example, we'll get
        here for "partitioning_field=const1 OR subpartitioning_field=const2"
      */
      if (-1 == (res= find_used_partitions_imerge(&prune_param,
                                                  tree->merges.head())))
2747 2748 2749
        goto all_used;
    }
    else
unknown's avatar
unknown committed
2750
    {
2751 2752 2753 2754 2755 2756 2757 2758 2759
      /* 
        Range analysis has produced a list of several imerges, i.e. a
        structure that represents a condition in form 
        imerge_list= (sel_imerge1 AND sel_imerge2 AND ... AND sel_imergeN)
        This is produced for complicated WHERE clauses that range analyzer
        can't really analyze properly.
      */
      if (-1 == (res= find_used_partitions_imerge_list(&prune_param,
                                                       tree->merges)))
unknown's avatar
unknown committed
2760 2761 2762 2763
        goto all_used;
    }
  }
  
2764 2765 2766 2767 2768 2769
  /*
    res == 0 => no used partitions => retval=TRUE
    res == 1 => some used partitions => retval=FALSE
    res == -1 - we jump over this line to all_used:
  */
  retval= test(!res);
unknown's avatar
unknown committed
2770 2771 2772
  goto end;

all_used:
2773
  retval= FALSE; // some partitions are used
unknown's avatar
unknown committed
2774 2775
  mark_all_partitions_as_used(prune_param.part_info);
end:
2776 2777
  dbug_tmp_restore_column_map(table->write_set, old_write_set);
  dbug_tmp_restore_column_map(table->read_set,  old_read_set);
unknown's avatar
unknown committed
2778 2779 2780 2781 2782 2783 2784 2785
  thd->no_errors=0;
  thd->mem_root= range_par->old_root;
  free_root(&alloc,MYF(0));			// Return memory & allocator
  DBUG_RETURN(retval);
}


/*
2786
  Store field key image to table record
unknown's avatar
unknown committed
2787 2788

  SYNOPSIS
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
    store_key_image_to_rec()
      field  Field which key image should be stored
      ptr    Field value in key format
      len    Length of the value, in bytes

  DESCRIPTION
    Copy the field value from its key image to the table record. The source
    is the value in key image format, occupying len bytes in buffer pointed
    by ptr. The destination is table record, in "field value in table record"
    format.
unknown's avatar
unknown committed
2799 2800
*/

2801
void store_key_image_to_rec(Field *field, uchar *ptr, uint len)
unknown's avatar
unknown committed
2802 2803
{
  /* Do the same as print_key() does */ 
2804 2805
  my_bitmap_map *old_map;

unknown's avatar
unknown committed
2806 2807 2808 2809 2810 2811 2812
  if (field->real_maybe_null())
  {
    if (*ptr)
    {
      field->set_null();
      return;
    }
2813
    field->set_notnull();
unknown's avatar
unknown committed
2814 2815
    ptr++;
  }    
2816 2817
  old_map= dbug_tmp_use_all_columns(field->table,
                                    field->table->write_set);
unknown's avatar
unknown committed
2818
  field->set_key_image(ptr, len); 
2819
  dbug_tmp_restore_column_map(field->table->write_set, old_map);
unknown's avatar
unknown committed
2820 2821 2822 2823 2824 2825 2826 2827 2828
}


/*
  For SEL_ARG* array, store sel_arg->min values into table record buffer

  SYNOPSIS
    store_selargs_to_rec()
      ppar   Partition pruning context
2829
      start  Array of SEL_ARG* for which the minimum values should be stored
unknown's avatar
unknown committed
2830
      num    Number of elements in the array
2831 2832 2833 2834

  DESCRIPTION
    For each SEL_ARG* interval in the specified array, store the left edge
    field value (sel_arg->min, key image format) into the table record.
unknown's avatar
unknown committed
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
*/

static void store_selargs_to_rec(PART_PRUNE_PARAM *ppar, SEL_ARG **start,
                                 int num)
{
  KEY_PART *parts= ppar->range_param.key_parts;
  for (SEL_ARG **end= start + num; start != end; start++)
  {
    SEL_ARG *sel_arg= (*start);
    store_key_image_to_rec(sel_arg->field, sel_arg->min_value,
                           parts[sel_arg->part].length);
  }
}


/* Mark a partition as used in the case when there are no subpartitions */
static void mark_full_partition_used_no_parts(partition_info* part_info,
                                              uint32 part_id)
{
unknown's avatar
unknown committed
2854 2855
  DBUG_ENTER("mark_full_partition_used_no_parts");
  DBUG_PRINT("enter", ("Mark partition %u as used", part_id));
unknown's avatar
unknown committed
2856
  bitmap_set_bit(&part_info->used_partitions, part_id);
unknown's avatar
unknown committed
2857
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
2858 2859 2860 2861 2862 2863 2864 2865 2866
}


/* Mark a partition as used in the case when there are subpartitions */
static void mark_full_partition_used_with_parts(partition_info *part_info,
                                                uint32 part_id)
{
  uint32 start= part_id * part_info->no_subparts;
  uint32 end=   start + part_info->no_subparts; 
unknown's avatar
unknown committed
2867 2868
  DBUG_ENTER("mark_full_partition_used_with_parts");

unknown's avatar
unknown committed
2869
  for (; start != end; start++)
unknown's avatar
unknown committed
2870 2871
  {
    DBUG_PRINT("info", ("1:Mark subpartition %u as used", start));
unknown's avatar
unknown committed
2872
    bitmap_set_bit(&part_info->used_partitions, start);
unknown's avatar
unknown committed
2873 2874
  }
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
2875 2876
}

2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
/*
  Find the set of used partitions for List<SEL_IMERGE>
  SYNOPSIS
    find_used_partitions_imerge_list
      ppar      Partition pruning context.
      key_tree  Intervals tree to perform pruning for.
      
  DESCRIPTION
    List<SEL_IMERGE> represents "imerge1 AND imerge2 AND ...". 
    The set of used partitions is an intersection of used partitions sets
    for imerge_{i}.
2888
    We accumulate this intersection in a separate bitmap.
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
 
  RETURN 
    See find_used_partitions()
*/

static int find_used_partitions_imerge_list(PART_PRUNE_PARAM *ppar,
                                            List<SEL_IMERGE> &merges)
{
  MY_BITMAP all_merges;
  uint bitmap_bytes;
2899
  my_bitmap_map *bitmap_buf;
2900 2901
  uint n_bits= ppar->part_info->used_partitions.n_bits;
  bitmap_bytes= bitmap_buffer_size(n_bits);
2902 2903
  if (!(bitmap_buf= (my_bitmap_map*) alloc_root(ppar->range_param.mem_root,
                                                bitmap_bytes)))
2904
  {
unknown's avatar
unknown committed
2905
    /*
2906
      Fallback, process just the first SEL_IMERGE. This can leave us with more
2907 2908 2909 2910 2911 2912
      partitions marked as used then actually needed.
    */
    return find_used_partitions_imerge(ppar, merges.head());
  }
  bitmap_init(&all_merges, bitmap_buf, n_bits, FALSE);
  bitmap_set_prefix(&all_merges, n_bits);
unknown's avatar
unknown committed
2913

2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
  List_iterator<SEL_IMERGE> it(merges);
  SEL_IMERGE *imerge;
  while ((imerge=it++))
  {
    int res= find_used_partitions_imerge(ppar, imerge);
    if (!res)
    {
      /* no used partitions on one ANDed imerge => no used partitions at all */
      return 0;
    }
unknown's avatar
unknown committed
2924

2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
    if (res != -1)
      bitmap_intersect(&all_merges, &ppar->part_info->used_partitions);

    if (bitmap_is_clear_all(&all_merges))
      return 0;

    bitmap_clear_all(&ppar->part_info->used_partitions);
  }
  memcpy(ppar->part_info->used_partitions.bitmap, all_merges.bitmap,
         bitmap_bytes);
  return 1;
}


/*
  Find the set of used partitions for SEL_IMERGE structure
  SYNOPSIS
    find_used_partitions_imerge()
      ppar      Partition pruning context.
      key_tree  Intervals tree to perform pruning for.
      
  DESCRIPTION
    SEL_IMERGE represents "tree1 OR tree2 OR ...". The implementation is
    trivial - just use mark used partitions for each tree and bail out early
    if for some tree_{i} all partitions are used.
 
  RETURN 
    See find_used_partitions().
*/

unknown's avatar
unknown committed
2955
static
2956
int find_used_partitions_imerge(PART_PRUNE_PARAM *ppar, SEL_IMERGE *imerge)
unknown's avatar
unknown committed
2957
{
2958 2959 2960 2961 2962 2963
  int res= 0;
  for (SEL_TREE **ptree= imerge->trees; ptree < imerge->trees_next; ptree++)
  {
    ppar->arg_stack_end= ppar->arg_stack;
    ppar->cur_part_fields= 0;
    ppar->cur_subpart_fields= 0;
unknown's avatar
unknown committed
2964
    init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
2965 2966
    SEL_ARG *key_tree= (*ptree)->keys[0];
    if (!key_tree || (-1 == (res |= find_used_partitions(ppar, key_tree))))
2967 2968 2969
      return -1;
  }
  return res;
unknown's avatar
unknown committed
2970 2971 2972 2973
}


/*
2974
  Collect partitioning ranges for the SEL_ARG tree and mark partitions as used
unknown's avatar
unknown committed
2975 2976 2977 2978

  SYNOPSIS
    find_used_partitions()
      ppar      Partition pruning context.
2979
      key_tree  SEL_ARG range tree to perform pruning for
unknown's avatar
unknown committed
2980 2981 2982

  DESCRIPTION
    This function 
2983 2984
      * recursively walks the SEL_ARG* tree collecting partitioning "intervals"
      * finds the partitions one needs to use to get rows in these intervals
unknown's avatar
unknown committed
2985
      * marks these partitions as used.
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
    The next session desribes the process in greater detail.
 
  IMPLEMENTATION
    TYPES OF RESTRICTIONS THAT WE CAN OBTAIN PARTITIONS FOR    
    We can find out which [sub]partitions to use if we obtain restrictions on 
    [sub]partitioning fields in the following form:
    1.  "partition_field1=const1 AND ... AND partition_fieldN=constN"
    1.1  Same as (1) but for subpartition fields

    If partitioning supports interval analysis (i.e. partitioning is a
    function of a single table field, and partition_info::
    get_part_iter_for_interval != NULL), then we can also use condition in
    this form:
    2.  "const1 <=? partition_field <=? const2"
    2.1  Same as (2) but for subpartition_field

    INFERRING THE RESTRICTIONS FROM SEL_ARG TREE
unknown's avatar
unknown committed
3003
    
3004
    The below is an example of what SEL_ARG tree may represent:
unknown's avatar
unknown committed
3005
    
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
    (start)
     |                           $
     |   Partitioning keyparts   $  subpartitioning keyparts
     |                           $
     |     ...          ...      $
     |      |            |       $
     | +---------+  +---------+  $  +-----------+  +-----------+
     \-| par1=c1 |--| par2=c2 |-----| subpar1=c3|--| subpar2=c5|
       +---------+  +---------+  $  +-----------+  +-----------+
            |                    $        |             |
            |                    $        |        +-----------+ 
            |                    $        |        | subpar2=c6|
            |                    $        |        +-----------+ 
            |                    $        |
            |                    $  +-----------+  +-----------+
            |                    $  | subpar1=c4|--| subpar2=c8|
            |                    $  +-----------+  +-----------+
            |                    $         
            |                    $
       +---------+               $  +------------+  +------------+
       | par1=c2 |------------------| subpar1=c10|--| subpar2=c12|
       +---------+               $  +------------+  +------------+
            |                    $
           ...                   $

    The up-down connections are connections via SEL_ARG::left and
    SEL_ARG::right. A horizontal connection to the right is the
    SEL_ARG::next_key_part connection.
unknown's avatar
unknown committed
3034
    
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
    find_used_partitions() traverses the entire tree via recursion on
     * SEL_ARG::next_key_part (from left to right on the picture)
     * SEL_ARG::left|right (up/down on the pic). Left-right recursion is
       performed for each depth level.
    
    Recursion descent on SEL_ARG::next_key_part is used to accumulate (in
    ppar->arg_stack) constraints on partitioning and subpartitioning fields.
    For the example in the above picture, one of stack states is:
      in find_used_partitions(key_tree = "subpar2=c5") (***)
      in find_used_partitions(key_tree = "subpar1=c3")
      in find_used_partitions(key_tree = "par2=c2")   (**)
      in find_used_partitions(key_tree = "par1=c1")
      in prune_partitions(...)
    We apply partitioning limits as soon as possible, e.g. when we reach the
    depth (**), we find which partition(s) correspond to "par1=c1 AND par2=c2",
    and save them in ppar->part_iter.
    When we reach the depth (***), we find which subpartition(s) correspond to
    "subpar1=c3 AND subpar2=c5", and then mark appropriate subpartitions in
    appropriate subpartitions as used.
    
    It is possible that constraints on some partitioning fields are missing.
    For the above example, consider this stack state:
      in find_used_partitions(key_tree = "subpar2=c12") (***)
      in find_used_partitions(key_tree = "subpar1=c10")
      in find_used_partitions(key_tree = "par1=c2")
      in prune_partitions(...)
    Here we don't have constraints for all partitioning fields. Since we've
    never set the ppar->part_iter to contain used set of partitions, we use
    its default "all partitions" value.  We get  subpartition id for 
    "subpar1=c3 AND subpar2=c5", and mark that subpartition as used in every
    partition.

    The inverse is also possible: we may get constraints on partitioning
    fields, but not constraints on subpartitioning fields. In that case,
    calls to find_used_partitions() with depth below (**) will return -1,
    and we will mark entire partition as used.
unknown's avatar
unknown committed
3071

3072 3073
  TODO
    Replace recursion on SEL_ARG::left and SEL_ARG::right with a loop
unknown's avatar
unknown committed
3074 3075 3076 3077 3078

  RETURN
    1   OK, one or more [sub]partitions are marked as used.
    0   The passed condition doesn't match any partitions
   -1   Couldn't infer any partition pruning "intervals" from the passed 
3079 3080
        SEL_ARG* tree (which means that all partitions should be marked as
        used) Marking partitions as used is the responsibility of the caller.
unknown's avatar
unknown committed
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
*/

static 
int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ARG *key_tree)
{
  int res, left_res=0, right_res=0;
  int partno= (int)key_tree->part;
  bool pushed= FALSE;
  bool set_full_part_if_bad_ret= FALSE;

  if (key_tree->left != &null_element)
  {
    if (-1 == (left_res= find_used_partitions(ppar,key_tree->left)))
      return -1;
  }

  if (key_tree->type == SEL_ARG::KEY_RANGE)
  {
unknown's avatar
unknown committed
3099
    if (partno == 0 && (NULL != ppar->part_info->get_part_iter_for_interval))
unknown's avatar
unknown committed
3100 3101 3102
    {
      /* 
        Partitioning is done by RANGE|INTERVAL(monotonic_expr(fieldX)), and
unknown's avatar
unknown committed
3103
        we got "const1 CMP fieldX CMP const2" interval <-- psergey-todo: change
unknown's avatar
unknown committed
3104 3105 3106 3107
      */
      DBUG_EXECUTE("info", dbug_print_segment_range(key_tree,
                                                    ppar->range_param.
                                                    key_parts););
unknown's avatar
unknown committed
3108 3109 3110 3111 3112 3113 3114 3115
      res= ppar->part_info->
           get_part_iter_for_interval(ppar->part_info,
                                      FALSE,
                                      key_tree->min_value, 
                                      key_tree->max_value,
                                      key_tree->min_flag | key_tree->max_flag,
                                      &ppar->part_iter);
      if (!res)
3116
        goto go_right; /* res==0 --> no satisfying partitions */
unknown's avatar
unknown committed
3117
      if (res == -1)
unknown's avatar
unknown committed
3118
      {
unknown's avatar
unknown committed
3119 3120
        //get a full range iterator
        init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
unknown's avatar
unknown committed
3121 3122
      }
      /* 
3123
        Save our intent to mark full partition as used if we will not be able
unknown's avatar
unknown committed
3124 3125 3126 3127 3128 3129
        to obtain further limits on subpartitions
      */
      set_full_part_if_bad_ret= TRUE;
      goto process_next_key_part;
    }

unknown's avatar
unknown committed
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
    if (partno == ppar->last_subpart_partno && 
        (NULL != ppar->part_info->get_subpart_iter_for_interval))
    {
      PARTITION_ITERATOR subpart_iter;
      DBUG_EXECUTE("info", dbug_print_segment_range(key_tree,
                                                    ppar->range_param.
                                                    key_parts););
      res= ppar->part_info->
           get_subpart_iter_for_interval(ppar->part_info,
                                         TRUE,
                                         key_tree->min_value, 
                                         key_tree->max_value,
                                         key_tree->min_flag | key_tree->max_flag,
                                         &subpart_iter);
      DBUG_ASSERT(res); /* We can't get "no satisfying subpartitions" */
      if (res == -1)
        return -1; /* all subpartitions satisfy */
        
      uint32 subpart_id;
      bitmap_clear_all(&ppar->subparts_bitmap);
3150 3151
      while ((subpart_id= subpart_iter.get_next(&subpart_iter)) !=
             NOT_A_PARTITION_ID)
unknown's avatar
unknown committed
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
        bitmap_set_bit(&ppar->subparts_bitmap, subpart_id);

      /* Mark each partition as used in each subpartition.  */
      uint32 part_id;
      while ((part_id= ppar->part_iter.get_next(&ppar->part_iter)) !=
              NOT_A_PARTITION_ID)
      {
        for (uint i= 0; i < ppar->part_info->no_subparts; i++)
          if (bitmap_is_set(&ppar->subparts_bitmap, i))
            bitmap_set_bit(&ppar->part_info->used_partitions,
                           part_id * ppar->part_info->no_subparts + i);
      }
      goto go_right;
    }

unknown's avatar
unknown committed
3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
    if (key_tree->is_singlepoint())
    {
      pushed= TRUE;
      ppar->cur_part_fields+=    ppar->is_part_keypart[partno];
      ppar->cur_subpart_fields+= ppar->is_subpart_keypart[partno];
      *(ppar->arg_stack_end++) = key_tree;

      if (partno == ppar->last_part_partno &&
          ppar->cur_part_fields == ppar->part_fields)
      {
        /* 
          Ok, we've got "fieldN<=>constN"-type SEL_ARGs for all partitioning
          fields. Save all constN constants into table record buffer.
        */
        store_selargs_to_rec(ppar, ppar->arg_stack, ppar->part_fields);
3182
        DBUG_EXECUTE("info", dbug_print_singlepoint_range(ppar->arg_stack,
unknown's avatar
unknown committed
3183 3184
                                                       ppar->part_fields););
        uint32 part_id;
3185
        longlong func_value;
3186
        /* Find in which partition the {const1, ...,constN} tuple goes */
3187 3188
        if (ppar->get_top_partition_id_func(ppar->part_info, &part_id,
                                            &func_value))
unknown's avatar
unknown committed
3189 3190 3191 3192 3193
        {
          res= 0; /* No satisfying partitions */
          goto pop_and_go_right;
        }
        /* Rembember the limit we got - single partition #part_id */
unknown's avatar
unknown committed
3194
        init_single_partition_iterator(part_id, &ppar->part_iter);
unknown's avatar
unknown committed
3195 3196 3197 3198 3199 3200 3201 3202 3203
        
        /*
          If there are no subpartitions/we fail to get any limit for them, 
          then we'll mark full partition as used. 
        */
        set_full_part_if_bad_ret= TRUE;
        goto process_next_key_part;
      }

unknown's avatar
unknown committed
3204 3205
      if (partno == ppar->last_subpart_partno &&
          ppar->cur_subpart_fields == ppar->subpart_fields)
unknown's avatar
unknown committed
3206 3207 3208 3209 3210 3211 3212
      {
        /* 
          Ok, we've got "fieldN<=>constN"-type SEL_ARGs for all subpartitioning
          fields. Save all constN constants into table record buffer.
        */
        store_selargs_to_rec(ppar, ppar->arg_stack_end - ppar->subpart_fields,
                             ppar->subpart_fields);
3213
        DBUG_EXECUTE("info", dbug_print_singlepoint_range(ppar->arg_stack_end- 
unknown's avatar
unknown committed
3214 3215 3216 3217
                                                       ppar->subpart_fields,
                                                       ppar->subpart_fields););
        /* Find the subpartition (it's HASH/KEY so we always have one) */
        partition_info *part_info= ppar->part_info;
3218 3219 3220 3221 3222
        uint32 part_id, subpart_id;
                 
        if (part_info->get_subpartition_id(part_info, &subpart_id))
          return 0;

unknown's avatar
unknown committed
3223
        /* Mark this partition as used in each subpartition. */
unknown's avatar
unknown committed
3224 3225
        while ((part_id= ppar->part_iter.get_next(&ppar->part_iter)) !=
                NOT_A_PARTITION_ID)
unknown's avatar
unknown committed
3226 3227
        {
          bitmap_set_bit(&part_info->used_partitions,
unknown's avatar
unknown committed
3228
                         part_id * part_info->no_subparts + subpart_id);
unknown's avatar
unknown committed
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
        }
        res= 1; /* Some partitions were marked as used */
        goto pop_and_go_right;
      }
    }
    else
    {
      /* 
        Can't handle condition on current key part. If we're that deep that 
        we're processing subpartititoning's key parts, this means we'll not be
        able to infer any suitable condition, so bail out.
      */
      if (partno >= ppar->last_part_partno)
        return -1;
    }
  }

process_next_key_part:
  if (key_tree->next_key_part)
    res= find_used_partitions(ppar, key_tree->next_key_part);
unknown's avatar
unknown committed
3249
  else
unknown's avatar
unknown committed
3250
    res= -1;
unknown's avatar
unknown committed
3251 3252
 
  if (set_full_part_if_bad_ret)
unknown's avatar
unknown committed
3253
  {
unknown's avatar
unknown committed
3254
    if (res == -1)
unknown's avatar
unknown committed
3255
    {
unknown's avatar
unknown committed
3256 3257 3258
      /* Got "full range" for subpartitioning fields */
      uint32 part_id;
      bool found= FALSE;
3259 3260
      while ((part_id= ppar->part_iter.get_next(&ppar->part_iter)) !=
             NOT_A_PARTITION_ID)
unknown's avatar
unknown committed
3261
      {
unknown's avatar
unknown committed
3262 3263
        ppar->mark_full_partition_used(ppar->part_info, part_id);
        found= TRUE;
unknown's avatar
unknown committed
3264
      }
unknown's avatar
unknown committed
3265
      res= test(found);
unknown's avatar
unknown committed
3266
    }
3267 3268 3269 3270
    /*
      Restore the "used partitions iterator" to the default setting that
      specifies iteration over all partitions.
    */
unknown's avatar
unknown committed
3271
    init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
unknown's avatar
unknown committed
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
  }

  if (pushed)
  {
pop_and_go_right:
    /* Pop this key part info off the "stack" */
    ppar->arg_stack_end--;
    ppar->cur_part_fields-=    ppar->is_part_keypart[partno];
    ppar->cur_subpart_fields-= ppar->is_subpart_keypart[partno];
  }
unknown's avatar
unknown committed
3282 3283 3284 3285

  if (res == -1)
    return -1;
go_right:
unknown's avatar
unknown committed
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
  if (key_tree->right != &null_element)
  {
    if (-1 == (right_res= find_used_partitions(ppar,key_tree->right)))
      return -1;
  }
  return (left_res || right_res || res);
}
 

static void mark_all_partitions_as_used(partition_info *part_info)
{
  bitmap_set_all(&part_info->used_partitions);
}


/*
  Check if field types allow to construct partitioning index description
 
  SYNOPSIS
    fields_ok_for_partition_index()
      pfield  NULL-terminated array of pointers to fields.

  DESCRIPTION
    For an array of fields, check if we can use all of the fields to create
    partitioning index description.
    
    We can't process GEOMETRY fields - for these fields singlepoint intervals
    cant be generated, and non-singlepoint are "special" kinds of intervals
    to which our processing logic can't be applied.

    It is not known if we could process ENUM fields, so they are disabled to be
    on the safe side.

  RETURN 
    TRUE   Yes, fields can be used in partitioning index
    FALSE  Otherwise
*/

static bool fields_ok_for_partition_index(Field **pfield)
{
  if (!pfield)
    return FALSE;
  for (; (*pfield); pfield++)
  {
    enum_field_types ftype= (*pfield)->real_type();
3331
    if (ftype == MYSQL_TYPE_ENUM || ftype == MYSQL_TYPE_GEOMETRY)
unknown's avatar
unknown committed
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342
      return FALSE;
  }
  return TRUE;
}


/*
  Create partition index description and fill related info in the context
  struct

  SYNOPSIS
3343
    create_partition_index_description()
unknown's avatar
unknown committed
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
      prune_par  INOUT Partition pruning context

  DESCRIPTION
    Create partition index description. Partition index description is:

      part_index(used_fields_list(part_expr), used_fields_list(subpart_expr))

    If partitioning/sub-partitioning uses BLOB or Geometry fields, then
    corresponding fields_list(...) is not included into index description
    and we don't perform partition pruning for partitions/subpartitions.

  RETURN
    TRUE   Out of memory or can't do partition pruning at all
    FALSE  OK
*/

3360
static bool create_partition_index_description(PART_PRUNE_PARAM *ppar)
unknown's avatar
unknown committed
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
{
  RANGE_OPT_PARAM *range_par= &(ppar->range_param);
  partition_info *part_info= ppar->part_info;
  uint used_part_fields, used_subpart_fields;

  used_part_fields= fields_ok_for_partition_index(part_info->part_field_array) ?
                      part_info->no_part_fields : 0;
  used_subpart_fields= 
    fields_ok_for_partition_index(part_info->subpart_field_array)? 
      part_info->no_subpart_fields : 0;
  
  uint total_parts= used_part_fields + used_subpart_fields;

  ppar->part_fields=      used_part_fields;
  ppar->last_part_partno= (int)used_part_fields - 1;

  ppar->subpart_fields= used_subpart_fields;
  ppar->last_subpart_partno= 
    used_subpart_fields?(int)(used_part_fields + used_subpart_fields - 1): -1;

3381
  if (part_info->is_sub_partitioned())
unknown's avatar
unknown committed
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403
  {
    ppar->mark_full_partition_used=  mark_full_partition_used_with_parts;
    ppar->get_top_partition_id_func= part_info->get_part_partition_id;
  }
  else
  {
    ppar->mark_full_partition_used=  mark_full_partition_used_no_parts;
    ppar->get_top_partition_id_func= part_info->get_partition_id;
  }

  KEY_PART *key_part;
  MEM_ROOT *alloc= range_par->mem_root;
  if (!total_parts || 
      !(key_part= (KEY_PART*)alloc_root(alloc, sizeof(KEY_PART)*
                                               total_parts)) ||
      !(ppar->arg_stack= (SEL_ARG**)alloc_root(alloc, sizeof(SEL_ARG*)* 
                                                      total_parts)) ||
      !(ppar->is_part_keypart= (my_bool*)alloc_root(alloc, sizeof(my_bool)*
                                                           total_parts)) ||
      !(ppar->is_subpart_keypart= (my_bool*)alloc_root(alloc, sizeof(my_bool)*
                                                           total_parts)))
    return TRUE;
unknown's avatar
unknown committed
3404 3405 3406
 
  if (ppar->subpart_fields)
  {
3407
    my_bitmap_map *buf;
unknown's avatar
unknown committed
3408
    uint32 bufsize= bitmap_buffer_size(ppar->part_info->no_subparts);
3409
    if (!(buf= (my_bitmap_map*) alloc_root(alloc, bufsize)))
unknown's avatar
unknown committed
3410
      return TRUE;
3411 3412
    bitmap_init(&ppar->subparts_bitmap, buf, ppar->part_info->no_subparts,
                FALSE);
unknown's avatar
unknown committed
3413
  }
unknown's avatar
unknown committed
3414 3415 3416
  range_par->key_parts= key_part;
  Field **field= (ppar->part_fields)? part_info->part_field_array :
                                           part_info->subpart_field_array;
unknown's avatar
unknown committed
3417
  bool in_subpart_fields= FALSE;
unknown's avatar
unknown committed
3418 3419 3420 3421
  for (uint part= 0; part < total_parts; part++, key_part++)
  {
    key_part->key=          0;
    key_part->part=	    part;
3422
    key_part->store_length= key_part->length= (uint16) (*field)->key_length();
unknown's avatar
unknown committed
3423 3424
    if ((*field)->real_maybe_null())
      key_part->store_length+= HA_KEY_NULL_LENGTH;
3425
    if ((*field)->type() == MYSQL_TYPE_BLOB || 
unknown's avatar
unknown committed
3426 3427 3428
        (*field)->real_type() == MYSQL_TYPE_VARCHAR)
      key_part->store_length+= HA_KEY_BLOB_LENGTH;

3429 3430 3431
    DBUG_PRINT("info", ("part %u length %u store_length %u", part,
                         key_part->length, key_part->store_length));

unknown's avatar
unknown committed
3432 3433
    key_part->field=        (*field);
    key_part->image_type =  Field::itRAW;
3434 3435 3436 3437 3438
    /* 
      We set keypart flag to 0 here as the only HA_PART_KEY_SEG is checked
      in the RangeAnalysisModule.
    */
    key_part->flag=         0;
unknown's avatar
unknown committed
3439 3440
    /* We don't set key_parts->null_bit as it will not be used */

unknown's avatar
unknown committed
3441 3442
    ppar->is_part_keypart[part]= !in_subpart_fields;
    ppar->is_subpart_keypart[part]= in_subpart_fields;
3443 3444 3445 3446 3447 3448

    /*
      Check if this was last field in this array, in this case we
      switch to subpartitioning fields. (This will only happens if
      there are subpartitioning fields to cater for).
    */
unknown's avatar
unknown committed
3449 3450 3451
    if (!*(++field))
    {
      field= part_info->subpart_field_array;
unknown's avatar
unknown committed
3452
      in_subpart_fields= TRUE;
unknown's avatar
unknown committed
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
    }
  }
  range_par->key_parts_end= key_part;

  DBUG_EXECUTE("info", print_partitioning_index(range_par->key_parts,
                                                range_par->key_parts_end););
  return FALSE;
}


#ifndef DBUG_OFF

static void print_partitioning_index(KEY_PART *parts, KEY_PART *parts_end)
{
  DBUG_ENTER("print_partitioning_index");
  DBUG_LOCK_FILE;
  fprintf(DBUG_FILE, "partitioning INDEX(");
  for (KEY_PART *p=parts; p != parts_end; p++)
  {
    fprintf(DBUG_FILE, "%s%s", p==parts?"":" ,", p->field->field_name);
  }
3474
  fputs(");\n", DBUG_FILE);
unknown's avatar
unknown committed
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
  DBUG_UNLOCK_FILE;
  DBUG_VOID_RETURN;
}

/* Print field value into debug trace, in NULL-aware way. */
static void dbug_print_field(Field *field)
{
  if (field->is_real_null())
    fprintf(DBUG_FILE, "NULL");
  else
  {
3486 3487 3488
    char buf[256];
    String str(buf, sizeof(buf), &my_charset_bin);
    str.length(0);
unknown's avatar
unknown committed
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502
    String *pstr;
    pstr= field->val_str(&str);
    fprintf(DBUG_FILE, "'%s'", pstr->c_ptr_safe());
  }
}


/* Print a "c1 < keypartX < c2" - type interval into debug trace. */
static void dbug_print_segment_range(SEL_ARG *arg, KEY_PART *part)
{
  DBUG_ENTER("dbug_print_segment_range");
  DBUG_LOCK_FILE;
  if (!(arg->min_flag & NO_MIN_RANGE))
  {
3503
    store_key_image_to_rec(part->field, arg->min_value, part->length);
unknown's avatar
unknown committed
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
    dbug_print_field(part->field);
    if (arg->min_flag & NEAR_MIN)
      fputs(" < ", DBUG_FILE);
    else
      fputs(" <= ", DBUG_FILE);
  }

  fprintf(DBUG_FILE, "%s", part->field->field_name);

  if (!(arg->max_flag & NO_MAX_RANGE))
  {
    if (arg->max_flag & NEAR_MAX)
      fputs(" < ", DBUG_FILE);
    else
      fputs(" <= ", DBUG_FILE);
3519
    store_key_image_to_rec(part->field, arg->max_value, part->length);
unknown's avatar
unknown committed
3520 3521
    dbug_print_field(part->field);
  }
3522
  fputs("\n", DBUG_FILE);
unknown's avatar
unknown committed
3523 3524 3525 3526 3527 3528 3529 3530 3531
  DBUG_UNLOCK_FILE;
  DBUG_VOID_RETURN;
}


/*
  Print a singlepoint multi-keypart range interval to debug trace
 
  SYNOPSIS
3532
    dbug_print_singlepoint_range()
unknown's avatar
unknown committed
3533 3534 3535 3536 3537 3538 3539 3540
      start  Array of SEL_ARG* ptrs representing conditions on key parts
      num    Number of elements in the array.

  DESCRIPTION
    This function prints a "keypartN=constN AND ... AND keypartK=constK"-type 
    interval to debug trace.
*/

3541
static void dbug_print_singlepoint_range(SEL_ARG **start, uint num)
unknown's avatar
unknown committed
3542
{
3543
  DBUG_ENTER("dbug_print_singlepoint_range");
unknown's avatar
unknown committed
3544 3545
  DBUG_LOCK_FILE;
  SEL_ARG **end= start + num;
3546

unknown's avatar
unknown committed
3547 3548 3549 3550 3551 3552
  for (SEL_ARG **arg= start; arg != end; arg++)
  {
    Field *field= (*arg)->field;
    fprintf(DBUG_FILE, "%s%s=", (arg==start)?"":", ", field->field_name);
    dbug_print_field(field);
  }
3553
  fputs("\n", DBUG_FILE);
unknown's avatar
unknown committed
3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
  DBUG_UNLOCK_FILE;
  DBUG_VOID_RETURN;
}
#endif

/****************************************************************************
 * Partition pruning code ends
 ****************************************************************************/
#endif

unknown's avatar
unknown committed
3564

unknown's avatar
unknown committed
3565
/*
3566 3567 3568 3569
  Get cost of 'sweep' full records retrieval.
  SYNOPSIS
    get_sweep_read_cost()
      param            Parameter from test_quick_select
unknown's avatar
unknown committed
3570
      records          # of records to be retrieved
3571
  RETURN
unknown's avatar
unknown committed
3572
    cost of sweep
3573
*/
3574

3575
double get_sweep_read_cost(const PARAM *param, ha_rows records)
3576
{
3577
  double result;
3578
  DBUG_ENTER("get_sweep_read_cost");
3579 3580
  if (param->table->file->primary_key_is_clustered())
  {
3581
    result= param->table->file->read_time(param->table->s->primary_key,
3582
                                          (uint)records, records);
3583 3584
  }
  else
unknown's avatar
unknown committed
3585
  {
3586
    double n_blocks=
3587 3588
      ceil(ulonglong2double(param->table->file->stats.data_file_length) /
           IO_SIZE);
3589 3590 3591 3592
    double busy_blocks=
      n_blocks * (1.0 - pow(1.0 - 1.0/n_blocks, rows2double(records)));
    if (busy_blocks < 1.0)
      busy_blocks= 1.0;
unknown's avatar
unknown committed
3593
    DBUG_PRINT("info",("sweep: nblocks: %g, busy_blocks: %g", n_blocks,
3594
                       busy_blocks));
3595
    /*
unknown's avatar
unknown committed
3596
      Disabled: Bail out if # of blocks to read is bigger than # of blocks in
3597 3598 3599 3600 3601 3602 3603 3604
      table data file.
    if (max_cost != DBL_MAX  && (busy_blocks+index_reads_cost) >= n_blocks)
      return 1;
    */
    JOIN *join= param->thd->lex->select_lex.join;
    if (!join || join->tables == 1)
    {
      /* No join, assume reading is done in one 'sweep' */
unknown's avatar
unknown committed
3605
      result= busy_blocks*(DISK_SEEK_BASE_COST +
3606 3607 3608 3609
                          DISK_SEEK_PROP_COST*n_blocks/busy_blocks);
    }
    else
    {
unknown's avatar
unknown committed
3610
      /*
3611 3612 3613
        Possibly this is a join with source table being non-last table, so
        assume that disk seeks are random here.
      */
3614
      result= busy_blocks;
3615 3616
    }
  }
unknown's avatar
unknown committed
3617
  DBUG_PRINT("return",("cost: %g", result));
3618
  DBUG_RETURN(result);
3619
}
3620 3621


3622 3623 3624 3625
/*
  Get best plan for a SEL_IMERGE disjunctive expression.
  SYNOPSIS
    get_best_disjunct_quick()
3626 3627
      param     Parameter from check_quick_select function
      imerge    Expression to use
3628
      read_time Don't create scans with cost > read_time
unknown's avatar
unknown committed
3629

3630
  NOTES
3631
    index_merge cost is calculated as follows:
unknown's avatar
unknown committed
3632
    index_merge_cost =
3633 3634 3635 3636 3637
      cost(index_reads) +         (see #1)
      cost(rowid_to_row_scan) +   (see #2)
      cost(unique_use)            (see #3)

    1. cost(index_reads) =SUM_i(cost(index_read_i))
unknown's avatar
unknown committed
3638 3639
       For non-CPK scans,
         cost(index_read_i) = {cost of ordinary 'index only' scan}
3640 3641 3642 3643 3644
       For CPK scan,
         cost(index_read_i) = {cost of non-'index only' scan}

    2. cost(rowid_to_row_scan)
      If table PK is clustered then
unknown's avatar
unknown committed
3645
        cost(rowid_to_row_scan) =
3646
          {cost of ordinary clustered PK scan with n_ranges=n_rows}
unknown's avatar
unknown committed
3647 3648

      Otherwise, we use the following model to calculate costs:
3649
      We need to retrieve n_rows rows from file that occupies n_blocks blocks.
unknown's avatar
unknown committed
3650
      We assume that offsets of rows we need are independent variates with
3651
      uniform distribution in [0..max_file_offset] range.
unknown's avatar
unknown committed
3652

3653 3654
      We'll denote block as "busy" if it contains row(s) we need to retrieve
      and "empty" if doesn't contain rows we need.
unknown's avatar
unknown committed
3655

3656
      Probability that a block is empty is (1 - 1/n_blocks)^n_rows (this
unknown's avatar
unknown committed
3657
      applies to any block in file). Let x_i be a variate taking value 1 if
3658
      block #i is empty and 0 otherwise.
unknown's avatar
unknown committed
3659

3660 3661
      Then E(x_i) = (1 - 1/n_blocks)^n_rows;

unknown's avatar
unknown committed
3662 3663
      E(n_empty_blocks) = E(sum(x_i)) = sum(E(x_i)) =
        = n_blocks * ((1 - 1/n_blocks)^n_rows) =
3664 3665 3666 3667
       ~= n_blocks * exp(-n_rows/n_blocks).

      E(n_busy_blocks) = n_blocks*(1 - (1 - 1/n_blocks)^n_rows) =
       ~= n_blocks * (1 - exp(-n_rows/n_blocks)).
unknown's avatar
unknown committed
3668

3669 3670
      Average size of "hole" between neighbor non-empty blocks is
           E(hole_size) = n_blocks/E(n_busy_blocks).
unknown's avatar
unknown committed
3671

3672 3673 3674 3675 3676 3677
      The total cost of reading all needed blocks in one "sweep" is:

      E(n_busy_blocks)*
       (DISK_SEEK_BASE_COST + DISK_SEEK_PROP_COST*n_blocks/E(n_busy_blocks)).

    3. Cost of Unique use is calculated in Unique::get_use_cost function.
unknown's avatar
unknown committed
3678 3679 3680 3681 3682

  ROR-union cost is calculated in the same way index_merge, but instead of
  Unique a priority queue is used.

