opt_range.cc 275 KB
Newer Older
unknown's avatar
unknown committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */

unknown's avatar
unknown committed
17 18 19 20 21
/*
  TODO:
  Fix that MAYBE_KEY are stored in the tree so that we can detect use
  of full hash keys for queries like:

unknown's avatar
unknown committed
22 23
  select s.id, kws.keyword_id from sites as s,kws where s.id=kws.site_id and kws.keyword_id in (204,205);

unknown's avatar
unknown committed
24 25
*/

26 27
/*
  Classes in this file are used in the following way:
unknown's avatar
unknown committed
28 29
  1. For a selection condition a tree of SEL_IMERGE/SEL_TREE/SEL_ARG objects
     is created. #of rows in table and index statistics are ignored at this
30
     step.
unknown's avatar
unknown committed
31 32 33 34
  2. Created SEL_TREE and index stats data are used to construct a
     TABLE_READ_PLAN-derived object (TRP_*). Several 'candidate' table read
     plans may be created.
  3. The least expensive table read plan is used to create a tree of
35 36 37 38
     QUICK_SELECT_I-derived objects which are later used for row retrieval.
     QUICK_RANGEs are also created in this step.
*/

39
#ifdef USE_PRAGMA_IMPLEMENTATION
unknown's avatar
unknown committed
40 41 42 43 44 45 46 47 48 49 50 51
#pragma implementation				// gcc: Class implementation
#endif

#include "mysql_priv.h"
#include <m_ctype.h>
#include "sql_select.h"

#ifndef EXTRA_DEBUG
#define test_rb_tree(A,B) {}
#define test_use_count(A) {}
#endif

52
/*
53
  Convert double value to #rows. Currently this does floor(), and we
54 55
  might consider using round() instead.
*/
56
#define double2rows(x) ((ha_rows)(x))
57

unknown's avatar
unknown committed
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int sel_cmp(Field *f,char *a,char *b,uint8 a_flag,uint8 b_flag);

static char is_null_string[2]= {1,0};

class SEL_ARG :public Sql_alloc
{
public:
  uint8 min_flag,max_flag,maybe_flag;
  uint8 part;					// Which key part
  uint8 maybe_null;
  uint16 elements;				// Elements in tree
  ulong use_count;				// use of this sub_tree
  Field *field;
  char *min_value,*max_value;			// Pointer to range

  SEL_ARG *left,*right,*next,*prev,*parent,*next_key_part;
  enum leaf_color { BLACK,RED } color;
  enum Type { IMPOSSIBLE, MAYBE, MAYBE_KEY, KEY_RANGE } type;

  SEL_ARG() {}
  SEL_ARG(SEL_ARG &);
  SEL_ARG(Field *,const char *,const char *);
  SEL_ARG(Field *field, uint8 part, char *min_value, char *max_value,
	  uint8 min_flag, uint8 max_flag, uint8 maybe_flag);
  SEL_ARG(enum Type type_arg)
unknown's avatar
unknown committed
83 84 85
    :elements(1),use_count(1),left(0),next_key_part(0),color(BLACK),
     type(type_arg)
  {}
unknown's avatar
unknown committed
86 87
  inline bool is_same(SEL_ARG *arg)
  {
88
    if (type != arg->type || part != arg->part)
unknown's avatar
unknown committed
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
      return 0;
    if (type != KEY_RANGE)
      return 1;
    return cmp_min_to_min(arg) == 0 && cmp_max_to_max(arg) == 0;
  }
  inline void merge_flags(SEL_ARG *arg) { maybe_flag|=arg->maybe_flag; }
  inline void maybe_smaller() { maybe_flag=1; }
  inline int cmp_min_to_min(SEL_ARG* arg)
  {
    return sel_cmp(field,min_value, arg->min_value, min_flag, arg->min_flag);
  }
  inline int cmp_min_to_max(SEL_ARG* arg)
  {
    return sel_cmp(field,min_value, arg->max_value, min_flag, arg->max_flag);
  }
  inline int cmp_max_to_max(SEL_ARG* arg)
  {
    return sel_cmp(field,max_value, arg->max_value, max_flag, arg->max_flag);
  }
  inline int cmp_max_to_min(SEL_ARG* arg)
  {
    return sel_cmp(field,max_value, arg->min_value, max_flag, arg->min_flag);
  }
  SEL_ARG *clone_and(SEL_ARG* arg)
  {						// Get overlapping range
    char *new_min,*new_max;
    uint8 flag_min,flag_max;
    if (cmp_min_to_min(arg) >= 0)
    {
      new_min=min_value; flag_min=min_flag;
    }
    else
    {
      new_min=arg->min_value; flag_min=arg->min_flag; /* purecov: deadcode */
    }
    if (cmp_max_to_max(arg) <= 0)
    {
      new_max=max_value; flag_max=max_flag;
    }
    else
    {
      new_max=arg->max_value; flag_max=arg->max_flag;
    }
    return new SEL_ARG(field, part, new_min, new_max, flag_min, flag_max,
		       test(maybe_flag && arg->maybe_flag));
  }
  SEL_ARG *clone_first(SEL_ARG *arg)
  {						// min <= X < arg->min
    return new SEL_ARG(field,part, min_value, arg->min_value,
		       min_flag, arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX,
		       maybe_flag | arg->maybe_flag);
  }
  SEL_ARG *clone_last(SEL_ARG *arg)
  {						// min <= X <= key_max
    return new SEL_ARG(field, part, min_value, arg->max_value,
		       min_flag, arg->max_flag, maybe_flag | arg->maybe_flag);
  }
  SEL_ARG *clone(SEL_ARG *new_parent,SEL_ARG **next);

  bool copy_min(SEL_ARG* arg)
  {						// Get overlapping range
    if (cmp_min_to_min(arg) > 0)
    {
      min_value=arg->min_value; min_flag=arg->min_flag;
      if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
	  (NO_MAX_RANGE | NO_MIN_RANGE))
	return 1;				// Full range
    }
    maybe_flag|=arg->maybe_flag;
    return 0;
  }
  bool copy_max(SEL_ARG* arg)
  {						// Get overlapping range
    if (cmp_max_to_max(arg) <= 0)
    {
      max_value=arg->max_value; max_flag=arg->max_flag;
      if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) ==
	  (NO_MAX_RANGE | NO_MIN_RANGE))
	return 1;				// Full range
    }
    maybe_flag|=arg->maybe_flag;
    return 0;
  }