  RETURN
3683 3684
    Created read plan
    NULL - Out of memory or no read scan could be built.
3685
*/
3686

3687 3688
static
TABLE_READ_PLAN *get_best_disjunct_quick(PARAM *param, SEL_IMERGE *imerge,
3689
                                         double read_time)
3690 3691 3692 3693 3694 3695 3696
{
  SEL_TREE **ptree;
  TRP_INDEX_MERGE *imerge_trp= NULL;
  uint n_child_scans= imerge->trees_next - imerge->trees;
  TRP_RANGE **range_scans;
  TRP_RANGE **cur_child;
  TRP_RANGE **cpk_scan= NULL;
unknown's avatar
unknown committed
3697
  bool imerge_too_expensive= FALSE;
3698 3699 3700 3701
  double imerge_cost= 0.0;
  ha_rows cpk_scan_records= 0;
  ha_rows non_cpk_scan_records= 0;
  bool pk_is_clustered= param->table->file->primary_key_is_clustered();
unknown's avatar
unknown committed
3702 3703
  bool all_scans_ror_able= TRUE;
  bool all_scans_rors= TRUE;
3704 3705 3706 3707 3708 3709 3710
  uint unique_calc_buff_size;
  TABLE_READ_PLAN **roru_read_plans;
  TABLE_READ_PLAN **cur_roru_plan;
  double roru_index_costs;
  ha_rows roru_total_records;
  double roru_intersect_part= 1.0;
  DBUG_ENTER("get_best_disjunct_quick");
unknown's avatar
unknown committed
3711
  DBUG_PRINT("info", ("Full table scan cost: %g", read_time));
3712

unknown's avatar
unknown committed
3713
  if (!(range_scans= (TRP_RANGE**)alloc_root(param->mem_root,
3714 3715 3716
                                             sizeof(TRP_RANGE*)*
                                             n_child_scans)))
    DBUG_RETURN(NULL);
3717
  /*
3718 3719 3720
    Collect best 'range' scan for each of disjuncts, and, while doing so,
    analyze possibility of ROR scans. Also calculate some values needed by
    other parts of the code.
3721
  */
3722
  for (ptree= imerge->trees, cur_child= range_scans;
3723
       ptree != imerge->trees_next;
3724
       ptree++, cur_child++)
3725
  {
3726 3727
    DBUG_EXECUTE("info", print_sel_tree(param, *ptree, &(*ptree)->keys_map,
                                        "tree in SEL_IMERGE"););
3728
    if (!(*cur_child= get_key_scans_params(param, *ptree, TRUE, FALSE, read_time)))
3729 3730
    {
      /*
3731
        One of index scans in this index_merge is more expensive than entire
3732 3733 3734
        table read for another available option. The entire index_merge (and
        any possible ROR-union) will be more expensive then, too. We continue
        here only to update SQL_SELECT members.
3735
      */
unknown's avatar
unknown committed
3736
      imerge_too_expensive= TRUE;
3737 3738 3739
    }
    if (imerge_too_expensive)
      continue;
unknown's avatar
unknown committed
3740

3741 3742 3743
    imerge_cost += (*cur_child)->read_cost;
    all_scans_ror_able &= ((*ptree)->n_ror_scans > 0);
    all_scans_rors &= (*cur_child)->is_ror;
unknown's avatar
unknown committed
3744
    if (pk_is_clustered &&
3745 3746
        param->real_keynr[(*cur_child)->key_idx] ==
        param->table->s->primary_key)
3747
    {
3748 3749
      cpk_scan= cur_child;
      cpk_scan_records= (*cur_child)->records;
3750 3751
    }
    else
3752
      non_cpk_scan_records += (*cur_child)->records;
3753
  }
unknown's avatar
unknown committed
3754

unknown's avatar
unknown committed
3755
  DBUG_PRINT("info", ("index_merge scans cost %g", imerge_cost));
unknown's avatar
unknown committed
3756
  if (imerge_too_expensive || (imerge_cost > read_time) ||
3757
      (non_cpk_scan_records+cpk_scan_records >= param->table->file->stats.records) &&
3758
      read_time != DBL_MAX)
3759
  {
unknown's avatar
unknown committed
3760 3761
    /*
      Bail out if it is obvious that both index_merge and ROR-union will be
3762
      more expensive
3763
    */
3764 3765
    DBUG_PRINT("info", ("Sum of index_merge scans is more expensive than "
                        "full table scan, bailing out"));
unknown's avatar
unknown committed
3766
    DBUG_RETURN(NULL);
3767
  }
3768
  if (all_scans_rors)
3769
  {
3770 3771
    roru_read_plans= (TABLE_READ_PLAN**)range_scans;
    goto skip_to_ror_scan;
3772
  }
unknown's avatar
unknown committed
3773 3774
  if (cpk_scan)
  {
3775 3776
    /*
      Add one ROWID comparison for each row retrieved on non-CPK scan.  (it
unknown's avatar
unknown committed
3777 3778 3779
      is done in QUICK_RANGE_SELECT::row_in_ranges)
     */
    imerge_cost += non_cpk_scan_records / TIME_FOR_COMPARE_ROWID;
3780 3781 3782
  }

  /* Calculate cost(rowid_to_row_scan) */
3783
  imerge_cost += get_sweep_read_cost(param, non_cpk_scan_records);
unknown's avatar
unknown committed
3784
  DBUG_PRINT("info",("index_merge cost with rowid-to-row scan: %g",
3785
                     imerge_cost));
3786 3787
  if (imerge_cost > read_time)
    goto build_ror_index_merge;
3788 3789

  /* Add Unique operations cost */
unknown's avatar
unknown committed
3790
  unique_calc_buff_size=
3791
    Unique::get_cost_calc_buff_size((ulong)non_cpk_scan_records,
3792 3793 3794 3795 3796 3797
                                    param->table->file->ref_length,
                                    param->thd->variables.sortbuff_size);
  if (param->imerge_cost_buff_size < unique_calc_buff_size)
  {
    if (!(param->imerge_cost_buff= (uint*)alloc_root(param->mem_root,
                                                     unique_calc_buff_size)))
3798
      DBUG_RETURN(NULL);
3799 3800 3801
    param->imerge_cost_buff_size= unique_calc_buff_size;
  }

unknown's avatar
unknown committed
3802
  imerge_cost +=
3803
    Unique::get_use_cost(param->imerge_cost_buff, (uint)non_cpk_scan_records,
unknown's avatar
unknown committed
3804 3805
                         param->table->file->ref_length,
                         param->thd->variables.sortbuff_size);
unknown's avatar
unknown committed
3806
  DBUG_PRINT("info",("index_merge total cost: %g (wanted: less then %g)",
3807 3808 3809 3810 3811 3812 3813
                     imerge_cost, read_time));
  if (imerge_cost < read_time)
  {
    if ((imerge_trp= new (param->mem_root)TRP_INDEX_MERGE))
    {
      imerge_trp->read_cost= imerge_cost;
      imerge_trp->records= non_cpk_scan_records + cpk_scan_records;
unknown's avatar
unknown committed
3814
      imerge_trp->records= min(imerge_trp->records,
3815
                               param->table->file->stats.records);
3816 3817 3818 3819 3820
      imerge_trp->range_scans= range_scans;
      imerge_trp->range_scans_end= range_scans + n_child_scans;
      read_time= imerge_cost;
    }
  }
unknown's avatar
unknown committed
3821

unknown's avatar
unknown committed
3822
build_ror_index_merge:
3823 3824
  if (!all_scans_ror_able || param->thd->lex->sql_command == SQLCOM_DELETE)
    DBUG_RETURN(imerge_trp);
unknown's avatar
unknown committed
3825

3826 3827
  /* Ok, it is possible to build a ROR-union, try it. */
  bool dummy;
unknown's avatar
unknown committed
3828
  if (!(roru_read_plans=
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
          (TABLE_READ_PLAN**)alloc_root(param->mem_root,
                                        sizeof(TABLE_READ_PLAN*)*
                                        n_child_scans)))
    DBUG_RETURN(imerge_trp);
skip_to_ror_scan:
  roru_index_costs= 0.0;
  roru_total_records= 0;
  cur_roru_plan= roru_read_plans;

  /* Find 'best' ROR scan for each of trees in disjunction */
  for (ptree= imerge->trees, cur_child= range_scans;
       ptree != imerge->trees_next;
       ptree++, cur_child++, cur_roru_plan++)
3842
  {
3843 3844
    /*
      Assume the best ROR scan is the one that has cheapest full-row-retrieval
unknown's avatar
unknown committed
3845 3846
      scan cost.
      Also accumulate index_only scan costs as we'll need them to calculate
3847 3848 3849 3850 3851 3852 3853
      overall index_intersection cost.
    */
    double cost;
    if ((*cur_child)->is_ror)
    {
      /* Ok, we have index_only cost, now get full rows scan cost */
      cost= param->table->file->
unknown's avatar
unknown committed
3854
              read_time(param->real_keynr[(*cur_child)->key_idx], 1,
3855 3856 3857 3858 3859 3860 3861
                        (*cur_child)->records) +
              rows2double((*cur_child)->records) / TIME_FOR_COMPARE;
    }
    else
      cost= read_time;

    TABLE_READ_PLAN *prev_plan= *cur_child;
unknown's avatar
unknown committed
3862
    if (!(*cur_roru_plan= get_best_ror_intersect(param, *ptree, cost,
3863 3864 3865 3866 3867 3868 3869 3870 3871
                                                 &dummy)))
    {
      if (prev_plan->is_ror)
        *cur_roru_plan= prev_plan;
      else
        DBUG_RETURN(imerge_trp);
      roru_index_costs += (*cur_roru_plan)->read_cost;
    }
    else
unknown's avatar
unknown committed
3872 3873
      roru_index_costs +=
        ((TRP_ROR_INTERSECT*)(*cur_roru_plan))->index_scan_costs;
3874
    roru_total_records += (*cur_roru_plan)->records;
unknown's avatar
unknown committed
3875
    roru_intersect_part *= (*cur_roru_plan)->records /
3876
                           param->table->file->stats.records;
3877
  }
3878

unknown's avatar
unknown committed
3879 3880
  /*
    rows to retrieve=
3881
      SUM(rows_in_scan_i) - table_rows * PROD(rows_in_scan_i / table_rows).
3882
    This is valid because index_merge construction guarantees that conditions
3883 3884 3885
    in disjunction do not share key parts.
  */
  roru_total_records -= (ha_rows)(roru_intersect_part*
3886
                                  param->table->file->stats.records);
unknown's avatar
unknown committed
3887 3888
  /* ok, got a ROR read plan for each of the disjuncts
    Calculate cost:
3889 3890 3891 3892 3893 3894
    cost(index_union_scan(scan_1, ... scan_n)) =
      SUM_i(cost_of_index_only_scan(scan_i)) +
      queue_use_cost(rowid_len, n) +
      cost_of_row_retrieval
    See get_merge_buffers_cost function for queue_use_cost formula derivation.
  */
unknown's avatar
unknown committed
3895

3896
  double roru_total_cost;
unknown's avatar
unknown committed
3897 3898 3899
  roru_total_cost= roru_index_costs +
                   rows2double(roru_total_records)*log((double)n_child_scans) /
                   (TIME_FOR_COMPARE_ROWID * M_LN2) +
3900 3901
                   get_sweep_read_cost(param, roru_total_records);

unknown's avatar
unknown committed
3902
  DBUG_PRINT("info", ("ROR-union: cost %g, %d members", roru_total_cost,
3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
                      n_child_scans));
  TRP_ROR_UNION* roru;
  if (roru_total_cost < read_time)
  {
    if ((roru= new (param->mem_root) TRP_ROR_UNION))
    {
      roru->first_ror= roru_read_plans;
      roru->last_ror= roru_read_plans + n_child_scans;
      roru->read_cost= roru_total_cost;
      roru->records= roru_total_records;
      DBUG_RETURN(roru);
    }
  }
  DBUG_RETURN(imerge_trp);
3917 3918 3919 3920 3921 3922 3923
}


/*
  Calculate cost of 'index only' scan for given index and number of records.

  SYNOPSIS
3924
    get_index_only_read_time()
3925 3926 3927 3928 3929
      param    parameters structure
      records  #of records to read
      keynr    key to read

  NOTES
unknown's avatar
unknown committed
3930
    It is assumed that we will read trough the whole key range and that all
3931 3932 3933 3934
    key blocks are half full (normally things are much better). It is also
    assumed that each time we read the next key from the index, the handler
    performs a random seek, thus the cost is proportional to the number of
    blocks read.
3935 3936 3937 3938 3939 3940

  TODO:
    Move this to handler->read_time() by adding a flag 'index-only-read' to
    this call. The reason for doing this is that the current function doesn't
    handle the case when the row is stored in the b-tree (like in innodb
    clustered index)
3941 3942
*/

unknown's avatar
unknown committed
3943
static double get_index_only_read_time(const PARAM* param, ha_rows records,
unknown's avatar
unknown committed
3944
                                       int keynr)
3945 3946
{
  double read_time;
3947
  uint keys_per_block= (param->table->file->stats.block_size/2/
3948 3949 3950 3951
			(param->table->key_info[keynr].key_length+
			 param->table->file->ref_length) + 1);
  read_time=((double) (records+keys_per_block-1)/
             (double) keys_per_block);
3952
  return read_time;
3953 3954
}

3955

3956 3957
typedef struct st_ror_scan_info
{
3958 3959 3960 3961 3962
  uint      idx;      /* # of used key in param->keys */
  uint      keynr;    /* # of used key in table */
  ha_rows   records;  /* estimate of # records this scan will return */

  /* Set of intervals over key fields that will be used for row retrieval. */
unknown's avatar
unknown committed
3963
  SEL_ARG   *sel_arg;
3964 3965

  /* Fields used in the query and covered by this ROR scan. */
unknown's avatar
unknown committed
3966 3967
  MY_BITMAP covered_fields;
  uint      used_fields_covered; /* # of set bits in covered_fields */
3968
  int       key_rec_length; /* length of key record (including rowid) */
3969 3970

  /*
3971 3972
    Cost of reading all index records with values in sel_arg intervals set
    (assuming there is no need to access full table records)
unknown's avatar
unknown committed
3973 3974
  */
  double    index_read_cost;
3975 3976 3977
  uint      first_uncovered_field; /* first unused bit in covered_fields */
  uint      key_components; /* # of parts in the key */
} ROR_SCAN_INFO;
3978 3979 3980


/*
unknown's avatar
unknown committed
3981
  Create ROR_SCAN_INFO* structure with a single ROR scan on index idx using
3982
  sel_arg set of intervals.
unknown's avatar
unknown committed
3983

3984 3985
  SYNOPSIS
    make_ror_scan()
3986 3987 3988
      param    Parameter from test_quick_select function
      idx      Index of key in param->keys
      sel_arg  Set of intervals for a given key
unknown's avatar
unknown committed
3989

3990
  RETURN
unknown's avatar
unknown committed
3991
    NULL - out of memory
3992
    ROR scan structure containing a scan for {idx, sel_arg}
3993 3994 3995 3996 3997 3998
*/

static
ROR_SCAN_INFO *make_ror_scan(const PARAM *param, int idx, SEL_ARG *sel_arg)
{
  ROR_SCAN_INFO *ror_scan;
3999
  my_bitmap_map *bitmap_buf;
4000 4001
  uint keynr;
  DBUG_ENTER("make_ror_scan");
unknown's avatar
unknown committed
4002

4003 4004 4005 4006 4007 4008
  if (!(ror_scan= (ROR_SCAN_INFO*)alloc_root(param->mem_root,
                                             sizeof(ROR_SCAN_INFO))))
    DBUG_RETURN(NULL);

  ror_scan->idx= idx;
  ror_scan->keynr= keynr= param->real_keynr[idx];
unknown's avatar
unknown committed
4009 4010
  ror_scan->key_rec_length= (param->table->key_info[keynr].key_length +
                             param->table->file->ref_length);
4011 4012
  ror_scan->sel_arg= sel_arg;
  ror_scan->records= param->table->quick_rows[keynr];
unknown's avatar
unknown committed
4013

4014 4015
  if (!(bitmap_buf= (my_bitmap_map*) alloc_root(param->mem_root,
                                                param->fields_bitmap_size)))
4016
    DBUG_RETURN(NULL);
unknown's avatar
unknown committed
4017

4018
  if (bitmap_init(&ror_scan->covered_fields, bitmap_buf,
4019
                  param->table->s->fields, FALSE))
4020 4021
    DBUG_RETURN(NULL);
  bitmap_clear_all(&ror_scan->covered_fields);
unknown's avatar
unknown committed
4022

4023
  KEY_PART_INFO *key_part= param->table->key_info[keynr].key_part;
unknown's avatar
unknown committed
4024
  KEY_PART_INFO *key_part_end= key_part +
4025 4026 4027
                               param->table->key_info[keynr].key_parts;
  for (;key_part != key_part_end; ++key_part)
  {
4028 4029
    if (bitmap_is_set(&param->needed_fields, key_part->fieldnr-1))
      bitmap_set_bit(&ror_scan->covered_fields, key_part->fieldnr-1);
4030
  }
unknown's avatar
unknown committed
4031
  ror_scan->index_read_cost=
4032 4033 4034 4035 4036 4037
    get_index_only_read_time(param, param->table->quick_rows[ror_scan->keynr],
                             ror_scan->keynr);
  DBUG_RETURN(ror_scan);
}


unknown's avatar
unknown committed
4038
/*
4039 4040 4041 4042 4043 4044 4045
  Compare two ROR_SCAN_INFO** by  E(#records_matched) * key_record_length.
  SYNOPSIS
    cmp_ror_scan_info()
      a ptr to first compared value
      b ptr to second compared value

  RETURN
unknown's avatar
unknown committed
4046
   -1 a < b
4047 4048
    0 a = b
    1 a > b
4049
*/
unknown's avatar
unknown committed
4050

4051
static int cmp_ror_scan_info(ROR_SCAN_INFO** a, ROR_SCAN_INFO** b)
4052 4053 4054 4055 4056 4057 4058
{
  double val1= rows2double((*a)->records) * (*a)->key_rec_length;
  double val2= rows2double((*b)->records) * (*b)->key_rec_length;
  return (val1 < val2)? -1: (val1 == val2)? 0 : 1;
}

/*
unknown's avatar
unknown committed
4059 4060 4061
  Compare two ROR_SCAN_INFO** by
   (#covered fields in F desc,
    #components asc,
4062
    number of first not covered component asc)
4063 4064 4065 4066 4067 4068 4069

  SYNOPSIS
    cmp_ror_scan_info_covering()
      a ptr to first compared value
      b ptr to second compared value

  RETURN
unknown's avatar
unknown committed
4070
   -1 a < b
4071 4072
    0 a = b
    1 a > b
4073
*/
unknown's avatar
unknown committed
4074

4075
static int cmp_ror_scan_info_covering(ROR_SCAN_INFO** a, ROR_SCAN_INFO** b)
4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
{
  if ((*a)->used_fields_covered > (*b)->used_fields_covered)
    return -1;
  if ((*a)->used_fields_covered < (*b)->used_fields_covered)
    return 1;
  if ((*a)->key_components < (*b)->key_components)
    return -1;
  if ((*a)->key_components > (*b)->key_components)
    return 1;
  if ((*a)->first_uncovered_field < (*b)->first_uncovered_field)
    return -1;
  if ((*a)->first_uncovered_field > (*b)->first_uncovered_field)
    return 1;
  return 0;
}

unknown's avatar
unknown committed
4092

4093
/* Auxiliary structure for incremental ROR-intersection creation */
unknown's avatar
unknown committed
4094
typedef struct
4095 4096 4097
{
  const PARAM *param;
  MY_BITMAP covered_fields; /* union of fields covered by all scans */
unknown's avatar
unknown committed
4098
  /*
4099
    Fraction of table records that satisfies conditions of all scans.
unknown's avatar
unknown committed
4100
    This is the number of full records that will be retrieved if a
4101 4102
    non-index_only index intersection will be employed.
  */
4103 4104 4105 4106
  double out_rows;
  /* TRUE if covered_fields is a superset of needed_fields */
  bool is_covering;

4107
  ha_rows index_records; /* sum(#records to look in indexes) */
4108 4109
  double index_scan_costs; /* SUM(cost of 'index-only' scans) */
  double total_cost;
4110
} ROR_INTERSECT_INFO;
4111 4112


4113 4114 4115 4116
/*
  Allocate a ROR_INTERSECT_INFO and initialize it to contain zero scans.

  SYNOPSIS
unknown's avatar
unknown committed
4117 4118 4119
    ror_intersect_init()
      param         Parameter from test_quick_select

4120 4121 4122 4123 4124 4125
  RETURN
    allocated structure
    NULL on error
*/

static
4126
ROR_INTERSECT_INFO* ror_intersect_init(const PARAM *param)
4127 4128
{
  ROR_INTERSECT_INFO *info;
4129
  my_bitmap_map* buf;
unknown's avatar
unknown committed
4130
  if (!(info= (ROR_INTERSECT_INFO*)alloc_root(param->mem_root,
4131 4132 4133
                                              sizeof(ROR_INTERSECT_INFO))))
    return NULL;
  info->param= param;
4134 4135
  if (!(buf= (my_bitmap_map*) alloc_root(param->mem_root,
                                         param->fields_bitmap_size)))
4136
    return NULL;
4137
  if (bitmap_init(&info->covered_fields, buf, param->table->s->fields,
unknown's avatar
unknown committed
4138
                  FALSE))
4139
    return NULL;
4140
  info->is_covering= FALSE;
4141
  info->index_scan_costs= 0.0;
4142
  info->index_records= 0;
4143
  info->out_rows= (double) param->table->file->stats.records;
4144
  bitmap_clear_all(&info->covered_fields);
4145 4146 4147
  return info;
}

4148 4149 4150 4151
void ror_intersect_cpy(ROR_INTERSECT_INFO *dst, const ROR_INTERSECT_INFO *src)
{
  dst->param= src->param;
  memcpy(dst->covered_fields.bitmap, src->covered_fields.bitmap, 
4152
         no_bytes_in_map(&src->covered_fields));
4153 4154 4155 4156 4157 4158
  dst->out_rows= src->out_rows;
  dst->is_covering= src->is_covering;
  dst->index_records= src->index_records;
  dst->index_scan_costs= src->index_scan_costs;
  dst->total_cost= src->total_cost;
}
unknown's avatar
unknown committed
4159 4160


4161
/*
4162
  Get selectivity of a ROR scan wrt ROR-intersection.
4163

4164
  SYNOPSIS
4165 4166 4167 4168
    ror_scan_selectivity()
      info  ROR-interection 
      scan  ROR scan
      
4169
  NOTES
4170
    Suppose we have a condition on several keys
unknown's avatar
unknown committed
4171 4172
    cond=k_11=c_11 AND k_12=c_12 AND ...  // parts of first key
         k_21=c_21 AND k_22=c_22 AND ...  // parts of second key
4173
          ...
4174
         k_n1=c_n1 AND k_n3=c_n3 AND ...  (1) //parts of the key used by *scan
unknown's avatar
unknown committed
4175

4176 4177
    where k_ij may be the same as any k_pq (i.e. keys may have common parts).

unknown's avatar
unknown committed
4178
    A full row is retrieved if entire condition holds.
4179 4180

    The recursive procedure for finding P(cond) is as follows:
unknown's avatar
unknown committed
4181

4182
    First step:
unknown's avatar
unknown committed
4183
    Pick 1st part of 1st key and break conjunction (1) into two parts:
4184 4185
      cond= (k_11=c_11 AND R)

unknown's avatar
unknown committed
4186
    Here R may still contain condition(s) equivalent to k_11=c_11.
4187 4188
    Nevertheless, the following holds:

unknown's avatar
unknown committed
4189
      P(k_11=c_11 AND R) = P(k_11=c_11) * P(R | k_11=c_11).
4190 4191 4192 4193 4194

    Mark k_11 as fixed field (and satisfied condition) F, save P(F),
    save R to be cond and proceed to recursion step.

    Recursion step:
4195
    We have a set of fixed fields/satisfied conditions) F, probability P(F),
4196 4197 4198
    and remaining conjunction R
    Pick next key part on current key and its condition "k_ij=c_ij".
    We will add "k_ij=c_ij" into F and update P(F).
4199
    Lets denote k_ij as t,  R = t AND R1, where R1 may still contain t. Then
4200

4201
     P((t AND R1)|F) = P(t|F) * P(R1|t|F) = P(t|F) * P(R1|(t AND F)) (2)
4202 4203 4204 4205 4206 4207 4208

    (where '|' mean conditional probability, not "or")

    Consider the first multiplier in (2). One of the following holds:
    a) F contains condition on field used in t (i.e. t AND F = F).
      Then P(t|F) = 1

unknown's avatar
unknown committed
4209 4210
    b) F doesn't contain condition on field used in t. Then F and t are
     considered independent.
4211

unknown's avatar
unknown committed
4212
     P(t|F) = P(t|(fields_before_t_in_key AND other_fields)) =
4213 4214
          = P(t|fields_before_t_in_key).

4215 4216
     P(t|fields_before_t_in_key) = #records(fields_before_t_in_key) /
                                   #records(fields_before_t_in_key, t)
unknown's avatar
unknown committed
4217 4218

    The second multiplier is calculated by applying this step recursively.
4219

4220 4221 4222 4223 4224
  IMPLEMENTATION
    This function calculates the result of application of the "recursion step"
    described above for all fixed key members of a single key, accumulating set
    of covered fields, selectivity, etc.

unknown's avatar
unknown committed
4225
    The calculation is conducted as follows:
4226
    Lets denote #records(keypart1, ... keypartK) as n_k. We need to calculate
unknown's avatar
unknown committed
4227

4228
     n_{k1}      n_{k2}
4229
    --------- * ---------  * .... (3)
4230
     n_{k1-1}    n_{k2-1}
4231

unknown's avatar
unknown committed
4232 4233 4234 4235
    where k1,k2,... are key parts which fields were not yet marked as fixed
    ( this is result of application of option b) of the recursion step for
      parts of a single key).
    Since it is reasonable to expect that most of the fields are not marked
unknown's avatar
unknown committed
4236
    as fixed, we calculate (3) as
4237

4238
                                  n_{i1}      n_{i2}
4239
    (3) = n_{max_key_part}  / (   --------- * ---------  * ....  )
4240
                                  n_{i1-1}    n_{i2-1}
unknown's avatar
unknown committed
4241 4242 4243

    where i1,i2, .. are key parts that were already marked as fixed.

4244 4245
    In order to minimize number of expensive records_in_range calls we group
    and reduce adjacent fractions.
unknown's avatar
unknown committed
4246

4247
  RETURN
4248
    Selectivity of given ROR scan.
4249 4250
*/

4251 4252
static double ror_scan_selectivity(const ROR_INTERSECT_INFO *info, 
                                   const ROR_SCAN_INFO *scan)
4253 4254
{
  double selectivity_mult= 1.0;
4255
  KEY_PART_INFO *key_part= info->param->table->key_info[scan->keynr].key_part;
4256 4257
  uchar key_val[MAX_KEY_LENGTH+MAX_FIELD_WIDTH]; /* key values tuple */
  uchar *key_ptr= key_val;
4258
  SEL_ARG *sel_arg, *tuple_arg= NULL;
unknown's avatar
unknown committed
4259
  key_part_map keypart_map= 0;
4260
  bool cur_covered;
4261
  bool prev_covered= test(bitmap_is_set(&info->covered_fields,
4262
                                        key_part->fieldnr-1));
unknown's avatar
unknown committed
4263 4264
  key_range min_range;
  key_range max_range;
4265
  min_range.key= key_val;
unknown's avatar
unknown committed
4266
  min_range.flag= HA_READ_KEY_EXACT;
4267
  max_range.key= key_val;
unknown's avatar
unknown committed
4268
  max_range.flag= HA_READ_AFTER_KEY;
4269
  ha_rows prev_records= info->param->table->file->stats.records;
4270
  DBUG_ENTER("ror_scan_selectivity");
unknown's avatar
unknown committed
4271 4272 4273

  for (sel_arg= scan->sel_arg; sel_arg;
       sel_arg= sel_arg->next_key_part)
4274
  {
4275
    DBUG_PRINT("info",("sel_arg step"));
4276
    cur_covered= test(bitmap_is_set(&info->covered_fields,
4277
                                    key_part[sel_arg->part].fieldnr-1));
4278
    if (cur_covered != prev_covered)
4279
    {
4280
      /* create (part1val, ..., part{n-1}val) tuple. */
unknown's avatar
unknown committed
4281 4282
      ha_rows records;
      if (!tuple_arg)
4283
      {
unknown's avatar
unknown committed
4284 4285
        tuple_arg= scan->sel_arg;
        /* Here we use the length of the first key part */
4286
        tuple_arg->store_min(key_part->store_length, &key_ptr, 0);
4287
        keypart_map= 1;
unknown's avatar
unknown committed
4288 4289 4290 4291
      }
      while (tuple_arg->next_key_part != sel_arg)
      {
        tuple_arg= tuple_arg->next_key_part;
4292 4293 4294
        tuple_arg->store_min(key_part[tuple_arg->part].store_length,
                             &key_ptr, 0);
        keypart_map= (keypart_map << 1) | 1;
unknown's avatar
unknown committed
4295
      }
4296
      min_range.length= max_range.length= (size_t) (key_ptr - key_val);
4297
      min_range.keypart_map= max_range.keypart_map= keypart_map;
unknown's avatar
unknown committed
4298 4299
      records= (info->param->table->file->
                records_in_range(scan->keynr, &min_range, &max_range));
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
      if (cur_covered)
      {
        /* uncovered -> covered */
        double tmp= rows2double(records)/rows2double(prev_records);
        DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp));
        selectivity_mult *= tmp;
        prev_records= HA_POS_ERROR;
      }
      else
      {
        /* covered -> uncovered */
unknown's avatar
unknown committed
4311
        prev_records= records;
4312
      }
4313
    }
4314 4315 4316 4317
    prev_covered= cur_covered;
  }
  if (!prev_covered)
  {
4318
    double tmp= rows2double(info->param->table->quick_rows[scan->keynr]) /
4319 4320
                rows2double(prev_records);
    DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp));
unknown's avatar
unknown committed
4321
    selectivity_mult *= tmp;
4322
  }
4323 4324 4325
  DBUG_PRINT("info", ("Returning multiplier: %g", selectivity_mult));
  DBUG_RETURN(selectivity_mult);
}
4326

unknown's avatar
unknown committed
4327

4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
/*
  Check if adding a ROR scan to a ROR-intersection reduces its cost of
  ROR-intersection and if yes, update parameters of ROR-intersection,
  including its cost.

  SYNOPSIS
    ror_intersect_add()
      param        Parameter from test_quick_select
      info         ROR-intersection structure to add the scan to.
      ror_scan     ROR scan info to add.
      is_cpk_scan  If TRUE, add the scan as CPK scan (this can be inferred
                   from other parameters and is passed separately only to
                   avoid duplicating the inference code)

  NOTES
    Adding a ROR scan to ROR-intersect "makes sense" iff the cost of ROR-
    intersection decreases. The cost of ROR-intersection is calculated as
    follows:

    cost= SUM_i(key_scan_cost_i) + cost_of_full_rows_retrieval

    When we add a scan the first increases and the second decreases.

    cost_of_full_rows_retrieval=
      (union of indexes used covers all needed fields) ?
        cost_of_sweep_read(E(rows_to_retrieve), rows_in_table) :
        0

    E(rows_to_retrieve) = #rows_in_table * ror_scan_selectivity(null, scan1) *
                           ror_scan_selectivity({scan1}, scan2) * ... *
                           ror_scan_selectivity({scan1,...}, scanN). 
  RETURN
    TRUE   ROR scan added to ROR-intersection, cost updated.
    FALSE  It doesn't make sense to add this ROR scan to this ROR-intersection.
*/

static bool ror_intersect_add(ROR_INTERSECT_INFO *info,
unknown's avatar
unknown committed
4365
                              ROR_SCAN_INFO* ror_scan, bool is_cpk_scan)
4366 4367 4368 4369 4370 4371 4372
{
  double selectivity_mult= 1.0;

  DBUG_ENTER("ror_intersect_add");
  DBUG_PRINT("info", ("Current out_rows= %g", info->out_rows));
  DBUG_PRINT("info", ("Adding scan on %s",
                      info->param->table->key_info[ror_scan->keynr].name));
unknown's avatar
unknown committed
4373
  DBUG_PRINT("info", ("is_cpk_scan: %d",is_cpk_scan));
4374 4375

  selectivity_mult = ror_scan_selectivity(info, ror_scan);
4376 4377 4378
  if (selectivity_mult == 1.0)
  {
    /* Don't add this scan if it doesn't improve selectivity. */
4379
    DBUG_PRINT("info", ("The scan doesn't improve selectivity."));
unknown's avatar
unknown committed
4380
    DBUG_RETURN(FALSE);
4381
  }
4382 4383 4384
  
  info->out_rows *= selectivity_mult;
  
4385
  if (is_cpk_scan)
unknown's avatar
unknown committed
4386
  {
4387 4388 4389 4390 4391 4392
    /*
      CPK scan is used to filter out rows. We apply filtering for 
      each record of every scan. Assuming 1/TIME_FOR_COMPARE_ROWID
      per check this gives us:
    */
    info->index_scan_costs += rows2double(info->index_records) / 
4393 4394 4395 4396
                              TIME_FOR_COMPARE_ROWID;
  }
  else
  {
4397
    info->index_records += info->param->table->quick_rows[ror_scan->keynr];
4398 4399
    info->index_scan_costs += ror_scan->index_read_cost;
    bitmap_union(&info->covered_fields, &ror_scan->covered_fields);
4400 4401 4402 4403 4404 4405
    if (!info->is_covering && bitmap_is_subset(&info->param->needed_fields,
                                               &info->covered_fields))
    {
      DBUG_PRINT("info", ("ROR-intersect is covering now"));
      info->is_covering= TRUE;
    }
4406
  }
unknown's avatar
unknown committed
4407

4408
  info->total_cost= info->index_scan_costs;
4409
  DBUG_PRINT("info", ("info->total_cost: %g", info->total_cost));
4410 4411
  if (!info->is_covering)
  {
4412 4413 4414
    info->total_cost += 
      get_sweep_read_cost(info->param, double2rows(info->out_rows));
    DBUG_PRINT("info", ("info->total_cost= %g", info->total_cost));
4415
  }
4416 4417
  DBUG_PRINT("info", ("New out_rows: %g", info->out_rows));
  DBUG_PRINT("info", ("New cost: %g, %scovering", info->total_cost,
4418
                      info->is_covering?"" : "non-"));
4419
  DBUG_RETURN(TRUE);
4420 4421
}

4422

unknown's avatar
unknown committed
4423 4424
/*
  Get best ROR-intersection plan using non-covering ROR-intersection search
4425 4426 4427 4428
  algorithm. The returned plan may be covering.

  SYNOPSIS
    get_best_ror_intersect()
4429 4430 4431
      param            Parameter from test_quick_select function.
      tree             Transformed restriction condition to be used to look
                       for ROR scans.
4432
      read_time        Do not return read plans with cost > read_time.
unknown's avatar
unknown committed
4433
      are_all_covering [out] set to TRUE if union of all scans covers all
4434 4435
                       fields needed by the query (and it is possible to build
                       a covering ROR-intersection)
4436

4437
  NOTES
4438 4439 4440 4441 4442
    get_key_scans_params must be called before this function can be called.
    
    When this function is called by ROR-union construction algorithm it
    assumes it is building an uncovered ROR-intersection (and thus # of full
    records to be retrieved is wrong here). This is a hack.
unknown's avatar
unknown committed
4443

4444
  IMPLEMENTATION
4445
    The approximate best non-covering plan search algorithm is as follows:
4446

4447 4448 4449 4450
    find_min_ror_intersection_scan()
    {
      R= select all ROR scans;
      order R by (E(#records_matched) * key_record_length).
unknown's avatar
unknown committed
4451

4452 4453 4454 4455 4456 4457
      S= first(R); -- set of scans that will be used for ROR-intersection
      R= R-first(S);
      min_cost= cost(S);
      min_scan= make_scan(S);
      while (R is not empty)
      {
4458 4459
        firstR= R - first(R);
        if (!selectivity(S + firstR < selectivity(S)))
4460
          continue;
4461
          
4462 4463 4464 4465 4466 4467 4468 4469 4470
        S= S + first(R);
        if (cost(S) < min_cost)
        {
          min_cost= cost(S);
          min_scan= make_scan(S);
        }
      }
      return min_scan;
    }
4471

4472
    See ror_intersect_add function for ROR intersection costs.
4473

4474
    Special handling for Clustered PK scans
unknown's avatar
unknown committed
4475 4476
    Clustered PK contains all table fields, so using it as a regular scan in
    index intersection doesn't make sense: a range scan on CPK will be less
4477 4478
    expensive in this case.
    Clustered PK scan has special handling in ROR-intersection: it is not used
unknown's avatar
unknown committed
4479
    to retrieve rows, instead its condition is used to filter row references
4480
    we get from scans on other keys.
4481 4482

  RETURN
unknown's avatar
unknown committed
4483
    ROR-intersection table read plan
4484
    NULL if out of memory or no suitable plan found.
4485 4486
*/

4487 4488 4489 4490 4491 4492
static
TRP_ROR_INTERSECT *get_best_ror_intersect(const PARAM *param, SEL_TREE *tree,
                                          double read_time,
                                          bool *are_all_covering)
{
  uint idx;
4493
  double min_cost= DBL_MAX;
4494
  DBUG_ENTER("get_best_ror_intersect");
4495

4496
  if ((tree->n_ror_scans < 2) || !param->table->file->stats.records)
4497
    DBUG_RETURN(NULL);
4498 4499

  /*
4500 4501
    Step1: Collect ROR-able SEL_ARGs and create ROR_SCAN_INFO for each of 
    them. Also find and save clustered PK scan if there is one.
4502
  */
4503
  ROR_SCAN_INFO **cur_ror_scan;
4504
  ROR_SCAN_INFO *cpk_scan= NULL;
4505
  uint cpk_no;
unknown's avatar
unknown committed
4506
  bool cpk_scan_used= FALSE;
4507

4508 4509 4510 4511
  if (!(tree->ror_scans= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
                                                     sizeof(ROR_SCAN_INFO*)*
                                                     param->keys)))
    return NULL;
4512 4513
  cpk_no= ((param->table->file->primary_key_is_clustered()) ?
           param->table->s->primary_key : MAX_KEY);
unknown's avatar
unknown committed
4514

4515
  for (idx= 0, cur_ror_scan= tree->ror_scans; idx < param->keys; idx++)
4516
  {
4517
    ROR_SCAN_INFO *scan;
4518
    if (!tree->ror_scans_map.is_set(idx))
4519
      continue;
4520
    if (!(scan= make_ror_scan(param, idx, tree->keys[idx])))
4521
      return NULL;
4522
    if (param->real_keynr[idx] == cpk_no)
4523
    {
4524 4525
      cpk_scan= scan;
      tree->n_ror_scans--;
4526 4527
    }
    else
4528
      *(cur_ror_scan++)= scan;
4529
  }
unknown's avatar
unknown committed
4530

4531
  tree->ror_scans_end= cur_ror_scan;
unknown's avatar
unknown committed
4532 4533
  DBUG_EXECUTE("info",print_ror_scans_arr(param->table, "original",
                                          tree->ror_scans,
4534 4535
                                          tree->ror_scans_end););
  /*
unknown's avatar
unknown committed
4536
    Ok, [ror_scans, ror_scans_end) is array of ptrs to initialized
4537 4538
    ROR_SCAN_INFO's.
    Step 2: Get best ROR-intersection using an approximate algorithm.
4539
  */
4540 4541
  my_qsort(tree->ror_scans, tree->n_ror_scans, sizeof(ROR_SCAN_INFO*),
           (qsort_cmp)cmp_ror_scan_info);
unknown's avatar
unknown committed
4542 4543
  DBUG_EXECUTE("info",print_ror_scans_arr(param->table, "ordered",
                                          tree->ror_scans,
4544
                                          tree->ror_scans_end););
unknown's avatar
unknown committed
4545

4546 4547 4548 4549 4550 4551 4552 4553 4554
  ROR_SCAN_INFO **intersect_scans; /* ROR scans used in index intersection */
  ROR_SCAN_INFO **intersect_scans_end;
  if (!(intersect_scans= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
                                                     sizeof(ROR_SCAN_INFO*)*
                                                     tree->n_ror_scans)))
    return NULL;
  intersect_scans_end= intersect_scans;

  /* Create and incrementally update ROR intersection. */
4555 4556 4557
  ROR_INTERSECT_INFO *intersect, *intersect_best;
  if (!(intersect= ror_intersect_init(param)) || 
      !(intersect_best= ror_intersect_init(param)))
4558
    return NULL;
unknown's avatar
unknown committed
4559

4560
  /* [intersect_scans,intersect_scans_best) will hold the best intersection */
unknown's avatar
unknown committed
4561
  ROR_SCAN_INFO **intersect_scans_best;
4562
  cur_ror_scan= tree->ror_scans;
4563
  intersect_scans_best= intersect_scans;
4564
  while (cur_ror_scan != tree->ror_scans_end && !intersect->is_covering)
4565
  {
4566
    /* S= S + first(R);  R= R - first(R); */
unknown's avatar
unknown committed
4567
    if (!ror_intersect_add(intersect, *cur_ror_scan, FALSE))
4568 4569 4570 4571 4572 4573
    {
      cur_ror_scan++;
      continue;
    }
    
    *(intersect_scans_end++)= *(cur_ror_scan++);
unknown's avatar
unknown committed
4574

4575
    if (intersect->total_cost < min_cost)
4576
    {
4577
      /* Local minimum found, save it */
4578
      ror_intersect_cpy(intersect_best, intersect);
4579
      intersect_scans_best= intersect_scans_end;
4580
      min_cost = intersect->total_cost;
4581 4582
    }
  }
unknown's avatar
unknown committed
4583

4584 4585 4586 4587 4588 4589
  if (intersect_scans_best == intersect_scans)
  {
    DBUG_PRINT("info", ("None of scans increase selectivity"));
    DBUG_RETURN(NULL);
  }
    
4590 4591 4592 4593
  DBUG_EXECUTE("info",print_ror_scans_arr(param->table,
                                          "best ROR-intersection",
                                          intersect_scans,
                                          intersect_scans_best););
unknown's avatar
unknown committed
4594

4595
  *are_all_covering= intersect->is_covering;
unknown's avatar
unknown committed
4596
  uint best_num= intersect_scans_best - intersect_scans;
4597 4598
  ror_intersect_cpy(intersect, intersect_best);

4599 4600
  /*
    Ok, found the best ROR-intersection of non-CPK key scans.
4601 4602
    Check if we should add a CPK scan. If the obtained ROR-intersection is 
    covering, it doesn't make sense to add CPK scan.
4603 4604
  */
  if (cpk_scan && !intersect->is_covering)
4605
  {
4606
    if (ror_intersect_add(intersect, cpk_scan, TRUE) && 
4607
        (intersect->total_cost < min_cost))
4608
    {
unknown's avatar
unknown committed
4609
      cpk_scan_used= TRUE;
4610
      intersect_best= intersect; //just set pointer here
4611 4612
    }
  }
unknown's avatar
unknown committed
4613

4614
  /* Ok, return ROR-intersect plan if we have found one */
4615
  TRP_ROR_INTERSECT *trp= NULL;
4616
  if (min_cost < read_time && (cpk_scan_used || best_num > 1))
4617
  {
4618 4619
    if (!(trp= new (param->mem_root) TRP_ROR_INTERSECT))
      DBUG_RETURN(trp);
unknown's avatar
unknown committed
4620 4621
    if (!(trp->first_scan=
           (ROR_SCAN_INFO**)alloc_root(param->mem_root,
4622 4623 4624 4625
                                       sizeof(ROR_SCAN_INFO*)*best_num)))
      DBUG_RETURN(NULL);
    memcpy(trp->first_scan, intersect_scans, best_num*sizeof(ROR_SCAN_INFO*));
    trp->last_scan=  trp->first_scan + best_num;
4626 4627 4628 4629 4630 4631
    trp->is_covering= intersect_best->is_covering;
    trp->read_cost= intersect_best->total_cost;
    /* Prevent divisons by zero */
    ha_rows best_rows = double2rows(intersect_best->out_rows);
    if (!best_rows)
      best_rows= 1;
4632
    set_if_smaller(param->table->quick_condition_rows, best_rows);
4633
    trp->records= best_rows;
4634 4635 4636 4637 4638
    trp->index_scan_costs= intersect_best->index_scan_costs;
    trp->cpk_scan= cpk_scan_used? cpk_scan: NULL;
    DBUG_PRINT("info", ("Returning non-covering ROR-intersect plan:"
                        "cost %g, records %lu",
                        trp->read_cost, (ulong) trp->records));
unknown's avatar
unknown committed
4639
  }
4640
  DBUG_RETURN(trp);
4641 4642 4643 4644
}


/*
4645
  Get best covering ROR-intersection.
4646
  SYNOPSIS
4647
    get_best_covering_ror_intersect()
4648 4649 4650
      param     Parameter from test_quick_select function.
      tree      SEL_TREE with sets of intervals for different keys.
      read_time Don't return table read plans with cost > read_time.
4651

unknown's avatar
unknown committed
4652 4653
  RETURN
    Best covering ROR-intersection plan
4654
    NULL if no plan found.
4655 4656

  NOTES
4657
    get_best_ror_intersect must be called for a tree before calling this
unknown's avatar
unknown committed
4658
    function for it.
4659
    This function invalidates tree->ror_scans member values.
unknown's avatar
unknown committed
4660

4661 4662 4663 4664 4665
  The following approximate algorithm is used:
    I=set of all covering indexes
    F=set of all fields to cover
    S={}

4666 4667
    do
    {
4668 4669 4670 4671 4672 4673 4674
      Order I by (#covered fields in F desc,
                  #components asc,
                  number of first not covered component asc);
      F=F-covered by first(I);
      S=S+first(I);
      I=I-first(I);
    } while F is not empty.
4675 4676
*/

4677
static
unknown's avatar
unknown committed
4678 4679
TRP_ROR_INTERSECT *get_best_covering_ror_intersect(PARAM *param,
                                                   SEL_TREE *tree,
4680
                                                   double read_time)
4681
{
4682
  ROR_SCAN_INFO **ror_scan_mark;
unknown's avatar
unknown committed
4683
  ROR_SCAN_INFO **ror_scans_end= tree->ror_scans_end;
4684 4685 4686
  DBUG_ENTER("get_best_covering_ror_intersect");

  for (ROR_SCAN_INFO **scan= tree->ror_scans; scan != ror_scans_end; ++scan)
unknown's avatar
unknown committed
4687
    (*scan)->key_components=
4688
      param->table->key_info[(*scan)->keynr].key_parts;
unknown's avatar
unknown committed
4689

4690 4691
  /*
    Run covering-ROR-search algorithm.
unknown's avatar
unknown committed
4692
    Assume set I is [ror_scan .. ror_scans_end)
4693
  */
unknown's avatar
unknown committed
4694

4695 4696
  /*I=set of all covering indexes */
  ror_scan_mark= tree->ror_scans;
unknown's avatar
unknown committed
4697

4698 4699
  MY_BITMAP *covered_fields= &param->tmp_covered_fields;
  if (!covered_fields->bitmap) 
4700
    covered_fields->bitmap= (my_bitmap_map*)alloc_root(param->mem_root,
4701 4702
                                               param->fields_bitmap_size);
  if (!covered_fields->bitmap ||
4703 4704
      bitmap_init(covered_fields, covered_fields->bitmap,
                  param->table->s->fields, FALSE))
4705
    DBUG_RETURN(0);
4706
  bitmap_clear_all(covered_fields);
4707 4708 4709

  double total_cost= 0.0f;
  ha_rows records=0;
unknown's avatar
unknown committed
4710 4711
  bool all_covered;

4712 4713 4714 4715
  DBUG_PRINT("info", ("Building covering ROR-intersection"));
  DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
                                           "building covering ROR-I",
                                           ror_scan_mark, ror_scans_end););
4716 4717
  do
  {
4718
    /*
unknown's avatar
unknown committed
4719
      Update changed sorting info:
4720
        #covered fields,
unknown's avatar
unknown committed
4721
	number of first not covered component
4722 4723 4724 4725
      Calculate and save these values for each of remaining scans.
    */
    for (ROR_SCAN_INFO **scan= ror_scan_mark; scan != ror_scans_end; ++scan)
    {
4726
      bitmap_subtract(&(*scan)->covered_fields, covered_fields);
unknown's avatar
unknown committed
4727
      (*scan)->used_fields_covered=
4728
        bitmap_bits_set(&(*scan)->covered_fields);
unknown's avatar
unknown committed
4729
      (*scan)->first_uncovered_field=
4730 4731 4732
        bitmap_get_first(&(*scan)->covered_fields);
    }

4733 4734
    my_qsort(ror_scan_mark, ror_scans_end-ror_scan_mark, sizeof(ROR_SCAN_INFO*),
             (qsort_cmp)cmp_ror_scan_info_covering);
4735 4736 4737 4738

    DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
                                             "remaining scans",
                                             ror_scan_mark, ror_scans_end););
unknown's avatar
unknown committed
4739

4740 4741 4742
    /* I=I-first(I) */
    total_cost += (*ror_scan_mark)->index_read_cost;
    records += (*ror_scan_mark)->records;
unknown's avatar
unknown committed
4743
    DBUG_PRINT("info", ("Adding scan on %s",
4744 4745 4746 4747
                        param->table->key_info[(*ror_scan_mark)->keynr].name));
    if (total_cost > read_time)
      DBUG_RETURN(NULL);
    /* F=F-covered by first(I) */
4748 4749
    bitmap_union(covered_fields, &(*ror_scan_mark)->covered_fields);
    all_covered= bitmap_is_subset(&param->needed_fields, covered_fields);
4750 4751 4752 4753
  } while ((++ror_scan_mark < ror_scans_end) && !all_covered);
  
  if (!all_covered || (ror_scan_mark - tree->ror_scans) == 1)
    DBUG_RETURN(NULL);
4754 4755 4756 4757 4758 4759 4760 4761 4762

  /*
    Ok, [tree->ror_scans .. ror_scan) holds covering index_intersection with
    cost total_cost.
  */
  DBUG_PRINT("info", ("Covering ROR-intersect scans cost: %g", total_cost));
  DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
                                           "creating covering ROR-intersect",
                                           tree->ror_scans, ror_scan_mark););
unknown's avatar
unknown committed
4763

4764
  /* Add priority queue use cost. */
unknown's avatar
unknown committed
4765 4766
  total_cost += rows2double(records)*
                log((double)(ror_scan_mark - tree->ror_scans)) /
4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780
                (TIME_FOR_COMPARE_ROWID * M_LN2);
  DBUG_PRINT("info", ("Covering ROR-intersect full cost: %g", total_cost));

  if (total_cost > read_time)
    DBUG_RETURN(NULL);

  TRP_ROR_INTERSECT *trp;
  if (!(trp= new (param->mem_root) TRP_ROR_INTERSECT))
    DBUG_RETURN(trp);
  uint best_num= (ror_scan_mark - tree->ror_scans);
  if (!(trp->first_scan= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
                                                     sizeof(ROR_SCAN_INFO*)*
                                                     best_num)))
    DBUG_RETURN(NULL);
4781
  memcpy(trp->first_scan, tree->ror_scans, best_num*sizeof(ROR_SCAN_INFO*));
4782
  trp->last_scan=  trp->first_scan + best_num;
unknown's avatar
unknown committed
4783
  trp->is_covering= TRUE;
4784 4785
  trp->read_cost= total_cost;
  trp->records= records;
4786
  trp->cpk_scan= NULL;
unknown's avatar
unknown committed
4787
  set_if_smaller(param->table->quick_condition_rows, records); 
4788

4789 4790 4791
  DBUG_PRINT("info",
             ("Returning covering ROR-intersect plan: cost %g, records %lu",
              trp->read_cost, (ulong) trp->records));
4792
  DBUG_RETURN(trp);
4793 4794 4795
}


unknown's avatar
unknown committed
4796
/*
unknown's avatar
unknown committed
4797
  Get best "range" table read plan for given SEL_TREE.
4798
  Also update PARAM members and store ROR scans info in the SEL_TREE.
4799
  SYNOPSIS
4800
    get_key_scans_params
4801
      param        parameters from test_quick_select
unknown's avatar
unknown committed
4802
      tree         make range select for this SEL_TREE
unknown's avatar
unknown committed
4803
      index_read_must_be_used if TRUE, assume 'index only' option will be set
4804
                             (except for clustered PK indexes)
4805 4806
      read_time    don't create read plans with cost > read_time.
  RETURN
unknown's avatar
unknown committed
4807
    Best range read plan
4808
    NULL if no plan found or error occurred
unknown's avatar
unknown committed
4809 4810
*/

4811
static TRP_RANGE *get_key_scans_params(PARAM *param, SEL_TREE *tree,
4812 4813
                                       bool index_read_must_be_used, 
                                       bool update_tbl_stats,
4814
                                       double read_time)
unknown's avatar
unknown committed
4815 4816
{
  int idx;
4817 4818 4819
  SEL_ARG **key,**end, **key_to_read= NULL;
  ha_rows best_records;
  TRP_RANGE* read_plan= NULL;
4820
  bool pk_is_clustered= param->table->file->primary_key_is_clustered();
4821 4822
  DBUG_ENTER("get_key_scans_params");
  LINT_INIT(best_records); /* protected by key_to_read */
unknown's avatar
unknown committed
4823
  /*
unknown's avatar
unknown committed
4824 4825
    Note that there may be trees that have type SEL_TREE::KEY but contain no
    key reads at all, e.g. tree for expression "key1 is not null" where key1
4826
    is defined as "not null".
unknown's avatar
unknown committed
4827 4828
  */
  DBUG_EXECUTE("info", print_sel_tree(param, tree, &tree->keys_map,
4829 4830 4831 4832
                                      "tree scans"););
  tree->ror_scans_map.clear_all();
  tree->n_ror_scans= 0;
  for (idx= 0,key=tree->keys, end=key+param->keys;
unknown's avatar
unknown committed
4833 4834 4835 4836 4837 4838 4839
       key != end ;
       key++,idx++)
  {
    ha_rows found_records;
    double found_read_time;
    if (*key)
    {
4840
      uint keynr= param->real_keynr[idx];
unknown's avatar
unknown committed
4841 4842
      if ((*key)->type == SEL_ARG::MAYBE_KEY ||
          (*key)->maybe_flag)
4843
        param->needed_reg->set_bit(keynr);
unknown's avatar
unknown committed
4844

unknown's avatar
unknown committed
4845
      bool read_index_only= index_read_must_be_used ? TRUE :
4846
                            (bool) param->table->covering_keys.is_set(keynr);
4847

4848
      found_records= check_quick_select(param, idx, *key, update_tbl_stats);
4849 4850 4851 4852 4853
      if (param->is_ror_scan)
      {
        tree->n_ror_scans++;
        tree->ror_scans_map.set_bit(idx);
      }
4854
      double cpu_cost= (double) found_records / TIME_FOR_COMPARE;
unknown's avatar
unknown committed
4855
      if (found_records != HA_POS_ERROR && found_records > 2 &&
unknown's avatar
unknown committed
4856
          read_index_only &&
unknown's avatar
unknown committed
4857
          (param->table->file->index_flags(keynr, param->max_key_part,1) &
unknown's avatar
unknown committed
4858
           HA_KEYREAD_ONLY) &&
4859
          !(pk_is_clustered && keynr == param->table->s->primary_key))
4860 4861 4862 4863 4864
      {
        /*
          We can resolve this by only reading through this key. 
          0.01 is added to avoid races between range and 'index' scan.
        */
4865
        found_read_time= get_index_only_read_time(param,found_records,keynr) +
4866 4867
                         cpu_cost + 0.01;
      }
unknown's avatar
unknown committed
4868
      else
4869
      {
unknown's avatar
unknown committed
4870
        /*
4871 4872 4873
          cost(read_through_index) = cost(disk_io) + cost(row_in_range_checks)
          The row_in_range check is in QUICK_RANGE_SELECT::cmp_next function.
        */
4874 4875 4876
	found_read_time= param->table->file->read_time(keynr,
                                                       param->range_count,
                                                       found_records) +
4877 4878
			 cpu_cost + 0.01;
      }
4879 4880 4881
      DBUG_PRINT("info",("key %s: found_read_time: %g (cur. read_time: %g)",
                         param->table->key_info[keynr].name, found_read_time,
                         read_time));
4882

unknown's avatar
unknown committed
4883
      if (read_time > found_read_time && found_records != HA_POS_ERROR)
unknown's avatar
unknown committed
4884
      {
4885
        read_time=    found_read_time;
unknown's avatar
unknown committed
4886
        best_records= found_records;
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902
        key_to_read=  key;
      }

    }
  }

  DBUG_EXECUTE("info", print_sel_tree(param, tree, &tree->ror_scans_map,
                                      "ROR scans"););
  if (key_to_read)
  {
    idx= key_to_read - tree->keys;
    if ((read_plan= new (param->mem_root) TRP_RANGE(*key_to_read, idx)))
    {
      read_plan->records= best_records;
      read_plan->is_ror= tree->ror_scans_map.is_set(idx);
      read_plan->read_cost= read_time;
4903 4904 4905 4906
      DBUG_PRINT("info",
                 ("Returning range plan for key %s, cost %g, records %lu",
                  param->table->key_info[param->real_keynr[idx]].name,
                  read_plan->read_cost, (ulong) read_plan->records));
4907 4908 4909 4910 4911 4912 4913 4914 4915
    }
  }
  else
    DBUG_PRINT("info", ("No 'range' table read plan found"));

  DBUG_RETURN(read_plan);
}


unknown's avatar
unknown committed
4916
QUICK_SELECT_I *TRP_INDEX_MERGE::make_quick(PARAM *param,
4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927
                                            bool retrieve_full_rows,
                                            MEM_ROOT *parent_alloc)
{
  QUICK_INDEX_MERGE_SELECT *quick_imerge;
  QUICK_RANGE_SELECT *quick;
  /* index_merge always retrieves full rows, ignore retrieve_full_rows */
  if (!(quick_imerge= new QUICK_INDEX_MERGE_SELECT(param->thd, param->table)))
    return NULL;

  quick_imerge->records= records;
  quick_imerge->read_time= read_cost;
unknown's avatar
unknown committed
4928 4929
  for (TRP_RANGE **range_scan= range_scans; range_scan != range_scans_end;
       range_scan++)
4930 4931
  {
    if (!(quick= (QUICK_RANGE_SELECT*)
unknown's avatar
unknown committed
4932
          ((*range_scan)->make_quick(param, FALSE, &quick_imerge->alloc)))||
4933 4934 4935 4936 4937 4938 4939 4940 4941 4942
        quick_imerge->push_quick_back(quick))
    {
      delete quick;
      delete quick_imerge;
      return NULL;
    }
  }
  return quick_imerge;
}

unknown's avatar
unknown committed
4943
QUICK_SELECT_I *TRP_ROR_INTERSECT::make_quick(PARAM *param,
4944 4945 4946 4947 4948 4949 4950
                                              bool retrieve_full_rows,
                                              MEM_ROOT *parent_alloc)
{
  QUICK_ROR_INTERSECT_SELECT *quick_intrsect;
  QUICK_RANGE_SELECT *quick;
  DBUG_ENTER("TRP_ROR_INTERSECT::make_quick");
  MEM_ROOT *alloc;
unknown's avatar
unknown committed
4951 4952

  if ((quick_intrsect=
4953
         new QUICK_ROR_INTERSECT_SELECT(param->thd, param->table,
4954 4955
                                        (retrieve_full_rows? (!is_covering) :
                                         FALSE),
4956 4957
                                        parent_alloc)))
  {
unknown's avatar
unknown committed
4958
    DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
4959 4960 4961
                                             "creating ROR-intersect",
                                             first_scan, last_scan););
    alloc= parent_alloc? parent_alloc: &quick_intrsect->alloc;
unknown's avatar
unknown committed
4962
    for (; first_scan != last_scan;++first_scan)
4963 4964 4965 4966
    {
      if (!(quick= get_quick_select(param, (*first_scan)->idx,
                                    (*first_scan)->sel_arg, alloc)) ||
          quick_intrsect->push_quick_back(quick))
unknown's avatar
unknown committed
4967
      {
4968 4969
        delete quick_intrsect;
        DBUG_RETURN(NULL);
unknown's avatar
unknown committed
4970 4971
      }
    }
4972 4973 4974 4975
    if (cpk_scan)
    {
      if (!(quick= get_quick_select(param, cpk_scan->idx,
                                    cpk_scan->sel_arg, alloc)))
unknown's avatar
unknown committed
4976
      {
4977 4978
        delete quick_intrsect;
        DBUG_RETURN(NULL);
unknown's avatar
unknown committed
4979
      }
unknown's avatar
unknown committed
4980
      quick->file= NULL; 
4981
      quick_intrsect->cpk_quick= quick;
unknown's avatar
unknown committed
4982
    }
unknown's avatar
unknown committed
4983
    quick_intrsect->records= records;
4984
    quick_intrsect->read_time= read_cost;
unknown's avatar
unknown committed
4985
  }
4986 4987 4988
  DBUG_RETURN(quick_intrsect);
}

4989

unknown's avatar
unknown committed
4990
QUICK_SELECT_I *TRP_ROR_UNION::make_quick(PARAM *param,
4991 4992 4993 4994 4995 4996 4997
                                          bool retrieve_full_rows,
                                          MEM_ROOT *parent_alloc)
{
  QUICK_ROR_UNION_SELECT *quick_roru;
  TABLE_READ_PLAN **scan;
  QUICK_SELECT_I *quick;
  DBUG_ENTER("TRP_ROR_UNION::make_quick");
unknown's avatar
unknown committed
4998 4999
  /*
    It is impossible to construct a ROR-union that will not retrieve full
5000
    rows, ignore retrieve_full_rows parameter.
5001 5002 5003
  */
  if ((quick_roru= new QUICK_ROR_UNION_SELECT(param->thd, param->table)))
  {
unknown's avatar
unknown committed
5004
    for (scan= first_ror; scan != last_ror; scan++)
5005
    {
unknown's avatar
unknown committed
5006
      if (!(quick= (*scan)->make_quick(param, FALSE, &quick_roru->alloc)) ||
5007 5008 5009 5010 5011
          quick_roru->push_quick_back(quick))
        DBUG_RETURN(NULL);
    }
    quick_roru->records= records;
    quick_roru->read_time= read_cost;
unknown's avatar
unknown committed
5012
  }
5013
  DBUG_RETURN(quick_roru);
unknown's avatar
unknown committed
5014 5015
}

5016

unknown's avatar
unknown committed
5017
/*
unknown's avatar
unknown committed
5018
  Build a SEL_TREE for <> or NOT BETWEEN predicate
unknown's avatar
unknown committed
5019 5020 5021 5022 5023 5024
 
  SYNOPSIS
    get_ne_mm_tree()
      param       PARAM from SQL_SELECT::test_quick_select
      cond_func   item for the predicate
      field       field in the predicate
unknown's avatar
unknown committed
5025 5026
      lt_value    constant that field should be smaller
      gt_value    constant that field should be greaterr
unknown's avatar
unknown committed
5027 5028 5029
      cmp_type    compare type for the field

  RETURN 
unknown's avatar
unknown committed
5030 5031
    #  Pointer to tree built tree
    0  on error
unknown's avatar
unknown committed
5032 5033
*/

unknown's avatar
unknown committed
5034
static SEL_TREE *get_ne_mm_tree(RANGE_OPT_PARAM *param, Item_func *cond_func, 
unknown's avatar
unknown committed
5035 5036
                                Field *field,
                                Item *lt_value, Item *gt_value,
unknown's avatar
unknown committed
5037 5038
                                Item_result cmp_type)
{
unknown's avatar
unknown committed
5039
  SEL_TREE *tree;
unknown's avatar
unknown committed
5040
  tree= get_mm_parts(param, cond_func, field, Item_func::LT_FUNC,
unknown's avatar
unknown committed
5041
                     lt_value, cmp_type);
unknown's avatar
unknown committed
5042 5043 5044 5045
  if (tree)
  {
    tree= tree_or(param, tree, get_mm_parts(param, cond_func, field,
					    Item_func::GT_FUNC,
unknown's avatar
unknown committed
5046
					    gt_value, cmp_type));
unknown's avatar
unknown committed
5047 5048 5049 5050 5051
  }
  return tree;
}
   

unknown's avatar
unknown committed
5052 5053 5054 5055 5056 5057 5058 5059 5060 5061
/*
  Build a SEL_TREE for a simple predicate
 
  SYNOPSIS
    get_func_mm_tree()
      param       PARAM from SQL_SELECT::test_quick_select
      cond_func   item for the predicate
      field       field in the predicate
      value       constant in the predicate
      cmp_type    compare type for the field
unknown's avatar
unknown committed
5062
      inv         TRUE <> NOT cond_func is considered
unknown's avatar
unknown committed
5063
                  (makes sense only when cond_func is BETWEEN or IN) 
unknown's avatar
unknown committed
5064 5065

  RETURN 
unknown's avatar
unknown committed
5066
    Pointer to the tree built tree
unknown's avatar
unknown committed
5067 5068
*/

unknown's avatar
unknown committed
5069
static SEL_TREE *get_func_mm_tree(RANGE_OPT_PARAM *param, Item_func *cond_func, 
5070
                                  Field *field, Item *value,
unknown's avatar
unknown committed
5071
                                  Item_result cmp_type, bool inv)
5072 5073 5074 5075
{
  SEL_TREE *tree= 0;
  DBUG_ENTER("get_func_mm_tree");

unknown's avatar
unknown committed
5076
  switch (cond_func->functype()) {
unknown's avatar
unknown committed
5077

unknown's avatar
unknown committed
5078
  case Item_func::NE_FUNC:
unknown's avatar
unknown committed
5079
    tree= get_ne_mm_tree(param, cond_func, field, value, value, cmp_type);
unknown's avatar
unknown committed
5080
    break;
unknown's avatar
unknown committed
5081

unknown's avatar
unknown committed
5082
  case Item_func::BETWEEN:
unknown's avatar
unknown committed
5083
  {
unknown's avatar
unknown committed
5084
    if (!value)
5085
    {
unknown's avatar
unknown committed
5086
      if (inv)
unknown's avatar
unknown committed
5087
      {
unknown's avatar
unknown committed
5088 5089 5090 5091
        tree= get_ne_mm_tree(param, cond_func, field, cond_func->arguments()[1],
                             cond_func->arguments()[2], cmp_type);
      }
      else
unknown's avatar
unknown committed
5092
      {
unknown's avatar
unknown committed
5093 5094 5095 5096 5097 5098 5099 5100 5101
        tree= get_mm_parts(param, cond_func, field, Item_func::GE_FUNC,
		           cond_func->arguments()[1],cmp_type);
        if (tree)
        {
          tree= tree_and(param, tree, get_mm_parts(param, cond_func, field,
					           Item_func::LE_FUNC,
					           cond_func->arguments()[2],
                                                   cmp_type));
        }
unknown's avatar
unknown committed
5102
      }
5103
    }
unknown's avatar
unknown committed
5104 5105 5106
    else
      tree= get_mm_parts(param, cond_func, field,
                         (inv ?
unknown's avatar
unknown committed
5107 5108 5109 5110
                          (value == (Item*)1 ? Item_func::GT_FUNC :
                                               Item_func::LT_FUNC):
                          (value == (Item*)1 ? Item_func::LE_FUNC :
                                               Item_func::GE_FUNC)),
unknown's avatar
unknown committed
5111
                         cond_func->arguments()[0], cmp_type);
unknown's avatar
unknown committed
5112
    break;
unknown's avatar
unknown committed
5113
  }
unknown's avatar
unknown committed
5114
  case Item_func::IN_FUNC:
5115 5116
  {
    Item_func_in *func=(Item_func_in*) cond_func;
unknown's avatar
unknown committed
5117

5118 5119 5120 5121 5122
    /*
      Array for IN() is constructed when all values have the same result
      type. Tree won't be built for values with different result types,
      so we check it here to avoid unnecessary work.
    */
5123 5124
    if (!func->arg_types_compatible)
      break;     
5125

unknown's avatar
unknown committed
5126
    if (inv)
5127
    {
unknown's avatar
unknown committed
5128
      if (func->array && func->array->result_type() != ROW_RESULT)
5129
      {
5130
        /*
5131 5132 5133
          We get here for conditions in form "t.key NOT IN (c1, c2, ...)",
          where c{i} are constants. Our goal is to produce a SEL_TREE that 
          represents intervals:
5134 5135 5136 5137 5138
          
          ($MIN<t.key<c1) OR (c1<t.key<c2) OR (c2<t.key<c3) OR ...    (*)
          
          where $MIN is either "-inf" or NULL.
          
5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155
          The most straightforward way to produce it is to convert NOT IN
          into "(t.key != c1) AND (t.key != c2) AND ... " and let the range
          analyzer to build SEL_TREE from that. The problem is that the
          range analyzer will use O(N^2) memory (which is probably a bug),
          and people do use big NOT IN lists (e.g. see BUG#15872, BUG#21282),
          will run out of memory.

          Another problem with big lists like (*) is that a big list is
          unlikely to produce a good "range" access, while considering that
          range access will require expensive CPU calculations (and for 
          MyISAM even index accesses). In short, big NOT IN lists are rarely
          worth analyzing.

          Considering the above, we'll handle NOT IN as follows:
          * if the number of entries in the NOT IN list is less than
            NOT_IN_IGNORE_THRESHOLD, construct the SEL_TREE (*) manually.
          * Otherwise, don't produce a SEL_TREE.
5156
        */
5157
#define NOT_IN_IGNORE_THRESHOLD 1000
5158 5159
        MEM_ROOT *tmp_root= param->mem_root;
        param->thd->mem_root= param->old_root;
5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170
        /* 
          Create one Item_type constant object. We'll need it as
          get_mm_parts only accepts constant values wrapped in Item_Type
          objects.
          We create the Item on param->mem_root which points to
          per-statement mem_root (while thd->mem_root is currently pointing
          to mem_root local to range optimizer).
        */
        Item *value_item= func->array->create_item();
        param->thd->mem_root= tmp_root;

5171
        if (func->array->count > NOT_IN_IGNORE_THRESHOLD || !value_item)
5172
          break;
5173

5174
        /* Get a SEL_TREE for "(-inf|NULL) < X < c_0" interval.  */
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
        uint i=0;
        do 
        {
          func->array->value_to_item(i, value_item);
          tree= get_mm_parts(param, cond_func, field, Item_func::LT_FUNC,
                             value_item, cmp_type);
          if (!tree)
            break;
          i++;
        } while (i < func->array->count && tree->type == SEL_TREE::IMPOSSIBLE);

        if (!tree || tree->type == SEL_TREE::IMPOSSIBLE)
        {
          /* We get here in cases like "t.unsigned NOT IN (-1,-2,-3) */
          tree= NULL;
5190
          break;
5191
        }
5192
        SEL_TREE *tree2;
5193
        for (; i < func->array->count; i++)
5194
        {
5195
          if (func->array->compare_elems(i, i-1))
5196
          {
5197 5198 5199 5200 5201
            /* Get a SEL_TREE for "-inf < X < c_i" interval */
            func->array->value_to_item(i, value_item);
            tree2= get_mm_parts(param, cond_func, field, Item_func::LT_FUNC,
                                value_item, cmp_type);
            if (!tree2)
5202
            {
5203 5204 5205
              tree= NULL;
              break;
            }
5206

5207 5208 5209 5210
            /* Change all intervals to be "c_{i-1} < X < c_i" */
            for (uint idx= 0; idx < param->keys; idx++)
            {
              SEL_ARG *new_interval, *last_val;
5211 5212
              if (((new_interval= tree2->keys[idx])) &&
                  (tree->keys[idx]) &&
5213
                  ((last_val= tree->keys[idx]->last())))
5214
              {
5215 5216
                new_interval->min_value= last_val->max_value;
                new_interval->min_flag= NEAR_MIN;
5217 5218
              }
            }
5219 5220 5221 5222 5223
            /* 
              The following doesn't try to allocate memory so no need to
              check for NULL.
            */
            tree= tree_or(param, tree, tree2);
5224 5225
          }
        }
5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236
        
        if (tree && tree->type != SEL_TREE::IMPOSSIBLE)
        {
          /* 
            Get the SEL_TREE for the last "c_last < X < +inf" interval 
            (value_item cotains c_last already)
          */
          tree2= get_mm_parts(param, cond_func, field, Item_func::GT_FUNC,
                              value_item, cmp_type);
          tree= tree_or(param, tree, tree2);
        }
5237 5238
      }
      else
5239
      {
5240 5241 5242 5243
        tree= get_ne_mm_tree(param, cond_func, field,
                             func->arguments()[1], func->arguments()[1],
                             cmp_type);
        if (tree)
unknown's avatar
unknown committed
5244
        {
5245 5246 5247 5248 5249 5250 5251
          Item **arg, **end;
          for (arg= func->arguments()+2, end= arg+func->argument_count()-2;
               arg < end ; arg++)
          {
            tree=  tree_and(param, tree, get_ne_mm_tree(param, cond_func, field, 
                                                        *arg, *arg, cmp_type));
          }
unknown's avatar
unknown committed
5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
        }
      }
    }
    else
    {    
      tree= get_mm_parts(param, cond_func, field, Item_func::EQ_FUNC,
                         func->arguments()[1], cmp_type);
      if (tree)
      {
        Item **arg, **end;
        for (arg= func->arguments()+2, end= arg+func->argument_count()-2;
             arg < end ; arg++)
        {
          tree= tree_or(param, tree, get_mm_parts(param, cond_func, field, 
                                                  Item_func::EQ_FUNC,
                                                  *arg, cmp_type));
        }
5269 5270
      }
    }
unknown's avatar
unknown committed
5271
    break;
5272
  }
unknown's avatar
unknown committed
5273
  default: 
5274
  {
unknown's avatar
unknown committed
5275 5276 5277 5278 5279 5280 5281
    /* 
       Here the function for the following predicates are processed:
       <, <=, =, >=, >, LIKE, IS NULL, IS NOT NULL.
       If the predicate is of the form (value op field) it is handled
       as the equivalent predicate (field rev_op value), e.g.
       2 <= a is handled as a >= 2.
    */
5282 5283 5284
    Item_func::Functype func_type=
      (value != cond_func->arguments()[0]) ? cond_func->functype() :
        ((Item_bool_func2*) cond_func)->rev_functype();
5285
    tree= get_mm_parts(param, cond_func, field, func_type, value, cmp_type);
5286
  }
unknown's avatar
unknown committed
5287 5288
  }

5289 5290
  DBUG_RETURN(tree);
}
5291

unknown's avatar
unknown committed
5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362

/*
  Build conjunction of all SEL_TREEs for a simple predicate applying equalities
 
  SYNOPSIS
    get_full_func_mm_tree()
      param       PARAM from SQL_SELECT::test_quick_select
      cond_func   item for the predicate
      field_item  field in the predicate
      value       constant in the predicate
                  (for BETWEEN it contains the number of the field argument,
                   for IN it's always 0) 
      inv         TRUE <> NOT cond_func is considered
                  (makes sense only when cond_func is BETWEEN or IN)

  DESCRIPTION
    For a simple SARGable predicate of the form (f op c), where f is a field and
    c is a constant, the function builds a conjunction of all SEL_TREES that can
    be obtained by the substitution of f for all different fields equal to f.

  NOTES  
    If the WHERE condition contains a predicate (fi op c),
    then not only SELL_TREE for this predicate is built, but
    the trees for the results of substitution of fi for
    each fj belonging to the same multiple equality as fi
    are built as well.
    E.g. for WHERE t1.a=t2.a AND t2.a > 10 
    a SEL_TREE for t2.a > 10 will be built for quick select from t2
    and   
    a SEL_TREE for t1.a > 10 will be built for quick select from t1.

    A BETWEEN predicate of the form (fi [NOT] BETWEEN c1 AND c2) is treated
    in a similar way: we build a conjuction of trees for the results
    of all substitutions of fi for equal fj.
    Yet a predicate of the form (c BETWEEN f1i AND f2i) is processed
    differently. It is considered as a conjuction of two SARGable
    predicates (f1i <= c) and (f2i <=c) and the function get_full_func_mm_tree
    is called for each of them separately producing trees for 
       AND j (f1j <=c ) and AND j (f2j <= c) 
    After this these two trees are united in one conjunctive tree.
    It's easy to see that the same tree is obtained for
       AND j,k (f1j <=c AND f2k<=c)
    which is equivalent to 
       AND j,k (c BETWEEN f1j AND f2k).
    The validity of the processing of the predicate (c NOT BETWEEN f1i AND f2i)
    which equivalent to (f1i > c OR f2i < c) is not so obvious. Here the
    function get_full_func_mm_tree is called for (f1i > c) and (f2i < c)
    producing trees for AND j (f1j > c) and AND j (f2j < c). Then this two
    trees are united in one OR-tree. The expression 
      (AND j (f1j > c) OR AND j (f2j < c)
    is equivalent to the expression
      AND j,k (f1j > c OR f2k < c) 
    which is just a translation of 
      AND j,k (c NOT BETWEEN f1j AND f2k)

    In the cases when one of the items f1, f2 is a constant c1 we do not create
    a tree for it at all. It works for BETWEEN predicates but does not
    work for NOT BETWEEN predicates as we have to evaluate the expression
    with it. If it is TRUE then the other tree can be completely ignored.
    We do not do it now and no trees are built in these cases for
    NOT BETWEEN predicates.

    As to IN predicates only ones of the form (f IN (c1,...,cn)),
    where f1 is a field and c1,...,cn are constant, are considered as
    SARGable. We never try to narrow the index scan using predicates of
    the form (c IN (c1,...,f,...,cn)). 
      
  RETURN 
    Pointer to the tree representing the built conjunction of SEL_TREEs
*/

5363 5364
static SEL_TREE *get_full_func_mm_tree(RANGE_OPT_PARAM *param,
                                       Item_func *cond_func,
unknown's avatar
unknown committed
5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402
                                       Item_field *field_item, Item *value, 
                                       bool inv)
{
  SEL_TREE *tree= 0;
  SEL_TREE *ftree= 0;
  table_map ref_tables= 0;
  table_map param_comp= ~(param->prev_tables | param->read_tables |
		          param->current_table);
  DBUG_ENTER("get_full_func_mm_tree");

  for (uint i= 0; i < cond_func->arg_count; i++)
  {
    Item *arg= cond_func->arguments()[i]->real_item();
    if (arg != field_item)
      ref_tables|= arg->used_tables();
  }
  Field *field= field_item->field;
  Item_result cmp_type= field->cmp_type();
  if (!((ref_tables | field->table->map) & param_comp))
    ftree= get_func_mm_tree(param, cond_func, field, value, cmp_type, inv);
  Item_equal *item_equal= field_item->item_equal;
  if (item_equal)
  {
    Item_equal_iterator it(*item_equal);
    Item_field *item;
    while ((item= it++))
    {
      Field *f= item->field;
      if (field->eq(f))
        continue;
      if (!((ref_tables | f->table->map) & param_comp))
      {
        tree= get_func_mm_tree(param, cond_func, f, value, cmp_type, inv);
        ftree= !ftree ? tree : tree_and(param, ftree, tree);
      }
    }
  }
  DBUG_RETURN(ftree);
5403 5404
}

unknown's avatar
unknown committed
5405 5406
	/* make a select tree of all keys in condition */

unknown's avatar
unknown committed
5407
static SEL_TREE *get_mm_tree(RANGE_OPT_PARAM *param,COND *cond)
unknown's avatar
unknown committed
5408 5409
{
  SEL_TREE *tree=0;
5410 5411
  SEL_TREE *ftree= 0;
  Item_field *field_item= 0;
unknown's avatar
unknown committed
5412
  bool inv= FALSE;
unknown's avatar
unknown committed
5413
  Item *value= 0;
unknown's avatar
unknown committed
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
  DBUG_ENTER("get_mm_tree");

  if (cond->type() == Item::COND_ITEM)
  {
    List_iterator<Item> li(*((Item_cond*) cond)->argument_list());

    if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
    {
      tree=0;
      Item *item;
      while ((item=li++))
      {
	SEL_TREE *new_tree=get_mm_tree(param,item);
unknown's avatar
unknown committed
5427 5428
	if (param->thd->is_fatal_error || 
            param->alloced_sel_args > SEL_ARG::MAX_SEL_ARGS)
5429
	  DBUG_RETURN(0);	// out of memory
unknown's avatar
unknown committed
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444
	tree=tree_and(param,tree,new_tree);
	if (tree && tree->type == SEL_TREE::IMPOSSIBLE)
	  break;
      }
    }
    else
    {						// COND OR
      tree=get_mm_tree(param,li++);
      if (tree)
      {
	Item *item;
	while ((item=li++))
	{
	  SEL_TREE *new_tree=get_mm_tree(param,item);
	  if (!new_tree)
5445
	    DBUG_RETURN(0);	// out of memory
unknown's avatar
unknown committed
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456
	  tree=tree_or(param,tree,new_tree);
	  if (!tree || tree->type == SEL_TREE::ALWAYS)
	    break;
	}
      }
    }
    DBUG_RETURN(tree);
  }
  /* Here when simple cond */
  if (cond->const_item())
  {
5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
    /*
      During the cond->val_int() evaluation we can come across a subselect 
      item which may allocate memory on the thd->mem_root and assumes 
      all the memory allocated has the same life span as the subselect 
      item itself. So we have to restore the thread's mem_root here.
    */
    MEM_ROOT *tmp_root= param->mem_root;
    param->thd->mem_root= param->old_root;
    tree= cond->val_int() ? new(tmp_root) SEL_TREE(SEL_TREE::ALWAYS) :
                            new(tmp_root) SEL_TREE(SEL_TREE::IMPOSSIBLE);
    param->thd->mem_root= tmp_root;
    DBUG_RETURN(tree);
unknown's avatar
unknown committed
5469
  }
5470

5471 5472 5473
  table_map ref_tables= 0;
  table_map param_comp= ~(param->prev_tables | param->read_tables |
		          param->current_table);
unknown's avatar
unknown committed
5474 5475
  if (cond->type() != Item::FUNC_ITEM)
  {						// Should be a field
5476
    ref_tables= cond->used_tables();
unknown's avatar
unknown committed
5477 5478
    if ((ref_tables & param->current_table) ||
	(ref_tables & ~(param->prev_tables | param->read_tables)))
unknown's avatar
unknown committed
5479 5480 5481
      DBUG_RETURN(0);
    DBUG_RETURN(new SEL_TREE(SEL_TREE::MAYBE));
  }
5482

unknown's avatar
unknown committed
5483
  Item_func *cond_func= (Item_func*) cond;
5484 5485 5486
  if (cond_func->functype() == Item_func::BETWEEN ||
      cond_func->functype() == Item_func::IN_FUNC)
    inv= ((Item_func_opt_neg *) cond_func)->negated;
unknown's avatar
unknown committed
5487
  else if (cond_func->select_optimize() == Item_func::OPTIMIZE_NONE)
unknown's avatar
unknown committed
5488
    DBUG_RETURN(0);			       
unknown's avatar
unknown committed
5489

unknown's avatar
unknown committed
5490 5491
  param->cond= cond;

unknown's avatar
unknown committed
5492 5493
  switch (cond_func->functype()) {
  case Item_func::BETWEEN:
unknown's avatar
unknown committed
5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
    if (cond_func->arguments()[0]->real_item()->type() == Item::FIELD_ITEM)
    {
      field_item= (Item_field*) (cond_func->arguments()[0]->real_item());
      ftree= get_full_func_mm_tree(param, cond_func, field_item, NULL, inv);
    }

    /*
      Concerning the code below see the NOTES section in
      the comments for the function get_full_func_mm_tree()
    */
    for (uint i= 1 ; i < cond_func->arg_count ; i++)
    {
      if (cond_func->arguments()[i]->real_item()->type() == Item::FIELD_ITEM)
      {
        field_item= (Item_field*) (cond_func->arguments()[i]->real_item());
        SEL_TREE *tmp= get_full_func_mm_tree(param, cond_func, 
5510
                                    field_item, (Item*)(intptr)i, inv);
unknown's avatar
unknown committed
5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523
        if (inv)
          tree= !tree ? tmp : tree_or(param, tree, tmp);
        else 
          tree= tree_and(param, tree, tmp);
      }
      else if (inv)
      { 
        tree= 0;
        break;
      }
    }

    ftree = tree_and(param, ftree, tree);
unknown's avatar
unknown committed
5524 5525
    break;
  case Item_func::IN_FUNC:
unknown's avatar
unknown committed
5526 5527
  {
    Item_func_in *func=(Item_func_in*) cond_func;
5528
    if (func->key_item()->real_item()->type() != Item::FIELD_ITEM)
5529
      DBUG_RETURN(0);
5530
    field_item= (Item_field*) (func->key_item()->real_item());
unknown's avatar
unknown committed
5531
    ftree= get_full_func_mm_tree(param, cond_func, field_item, NULL, inv);
unknown's avatar
unknown committed
5532
    break;
5533
  }
unknown's avatar
unknown committed
5534
  case Item_func::MULT_EQUAL_FUNC:
unknown's avatar
unknown committed
5535
  {
5536 5537
    Item_equal *item_equal= (Item_equal *) cond;    
    if (!(value= item_equal->get_const()))
unknown's avatar
unknown committed
5538 5539 5540 5541
      DBUG_RETURN(0);
    Item_equal_iterator it(*item_equal);
    ref_tables= value->used_tables();
    while ((field_item= it++))
unknown's avatar
unknown committed
5542
    {
unknown's avatar
unknown committed
5543 5544 5545
      Field *field= field_item->field;
      Item_result cmp_type= field->cmp_type();
      if (!((ref_tables | field->table->map) & param_comp))
unknown's avatar
unknown committed
5546
      {
5547
        tree= get_mm_parts(param, cond, field, Item_func::EQ_FUNC,
unknown's avatar
unknown committed
5548 5549
		           value,cmp_type);
        ftree= !ftree ? tree : tree_and(param, ftree, tree);
unknown's avatar
unknown committed
5550 5551
      }
    }
unknown's avatar
unknown committed
5552
    
5553
    DBUG_RETURN(ftree);
unknown's avatar
unknown committed
5554 5555
  }
  default:
unknown's avatar
unknown committed
5556
    if (cond_func->arguments()[0]->real_item()->type() == Item::FIELD_ITEM)
unknown's avatar
unknown committed
5557
    {
unknown's avatar
unknown committed
5558
      field_item= (Item_field*) (cond_func->arguments()[0]->real_item());
unknown's avatar
unknown committed
5559
      value= cond_func->arg_count > 1 ? cond_func->arguments()[1] : 0;
unknown's avatar
unknown committed
5560
    }
unknown's avatar
unknown committed
5561
    else if (cond_func->have_rev_func() &&
unknown's avatar
unknown committed
5562 5563
             cond_func->arguments()[1]->real_item()->type() ==
                                                            Item::FIELD_ITEM)
unknown's avatar
unknown committed
5564
    {
unknown's avatar
unknown committed
5565
      field_item= (Item_field*) (cond_func->arguments()[1]->real_item());
unknown's avatar
unknown committed
5566 5567 5568 5569
      value= cond_func->arguments()[0];
    }
    else
      DBUG_RETURN(0);
unknown's avatar
unknown committed
5570
    ftree= get_full_func_mm_tree(param, cond_func, field_item, value, inv);
unknown's avatar
unknown committed
5571
  }
unknown's avatar
unknown committed
5572 5573

  DBUG_RETURN(ftree);
unknown's avatar
unknown committed
5574 5575 5576 5577
}


static SEL_TREE *
unknown's avatar
unknown committed
5578
get_mm_parts(RANGE_OPT_PARAM *param, COND *cond_func, Field *field,
unknown's avatar
unknown committed
5579
	     Item_func::Functype type,
5580
	     Item *value, Item_result cmp_type)
unknown's avatar
unknown committed
5581 5582 5583 5584 5585
{
  DBUG_ENTER("get_mm_parts");
  if (field->table != param->table)
    DBUG_RETURN(0);

5586 5587
  KEY_PART *key_part = param->key_parts;
  KEY_PART *end = param->key_parts_end;
unknown's avatar
unknown committed
5588 5589 5590 5591
  SEL_TREE *tree=0;
  if (value &&
      value->used_tables() & ~(param->prev_tables | param->read_tables))
    DBUG_RETURN(0);
5592
  for (; key_part != end ; key_part++)
unknown's avatar
unknown committed
5593 5594 5595 5596
  {
    if (field->eq(key_part->field))
    {
      SEL_ARG *sel_arg=0;
5597
      if (!tree && !(tree=new SEL_TREE()))
5598
	DBUG_RETURN(0);				// OOM
unknown's avatar
unknown committed
5599 5600
      if (!value || !(value->used_tables() & ~param->read_tables))
      {
5601 5602
	sel_arg=get_mm_leaf(param,cond_func,
			    key_part->field,key_part,type,value);
unknown's avatar
unknown committed
5603 5604 5605 5606 5607 5608 5609 5610
	if (!sel_arg)
	  continue;
	if (sel_arg->type == SEL_ARG::IMPOSSIBLE)
	{
	  tree->type=SEL_TREE::IMPOSSIBLE;
	  DBUG_RETURN(tree);
	}
      }
5611 5612
      else
      {
5613
	// This key may be used later
unknown's avatar
unknown committed
5614
	if (!(sel_arg= new SEL_ARG(SEL_ARG::MAYBE_KEY)))
5615
	  DBUG_RETURN(0);			// OOM
5616
      }
unknown's avatar
unknown committed
5617 5618
      sel_arg->part=(uchar) key_part->part;
      tree->keys[key_part->key]=sel_add(tree->keys[key_part->key],sel_arg);
unknown's avatar
unknown committed
5619
      tree->keys_map.set_bit(key_part->key);
unknown's avatar
unknown committed
5620 5621
    }
  }
5622

5623 5624
  if (tree && tree->merges.is_empty() && tree->keys_map.is_clear_all())
    tree= NULL;
unknown's avatar
unknown committed
5625 5626 5627 5628 5629
  DBUG_RETURN(tree);
}


static SEL_ARG *
unknown's avatar
unknown committed
5630 5631
get_mm_leaf(RANGE_OPT_PARAM *param, COND *conf_func, Field *field,
            KEY_PART *key_part, Item_func::Functype type,Item *value)
unknown's avatar
unknown committed
5632
{
5633
  uint maybe_null=(uint) field->real_maybe_null();
unknown's avatar
unknown committed
5634
  bool optimize_range;
5635 5636
  SEL_ARG *tree= 0;
  MEM_ROOT *alloc= param->mem_root;
5637
  uchar *str;
unknown's avatar
unknown committed
5638
  ulong orig_sql_mode;
5639
  int err;
unknown's avatar
unknown committed
5640 5641
  DBUG_ENTER("get_mm_leaf");

5642 5643
  /*
    We need to restore the runtime mem_root of the thread in this
unknown's avatar
unknown committed
5644
    function because it evaluates the value of its argument, while
5645 5646 5647 5648 5649 5650
    the argument can be any, e.g. a subselect. The subselect
    items, in turn, assume that all the memory allocated during
    the evaluation has the same life span as the item itself.
    TODO: opt_range.cc should not reset thd->mem_root at all.
  */
  param->thd->mem_root= param->old_root;
5651 5652
  if (!value)					// IS NULL or IS NOT NULL
  {
5653
    if (field->table->maybe_null)		// Can't use a key on this
5654
      goto end;
5655
    if (!maybe_null)				// Not null field
5656 5657 5658 5659 5660 5661 5662
    {
      if (type == Item_func::ISNULL_FUNC)
        tree= &null_element;
      goto end;
    }
    if (!(tree= new (alloc) SEL_ARG(field,is_null_string,is_null_string)))
      goto end;                                 // out of memory
5663 5664 5665 5666 5667
    if (type == Item_func::ISNOTNULL_FUNC)
    {
      tree->min_flag=NEAR_MIN;		    /* IS NOT NULL ->  X > NULL */
      tree->max_flag=NO_MAX_RANGE;
    }
5668
    goto end;
5669 5670 5671
  }

  /*
5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
    1. Usually we can't use an index if the column collation
       differ from the operation collation.