  void copy_min_to_min(SEL_ARG *arg)
  {
    min_value=arg->min_value; min_flag=arg->min_flag;
  }
  void copy_min_to_max(SEL_ARG *arg)
  {
    max_value=arg->min_value;
    max_flag=arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX;
  }
  void copy_max_to_min(SEL_ARG *arg)
  {
    min_value=arg->max_value;
    min_flag=arg->max_flag & NEAR_MAX ? 0 : NEAR_MIN;
  }
187
  void store_min(uint length,char **min_key,uint min_key_flag)
unknown's avatar
unknown committed
188
  {
unknown's avatar
unknown committed
189 190 191
    if ((min_flag & GEOM_FLAG) ||
        (!(min_flag & NO_MIN_RANGE) &&
	!(min_key_flag & (NO_MIN_RANGE | NEAR_MIN))))
unknown's avatar
unknown committed
192 193 194 195
    {
      if (maybe_null && *min_value)
      {
	**min_key=1;
unknown's avatar
unknown committed
196
	bzero(*min_key+1,length-1);
unknown's avatar
unknown committed
197 198
      }
      else
unknown's avatar
unknown committed
199 200
	memcpy(*min_key,min_value,length);
      (*min_key)+= length;
unknown's avatar
unknown committed
201
    }
202
  }
unknown's avatar
unknown committed
203 204 205
  void store(uint length,char **min_key,uint min_key_flag,
	     char **max_key, uint max_key_flag)
  {
206
    store_min(length, min_key, min_key_flag);
unknown's avatar
unknown committed
207 208 209 210 211 212
    if (!(max_flag & NO_MAX_RANGE) &&
	!(max_key_flag & (NO_MAX_RANGE | NEAR_MAX)))
    {
      if (maybe_null && *max_value)
      {
	**max_key=1;
unknown's avatar
unknown committed
213
	bzero(*max_key+1,length-1);
unknown's avatar
unknown committed
214 215
      }
      else
unknown's avatar
unknown committed
216 217
	memcpy(*max_key,max_value,length);
      (*max_key)+= length;
unknown's avatar
unknown committed
218 219 220 221 222 223
    }
  }

  void store_min_key(KEY_PART *key,char **range_key, uint *range_key_flag)
  {
    SEL_ARG *key_tree= first();
unknown's avatar
unknown committed
224
    key_tree->store(key[key_tree->part].store_length,
unknown's avatar
unknown committed
225 226 227 228 229 230 231 232 233 234 235 236
		    range_key,*range_key_flag,range_key,NO_MAX_RANGE);
    *range_key_flag|= key_tree->min_flag;
    if (key_tree->next_key_part &&
	key_tree->next_key_part->part == key_tree->part+1 &&
	!(*range_key_flag & (NO_MIN_RANGE | NEAR_MIN)) &&
	key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
      key_tree->next_key_part->store_min_key(key,range_key, range_key_flag);
  }

  void store_max_key(KEY_PART *key,char **range_key, uint *range_key_flag)
  {
    SEL_ARG *key_tree= last();
unknown's avatar
unknown committed
237
    key_tree->store(key[key_tree->part].store_length,
unknown's avatar
unknown committed
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
		    range_key, NO_MIN_RANGE, range_key,*range_key_flag);
    (*range_key_flag)|= key_tree->max_flag;
    if (key_tree->next_key_part &&
	key_tree->next_key_part->part == key_tree->part+1 &&
	!(*range_key_flag & (NO_MAX_RANGE | NEAR_MAX)) &&
	key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
      key_tree->next_key_part->store_max_key(key,range_key, range_key_flag);
  }

  SEL_ARG *insert(SEL_ARG *key);
  SEL_ARG *tree_delete(SEL_ARG *key);
  SEL_ARG *find_range(SEL_ARG *key);
  SEL_ARG *rb_insert(SEL_ARG *leaf);
  friend SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key, SEL_ARG *par);
#ifdef EXTRA_DEBUG
  friend int test_rb_tree(SEL_ARG *element,SEL_ARG *parent);
  void test_use_count(SEL_ARG *root);
#endif
  SEL_ARG *first();
  SEL_ARG *last();
  void make_root();
  inline bool simple_key()
  {
    return !next_key_part && elements == 1;
  }
  void increment_use_count(long count)
  {
    if (next_key_part)
    {
      next_key_part->use_count+=count;
      count*= (next_key_part->use_count-count);
      for (SEL_ARG *pos=next_key_part->first(); pos ; pos=pos->next)
	if (pos->next_key_part)
	  pos->increment_use_count(count);
    }
  }
  void free_tree()
  {
    for (SEL_ARG *pos=first(); pos ; pos=pos->next)
      if (pos->next_key_part)
      {
	pos->next_key_part->use_count--;
	pos->next_key_part->free_tree();
      }
  }

  inline SEL_ARG **parent_ptr()
  {
    return parent->left == this ? &parent->left : &parent->right;
  }
  SEL_ARG *clone_tree();
};

unknown's avatar
unknown committed
291
class SEL_IMERGE;
unknown's avatar
unknown committed
292

293

unknown's avatar
unknown committed
294 295 296 297 298
class SEL_TREE :public Sql_alloc
{
public:
  enum Type { IMPOSSIBLE, ALWAYS, MAYBE, KEY, KEY_SMALLER } type;
  SEL_TREE(enum Type type_arg) :type(type_arg) {}
unknown's avatar
unknown committed
299
  SEL_TREE() :type(KEY)
unknown's avatar
unknown committed
300
  {
unknown's avatar
unknown committed
301
    keys_map.clear_all();
unknown's avatar
unknown committed
302 303
    bzero((char*) keys,sizeof(keys));
  }
unknown's avatar
unknown committed
304
  SEL_ARG *keys[MAX_KEY];
305 306
  key_map keys_map;        /* bitmask of non-NULL elements in keys */

unknown's avatar
unknown committed
307 308
  /*
    Possible ways to read rows using index_merge. The list is non-empty only
309 310 311
    if type==KEY. Currently can be non empty only if keys_map.is_clear_all().
  */
  List<SEL_IMERGE> merges;
unknown's avatar
unknown committed
312

313 314
  /* The members below are filled/used only after get_mm_tree is done */
  key_map ror_scans_map;   /* bitmask of ROR scan-able elements in keys */
315
  uint    n_ror_scans;     /* number of set bits in ror_scans_map */
316 317 318 319

  struct st_ror_scan_info **ror_scans;     /* list of ROR key scans */
  struct st_ror_scan_info **ror_scans_end; /* last ROR scan */
  /* Note that #records for each key scan is stored in table->quick_rows */
unknown's avatar
unknown committed
320 321 322 323
};


typedef struct st_qsel_param {
324
  THD	*thd;
unknown's avatar
unknown committed
325
  TABLE *table;
326 327
  KEY_PART *key_parts,*key_parts_end;
  KEY_PART *key[MAX_KEY]; /* First key parts of keys used in the query */
328
  MEM_ROOT *mem_root, *old_root;
329
  table_map prev_tables,read_tables,current_table;
330
  uint baseflag, max_key_part, range_count;
unknown's avatar
unknown committed
331

332 333 334
  uint keys; /* number of keys used in the query */

  /* used_key_no -> table_key_no translation table */
unknown's avatar
unknown committed
335
  uint real_keynr[MAX_KEY];
336

unknown's avatar
unknown committed
337 338
  char min_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH],
    max_key[MAX_KEY_LENGTH+MAX_FIELD_WIDTH];
339
  bool quick;				// Don't calulate possible keys
340
  COND *cond;
341

unknown's avatar
unknown committed
342
  uint fields_bitmap_size;
343 344 345 346
  MY_BITMAP needed_fields;    /* bitmask of fields needed by the query */

  key_map *needed_reg;        /* ptr to SQL_SELECT::needed_reg */

347 348
  uint *imerge_cost_buff;     /* buffer for index_merge cost estimates */
  uint imerge_cost_buff_size; /* size of the buffer */
unknown's avatar
unknown committed
349 350 351

 /* TRUE if last checked tree->key can be used for ROR-scan */
  bool is_ror_scan;
unknown's avatar
unknown committed
352 353
} PARAM;