    2. However, we can reuse a case insensitive index for
       the binary searches:

       WHERE latin1_swedish_ci_column = 'a' COLLATE lati1_bin;

       WHERE latin1_swedish_ci_colimn = BINARY 'a '

5682 5683 5684 5685
  */
  if (field->result_type() == STRING_RESULT &&
      value->result_type() == STRING_RESULT &&
      key_part->image_type == Field::itRAW &&
5686 5687
      ((Field_str*)field)->charset() != conf_func->compare_collation() &&
      !(conf_func->compare_collation()->state & MY_CS_BINSORT))
5688
    goto end;
5689

unknown's avatar
unknown committed
5690 5691 5692 5693 5694
  if (param->using_real_indexes)
    optimize_range= field->optimize_range(param->real_keynr[key_part->key],
                                          key_part->part);
  else
    optimize_range= TRUE;
unknown's avatar
unknown committed
5695

unknown's avatar
unknown committed
5696 5697 5698
  if (type == Item_func::LIKE_FUNC)
  {
    bool like_error;
5699 5700
    char buff1[MAX_FIELD_WIDTH];
    uchar *min_str,*max_str;
5701
    String tmp(buff1,sizeof(buff1),value->collation.collation),*res;
5702
    size_t length, offset, min_length, max_length;
5703
    uint field_length= field->pack_length()+maybe_null;
unknown's avatar
unknown committed
5704

unknown's avatar
unknown committed
5705
    if (!optimize_range)
5706
      goto end;
unknown's avatar
unknown committed
5707
    if (!(res= value->val_str(&tmp)))
5708 5709 5710 5711
    {
      tree= &null_element;
      goto end;
    }
unknown's avatar
unknown committed
5712

5713 5714 5715 5716 5717
    /*
      TODO:
      Check if this was a function. This should have be optimized away
      in the sql_select.cc
    */
unknown's avatar
unknown committed
5718 5719 5720 5721 5722 5723
    if (res != &tmp)
    {
      tmp.copy(*res);				// Get own copy
      res= &tmp;
    }
    if (field->cmp_type() != STRING_RESULT)
5724
      goto end;                                 // Can only optimize strings
unknown's avatar
unknown committed
5725 5726

    offset=maybe_null;
unknown's avatar
unknown committed
5727 5728 5729
    length=key_part->store_length;

    if (length != key_part->length  + maybe_null)
unknown's avatar
unknown committed
5730
    {
unknown's avatar
unknown committed
5731 5732 5733
      /* key packed with length prefix */
      offset+= HA_KEY_BLOB_LENGTH;
      field_length= length - HA_KEY_BLOB_LENGTH;
unknown's avatar
unknown committed
5734 5735 5736
    }
    else
    {
unknown's avatar
unknown committed
5737 5738 5739 5740 5741 5742 5743 5744
      if (unlikely(length < field_length))
      {
	/*
	  This can only happen in a table created with UNIREG where one key
	  overlaps many fields
	*/
	length= field_length;
      }
unknown's avatar
unknown committed
5745
      else
unknown's avatar
unknown committed
5746
	field_length= length;
unknown's avatar
unknown committed
5747 5748
    }
    length+=offset;
5749
    if (!(min_str= (uchar*) alloc_root(alloc, length*2)))
5750
      goto end;
5751

unknown's avatar
unknown committed
5752 5753 5754
    max_str=min_str+length;
    if (maybe_null)
      max_str[0]= min_str[0]=0;
5755

5756
    field_length-= maybe_null;
5757
    like_error= my_like_range(field->charset(),
unknown's avatar
unknown committed
5758
			      res->ptr(), res->length(),
unknown's avatar
unknown committed
5759 5760
			      ((Item_func_like*)(param->cond))->escape,
			      wild_one, wild_many,
5761
			      field_length,
5762
			      (char*) min_str+offset, (char*) max_str+offset,
unknown's avatar
unknown committed
5763
			      &min_length, &max_length);
unknown's avatar
unknown committed
5764
    if (like_error)				// Can't optimize with LIKE
5765
      goto end;
unknown's avatar
unknown committed
5766

5767
    if (offset != maybe_null)			// BLOB or VARCHAR
unknown's avatar
unknown committed
5768 5769 5770 5771
    {
      int2store(min_str+maybe_null,min_length);
      int2store(max_str+maybe_null,max_length);
    }
5772 5773
    tree= new (alloc) SEL_ARG(field, min_str, max_str);
    goto end;
unknown's avatar
unknown committed
5774 5775
  }

unknown's avatar
unknown committed
5776
  if (!optimize_range &&
5777
      type != Item_func::EQ_FUNC &&
unknown's avatar
unknown committed
5778
      type != Item_func::EQUAL_FUNC)
5779
    goto end;                                   // Can't optimize this
unknown's avatar
unknown committed
5780

5781 5782 5783 5784
  /*
    We can't always use indexes when comparing a string index to a number
    cmp_type() is checked to allow compare of dates to numbers
  */
unknown's avatar
unknown committed
5785 5786 5787
  if (field->result_type() == STRING_RESULT &&
      value->result_type() != STRING_RESULT &&
      field->cmp_type() != value->result_type())
5788
    goto end;
5789
  /* For comparison purposes allow invalid dates like 2000-01-32 */
unknown's avatar
unknown committed
5790
  orig_sql_mode= field->table->in_use->variables.sql_mode;
5791
  if (value->real_item()->type() == Item::STRING_ITEM &&
5792 5793
      (field->type() == MYSQL_TYPE_DATE ||
       field->type() == MYSQL_TYPE_DATETIME))
5794
    field->table->in_use->variables.sql_mode|= MODE_INVALID_DATES;
5795
  err= value->save_in_field_no_warnings(field, 1);
5796
  if (err > 0)
5797
  {
5798
    if (field->cmp_type() != value->result_type())
unknown's avatar
unknown committed
5799
    {
5800 5801 5802 5803 5804 5805 5806 5807 5808
      if ((type == Item_func::EQ_FUNC || type == Item_func::EQUAL_FUNC) &&
          value->result_type() == item_cmp_type(field->result_type(),
                                                value->result_type()))
      {
        tree= new (alloc) SEL_ARG(field, 0, 0);
        tree->type= SEL_ARG::IMPOSSIBLE;
        goto end;
      }
      else
5809 5810
      {
        /*
5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821
          TODO: We should return trees of the type SEL_ARG::IMPOSSIBLE
          for the cases like int_field > 999999999999999999999999 as well.
        */
        tree= 0;
        if (err == 3 && field->type() == FIELD_TYPE_DATE &&
            (type == Item_func::GT_FUNC || type == Item_func::GE_FUNC ||
             type == Item_func::LT_FUNC || type == Item_func::LE_FUNC) )
        {
          /*
            We were saving DATETIME into a DATE column, the conversion went ok
            but a non-zero time part was cut off.
5822

5823 5824 5825
            In MySQL's SQL dialect, DATE and DATETIME are compared as datetime
            values. Index over a DATE column uses DATE comparison. Changing 
            from one comparison to the other is possible:
5826

5827 5828
            datetime(date_col)< '2007-12-10 12:34:55' -> date_col<='2007-12-10'
            datetime(date_col)<='2007-12-10 12:34:55' -> date_col<='2007-12-10'
5829

5830 5831
            datetime(date_col)> '2007-12-10 12:34:55' -> date_col>='2007-12-10'
            datetime(date_col)>='2007-12-10 12:34:55' -> date_col>='2007-12-10'
5832

5833 5834 5835 5836 5837 5838 5839
            but we'll need to convert '>' to '>=' and '<' to '<='. This will
            be done together with other types at the end of this function
            (grep for field_is_equal_to_item)
          */
        }
        else
          goto end;
5840
      }
unknown's avatar
unknown committed
5841
    }
5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859

    /*
      guaranteed at this point:  err > 0; field and const of same type
      If an integer got bounded (e.g. to within 0..255 / -128..127)
      for < or >, set flags as for <= or >= (no NEAR_MAX / NEAR_MIN)
    */
    else if (err == 1 && field->result_type() == INT_RESULT)
    {
      if (type == Item_func::LT_FUNC && (value->val_int() > 0))
        type = Item_func::LE_FUNC;
      else if (type == Item_func::GT_FUNC &&
               !((Field_num*)field)->unsigned_flag &&
               !((Item_int*)value)->unsigned_flag &&
               (value->val_int() < 0))
        type = Item_func::GE_FUNC;
    }
  }
  else if (err < 0)
unknown's avatar
unknown committed
5860
  {
5861
    field->table->in_use->variables.sql_mode= orig_sql_mode;
5862
    /* This happens when we try to insert a NULL field in a not null column */
5863 5864
    tree= &null_element;                        // cmp with NULL is never TRUE
    goto end;
unknown's avatar
unknown committed
5865
  }
5866
  field->table->in_use->variables.sql_mode= orig_sql_mode;
5867
  str= (uchar*) alloc_root(alloc, key_part->store_length+1);
unknown's avatar
unknown committed
5868
  if (!str)
5869
    goto end;
unknown's avatar
unknown committed
5870
  if (maybe_null)
5871 5872 5873
    *str= (uchar) field->is_real_null();        // Set to 1 if null
  field->get_key_image(str+maybe_null, key_part->length,
                       key_part->image_type);
5874 5875
  if (!(tree= new (alloc) SEL_ARG(field, str, str)))
    goto end;                                   // out of memory
unknown's avatar
unknown committed
5876

unknown's avatar
unknown committed
5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887
  /*
    Check if we are comparing an UNSIGNED integer with a negative constant.
    In this case we know that:
    (a) (unsigned_int [< | <=] negative_constant) == FALSE
    (b) (unsigned_int [> | >=] negative_constant) == TRUE
    In case (a) the condition is false for all values, and in case (b) it
    is true for all values, so we can avoid unnecessary retrieval and condition
    testing, and we also get correct comparison of unsinged integers with
    negative integers (which otherwise fails because at query execution time
    negative integers are cast to unsigned if compared with unsigned).
   */
unknown's avatar
unknown committed
5888 5889
  if (field->result_type() == INT_RESULT &&
      value->result_type() == INT_RESULT &&
unknown's avatar
unknown committed
5890 5891 5892 5893 5894 5895 5896 5897
      ((Field_num*)field)->unsigned_flag && !((Item_int*)value)->unsigned_flag)
  {
    longlong item_val= value->val_int();
    if (item_val < 0)
    {
      if (type == Item_func::LT_FUNC || type == Item_func::LE_FUNC)
      {
        tree->type= SEL_ARG::IMPOSSIBLE;
5898
        goto end;
unknown's avatar
unknown committed
5899 5900
      }
      if (type == Item_func::GT_FUNC || type == Item_func::GE_FUNC)
5901 5902 5903 5904
      {
        tree= 0;
        goto end;
      }
unknown's avatar
unknown committed
5905 5906
    }
  }
unknown's avatar
unknown committed
5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922

  switch (type) {
  case Item_func::LT_FUNC:
    if (field_is_equal_to_item(field,value))
      tree->max_flag=NEAR_MAX;
    /* fall through */
  case Item_func::LE_FUNC:
    if (!maybe_null)
      tree->min_flag=NO_MIN_RANGE;		/* From start */
    else
    {						// > NULL
      tree->min_value=is_null_string;
      tree->min_flag=NEAR_MIN;
    }
    break;
  case Item_func::GT_FUNC:
5923 5924 5925
    /* Don't use open ranges for partial key_segments */
    if (field_is_equal_to_item(field,value) &&
        !(key_part->flag & HA_PART_KEY_SEG))
unknown's avatar
unknown committed
5926 5927 5928 5929 5930
      tree->min_flag=NEAR_MIN;
    /* fall through */
  case Item_func::GE_FUNC:
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
5931
  case Item_func::SP_EQUALS_FUNC:
unknown's avatar
unknown committed
5932 5933 5934
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_EQUAL;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
5935
  case Item_func::SP_DISJOINT_FUNC:
unknown's avatar
unknown committed
5936 5937 5938
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_DISJOINT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
5939
  case Item_func::SP_INTERSECTS_FUNC:
unknown's avatar
unknown committed
5940 5941 5942
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
5943
  case Item_func::SP_TOUCHES_FUNC:
unknown's avatar
unknown committed
5944 5945 5946
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
5947 5948

  case Item_func::SP_CROSSES_FUNC:
unknown's avatar
unknown committed
5949 5950 5951
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
5952
  case Item_func::SP_WITHIN_FUNC:
unknown's avatar
unknown committed
5953 5954 5955
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_WITHIN;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
5956 5957

  case Item_func::SP_CONTAINS_FUNC:
unknown's avatar
unknown committed
5958 5959 5960
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_CONTAIN;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
5961
  case Item_func::SP_OVERLAPS_FUNC:
unknown's avatar
unknown committed
5962 5963 5964
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
5965

unknown's avatar
unknown committed
5966 5967 5968
  default:
    break;
  }
5969 5970 5971

end:
  param->thd->mem_root= alloc;
unknown's avatar
unknown committed
5972 5973 5974 5975 5976 5977 5978 5979 5980
  DBUG_RETURN(tree);
}


/******************************************************************************
** Tree manipulation functions
** If tree is 0 it means that the condition can't be tested. It refers
** to a non existent table or to a field in current table with isn't a key.
** The different tree flags:
unknown's avatar
unknown committed
5981 5982
** IMPOSSIBLE:	 Condition is never TRUE
** ALWAYS:	 Condition is always TRUE
unknown's avatar
unknown committed
5983 5984 5985 5986 5987 5988
** MAYBE:	 Condition may exists when tables are read
** MAYBE_KEY:	 Condition refers to a key that may be used in join loop
** KEY_RANGE:	 Condition uses a key
******************************************************************************/

/*
5989 5990
  Add a new key test to a key when scanning through all keys
  This will never be called for same key parts.
unknown's avatar
unknown committed
5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028
*/

static SEL_ARG *
sel_add(SEL_ARG *key1,SEL_ARG *key2)
{
  SEL_ARG *root,**key_link;

  if (!key1)
    return key2;
  if (!key2)
    return key1;

  key_link= &root;
  while (key1 && key2)
  {
    if (key1->part < key2->part)
    {
      *key_link= key1;
      key_link= &key1->next_key_part;
      key1=key1->next_key_part;
    }
    else
    {
      *key_link= key2;
      key_link= &key2->next_key_part;
      key2=key2->next_key_part;
    }
  }
  *key_link=key1 ? key1 : key2;
  return root;
}

#define CLONE_KEY1_MAYBE 1
#define CLONE_KEY2_MAYBE 2
#define swap_clone_flag(A) ((A & 1) << 1) | ((A & 2) >> 1)


static SEL_TREE *
unknown's avatar
unknown committed
6029
tree_and(RANGE_OPT_PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
unknown's avatar
unknown committed
6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
{
  DBUG_ENTER("tree_and");
  if (!tree1)
    DBUG_RETURN(tree2);
  if (!tree2)
    DBUG_RETURN(tree1);
  if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
    DBUG_RETURN(tree1);
  if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
    DBUG_RETURN(tree2);
  if (tree1->type == SEL_TREE::MAYBE)
  {
    if (tree2->type == SEL_TREE::KEY)
      tree2->type=SEL_TREE::KEY_SMALLER;
    DBUG_RETURN(tree2);
  }
  if (tree2->type == SEL_TREE::MAYBE)
  {
    tree1->type=SEL_TREE::KEY_SMALLER;
    DBUG_RETURN(tree1);
  }
unknown's avatar
unknown committed
6051 6052
  key_map  result_keys;
  result_keys.clear_all();
unknown's avatar
unknown committed
6053
  
unknown's avatar
unknown committed
6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065
  /* Join the trees key per key */
  SEL_ARG **key1,**key2,**end;
  for (key1= tree1->keys,key2= tree2->keys,end=key1+param->keys ;
       key1 != end ; key1++,key2++)
  {
    uint flag=0;
    if (*key1 || *key2)
    {
      if (*key1 && !(*key1)->simple_key())
	flag|=CLONE_KEY1_MAYBE;
      if (*key2 && !(*key2)->simple_key())
	flag|=CLONE_KEY2_MAYBE;
unknown's avatar
unknown committed
6066
      *key1=key_and(param, *key1, *key2, flag);
6067
      if (*key1 && (*key1)->type == SEL_ARG::IMPOSSIBLE)
unknown's avatar
unknown committed
6068 6069
      {
	tree1->type= SEL_TREE::IMPOSSIBLE;
unknown's avatar
unknown committed
6070
        DBUG_RETURN(tree1);
unknown's avatar
unknown committed
6071
      }
unknown's avatar
unknown committed
6072
      result_keys.set_bit(key1 - tree1->keys);
unknown's avatar
unknown committed
6073
#ifdef EXTRA_DEBUG
6074 6075
        if (*key1 && param->alloced_sel_args < SEL_ARG::MAX_SEL_ARGS) 
          (*key1)->test_use_count(*key1);
unknown's avatar
unknown committed
6076 6077 6078
#endif
    }
  }
unknown's avatar
unknown committed
6079 6080
  tree1->keys_map= result_keys;
  /* dispose index_merge if there is a "range" option */
unknown's avatar
unknown committed
6081
  if (!result_keys.is_clear_all())
unknown's avatar
unknown committed
6082 6083 6084 6085 6086 6087 6088
  {
    tree1->merges.empty();
    DBUG_RETURN(tree1);
  }

  /* ok, both trees are index_merge trees */
  imerge_list_and_list(&tree1->merges, &tree2->merges);
unknown's avatar
unknown committed
6089 6090 6091 6092
  DBUG_RETURN(tree1);
}


unknown's avatar
unknown committed
6093
/*
unknown's avatar
unknown committed
6094 6095
  Check if two SEL_TREES can be combined into one (i.e. a single key range
  read can be constructed for "cond_of_tree1 OR cond_of_tree2" ) without
6096
  using index_merge.
unknown's avatar
unknown committed
6097 6098
*/

6099 6100
bool sel_trees_can_be_ored(SEL_TREE *tree1, SEL_TREE *tree2, 
                           RANGE_OPT_PARAM* param)
unknown's avatar
unknown committed
6101
{
unknown's avatar
unknown committed
6102
  key_map common_keys= tree1->keys_map;
unknown's avatar
unknown committed
6103
  DBUG_ENTER("sel_trees_can_be_ored");
6104
  common_keys.intersect(tree2->keys_map);
unknown's avatar
unknown committed
6105

unknown's avatar
unknown committed
6106
  if (common_keys.is_clear_all())
unknown's avatar
unknown committed
6107
    DBUG_RETURN(FALSE);
unknown's avatar
unknown committed
6108 6109

  /* trees have a common key, check if they refer to same key part */
unknown's avatar
unknown committed
6110
  SEL_ARG **key1,**key2;
unknown's avatar
unknown committed
6111
  for (uint key_no=0; key_no < param->keys; key_no++)
unknown's avatar
unknown committed
6112
  {
unknown's avatar
unknown committed
6113
    if (common_keys.is_set(key_no))
unknown's avatar
unknown committed
6114 6115 6116 6117 6118
    {
      key1= tree1->keys + key_no;
      key2= tree2->keys + key_no;
      if ((*key1)->part == (*key2)->part)
      {
unknown's avatar
unknown committed
6119
        DBUG_RETURN(TRUE);
unknown's avatar
unknown committed
6120 6121 6122
      }
    }
  }
unknown's avatar
unknown committed
6123
  DBUG_RETURN(FALSE);
unknown's avatar
unknown committed
6124
}
unknown's avatar
unknown committed
6125

6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189

/*
  Remove the trees that are not suitable for record retrieval.
  SYNOPSIS
    param  Range analysis parameter
    tree   Tree to be processed, tree->type is KEY or KEY_SMALLER
 
  DESCRIPTION
    This function walks through tree->keys[] and removes the SEL_ARG* trees
    that are not "maybe" trees (*) and cannot be used to construct quick range
    selects.
    (*) - have type MAYBE or MAYBE_KEY. Perhaps we should remove trees of
          these types here as well.

    A SEL_ARG* tree cannot be used to construct quick select if it has
    tree->part != 0. (e.g. it could represent "keypart2 < const").

    WHY THIS FUNCTION IS NEEDED
    
    Normally we allow construction of SEL_TREE objects that have SEL_ARG
    trees that do not allow quick range select construction. For example for
    " keypart1=1 AND keypart2=2 " the execution will proceed as follows:
    tree1= SEL_TREE { SEL_ARG{keypart1=1} }
    tree2= SEL_TREE { SEL_ARG{keypart2=2} } -- can't make quick range select
                                               from this
    call tree_and(tree1, tree2) -- this joins SEL_ARGs into a usable SEL_ARG
                                   tree.
    
    There is an exception though: when we construct index_merge SEL_TREE,
    any SEL_ARG* tree that cannot be used to construct quick range select can
    be removed, because current range analysis code doesn't provide any way
    that tree could be later combined with another tree.
    Consider an example: we should not construct
    st1 = SEL_TREE { 
      merges = SEL_IMERGE { 
                            SEL_TREE(t.key1part1 = 1), 
                            SEL_TREE(t.key2part2 = 2)   -- (*)
                          } 
                   };
    because 
     - (*) cannot be used to construct quick range select, 
     - There is no execution path that would cause (*) to be converted to 
       a tree that could be used.

    The latter is easy to verify: first, notice that the only way to convert
    (*) into a usable tree is to call tree_and(something, (*)).

    Second look at what tree_and/tree_or function would do when passed a
    SEL_TREE that has the structure like st1 tree has, and conlcude that 
    tree_and(something, (*)) will not be called.

  RETURN
    0  Ok, some suitable trees left
    1  No tree->keys[] left.
*/

static bool remove_nonrange_trees(RANGE_OPT_PARAM *param, SEL_TREE *tree)
{
  bool res= FALSE;
  for (uint i=0; i < param->keys; i++)
  {
    if (tree->keys[i])
    {
      if (tree->keys[i]->part)
6190
      {
6191
        tree->keys[i]= NULL;
6192 6193
        tree->keys_map.clear_bit(i);
      }
6194 6195 6196 6197
      else
        res= TRUE;
    }
  }
unknown's avatar
unknown committed
6198
  return !res;
6199 6200 6201
}


unknown's avatar
unknown committed
6202
static SEL_TREE *
unknown's avatar
unknown committed
6203
tree_or(RANGE_OPT_PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
unknown's avatar
unknown committed
6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216
{
  DBUG_ENTER("tree_or");
  if (!tree1 || !tree2)
    DBUG_RETURN(0);
  if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
    DBUG_RETURN(tree2);
  if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
    DBUG_RETURN(tree1);
  if (tree1->type == SEL_TREE::MAYBE)
    DBUG_RETURN(tree1);				// Can't use this
  if (tree2->type == SEL_TREE::MAYBE)
    DBUG_RETURN(tree2);

unknown's avatar
unknown committed
6217
  SEL_TREE *result= 0;
unknown's avatar
unknown committed
6218 6219
  key_map  result_keys;
  result_keys.clear_all();
unknown's avatar
unknown committed
6220
  if (sel_trees_can_be_ored(tree1, tree2, param))
unknown's avatar
unknown committed
6221
  {
unknown's avatar
unknown committed
6222 6223 6224 6225
    /* Join the trees key per key */
    SEL_ARG **key1,**key2,**end;
    for (key1= tree1->keys,key2= tree2->keys,end= key1+param->keys ;
         key1 != end ; key1++,key2++)
unknown's avatar
unknown committed
6226
    {
unknown's avatar
unknown committed
6227
      *key1=key_or(param, *key1, *key2);
unknown's avatar
unknown committed
6228 6229 6230
      if (*key1)
      {
        result=tree1;				// Added to tree1
unknown's avatar
unknown committed
6231
        result_keys.set_bit(key1 - tree1->keys);
unknown's avatar
unknown committed
6232
#ifdef EXTRA_DEBUG
6233 6234
        if (param->alloced_sel_args < SEL_ARG::MAX_SEL_ARGS) 
          (*key1)->test_use_count(*key1);
unknown's avatar
unknown committed
6235
#endif
unknown's avatar
unknown committed
6236 6237 6238 6239 6240 6241 6242 6243 6244 6245
      }
    }
    if (result)
      result->keys_map= result_keys;
  }
  else
  {
    /* ok, two trees have KEY type but cannot be used without index merge */
    if (tree1->merges.is_empty() && tree2->merges.is_empty())
    {
6246 6247 6248 6249 6250 6251 6252
      if (param->remove_jump_scans)
      {
        bool no_trees= remove_nonrange_trees(param, tree1);
        no_trees= no_trees || remove_nonrange_trees(param, tree2);
        if (no_trees)
          DBUG_RETURN(new SEL_TREE(SEL_TREE::ALWAYS));
      }
unknown's avatar
unknown committed
6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273
      SEL_IMERGE *merge;
      /* both trees are "range" trees, produce new index merge structure */
      if (!(result= new SEL_TREE()) || !(merge= new SEL_IMERGE()) ||
          (result->merges.push_back(merge)) ||
          (merge->or_sel_tree(param, tree1)) ||
          (merge->or_sel_tree(param, tree2)))
        result= NULL;
      else
        result->type= tree1->type;
    }
    else if (!tree1->merges.is_empty() && !tree2->merges.is_empty())
    {
      if (imerge_list_or_list(param, &tree1->merges, &tree2->merges))
        result= new SEL_TREE(SEL_TREE::ALWAYS);
      else
        result= tree1;
    }
    else
    {
      /* one tree is index merge tree and another is range tree */
      if (tree1->merges.is_empty())
unknown's avatar
unknown committed
6274
        swap_variables(SEL_TREE*, tree1, tree2);
6275 6276 6277
      
      if (param->remove_jump_scans && remove_nonrange_trees(param, tree2))
         DBUG_RETURN(new SEL_TREE(SEL_TREE::ALWAYS));
unknown's avatar
unknown committed
6278 6279 6280 6281 6282
      /* add tree2 to tree1->merges, checking if it collapses to ALWAYS */
      if (imerge_list_or_tree(param, &tree1->merges, tree2))
        result= new SEL_TREE(SEL_TREE::ALWAYS);
      else
        result= tree1;
unknown's avatar
unknown committed
6283 6284 6285 6286 6287 6288 6289 6290 6291
    }
  }
  DBUG_RETURN(result);
}


/* And key trees where key1->part < key2 -> part */

static SEL_ARG *
6292 6293
and_all_keys(RANGE_OPT_PARAM *param, SEL_ARG *key1, SEL_ARG *key2, 
             uint clone_flag)
unknown's avatar
unknown committed
6294 6295 6296 6297 6298 6299
{
  SEL_ARG *next;
  ulong use_count=key1->use_count;

  if (key1->elements != 1)
  {
unknown's avatar
unknown committed
6300
    key2->use_count+=key1->elements-1; //psergey: why we don't count that key1 has n-k-p?
unknown's avatar
unknown committed
6301 6302 6303 6304
    key2->increment_use_count((int) key1->elements-1);
  }
  if (key1->type == SEL_ARG::MAYBE_KEY)
  {
6305 6306
    key1->right= key1->left= &null_element;
    key1->next= key1->prev= 0;
unknown's avatar
unknown committed
6307 6308 6309 6310 6311
  }
  for (next=key1->first(); next ; next=next->next)
  {
    if (next->next_key_part)
    {
unknown's avatar
unknown committed
6312
      SEL_ARG *tmp= key_and(param, next->next_key_part, key2, clone_flag);
unknown's avatar
unknown committed
6313 6314 6315 6316 6317 6318 6319 6320
      if (tmp && tmp->type == SEL_ARG::IMPOSSIBLE)
      {
	key1=key1->tree_delete(next);
	continue;
      }
      next->next_key_part=tmp;
      if (use_count)
	next->increment_use_count(use_count);
unknown's avatar
unknown committed
6321 6322
      if (param->alloced_sel_args > SEL_ARG::MAX_SEL_ARGS)
        break;
unknown's avatar
unknown committed
6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333
    }
    else
      next->next_key_part=key2;
  }
  if (!key1)
    return &null_element;			// Impossible ranges
  key1->use_count++;
  return key1;
}


6334 6335 6336 6337 6338
/*
  Produce a SEL_ARG graph that represents "key1 AND key2"

  SYNOPSIS
    key_and()
6339 6340 6341 6342
      param   Range analysis context (needed to track if we have allocated
              too many SEL_ARGs)
      key1    First argument, root of its RB-tree
      key2    Second argument, root of its RB-tree
6343 6344 6345 6346 6347 6348

  RETURN
    RB-tree root of the resulting SEL_ARG graph.
    NULL if the result of AND operation is an empty interval {0}.
*/

unknown's avatar
unknown committed
6349
static SEL_ARG *
6350
key_and(RANGE_OPT_PARAM *param, SEL_ARG *key1, SEL_ARG *key2, uint clone_flag)
unknown's avatar
unknown committed
6351 6352 6353 6354 6355 6356 6357 6358 6359
{
  if (!key1)
    return key2;
  if (!key2)
    return key1;
  if (key1->part != key2->part)
  {
    if (key1->part > key2->part)
    {
6360
      swap_variables(SEL_ARG *, key1, key2);
unknown's avatar
unknown committed
6361 6362 6363 6364 6365
      clone_flag=swap_clone_flag(clone_flag);
    }
    // key1->part < key2->part
    key1->use_count--;
    if (key1->use_count > 0)
unknown's avatar
unknown committed
6366
      if (!(key1= key1->clone_tree(param)))
6367
	return 0;				// OOM
unknown's avatar
unknown committed
6368
    return and_all_keys(param, key1, key2, clone_flag);
unknown's avatar
unknown committed
6369 6370 6371
  }

  if (((clone_flag & CLONE_KEY2_MAYBE) &&
6372 6373
       !(clone_flag & CLONE_KEY1_MAYBE) &&
       key2->type != SEL_ARG::MAYBE_KEY) ||
unknown's avatar
unknown committed
6374 6375
      key1->type == SEL_ARG::MAYBE_KEY)
  {						// Put simple key in key2
6376
    swap_variables(SEL_ARG *, key1, key2);
unknown's avatar
unknown committed
6377 6378 6379
    clone_flag=swap_clone_flag(clone_flag);
  }

unknown's avatar
unknown committed
6380
  /* If one of the key is MAYBE_KEY then the found region may be smaller */
unknown's avatar
unknown committed
6381 6382 6383 6384 6385
  if (key2->type == SEL_ARG::MAYBE_KEY)
  {
    if (key1->use_count > 1)
    {
      key1->use_count--;
unknown's avatar
unknown committed
6386
      if (!(key1=key1->clone_tree(param)))
6387
	return 0;				// OOM
unknown's avatar
unknown committed
6388 6389 6390 6391
      key1->use_count++;
    }
    if (key1->type == SEL_ARG::MAYBE_KEY)
    {						// Both are maybe key
unknown's avatar
unknown committed
6392 6393
      key1->next_key_part=key_and(param, key1->next_key_part, 
                                  key2->next_key_part, clone_flag);
unknown's avatar
unknown committed
6394 6395 6396 6397 6398 6399 6400 6401
      if (key1->next_key_part &&
	  key1->next_key_part->type == SEL_ARG::IMPOSSIBLE)
	return key1;
    }
    else
    {
      key1->maybe_smaller();
      if (key2->next_key_part)
6402 6403
      {
	key1->use_count--;			// Incremented in and_all_keys
unknown's avatar
unknown committed
6404
	return and_all_keys(param, key1, key2, clone_flag);
6405
      }
unknown's avatar
unknown committed
6406 6407 6408 6409 6410
      key2->use_count--;			// Key2 doesn't have a tree
    }
    return key1;
  }

6411 6412
  if ((key1->min_flag | key2->min_flag) & GEOM_FLAG)
  {
6413
    /* TODO: why not leave one of the trees? */
6414 6415 6416 6417 6418
    key1->free_tree();
    key2->free_tree();
    return 0;					// Can't optimize this
  }

6419 6420 6421
  if ((key1->min_flag | key2->min_flag) & GEOM_FLAG)
  {
    key1->free_tree();
6422 6423 6424 6425
    key2->free_tree();
    return 0;					// Can't optimize this
  }

unknown's avatar
unknown committed
6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439
  key1->use_count--;
  key2->use_count--;
  SEL_ARG *e1=key1->first(), *e2=key2->first(), *new_tree=0;

  while (e1 && e2)
  {
    int cmp=e1->cmp_min_to_min(e2);
    if (cmp < 0)
    {
      if (get_range(&e1,&e2,key1))
	continue;
    }
    else if (get_range(&e2,&e1,key2))
      continue;
unknown's avatar
unknown committed
6440 6441
    SEL_ARG *next=key_and(param, e1->next_key_part, e2->next_key_part,
                          clone_flag);
unknown's avatar
unknown committed
6442 6443 6444 6445 6446
    e1->increment_use_count(1);
    e2->increment_use_count(1);
    if (!next || next->type != SEL_ARG::IMPOSSIBLE)
    {
      SEL_ARG *new_arg= e1->clone_and(e2);
6447 6448
      if (!new_arg)
	return &null_element;			// End of memory
unknown's avatar
unknown committed
6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488
      new_arg->next_key_part=next;
      if (!new_tree)
      {
	new_tree=new_arg;
      }
      else
	new_tree=new_tree->insert(new_arg);
    }
    if (e1->cmp_max_to_max(e2) < 0)
      e1=e1->next;				// e1 can't overlapp next e2
    else
      e2=e2->next;
  }
  key1->free_tree();
  key2->free_tree();
  if (!new_tree)
    return &null_element;			// Impossible range
  return new_tree;
}


static bool
get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1)
{
  (*e1)=root1->find_range(*e2);			// first e1->min < e2->min
  if ((*e1)->cmp_max_to_min(*e2) < 0)
  {
    if (!((*e1)=(*e1)->next))
      return 1;
    if ((*e1)->cmp_min_to_max(*e2) > 0)
    {
      (*e2)=(*e2)->next;
      return 1;
    }
  }
  return 0;
}


static SEL_ARG *
6489
key_or(RANGE_OPT_PARAM *param, SEL_ARG *key1,SEL_ARG *key2)
unknown's avatar
unknown committed
6490 6491 6492 6493 6494 6495 6496 6497 6498 6499
{
  if (!key1)
  {
    if (key2)
    {
      key2->use_count--;
      key2->free_tree();
    }
    return 0;
  }
6500
  if (!key2)
unknown's avatar
unknown committed
6501 6502 6503 6504 6505 6506 6507 6508
  {
    key1->use_count--;
    key1->free_tree();
    return 0;
  }
  key1->use_count--;
  key2->use_count--;

6509 6510
  if (key1->part != key2->part || 
      (key1->min_flag | key2->min_flag) & GEOM_FLAG)
unknown's avatar
unknown committed
6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534
  {
    key1->free_tree();
    key2->free_tree();
    return 0;					// Can't optimize this
  }

  // If one of the key is MAYBE_KEY then the found region may be bigger
  if (key1->type == SEL_ARG::MAYBE_KEY)
  {
    key2->free_tree();
    key1->use_count++;
    return key1;
  }
  if (key2->type == SEL_ARG::MAYBE_KEY)
  {
    key1->free_tree();
    key2->use_count++;
    return key2;
  }

  if (key1->use_count > 0)
  {
    if (key2->use_count == 0 || key1->elements > key2->elements)
    {
6535
      swap_variables(SEL_ARG *,key1,key2);
unknown's avatar
unknown committed
6536
    }
unknown's avatar
unknown committed
6537
    if (key1->use_count > 0 || !(key1=key1->clone_tree(param)))
6538
      return 0;					// OOM
unknown's avatar
unknown committed
6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563
  }

  // Add tree at key2 to tree at key1
  bool key2_shared=key2->use_count != 0;
  key1->maybe_flag|=key2->maybe_flag;

  for (key2=key2->first(); key2; )
  {
    SEL_ARG *tmp=key1->find_range(key2);	// Find key1.min <= key2.min
    int cmp;

    if (!tmp)
    {
      tmp=key1->first();			// tmp.min > key2.min
      cmp= -1;
    }
    else if ((cmp=tmp->cmp_max_to_min(key2)) < 0)
    {						// Found tmp.max < key2.min
      SEL_ARG *next=tmp->next;
      if (cmp == -2 && eq_tree(tmp->next_key_part,key2->next_key_part))
      {
	// Join near ranges like tmp.max < 0 and key2.min >= 0
	SEL_ARG *key2_next=key2->next;
	if (key2_shared)
	{
unknown's avatar
unknown committed
6564
	  if (!(key2=new SEL_ARG(*key2)))
6565
	    return 0;		// out of memory
unknown's avatar
unknown committed
6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605
	  key2->increment_use_count(key1->use_count+1);
	  key2->next=key2_next;			// New copy of key2
	}
	key2->copy_min(tmp);
	if (!(key1=key1->tree_delete(tmp)))
	{					// Only one key in tree
	  key1=key2;
	  key1->make_root();
	  key2=key2_next;
	  break;
	}
      }
      if (!(tmp=next))				// tmp.min > key2.min
	break;					// Copy rest of key2
    }
    if (cmp < 0)
    {						// tmp.min > key2.min
      int tmp_cmp;
      if ((tmp_cmp=tmp->cmp_min_to_max(key2)) > 0) // if tmp.min > key2.max
      {
	if (tmp_cmp == 2 && eq_tree(tmp->next_key_part,key2->next_key_part))
	{					// ranges are connected
	  tmp->copy_min_to_min(key2);
	  key1->merge_flags(key2);
	  if (tmp->min_flag & NO_MIN_RANGE &&
	      tmp->max_flag & NO_MAX_RANGE)
	  {
	    if (key1->maybe_flag)
	      return new SEL_ARG(SEL_ARG::MAYBE_KEY);
	    return 0;
	  }
	  key2->increment_use_count(-1);	// Free not used tree
	  key2=key2->next;
	  continue;
	}
	else
	{
	  SEL_ARG *next=key2->next;		// Keys are not overlapping
	  if (key2_shared)
	  {
6606 6607
	    SEL_ARG *cpy= new SEL_ARG(*key2);	// Must make copy
	    if (!cpy)
6608
	      return 0;				// OOM
6609
	    key1=key1->insert(cpy);
unknown's avatar
unknown committed
6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637
	    key2->increment_use_count(key1->use_count+1);
	  }
	  else
	    key1=key1->insert(key2);		// Will destroy key2_root
	  key2=next;
	  continue;
	}
      }
    }

    // tmp.max >= key2.min && tmp.min <= key.max  (overlapping ranges)
    if (eq_tree(tmp->next_key_part,key2->next_key_part))
    {
      if (tmp->is_same(key2))
      {
	tmp->merge_flags(key2);			// Copy maybe flags
	key2->increment_use_count(-1);		// Free not used tree
      }
      else
      {
	SEL_ARG *last=tmp;
	while (last->next && last->next->cmp_min_to_max(key2) <= 0 &&
	       eq_tree(last->next->next_key_part,key2->next_key_part))
	{
	  SEL_ARG *save=last;
	  last=last->next;
	  key1=key1->tree_delete(save);
	}
unknown's avatar
unknown committed
6638
        last->copy_min(tmp);
unknown's avatar
unknown committed
6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655
	if (last->copy_min(key2) || last->copy_max(key2))
	{					// Full range
	  key1->free_tree();
	  for (; key2 ; key2=key2->next)
	    key2->increment_use_count(-1);	// Free not used tree
	  if (key1->maybe_flag)
	    return new SEL_ARG(SEL_ARG::MAYBE_KEY);
	  return 0;
	}
      }
      key2=key2->next;
      continue;
    }

    if (cmp >= 0 && tmp->cmp_min_to_min(key2) < 0)
    {						// tmp.min <= x < key2.min
      SEL_ARG *new_arg=tmp->clone_first(key2);
6656 6657
      if (!new_arg)
	return 0;				// OOM
unknown's avatar
unknown committed
6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670
      if ((new_arg->next_key_part= key1->next_key_part))
	new_arg->increment_use_count(key1->use_count+1);
      tmp->copy_min_to_min(key2);
      key1=key1->insert(new_arg);
    }

    // tmp.min >= key2.min && tmp.min <= key2.max
    SEL_ARG key(*key2);				// Get copy we can modify
    for (;;)
    {
      if (tmp->cmp_min_to_min(&key) > 0)
      {						// key.min <= x < tmp.min
	SEL_ARG *new_arg=key.clone_first(tmp);
6671 6672
	if (!new_arg)
	  return 0;				// OOM
unknown's avatar
unknown committed
6673 6674 6675 6676 6677 6678 6679 6680
	if ((new_arg->next_key_part=key.next_key_part))
	  new_arg->increment_use_count(key1->use_count+1);
	key1=key1->insert(new_arg);
      }
      if ((cmp=tmp->cmp_max_to_max(&key)) <= 0)
      {						// tmp.min. <= x <= tmp.max
	tmp->maybe_flag|= key.maybe_flag;
	key.increment_use_count(key1->use_count+1);
unknown's avatar
unknown committed
6681
	tmp->next_key_part= key_or(param, tmp->next_key_part, key.next_key_part);
unknown's avatar
unknown committed
6682 6683 6684 6685 6686
	if (!cmp)				// Key2 is ready
	  break;
	key.copy_max_to_min(tmp);
	if (!(tmp=tmp->next))
	{
6687 6688 6689 6690
	  SEL_ARG *tmp2= new SEL_ARG(key);
	  if (!tmp2)
	    return 0;				// OOM
	  key1=key1->insert(tmp2);
unknown's avatar
unknown committed
6691 6692 6693 6694 6695
	  key2=key2->next;
	  goto end;
	}
	if (tmp->cmp_min_to_max(&key) > 0)
	{
6696 6697 6698 6699
	  SEL_ARG *tmp2= new SEL_ARG(key);
	  if (!tmp2)
	    return 0;				// OOM
	  key1=key1->insert(tmp2);
unknown's avatar
unknown committed
6700 6701 6702 6703 6704 6705
	  break;
	}
      }
      else
      {
	SEL_ARG *new_arg=tmp->clone_last(&key); // tmp.min <= x <= key.max
6706 6707
	if (!new_arg)
	  return 0;				// OOM
unknown's avatar
unknown committed
6708 6709
	tmp->copy_max_to_min(&key);
	tmp->increment_use_count(key1->use_count+1);
6710 6711
	/* Increment key count as it may be used for next loop */
	key.increment_use_count(1);
unknown's avatar
unknown committed
6712
	new_arg->next_key_part= key_or(param, tmp->next_key_part, key.next_key_part);
unknown's avatar
unknown committed
6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725
	key1=key1->insert(new_arg);
	break;
      }
    }
    key2=key2->next;
  }

end:
  while (key2)
  {
    SEL_ARG *next=key2->next;
    if (key2_shared)
    {
6726 6727 6728
      SEL_ARG *tmp=new SEL_ARG(*key2);		// Must make copy
      if (!tmp)
	return 0;
unknown's avatar
unknown committed
6729
      key2->increment_use_count(key1->use_count+1);
6730
      key1=key1->insert(tmp);
unknown's avatar
unknown committed
6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776
    }
    else
      key1=key1->insert(key2);			// Will destroy key2_root
    key2=next;
  }
  key1->use_count++;
  return key1;
}


/* Compare if two trees are equal */

static bool eq_tree(SEL_ARG* a,SEL_ARG *b)
{
  if (a == b)
    return 1;
  if (!a || !b || !a->is_same(b))
    return 0;
  if (a->left != &null_element && b->left != &null_element)
  {
    if (!eq_tree(a->left,b->left))
      return 0;
  }
  else if (a->left != &null_element || b->left != &null_element)
    return 0;
  if (a->right != &null_element && b->right != &null_element)
  {
    if (!eq_tree(a->right,b->right))
      return 0;
  }
  else if (a->right != &null_element || b->right != &null_element)
    return 0;
  if (a->next_key_part != b->next_key_part)
  {						// Sub range
    if (!a->next_key_part != !b->next_key_part ||
	!eq_tree(a->next_key_part, b->next_key_part))
      return 0;
  }
  return 1;
}


SEL_ARG *
SEL_ARG::insert(SEL_ARG *key)
{
  SEL_ARG *element,**par,*last_element;
6777 6778
  LINT_INIT(par);
  LINT_INIT(last_element);
unknown's avatar
unknown committed
6779

unknown's avatar
unknown committed
6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846
  for (element= this; element != &null_element ; )
  {
    last_element=element;
    if (key->cmp_min_to_min(element) > 0)
    {
      par= &element->right; element= element->right;
    }
    else
    {
      par = &element->left; element= element->left;
    }
  }
  *par=key;
  key->parent=last_element;
	/* Link in list */
  if (par == &last_element->left)
  {
    key->next=last_element;
    if ((key->prev=last_element->prev))
      key->prev->next=key;
    last_element->prev=key;
  }
  else
  {
    if ((key->next=last_element->next))
      key->next->prev=key;
    key->prev=last_element;
    last_element->next=key;
  }
  key->left=key->right= &null_element;
  SEL_ARG *root=rb_insert(key);			// rebalance tree
  root->use_count=this->use_count;		// copy root info
  root->elements= this->elements+1;
  root->maybe_flag=this->maybe_flag;
  return root;
}


/*
** Find best key with min <= given key
** Because the call context this should never return 0 to get_range
*/

SEL_ARG *
SEL_ARG::find_range(SEL_ARG *key)
{
  SEL_ARG *element=this,*found=0;

  for (;;)
  {
    if (element == &null_element)
      return found;
    int cmp=element->cmp_min_to_min(key);
    if (cmp == 0)
      return element;
    if (cmp < 0)
    {
      found=element;
      element=element->right;
    }
    else
      element=element->left;
  }
}


/*
6847 6848 6849 6850 6851
  Remove a element from the tree

  SYNOPSIS
    tree_delete()
    key		Key that is to be deleted from tree (this)
unknown's avatar
unknown committed
6852

6853 6854 6855 6856 6857
  NOTE
    This also frees all sub trees that is used by the element

  RETURN
    root of new tree (with key deleted)
unknown's avatar
unknown committed
6858 6859 6860 6861 6862 6863 6864
*/

SEL_ARG *
SEL_ARG::tree_delete(SEL_ARG *key)
{
  enum leaf_color remove_color;
  SEL_ARG *root,*nod,**par,*fix_par;
6865 6866 6867 6868
  DBUG_ENTER("tree_delete");

  root=this;
  this->parent= 0;
unknown's avatar
unknown committed
6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914

  /* Unlink from list */
  if (key->prev)
    key->prev->next=key->next;
  if (key->next)
    key->next->prev=key->prev;
  key->increment_use_count(-1);
  if (!key->parent)
    par= &root;
  else
    par=key->parent_ptr();

  if (key->left == &null_element)
  {
    *par=nod=key->right;
    fix_par=key->parent;
    if (nod != &null_element)
      nod->parent=fix_par;
    remove_color= key->color;
  }
  else if (key->right == &null_element)
  {
    *par= nod=key->left;
    nod->parent=fix_par=key->parent;
    remove_color= key->color;
  }
  else
  {
    SEL_ARG *tmp=key->next;			// next bigger key (exist!)
    nod= *tmp->parent_ptr()= tmp->right;	// unlink tmp from tree
    fix_par=tmp->parent;
    if (nod != &null_element)
      nod->parent=fix_par;
    remove_color= tmp->color;

    tmp->parent=key->parent;			// Move node in place of key
    (tmp->left=key->left)->parent=tmp;
    if ((tmp->right=key->right) != &null_element)
      tmp->right->parent=tmp;
    tmp->color=key->color;
    *par=tmp;
    if (fix_par == key)				// key->right == key->next
      fix_par=tmp;				// new parent of nod
  }

  if (root == &null_element)
6915
    DBUG_RETURN(0);				// Maybe root later
unknown's avatar
unknown committed
6916 6917 6918 6919 6920 6921 6922
  if (remove_color == BLACK)
    root=rb_delete_fixup(root,nod,fix_par);
  test_rb_tree(root,root->parent);

  root->use_count=this->use_count;		// Fix root counters
  root->elements=this->elements-1;
  root->maybe_flag=this->maybe_flag;
6923
  DBUG_RETURN(root);
unknown's avatar
unknown committed
6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098
}


	/* Functions to fix up the tree after insert and delete */

static void left_rotate(SEL_ARG **root,SEL_ARG *leaf)
{
  SEL_ARG *y=leaf->right;
  leaf->right=y->left;
  if (y->left != &null_element)
    y->left->parent=leaf;
  if (!(y->parent=leaf->parent))
    *root=y;
  else
    *leaf->parent_ptr()=y;
  y->left=leaf;
  leaf->parent=y;
}

static void right_rotate(SEL_ARG **root,SEL_ARG *leaf)
{
  SEL_ARG *y=leaf->left;
  leaf->left=y->right;
  if (y->right != &null_element)
    y->right->parent=leaf;
  if (!(y->parent=leaf->parent))
    *root=y;
  else
    *leaf->parent_ptr()=y;
  y->right=leaf;
  leaf->parent=y;
}


SEL_ARG *
SEL_ARG::rb_insert(SEL_ARG *leaf)
{
  SEL_ARG *y,*par,*par2,*root;
  root= this; root->parent= 0;

  leaf->color=RED;
  while (leaf != root && (par= leaf->parent)->color == RED)
  {					// This can't be root or 1 level under
    if (par == (par2= leaf->parent->parent)->left)
    {
      y= par2->right;
      if (y->color == RED)
      {
	par->color=BLACK;
	y->color=BLACK;
	leaf=par2;
	leaf->color=RED;		/* And the loop continues */
      }
      else
      {
	if (leaf == par->right)
	{
	  left_rotate(&root,leaf->parent);
	  par=leaf;			/* leaf is now parent to old leaf */
	}
	par->color=BLACK;
	par2->color=RED;
	right_rotate(&root,par2);
	break;
      }
    }
    else
    {
      y= par2->left;
      if (y->color == RED)
      {
	par->color=BLACK;
	y->color=BLACK;
	leaf=par2;
	leaf->color=RED;		/* And the loop continues */
      }
      else
      {
	if (leaf == par->left)
	{
	  right_rotate(&root,par);
	  par=leaf;
	}
	par->color=BLACK;
	par2->color=RED;
	left_rotate(&root,par2);
	break;
      }
    }
  }
  root->color=BLACK;
  test_rb_tree(root,root->parent);
  return root;
}


SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key,SEL_ARG *par)
{
  SEL_ARG *x,*w;
  root->parent=0;

  x= key;
  while (x != root && x->color == SEL_ARG::BLACK)
  {
    if (x == par->left)
    {
      w=par->right;
      if (w->color == SEL_ARG::RED)
      {
	w->color=SEL_ARG::BLACK;
	par->color=SEL_ARG::RED;
	left_rotate(&root,par);
	w=par->right;
      }
      if (w->left->color == SEL_ARG::BLACK && w->right->color == SEL_ARG::BLACK)
      {
	w->color=SEL_ARG::RED;
	x=par;
      }
      else
      {
	if (w->right->color == SEL_ARG::BLACK)
	{
	  w->left->color=SEL_ARG::BLACK;
	  w->color=SEL_ARG::RED;
	  right_rotate(&root,w);
	  w=par->right;
	}
	w->color=par->color;
	par->color=SEL_ARG::BLACK;
	w->right->color=SEL_ARG::BLACK;
	left_rotate(&root,par);
	x=root;
	break;
      }
    }
    else
    {
      w=par->left;
      if (w->color == SEL_ARG::RED)
      {
	w->color=SEL_ARG::BLACK;
	par->color=SEL_ARG::RED;
	right_rotate(&root,par);
	w=par->left;
      }
      if (w->right->color == SEL_ARG::BLACK && w->left->color == SEL_ARG::BLACK)
      {
	w->color=SEL_ARG::RED;
	x=par;
      }
      else
      {
	if (w->left->color == SEL_ARG::BLACK)
	{
	  w->right->color=SEL_ARG::BLACK;
	  w->color=SEL_ARG::RED;
	  left_rotate(&root,w);
	  w=par->left;
	}
	w->color=par->color;
	par->color=SEL_ARG::BLACK;
	w->left->color=SEL_ARG::BLACK;
	right_rotate(&root,par);
	x=root;
	break;
      }
    }
    par=x->parent;
  }
  x->color=SEL_ARG::BLACK;
  return root;
}


7099
	/* Test that the properties for a red-black tree hold */
unknown's avatar
unknown committed
7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136

#ifdef EXTRA_DEBUG
int test_rb_tree(SEL_ARG *element,SEL_ARG *parent)
{
  int count_l,count_r;

  if (element == &null_element)
    return 0;					// Found end of tree
  if (element->parent != parent)
  {
    sql_print_error("Wrong tree: Parent doesn't point at parent");
    return -1;
  }
  if (element->color == SEL_ARG::RED &&
      (element->left->color == SEL_ARG::RED ||
       element->right->color == SEL_ARG::RED))
  {
    sql_print_error("Wrong tree: Found two red in a row");
    return -1;
  }
  if (element->left == element->right && element->left != &null_element)
  {						// Dummy test
    sql_print_error("Wrong tree: Found right == left");
    return -1;
  }
  count_l=test_rb_tree(element->left,element);
  count_r=test_rb_tree(element->right,element);
  if (count_l >= 0 && count_r >= 0)
  {
    if (count_l == count_r)
      return count_l+(element->color == SEL_ARG::BLACK);
    sql_print_error("Wrong tree: Incorrect black-count: %d - %d",
	    count_l,count_r);
  }
  return -1;					// Error, no more warnings
}

7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181

/*
  Count how many times SEL_ARG graph "root" refers to its part "key"
  
  SYNOPSIS
    count_key_part_usage()
      root  An RB-Root node in a SEL_ARG graph.
      key   Another RB-Root node in that SEL_ARG graph.

  DESCRIPTION
    The passed "root" node may refer to "key" node via root->next_key_part,
    root->next->n

    This function counts how many times the node "key" is referred (via
    SEL_ARG::next_key_part) by 
     - intervals of RB-tree pointed by "root", 
     - intervals of RB-trees that are pointed by SEL_ARG::next_key_part from 
       intervals of RB-tree pointed by "root",
     - and so on.
    
    Here is an example (horizontal links represent next_key_part pointers, 
    vertical links - next/prev prev pointers):  
    
         +----+               $
         |root|-----------------+
         +----+               $ |
           |                  $ |
           |                  $ |
         +----+       +---+   $ |     +---+    Here the return value
         |    |- ... -|   |---$-+--+->|key|    will be 4.
         +----+       +---+   $ |  |  +---+
           |                  $ |  |
          ...                 $ |  |
           |                  $ |  |
         +----+   +---+       $ |  |
         |    |---|   |---------+  |
         +----+   +---+       $    |
           |        |         $    |
          ...     +---+       $    |
                  |   |------------+
                  +---+       $
  RETURN 
    Number of links to "key" from nodes reachable from "root".
*/

unknown's avatar
unknown committed
7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198
static ulong count_key_part_usage(SEL_ARG *root, SEL_ARG *key)
{
  ulong count= 0;
  for (root=root->first(); root ; root=root->next)
  {
    if (root->next_key_part)
    {
      if (root->next_key_part == key)
	count++;
      if (root->next_key_part->part < key->part)
	count+=count_key_part_usage(root->next_key_part,key);
    }
  }
  return count;
}


7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212
/*
  Check if SEL_ARG::use_count value is correct

  SYNOPSIS
    SEL_ARG::test_use_count()
      root  The root node of the SEL_ARG graph (an RB-tree root node that
            has the least value of sel_arg->part in the entire graph, and
            thus is the "origin" of the graph)

  DESCRIPTION
    Check if SEL_ARG::use_count value is correct. See the definition of
    use_count for what is "correct".
*/

unknown's avatar
unknown committed
7213 7214
void SEL_ARG::test_use_count(SEL_ARG *root)
{
7215
  uint e_count=0;
unknown's avatar
unknown committed
7216 7217
  if (this == root && use_count != 1)
  {
unknown's avatar
unknown committed
7218
    sql_print_information("Use_count: Wrong count %lu for root",use_count);
unknown's avatar
unknown committed
7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230
    return;
  }
  if (this->type != SEL_ARG::KEY_RANGE)
    return;
  for (SEL_ARG *pos=first(); pos ; pos=pos->next)
  {
    e_count++;
    if (pos->next_key_part)
    {
      ulong count=count_key_part_usage(root,pos->next_key_part);
      if (count > pos->next_key_part->use_count)
      {
7231 7232 7233
        sql_print_information("Use_count: Wrong count for key at 0x%lx, %lu "
                              "should be %lu", (long unsigned int)pos,
                              pos->next_key_part->use_count, count);
unknown's avatar
unknown committed
7234 7235 7236 7237 7238 7239
	return;
      }
      pos->next_key_part->test_use_count(root);
    }
  }
  if (e_count != elements)
unknown's avatar
unknown committed
7240
    sql_print_warning("Wrong use count: %u (should be %u) for tree at 0x%lx",
7241
                      e_count, elements, (long unsigned int) this);
unknown's avatar
unknown committed
7242 7243 7244 7245 7246
}

#endif


7247 7248 7249 7250 7251 7252
/*
  Calculate estimate of number records that will be retrieved by a range
  scan on given index using given SEL_ARG intervals tree.
  SYNOPSIS
    check_quick_select
      param  Parameter from test_quick_select
7253 7254 7255 7256 7257 7258
      idx               Number of index to use in tree->keys
      tree              Transformed selection condition, tree->keys[idx]
                        holds the range tree to be used for scanning.
      update_tbl_stats  If true, update table->quick_keys with information
                        about range scan we've evaluated.

7259
  NOTES
unknown's avatar
unknown committed
7260
    param->is_ror_scan is set to reflect if the key scan is a ROR (see
7261
    is_key_scan_ror function for more info)
unknown's avatar
unknown committed
7262
    param->table->quick_*, param->range_count (and maybe others) are
7263
    updated with data of given key scan, see check_quick_keys for details.
unknown's avatar
unknown committed
7264 7265

  RETURN
7266
    Estimate # of records to be retrieved.
unknown's avatar
unknown committed
7267
    HA_POS_ERROR if estimate calculation failed due to table handler problems.
unknown's avatar
unknown committed
7268

7269
*/
unknown's avatar
unknown committed
7270 7271

static ha_rows
7272
check_quick_select(PARAM *param,uint idx,SEL_ARG *tree, bool update_tbl_stats)
unknown's avatar
unknown committed
7273 7274
{
  ha_rows records;
7275 7276
  bool    cpk_scan;
  uint key;
unknown's avatar
unknown committed
7277
  DBUG_ENTER("check_quick_select");
unknown's avatar
unknown committed
7278

unknown's avatar
unknown committed
7279
  param->is_ror_scan= FALSE;
unknown's avatar
unknown committed
7280
  param->first_null_comp= 0;
unknown's avatar
unknown committed
7281

unknown's avatar
unknown committed
7282 7283
  if (!tree)
    DBUG_RETURN(HA_POS_ERROR);			// Can't use it
unknown's avatar
unknown committed
7284 7285
  param->max_key_part=0;
  param->range_count=0;
7286 7287
  key= param->real_keynr[idx];

unknown's avatar
unknown committed
7288 7289 7290 7291
  if (tree->type == SEL_ARG::IMPOSSIBLE)
    DBUG_RETURN(0L);				// Impossible select. return
  if (tree->type != SEL_ARG::KEY_RANGE || tree->part != 0)
    DBUG_RETURN(HA_POS_ERROR);				// Don't use tree
7292 7293 7294 7295 7296

  enum ha_key_alg key_alg= param->table->key_info[key].algorithm;
  if ((key_alg != HA_KEY_ALG_BTREE) && (key_alg!= HA_KEY_ALG_UNDEF))
  {
    /* Records are not ordered by rowid for other types of indexes. */
unknown's avatar
unknown committed
7297
    cpk_scan= FALSE;
7298 7299 7300 7301 7302 7303 7304
  }
  else
  {
    /*
      Clustered PK scan is a special case, check_quick_keys doesn't recognize
      CPK scans as ROR scans (while actually any CPK scan is a ROR scan).
    */
7305 7306
    cpk_scan= ((param->table->s->primary_key == param->real_keynr[idx]) &&
               param->table->file->primary_key_is_clustered());
unknown's avatar
unknown committed
7307
    param->is_ror_scan= !cpk_scan;
7308
  }
7309
  param->n_ranges= 0;
7310

7311 7312 7313
  records= check_quick_keys(param, idx, tree,
                            param->min_key, 0, -1,
                            param->max_key, 0, -1);
unknown's avatar
unknown committed
7314
  if (records != HA_POS_ERROR)
unknown's avatar
unknown committed
7315
  {
7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327
    if (update_tbl_stats)
    {
      param->table->quick_keys.set_bit(key);
      param->table->quick_key_parts[key]=param->max_key_part+1;
      param->table->quick_n_ranges[key]= param->n_ranges;
      param->table->quick_condition_rows=
        min(param->table->quick_condition_rows, records);
    }
    /*
      Need to save quick_rows in any case as it is used when calculating
      cost of ROR intersection:
    */
unknown's avatar
unknown committed
7328
    param->table->quick_rows[key]=records;
7329
    if (cpk_scan)
unknown's avatar
unknown committed
7330
      param->is_ror_scan= TRUE;
unknown's avatar
unknown committed
7331
  }
7332 7333
  if (param->table->file->index_flags(key, 0, TRUE) & HA_KEY_SCAN_NOT_ROR)
    param->is_ror_scan= FALSE;
7334
  DBUG_PRINT("exit", ("Records: %lu", (ulong) records));
unknown's avatar
unknown committed
7335 7336 7337 7338
  DBUG_RETURN(records);
}


7339
/*
unknown's avatar
unknown committed
7340 7341
  Recursively calculate estimate of # rows that will be retrieved by
  key scan on key idx.
7342 7343
  SYNOPSIS
    check_quick_keys()
7344
      param         Parameter from test_quick select function.
unknown's avatar
unknown committed
7345
      idx           Number of key to use in PARAM::keys in list of used keys
7346 7347 7348
                    (param->real_keynr[idx] holds the key number in table)
      key_tree      SEL_ARG tree being examined.
      min_key       Buffer with partial min key value tuple
unknown's avatar
unknown committed
7349
      min_key_flag
7350
      max_key       Buffer with partial max key value tuple
7351 7352
      max_key_flag

7353
  NOTES
unknown's avatar
unknown committed
7354 7355
    The function does the recursive descent on the tree via SEL_ARG::left,
    SEL_ARG::right, and SEL_ARG::next_key_part edges. The #rows estimates
7356 7357
    are calculated using records_in_range calls at the leaf nodes and then
    summed.
7358

7359 7360
    param->min_key and param->max_key are used to hold prefixes of key value
    tuples.
7361 7362

    The side effects are:
unknown's avatar
unknown committed
7363

7364 7365
    param->max_key_part is updated to hold the maximum number of key parts used
      in scan minus 1.
unknown's avatar
unknown committed
7366 7367

    param->range_count is incremented if the function finds a range that
7368
      wasn't counted by the caller.
unknown's avatar
unknown committed
7369

7370 7371 7372
    param->is_ror_scan is cleared if the function detects that the key scan is
      not a Rowid-Ordered Retrieval scan ( see comments for is_key_scan_ror
      function for description of which key scans are ROR scans)
unknown's avatar
unknown committed
7373 7374 7375 7376 7377

  RETURN
    #records      E(#records) for given subtree
    HA_POS_ERROR  if subtree cannot be used for record retrieval

7378 7379
*/

unknown's avatar
unknown committed
7380
static ha_rows
7381
check_quick_keys(PARAM *param, uint idx, SEL_ARG *key_tree,
7382 7383
		 uchar *min_key, uint min_key_flag, int min_keypart,
                 uchar *max_key, uint max_key_flag, int max_keypart)
unknown's avatar
unknown committed
7384
{
unknown's avatar
unknown committed
7385 7386
  ha_rows records=0, tmp;
  uint tmp_min_flag, tmp_max_flag, keynr, min_key_length, max_key_length;
7387
  uint tmp_min_keypart= min_keypart, tmp_max_keypart= max_keypart;
7388
  uchar *tmp_min_key, *tmp_max_key;
unknown's avatar
unknown committed
7389
  uint8 save_first_null_comp= param->first_null_comp;
unknown's avatar
unknown committed
7390 7391 7392 7393

  param->max_key_part=max(param->max_key_part,key_tree->part);
  if (key_tree->left != &null_element)
  {
7394 7395 7396 7397 7398 7399
    /*
      There are at least two intervals for current key part, i.e. condition
      was converted to something like
        (keyXpartY less/equals c1) OR (keyXpartY more/equals c2).
      This is not a ROR scan if the key is not Clustered Primary Key.
    */
unknown's avatar
unknown committed
7400
    param->is_ror_scan= FALSE;
7401 7402 7403
    records=check_quick_keys(param, idx, key_tree->left,
                             min_key, min_key_flag, min_keypart,
			     max_key, max_key_flag, max_keypart);
unknown's avatar
unknown committed
7404 7405 7406 7407
    if (records == HA_POS_ERROR)			// Impossible
      return records;
  }

unknown's avatar
unknown committed
7408 7409
  tmp_min_key= min_key;
  tmp_max_key= max_key;
7410 7411 7412 7413 7414 7415
  tmp_min_keypart+= key_tree->store_min(param->key[idx][key_tree->part].store_length,
                                        &tmp_min_key, min_key_flag);
  tmp_max_keypart+= key_tree->store_max(param->key[idx][key_tree->part].store_length,
                                        &tmp_max_key, max_key_flag);
  min_key_length= (uint) (tmp_min_key - param->min_key);
  max_key_length= (uint) (tmp_max_key - param->max_key);
unknown's avatar
unknown committed
7416

7417 7418
  if (param->is_ror_scan)
  {
unknown's avatar
unknown committed
7419
    /*
7420
      If the index doesn't cover entire key, mark the scan as non-ROR scan.
7421
      Actually we're cutting off some ROR scans here.
7422 7423 7424
    */
    uint16 fieldnr= param->table->key_info[param->real_keynr[idx]].
                    key_part[key_tree->part].fieldnr - 1;
unknown's avatar
unknown committed
7425
    if (param->table->field[fieldnr]->key_length() !=
7426
        param->key[idx][key_tree->part].length)
unknown's avatar
unknown committed
7427
      param->is_ror_scan= FALSE;
7428 7429
  }

unknown's avatar
unknown committed
7430 7431 7432
  if (!param->first_null_comp && key_tree->is_null_interval())
    param->first_null_comp= key_tree->part+1;

unknown's avatar
unknown committed
7433 7434 7435 7436 7437
  if (key_tree->next_key_part &&
      key_tree->next_key_part->part == key_tree->part+1 &&
      key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
  {						// const key as prefix
    if (min_key_length == max_key_length &&
7438
	!memcmp(min_key, max_key, (uint) (tmp_max_key - max_key)) &&
unknown's avatar
unknown committed
7439 7440
	!key_tree->min_flag && !key_tree->max_flag)
    {
7441 7442 7443 7444
      tmp=check_quick_keys(param,idx,key_tree->next_key_part, tmp_min_key,
                           min_key_flag | key_tree->min_flag, tmp_min_keypart,
                           tmp_max_key, max_key_flag | key_tree->max_flag,
                           tmp_max_keypart);
unknown's avatar
unknown committed
7445 7446
      goto end;					// Ugly, but efficient
    }
7447
    else
7448 7449
    {
      /* The interval for current key part is not c1 <= keyXpartY <= c1 */
unknown's avatar
unknown committed
7450
      param->is_ror_scan= FALSE;
7451
    }
7452

unknown's avatar
unknown committed
7453 7454 7455
    tmp_min_flag=key_tree->min_flag;
    tmp_max_flag=key_tree->max_flag;
    if (!tmp_min_flag)
7456
      tmp_min_keypart+=
unknown's avatar
unknown committed
7457 7458 7459
      key_tree->next_key_part->store_min_key(param->key[idx], &tmp_min_key,
					     &tmp_min_flag);
    if (!tmp_max_flag)
7460
      tmp_max_keypart+=
unknown's avatar
unknown committed
7461 7462
      key_tree->next_key_part->store_max_key(param->key[idx], &tmp_max_key,
					     &tmp_max_flag);
7463 7464
    min_key_length= (uint) (tmp_min_key - param->min_key);
    max_key_length= (uint) (tmp_max_key - param->max_key);
unknown's avatar
unknown committed
7465 7466 7467
  }
  else
  {
7468 7469
    tmp_min_flag= min_key_flag | key_tree->min_flag;
    tmp_max_flag= max_key_flag | key_tree->max_flag;
unknown's avatar
unknown committed
7470 7471
  }

7472 7473 7474
  if (unlikely(param->thd->killed != 0))
    return HA_POS_ERROR;
  
unknown's avatar
unknown committed
7475
  keynr=param->real_keynr[idx];
unknown's avatar
unknown committed
7476
  param->range_count++;
unknown's avatar
unknown committed
7477 7478
  if (!tmp_min_flag && ! tmp_max_flag &&
      (uint) key_tree->part+1 == param->table->key_info[keynr].key_parts &&
7479
      (param->table->key_info[keynr].flags & (HA_NOSAME | HA_END_SPACE_KEY)) ==
7480
      HA_NOSAME && min_key_length == max_key_length &&
7481
      !memcmp(param->min_key, param->max_key, min_key_length) &&
unknown's avatar
unknown committed
7482
      !param->first_null_comp)
7483
  {
unknown's avatar
unknown committed
7484
    tmp=1;					// Max one record
7485 7486
    param->n_ranges++;
  }
unknown's avatar
unknown committed
7487
  else
unknown's avatar
unknown committed
7488
  {
7489 7490
    if (param->is_ror_scan)
    {
7491 7492 7493 7494 7495 7496 7497 7498 7499
      /*
        If we get here, the condition on the key was converted to form
        "(keyXpart1 = c1) AND ... AND (keyXpart{key_tree->part - 1} = cN) AND
          somecond(keyXpart{key_tree->part})"
        Check if
          somecond is "keyXpart{key_tree->part} = const" and
          uncovered "tail" of KeyX parts is either empty or is identical to
          first members of clustered primary key.
      */
7500
      if (!(min_key_length == max_key_length &&
7501
            !memcmp(min_key, max_key, (uint) (tmp_max_key - max_key)) &&
unknown's avatar
unknown committed
7502
            !key_tree->min_flag && !key_tree->max_flag &&
7503
            is_key_scan_ror(param, keynr, key_tree->part + 1)))
unknown's avatar
unknown committed
7504
        param->is_ror_scan= FALSE;
7505
    }
7506
    param->n_ranges++;
7507

unknown's avatar
unknown committed
7508
    if (tmp_min_flag & GEOM_FLAG)
unknown's avatar
unknown committed
7509
    {
unknown's avatar
unknown committed
7510
      key_range min_range;
7511
      min_range.key=    param->min_key;
unknown's avatar
unknown committed
7512
      min_range.length= min_key_length;
7513
      min_range.keypart_map= make_keypart_map(tmp_min_keypart);
unknown's avatar
unknown committed
7514 7515 7516
      /* In this case tmp_min_flag contains the handler-read-function */
      min_range.flag=   (ha_rkey_function) (tmp_min_flag ^ GEOM_FLAG);

7517 7518
      tmp= param->table->file->records_in_range(keynr,
                                                &min_range, (key_range*) 0);
unknown's avatar
unknown committed
7519 7520 7521
    }
    else
    {
unknown's avatar
unknown committed
7522 7523
      key_range min_range, max_range;

7524
      min_range.key=    param->min_key;
unknown's avatar
unknown committed
7525 7526 7527
      min_range.length= min_key_length;
      min_range.flag=   (tmp_min_flag & NEAR_MIN ? HA_READ_AFTER_KEY :
                         HA_READ_KEY_EXACT);
7528
      min_range.keypart_map= make_keypart_map(tmp_min_keypart);
7529
      max_range.key=    param->max_key;
unknown's avatar
unknown committed
7530 7531 7532
      max_range.length= max_key_length;
      max_range.flag=   (tmp_max_flag & NEAR_MAX ?
                         HA_READ_BEFORE_KEY : HA_READ_AFTER_KEY);
7533
      max_range.keypart_map= make_keypart_map(tmp_max_keypart);
unknown's avatar
unknown committed
7534 7535 7536 7537 7538
      tmp=param->table->file->records_in_range(keynr,
                                               (min_key_length ? &min_range :
                                                (key_range*) 0),
                                               (max_key_length ? &max_range :
                                                (key_range*) 0));
unknown's avatar
unknown committed
7539 7540
    }
  }
unknown's avatar
unknown committed
7541 7542 7543 7544 7545 7546
 end:
  if (tmp == HA_POS_ERROR)			// Impossible range
    return tmp;
  records+=tmp;
  if (key_tree->right != &null_element)
  {
7547 7548 7549 7550 7551 7552
    /*
      There are at least two intervals for current key part, i.e. condition
      was converted to something like
        (keyXpartY less/equals c1) OR (keyXpartY more/equals c2).
      This is not a ROR scan if the key is not Clustered Primary Key.
    */
unknown's avatar
unknown committed
7553
    param->is_ror_scan= FALSE;
7554 7555 7556
    tmp=check_quick_keys(param, idx, key_tree->right,
                         min_key, min_key_flag, min_keypart,
                         max_key, max_key_flag, max_keypart);
unknown's avatar
unknown committed
7557 7558 7559 7560
    if (tmp == HA_POS_ERROR)
      return tmp;
    records+=tmp;
  }
unknown's avatar
unknown committed
7561
  param->first_null_comp= save_first_null_comp;
unknown's avatar
unknown committed
7562 7563 7564
  return records;
}

7565

7566
/*
unknown's avatar
unknown committed
7567
  Check if key scan on given index with equality conditions on first n key
7568 7569 7570 7571
  parts is a ROR scan.

  SYNOPSIS
    is_key_scan_ror()
unknown's avatar
unknown committed
7572
      param  Parameter from test_quick_select
7573 7574 7575 7576
      keynr  Number of key in the table. The key must not be a clustered
             primary key.
      nparts Number of first key parts for which equality conditions
             are present.
unknown's avatar
unknown committed
7577

7578 7579 7580
  NOTES
    ROR (Rowid Ordered Retrieval) key scan is a key scan that produces
    ordered sequence of rowids (ha_xxx::cmp_ref is the comparison function)
unknown's avatar
unknown committed
7581

7582 7583
    This function is needed to handle a practically-important special case:
    an index scan is a ROR scan if it is done using a condition in form
7584

7585
        "key1_1=c_1 AND ... AND key1_n=c_n"
unknown's avatar
unknown committed
7586

7587 7588
    where the index is defined on (key1_1, ..., key1_N [,a_1, ..., a_n])

7589
    and the table has a clustered Primary Key defined as 
7590

7591 7592 7593 7594 7595
      PRIMARY KEY(a_1, ..., a_n, b1, ..., b_k) 
    
    i.e. the first key parts of it are identical to uncovered parts ot the 
    key being scanned. This function assumes that the index flags do not
    include HA_KEY_SCAN_NOT_ROR flag (that is checked elsewhere).
7596

unknown's avatar
unknown committed
7597
  RETURN
7598 7599
    TRUE   The scan is ROR-scan
    FALSE  Otherwise
7600
*/
7601

7602 7603 7604 7605
static bool is_key_scan_ror(PARAM *param, uint keynr, uint8 nparts)
{
  KEY *table_key= param->table->key_info + keynr;
  KEY_PART_INFO *key_part= table_key->key_part + nparts;
7606 7607 7608
  KEY_PART_INFO *key_part_end= (table_key->key_part +
                                table_key->key_parts);
  uint pk_number;
unknown's avatar
unknown committed
7609

7610
  if (key_part == key_part_end)
unknown's avatar
unknown committed
7611
    return TRUE;
7612
  pk_number= param->table->s->primary_key;
7613
  if (!param->table->file->primary_key_is_clustered() || pk_number == MAX_KEY)
unknown's avatar
unknown committed
7614
    return FALSE;
7615 7616

  KEY_PART_INFO *pk_part= param->table->key_info[pk_number].key_part;
unknown's avatar
unknown committed
7617
  KEY_PART_INFO *pk_part_end= pk_part +
7618
                              param->table->key_info[pk_number].key_parts;
unknown's avatar
unknown committed
7619 7620
  for (;(key_part!=key_part_end) && (pk_part != pk_part_end);
       ++key_part, ++pk_part)
7621
  {
unknown's avatar
unknown committed
7622
    if ((key_part->field != pk_part->field) ||
7623
        (key_part->length != pk_part->length))
unknown's avatar
unknown committed
7624
      return FALSE;
unknown's avatar
unknown committed
7625
  }
7626
  return (key_part == key_part_end);
unknown's avatar
unknown committed
7627 7628 7629
}


7630 7631
/*
  Create a QUICK_RANGE_SELECT from given key and SEL_ARG tree for that key.
unknown's avatar
unknown committed
7632

7633 7634
  SYNOPSIS
    get_quick_select()
unknown's avatar
unknown committed
7635
      param
7636
      idx          Index of used key in param->key.
unknown's avatar
unknown committed
7637 7638
      key_tree     SEL_ARG tree for the used key
      parent_alloc If not NULL, use it to allocate memory for
7639
                   quick select data. Otherwise use quick->alloc.
7640
  NOTES
7641
    The caller must call QUICK_SELECT::init for returned quick select
7642

7643
    CAUTION! This function may change thd->mem_root to a MEM_ROOT which will be
7644
    deallocated when the returned quick select is deleted.
7645 7646 7647 7648

  RETURN
    NULL on error
    otherwise created quick select
7649
*/
7650

unknown's avatar
unknown committed
7651 7652 7653
QUICK_RANGE_SELECT *
get_quick_select(PARAM *param,uint idx,SEL_ARG *key_tree,
                 MEM_ROOT *parent_alloc)
unknown's avatar
unknown committed
7654
{
unknown's avatar
unknown committed
7655
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
7656
  DBUG_ENTER("get_quick_select");
unknown's avatar
unknown committed
7657 7658 7659 7660 7661 7662 7663 7664 7665

  if (param->table->key_info[param->real_keynr[idx]].flags & HA_SPATIAL)
    quick=new QUICK_RANGE_SELECT_GEOM(param->thd, param->table,
                                      param->real_keynr[idx],
                                      test(parent_alloc),
                                      parent_alloc);
  else
    quick=new QUICK_RANGE_SELECT(param->thd, param->table,
                                 param->real_keynr[idx],
unknown's avatar
unknown committed
7666
                                 test(parent_alloc));
unknown's avatar
unknown committed
7667

unknown's avatar
unknown committed
7668
  if (quick)
unknown's avatar
unknown committed
7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679
  {
    if (quick->error ||
	get_quick_keys(param,quick,param->key[idx],key_tree,param->min_key,0,
		       param->max_key,0))
    {
      delete quick;
      quick=0;
    }
    else
    {
      quick->key_parts=(KEY_PART*)
unknown's avatar
unknown committed
7680 7681 7682 7683
        memdup_root(parent_alloc? parent_alloc : &quick->alloc,
                    (char*) param->key[idx],
                    sizeof(KEY_PART)*
                    param->table->key_info[param->real_keynr[idx]].key_parts);
unknown's avatar
unknown committed
7684
    }
unknown's avatar
unknown committed
7685
  }
unknown's avatar
unknown committed
7686 7687 7688 7689 7690 7691 7692
  DBUG_RETURN(quick);
}


/*
** Fix this to get all possible sub_ranges
*/
unknown's avatar
unknown committed
7693 7694
bool
get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key,
7695 7696
	       SEL_ARG *key_tree, uchar *min_key,uint min_key_flag,
	       uchar *max_key, uint max_key_flag)
unknown's avatar
unknown committed
7697 7698 7699
{
  QUICK_RANGE *range;
  uint flag;
unknown's avatar
unknown committed
7700 7701
  int min_part= key_tree->part-1, // # of keypart values in min_key buffer
      max_part= key_tree->part-1; // # of keypart values in max_key buffer
unknown's avatar
unknown committed
7702 7703 7704 7705 7706 7707 7708

  if (key_tree->left != &null_element)
  {
    if (get_quick_keys(param,quick,key,key_tree->left,
		       min_key,min_key_flag, max_key, max_key_flag))
      return 1;
  }
7709
  uchar *tmp_min_key=min_key,*tmp_max_key=max_key;
7710 7711 7712 7713
  min_part+= key_tree->store_min(key[key_tree->part].store_length,
                                 &tmp_min_key,min_key_flag);
  max_part+= key_tree->store_max(key[key_tree->part].store_length,
                                 &tmp_max_key,max_key_flag);
unknown's avatar
unknown committed
7714 7715 7716 7717 7718

  if (key_tree->next_key_part &&
      key_tree->next_key_part->part == key_tree->part+1 &&
      key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
  {						  // const key as prefix
7719 7720 7721
    if ((tmp_min_key - min_key) == (tmp_max_key - max_key) &&
         memcmp(min_key, max_key, (uint)(tmp_max_key - max_key))==0 &&
	 key_tree->min_flag==0 && key_tree->max_flag==0)
unknown's avatar
unknown committed
7722 7723 7724 7725 7726 7727 7728 7729 7730 7731
    {
      if (get_quick_keys(param,quick,key,key_tree->next_key_part,
			 tmp_min_key, min_key_flag | key_tree->min_flag,
			 tmp_max_key, max_key_flag | key_tree->max_flag))
	return 1;
      goto end;					// Ugly, but efficient
    }
    {
      uint tmp_min_flag=key_tree->min_flag,tmp_max_flag=key_tree->max_flag;
      if (!tmp_min_flag)
7732
        min_part+= key_tree->next_key_part->store_min_key(key, &tmp_min_key,
7733
                                                          &tmp_min_flag);
unknown's avatar
unknown committed
7734
      if (!tmp_max_flag)
7735
        max_part+= key_tree->next_key_part->store_max_key(key, &tmp_max_key,
7736
                                                          &tmp_max_flag);
unknown's avatar
unknown committed
7737 7738 7739 7740
      flag=tmp_min_flag | tmp_max_flag;
    }
  }
  else
unknown's avatar
unknown committed
7741 7742 7743 7744
  {
    flag = (key_tree->min_flag & GEOM_FLAG) ?
      key_tree->min_flag : key_tree->min_flag | key_tree->max_flag;
  }
unknown's avatar
unknown committed
7745

7746 7747 7748 7749 7750
  /*
    Ensure that some part of min_key and max_key are used.  If not,
    regard this as no lower/upper range
  */
  if ((flag & GEOM_FLAG) == 0)
unknown's avatar
unknown committed
7751 7752 7753 7754 7755 7756 7757 7758 7759 7760
  {
    if (tmp_min_key != param->min_key)
      flag&= ~NO_MIN_RANGE;
    else
      flag|= NO_MIN_RANGE;
    if (tmp_max_key != param->max_key)
      flag&= ~NO_MAX_RANGE;
    else
      flag|= NO_MAX_RANGE;
  }
unknown's avatar
unknown committed
7761 7762 7763 7764 7765 7766 7767 7768
  if (flag == 0)
  {
    uint length= (uint) (tmp_min_key - param->min_key);
    if (length == (uint) (tmp_max_key - param->max_key) &&
	!memcmp(param->min_key,param->max_key,length))
    {
      KEY *table_key=quick->head->key_info+quick->index;
      flag=EQ_RANGE;
7769 7770
      if ((table_key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME &&
	  key->part == table_key->key_parts-1)
7771 7772 7773 7774 7775 7776 7777 7778 7779
      {
	if (!(table_key->flags & HA_NULL_PART_KEY) ||
	    !null_part_in_key(key,
			      param->min_key,
			      (uint) (tmp_min_key - param->min_key)))
	  flag|= UNIQUE_RANGE;
	else
	  flag|= NULL_RANGE;
      }
unknown's avatar
unknown committed
7780 7781 7782 7783
    }
  }

  /* Get range for retrieving rows in QUICK_SELECT::get_next */
7784
  if (!(range= new QUICK_RANGE(param->min_key,
7785
			       (uint) (tmp_min_key - param->min_key),
7786
                               min_part >=0 ? make_keypart_map(min_part) : 0,
7787
			       param->max_key,
7788
			       (uint) (tmp_max_key - param->max_key),
7789
                               max_part >=0 ? make_keypart_map(max_part) : 0,
7790
			       flag)))
7791 7792
    return 1;			// out of memory

7793 7794
  set_if_bigger(quick->max_used_key_length, range->min_length);
  set_if_bigger(quick->max_used_key_length, range->max_length);
unknown's avatar
unknown committed
7795
  set_if_bigger(quick->used_key_parts, (uint) key_tree->part+1);
7796
  if (insert_dynamic(&quick->ranges, (uchar*) &range))
7797 7798
    return 1;

unknown's avatar
unknown committed
7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810
 end:
  if (key_tree->right != &null_element)
    return get_quick_keys(param,quick,key,key_tree->right,
			  min_key,min_key_flag,
			  max_key,max_key_flag);
  return 0;
}

/*
  Return 1 if there is only one range and this uses the whole primary key
*/

unknown's avatar
unknown committed
7811
bool QUICK_RANGE_SELECT::unique_key_range()
unknown's avatar
unknown committed
7812 7813 7814
{
  if (ranges.elements == 1)
  {
7815 7816
    QUICK_RANGE *tmp= *((QUICK_RANGE**)ranges.buffer);
    if ((tmp->flag & (EQ_RANGE | NULL_RANGE)) == EQ_RANGE)
unknown's avatar
unknown committed
7817 7818
    {
      KEY *key=head->key_info+index;
7819
      return ((key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME &&
unknown's avatar
unknown committed
7820 7821 7822 7823 7824 7825
	      key->key_length == tmp->min_length);
    }
  }
  return 0;
}

7826

unknown's avatar
unknown committed
7827
/* Returns TRUE if any part of the key is NULL */
7828

7829
static bool null_part_in_key(KEY_PART *key_part, const uchar *key, uint length)
7830
{
7831
  for (const uchar *end=key+length ;
7832
       key < end;
unknown's avatar
unknown committed
7833
       key+= key_part++->store_length)
7834
  {
unknown's avatar
unknown committed
7835 7836
    if (key_part->null_bit && *key)
      return 1;
7837 7838 7839 7840
  }
  return 0;
}

unknown's avatar
unknown committed
7841

7842
bool QUICK_SELECT_I::is_keys_used(const MY_BITMAP *fields)
7843
{
7844
  return is_key_used(head, index, fields);
7845 7846
}

7847
bool QUICK_INDEX_MERGE_SELECT::is_keys_used(const MY_BITMAP *fields)
7848 7849 7850 7851 7852
{
  QUICK_RANGE_SELECT *quick;
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  while ((quick= it++))
  {
7853
    if (is_key_used(head, quick->index, fields))
7854 7855 7856 7857 7858
      return 1;
  }
  return 0;
}

7859
bool QUICK_ROR_INTERSECT_SELECT::is_keys_used(const MY_BITMAP *fields)
7860 7861 7862 7863 7864
{
  QUICK_RANGE_SELECT *quick;
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  while ((quick= it++))
  {
7865
    if (is_key_used(head, quick->index, fields))
7866 7867 7868 7869 7870
      return 1;
  }
  return 0;
}

7871
bool QUICK_ROR_UNION_SELECT::is_keys_used(const MY_BITMAP *fields)
7872 7873 7874 7875 7876
{
  QUICK_SELECT_I *quick;
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  while ((quick= it++))
  {
7877
    if (quick->is_keys_used(fields))
7878 7879 7880 7881 7882
      return 1;
  }
  return 0;
}

unknown's avatar
unknown committed
7883

unknown's avatar
unknown committed
7884 7885
/*
  Create quick select from ref/ref_or_null scan.
unknown's avatar
unknown committed
7886

unknown's avatar
unknown committed
7887 7888 7889 7890 7891
  SYNOPSIS
    get_quick_select_for_ref()
      thd      Thread handle
      table    Table to access
      ref      ref[_or_null] scan parameters
unknown's avatar
unknown committed
7892
      records  Estimate of number of records (needed only to construct
unknown's avatar
unknown committed
7893 7894 7895 7896
               quick select)
  NOTES
    This allocates things in a new memory root, as this may be called many
    times during a query.
unknown's avatar
unknown committed
7897 7898

  RETURN
unknown's avatar
unknown committed
7899 7900 7901
    Quick select that retrieves the same rows as passed ref scan
    NULL on error.
*/
unknown's avatar
unknown committed
7902

unknown's avatar
unknown committed
7903
QUICK_RANGE_SELECT *get_quick_select_for_ref(THD *thd, TABLE *table,
unknown's avatar
unknown committed
7904
                                             TABLE_REF *ref, ha_rows records)
unknown's avatar
unknown committed
7905
{
unknown's avatar
unknown committed
7906 7907
  MEM_ROOT *old_root, *alloc;
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
7908 7909
  KEY *key_info = &table->key_info[ref->key];
  KEY_PART *key_part;
unknown's avatar
unknown committed
7910
  QUICK_RANGE *range;
unknown's avatar
unknown committed
7911
  uint part;
unknown's avatar
unknown committed
7912 7913 7914 7915 7916 7917

  old_root= thd->mem_root;
  /* The following call may change thd->mem_root */
  quick= new QUICK_RANGE_SELECT(thd, table, ref->key, 0);
  /* save mem_root set by QUICK_RANGE_SELECT constructor */
  alloc= thd->mem_root;
7918 7919 7920 7921 7922
  /*
    return back default mem_root (thd->mem_root) changed by
    QUICK_RANGE_SELECT constructor
  */
  thd->mem_root= old_root;
unknown's avatar
unknown committed
7923 7924

  if (!quick)
7925
    return 0;			/* no ranges found */
unknown's avatar
unknown committed
7926
  if (quick->init())
unknown's avatar
unknown committed
7927
    goto err;
unknown's avatar
unknown committed
7928
  quick->records= records;
7929

7930
  if (cp_buffer_from_ref(thd, table, ref) && thd->is_fatal_error ||
7931
      !(range= new(alloc) QUICK_RANGE()))
unknown's avatar
unknown committed
7932
    goto err;                                   // out of memory
7933

7934
  range->min_key= range->max_key= ref->key_buff;
unknown's avatar
unknown committed
7935 7936 7937
  range->min_length= range->max_length= ref->key_length;
  range->min_keypart_map= range->max_keypart_map=
    make_prev_keypart_map(ref->key_parts);
unknown's avatar
unknown committed
7938
  range->flag= ((ref->key_length == key_info->key_length &&
7939
		 (key_info->flags & HA_END_SPACE_KEY) == 0) ? EQ_RANGE : 0);
unknown's avatar
unknown committed
7940 7941

  if (!(quick->key_parts=key_part=(KEY_PART *)
7942
	alloc_root(&quick->alloc,sizeof(KEY_PART)*ref->key_parts)))
unknown's avatar
unknown committed
7943 7944 7945 7946 7947 7948
    goto err;

  for (part=0 ; part < ref->key_parts ;part++,key_part++)
  {
    key_part->part=part;
    key_part->field=        key_info->key_part[part].field;
unknown's avatar
unknown committed
7949
    key_part->length=       key_info->key_part[part].length;
unknown's avatar
unknown committed
7950
    key_part->store_length= key_info->key_part[part].store_length;
unknown's avatar
unknown committed
7951
    key_part->null_bit=     key_info->key_part[part].null_bit;
7952
    key_part->flag=         (uint8) key_info->key_part[part].key_part_flag;
unknown's avatar
unknown committed
7953
  }
7954
  if (insert_dynamic(&quick->ranges,(uchar*)&range))
7955 7956
    goto err;

unknown's avatar
unknown committed
7957
  /*
7958 7959 7960 7961 7962
     Add a NULL range if REF_OR_NULL optimization is used.
     For example:
       if we have "WHERE A=2 OR A IS NULL" we created the (A=2) range above
       and have ref->null_ref_key set. Will create a new NULL range here.
  */
7963 7964 7965 7966 7967
  if (ref->null_ref_key)
  {
    QUICK_RANGE *null_range;

    *ref->null_ref_key= 1;		// Set null byte then create a range
unknown's avatar
unknown committed
7968
    if (!(null_range= new (alloc)
7969
          QUICK_RANGE(ref->key_buff, ref->key_length,
unknown's avatar
unknown committed
7970
                      make_prev_keypart_map(ref->key_parts),
7971
                      ref->key_buff, ref->key_length,
unknown's avatar
unknown committed
7972
                      make_prev_keypart_map(ref->key_parts), EQ_RANGE)))
7973 7974
      goto err;
    *ref->null_ref_key= 0;		// Clear null byte
7975
    if (insert_dynamic(&quick->ranges,(uchar*)&null_range))
7976 7977 7978 7979
      goto err;
  }

  return quick;
unknown's avatar
unknown committed
7980 7981 7982 7983 7984 7985

err:
  delete quick;
  return 0;
}

unknown's avatar
unknown committed
7986 7987

/*
unknown's avatar
unknown committed
7988 7989 7990 7991 7992 7993
  Perform key scans for all used indexes (except CPK), get rowids and merge 
  them into an ordered non-recurrent sequence of rowids.
  