354 355 356 357 358
class TABLE_READ_PLAN;
  class TRP_RANGE;
  class TRP_ROR_INTERSECT;
  class TRP_ROR_UNION;
  class TRP_ROR_INDEX_MERGE;
359
  class TRP_GROUP_MIN_MAX;
360 361 362

struct st_ror_scan_info;

363
static SEL_TREE * get_mm_parts(PARAM *param,COND *cond_func,Field *field,
unknown's avatar
unknown committed
364 365
			       Item_func::Functype type,Item *value,
			       Item_result cmp_type);
366 367
static SEL_ARG *get_mm_leaf(PARAM *param,COND *cond_func,Field *field,
			    KEY_PART *key_part,
unknown's avatar
unknown committed
368 369
			    Item_func::Functype type,Item *value);
static SEL_TREE *get_mm_tree(PARAM *param,COND *cond);
370 371

static bool is_key_scan_ror(PARAM *param, uint keynr, uint8 nparts);
unknown's avatar
unknown committed
372 373 374 375 376
static ha_rows check_quick_select(PARAM *param,uint index,SEL_ARG *key_tree);
static ha_rows check_quick_keys(PARAM *param,uint index,SEL_ARG *key_tree,
				char *min_key,uint min_key_flag,
				char *max_key, uint max_key_flag);

unknown's avatar
unknown committed
377
QUICK_RANGE_SELECT *get_quick_select(PARAM *param,uint index,
unknown's avatar
unknown committed
378
                                     SEL_ARG *key_tree,
unknown's avatar
unknown committed
379
                                     MEM_ROOT *alloc = NULL);
380
static TRP_RANGE *get_key_scans_params(PARAM *param, SEL_TREE *tree,
unknown's avatar
unknown committed
381
                                       bool index_read_must_be_used,
382 383 384 385 386 387
                                       double read_time);
static
TRP_ROR_INTERSECT *get_best_ror_intersect(const PARAM *param, SEL_TREE *tree,
                                          double read_time,
                                          bool *are_all_covering);
static
unknown's avatar
unknown committed
388 389
TRP_ROR_INTERSECT *get_best_covering_ror_intersect(PARAM *param,
                                                   SEL_TREE *tree,
390 391 392 393
                                                   double read_time);
static
TABLE_READ_PLAN *get_best_disjunct_quick(PARAM *param, SEL_IMERGE *imerge,
                                         double read_time);
394 395
static
TRP_GROUP_MIN_MAX *get_best_group_min_max(PARAM *param, SEL_TREE *tree);
396
static int get_index_merge_params(PARAM *param, key_map& needed_reg,
unknown's avatar
unknown committed
397
                           SEL_IMERGE *imerge, double *read_time,
398
                           ha_rows* imerge_rows);
unknown's avatar
unknown committed
399
static double get_index_only_read_time(const PARAM* param, ha_rows records,
400 401
                                       int keynr);

unknown's avatar
unknown committed
402
#ifndef DBUG_OFF
403 404
static void print_sel_tree(PARAM *param, SEL_TREE *tree, key_map *tree_map,
                           const char *msg);
unknown's avatar
unknown committed
405 406
static void print_ror_scans_arr(TABLE *table, const char *msg,
                                struct st_ror_scan_info **start,
407 408 409
                                struct st_ror_scan_info **end);
static void print_rowid(byte* val, int len);
static void print_quick(QUICK_SELECT_I *quick, const key_map *needed_reg);
unknown's avatar
unknown committed
410
#endif
411

unknown's avatar
unknown committed
412 413 414 415 416 417
static SEL_TREE *tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2);
static SEL_TREE *tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2);
static SEL_ARG *sel_add(SEL_ARG *key1,SEL_ARG *key2);
static SEL_ARG *key_or(SEL_ARG *key1,SEL_ARG *key2);
static SEL_ARG *key_and(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag);
static bool get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1);
unknown's avatar
unknown committed
418
bool get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key,
unknown's avatar
unknown committed
419 420 421 422 423
			   SEL_ARG *key_tree,char *min_key,uint min_key_flag,
			   char *max_key,uint max_key_flag);
static bool eq_tree(SEL_ARG* a,SEL_ARG *b);

static SEL_ARG null_element(SEL_ARG::IMPOSSIBLE);
unknown's avatar
unknown committed
424
static bool null_part_in_key(KEY_PART *key_part, const char *key,
unknown's avatar
unknown committed
425
                             uint length);
unknown's avatar
unknown committed
426 427 428 429
bool sel_trees_can_be_ored(SEL_TREE *tree1, SEL_TREE *tree2, PARAM* param);


/*
unknown's avatar
unknown committed
430
  SEL_IMERGE is a list of possible ways to do index merge, i.e. it is
unknown's avatar
unknown committed
431
  a condition in the following form:
unknown's avatar
unknown committed
432
   (t_1||t_2||...||t_N) && (next)
unknown's avatar
unknown committed
433

unknown's avatar
unknown committed
434
  where all t_i are SEL_TREEs, next is another SEL_IMERGE and no pair
unknown's avatar
unknown committed
435 436 437 438 439 440 441 442 443 444 445
  (t_i,t_j) contains SEL_ARGS for the same index.

  SEL_TREE contained in SEL_IMERGE always has merges=NULL.

  This class relies on memory manager to do the cleanup.
*/

class SEL_IMERGE : public Sql_alloc
{
  enum { PREALLOCED_TREES= 10};
public:
unknown's avatar
unknown committed
446
  SEL_TREE *trees_prealloced[PREALLOCED_TREES];
unknown's avatar
unknown committed
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
  SEL_TREE **trees;             /* trees used to do index_merge   */
  SEL_TREE **trees_next;        /* last of these trees            */
  SEL_TREE **trees_end;         /* end of allocated space         */

  SEL_ARG  ***best_keys;        /* best keys to read in SEL_TREEs */

  SEL_IMERGE() :
    trees(&trees_prealloced[0]),
    trees_next(trees),
    trees_end(trees + PREALLOCED_TREES)
  {}
  int or_sel_tree(PARAM *param, SEL_TREE *tree);
  int or_sel_tree_with_checks(PARAM *param, SEL_TREE *new_tree);
  int or_sel_imerge_with_checks(PARAM *param, SEL_IMERGE* imerge);
};


unknown's avatar
unknown committed
464
/*
unknown's avatar
unknown committed
465 466
  Add SEL_TREE to this index_merge without any checks,

unknown's avatar
unknown committed
467 468
  NOTES
    This function implements the following:
unknown's avatar
unknown committed
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
      (x_1||...||x_N) || t = (x_1||...||x_N||t), where x_i, t are SEL_TREEs

  RETURN
     0 - OK
    -1 - Out of memory.
*/

int SEL_IMERGE::or_sel_tree(PARAM *param, SEL_TREE *tree)
{
  if (trees_next == trees_end)
  {
    const int realloc_ratio= 2;		/* Double size for next round */
    uint old_elements= (trees_end - trees);
    uint old_size= sizeof(SEL_TREE**) * old_elements;
    uint new_size= old_size * realloc_ratio;
    SEL_TREE **new_trees;
    if (!(new_trees= (SEL_TREE**)alloc_root(param->mem_root, new_size)))
      return -1;
    memcpy(new_trees, trees, old_size);
    trees=      new_trees;
    trees_next= trees + old_elements;
    trees_end=  trees + old_elements * realloc_ratio;
  }
  *(trees_next++)= tree;
  return 0;
}