  The merge/duplicate removal is performed using Unique class. We put all
  rowids into Unique, get the sorted sequence and destroy the Unique.
  
unknown's avatar
unknown committed
7994
  If table has a clustered primary key that covers all rows (TRUE for bdb
7995 7996 7997
  and innodb currently) and one of the index_merge scans is a scan on PK,
  then rows that will be retrieved by PK scan are not put into Unique and 
  primary key scan is not performed here, it is performed later separately.
unknown's avatar
unknown committed
7998

7999 8000 8001
  RETURN
    0     OK
    other error
unknown's avatar
unknown committed
8002
*/
8003

unknown's avatar
unknown committed
8004
int QUICK_INDEX_MERGE_SELECT::read_keys_and_merge()
unknown's avatar
unknown committed
8005
{
unknown's avatar
unknown committed
8006 8007
  List_iterator_fast<QUICK_RANGE_SELECT> cur_quick_it(quick_selects);
  QUICK_RANGE_SELECT* cur_quick;
8008
  int result;
unknown's avatar
unknown committed
8009
  Unique *unique;
8010 8011
  handler *file= head->file;
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::read_keys_and_merge");
unknown's avatar
unknown committed
8012

8013
  /* We're going to just read rowids. */
8014 8015
  file->extra(HA_EXTRA_KEYREAD);
  head->prepare_for_position();
8016

unknown's avatar
unknown committed
8017 8018
  cur_quick_it.rewind();
  cur_quick= cur_quick_it++;
8019
  DBUG_ASSERT(cur_quick != 0);
unknown's avatar
unknown committed
8020 8021 8022 8023 8024
  
  /*
    We reuse the same instance of handler so we need to call both init and 
    reset here.
  */
unknown's avatar
unknown committed
8025
  if (cur_quick->init() || cur_quick->reset())
unknown's avatar
unknown committed
8026
    DBUG_RETURN(1);
8027

8028 8029
  unique= new Unique(refpos_order_cmp, (void *)file,
                     file->ref_length,
8030
                     thd->variables.sortbuff_size);
8031 8032
  if (!unique)
    DBUG_RETURN(1);
unknown's avatar
unknown committed
8033
  for (;;)
8034
  {
unknown's avatar
unknown committed
8035
    while ((result= cur_quick->get_next()) == HA_ERR_END_OF_FILE)
8036
    {
unknown's avatar
unknown committed
8037 8038 8039
      cur_quick->range_end();
      cur_quick= cur_quick_it++;
      if (!cur_quick)
unknown's avatar
unknown committed
8040
        break;
8041

unknown's avatar
unknown committed
8042 8043
      if (cur_quick->file->inited != handler::NONE) 
        cur_quick->file->ha_index_end();
unknown's avatar
unknown committed
8044
      if (cur_quick->init() || cur_quick->reset())
8045
        DBUG_RETURN(1);
unknown's avatar
unknown committed
8046 8047 8048
    }

    if (result)
unknown's avatar
unknown committed
8049
    {
8050
      if (result != HA_ERR_END_OF_FILE)
unknown's avatar
unknown committed
8051 8052
      {
        cur_quick->range_end();
8053
        DBUG_RETURN(result);
unknown's avatar
unknown committed
8054
      }
8055
      break;
unknown's avatar
unknown committed
8056
    }
unknown's avatar
unknown committed
8057

8058 8059
    if (thd->killed)
      DBUG_RETURN(1);
unknown's avatar
unknown committed
8060

8061
    /* skip row if it will be retrieved by clustered PK scan */
8062 8063
    if (pk_quick_select && pk_quick_select->row_in_ranges())
      continue;
8064

unknown's avatar
unknown committed
8065 8066
    cur_quick->file->position(cur_quick->record);
    result= unique->unique_add((char*)cur_quick->file->ref);
8067
    if (result)
8068 8069
      DBUG_RETURN(1);

unknown's avatar
unknown committed
8070
  }
unknown's avatar
unknown committed
8071

8072 8073 8074 8075 8076
  /*
    Ok all rowids are in the Unique now. The next call will initialize
    head->sort structure so it can be used to iterate through the rowids
    sequence.
  */
8077
  result= unique->get(head);
unknown's avatar
unknown committed
8078
  delete unique;
unknown's avatar
unknown committed
8079
  doing_pk_scan= FALSE;
8080 8081
  /* index_merge currently doesn't support "using index" at all */
  file->extra(HA_EXTRA_NO_KEYREAD);
8082
  init_read_record(&read_record, thd, head, (SQL_SELECT*) 0, 1 , 1, TRUE);
8083 8084 8085
  DBUG_RETURN(result);
}

8086

8087 8088 8089
/*
  Get next row for index_merge.
  NOTES
8090 8091 8092 8093
    The rows are read from
      1. rowids stored in Unique.
      2. QUICK_RANGE_SELECT with clustered primary key (if any).
    The sets of rows retrieved in 1) and 2) are guaranteed to be disjoint.
8094
*/
8095

8096 8097
int QUICK_INDEX_MERGE_SELECT::get_next()
{
8098
  int result;
8099
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::get_next");
unknown's avatar
unknown committed
8100

8101 8102 8103
  if (doing_pk_scan)
    DBUG_RETURN(pk_quick_select->get_next());

8104
  if ((result= read_record.read_record(&read_record)) == -1)
8105 8106 8107
  {
    result= HA_ERR_END_OF_FILE;
    end_read_record(&read_record);
8108
    free_io_cache(head);
8109
    /* All rows from Unique have been retrieved, do a clustered PK scan */
unknown's avatar
unknown committed
8110
    if (pk_quick_select)
8111
    {
unknown's avatar
unknown committed
8112
      doing_pk_scan= TRUE;
8113 8114
      if ((result= pk_quick_select->init()) ||
          (result= pk_quick_select->reset()))
8115 8116 8117 8118 8119 8120
        DBUG_RETURN(result);
      DBUG_RETURN(pk_quick_select->get_next());
    }
  }

  DBUG_RETURN(result);
unknown's avatar
unknown committed
8121 8122
}

8123 8124

/*
unknown's avatar
unknown committed
8125
  Retrieve next record.
8126
  SYNOPSIS
unknown's avatar
unknown committed
8127 8128
     QUICK_ROR_INTERSECT_SELECT::get_next()

8129
  NOTES
8130 8131
    Invariant on enter/exit: all intersected selects have retrieved all index
    records with rowid <= some_rowid_val and no intersected select has
8132 8133 8134 8135
    retrieved any index records with rowid > some_rowid_val.
    We start fresh and loop until we have retrieved the same rowid in each of
    the key scans or we got an error.

unknown's avatar
unknown committed
8136
    If a Clustered PK scan is present, it is used only to check if row
8137 8138 8139 8140 8141
    satisfies its condition (and never used for row retrieval).

  RETURN
   0     - Ok
   other - Error code if any error occurred.
8142 8143 8144 8145 8146 8147 8148 8149 8150
*/

int QUICK_ROR_INTERSECT_SELECT::get_next()
{
  List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
  QUICK_RANGE_SELECT* quick;
  int error, cmp;
  uint last_rowid_count=0;
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::get_next");
unknown's avatar
unknown committed
8151

8152
  do
8153
  {
8154 8155
    /* Get a rowid for first quick and save it as a 'candidate' */
    quick= quick_it++;
8156
    error= quick->get_next();
8157 8158
    if (cpk_quick)
    {
8159
      while (!error && !cpk_quick->row_in_ranges())
8160 8161 8162 8163
        error= quick->get_next();
    }
    if (error)
      DBUG_RETURN(error);
8164

8165 8166 8167
    quick->file->position(quick->record);
    memcpy(last_rowid, quick->file->ref, head->file->ref_length);
    last_rowid_count= 1;
unknown's avatar
unknown committed
8168

8169
    while (last_rowid_count < quick_selects.elements)
8170
    {
8171 8172 8173 8174 8175
      if (!(quick= quick_it++))
      {
        quick_it.rewind();
        quick= quick_it++;
      }
8176

8177 8178 8179 8180 8181 8182 8183 8184 8185 8186
      do
      {
        if ((error= quick->get_next()))
          DBUG_RETURN(error);
        quick->file->position(quick->record);
        cmp= head->file->cmp_ref(quick->file->ref, last_rowid);
      } while (cmp < 0);

      /* Ok, current select 'caught up' and returned ref >= cur_ref */
      if (cmp > 0)
8187
      {
8188 8189
        /* Found a row with ref > cur_ref. Make it a new 'candidate' */
        if (cpk_quick)
8190
        {
8191 8192 8193 8194 8195
          while (!cpk_quick->row_in_ranges())
          {
            if ((error= quick->get_next()))
              DBUG_RETURN(error);
          }
8196
        }
8197 8198 8199 8200 8201 8202 8203
        memcpy(last_rowid, quick->file->ref, head->file->ref_length);
        last_rowid_count= 1;
      }
      else
      {
        /* current 'candidate' row confirmed by this select */
        last_rowid_count++;
8204 8205 8206
      }
    }

8207
    /* We get here if we got the same row ref in all scans. */
8208 8209 8210
    if (need_to_fetch_row)
      error= head->file->rnd_pos(head->record[0], last_rowid);
  } while (error == HA_ERR_RECORD_DELETED);
8211 8212 8213 8214
  DBUG_RETURN(error);
}


unknown's avatar
unknown committed
8215 8216
/*
  Retrieve next record.
8217 8218
  SYNOPSIS
    QUICK_ROR_UNION_SELECT::get_next()
unknown's avatar
unknown committed
8219

8220
  NOTES
unknown's avatar
unknown committed
8221 8222
    Enter/exit invariant:
    For each quick select in the queue a {key,rowid} tuple has been
8223
    retrieved but the corresponding row hasn't been passed to output.
8224

unknown's avatar
unknown committed
8225
  RETURN
8226 8227
   0     - Ok
   other - Error code if any error occurred.
8228 8229 8230 8231 8232 8233
*/

int QUICK_ROR_UNION_SELECT::get_next()
{
  int error, dup_row;
  QUICK_SELECT_I *quick;
8234
  uchar *tmp;
8235
  DBUG_ENTER("QUICK_ROR_UNION_SELECT::get_next");
unknown's avatar
unknown committed
8236

8237 8238
  do
  {
8239 8240 8241 8242 8243
    do
    {
      if (!queue.elements)
        DBUG_RETURN(HA_ERR_END_OF_FILE);
      /* Ok, we have a queue with >= 1 scans */
8244

8245 8246
      quick= (QUICK_SELECT_I*)queue_top(&queue);
      memcpy(cur_rowid, quick->last_rowid, rowid_length);
8247

8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259
      /* put into queue rowid from the same stream as top element */
      if ((error= quick->get_next()))
      {
        if (error != HA_ERR_END_OF_FILE)
          DBUG_RETURN(error);
        queue_remove(&queue, 0);
      }
      else
      {
        quick->save_last_pos();
        queue_replaced(&queue);
      }
unknown's avatar
unknown committed
8260

8261 8262 8263 8264 8265 8266 8267 8268 8269
      if (!have_prev_rowid)
      {
        /* No rows have been returned yet */
        dup_row= FALSE;
        have_prev_rowid= TRUE;
      }
      else
        dup_row= !head->file->cmp_ref(cur_rowid, prev_rowid);
    } while (dup_row);
unknown's avatar
unknown committed
8270

8271 8272 8273
    tmp= cur_rowid;
    cur_rowid= prev_rowid;
    prev_rowid= tmp;
8274

8275 8276
    error= head->file->rnd_pos(quick->record, prev_rowid);
  } while (error == HA_ERR_RECORD_DELETED);
8277 8278 8279
  DBUG_RETURN(error);
}

8280

unknown's avatar
unknown committed
8281
int QUICK_RANGE_SELECT::reset()
unknown's avatar
unknown committed
8282 8283
{
  uint  mrange_bufsiz;
8284
  uchar *mrange_buff;
unknown's avatar
unknown committed
8285 8286
  DBUG_ENTER("QUICK_RANGE_SELECT::reset");
  next=0;
8287
  last_range= NULL;
8288
  in_range= FALSE;
unknown's avatar
unknown committed
8289
  cur_range= (QUICK_RANGE**) ranges.buffer;
unknown's avatar
unknown committed
8290

8291
  if (file->inited == handler::NONE && (error= file->ha_index_init(index,1)))
unknown's avatar
unknown committed
8292
    DBUG_RETURN(error);
unknown's avatar
unknown committed
8293
 
unknown's avatar
unknown committed
8294 8295 8296 8297 8298 8299 8300
  /* Do not allocate the buffers twice. */
  if (multi_range_length)
  {
    DBUG_ASSERT(multi_range_length == min(multi_range_count, ranges.elements));
    DBUG_RETURN(0);
  }

unknown's avatar
unknown committed
8301 8302
  /* Allocate the ranges array. */
  DBUG_ASSERT(ranges.elements);
unknown's avatar
unknown committed
8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318
  multi_range_length= min(multi_range_count, ranges.elements);
  DBUG_ASSERT(multi_range_length > 0);
  while (multi_range_length && ! (multi_range= (KEY_MULTI_RANGE*)
                                  my_malloc(multi_range_length *
                                            sizeof(KEY_MULTI_RANGE),
                                            MYF(MY_WME))))
  {
    /* Try to shrink the buffers until it is 0. */
    multi_range_length/= 2;
  }
  if (! multi_range)
  {
    multi_range_length= 0;
    DBUG_RETURN(HA_ERR_OUT_OF_MEM);
  }

unknown's avatar
unknown committed
8319
  /* Allocate the handler buffer if necessary.  */
8320
  if (file->ha_table_flags() & HA_NEED_READ_RANGE_BUFFER)
unknown's avatar
unknown committed
8321 8322
  {
    mrange_bufsiz= min(multi_range_bufsiz,
8323
                       ((uint)QUICK_SELECT_I::records + 1)* head->s->reclength);
unknown's avatar
unknown committed
8324 8325 8326

    while (mrange_bufsiz &&
           ! my_multi_malloc(MYF(MY_WME),
8327 8328 8329
                             &multi_range_buff,
                             (uint) sizeof(*multi_range_buff),
                             &mrange_buff, (uint) mrange_bufsiz,
unknown's avatar
unknown committed
8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346
                             NullS))
    {
      /* Try to shrink the buffers until both are 0. */
      mrange_bufsiz/= 2;
    }
    if (! multi_range_buff)
    {
      my_free((char*) multi_range, MYF(0));
      multi_range= NULL;
      multi_range_length= 0;
      DBUG_RETURN(HA_ERR_OUT_OF_MEM);
    }

    /* Initialize the handler buffer. */
    multi_range_buff->buffer= mrange_buff;
    multi_range_buff->buffer_end= mrange_buff + mrange_bufsiz;
    multi_range_buff->end_of_used_area= mrange_buff;
unknown's avatar
unknown committed
8347 8348 8349 8350 8351 8352 8353 8354
#ifdef HAVE_purify
    /*
      We need this until ndb will use the buffer efficiently
      (Now ndb stores  complete row in here, instead of only the used fields
      which gives us valgrind warnings in compare_record[])
    */
    bzero((char*) mrange_buff, mrange_bufsiz);
#endif
unknown's avatar
unknown committed
8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373
  }
  DBUG_RETURN(0);
}


/*
  Get next possible record using quick-struct.

  SYNOPSIS
    QUICK_RANGE_SELECT::get_next()

  NOTES
    Record is read into table->record[0]

  RETURN
    0			Found row
    HA_ERR_END_OF_FILE	No (more) rows in range
    #			Error code
*/
unknown's avatar
unknown committed
8374

unknown's avatar
unknown committed
8375
int QUICK_RANGE_SELECT::get_next()
unknown's avatar
unknown committed
8376
{
unknown's avatar
unknown committed
8377 8378 8379 8380
  int             result;
  KEY_MULTI_RANGE *mrange;
  key_range       *start_key;
  key_range       *end_key;
unknown's avatar
unknown committed
8381
  DBUG_ENTER("QUICK_RANGE_SELECT::get_next");
unknown's avatar
unknown committed
8382 8383 8384
  DBUG_ASSERT(multi_range_length && multi_range &&
              (cur_range >= (QUICK_RANGE**) ranges.buffer) &&
              (cur_range <= (QUICK_RANGE**) ranges.buffer + ranges.elements));
unknown's avatar
unknown committed
8385

8386 8387 8388 8389 8390 8391 8392 8393 8394
  if (in_ror_merged_scan)
  {
    /*
      We don't need to signal the bitmap change as the bitmap is always the
      same for this head->file
    */
    head->column_bitmaps_set_no_signal(&column_bitmap, &column_bitmap);
  }

unknown's avatar
unknown committed
8395 8396
  for (;;)
  {
unknown's avatar
unknown committed
8397
    if (in_range)
unknown's avatar
unknown committed
8398
    {
unknown's avatar
unknown committed
8399 8400
      /* We did already start to read this key. */
      result= file->read_multi_range_next(&mrange);
unknown's avatar
unknown committed
8401
      if (result != HA_ERR_END_OF_FILE)
8402
        goto end;
unknown's avatar
unknown committed
8403
    }
unknown's avatar
unknown committed
8404

unknown's avatar
unknown committed
8405 8406 8407 8408 8409 8410
    uint count= min(multi_range_length, ranges.elements -
                    (cur_range - (QUICK_RANGE**) ranges.buffer));
    if (count == 0)
    {
      /* Ranges have already been used up before. None is left for read. */
      in_range= FALSE;
8411 8412
      if (in_ror_merged_scan)
        head->column_bitmaps_set_no_signal(save_read_set, save_write_set);
unknown's avatar
unknown committed
8413 8414 8415 8416 8417 8418 8419 8420 8421
      DBUG_RETURN(HA_ERR_END_OF_FILE);
    }
    KEY_MULTI_RANGE *mrange_slot, *mrange_end;
    for (mrange_slot= multi_range, mrange_end= mrange_slot+count;
         mrange_slot < mrange_end;
         mrange_slot++)
    {
      start_key= &mrange_slot->start_key;
      end_key= &mrange_slot->end_key;
8422
      last_range= *(cur_range++);
unknown's avatar
unknown committed
8423

8424
      start_key->key=    (const uchar*) last_range->min_key;
8425 8426 8427
      start_key->length= last_range->min_length;
      start_key->flag=   ((last_range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY :
                          (last_range->flag & EQ_RANGE) ?
unknown's avatar
unknown committed
8428
                          HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT);
8429
      start_key->keypart_map= last_range->min_keypart_map;
8430
      end_key->key=      (const uchar*) last_range->max_key;
8431
      end_key->length=   last_range->max_length;
unknown's avatar
unknown committed
8432 8433 8434 8435
      /*
        We use HA_READ_AFTER_KEY here because if we are reading on a key
        prefix. We want to find all keys with this prefix.
      */
8436
      end_key->flag=     (last_range->flag & NEAR_MAX ? HA_READ_BEFORE_KEY :
unknown's avatar
unknown committed
8437
                          HA_READ_AFTER_KEY);
unknown's avatar
unknown committed
8438
      end_key->keypart_map= last_range->max_keypart_map;
unknown's avatar
unknown committed
8439

8440
      mrange_slot->range_flag= last_range->flag;
unknown's avatar
unknown committed
8441
    }
unknown's avatar
unknown committed
8442

unknown's avatar
unknown committed
8443 8444
    result= file->read_multi_range_first(&mrange, multi_range, count,
                                         sorted, multi_range_buff);
unknown's avatar
unknown committed
8445
    if (result != HA_ERR_END_OF_FILE)
8446
      goto end;
unknown's avatar
unknown committed
8447
    in_range= FALSE; /* No matching rows; go to next set of ranges. */
unknown's avatar
unknown committed
8448
  }
8449 8450 8451 8452 8453 8454 8455 8456 8457

end:
  in_range= ! result;
  if (in_ror_merged_scan)
  {
    /* Restore bitmaps set on entry */
    head->column_bitmaps_set_no_signal(save_read_set, save_write_set);
  }
  DBUG_RETURN(result);
unknown's avatar
unknown committed
8458 8459
}

8460 8461 8462 8463 8464 8465
/*
  Get the next record with a different prefix.

  SYNOPSIS
    QUICK_RANGE_SELECT::get_next_prefix()
    prefix_length  length of cur_prefix
8466
    cur_prefix     prefix of a key to be searched for
8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487

  DESCRIPTION
    Each subsequent call to the method retrieves the first record that has a
    prefix with length prefix_length different from cur_prefix, such that the
    record with the new prefix is within the ranges described by
    this->ranges. The record found is stored into the buffer pointed by
    this->record.
    The method is useful for GROUP-BY queries with range conditions to
    discover the prefix of the next group that satisfies the range conditions.

  TODO
    This method is a modified copy of QUICK_RANGE_SELECT::get_next(), so both
    methods should be unified into a more general one to reduce code
    duplication.

  RETURN
    0                  on success
    HA_ERR_END_OF_FILE if returned all keys
    other              if some error occurred
*/

8488
int QUICK_RANGE_SELECT::get_next_prefix(uint prefix_length,
unknown's avatar
unknown committed
8489
                                        key_part_map keypart_map,
8490
                                        uchar *cur_prefix)
8491 8492 8493 8494 8495 8496 8497
{
  DBUG_ENTER("QUICK_RANGE_SELECT::get_next_prefix");

  for (;;)
  {
    int result;
    key_range start_key, end_key;
8498
    if (last_range)
8499 8500
    {
      /* Read the next record in the same range with prefix after cur_prefix. */
8501
      DBUG_ASSERT(cur_prefix != 0);
8502 8503
      result= file->index_read_map(record, cur_prefix, keypart_map,
                                   HA_READ_AFTER_KEY);
8504 8505 8506 8507
      if (result || (file->compare_key(file->end_range) <= 0))
        DBUG_RETURN(result);
    }

unknown's avatar
unknown committed
8508 8509 8510 8511
    uint count= ranges.elements - (cur_range - (QUICK_RANGE**) ranges.buffer);
    if (count == 0)
    {
      /* Ranges have already been used up before. None is left for read. */
8512
      last_range= 0;
unknown's avatar
unknown committed
8513 8514
      DBUG_RETURN(HA_ERR_END_OF_FILE);
    }
8515
    last_range= *(cur_range++);
8516

8517
    start_key.key=    (const uchar*) last_range->min_key;
8518
    start_key.length= min(last_range->min_length, prefix_length);
8519
    start_key.keypart_map= last_range->min_keypart_map & keypart_map;
8520 8521
    start_key.flag=   ((last_range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY :
		       (last_range->flag & EQ_RANGE) ?
8522
		       HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT);
8523
    end_key.key=      (const uchar*) last_range->max_key;
8524
    end_key.length=   min(last_range->max_length, prefix_length);
8525
    end_key.keypart_map= last_range->max_keypart_map & keypart_map;
8526 8527 8528 8529
    /*
      We use READ_AFTER_KEY here because if we are reading on a key
      prefix we want to find all keys with this prefix
    */
8530
    end_key.flag=     (last_range->flag & NEAR_MAX ? HA_READ_BEFORE_KEY :
8531 8532
		       HA_READ_AFTER_KEY);

8533 8534
    result= file->read_range_first(last_range->min_keypart_map ? &start_key : 0,
				   last_range->max_keypart_map ? &end_key : 0,
8535
                                   test(last_range->flag & EQ_RANGE),
8536
				   sorted);
8537 8538
    if (last_range->flag == (UNIQUE_RANGE | EQ_RANGE))
      last_range= 0;			// Stop searching
8539 8540 8541

    if (result != HA_ERR_END_OF_FILE)
      DBUG_RETURN(result);
8542
    last_range= 0;			// No matching rows; go to next range
8543 8544 8545 8546
  }
}


unknown's avatar
unknown committed
8547
/* Get next for geometrical indexes */
unknown's avatar
unknown committed
8548

unknown's avatar
unknown committed
8549
int QUICK_RANGE_SELECT_GEOM::get_next()
unknown's avatar
unknown committed
8550
{
unknown's avatar
unknown committed
8551
  DBUG_ENTER("QUICK_RANGE_SELECT_GEOM::get_next");
unknown's avatar
unknown committed
8552

unknown's avatar
unknown committed
8553
  for (;;)
unknown's avatar
unknown committed
8554
  {
unknown's avatar
unknown committed
8555
    int result;
8556
    if (last_range)
unknown's avatar
unknown committed
8557
    {
unknown's avatar
unknown committed
8558
      // Already read through key
8559
      result= file->index_next_same(record, last_range->min_key,
8560
				    last_range->min_length);
unknown's avatar
unknown committed
8561 8562
      if (result != HA_ERR_END_OF_FILE)
	DBUG_RETURN(result);
unknown's avatar
unknown committed
8563
    }
unknown's avatar
unknown committed
8564

unknown's avatar
unknown committed
8565 8566 8567 8568
    uint count= ranges.elements - (cur_range - (QUICK_RANGE**) ranges.buffer);
    if (count == 0)
    {
      /* Ranges have already been used up before. None is left for read. */
8569
      last_range= 0;
unknown's avatar
unknown committed
8570 8571
      DBUG_RETURN(HA_ERR_END_OF_FILE);
    }
8572
    last_range= *(cur_range++);
unknown's avatar
unknown committed
8573

8574 8575 8576 8577
    result= file->index_read_map(record, last_range->min_key,
                                 last_range->min_keypart_map,
                                 (ha_rkey_function)(last_range->flag ^
                                                    GEOM_FLAG));
8578
    if (result != HA_ERR_KEY_NOT_FOUND && result != HA_ERR_END_OF_FILE)
unknown's avatar
unknown committed
8579
      DBUG_RETURN(result);
8580
    last_range= 0;				// Not found, to next range
unknown's avatar
unknown committed
8581 8582 8583
  }
}

unknown's avatar
unknown committed
8584

8585 8586 8587 8588
/*
  Check if current row will be retrieved by this QUICK_RANGE_SELECT

  NOTES
unknown's avatar
unknown committed
8589 8590
    It is assumed that currently a scan is being done on another index
    which reads all necessary parts of the index that is scanned by this
8591
    quick select.
unknown's avatar
unknown committed
8592
    The implementation does a binary search on sorted array of disjoint
8593 8594
    ranges, without taking size of range into account.

unknown's avatar
unknown committed
8595
    This function is used to filter out clustered PK scan rows in
8596 8597
    index_merge quick select.

8598
  RETURN
unknown's avatar
unknown committed
8599 8600
    TRUE  if current row will be retrieved by this quick select
    FALSE if not
8601 8602 8603 8604
*/

bool QUICK_RANGE_SELECT::row_in_ranges()
{
8605
  QUICK_RANGE *res;
8606 8607 8608 8609 8610
  uint min= 0;
  uint max= ranges.elements - 1;
  uint mid= (max + min)/2;

  while (min != max)
unknown's avatar
unknown committed
8611
  {
8612 8613 8614 8615 8616 8617 8618 8619 8620
    if (cmp_next(*(QUICK_RANGE**)dynamic_array_ptr(&ranges, mid)))
    {
      /* current row value > mid->max */
      min= mid + 1;
    }
    else
      max= mid;
    mid= (min + max) / 2;
  }
8621 8622
  res= *(QUICK_RANGE**)dynamic_array_ptr(&ranges, mid);
  return (!cmp_next(res) && !cmp_prev(res));
8623 8624
}

8625
/*
8626 8627 8628 8629 8630 8631 8632
  This is a hack: we inherit from QUICK_SELECT so that we can use the
  get_next() interface, but we have to hold a pointer to the original
  QUICK_SELECT because its data are used all over the place.  What
  should be done is to factor out the data that is needed into a base
  class (QUICK_SELECT), and then have two subclasses (_ASC and _DESC)
  which handle the ranges and implement the get_next() function.  But
  for now, this seems to work right at least.
8633
 */
unknown's avatar
unknown committed
8634

unknown's avatar
unknown committed
8635
QUICK_SELECT_DESC::QUICK_SELECT_DESC(QUICK_RANGE_SELECT *q,
8636
                                     uint used_key_parts_arg)
Georgi Kodinov's avatar
Georgi Kodinov committed
8637
 :QUICK_RANGE_SELECT(*q), rev_it(rev_ranges),
8638
  used_key_parts (used_key_parts_arg)
8639
{
unknown's avatar
unknown committed
8640
  QUICK_RANGE *r;
8641 8642 8643 8644 8645 8646 8647
  /* 
    Use default MRR implementation for reverse scans. No table engine
    currently can do an MRR scan with output in reverse index order.
  */
  multi_range_length= 0;
  multi_range= NULL;
  multi_range_buff= NULL;
unknown's avatar
unknown committed
8648

8649
  QUICK_RANGE **pr= (QUICK_RANGE**)ranges.buffer;
8650 8651
  QUICK_RANGE **end_range= pr + ranges.elements;
  for (; pr!=end_range; pr++)
unknown's avatar
unknown committed
8652
    rev_ranges.push_front(*pr);
unknown's avatar
unknown committed
8653

unknown's avatar
unknown committed
8654
  /* Remove EQ_RANGE flag for keys that are not using the full key */
unknown's avatar
unknown committed
8655
  for (r = rev_it++; r; r = rev_it++)
unknown's avatar
unknown committed
8656 8657 8658 8659 8660 8661 8662 8663
  {
    if ((r->flag & EQ_RANGE) &&
	head->key_info[index].key_length != r->max_length)
      r->flag&= ~EQ_RANGE;
  }
  rev_it.rewind();
  q->dont_free=1;				// Don't free shared mem
  delete q;
8664 8665
}

unknown's avatar
unknown committed
8666

8667 8668 8669 8670 8671 8672
int QUICK_SELECT_DESC::get_next()
{
  DBUG_ENTER("QUICK_SELECT_DESC::get_next");

  /* The max key is handled as follows:
   *   - if there is NO_MAX_RANGE, start at the end and move backwards
unknown's avatar
unknown committed
8673 8674
   *   - if it is an EQ_RANGE, which means that max key covers the entire
   *     key, go directly to the key and read through it (sorting backwards is
8675 8676 8677 8678 8679 8680 8681 8682 8683 8684
   *     same as sorting forwards)
   *   - if it is NEAR_MAX, go to the key or next, step back once, and
   *     move backwards
   *   - otherwise (not NEAR_MAX == include the key), go after the key,
   *     step back once, and move backwards
   */

  for (;;)
  {
    int result;
8685
    if (last_range)
8686
    {						// Already read through key
8687 8688
      result = ((last_range->flag & EQ_RANGE && 
                 used_key_parts <= head->key_info[index].key_parts) ? 
Georgi Kodinov's avatar
Georgi Kodinov committed
8689
                file->index_next_same(record, last_range->min_key,
8690 8691
                                      last_range->min_length) :
                file->index_prev(record));
8692 8693 8694 8695 8696 8697 8698 8699 8700
      if (!result)
      {
	if (cmp_prev(*rev_it.ref()) == 0)
	  DBUG_RETURN(0);
      }
      else if (result != HA_ERR_END_OF_FILE)
	DBUG_RETURN(result);
    }

8701
    if (!(last_range= rev_it++))
8702 8703
      DBUG_RETURN(HA_ERR_END_OF_FILE);		// All ranges used

8704
    if (last_range->flag & NO_MAX_RANGE)        // Read last record
8705
    {
8706 8707 8708
      int local_error;
      if ((local_error=file->index_last(record)))
	DBUG_RETURN(local_error);		// Empty table
8709
      if (cmp_prev(last_range) == 0)
8710
	DBUG_RETURN(0);
8711
      last_range= 0;                            // No match; go to next range
8712 8713 8714
      continue;
    }

8715 8716 8717
    if (last_range->flag & EQ_RANGE &&
        used_key_parts <= head->key_info[index].key_parts)

8718
    {
8719 8720 8721
      result = file->index_read_map(record, last_range->max_key,
                                    last_range->max_keypart_map,
                                    HA_READ_KEY_EXACT);
8722 8723 8724
    }
    else
    {
8725
      DBUG_ASSERT(last_range->flag & NEAR_MAX ||
8726 8727
                  (last_range->flag & EQ_RANGE && 
                   used_key_parts > head->key_info[index].key_parts) ||
8728
                  range_reads_after_key(last_range));
8729 8730 8731 8732 8733
      result=file->index_read_map(record, last_range->max_key,
                                  last_range->max_keypart_map,
                                  ((last_range->flag & NEAR_MAX) ?
                                   HA_READ_BEFORE_KEY :
                                   HA_READ_PREFIX_LAST_OR_PREV));
8734 8735 8736
    }
    if (result)
    {
8737
      if (result != HA_ERR_KEY_NOT_FOUND && result != HA_ERR_END_OF_FILE)
8738
	DBUG_RETURN(result);
8739
      last_range= 0;                            // Not found, to next range
8740 8741
      continue;
    }
8742
    if (cmp_prev(last_range) == 0)
8743
    {
8744 8745
      if (last_range->flag == (UNIQUE_RANGE | EQ_RANGE))
	last_range= 0;				// Stop searching
8746 8747
      DBUG_RETURN(0);				// Found key is in range
    }
8748
    last_range= 0;                              // To next range
8749 8750 8751
  }
}

8752

unknown's avatar
unknown committed
8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765
/*
  Compare if found key is over max-value
  Returns 0 if key <= range->max_key
*/

int QUICK_RANGE_SELECT::cmp_next(QUICK_RANGE *range_arg)
{
  if (range_arg->flag & NO_MAX_RANGE)
    return 0;                                   /* key can't be to large */

  KEY_PART *key_part=key_parts;
  uint store_length;

8766
  for (uchar *key=range_arg->max_key, *end=key+range_arg->max_length;
unknown's avatar
unknown committed
8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784
       key < end;
       key+= store_length, key_part++)
  {
    int cmp;
    store_length= key_part->store_length;
    if (key_part->null_bit)
    {
      if (*key)
      {
        if (!key_part->field->is_null())
          return 1;
        continue;
      }
      else if (key_part->field->is_null())
        return 0;
      key++;					// Skip null byte
      store_length--;
    }
8785
    if ((cmp=key_part->field->key_cmp(key, key_part->length)) < 0)
unknown's avatar
unknown committed
8786 8787 8788 8789 8790 8791 8792 8793
      return 0;
    if (cmp > 0)
      return 1;
  }
  return (range_arg->flag & NEAR_MAX) ? 1 : 0;          // Exact match
}


8794
/*
8795 8796 8797
  Returns 0 if found key is inside range (found key >= range->min_key).
*/

8798
int QUICK_RANGE_SELECT::cmp_prev(QUICK_RANGE *range_arg)
8799
{
unknown's avatar
unknown committed
8800
  int cmp;
8801
  if (range_arg->flag & NO_MIN_RANGE)
unknown's avatar
unknown committed
8802
    return 0;					/* key can't be to small */
8803

8804
  cmp= key_cmp(key_part_info, range_arg->min_key,
unknown's avatar
unknown committed
8805
               range_arg->min_length);
unknown's avatar
unknown committed
8806 8807 8808
  if (cmp > 0 || cmp == 0 && !(range_arg->flag & NEAR_MIN))
    return 0;
  return 1;                                     // outside of range
8809 8810
}

8811

8812
/*
unknown's avatar
unknown committed
8813
 * TRUE if this range will require using HA_READ_AFTER_KEY
unknown's avatar
unknown committed
8814
   See comment in get_next() about this
8815
 */
unknown's avatar
unknown committed
8816

8817
bool QUICK_SELECT_DESC::range_reads_after_key(QUICK_RANGE *range_arg)
8818
{
unknown's avatar
unknown committed
8819
  return ((range_arg->flag & (NO_MAX_RANGE | NEAR_MAX)) ||
8820
	  !(range_arg->flag & EQ_RANGE) ||
unknown's avatar
unknown committed
8821
	  head->key_info[index].key_length != range_arg->max_length) ? 1 : 0;
8822 8823
}

8824

8825 8826 8827 8828 8829 8830 8831 8832 8833
void QUICK_RANGE_SELECT::add_info_string(String *str)
{
  KEY *key_info= head->key_info + index;
  str->append(key_info->name);
}

void QUICK_INDEX_MERGE_SELECT::add_info_string(String *str)
{
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
8834
  bool first= TRUE;
8835
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
8836
  str->append(STRING_WITH_LEN("sort_union("));
8837 8838 8839 8840 8841
  while ((quick= it++))
  {
    if (!first)
      str->append(',');
    else
unknown's avatar
unknown committed
8842
      first= FALSE;
8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854
    quick->add_info_string(str);
  }
  if (pk_quick_select)
  {
    str->append(',');
    pk_quick_select->add_info_string(str);
  }
  str->append(')');
}

void QUICK_ROR_INTERSECT_SELECT::add_info_string(String *str)
{
unknown's avatar
unknown committed
8855
  bool first= TRUE;
8856 8857
  QUICK_RANGE_SELECT *quick;
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
8858
  str->append(STRING_WITH_LEN("intersect("));
8859 8860 8861 8862 8863
  while ((quick= it++))
  {
    KEY *key_info= head->key_info + quick->index;
    if (!first)
      str->append(',');
unknown's avatar
unknown committed
8864
    else
unknown's avatar
unknown committed
8865
      first= FALSE;
8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878
    str->append(key_info->name);
  }
  if (cpk_quick)
  {
    KEY *key_info= head->key_info + cpk_quick->index;
    str->append(',');
    str->append(key_info->name);
  }
  str->append(')');
}

void QUICK_ROR_UNION_SELECT::add_info_string(String *str)
{
unknown's avatar
unknown committed
8879
  bool first= TRUE;
8880 8881
  QUICK_SELECT_I *quick;
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
8882
  str->append(STRING_WITH_LEN("union("));
8883 8884 8885 8886 8887
  while ((quick= it++))
  {
    if (!first)
      str->append(',');
    else
unknown's avatar
unknown committed
8888
      first= FALSE;
8889 8890 8891 8892 8893 8894
    quick->add_info_string(str);
  }
  str->append(')');
}


unknown's avatar
unknown committed
8895
void QUICK_RANGE_SELECT::add_keys_and_lengths(String *key_names,
8896
                                              String *used_lengths)
8897 8898 8899 8900 8901 8902 8903 8904 8905
{
  char buf[64];
  uint length;
  KEY *key_info= head->key_info + index;
  key_names->append(key_info->name);
  length= longlong2str(max_used_key_length, buf, 10) - buf;
  used_lengths->append(buf, length);
}

8906 8907
void QUICK_INDEX_MERGE_SELECT::add_keys_and_lengths(String *key_names,
                                                    String *used_lengths)
8908 8909 8910
{
  char buf[64];
  uint length;
unknown's avatar
unknown committed
8911
  bool first= TRUE;
8912
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
8913

8914 8915 8916
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  while ((quick= it++))
  {
8917
    if (first)
unknown's avatar
unknown committed
8918
      first= FALSE;
8919 8920
    else
    {
8921 8922
      key_names->append(',');
      used_lengths->append(',');
8923
    }
unknown's avatar
unknown committed
8924

8925 8926
    KEY *key_info= head->key_info + quick->index;
    key_names->append(key_info->name);
8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940
    length= longlong2str(quick->max_used_key_length, buf, 10) - buf;
    used_lengths->append(buf, length);
  }
  if (pk_quick_select)
  {
    KEY *key_info= head->key_info + pk_quick_select->index;
    key_names->append(',');
    key_names->append(key_info->name);
    length= longlong2str(pk_quick_select->max_used_key_length, buf, 10) - buf;
    used_lengths->append(',');
    used_lengths->append(buf, length);
  }
}

8941 8942
void QUICK_ROR_INTERSECT_SELECT::add_keys_and_lengths(String *key_names,
                                                      String *used_lengths)
8943 8944 8945
{
  char buf[64];
  uint length;
unknown's avatar
unknown committed
8946
  bool first= TRUE;
8947 8948 8949 8950 8951 8952
  QUICK_RANGE_SELECT *quick;
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  while ((quick= it++))
  {
    KEY *key_info= head->key_info + quick->index;
    if (first)
unknown's avatar
unknown committed
8953
      first= FALSE;
8954
    else
8955 8956
    {
      key_names->append(',');
8957
      used_lengths->append(',');
8958 8959
    }
    key_names->append(key_info->name);
8960 8961 8962
    length= longlong2str(quick->max_used_key_length, buf, 10) - buf;
    used_lengths->append(buf, length);
  }
unknown's avatar
unknown committed
8963

8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974
  if (cpk_quick)
  {
    KEY *key_info= head->key_info + cpk_quick->index;
    key_names->append(',');
    key_names->append(key_info->name);
    length= longlong2str(cpk_quick->max_used_key_length, buf, 10) - buf;
    used_lengths->append(',');
    used_lengths->append(buf, length);
  }
}

8975 8976
void QUICK_ROR_UNION_SELECT::add_keys_and_lengths(String *key_names,
                                                  String *used_lengths)
8977
{
unknown's avatar
unknown committed
8978
  bool first= TRUE;
8979 8980 8981 8982 8983
  QUICK_SELECT_I *quick;
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  while ((quick= it++))
  {
    if (first)
unknown's avatar
unknown committed
8984
      first= FALSE;
8985
    else
unknown's avatar
unknown committed
8986
    {
8987 8988 8989
      used_lengths->append(',');
      key_names->append(',');
    }
8990
    quick->add_keys_and_lengths(key_names, used_lengths);
8991 8992 8993
  }
}

8994 8995 8996 8997 8998 8999 9000 9001

/*******************************************************************************
* Implementation of QUICK_GROUP_MIN_MAX_SELECT
*******************************************************************************/

static inline uint get_field_keypart(KEY *index, Field *field);
static inline SEL_ARG * get_index_range_tree(uint index, SEL_TREE* range_tree,
                                             PARAM *param, uint *param_idx);
9002
static bool get_constant_key_infix(KEY *index_info, SEL_ARG *index_range_tree,
9003
                       KEY_PART_INFO *first_non_group_part,
9004 9005
                       KEY_PART_INFO *min_max_arg_part,
                       KEY_PART_INFO *last_part, THD *thd,
9006
                       uchar *key_infix, uint *key_infix_len,
9007
                       KEY_PART_INFO **first_non_infix_part);
9008
static bool
9009 9010
check_group_min_max_predicates(COND *cond, Item_field *min_max_arg_item,
                               Field::imagetype image_type);
9011

9012 9013 9014 9015 9016 9017
static void
cost_group_min_max(TABLE* table, KEY *index_info, uint used_key_parts,
                   uint group_key_parts, SEL_TREE *range_tree,
                   SEL_ARG *index_tree, ha_rows quick_prefix_records,
                   bool have_min, bool have_max,
                   double *read_cost, ha_rows *records);
9018

unknown's avatar
unknown committed
9019

9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044
/*
  Test if this access method is applicable to a GROUP query with MIN/MAX
  functions, and if so, construct a new TRP object.