/*
  Perform OR operation on this SEL_IMERGE and supplied SEL_TREE new_tree,
  combining new_tree with one of the trees in this SEL_IMERGE if they both
  have SEL_ARGs for the same key.
unknown's avatar
unknown committed
501

unknown's avatar
unknown committed
502 503 504 505 506
  SYNOPSIS
    or_sel_tree_with_checks()
      param    PARAM from SQL_SELECT::test_quick_select
      new_tree SEL_TREE with type KEY or KEY_SMALLER.

unknown's avatar
unknown committed
507
  NOTES
unknown's avatar
unknown committed
508
    This does the following:
unknown's avatar
unknown committed
509 510
    (t_1||...||t_k)||new_tree =
     either
unknown's avatar
unknown committed
511 512 513
       = (t_1||...||t_k||new_tree)
     or
       = (t_1||....||(t_j|| new_tree)||...||t_k),
unknown's avatar
unknown committed
514

unknown's avatar
unknown committed
515
     where t_i, y are SEL_TREEs.
unknown's avatar
unknown committed
516 517
    new_tree is combined with the first t_j it has a SEL_ARG on common
    key with. As a consequence of this, choice of keys to do index_merge
unknown's avatar
unknown committed
518 519
    read may depend on the order of conditions in WHERE part of the query.

unknown's avatar
unknown committed
520
  RETURN
unknown's avatar
unknown committed
521
    0  OK
unknown's avatar
unknown committed
522
    1  One of the trees was combined with new_tree to SEL_TREE::ALWAYS,
unknown's avatar
unknown committed
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
       and (*this) should be discarded.
   -1  An error occurred.
*/

int SEL_IMERGE::or_sel_tree_with_checks(PARAM *param, SEL_TREE *new_tree)
{
  for (SEL_TREE** tree = trees;
       tree != trees_next;
       tree++)
  {
    if (sel_trees_can_be_ored(*tree, new_tree, param))
    {
      *tree = tree_or(param, *tree, new_tree);
      if (!*tree)
        return 1;
      if (((*tree)->type == SEL_TREE::MAYBE) ||
          ((*tree)->type == SEL_TREE::ALWAYS))
        return 1;
      /* SEL_TREE::IMPOSSIBLE is impossible here */
      return 0;
    }
  }

546
  /* New tree cannot be combined with any of existing trees. */
unknown's avatar
unknown committed
547 548 549 550 551 552 553 554 555
  return or_sel_tree(param, new_tree);
}


/*
  Perform OR operation on this index_merge and supplied index_merge list.

  RETURN
    0 - OK
unknown's avatar
unknown committed
556
    1 - One of conditions in result is always TRUE and this SEL_IMERGE
unknown's avatar
unknown committed
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
        should be discarded.
   -1 - An error occurred
*/

int SEL_IMERGE::or_sel_imerge_with_checks(PARAM *param, SEL_IMERGE* imerge)
{
  for (SEL_TREE** tree= imerge->trees;
       tree != imerge->trees_next;
       tree++)
  {
    if (or_sel_tree_with_checks(param, *tree))
      return 1;
  }
  return 0;
}


unknown's avatar
unknown committed
574
/*
575
  Perform AND operation on two index_merge lists and store result in *im1.
unknown's avatar
unknown committed
576 577 578 579 580 581 582 583 584 585 586
*/

inline void imerge_list_and_list(List<SEL_IMERGE> *im1, List<SEL_IMERGE> *im2)
{
  im1->concat(im2);
}


/*
  Perform OR operation on 2 index_merge lists, storing result in first list.

unknown's avatar
unknown committed
587
  NOTES
unknown's avatar
unknown committed
588 589 590
    The following conversion is implemented:
     (a_1 &&...&& a_N)||(b_1 &&...&& b_K) = AND_i,j(a_i || b_j) =>
      => (a_1||b_1).
unknown's avatar
unknown committed
591 592

    i.e. all conjuncts except the first one are currently dropped.
unknown's avatar
unknown committed
593 594
    This is done to avoid producing N*K ways to do index_merge.

unknown's avatar
unknown committed
595
    If (a_1||b_1) produce a condition that is always TRUE, NULL is returned
unknown's avatar
unknown committed
596
    and index_merge is discarded (while it is actually possible to try
597
    harder).
unknown's avatar
unknown committed
598

599 600
    As a consequence of this, choice of keys to do index_merge read may depend
    on the order of conditions in WHERE part of the query.
unknown's avatar
unknown committed
601 602

  RETURN
603
    0     OK, result is stored in *im1
unknown's avatar
unknown committed
604 605 606
    other Error, both passed lists are unusable
*/

unknown's avatar
unknown committed
607
int imerge_list_or_list(PARAM *param,
unknown's avatar
unknown committed
608 609 610 611 612 613
                        List<SEL_IMERGE> *im1,
                        List<SEL_IMERGE> *im2)
{
  SEL_IMERGE *imerge= im1->head();
  im1->empty();
  im1->push_back(imerge);
unknown's avatar
unknown committed
614

unknown's avatar
unknown committed
615 616 617 618 619 620 621 622
  return imerge->or_sel_imerge_with_checks(param, im2->head());
}


/*
  Perform OR operation on index_merge list and key tree.

  RETURN
623
    0     OK, result is stored in *im1.
unknown's avatar
unknown committed
624 625 626
    other Error
*/

unknown's avatar
unknown committed
627
int imerge_list_or_tree(PARAM *param,
unknown's avatar
unknown committed
628 629 630 631 632
                        List<SEL_IMERGE> *im1,
                        SEL_TREE *tree)
{
  SEL_IMERGE *imerge;
  List_iterator<SEL_IMERGE> it(*im1);
unknown's avatar
unknown committed
633
  while ((imerge= it++))
unknown's avatar
unknown committed
634 635 636 637 638 639
  {
    if (imerge->or_sel_tree_with_checks(param, tree))
      it.remove();
  }
  return im1->is_empty();
}
unknown's avatar
unknown committed
640 641

/***************************************************************************
unknown's avatar
unknown committed
642
** Basic functions for SQL_SELECT and QUICK_RANGE_SELECT
unknown's avatar
unknown committed
643 644 645 646 647 648 649 650 651
***************************************************************************/

	/* make a select from mysql info
	   Error is set as following:
	   0 = ok
	   1 = Got some error (out of memory?)
	   */

SQL_SELECT *make_select(TABLE *head, table_map const_tables,
unknown's avatar
unknown committed
652 653 654
			table_map read_tables, COND *conds,
                        bool allow_null_cond,
                        int *error)
unknown's avatar
unknown committed
655 656 657 658 659
{
  SQL_SELECT *select;
  DBUG_ENTER("make_select");

  *error=0;
660 661

  if (!conds && !allow_null_cond)
unknown's avatar
unknown committed
662 663 664
    DBUG_RETURN(0);
  if (!(select= new SQL_SELECT))
  {
665 666
    *error= 1;			// out of memory
    DBUG_RETURN(0);		/* purecov: inspected */
unknown's avatar
unknown committed
667 668 669 670 671 672
  }
  select->read_tables=read_tables;
  select->const_tables=const_tables;
  select->head=head;
  select->cond=conds;

unknown's avatar
unknown committed
673
  if (head->sort.io_cache)
unknown's avatar
unknown committed
674
  {
unknown's avatar
unknown committed
675
    select->file= *head->sort.io_cache;
unknown's avatar
unknown committed
676 677
    select->records=(ha_rows) (select->file.end_of_file/
			       head->file->ref_length);
unknown's avatar
unknown committed
678 679
    my_free((gptr) (head->sort.io_cache),MYF(0));
    head->sort.io_cache=0;
unknown's avatar
unknown committed
680 681 682 683 684 685 686
  }
  DBUG_RETURN(select);
}