  SYNOPSIS
    get_best_group_min_max()
    param    Parameter from test_quick_select
    sel_tree Range tree generated by get_mm_tree

  DESCRIPTION
    Test whether a query can be computed via a QUICK_GROUP_MIN_MAX_SELECT.
    Queries computable via a QUICK_GROUP_MIN_MAX_SELECT must satisfy the
    following conditions:
    A) Table T has at least one compound index I of the form:
       I = <A_1, ...,A_k, [B_1,..., B_m], C, [D_1,...,D_n]>
    B) Query conditions:
    B0. Q is over a single table T.
    B1. The attributes referenced by Q are a subset of the attributes of I.
    B2. All attributes QA in Q can be divided into 3 overlapping groups:
        - SA = {S_1, ..., S_l, [C]} - from the SELECT clause, where C is
          referenced by any number of MIN and/or MAX functions if present.
        - WA = {W_1, ..., W_p} - from the WHERE clause
        - GA = <G_1, ..., G_k> - from the GROUP BY clause (if any)
             = SA              - if Q is a DISTINCT query (based on the
                                 equivalence of DISTINCT and GROUP queries.
unknown's avatar
unknown committed
9045 9046
        - NGA = QA - (GA union C) = {NG_1, ..., NG_m} - the ones not in
          GROUP BY and not referenced by MIN/MAX functions.
9047
        with the following properties specified below.
9048 9049
    B3. If Q has a GROUP BY WITH ROLLUP clause the access method is not 
        applicable.
9050 9051 9052 9053 9054 9055 9056 9057 9058 9059

    SA1. There is at most one attribute in SA referenced by any number of
         MIN and/or MAX functions which, which if present, is denoted as C.
    SA2. The position of the C attribute in the index is after the last A_k.
    SA3. The attribute C can be referenced in the WHERE clause only in
         predicates of the forms:
         - (C {< | <= | > | >= | =} const)
         - (const {< | <= | > | >= | =} C)
         - (C between const_i and const_j)
         - C IS NULL
9060 9061
         - C IS NOT NULL
         - C != const
9062 9063 9064
    SA4. If Q has a GROUP BY clause, there are no other aggregate functions
         except MIN and MAX. For queries with DISTINCT, aggregate functions
         are allowed.
9065
    SA5. The select list in DISTINCT queries should not contain expressions.
9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079
    GA1. If Q has a GROUP BY clause, then GA is a prefix of I. That is, if
         G_i = A_j => i = j.
    GA2. If Q has a DISTINCT clause, then there is a permutation of SA that
         forms a prefix of I. This permutation is used as the GROUP clause
         when the DISTINCT query is converted to a GROUP query.
    GA3. The attributes in GA may participate in arbitrary predicates, divided
         into two groups:
         - RNG(G_1,...,G_q ; where q <= k) is a range condition over the
           attributes of a prefix of GA
         - PA(G_i1,...G_iq) is an arbitrary predicate over an arbitrary subset
           of GA. Since P is applied to only GROUP attributes it filters some
           groups, and thus can be applied after the grouping.
    GA4. There are no expressions among G_i, just direct column references.
    NGA1.If in the index I there is a gap between the last GROUP attribute G_k,
9080 9081 9082 9083
         and the MIN/MAX attribute C, then NGA must consist of exactly the
         index attributes that constitute the gap. As a result there is a
         permutation of NGA that coincides with the gap in the index
         <B_1, ..., B_m>.
9084 9085 9086 9087 9088 9089 9090
    NGA2.If BA <> {}, then the WHERE clause must contain a conjunction EQ of
         equality conditions for all NG_i of the form (NG_i = const) or
         (const = NG_i), such that each NG_i is referenced in exactly one
         conjunct. Informally, the predicates provide constants to fill the
         gap in the index.
    WA1. There are no other attributes in the WHERE clause except the ones
         referenced in predicates RNG, PA, PC, EQ defined above. Therefore
9091 9092 9093 9094
         WA is subset of (GA union NGA union C) for GA,NGA,C that pass the
         above tests. By transitivity then it also follows that each WA_i
         participates in the index I (if this was already tested for GA, NGA
         and C).
9095 9096

    C) Overall query form:
9097 9098 9099 9100
       SELECT EXPR([A_1,...,A_k], [B_1,...,B_m], [MIN(C)], [MAX(C)])
         FROM T
        WHERE [RNG(A_1,...,A_p ; where p <= k)]
         [AND EQ(B_1,...,B_m)]
9101 9102
         [AND PC(C)]
         [AND PA(A_i1,...,A_iq)]
9103 9104 9105 9106
       GROUP BY A_1,...,A_k
       [HAVING PH(A_1, ..., B_1,..., C)]
    where EXPR(...) is an arbitrary expression over some or all SELECT fields,
    or:
9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135
       SELECT DISTINCT A_i1,...,A_ik
         FROM T
        WHERE [RNG(A_1,...,A_p ; where p <= k)]
         [AND PA(A_i1,...,A_iq)];

  NOTES
    If the current query satisfies the conditions above, and if
    (mem_root! = NULL), then the function constructs and returns a new TRP
    object, that is later used to construct a new QUICK_GROUP_MIN_MAX_SELECT.
    If (mem_root == NULL), then the function only tests whether the current
    query satisfies the conditions above, and, if so, sets
    is_applicable = TRUE.

    Queries with DISTINCT for which index access can be used are transformed
    into equivalent group-by queries of the form:

    SELECT A_1,...,A_k FROM T
     WHERE [RNG(A_1,...,A_p ; where p <= k)]
      [AND PA(A_i1,...,A_iq)]
    GROUP BY A_1,...,A_k;

    The group-by list is a permutation of the select attributes, according
    to their order in the index.

  TODO
  - What happens if the query groups by the MIN/MAX field, and there is no
    other field as in: "select min(a) from t1 group by a" ?
  - We assume that the general correctness of the GROUP-BY query was checked
    before this point. Is this correct, or do we have to check it completely?
9136 9137
  - Lift the limitation in condition (B3), that is, make this access method 
    applicable to ROLLUP queries.
9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151

  RETURN
    If mem_root != NULL
    - valid TRP_GROUP_MIN_MAX object if this QUICK class can be used for
      the query
    -  NULL o/w.
    If mem_root == NULL
    - NULL
*/

static TRP_GROUP_MIN_MAX *
get_best_group_min_max(PARAM *param, SEL_TREE *tree)
{
  THD *thd= param->thd;
9152
  JOIN *join= thd->lex->current_select->join;
9153 9154 9155
  TABLE *table= param->table;
  bool have_min= FALSE;              /* TRUE if there is a MIN function. */
  bool have_max= FALSE;              /* TRUE if there is a MAX function. */
9156
  Item_field *min_max_arg_item= NULL; // The argument of all MIN/MAX functions
9157 9158 9159 9160
  KEY_PART_INFO *min_max_arg_part= NULL; /* The corresponding keypart. */
  uint group_prefix_len= 0; /* Length (in bytes) of the key prefix. */
  KEY *index_info= NULL;    /* The index chosen for data access. */
  uint index= 0;            /* The id of the chosen index. */
9161
  uint group_key_parts= 0;  // Number of index key parts in the group prefix.
9162
  uint used_key_parts= 0;   /* Number of index key parts used for access. */
9163
  uchar key_infix[MAX_KEY_LENGTH]; /* Constants from equality predicates.*/
9164 9165 9166 9167 9168 9169 9170 9171 9172
  uint key_infix_len= 0;          /* Length of key_infix. */
  TRP_GROUP_MIN_MAX *read_plan= NULL; /* The eventually constructed TRP. */
  uint key_part_nr;
  ORDER *tmp_group;
  Item *item;
  Item_field *item_field;
  DBUG_ENTER("get_best_group_min_max");

  /* Perform few 'cheap' tests whether this access method is applicable. */
9173
  if (!join)
9174 9175 9176
    DBUG_RETURN(NULL);        /* This is not a select statement. */
  if ((join->tables != 1) ||  /* The query must reference one table. */
      ((!join->group_list) && /* Neither GROUP BY nor a DISTINCT query. */
9177
       (!join->select_distinct)) ||
9178
      (join->select_lex->olap == ROLLUP_TYPE)) /* Check (B3) for ROLLUP */
9179
    DBUG_RETURN(NULL);
9180
  if (table->s->keys == 0)        /* There are no indexes to use. */
9181 9182 9183
    DBUG_RETURN(NULL);

  /* Analyze the query in more detail. */
9184
  List_iterator<Item> select_items_it(join->fields_list);
9185

9186
  /* Check (SA1,SA4) and store the only MIN/MAX argument - the C attribute.*/
unknown's avatar
unknown committed
9187
  if (join->make_sum_func_list(join->all_fields, join->fields_list, 1))
9188 9189
    DBUG_RETURN(NULL);
  if (join->sum_funcs[0])
9190
  {
9191 9192 9193
    Item_sum *min_max_item;
    Item_sum **func_ptr= join->sum_funcs;
    while ((min_max_item= *(func_ptr++)))
9194
    {
9195 9196 9197 9198 9199
      if (min_max_item->sum_func() == Item_sum::MIN_FUNC)
        have_min= TRUE;
      else if (min_max_item->sum_func() == Item_sum::MAX_FUNC)
        have_max= TRUE;
      else
9200 9201
        DBUG_RETURN(NULL);

unknown's avatar
unknown committed
9202
      /* The argument of MIN/MAX. */
9203
      Item *expr= min_max_item->get_arg(0)->real_item();
9204
      if (expr->type() == Item::FIELD_ITEM) /* Is it an attribute? */
9205
      {
9206 9207 9208 9209
        if (! min_max_arg_item)
          min_max_arg_item= (Item_field*) expr;
        else if (! min_max_arg_item->eq(expr, 1))
          DBUG_RETURN(NULL);
9210
      }
9211 9212
      else
        DBUG_RETURN(NULL);
9213
    }
9214
  }
9215

9216 9217 9218 9219
  /* Check (SA5). */
  if (join->select_distinct)
  {
    while ((item= select_items_it++))
9220
    {
9221 9222
      if (item->type() != Item::FIELD_ITEM)
        DBUG_RETURN(NULL);
9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238
    }
  }

  /* Check (GA4) - that there are no expressions among the group attributes. */
  for (tmp_group= join->group_list; tmp_group; tmp_group= tmp_group->next)
  {
    if ((*tmp_group->item)->type() != Item::FIELD_ITEM)
      DBUG_RETURN(NULL);
  }

  /*
    Check that table has at least one compound index such that the conditions
    (GA1,GA2) are all TRUE. If there is more than one such index, select the
    first one. Here we set the variables: group_prefix_len and index_info.
  */
  KEY *cur_index_info= table->key_info;
9239
  KEY *cur_index_info_end= cur_index_info + table->s->keys;
9240
  KEY_PART_INFO *cur_part= NULL;
9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258
  KEY_PART_INFO *end_part; /* Last part for loops. */
  /* Last index part. */
  KEY_PART_INFO *last_part= NULL;
  KEY_PART_INFO *first_non_group_part= NULL;
  KEY_PART_INFO *first_non_infix_part= NULL;
  uint key_infix_parts= 0;
  uint cur_group_key_parts= 0;
  uint cur_group_prefix_len= 0;
  /* Cost-related variables for the best index so far. */
  double best_read_cost= DBL_MAX;
  ha_rows best_records= 0;
  SEL_ARG *best_index_tree= NULL;
  ha_rows best_quick_prefix_records= 0;
  uint best_param_idx= 0;
  double cur_read_cost= DBL_MAX;
  ha_rows cur_records;
  SEL_ARG *cur_index_tree= NULL;
  ha_rows cur_quick_prefix_records= 0;
9259
  uint cur_param_idx=MAX_KEY;
unknown's avatar
unknown committed
9260
  key_map cur_used_key_parts;
unknown's avatar
unknown committed
9261
  uint pk= param->table->s->primary_key;
9262 9263 9264 9265 9266

  for (uint cur_index= 0 ; cur_index_info != cur_index_info_end ;
       cur_index_info++, cur_index++)
  {
    /* Check (B1) - if current index is covering. */
9267
    if (!table->covering_keys.is_set(cur_index))
9268
      goto next_index;
9269

unknown's avatar
unknown committed
9270 9271 9272 9273 9274 9275 9276 9277 9278 9279
    /*
      If the current storage manager is such that it appends the primary key to
      each index, then the above condition is insufficient to check if the
      index is covering. In such cases it may happen that some fields are
      covered by the PK index, but not by the current index. Since we can't
      use the concatenation of both indexes for index lookup, such an index
      does not qualify as covering in our case. If this is the case, below
      we check that all query fields are indeed covered by 'cur_index'.
    */
    if (pk < MAX_KEY && cur_index != pk &&
9280
        (table->file->ha_table_flags() & HA_PRIMARY_KEY_IN_READ_INDEX))
unknown's avatar
unknown committed
9281 9282 9283 9284 9285 9286
    {
      /* For each table field */
      for (uint i= 0; i < table->s->fields; i++)
      {
        Field *cur_field= table->field[i];
        /*
9287 9288
          If the field is used in the current query ensure that it's
          part of 'cur_index'
unknown's avatar
unknown committed
9289
        */
9290 9291 9292
        if (bitmap_is_set(table->read_set, cur_field->field_index) &&
            !cur_field->part_of_key_not_clustered.is_set(cur_index))
          goto next_index;                  // Field was not part of key
unknown's avatar
unknown committed
9293 9294 9295
      }
    }

9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316
    /*
      Check (GA1) for GROUP BY queries.
    */
    if (join->group_list)
    {
      cur_part= cur_index_info->key_part;
      end_part= cur_part + cur_index_info->key_parts;
      /* Iterate in parallel over the GROUP list and the index parts. */
      for (tmp_group= join->group_list; tmp_group && (cur_part != end_part);
           tmp_group= tmp_group->next, cur_part++)
      {
        /*
          TODO:
          tmp_group::item is an array of Item, is it OK to consider only the
          first Item? If so, then why? What is the array for?
        */
        /* Above we already checked that all group items are fields. */
        DBUG_ASSERT((*tmp_group->item)->type() == Item::FIELD_ITEM);
        Item_field *group_field= (Item_field *) (*tmp_group->item);
        if (group_field->field->eq(cur_part->field))
        {
9317 9318
          cur_group_prefix_len+= cur_part->store_length;
          ++cur_group_key_parts;
9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333
        }
        else
          goto next_index;
      }
    }
    /*
      Check (GA2) if this is a DISTINCT query.
      If GA2, then Store a new ORDER object in group_fields_array at the
      position of the key part of item_field->field. Thus we get the ORDER
      objects for each field ordered as the corresponding key parts.
      Later group_fields_array of ORDER objects is used to convert the query
      to a GROUP query.
    */
    else if (join->select_distinct)
    {
9334
      select_items_it.rewind();
unknown's avatar
unknown committed
9335
      cur_used_key_parts.clear_all();
9336
      uint max_key_part= 0;
9337
      while ((item= select_items_it++))
9338
      {
9339
        item_field= (Item_field*) item; /* (SA5) already checked above. */
9340 9341
        /* Find the order of the key part in the index. */
        key_part_nr= get_field_keypart(cur_index_info, item_field->field);
unknown's avatar
unknown committed
9342 9343 9344 9345 9346 9347
        /*
          Check if this attribute was already present in the select list.
          If it was present, then its corresponding key part was alredy used.
        */
        if (cur_used_key_parts.is_set(key_part_nr))
          continue;
9348
        if (key_part_nr < 1 || key_part_nr > join->fields_list.elements)
9349 9350
          goto next_index;
        cur_part= cur_index_info->key_part + key_part_nr - 1;
9351
        cur_group_prefix_len+= cur_part->store_length;
unknown's avatar
unknown committed
9352 9353
        cur_used_key_parts.set_bit(key_part_nr);
        ++cur_group_key_parts;
9354
        max_key_part= max(max_key_part,key_part_nr);
9355
      }
9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366
      /*
        Check that used key parts forms a prefix of the index.
        To check this we compare bits in all_parts and cur_parts.
        all_parts have all bits set from 0 to (max_key_part-1).
        cur_parts have bits set for only used keyparts.
      */
      ulonglong all_parts, cur_parts;
      all_parts= (1<<max_key_part) - 1;
      cur_parts= cur_used_key_parts.to_ulonglong() >> 1;
      if (all_parts != cur_parts)
        goto next_index;
9367 9368 9369 9370 9371 9372 9373 9374
    }
    else
      DBUG_ASSERT(FALSE);

    /* Check (SA2). */
    if (min_max_arg_item)
    {
      key_part_nr= get_field_keypart(cur_index_info, min_max_arg_item->field);
9375
      if (key_part_nr <= cur_group_key_parts)
9376 9377 9378 9379 9380 9381 9382 9383
        goto next_index;
      min_max_arg_part= cur_index_info->key_part + key_part_nr - 1;
    }

    /*
      Check (NGA1, NGA2) and extract a sequence of constants to be used as part
      of all search keys.
    */
9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400

    /*
      If there is MIN/MAX, each keypart between the last group part and the
      MIN/MAX part must participate in one equality with constants, and all
      keyparts after the MIN/MAX part must not be referenced in the query.

      If there is no MIN/MAX, the keyparts after the last group part can be
      referenced only in equalities with constants, and the referenced keyparts
      must form a sequence without any gaps that starts immediately after the
      last group keypart.
    */
    last_part= cur_index_info->key_part + cur_index_info->key_parts;
    first_non_group_part= (cur_group_key_parts < cur_index_info->key_parts) ?
                          cur_index_info->key_part + cur_group_key_parts :
                          NULL;
    first_non_infix_part= min_max_arg_part ?
                          (min_max_arg_part < last_part) ?
9401
                             min_max_arg_part :
9402 9403 9404 9405
                             NULL :
                           NULL;
    if (first_non_group_part &&
        (!min_max_arg_part || (min_max_arg_part - first_non_group_part > 0)))
9406
    {
9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419
      if (tree)
      {
        uint dummy;
        SEL_ARG *index_range_tree= get_index_range_tree(cur_index, tree, param,
                                                        &dummy);
        if (!get_constant_key_infix(cur_index_info, index_range_tree,
                                    first_non_group_part, min_max_arg_part,
                                    last_part, thd, key_infix, &key_infix_len,
                                    &first_non_infix_part))
          goto next_index;
      }
      else if (min_max_arg_part &&
               (min_max_arg_part - first_non_group_part > 0))
unknown's avatar
unknown committed
9420
      {
9421 9422 9423 9424
        /*
          There is a gap but no range tree, thus no predicates at all for the
          non-group keyparts.
        */
9425
        goto next_index;
unknown's avatar
unknown committed
9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445
      }
      else if (first_non_group_part && join->conds)
      {
        /*
          If there is no MIN/MAX function in the query, but some index
          key part is referenced in the WHERE clause, then this index
          cannot be used because the WHERE condition over the keypart's
          field cannot be 'pushed' to the index (because there is no
          range 'tree'), and the WHERE clause must be evaluated before
          GROUP BY/DISTINCT.
        */
        /*
          Store the first and last keyparts that need to be analyzed
          into one array that can be passed as parameter.
        */
        KEY_PART_INFO *key_part_range[2];
        key_part_range[0]= first_non_group_part;
        key_part_range[1]= last_part;

        /* Check if cur_part is referenced in the WHERE clause. */
9446
        if (join->conds->walk(&Item::find_item_in_field_list_processor, 0,
9447
                              (uchar*) key_part_range))
unknown's avatar
unknown committed
9448 9449
          goto next_index;
      }
9450 9451
    }

9452 9453 9454 9455 9456 9457
    /*
      Test (WA1) partially - that no other keypart after the last infix part is
      referenced in the query.
    */
    if (first_non_infix_part)
    {
9458 9459 9460
      cur_part= first_non_infix_part +
                (min_max_arg_part && (min_max_arg_part < last_part));
      for (; cur_part != last_part; cur_part++)
9461
      {
9462
        if (bitmap_is_set(table->read_set, cur_part->field->field_index))
9463 9464 9465 9466
          goto next_index;
      }
    }

9467
    /* If we got to this point, cur_index_info passes the test. */
9468 9469 9470
    key_infix_parts= key_infix_len ?
                     (first_non_infix_part - first_non_group_part) : 0;
    used_key_parts= cur_group_key_parts + key_infix_parts;
9471

9472 9473 9474 9475 9476 9477 9478 9479
    /* Compute the cost of using this index. */
    if (tree)
    {
      /* Find the SEL_ARG sub-tree that corresponds to the chosen index. */
      cur_index_tree= get_index_range_tree(cur_index, tree, param,
                                           &cur_param_idx);
      /* Check if this range tree can be used for prefix retrieval. */
      cur_quick_prefix_records= check_quick_select(param, cur_param_idx,
9480
                                                    cur_index_tree, TRUE);
9481 9482 9483 9484 9485
    }
    cost_group_min_max(table, cur_index_info, used_key_parts,
                       cur_group_key_parts, tree, cur_index_tree,
                       cur_quick_prefix_records, have_min, have_max,
                       &cur_read_cost, &cur_records);
unknown's avatar
unknown committed
9486 9487 9488 9489 9490 9491
    /*
      If cur_read_cost is lower than best_read_cost use cur_index.
      Do not compare doubles directly because they may have different
      representations (64 vs. 80 bits).
    */
    if (cur_read_cost < best_read_cost - (DBL_EPSILON * cur_read_cost))
9492
    {
9493
      DBUG_ASSERT(tree != 0 || cur_param_idx == MAX_KEY);
9494 9495 9496 9497 9498 9499 9500 9501 9502 9503
      index_info= cur_index_info;
      index= cur_index;
      best_read_cost= cur_read_cost;
      best_records= cur_records;
      best_index_tree= cur_index_tree;
      best_quick_prefix_records= cur_quick_prefix_records;
      best_param_idx= cur_param_idx;
      group_key_parts= cur_group_key_parts;
      group_prefix_len= cur_group_prefix_len;
    }
9504 9505

  next_index:
9506 9507
    cur_group_key_parts= 0;
    cur_group_prefix_len= 0;
9508 9509 9510 9511
  }
  if (!index_info) /* No usable index found. */
    DBUG_RETURN(NULL);

9512 9513 9514
  /* Check (SA3) for the where clause. */
  if (join->conds && min_max_arg_item &&
      !check_group_min_max_predicates(join->conds, min_max_arg_item,
9515 9516
                                      (index_info->flags & HA_SPATIAL) ?
                                      Field::itMBR : Field::itRAW))
9517 9518 9519 9520
    DBUG_RETURN(NULL);

  /* The query passes all tests, so construct a new TRP object. */
  read_plan= new (param->mem_root)
9521 9522 9523 9524
                 TRP_GROUP_MIN_MAX(have_min, have_max, min_max_arg_part,
                                   group_prefix_len, used_key_parts,
                                   group_key_parts, index_info, index,
                                   key_infix_len,
9525
                                   (key_infix_len > 0) ? key_infix : NULL,
9526
                                   tree, best_index_tree, best_param_idx,
9527
                                   best_quick_prefix_records);
9528 9529 9530 9531 9532
  if (read_plan)
  {
    if (tree && read_plan->quick_prefix_records == 0)
      DBUG_RETURN(NULL);

9533 9534 9535
    read_plan->read_cost= best_read_cost;
    read_plan->records=   best_records;

9536 9537 9538 9539 9540 9541 9542 9543 9544 9545
    DBUG_PRINT("info",
               ("Returning group min/max plan: cost: %g, records: %lu",
                read_plan->read_cost, (ulong) read_plan->records));
  }

  DBUG_RETURN(read_plan);
}


/*
9546 9547
  Check that the MIN/MAX attribute participates only in range predicates
  with constants.
9548 9549 9550 9551 9552 9553

  SYNOPSIS
    check_group_min_max_predicates()
    cond              tree (or subtree) describing all or part of the WHERE
                      clause being analyzed
    min_max_arg_item  the field referenced by the MIN/MAX function(s)
9554
    min_max_arg_part  the keypart of the MIN/MAX argument if any
9555 9556 9557

  DESCRIPTION
    The function walks recursively over the cond tree representing a WHERE
9558
    clause, and checks condition (SA3) - if a field is referenced by a MIN/MAX
9559 9560
    aggregate function, it is referenced only by one of the following
    predicates: {=, !=, <, <=, >, >=, between, is null, is not null}.
9561 9562 9563 9564 9565 9566 9567

  RETURN
    TRUE  if cond passes the test
    FALSE o/w
*/

static bool
9568 9569
check_group_min_max_predicates(COND *cond, Item_field *min_max_arg_item,
                               Field::imagetype image_type)
9570 9571
{
  DBUG_ENTER("check_group_min_max_predicates");
9572
  DBUG_ASSERT(cond && min_max_arg_item);
9573

unknown's avatar
unknown committed
9574
  cond= cond->real_item();
9575 9576 9577 9578 9579 9580 9581 9582
  Item::Type cond_type= cond->type();
  if (cond_type == Item::COND_ITEM) /* 'AND' or 'OR' */
  {
    DBUG_PRINT("info", ("Analyzing: %s", ((Item_func*) cond)->func_name()));
    List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
    Item *and_or_arg;
    while ((and_or_arg= li++))
    {
unknown's avatar
unknown committed
9583
      if (!check_group_min_max_predicates(and_or_arg, min_max_arg_item,
9584
                                         image_type))
9585 9586 9587 9588 9589
        DBUG_RETURN(FALSE);
    }
    DBUG_RETURN(TRUE);
  }

9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602
  /*
    TODO:
    This is a very crude fix to handle sub-selects in the WHERE clause
    (Item_subselect objects). With the test below we rule out from the
    optimization all queries with subselects in the WHERE clause. What has to
    be done, is that here we should analyze whether the subselect references
    the MIN/MAX argument field, and disallow the optimization only if this is
    so.
  */
  if (cond_type == Item::SUBSELECT_ITEM)
    DBUG_RETURN(FALSE);
  
  /* We presume that at this point there are no other Items than functions. */
9603 9604 9605 9606 9607 9608 9609 9610 9611
  DBUG_ASSERT(cond_type == Item::FUNC_ITEM);

  /* Test if cond references only group-by or non-group fields. */
  Item_func *pred= (Item_func*) cond;
  Item **arguments= pred->arguments();
  Item *cur_arg;
  DBUG_PRINT("info", ("Analyzing: %s", pred->func_name()));
  for (uint arg_idx= 0; arg_idx < pred->argument_count (); arg_idx++)
  {
unknown's avatar
unknown committed
9612
    cur_arg= arguments[arg_idx]->real_item();
9613 9614 9615
    DBUG_PRINT("info", ("cur_arg: %s", cur_arg->full_name()));
    if (cur_arg->type() == Item::FIELD_ITEM)
    {
9616
      if (min_max_arg_item->eq(cur_arg, 1)) 
9617 9618 9619
      {
       /*
         If pred references the MIN/MAX argument, check whether pred is a range
9620
         condition that compares the MIN/MAX argument with a constant.
9621 9622
       */
        Item_func::Functype pred_type= pred->functype();
9623 9624 9625 9626 9627 9628 9629 9630 9631 9632
        if (pred_type != Item_func::EQUAL_FUNC     &&
            pred_type != Item_func::LT_FUNC        &&
            pred_type != Item_func::LE_FUNC        &&
            pred_type != Item_func::GT_FUNC        &&
            pred_type != Item_func::GE_FUNC        &&
            pred_type != Item_func::BETWEEN        &&
            pred_type != Item_func::ISNULL_FUNC    &&
            pred_type != Item_func::ISNOTNULL_FUNC &&
            pred_type != Item_func::EQ_FUNC        &&
            pred_type != Item_func::NE_FUNC)
9633 9634 9635 9636
          DBUG_RETURN(FALSE);

        /* Check that pred compares min_max_arg_item with a constant. */
        Item *args[3];
9637
        bzero(args, 3 * sizeof(Item*));
9638 9639 9640 9641
        bool inv;
        /* Test if this is a comparison of a field and a constant. */
        if (!simple_pred(pred, args, &inv))
          DBUG_RETURN(FALSE);
9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660

        /* Check for compatible string comparisons - similar to get_mm_leaf. */
        if (args[0] && args[1] && !args[2] && // this is a binary function
            min_max_arg_item->result_type() == STRING_RESULT &&
            /*
              Don't use an index when comparing strings of different collations.
            */
            ((args[1]->result_type() == STRING_RESULT &&
              image_type == Field::itRAW &&
              ((Field_str*) min_max_arg_item->field)->charset() !=
              pred->compare_collation())
             ||
             /*
               We can't always use indexes when comparing a string index to a
               number.
             */
             (args[1]->result_type() != STRING_RESULT &&
              min_max_arg_item->field->cmp_type() != args[1]->result_type())))
          DBUG_RETURN(FALSE);
9661 9662 9663 9664
      }
    }
    else if (cur_arg->type() == Item::FUNC_ITEM)
    {
unknown's avatar
unknown committed
9665
      if (!check_group_min_max_predicates(cur_arg, min_max_arg_item,
9666
                                         image_type))
9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685
        DBUG_RETURN(FALSE);
    }
    else if (cur_arg->const_item())
    {
      DBUG_RETURN(TRUE);
    }
    else
      DBUG_RETURN(FALSE);
  }

  DBUG_RETURN(TRUE);
}


/*
  Extract a sequence of constants from a conjunction of equality predicates.

  SYNOPSIS
    get_constant_key_infix()
9686 9687 9688 9689 9690 9691 9692 9693 9694
    index_info             [in]  Descriptor of the chosen index.
    index_range_tree       [in]  Range tree for the chosen index
    first_non_group_part   [in]  First index part after group attribute parts
    min_max_arg_part       [in]  The keypart of the MIN/MAX argument if any
    last_part              [in]  Last keypart of the index
    thd                    [in]  Current thread
    key_infix              [out] Infix of constants to be used for index lookup
    key_infix_len          [out] Lenghth of the infix
    first_non_infix_part   [out] The first keypart after the infix (if any)
9695 9696 9697
    
  DESCRIPTION
    Test conditions (NGA1, NGA2) from get_best_group_min_max(). Namely,
unknown's avatar
unknown committed
9698 9699
    for each keypart field NGF_i not in GROUP-BY, check that there is a
    constant equality predicate among conds with the form (NGF_i = const_ci) or
9700 9701
    (const_ci = NGF_i).
    Thus all the NGF_i attributes must fill the 'gap' between the last group-by
9702 9703 9704 9705 9706 9707
    attribute and the MIN/MAX attribute in the index (if present). If these
    conditions hold, copy each constant from its corresponding predicate into
    key_infix, in the order its NG_i attribute appears in the index, and update
    key_infix_len with the total length of the key parts in key_infix.

  RETURN
9708
    TRUE  if the index passes the test
9709 9710 9711 9712
    FALSE o/w
*/

static bool
9713
get_constant_key_infix(KEY *index_info, SEL_ARG *index_range_tree,
9714
                       KEY_PART_INFO *first_non_group_part,
9715 9716
                       KEY_PART_INFO *min_max_arg_part,
                       KEY_PART_INFO *last_part, THD *thd,
9717
                       uchar *key_infix, uint *key_infix_len,
9718
                       KEY_PART_INFO **first_non_infix_part)
9719 9720 9721
{
  SEL_ARG       *cur_range;
  KEY_PART_INFO *cur_part;
9722 9723
  /* End part for the first loop below. */
  KEY_PART_INFO *end_part= min_max_arg_part ? min_max_arg_part : last_part;
9724 9725

  *key_infix_len= 0;
9726
  uchar *key_ptr= key_infix;
9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740
  for (cur_part= first_non_group_part; cur_part != end_part; cur_part++)
  {
    /*
      Find the range tree for the current keypart. We assume that
      index_range_tree points to the leftmost keypart in the index.
    */
    for (cur_range= index_range_tree; cur_range;
         cur_range= cur_range->next_key_part)
    {
      if (cur_range->field->eq(cur_part->field))
        break;
    }
    if (!cur_range)
    {
9741 9742 9743 9744 9745 9746 9747
      if (min_max_arg_part)
        return FALSE; /* The current keypart has no range predicates at all. */
      else
      {
        *first_non_infix_part= cur_part;
        return TRUE;
      }
9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759
    }

    /* Check that the current range tree is a single point interval. */
    if (cur_range->prev || cur_range->next)
      return FALSE; /* This is not the only range predicate for the field. */
    if ((cur_range->min_flag & NO_MIN_RANGE) ||
        (cur_range->max_flag & NO_MAX_RANGE) ||
        (cur_range->min_flag & NEAR_MIN) || (cur_range->max_flag & NEAR_MAX))
      return FALSE;

    uint field_length= cur_part->store_length;
    if ((cur_range->maybe_null &&
unknown's avatar
unknown committed
9760 9761 9762 9763
         cur_range->min_value[0] && cur_range->max_value[0]) ||
        !memcmp(cur_range->min_value, cur_range->max_value, field_length))
    {
      /* cur_range specifies 'IS NULL' or an equality condition. */
9764 9765 9766 9767 9768 9769 9770 9771
      memcpy(key_ptr, cur_range->min_value, field_length);
      key_ptr+= field_length;
      *key_infix_len+= field_length;
    }
    else
      return FALSE;
  }

9772 9773 9774
  if (!min_max_arg_part && (cur_part == last_part))
    *first_non_infix_part= last_part;

9775 9776 9777 9778
  return TRUE;
}


9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798
/*
  Find the key part referenced by a field.

  SYNOPSIS
    get_field_keypart()
    index  descriptor of an index
    field  field that possibly references some key part in index

  NOTES
    The return value can be used to get a KEY_PART_INFO pointer by
    part= index->key_part + get_field_keypart(...) - 1;

  RETURN
    Positive number which is the consecutive number of the key part, or
    0 if field does not reference any index field.
*/

static inline uint
get_field_keypart(KEY *index, Field *field)
{
9799
  KEY_PART_INFO *part, *end;
9800

9801
  for (part= index->key_part, end= part + index->key_parts; part < end; part++)
9802 9803
  {
    if (field->eq(part->field))
unknown's avatar
unknown committed
9804
      return part - index->key_part + 1;
9805
  }
9806
  return 0;
9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847
}


/*
  Find the SEL_ARG sub-tree that corresponds to the chosen index.

  SYNOPSIS
    get_index_range_tree()
    index     [in]  The ID of the index being looked for
    range_tree[in]  Tree of ranges being searched
    param     [in]  PARAM from SQL_SELECT::test_quick_select
    param_idx [out] Index in the array PARAM::key that corresponds to 'index'

  DESCRIPTION

    A SEL_TREE contains range trees for all usable indexes. This procedure
    finds the SEL_ARG sub-tree for 'index'. The members of a SEL_TREE are
    ordered in the same way as the members of PARAM::key, thus we first find
    the corresponding index in the array PARAM::key. This index is returned
    through the variable param_idx, to be used later as argument of
    check_quick_select().

  RETURN
    Pointer to the SEL_ARG subtree that corresponds to index.
*/

SEL_ARG * get_index_range_tree(uint index, SEL_TREE* range_tree, PARAM *param,
                               uint *param_idx)
{
  uint idx= 0; /* Index nr in param->key_parts */
  while (idx < param->keys)
  {
    if (index == param->real_keynr[idx])
      break;
    idx++;
  }
  *param_idx= idx;
  return(range_tree->keys[idx]);
}


9848
/*
9849
  Compute the cost of a quick_group_min_max_select for a particular index.
9850 9851

  SYNOPSIS
9852 9853 9854 9855 9856 9857 9858
    cost_group_min_max()
    table                [in] The table being accessed
    index_info           [in] The index used to access the table
    used_key_parts       [in] Number of key parts used to access the index
    group_key_parts      [in] Number of index key parts in the group prefix
    range_tree           [in] Tree of ranges for all indexes
    index_tree           [in] The range tree for the current index
unknown's avatar
unknown committed
9859 9860
    quick_prefix_records [in] Number of records retrieved by the internally
			      used quick range select if any
9861 9862 9863 9864
    have_min             [in] True if there is a MIN function
    have_max             [in] True if there is a MAX function
    read_cost           [out] The cost to retrieve rows via this quick select
    records             [out] The number of rows retrieved
9865 9866

  DESCRIPTION
unknown's avatar
unknown committed
9867 9868
    This method computes the access cost of a TRP_GROUP_MIN_MAX instance and
    the number of rows returned. It updates this->read_cost and this->records.
9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907

  NOTES
    The cost computation distinguishes several cases:
    1) No equality predicates over non-group attributes (thus no key_infix).
       If groups are bigger than blocks on the average, then we assume that it
       is very unlikely that block ends are aligned with group ends, thus even
       if we look for both MIN and MAX keys, all pairs of neighbor MIN/MAX
       keys, except for the first MIN and the last MAX keys, will be in the
       same block.  If groups are smaller than blocks, then we are going to
       read all blocks.
    2) There are equality predicates over non-group attributes.
       In this case the group prefix is extended by additional constants, and
       as a result the min/max values are inside sub-groups of the original
       groups. The number of blocks that will be read depends on whether the
       ends of these sub-groups will be contained in the same or in different
       blocks. We compute the probability for the two ends of a subgroup to be
       in two different blocks as the ratio of:
       - the number of positions of the left-end of a subgroup inside a group,
         such that the right end of the subgroup is past the end of the buffer
         containing the left-end, and
       - the total number of possible positions for the left-end of the
         subgroup, which is the number of keys in the containing group.
       We assume it is very unlikely that two ends of subsequent subgroups are
       in the same block.
    3) The are range predicates over the group attributes.
       Then some groups may be filtered by the range predicates. We use the
       selectivity of the range predicates to decide how many groups will be
       filtered.

  TODO
     - Take into account the optional range predicates over the MIN/MAX
       argument.
     - Check if we have a PK index and we use all cols - then each key is a
       group, and it will be better to use an index scan.

  RETURN
    None
*/

9908 9909 9910 9911 9912
void cost_group_min_max(TABLE* table, KEY *index_info, uint used_key_parts,
                        uint group_key_parts, SEL_TREE *range_tree,
                        SEL_ARG *index_tree, ha_rows quick_prefix_records,
                        bool have_min, bool have_max,
                        double *read_cost, ha_rows *records)
9913
{
9914
  ha_rows table_records;
9915 9916 9917 9918 9919 9920 9921 9922 9923 9924
  uint num_groups;
  uint num_blocks;
  uint keys_per_block;
  uint keys_per_group;
  uint keys_per_subgroup; /* Average number of keys in sub-groups */
                          /* formed by a key infix. */
  double p_overlap; /* Probability that a sub-group overlaps two blocks. */
  double quick_prefix_selectivity;
  double io_cost;
  double cpu_cost= 0; /* TODO: CPU cost of index_read calls? */
unknown's avatar
unknown committed
9925
  DBUG_ENTER("cost_group_min_max");
unknown's avatar
unknown committed
9926

9927 9928
  table_records= table->file->stats.records;
  keys_per_block= (table->file->stats.block_size / 2 /
9929 9930
                   (index_info->key_length + table->file->ref_length)
                        + 1);
9931
  num_blocks= (uint)(table_records / keys_per_block) + 1;
9932 9933 9934 9935 9936

  /* Compute the number of keys in a group. */
  keys_per_group= index_info->rec_per_key[group_key_parts - 1];
  if (keys_per_group == 0) /* If there is no statistics try to guess */
    /* each group contains 10% of all records */
9937 9938
    keys_per_group= (uint)(table_records / 10) + 1;
  num_groups= (uint)(table_records / keys_per_group) + 1;
9939 9940 9941 9942 9943 9944

  /* Apply the selectivity of the quick select for group prefixes. */
  if (range_tree && (quick_prefix_records != HA_POS_ERROR))
  {
    quick_prefix_selectivity= (double) quick_prefix_records /
                              (double) table_records;
unknown's avatar
unknown committed
9945
    num_groups= (uint) rint(num_groups * quick_prefix_selectivity);
unknown's avatar
unknown committed
9946
    set_if_bigger(num_groups, 1);
9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977
  }

  if (used_key_parts > group_key_parts)
  { /*
      Compute the probability that two ends of a subgroup are inside
      different blocks.
    */
    keys_per_subgroup= index_info->rec_per_key[used_key_parts - 1];
    if (keys_per_subgroup >= keys_per_block) /* If a subgroup is bigger than */
      p_overlap= 1.0;       /* a block, it will overlap at least two blocks. */
    else
    {
      double blocks_per_group= (double) num_blocks / (double) num_groups;
      p_overlap= (blocks_per_group * (keys_per_subgroup - 1)) / keys_per_group;
      p_overlap= min(p_overlap, 1.0);
    }
    io_cost= (double) min(num_groups * (1 + p_overlap), num_blocks);
  }
  else
    io_cost= (keys_per_group > keys_per_block) ?
             (have_min && have_max) ? (double) (num_groups + 1) :
                                      (double) num_groups :
             (double) num_blocks;

  /*
    TODO: If there is no WHERE clause and no other expressions, there should be
    no CPU cost. We leave it here to make this cost comparable to that of index
    scan as computed in SQL_SELECT::test_quick_select().
  */
  cpu_cost= (double) num_groups / TIME_FOR_COMPARE;

9978
  *read_cost= io_cost + cpu_cost;
9979
  *records= num_groups;
9980 9981

  DBUG_PRINT("info",
unknown's avatar
unknown committed
9982 9983 9984
             ("table rows: %lu  keys/block: %u  keys/group: %u  result rows: %lu  blocks: %u",
              (ulong)table_records, keys_per_block, keys_per_group, 
              (ulong) *records, num_blocks));
9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006
  DBUG_VOID_RETURN;
}


/*
  Construct a new quick select object for queries with group by with min/max.

  SYNOPSIS
    TRP_GROUP_MIN_MAX::make_quick()
    param              Parameter from test_quick_select
    retrieve_full_rows ignored
    parent_alloc       Memory pool to use, if any.

  NOTES
    Make_quick ignores the retrieve_full_rows parameter because
    QUICK_GROUP_MIN_MAX_SELECT always performs 'index only' scans.
    The other parameter are ignored as well because all necessary
    data to create the QUICK object is computed at this TRP creation
    time.

  RETURN
    New QUICK_GROUP_MIN_MAX_SELECT object if successfully created,
10007
    NULL otherwise.
10008 10009 10010 10011 10012 10013 10014 10015 10016
*/

QUICK_SELECT_I *
TRP_GROUP_MIN_MAX::make_quick(PARAM *param, bool retrieve_full_rows,
                              MEM_ROOT *parent_alloc)
{
  QUICK_GROUP_MIN_MAX_SELECT *quick;
  DBUG_ENTER("TRP_GROUP_MIN_MAX::make_quick");

10017
  quick= new QUICK_GROUP_MIN_MAX_SELECT(param->table,
10018
                                        param->thd->lex->current_select->join,
10019
                                        have_min, have_max, min_max_arg_part,
10020 10021 10022 10023
                                        group_prefix_len, group_key_parts,
                                        used_key_parts, index_info, index,
                                        read_cost, records, key_infix_len,
                                        key_infix, parent_alloc);
10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039
  if (!quick)
    DBUG_RETURN(NULL);

  if (quick->init())
  {
    delete quick;
    DBUG_RETURN(NULL);
  }

  if (range_tree)
  {
    DBUG_ASSERT(quick_prefix_records > 0);
    if (quick_prefix_records == HA_POS_ERROR)
      quick->quick_prefix_select= NULL; /* Can't construct a quick select. */
    else
      /* Make a QUICK_RANGE_SELECT to be used for group prefix retrieval. */
10040 10041
      quick->quick_prefix_select= get_quick_select(param, param_idx,
                                                   index_tree,
10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063
                                                   &quick->alloc);

    /*
      Extract the SEL_ARG subtree that contains only ranges for the MIN/MAX
      attribute, and create an array of QUICK_RANGES to be used by the
      new quick select.
    */
    if (min_max_arg_part)
    {
      SEL_ARG *min_max_range= index_tree;
      while (min_max_range) /* Find the tree for the MIN/MAX key part. */
      {
        if (min_max_range->field->eq(min_max_arg_part->field))
          break;
        min_max_range= min_max_range->next_key_part;
      }
      /* Scroll to the leftmost interval for the MIN/MAX argument. */
      while (min_max_range && min_max_range->prev)
        min_max_range= min_max_range->prev;
      /* Create an array of QUICK_RANGEs for the MIN/MAX argument. */
      while (min_max_range)
      {
10064
        if (quick->add_range(min_max_range))
10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077
        {
          delete quick;
          quick= NULL;
          DBUG_RETURN(NULL);
        }
        min_max_range= min_max_range->next;
      }
    }
  }
  else
    quick->quick_prefix_select= NULL;

  quick->update_key_stat();
10078
  quick->adjust_prefix_ranges();
10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107

  DBUG_RETURN(quick);
}


/*
  Construct new quick select for group queries with min/max.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::QUICK_GROUP_MIN_MAX_SELECT()
    table             The table being accessed
    join              Descriptor of the current query
    have_min          TRUE if the query selects a MIN function
    have_max          TRUE if the query selects a MAX function
    min_max_arg_part  The only argument field of all MIN/MAX functions
    group_prefix_len  Length of all key parts in the group prefix
    prefix_key_parts  All key parts in the group prefix
    index_info        The index chosen for data access
    use_index         The id of index_info
    read_cost         Cost of this access method
    records           Number of records returned
    key_infix_len     Length of the key infix appended to the group prefix
    key_infix         Infix of constants from equality predicates
    parent_alloc      Memory pool for this and quick_prefix_select data

  RETURN
    None
*/

unknown's avatar
unknown committed
10108 10109 10110 10111
QUICK_GROUP_MIN_MAX_SELECT::
QUICK_GROUP_MIN_MAX_SELECT(TABLE *table, JOIN *join_arg, bool have_min_arg,
                           bool have_max_arg,
                           KEY_PART_INFO *min_max_arg_part_arg,
10112
                           uint group_prefix_len_arg, uint group_key_parts_arg,
unknown's avatar
unknown committed
10113 10114 10115
                           uint used_key_parts_arg, KEY *index_info_arg,
                           uint use_index, double read_cost_arg,
                           ha_rows records_arg, uint key_infix_len_arg,
10116
                           uchar *key_infix_arg, MEM_ROOT *parent_alloc)
unknown's avatar
unknown committed
10117
  :join(join_arg), index_info(index_info_arg),
unknown's avatar
unknown committed
10118 10119
   group_prefix_len(group_prefix_len_arg),
   group_key_parts(group_key_parts_arg), have_min(have_min_arg),
unknown's avatar
unknown committed
10120 10121
   have_max(have_max_arg), seen_first_key(FALSE),
   min_max_arg_part(min_max_arg_part_arg), key_infix(key_infix_arg),
10122
   key_infix_len(key_infix_len_arg), min_functions_it(NULL),
unknown's avatar
unknown committed
10123
   max_functions_it(NULL)
10124 10125 10126 10127 10128 10129
{
  head=       table;
  file=       head->file;
  index=      use_index;
  record=     head->record[0];
  tmp_record= head->record[1];
10130 10131 10132
  read_time= read_cost_arg;
  records= records_arg;
  used_key_parts= used_key_parts_arg;
10133
  real_key_parts= used_key_parts_arg;
10134 10135 10136
  real_prefix_len= group_prefix_len + key_infix_len;
  group_prefix= NULL;
  min_max_arg_len= min_max_arg_part ? min_max_arg_part->store_length : 0;
unknown's avatar
unknown committed
10137 10138 10139 10140 10141 10142

  /*
    We can't have parent_alloc set as the init function can't handle this case
    yet.
  */
  DBUG_ASSERT(!parent_alloc);
10143 10144 10145
  if (!parent_alloc)
  {
    init_sql_alloc(&alloc, join->thd->variables.range_alloc_block_size, 0);
unknown's avatar
unknown committed
10146
    join->thd->mem_root= &alloc;
10147 10148
  }
  else
10149
    bzero(&alloc, sizeof(MEM_ROOT));            // ensure that it's not used
10150 10151 10152 10153 10154 10155 10156 10157 10158
}


/*
  Do post-constructor initialization.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::init()
  
10159 10160 10161 10162 10163 10164
  DESCRIPTION
    The method performs initialization that cannot be done in the constructor
    such as memory allocations that may fail. It allocates memory for the
    group prefix and inifix buffers, and for the lists of MIN/MAX item to be
    updated during execution.