SQL_SELECT::SQL_SELECT() :quick(0),cond(0),free_cond(0)
{
unknown's avatar
unknown committed
687
  quick_keys.clear_all(); needed_reg.clear_all();
unknown's avatar
unknown committed
688 689 690 691
  my_b_clear(&file);
}


692
void SQL_SELECT::cleanup()
unknown's avatar
unknown committed
693 694
{
  delete quick;
695
  quick= 0;
unknown's avatar
unknown committed
696
  if (free_cond)
697 698
  {
    free_cond=0;
unknown's avatar
unknown committed
699
    delete cond;
700
    cond= 0;
unknown's avatar
unknown committed
701
  }
unknown's avatar
unknown committed
702 703 704
  close_cached_file(&file);
}

705 706 707 708 709 710

SQL_SELECT::~SQL_SELECT()
{
  cleanup();
}

unknown's avatar
unknown committed
711
#undef index					// Fix for Unixware 7
unknown's avatar
unknown committed
712

unknown's avatar
unknown committed
713 714
QUICK_SELECT_I::QUICK_SELECT_I()
  :max_used_key_length(0),
715
   used_key_parts(0)
unknown's avatar
unknown committed
716 717
{}

unknown's avatar
unknown committed
718
QUICK_RANGE_SELECT::QUICK_RANGE_SELECT(THD *thd, TABLE *table, uint key_nr,
unknown's avatar
unknown committed
719
                                       bool no_alloc, MEM_ROOT *parent_alloc)
720
  :dont_free(0),error(0),free_file(0),in_range(0),cur_range(NULL),range(0)
unknown's avatar
unknown committed
721
{
unknown's avatar
unknown committed
722
  sorted= 0;
unknown's avatar
unknown committed
723 724
  index= key_nr;
  head=  table;
unknown's avatar
unknown committed
725
  key_part_info= head->key_info[index].key_part;
726
  my_init_dynamic_array(&ranges, sizeof(QUICK_RANGE*), 16, 16);
unknown's avatar
unknown committed
727

unknown's avatar
unknown committed
728
  /* 'thd' is not accessible in QUICK_RANGE_SELECT::reset(). */
unknown's avatar
unknown committed
729 730 731 732 733 734
  multi_range_bufsiz= thd->variables.read_rnd_buff_size;
  multi_range_count= thd->variables.multi_range_count;
  multi_range_length= 0;
  multi_range= NULL;
  multi_range_buff= NULL;

unknown's avatar
unknown committed
735
  if (!no_alloc && !parent_alloc)
unknown's avatar
unknown committed
736
  {
737 738
    // Allocates everything through the internal memroot
    init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
unknown's avatar
unknown committed
739
    thd->mem_root= &alloc;
unknown's avatar
unknown committed
740 741 742
  }
  else
    bzero((char*) &alloc,sizeof(alloc));
unknown's avatar
unknown committed
743 744
  file= head->file;
  record= head->record[0];
unknown's avatar
unknown committed
745 746
}

unknown's avatar
unknown committed
747

unknown's avatar
unknown committed
748 749
int QUICK_RANGE_SELECT::init()
{
unknown's avatar
unknown committed
750
  DBUG_ENTER("QUICK_RANGE_SELECT::init");
unknown's avatar
unknown committed
751

752 753 754
  if (file->inited != handler::NONE)
    file->ha_index_or_rnd_end();
  DBUG_RETURN(error= file->ha_index_init(index));
unknown's avatar
unknown committed
755 756 757 758 759 760
}


void QUICK_RANGE_SELECT::range_end()
{
  if (file->inited != handler::NONE)
761
    file->ha_index_or_rnd_end();
unknown's avatar
unknown committed
762 763
}

unknown's avatar
unknown committed
764

unknown's avatar
unknown committed
765
QUICK_RANGE_SELECT::~QUICK_RANGE_SELECT()
unknown's avatar
unknown committed
766
{
767
  DBUG_ENTER("QUICK_RANGE_SELECT::~QUICK_RANGE_SELECT");
unknown's avatar
unknown committed
768 769
  if (!dont_free)
  {
unknown's avatar
unknown committed
770 771
    /* file is NULL for CPK scan on covering ROR-intersection */
    if (file) 
772
    {
unknown's avatar
unknown committed
773 774 775 776 777 778 779
      range_end();
      file->extra(HA_EXTRA_NO_KEYREAD);
      if (free_file)
      {
        DBUG_PRINT("info", ("Freeing separate handler %p (free=%d)", file,
                            free_file));
        file->reset();
unknown's avatar
unknown committed
780
        file->external_lock(current_thd, F_UNLCK);
unknown's avatar
unknown committed
781 782
        file->close();
      }
unknown's avatar
unknown committed
783
    }
unknown's avatar
unknown committed
784
    delete_dynamic(&ranges); /* ranges are allocated in alloc */
unknown's avatar
unknown committed
785 786
    free_root(&alloc,MYF(0));
  }
unknown's avatar
unknown committed
787 788 789 790
  if (multi_range)
    my_free((char*) multi_range, MYF(0));
  if (multi_range_buff)
    my_free((char*) multi_range_buff, MYF(0));
unknown's avatar
unknown committed
791
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
792 793
}

unknown's avatar
unknown committed
794

unknown's avatar
unknown committed
795
QUICK_INDEX_MERGE_SELECT::QUICK_INDEX_MERGE_SELECT(THD *thd_param,
unknown's avatar
unknown committed
796
                                                   TABLE *table)
unknown's avatar
unknown committed
797
  :pk_quick_select(NULL), thd(thd_param)
unknown's avatar
unknown committed
798
{
799
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::QUICK_INDEX_MERGE_SELECT");
unknown's avatar
unknown committed
800 801
  index= MAX_KEY;
  head= table;
802
  bzero(&read_record, sizeof(read_record));
803
  init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
804
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
805 806 807 808
}

int QUICK_INDEX_MERGE_SELECT::init()
{
unknown's avatar
unknown committed
809 810
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::init");
  DBUG_RETURN(0);
unknown's avatar
unknown committed
811 812
}

813
int QUICK_INDEX_MERGE_SELECT::reset()
unknown's avatar
unknown committed
814
{
815
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::reset");
unknown's avatar
unknown committed
816
  DBUG_RETURN(read_keys_and_merge());
unknown's avatar
unknown committed
817 818
}

unknown's avatar
unknown committed
819
bool
unknown's avatar
unknown committed
820 821
QUICK_INDEX_MERGE_SELECT::push_quick_back(QUICK_RANGE_SELECT *quick_sel_range)
{
unknown's avatar
unknown committed
822 823
  /*
    Save quick_select that does scan on clustered primary key as it will be
824
    processed separately.
825
  */
unknown's avatar
unknown committed
826
  if (head->file->primary_key_is_clustered() &&
827
      quick_sel_range->index == head->s->primary_key)
828 829 830 831
    pk_quick_select= quick_sel_range;
  else
    return quick_selects.push_back(quick_sel_range);
  return 0;
unknown's avatar
unknown committed
832 833 834 835
}

QUICK_INDEX_MERGE_SELECT::~QUICK_INDEX_MERGE_SELECT()
{
unknown's avatar
unknown committed
836 837
  List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
  QUICK_RANGE_SELECT* quick;
838
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::~QUICK_INDEX_MERGE_SELECT");
unknown's avatar
unknown committed
839 840 841
  quick_it.rewind();
  while ((quick= quick_it++))
    quick->file= NULL;
unknown's avatar
unknown committed
842
  quick_selects.delete_elements();
843
  delete pk_quick_select;
unknown's avatar
unknown committed
844
  free_root(&alloc,MYF(0));
845
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
846 847
}

848 849 850 851 852

QUICK_ROR_INTERSECT_SELECT::QUICK_ROR_INTERSECT_SELECT(THD *thd_param,
                                                       TABLE *table,
                                                       bool retrieve_full_rows,
                                                       MEM_ROOT *parent_alloc)
unknown's avatar
unknown committed
853
  : cpk_quick(NULL), thd(thd_param), need_to_fetch_row(retrieve_full_rows),
unknown's avatar
unknown committed
854
    scans_inited(FALSE)
855 856
{
  index= MAX_KEY;
unknown's avatar
unknown committed
857
  head= table;
858 859
  record= head->record[0];
  if (!parent_alloc)
860
    init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
861 862
  else
    bzero(&alloc, sizeof(MEM_ROOT));
unknown's avatar
unknown committed
863
  last_rowid= (byte*)alloc_root(parent_alloc? parent_alloc : &alloc,
864 865 866
                                head->file->ref_length);
}

867

unknown's avatar
unknown committed
868
/*
869 870 871
  Do post-constructor initialization.
  SYNOPSIS
    QUICK_ROR_INTERSECT_SELECT::init()
unknown's avatar
unknown committed
872

873 874 875 876 877
  RETURN
    0      OK
    other  Error code
*/

878 879
int QUICK_ROR_INTERSECT_SELECT::init()
{
unknown's avatar
unknown committed
880 881 882
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::init");
 /* Check if last_rowid was successfully allocated in ctor */
  DBUG_RETURN(!last_rowid);
883 884 885 886
}


/*
887 888 889 890
  Initialize this quick select to be a ROR-merged scan.

  SYNOPSIS
    QUICK_RANGE_SELECT::init_ror_merged_scan()
unknown's avatar
unknown committed
891
      reuse_handler If TRUE, use head->file, otherwise create a separate
892 893 894 895
                    handler object

  NOTES
    This function creates and prepares for subsequent use a separate handler
unknown's avatar
unknown committed
896
    object if it can't reuse head->file. The reason for this is that during
897 898 899
    ROR-merge several key scans are performed simultaneously, and a single
    handler is only capable of preserving context of a single key scan.

unknown's avatar
unknown committed
900
    In ROR-merge the quick select doing merge does full records retrieval,
901
    merged quick selects read only keys.
unknown's avatar
unknown committed
902 903

  RETURN
904 905 906 907
    0  ROR child scan initialized, ok to use.
    1  error
*/

908
int QUICK_RANGE_SELECT::init_ror_merged_scan(bool reuse_handler)
909 910
{
  handler *save_file= file;
911
  DBUG_ENTER("QUICK_RANGE_SELECT::init_ror_merged_scan");
unknown's avatar
unknown committed
912

913 914 915 916
  if (reuse_handler)
  {
    DBUG_PRINT("info", ("Reusing handler %p", file));
    if (file->extra(HA_EXTRA_KEYREAD) ||
917
        file->extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) ||
918 919 920 921
        init() || reset())
    {
      DBUG_RETURN(1);
    }
unknown's avatar
unknown committed
922
    DBUG_RETURN(0);
923 924 925 926 927 928 929 930
  }

  /* Create a separate handler object for this quick select */
  if (free_file)
  {
    /* already have own 'handler' object. */
    DBUG_RETURN(0);
  }
unknown's avatar
unknown committed
931

unknown's avatar
unknown committed
932
  THD *thd= current_thd;
933
  if (!(file= get_new_handler(head, thd->mem_root, head->s->db_type)))
934 935
    goto failure;
  DBUG_PRINT("info", ("Allocated new handler %p", file));
936
  if (file->ha_open(head->s->path, head->db_stat, HA_OPEN_IGNORE_IF_LOCKED))
937
  {
unknown's avatar
unknown committed
938
    /* Caller will free the memory */
939 940
    goto failure;
  }
unknown's avatar
unknown committed
941 942
  if (file->external_lock(thd, F_RDLCK))
    goto failure;
unknown's avatar
unknown committed
943 944

  if (file->extra(HA_EXTRA_KEYREAD) ||
945
      file->extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY) ||
946 947
      init() || reset())
  {
unknown's avatar
unknown committed
948
    file->external_lock(thd, F_UNLCK);
949 950 951
    file->close();
    goto failure;
  }
unknown's avatar
unknown committed
952
  free_file= TRUE;
953 954 955 956 957 958 959 960
  last_rowid= file->ref;
  DBUG_RETURN(0);

failure:
  file= save_file;
  DBUG_RETURN(1);
}

961 962 963 964 965

/*
  Initialize this quick select to be a part of a ROR-merged scan.
  SYNOPSIS
    QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan()
unknown's avatar
unknown committed
966
      reuse_handler If TRUE, use head->file, otherwise create separate
967
                    handler object.
unknown's avatar
unknown committed
968
  RETURN
969 970 971 972
    0     OK
    other error code
*/
int QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan(bool reuse_handler)
973 974 975
{
  List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
  QUICK_RANGE_SELECT* quick;
976
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan");
977 978

  /* Initialize all merged "children" quick selects */
unknown's avatar
unknown committed
979
  DBUG_ASSERT(!need_to_fetch_row || reuse_handler);
980 981 982
  if (!need_to_fetch_row && reuse_handler)
  {
    quick= quick_it++;
unknown's avatar
unknown committed
983
    /*
984
      There is no use of this->file. Use it for the first of merged range
985 986
      selects.
    */
unknown's avatar
unknown committed
987
    if (quick->init_ror_merged_scan(TRUE))
988 989 990
      DBUG_RETURN(1);
    quick->file->extra(HA_EXTRA_KEYREAD_PRESERVE_FIELDS);
  }
unknown's avatar
unknown committed
991
  while ((quick= quick_it++))
992
  {
unknown's avatar
unknown committed
993
    if (quick->init_ror_merged_scan(FALSE))
994 995
      DBUG_RETURN(1);
    quick->file->extra(HA_EXTRA_KEYREAD_PRESERVE_FIELDS);
996
    /* All merged scans share the same record buffer in intersection. */
997 998 999
    quick->record= head->record[0];
  }

unknown's avatar
unknown committed
1000
  if (need_to_fetch_row && head->file->ha_rnd_init(1))
1001 1002 1003 1004 1005 1006 1007
  {
    DBUG_PRINT("error", ("ROR index_merge rnd_init call failed"));
    DBUG_RETURN(1);
  }
  DBUG_RETURN(0);
}