10165 10166 10167 10168 10169 10170 10171 10172 10173 10174
  RETURN
    0      OK
    other  Error code
*/

int QUICK_GROUP_MIN_MAX_SELECT::init()
{
  if (group_prefix) /* Already initialized. */
    return 0;

10175
  if (!(last_prefix= (uchar*) alloc_root(&alloc, group_prefix_len)))
10176 10177 10178 10179 10180
      return 1;
  /*
    We may use group_prefix to store keys with all select fields, so allocate
    enough space for it.
  */
10181
  if (!(group_prefix= (uchar*) alloc_root(&alloc,
10182 10183 10184 10185 10186 10187 10188 10189 10190
                                         real_prefix_len + min_max_arg_len)))
    return 1;

  if (key_infix_len > 0)
  {
    /*
      The memory location pointed to by key_infix will be deleted soon, so
      allocate a new buffer and copy the key_infix into it.
    */
10191
    uchar *tmp_key_infix= (uchar*) alloc_root(&alloc, key_infix_len);
10192 10193 10194 10195 10196 10197 10198 10199
    if (!tmp_key_infix)
      return 1;
    memcpy(tmp_key_infix, this->key_infix, key_infix_len);
    this->key_infix= tmp_key_infix;
  }

  if (min_max_arg_part)
  {
unknown's avatar
unknown committed
10200
    if (my_init_dynamic_array(&min_max_ranges, sizeof(QUICK_RANGE*), 16, 16))
10201 10202
      return 1;

10203 10204
    if (have_min)
    {
unknown's avatar
unknown committed
10205
      if (!(min_functions= new List<Item_sum>))
10206 10207 10208 10209 10210 10211
        return 1;
    }
    else
      min_functions= NULL;
    if (have_max)
    {
unknown's avatar
unknown committed
10212
      if (!(max_functions= new List<Item_sum>))
10213 10214 10215 10216
        return 1;
    }
    else
      max_functions= NULL;
10217

10218 10219 10220
    Item_sum *min_max_item;
    Item_sum **func_ptr= join->sum_funcs;
    while ((min_max_item= *(func_ptr++)))
10221
    {
10222 10223 10224 10225
      if (have_min && (min_max_item->sum_func() == Item_sum::MIN_FUNC))
        min_functions->push_back(min_max_item);
      else if (have_max && (min_max_item->sum_func() == Item_sum::MAX_FUNC))
        max_functions->push_back(min_max_item);
10226 10227
    }

10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238
    if (have_min)
    {
      if (!(min_functions_it= new List_iterator<Item_sum>(*min_functions)))
        return 1;
    }

    if (have_max)
    {
      if (!(max_functions_it= new List_iterator<Item_sum>(*max_functions)))
        return 1;
    }
10239
  }
unknown's avatar
unknown committed
10240 10241
  else
    min_max_ranges.elements= 0;
10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254

  return 0;
}


QUICK_GROUP_MIN_MAX_SELECT::~QUICK_GROUP_MIN_MAX_SELECT()
{
  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::~QUICK_GROUP_MIN_MAX_SELECT");
  if (file->inited != handler::NONE) 
    file->ha_index_end();
  if (min_max_arg_part)
    delete_dynamic(&min_max_ranges);
  free_root(&alloc,MYF(0));
10255 10256
  delete min_functions_it;
  delete max_functions_it;
10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275
  delete quick_prefix_select;
  DBUG_VOID_RETURN; 
}


/*
  Eventually create and add a new quick range object.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::add_range()
    sel_range  Range object from which a 

  NOTES
    Construct a new QUICK_RANGE object from a SEL_ARG object, and
    add it to the array min_max_ranges. If sel_arg is an infinite
    range, e.g. (x < 5 or x > 4), then skip it and do not construct
    a quick range.

  RETURN
10276 10277
    FALSE on success
    TRUE  otherwise
10278 10279 10280 10281 10282 10283 10284 10285
*/

bool QUICK_GROUP_MIN_MAX_SELECT::add_range(SEL_ARG *sel_range)
{
  QUICK_RANGE *range;
  uint range_flag= sel_range->min_flag | sel_range->max_flag;

  /* Skip (-inf,+inf) ranges, e.g. (x < 5 or x > 4). */
unknown's avatar
unknown committed
10286
  if ((range_flag & NO_MIN_RANGE) && (range_flag & NO_MAX_RANGE))
10287
    return FALSE;
10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299

  if (!(sel_range->min_flag & NO_MIN_RANGE) &&
      !(sel_range->max_flag & NO_MAX_RANGE))
  {
    if (sel_range->maybe_null &&
        sel_range->min_value[0] && sel_range->max_value[0])
      range_flag|= NULL_RANGE; /* IS NULL condition */
    else if (memcmp(sel_range->min_value, sel_range->max_value,
                    min_max_arg_len) == 0)
      range_flag|= EQ_RANGE;  /* equality condition */
  }
  range= new QUICK_RANGE(sel_range->min_value, min_max_arg_len,
10300
                         make_keypart_map(sel_range->part),
10301
                         sel_range->max_value, min_max_arg_len,
10302
                         make_keypart_map(sel_range->part),
10303 10304
                         range_flag);
  if (!range)
10305
    return TRUE;
10306
  if (insert_dynamic(&min_max_ranges, (uchar*)&range))
10307 10308
    return TRUE;
  return FALSE;
10309 10310 10311
}


10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340
/*
  Opens the ranges if there are more conditions in quick_prefix_select than
  the ones used for jumping through the prefixes.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::adjust_prefix_ranges()

  NOTES
    quick_prefix_select is made over the conditions on the whole key.
    It defines a number of ranges of length x. 
    However when jumping through the prefixes we use only the the first 
    few most significant keyparts in the range key. However if there
    are more keyparts to follow the ones we are using we must make the 
    condition on the key inclusive (because x < "ab" means 
    x[0] < 'a' OR (x[0] == 'a' AND x[1] < 'b').
    To achive the above we must turn off the NEAR_MIN/NEAR_MAX
*/
void QUICK_GROUP_MIN_MAX_SELECT::adjust_prefix_ranges ()
{
  if (quick_prefix_select &&
      group_prefix_len < quick_prefix_select->max_used_key_length)
  {
    DYNAMIC_ARRAY *arr;
    uint inx;

    for (inx= 0, arr= &quick_prefix_select->ranges; inx < arr->elements; inx++)
    {
      QUICK_RANGE *range;

10341
      get_dynamic(arr, (uchar*)&range, inx);
10342 10343 10344 10345 10346 10347
      range->flag &= ~(NEAR_MIN | NEAR_MAX);
    }
  }
}


10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373
/*
  Determine the total number and length of the keys that will be used for
  index lookup.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::update_key_stat()

  DESCRIPTION
    The total length of the keys used for index lookup depends on whether
    there are any predicates referencing the min/max argument, and/or if
    the min/max argument field can be NULL.
    This function does an optimistic analysis whether the search key might
    be extended by a constant for the min/max keypart. It is 'optimistic'
    because during actual execution it may happen that a particular range
    is skipped, and then a shorter key will be used. However this is data
    dependent and can't be easily estimated here.

  RETURN
    None
*/

void QUICK_GROUP_MIN_MAX_SELECT::update_key_stat()
{
  max_used_key_length= real_prefix_len;
  if (min_max_ranges.elements > 0)
  {
10374
    QUICK_RANGE *cur_range;
10375 10376
    if (have_min)
    { /* Check if the right-most range has a lower boundary. */
10377
      get_dynamic(&min_max_ranges, (uchar*)&cur_range,
10378 10379 10380 10381
                  min_max_ranges.elements - 1);
      if (!(cur_range->flag & NO_MIN_RANGE))
      {
        max_used_key_length+= min_max_arg_len;
10382
        used_key_parts++;
10383 10384 10385 10386 10387
        return;
      }
    }
    if (have_max)
    { /* Check if the left-most range has an upper boundary. */
10388
      get_dynamic(&min_max_ranges, (uchar*)&cur_range, 0);
10389 10390 10391
      if (!(cur_range->flag & NO_MAX_RANGE))
      {
        max_used_key_length+= min_max_arg_len;
10392
        used_key_parts++;
10393 10394 10395 10396
        return;
      }
    }
  }
10397 10398
  else if (have_min && min_max_arg_part &&
           min_max_arg_part->field->real_maybe_null())
10399
  {
10400 10401 10402 10403 10404 10405 10406 10407
    /*
      If a MIN/MAX argument value is NULL, we can quickly determine
      that we're in the beginning of the next group, because NULLs
      are always < any other value. This allows us to quickly
      determine the end of the current group and jump to the next
      group (see next_min()) and thus effectively increases the
      usable key length.
    */
10408
    max_used_key_length+= min_max_arg_len;
10409
    used_key_parts++;
10410 10411 10412 10413 10414 10415 10416 10417 10418 10419
  }
}


/*
  Initialize a quick group min/max select for key retrieval.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::reset()

10420 10421 10422 10423
  DESCRIPTION
    Initialize the index chosen for access and find and store the prefix
    of the last group. The method is expensive since it performs disk access.

10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434
  RETURN
    0      OK
    other  Error code
*/

int QUICK_GROUP_MIN_MAX_SELECT::reset(void)
{
  int result;
  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::reset");

  file->extra(HA_EXTRA_KEYREAD); /* We need only the key attributes */
unknown's avatar
unknown committed
10435
  if ((result= file->ha_index_init(index,1)))
10436
    DBUG_RETURN(result);
unknown's avatar
unknown committed
10437 10438
  if (quick_prefix_select && quick_prefix_select->reset())
    DBUG_RETURN(1);
unknown's avatar
unknown committed
10439 10440 10441
  result= file->index_last(record);
  if (result == HA_ERR_END_OF_FILE)
    DBUG_RETURN(0);
10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480
  /* Save the prefix of the last group. */
  key_copy(last_prefix, record, index_info, group_prefix_len);

  DBUG_RETURN(0);
}



/* 
  Get the next key containing the MIN and/or MAX key for the next group.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::get_next()

  DESCRIPTION
    The method finds the next subsequent group of records that satisfies the
    query conditions and finds the keys that contain the MIN/MAX values for
    the key part referenced by the MIN/MAX function(s). Once a group and its
    MIN/MAX values are found, store these values in the Item_sum objects for
    the MIN/MAX functions. The rest of the values in the result row are stored
    in the Item_field::result_field of each select field. If the query does
    not contain MIN and/or MAX functions, then the function only finds the
    group prefix, which is a query answer itself.

  NOTES
    If both MIN and MAX are computed, then we use the fact that if there is
    no MIN key, there can't be a MAX key as well, so we can skip looking
    for a MAX key in this case.

  RETURN
    0                  on success
    HA_ERR_END_OF_FILE if returned all keys
    other              if some error occurred
*/

int QUICK_GROUP_MIN_MAX_SELECT::get_next()
{
  int min_res= 0;
  int max_res= 0;
unknown's avatar
unknown committed
10481 10482 10483 10484 10485 10486 10487
#ifdef HPUX11
  /*
    volatile is required by a bug in the HP compiler due to which the
    last test of result fails.
  */
  volatile int result;
#else
10488
  int result;
unknown's avatar
unknown committed
10489
#endif
unknown's avatar
unknown committed
10490
  int is_last_prefix= 0;
10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504

  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::get_next");

  /*
    Loop until a group is found that satisfies all query conditions or the last
    group is reached.
  */
  do
  {
    result= next_prefix();
    /*
      Check if this is the last group prefix. Notice that at this point
      this->record contains the current prefix in record format.
    */
unknown's avatar
unknown committed
10505 10506 10507 10508 10509 10510 10511 10512 10513 10514
    if (!result)
    {
      is_last_prefix= key_cmp(index_info->key_part, last_prefix,
                              group_prefix_len);
      DBUG_ASSERT(is_last_prefix <= 0);
    }
    else 
    {
      if (result == HA_ERR_KEY_NOT_FOUND)
        continue;
10515
      break;
unknown's avatar
unknown committed
10516
    }
10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534

    if (have_min)
    {
      min_res= next_min();
      if (min_res == 0)
        update_min_result();
    }
    /* If there is no MIN in the group, there is no MAX either. */
    if ((have_max && !have_min) ||
        (have_max && have_min && (min_res == 0)))
    {
      max_res= next_max();
      if (max_res == 0)
        update_max_result();
      /* If a MIN was found, a MAX must have been found as well. */
      DBUG_ASSERT((have_max && !have_min) ||
                  (have_max && have_min && (max_res == 0)));
    }
10535
    /*
unknown's avatar
unknown committed
10536
      If this is just a GROUP BY or DISTINCT without MIN or MAX and there
10537 10538 10539 10540
      are equality predicates for the key parts after the group, find the
      first sub-group with the extended prefix.
    */
    if (!have_min && !have_max && key_infix_len > 0)
10541 10542 10543
      result= file->index_read_map(record, group_prefix,
                                   make_prev_keypart_map(real_key_parts),
                                   HA_READ_KEY_EXACT);
10544

10545
    result= have_min ? min_res : have_max ? max_res : result;
10546 10547
  } while ((result == HA_ERR_KEY_NOT_FOUND || result == HA_ERR_END_OF_FILE) &&
           is_last_prefix != 0);
10548 10549

  if (result == 0)
10550
  {
10551 10552 10553 10554 10555 10556 10557
    /*
      Partially mimic the behavior of end_select_send. Copy the
      field data from Item_field::field into Item_field::result_field
      of each non-aggregated field (the group fields, and optionally
      other fields in non-ANSI SQL mode).
    */
    copy_fields(&join->tmp_table_param);
10558
  }
10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572
  else if (result == HA_ERR_KEY_NOT_FOUND)
    result= HA_ERR_END_OF_FILE;

  DBUG_RETURN(result);
}


/*
  Retrieve the minimal key in the next group.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_min()

  DESCRIPTION
10573 10574
    Find the minimal key within this group such that the key satisfies the query
    conditions and NULL semantics. The found key is loaded into this->record.
10575 10576 10577 10578 10579 10580 10581 10582 10583 10584

  IMPLEMENTATION
    Depending on the values of min_max_ranges.elements, key_infix_len, and
    whether there is a  NULL in the MIN field, this function may directly
    return without any data access. In this case we use the key loaded into
    this->record by the call to this->next_prefix() just before this call.

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if no MIN key was found that fulfills all conditions.
10585
    HA_ERR_END_OF_FILE   - "" -
10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601
    other                if some error occurred
*/

int QUICK_GROUP_MIN_MAX_SELECT::next_min()
{
  int result= 0;
  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_min");

  /* Find the MIN key using the eventually extended group prefix. */
  if (min_max_ranges.elements > 0)
  {
    if ((result= next_min_in_range()))
      DBUG_RETURN(result);
  }
  else
  {
unknown's avatar
unknown committed
10602
    /* Apply the constant equality conditions to the non-group select fields */
10603 10604
    if (key_infix_len > 0)
    {
10605 10606 10607
      if ((result= file->index_read_map(record, group_prefix,
                                        make_prev_keypart_map(real_key_parts),
                                        HA_READ_KEY_EXACT)))
10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621
        DBUG_RETURN(result);
    }

    /*
      If the min/max argument field is NULL, skip subsequent rows in the same
      group with NULL in it. Notice that:
      - if the first row in a group doesn't have a NULL in the field, no row
      in the same group has (because NULL < any other value),
      - min_max_arg_part->field->ptr points to some place in 'record'.
    */
    if (min_max_arg_part && min_max_arg_part->field->is_null())
    {
      /* Find the first subsequent record without NULL in the MIN/MAX field. */
      key_copy(tmp_record, record, index_info, 0);
10622 10623 10624
      result= file->index_read_map(record, tmp_record,
                                   make_keypart_map(real_key_parts),
                                   HA_READ_AFTER_KEY);
10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636
      /*
        Check if the new record belongs to the current group by comparing its
        prefix with the group's prefix. If it is from the next group, then the
        whole group has NULLs in the MIN/MAX field, so use the first record in
        the group as a result.
        TODO:
        It is possible to reuse this new record as the result candidate for the
        next call to next_min(), and to save one lookup in the next call. For
        this add a new member 'this->next_group_prefix'.
      */
      if (!result)
      {
unknown's avatar
unknown committed
10637
        if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
10638
          key_restore(record, tmp_record, index_info, 0);
unknown's avatar
unknown committed
10639
      }
10640
      else if (result == HA_ERR_KEY_NOT_FOUND || result == HA_ERR_END_OF_FILE)
10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659
        result= 0; /* There is a result in any case. */
    }
  }

  /*
    If the MIN attribute is non-nullable, this->record already contains the
    MIN key in the group, so just return.
  */
  DBUG_RETURN(result);
}


/* 
  Retrieve the maximal key in the next group.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_max()

  DESCRIPTION
10660
    Lookup the maximal key of the group, and store it into this->record.
10661 10662 10663 10664

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if no MAX key was found that fulfills all conditions.
10665
    HA_ERR_END_OF_FILE	 - "" -
10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678
    other                if some error occurred
*/

int QUICK_GROUP_MIN_MAX_SELECT::next_max()
{
  int result;

  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_max");

  /* Get the last key in the (possibly extended) group. */
  if (min_max_ranges.elements > 0)
    result= next_max_in_range();
  else
10679 10680 10681
    result= file->index_read_map(record, group_prefix,
                                 make_prev_keypart_map(real_key_parts),
                                 HA_READ_PREFIX_LAST);
10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713
  DBUG_RETURN(result);
}


/*
  Determine the prefix of the next group.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_prefix()

  DESCRIPTION
    Determine the prefix of the next group that satisfies the query conditions.
    If there is a range condition referencing the group attributes, use a
    QUICK_RANGE_SELECT object to retrieve the *first* key that satisfies the
    condition. If there is a key infix of constants, append this infix
    immediately after the group attributes. The possibly extended prefix is
    stored in this->group_prefix. The first key of the found group is stored in
    this->record, on which relies this->next_min().

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if there is no key with the formed prefix
    HA_ERR_END_OF_FILE   if there are no more keys
    other                if some error occurred
*/
int QUICK_GROUP_MIN_MAX_SELECT::next_prefix()
{
  int result;
  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_prefix");

  if (quick_prefix_select)
  {
10714
    uchar *cur_prefix= seen_first_key ? group_prefix : NULL;
10715
    if ((result= quick_prefix_select->get_next_prefix(group_prefix_len,
unknown's avatar
unknown committed
10716
                         make_prev_keypart_map(group_key_parts), cur_prefix)))
10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731
      DBUG_RETURN(result);
    seen_first_key= TRUE;
  }
  else
  {
    if (!seen_first_key)
    {
      result= file->index_first(record);
      if (result)
        DBUG_RETURN(result);
      seen_first_key= TRUE;
    }
    else
    {
      /* Load the first key in this group into record. */
10732 10733 10734
      result= file->index_read_map(record, group_prefix,
                                   make_prev_keypart_map(group_key_parts),
                                   HA_READ_AFTER_KEY);
10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767
      if (result)
        DBUG_RETURN(result);
    }
  }

  /* Save the prefix of this group for subsequent calls. */
  key_copy(group_prefix, record, index_info, group_prefix_len);
  /* Append key_infix to group_prefix. */
  if (key_infix_len > 0)
    memcpy(group_prefix + group_prefix_len,
           key_infix, key_infix_len);

  DBUG_RETURN(0);
}


/*
  Find the minimal key in a group that satisfies some range conditions for the
  min/max argument field.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_min_in_range()

  DESCRIPTION
    Given the sequence of ranges min_max_ranges, find the minimal key that is
    in the left-most possible range. If there is no such key, then the current
    group does not have a MIN key that satisfies the WHERE clause. If a key is
    found, its value is stored in this->record.

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if there is no key with the given prefix in any of
                         the ranges
10768
    HA_ERR_END_OF_FILE   - "" -
10769 10770 10771 10772 10773 10774
    other                if some error
*/

int QUICK_GROUP_MIN_MAX_SELECT::next_min_in_range()
{
  ha_rkey_function find_flag;
unknown's avatar
unknown committed
10775
  key_part_map keypart_map;
10776 10777 10778 10779 10780 10781 10782 10783
  QUICK_RANGE *cur_range;
  bool found_null= FALSE;
  int result= HA_ERR_KEY_NOT_FOUND;

  DBUG_ASSERT(min_max_ranges.elements > 0);

  for (uint range_idx= 0; range_idx < min_max_ranges.elements; range_idx++)
  { /* Search from the left-most range to the right. */
10784
    get_dynamic(&min_max_ranges, (uchar*)&cur_range, range_idx);
10785 10786 10787 10788 10789 10790

    /*
      If the current value for the min/max argument is bigger than the right
      boundary of cur_range, there is no need to check this range.
    */
    if (range_idx != 0 && !(cur_range->flag & NO_MAX_RANGE) &&
10791
        (key_cmp(min_max_arg_part, (const uchar*) cur_range->max_key,
10792
                 min_max_arg_len) == 1))
10793 10794 10795 10796
      continue;

    if (cur_range->flag & NO_MIN_RANGE)
    {
unknown's avatar
unknown committed
10797
      keypart_map= make_prev_keypart_map(real_key_parts);
10798
      find_flag= HA_READ_KEY_EXACT;
10799 10800 10801 10802 10803 10804
    }
    else
    {
      /* Extend the search key with the lower boundary for this range. */
      memcpy(group_prefix + real_prefix_len, cur_range->min_key,
             cur_range->min_length);
unknown's avatar
unknown committed
10805
      keypart_map= make_keypart_map(real_key_parts);
10806 10807 10808 10809 10810
      find_flag= (cur_range->flag & (EQ_RANGE | NULL_RANGE)) ?
                 HA_READ_KEY_EXACT : (cur_range->flag & NEAR_MIN) ?
                 HA_READ_AFTER_KEY : HA_READ_KEY_OR_NEXT;
    }

10811
    result= file->index_read_map(record, group_prefix, keypart_map, find_flag);
10812
    if (result)
10813
    {
10814 10815 10816 10817
      if ((result == HA_ERR_KEY_NOT_FOUND || result == HA_ERR_END_OF_FILE) &&
          (cur_range->flag & (EQ_RANGE | NULL_RANGE)))
        continue; /* Check the next range. */

10818 10819 10820 10821 10822
      /*
        In all other cases (HA_ERR_*, HA_READ_KEY_EXACT with NO_MIN_RANGE,
        HA_READ_AFTER_KEY, HA_READ_KEY_OR_NEXT) if the lookup failed for this
        range, it can't succeed for any other subsequent range.
      */
10823
      break;
10824
    }
10825 10826 10827 10828 10829 10830

    /* A key was found. */
    if (cur_range->flag & EQ_RANGE)
      break; /* No need to perform the checks below for equal keys. */

    if (cur_range->flag & NULL_RANGE)
10831 10832 10833 10834 10835 10836
    {
      /*
        Remember this key, and continue looking for a non-NULL key that
        satisfies some other condition.
      */
      memcpy(tmp_record, record, head->s->rec_buff_length);
10837 10838 10839 10840 10841 10842 10843
      found_null= TRUE;
      continue;
    }

    /* Check if record belongs to the current group. */
    if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
    {
10844
      result= HA_ERR_KEY_NOT_FOUND;
10845 10846 10847 10848 10849 10850 10851
      continue;
    }

    /* If there is an upper limit, check if the found key is in the range. */
    if ( !(cur_range->flag & NO_MAX_RANGE) )
    {
      /* Compose the MAX key for the range. */
10852
      uchar *max_key= (uchar*) my_alloca(real_prefix_len + min_max_arg_len);
10853 10854 10855 10856 10857 10858 10859 10860 10861
      memcpy(max_key, group_prefix, real_prefix_len);
      memcpy(max_key + real_prefix_len, cur_range->max_key,
             cur_range->max_length);
      /* Compare the found key with max_key. */
      int cmp_res= key_cmp(index_info->key_part, max_key,
                           real_prefix_len + min_max_arg_len);
      if (!((cur_range->flag & NEAR_MAX) && (cmp_res == -1) ||
            (cmp_res <= 0)))
      {
10862
        result= HA_ERR_KEY_NOT_FOUND;
10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876
        continue;
      }
    }
    /* If we got to this point, the current key qualifies as MIN. */
    DBUG_ASSERT(result == 0);
    break;
  }
  /*
    If there was a key with NULL in the MIN/MAX field, and there was no other
    key without NULL from the same group that satisfies some other condition,
    then use the key with the NULL.
  */
  if (found_null && result)
  {
10877
    memcpy(record, tmp_record, head->s->rec_buff_length);
10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900
    result= 0;
  }
  return result;
}


/*
  Find the maximal key in a group that satisfies some range conditions for the
  min/max argument field.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_max_in_range()

  DESCRIPTION
    Given the sequence of ranges min_max_ranges, find the maximal key that is
    in the right-most possible range. If there is no such key, then the current
    group does not have a MAX key that satisfies the WHERE clause. If a key is
    found, its value is stored in this->record.

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if there is no key with the given prefix in any of
                         the ranges
10901
    HA_ERR_END_OF_FILE   - "" -
10902 10903 10904 10905 10906 10907
    other                if some error
*/

int QUICK_GROUP_MIN_MAX_SELECT::next_max_in_range()
{
  ha_rkey_function find_flag;
unknown's avatar
unknown committed
10908
  key_part_map keypart_map;
10909 10910 10911 10912 10913 10914 10915
  QUICK_RANGE *cur_range;
  int result;

  DBUG_ASSERT(min_max_ranges.elements > 0);

  for (uint range_idx= min_max_ranges.elements; range_idx > 0; range_idx--)
  { /* Search from the right-most range to the left. */
10916
    get_dynamic(&min_max_ranges, (uchar*)&cur_range, range_idx - 1);
10917 10918 10919 10920 10921 10922 10923

    /*
      If the current value for the min/max argument is smaller than the left
      boundary of cur_range, there is no need to check this range.
    */
    if (range_idx != min_max_ranges.elements &&
        !(cur_range->flag & NO_MIN_RANGE) &&
10924
        (key_cmp(min_max_arg_part, (const uchar*) cur_range->min_key,
10925
                 min_max_arg_len) == -1))
10926 10927 10928 10929
      continue;

    if (cur_range->flag & NO_MAX_RANGE)
    {
unknown's avatar
unknown committed
10930
      keypart_map= make_prev_keypart_map(real_key_parts);
10931
      find_flag= HA_READ_PREFIX_LAST;
10932 10933 10934 10935 10936 10937
    }
    else
    {
      /* Extend the search key with the upper boundary for this range. */
      memcpy(group_prefix + real_prefix_len, cur_range->max_key,
             cur_range->max_length);
unknown's avatar
unknown committed
10938
      keypart_map= make_keypart_map(real_key_parts);
10939 10940 10941 10942 10943
      find_flag= (cur_range->flag & EQ_RANGE) ?
                 HA_READ_KEY_EXACT : (cur_range->flag & NEAR_MAX) ?
                 HA_READ_BEFORE_KEY : HA_READ_PREFIX_LAST_OR_PREV;
    }

10944
    result= file->index_read_map(record, group_prefix, keypart_map, find_flag);
10945

unknown's avatar
unknown committed
10946 10947
    if (result)
    {
10948 10949 10950 10951
      if ((result == HA_ERR_KEY_NOT_FOUND || result == HA_ERR_END_OF_FILE) &&
          (cur_range->flag & EQ_RANGE))
        continue; /* Check the next range. */

10952 10953 10954 10955 10956
      /*
        In no key was found with this upper bound, there certainly are no keys
        in the ranges to the left.
      */
      return result;
unknown's avatar
unknown committed
10957
    }
10958 10959
    /* A key was found. */
    if (cur_range->flag & EQ_RANGE)
unknown's avatar
unknown committed
10960
      return 0; /* No need to perform the checks below for equal keys. */
10961 10962 10963

    /* Check if record belongs to the current group. */
    if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
unknown's avatar
unknown committed
10964
      continue;                                 // Row not found
10965 10966 10967 10968 10969

    /* If there is a lower limit, check if the found key is in the range. */
    if ( !(cur_range->flag & NO_MIN_RANGE) )
    {
      /* Compose the MIN key for the range. */
10970
      uchar *min_key= (uchar*) my_alloca(real_prefix_len + min_max_arg_len);
10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052
      memcpy(min_key, group_prefix, real_prefix_len);
      memcpy(min_key + real_prefix_len, cur_range->min_key,
             cur_range->min_length);
      /* Compare the found key with min_key. */
      int cmp_res= key_cmp(index_info->key_part, min_key,
                           real_prefix_len + min_max_arg_len);
      if (!((cur_range->flag & NEAR_MIN) && (cmp_res == 1) ||
            (cmp_res >= 0)))
        continue;
    }
    /* If we got to this point, the current key qualifies as MAX. */
    return result;
  }
  return HA_ERR_KEY_NOT_FOUND;
}


/*
  Update all MIN function results with the newly found value.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::update_min_result()

  DESCRIPTION
    The method iterates through all MIN functions and updates the result value
    of each function by calling Item_sum::reset(), which in turn picks the new
    result value from this->head->record[0], previously updated by
    next_min(). The updated value is stored in a member variable of each of the
    Item_sum objects, depending on the value type.

  IMPLEMENTATION
    The update must be done separately for MIN and MAX, immediately after
    next_min() was called and before next_max() is called, because both MIN and
    MAX take their result value from the same buffer this->head->record[0]
    (i.e.  this->record).

  RETURN
    None
*/

void QUICK_GROUP_MIN_MAX_SELECT::update_min_result()
{
  Item_sum *min_func;

  min_functions_it->rewind();
  while ((min_func= (*min_functions_it)++))
    min_func->reset();
}


/*
  Update all MAX function results with the newly found value.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::update_max_result()

  DESCRIPTION
    The method iterates through all MAX functions and updates the result value
    of each function by calling Item_sum::reset(), which in turn picks the new
    result value from this->head->record[0], previously updated by
    next_max(). The updated value is stored in a member variable of each of the
    Item_sum objects, depending on the value type.

  IMPLEMENTATION
    The update must be done separately for MIN and MAX, immediately after
    next_max() was called, because both MIN and MAX take their result value
    from the same buffer this->head->record[0] (i.e.  this->record).

  RETURN
    None
*/

void QUICK_GROUP_MIN_MAX_SELECT::update_max_result()
{
  Item_sum *max_func;

  max_functions_it->rewind();
  while ((max_func= (*max_functions_it)++))
    max_func->reset();
}


11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067
/*
  Append comma-separated list of keys this quick select uses to key_names;
  append comma-separated list of corresponding used lengths to used_lengths.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::add_keys_and_lengths()
    key_names    [out] Names of used indexes
    used_lengths [out] Corresponding lengths of the index names

  DESCRIPTION
    This method is used by select_describe to extract the names of the
    indexes used by a quick select.

*/

11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078
void QUICK_GROUP_MIN_MAX_SELECT::add_keys_and_lengths(String *key_names,
                                                      String *used_lengths)
{
  char buf[64];
  uint length;
  key_names->append(index_info->name);
  length= longlong2str(max_used_key_length, buf, 10) - buf;
  used_lengths->append(buf, length);
}


11079
#ifndef DBUG_OFF
11080

11081 11082 11083 11084 11085 11086 11087
static void print_sel_tree(PARAM *param, SEL_TREE *tree, key_map *tree_map,
                           const char *msg)
{
  SEL_ARG **key,**end;
  int idx;
  char buff[1024];
  DBUG_ENTER("print_sel_tree");
11088

11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103
  String tmp(buff,sizeof(buff),&my_charset_bin);
  tmp.length(0);
  for (idx= 0,key=tree->keys, end=key+param->keys ;
       key != end ;
       key++,idx++)
  {
    if (tree_map->is_set(idx))
    {
      uint keynr= param->real_keynr[idx];
      if (tmp.length())
        tmp.append(',');
      tmp.append(param->table->key_info[keynr].name);
    }
  }
  if (!tmp.length())
11104
    tmp.append(STRING_WITH_LEN("(empty)"));
11105

unknown's avatar
unknown committed
11106
  DBUG_PRINT("info", ("SEL_TREE: 0x%lx (%s)  scans: %s", (long) tree, msg, tmp.ptr()));
11107

11108 11109
  DBUG_VOID_RETURN;
}
11110

11111 11112 11113 11114

static void print_ror_scans_arr(TABLE *table, const char *msg,
                                struct st_ror_scan_info **start,
                                struct st_ror_scan_info **end)
11115
{
unknown's avatar
unknown committed
11116
  DBUG_ENTER("print_ror_scans_arr");
11117 11118 11119 11120

  char buff[1024];
  String tmp(buff,sizeof(buff),&my_charset_bin);
  tmp.length(0);
unknown's avatar
unknown committed
11121
  for (;start != end; start++)
11122
  {
11123 11124 11125
    if (tmp.length())
      tmp.append(',');
    tmp.append(table->key_info[(*start)->keynr].name);
11126
  }
11127
  if (!tmp.length())
11128
    tmp.append(STRING_WITH_LEN("(empty)"));
11129 11130
  DBUG_PRINT("info", ("ROR key scans (%s): %s", msg, tmp.ptr()));
  DBUG_VOID_RETURN;
11131 11132
}

unknown's avatar
unknown committed
11133 11134 11135 11136 11137 11138 11139 11140
/*****************************************************************************
** Print a quick range for debugging
** TODO:
** This should be changed to use a String to store each row instead
** of locking the DEBUG stream !
*****************************************************************************/

static void
11141
print_key(KEY_PART *key_part, const uchar *key, uint used_length)
unknown's avatar
unknown committed
11142 11143
{
  char buff[1024];
11144
  const uchar *key_end= key+used_length;
unknown's avatar
unknown committed
11145
  String tmp(buff,sizeof(buff),&my_charset_bin);
unknown's avatar
unknown committed
11146
  uint store_length;
11147 11148 11149 11150
  TABLE *table= key_part->field->table;
  my_bitmap_map *old_write_set, *old_read_set;
  old_write_set= dbug_tmp_use_all_columns(table, table->write_set);
  old_read_set=  dbug_tmp_use_all_columns(table, table->read_set);
unknown's avatar
unknown committed
11151

unknown's avatar
unknown committed
11152
  for (; key < key_end; key+=store_length, key_part++)
unknown's avatar
unknown committed
11153
  {
unknown's avatar
unknown committed
11154 11155 11156
    Field *field=      key_part->field;
    store_length= key_part->store_length;

unknown's avatar
unknown committed
11157 11158
    if (field->real_maybe_null())
    {
unknown's avatar
unknown committed
11159
      if (*key)
unknown's avatar
unknown committed
11160 11161 11162 11163
      {
	fwrite("NULL",sizeof(char),4,DBUG_FILE);
	continue;
      }
unknown's avatar
unknown committed
11164 11165
      key++;					// Skip null byte
      store_length--;
unknown's avatar
unknown committed
11166
    }
11167
    field->set_key_image(key, key_part->length);
unknown's avatar
unknown committed
11168 11169 11170 11171
    if (field->type() == MYSQL_TYPE_BIT)
      (void) field->val_int_as_str(&tmp, 1);
    else
      field->val_str(&tmp);
unknown's avatar
unknown committed
11172
    fwrite(tmp.ptr(),sizeof(char),tmp.length(),DBUG_FILE);
unknown's avatar
unknown committed
11173 11174
    if (key+store_length < key_end)
      fputc('/',DBUG_FILE);
unknown's avatar
unknown committed
11175
  }
11176 11177
  dbug_tmp_restore_column_map(table->write_set, old_write_set);
  dbug_tmp_restore_column_map(table->read_set, old_read_set);
unknown's avatar
unknown committed
11178 11179
}

unknown's avatar
unknown committed
11180

11181
static void print_quick(QUICK_SELECT_I *quick, const key_map *needed_reg)
unknown's avatar
unknown committed
11182
{
11183
  char buf[MAX_KEY/8+1];
11184 11185
  TABLE *table;
  my_bitmap_map *old_read_map, *old_write_map;
11186
  DBUG_ENTER("print_quick");
unknown's avatar
unknown committed
11187
  if (!quick)
unknown's avatar
unknown committed
11188
    DBUG_VOID_RETURN;
11189
  DBUG_LOCK_FILE;
unknown's avatar
unknown committed
11190

11191 11192 11193
  table= quick->head;
  old_read_map=  dbug_tmp_use_all_columns(table, table->read_set);
  old_write_map= dbug_tmp_use_all_columns(table, table->write_set);
unknown's avatar
unknown committed
11194
  quick->dbug_dump(0, TRUE);
11195 11196 11197
  dbug_tmp_restore_column_map(table->read_set, old_read_map);
  dbug_tmp_restore_column_map(table->write_set, old_write_map);

11198
  fprintf(DBUG_FILE,"other_keys: 0x%s:\n", needed_reg->print(buf));
unknown's avatar
unknown committed
11199

11200
  DBUG_UNLOCK_FILE;
unknown's avatar
unknown committed
11201 11202 11203
  DBUG_VOID_RETURN;
}

unknown's avatar
unknown committed
11204

11205 11206
void QUICK_RANGE_SELECT::dbug_dump(int indent, bool verbose)
{
11207
  /* purecov: begin inspected */
11208 11209
  fprintf(DBUG_FILE, "%*squick range select, key %s, length: %d\n",
	  indent, "", head->key_info[index].name, max_used_key_length);
unknown's avatar
unknown committed
11210

11211
  if (verbose)
unknown's avatar
unknown committed
11212
  {
11213 11214
    QUICK_RANGE *range;
    QUICK_RANGE **pr= (QUICK_RANGE**)ranges.buffer;
11215 11216
    QUICK_RANGE **end_range= pr + ranges.elements;
    for (; pr != end_range; ++pr)
unknown's avatar
unknown committed
11217
    {
11218 11219 11220 11221
      fprintf(DBUG_FILE, "%*s", indent + 2, "");
      range= *pr;
      if (!(range->flag & NO_MIN_RANGE))
      {
11222
        print_key(key_parts, range->min_key, range->min_length);
11223 11224 11225 11226 11227 11228
        if (range->flag & NEAR_MIN)
	  fputs(" < ",DBUG_FILE);
        else
	  fputs(" <= ",DBUG_FILE);
      }
      fputs("X",DBUG_FILE);
unknown's avatar
unknown committed
11229

11230 11231 11232 11233 11234 11235
      if (!(range->flag & NO_MAX_RANGE))
      {
        if (range->flag & NEAR_MAX)
	  fputs(" < ",DBUG_FILE);
        else
	  fputs(" <= ",DBUG_FILE);
11236
        print_key(key_parts, range->max_key, range->max_length);
11237 11238
      }
      fputs("\n",DBUG_FILE);
unknown's avatar
unknown committed
11239 11240
    }
  }
11241
  /* purecov: end */    
11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253
}

void QUICK_INDEX_MERGE_SELECT::dbug_dump(int indent, bool verbose)
{
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  QUICK_RANGE_SELECT *quick;
  fprintf(DBUG_FILE, "%*squick index_merge select\n", indent, "");
  fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
  while ((quick= it++))
    quick->dbug_dump(indent+2, verbose);
  if (pk_quick_select)
  {
unknown's avatar
unknown committed
11254
    fprintf(DBUG_FILE, "%*sclustered PK quick:\n", indent, "");
11255 11256 11257 11258 11259 11260 11261 11262 11263
    pk_quick_select->dbug_dump(indent+2, verbose);
  }
  fprintf(DBUG_FILE, "%*s}\n", indent, "");
}

void QUICK_ROR_INTERSECT_SELECT::dbug_dump(int indent, bool verbose)
{
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
11264
  fprintf(DBUG_FILE, "%*squick ROR-intersect select, %scovering\n",
11265 11266 11267
          indent, "", need_to_fetch_row? "":"non-");
  fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
  while ((quick= it++))
unknown's avatar
unknown committed
11268
    quick->dbug_dump(indent+2, verbose);
11269 11270
  if (cpk_quick)
  {
unknown's avatar
unknown committed
11271
    fprintf(DBUG_FILE, "%*sclustered PK quick:\n", indent, "");
11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285
    cpk_quick->dbug_dump(indent+2, verbose);
  }
  fprintf(DBUG_FILE, "%*s}\n", indent, "");
}

void QUICK_ROR_UNION_SELECT::dbug_dump(int indent, bool verbose)
{
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  QUICK_SELECT_I *quick;
  fprintf(DBUG_FILE, "%*squick ROR-union select\n", indent, "");
  fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
  while ((quick= it++))
    quick->dbug_dump(indent+2, verbose);
  fprintf(DBUG_FILE, "%*s}\n", indent, "");
unknown's avatar
unknown committed
11286 11287
}

11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331

/*
  Print quick select information to DBUG_FILE.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::dbug_dump()
    indent  Indentation offset
    verbose If TRUE show more detailed output.

  DESCRIPTION
    Print the contents of this quick select to DBUG_FILE. The method also
    calls dbug_dump() for the used quick select if any.

  IMPLEMENTATION
    Caller is responsible for locking DBUG_FILE before this call and unlocking
    it afterwards.

  RETURN
    None
*/

void QUICK_GROUP_MIN_MAX_SELECT::dbug_dump(int indent, bool verbose)
{
  fprintf(DBUG_FILE,
          "%*squick_group_min_max_select: index %s (%d), length: %d\n",
	  indent, "", index_info->name, index, max_used_key_length);
  if (key_infix_len > 0)
  {
    fprintf(DBUG_FILE, "%*susing key_infix with length %d:\n",
            indent, "", key_infix_len);
  }
  if (quick_prefix_select)
  {
    fprintf(DBUG_FILE, "%*susing quick_range_select:\n", indent, "");
    quick_prefix_select->dbug_dump(indent + 2, verbose);
  }
  if (min_max_ranges.elements > 0)
  {
    fprintf(DBUG_FILE, "%*susing %d quick_ranges for MIN/MAX:\n",
            indent, "", min_max_ranges.elements);
  }
}


unknown's avatar
unknown committed
11332
#endif /* NOT_USED */
unknown's avatar
unknown committed
11333 11334

/*****************************************************************************
unknown's avatar
unknown committed
11335
** Instantiate templates 
unknown's avatar
unknown committed
11336 11337
*****************************************************************************/

11338
#ifdef HAVE_EXPLICIT_TEMPLATE_INSTANTIATION
unknown's avatar
unknown committed
11339 11340 11341
template class List<QUICK_RANGE>;
template class List_iterator<QUICK_RANGE>;
#endif