1008

unknown's avatar
unknown committed
1009
/*
1010 1011 1012 1013 1014 1015 1016 1017
  Initialize quick select for row retrieval.
  SYNOPSIS
    reset()
  RETURN
    0      OK
    other  Error code
*/

1018 1019 1020
int QUICK_ROR_INTERSECT_SELECT::reset()
{
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::reset");
unknown's avatar
unknown committed
1021 1022
  if (!scans_inited && init_ror_merged_scan(TRUE))
    DBUG_RETURN(1);
unknown's avatar
unknown committed
1023
  scans_inited= TRUE;
unknown's avatar
unknown committed
1024 1025 1026 1027 1028
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  QUICK_RANGE_SELECT *quick;
  while ((quick= it++))
    quick->reset();
  DBUG_RETURN(0);
1029 1030
}

1031 1032 1033

/*
  Add a merged quick select to this ROR-intersection quick select.
unknown's avatar
unknown committed
1034

1035 1036 1037 1038 1039 1040
  SYNOPSIS
    QUICK_ROR_INTERSECT_SELECT::push_quick_back()
      quick Quick select to be added. The quick select must return
            rows in rowid order.
  NOTES
    This call can only be made before init() is called.
unknown's avatar
unknown committed
1041

1042
  RETURN
unknown's avatar
unknown committed
1043
    FALSE OK
unknown's avatar
unknown committed
1044
    TRUE  Out of memory.
1045 1046
*/

unknown's avatar
unknown committed
1047
bool
1048 1049
QUICK_ROR_INTERSECT_SELECT::push_quick_back(QUICK_RANGE_SELECT *quick)
{
1050
  return quick_selects.push_back(quick);
1051 1052 1053
}

QUICK_ROR_INTERSECT_SELECT::~QUICK_ROR_INTERSECT_SELECT()
unknown's avatar
unknown committed
1054
{
1055
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::~QUICK_ROR_INTERSECT_SELECT");
unknown's avatar
unknown committed
1056
  quick_selects.delete_elements();
1057 1058
  delete cpk_quick;
  free_root(&alloc,MYF(0));
unknown's avatar
unknown committed
1059 1060
  if (need_to_fetch_row && head->file->inited != handler::NONE)
    head->file->ha_rnd_end();
1061 1062 1063
  DBUG_VOID_RETURN;
}

unknown's avatar
unknown committed
1064

1065 1066
QUICK_ROR_UNION_SELECT::QUICK_ROR_UNION_SELECT(THD *thd_param,
                                               TABLE *table)
unknown's avatar
unknown committed
1067
  : thd(thd_param), scans_inited(FALSE)
1068 1069 1070 1071 1072 1073
{
  index= MAX_KEY;
  head= table;
  rowid_length= table->file->ref_length;
  record= head->record[0];
  init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
unknown's avatar
unknown committed
1074
  thd_param->mem_root= &alloc;
1075 1076
}

1077 1078 1079 1080 1081

/*
  Do post-constructor initialization.
  SYNOPSIS
    QUICK_ROR_UNION_SELECT::init()
unknown's avatar
unknown committed
1082

1083 1084 1085 1086 1087
  RETURN
    0      OK
    other  Error code
*/

1088 1089
int QUICK_ROR_UNION_SELECT::init()
{
unknown's avatar
unknown committed
1090
  DBUG_ENTER("QUICK_ROR_UNION_SELECT::init");
1091
  if (init_queue(&queue, quick_selects.elements, 0,
unknown's avatar
unknown committed
1092
                 FALSE , QUICK_ROR_UNION_SELECT::queue_cmp,
1093 1094 1095
                 (void*) this))
  {
    bzero(&queue, sizeof(QUEUE));
unknown's avatar
unknown committed
1096
    DBUG_RETURN(1);
1097
  }
unknown's avatar
unknown committed
1098

1099
  if (!(cur_rowid= (byte*)alloc_root(&alloc, 2*head->file->ref_length)))
unknown's avatar
unknown committed
1100
    DBUG_RETURN(1);
1101
  prev_rowid= cur_rowid + head->file->ref_length;
unknown's avatar
unknown committed
1102
  DBUG_RETURN(0);
1103 1104
}

1105

1106
/*
unknown's avatar
unknown committed
1107
  Comparison function to be used QUICK_ROR_UNION_SELECT::queue priority
1108 1109
  queue.

1110 1111 1112 1113 1114 1115
  SYNPOSIS
    QUICK_ROR_UNION_SELECT::queue_cmp()
      arg   Pointer to QUICK_ROR_UNION_SELECT
      val1  First merged select
      val2  Second merged select
*/
unknown's avatar
unknown committed
1116

1117 1118
int QUICK_ROR_UNION_SELECT::queue_cmp(void *arg, byte *val1, byte *val2)
{
1119
  QUICK_ROR_UNION_SELECT *self= (QUICK_ROR_UNION_SELECT*)arg;
1120 1121 1122 1123
  return self->head->file->cmp_ref(((QUICK_SELECT_I*)val1)->last_rowid,
                                   ((QUICK_SELECT_I*)val2)->last_rowid);
}

1124

unknown's avatar
unknown committed
1125
/*
1126 1127 1128
  Initialize quick select for row retrieval.
  SYNOPSIS
    reset()
unknown's avatar
unknown committed
1129

1130 1131 1132 1133 1134
  RETURN
    0      OK
    other  Error code
*/

1135 1136 1137 1138 1139
int QUICK_ROR_UNION_SELECT::reset()
{
  QUICK_SELECT_I* quick;
  int error;
  DBUG_ENTER("QUICK_ROR_UNION_SELECT::reset");
unknown's avatar
unknown committed
1140
  have_prev_rowid= FALSE;
unknown's avatar
unknown committed
1141 1142 1143 1144 1145 1146 1147 1148 1149
  if (!scans_inited)
  {
    QUICK_SELECT_I *quick;
    List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
    while ((quick= it++))
    {
      if (quick->init_ror_merged_scan(FALSE))
        DBUG_RETURN(1);
    }
unknown's avatar
unknown committed
1150
    scans_inited= TRUE;
unknown's avatar
unknown committed
1151 1152
  }
  queue_remove_all(&queue);
unknown's avatar
unknown committed
1153 1154
  /*
    Initialize scans for merged quick selects and put all merged quick
1155 1156 1157 1158 1159
    selects into the queue.
  */
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  while ((quick= it++))
  {
unknown's avatar
unknown committed
1160
    if (quick->reset())
unknown's avatar
unknown committed
1161
      DBUG_RETURN(1);
1162 1163 1164 1165
    if ((error= quick->get_next()))
    {
      if (error == HA_ERR_END_OF_FILE)
        continue;
unknown's avatar
unknown committed
1166
      DBUG_RETURN(error);
1167 1168 1169 1170 1171
    }
    quick->save_last_pos();
    queue_insert(&queue, (byte*)quick);
  }

unknown's avatar
unknown committed
1172
  if (head->file->ha_rnd_init(1))
1173 1174 1175 1176 1177 1178 1179 1180 1181
  {
    DBUG_PRINT("error", ("ROR index_merge rnd_init call failed"));
    DBUG_RETURN(1);
  }

  DBUG_RETURN(0);
}


unknown's avatar
unknown committed
1182
bool
1183 1184 1185 1186 1187 1188 1189 1190 1191
QUICK_ROR_UNION_SELECT::push_quick_back(QUICK_SELECT_I *quick_sel_range)
{
  return quick_selects.push_back(quick_sel_range);
}

QUICK_ROR_UNION_SELECT::~QUICK_ROR_UNION_SELECT()
{
  DBUG_ENTER("QUICK_ROR_UNION_SELECT::~QUICK_ROR_UNION_SELECT");
  delete_queue(&queue);
unknown's avatar
unknown committed
1192
  quick_selects.delete_elements();
1193 1194
  if (head->file->inited != handler::NONE)
    head->file->ha_rnd_end();
1195 1196
  free_root(&alloc,MYF(0));
  DBUG_VOID_RETURN;
unknown's avatar
unknown committed
1197 1198
}

1199

unknown's avatar
unknown committed
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
QUICK_RANGE::QUICK_RANGE()
  :min_key(0),max_key(0),min_length(0),max_length(0),
   flag(NO_MIN_RANGE | NO_MAX_RANGE)
{}

SEL_ARG::SEL_ARG(SEL_ARG &arg) :Sql_alloc()
{
  type=arg.type;
  min_flag=arg.min_flag;
  max_flag=arg.max_flag;
  maybe_flag=arg.maybe_flag;
  maybe_null=arg.maybe_null;
  part=arg.part;
  field=arg.field;
  min_value=arg.min_value;
  max_value=arg.max_value;
  next_key_part=arg.next_key_part;
  use_count=1; elements=1;
}


inline void SEL_ARG::make_root()
{
  left=right= &null_element;
  color=BLACK;
  next=prev=0;
  use_count=0; elements=1;
}

SEL_ARG::SEL_ARG(Field *f,const char *min_value_arg,const char *max_value_arg)
  :min_flag(0), max_flag(0), maybe_flag(0), maybe_null(f->real_maybe_null()),
   elements(1), use_count(1), field(f), min_value((char*) min_value_arg),
   max_value((char*) max_value_arg), next(0),prev(0),
   next_key_part(0),color(BLACK),type(KEY_RANGE)
{
  left=right= &null_element;
}

SEL_ARG::SEL_ARG(Field *field_,uint8 part_,char *min_value_,char *max_value_,
		 uint8 min_flag_,uint8 max_flag_,uint8 maybe_flag_)
  :min_flag(min_flag_),max_flag(max_flag_),maybe_flag(maybe_flag_),
   part(part_),maybe_null(field_->real_maybe_null()), elements(1),use_count(1),
   field(field_), min_value(min_value_), max_value(max_value_),
   next(0),prev(0),next_key_part(0),color(BLACK),type(KEY_RANGE)
{
  left=right= &null_element;
}

SEL_ARG *SEL_ARG::clone(SEL_ARG *new_parent,SEL_ARG **next_arg)
{
  SEL_ARG *tmp;
  if (type != KEY_RANGE)
  {
1253 1254
    if (!(tmp= new SEL_ARG(type)))
      return 0;					// out of memory
unknown's avatar
unknown committed
1255 1256 1257 1258 1259 1260
    tmp->prev= *next_arg;			// Link into next/prev chain
    (*next_arg)->next=tmp;
    (*next_arg)= tmp;
  }
  else
  {
1261 1262 1263
    if (!(tmp= new SEL_ARG(field,part, min_value,max_value,
			   min_flag, max_flag, maybe_flag)))
      return 0;					// OOM
unknown's avatar
unknown committed
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
    tmp->parent=new_parent;
    tmp->next_key_part=next_key_part;
    if (left != &null_element)
      tmp->left=left->clone(tmp,next_arg);

    tmp->prev= *next_arg;			// Link into next/prev chain
    (*next_arg)->next=tmp;
    (*next_arg)= tmp;

    if (right != &null_element)
1274 1275
      if (!(tmp->right= right->clone(tmp,next_arg)))
	return 0;				// OOM
unknown's avatar
unknown committed
1276 1277
  }
  increment_use_count(1);
1278
  tmp->color= color;
unknown's avatar
unknown committed
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
  return tmp;
}

SEL_ARG *SEL_ARG::first()
{
  SEL_ARG *next_arg=this;
  if (!next_arg->left)
    return 0;					// MAYBE_KEY
  while (next_arg->left != &null_element)
    next_arg=next_arg->left;
  return next_arg;
}

SEL_ARG *SEL_ARG::last()
{
  SEL_ARG *next_arg=this;
  if (!next_arg->right)
    return 0;					// MAYBE_KEY
  while (next_arg->right != &null_element)
    next_arg=next_arg->right;
  return next_arg;
}

1302

unknown's avatar
unknown committed
1303 1304 1305
/*
  Check if a compare is ok, when one takes ranges in account
  Returns -2 or 2 if the ranges where 'joined' like  < 2 and >= 2
1306
*/
unknown's avatar
unknown committed
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329

static int sel_cmp(Field *field, char *a,char *b,uint8 a_flag,uint8 b_flag)
{
  int cmp;
  /* First check if there was a compare to a min or max element */
  if (a_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
  {
    if ((a_flag & (NO_MIN_RANGE | NO_MAX_RANGE)) ==
	(b_flag & (NO_MIN_RANGE | NO_MAX_RANGE)))
      return 0;
    return (a_flag & NO_MIN_RANGE) ? -1 : 1;
  }
  if (b_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
    return (b_flag & NO_MIN_RANGE) ? 1 : -1;

  if (field->real_maybe_null())			// If null is part of key
  {
    if (*a != *b)
    {
      return *a ? -1 : 1;
    }
    if (*a)
      goto end;					// NULL where equal
unknown's avatar
unknown committed
1330
    a++; b++;					// Skip NULL marker
unknown's avatar
unknown committed
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
  }
  cmp=field->key_cmp((byte*) a,(byte*) b);
  if (cmp) return cmp < 0 ? -1 : 1;		// The values differed

  // Check if the compared equal arguments was defined with open/closed range
 end:
  if (a_flag & (NEAR_MIN | NEAR_MAX))
  {
    if ((a_flag & (NEAR_MIN | NEAR_MAX)) == (b_flag & (NEAR_MIN | NEAR_MAX)))
      return 0;
    if (!(b_flag & (NEAR_MIN | NEAR_MAX)))
      return (a_flag & NEAR_MIN) ? 2 : -2;
    return (a_flag & NEAR_MIN) ? 1 : -1;
  }
  if (b_flag & (NEAR_MIN | NEAR_MAX))
    return (b_flag & NEAR_MIN) ? -2 : 2;
  return 0;					// The elements where equal
}


SEL_ARG *SEL_ARG::clone_tree()
{
  SEL_ARG tmp_link,*next_arg,*root;
  next_arg= &tmp_link;
1355
  root= clone((SEL_ARG *) 0, &next_arg);
unknown's avatar
unknown committed
1356 1357
  next_arg->next=0;				// Fix last link
  tmp_link.next->prev=0;			// Fix first link
1358 1359
  if (root)					// If not OOM
    root->use_count= 0;
unknown's avatar
unknown committed
1360 1361 1362
  return root;
}

1363

1364
/*
unknown's avatar
unknown committed
1365
  Find the best index to retrieve first N records in given order
1366 1367 1368 1369 1370 1371 1372 1373

  SYNOPSIS
    get_index_for_order()
      table  Table to be accessed
      order  Required ordering
      limit  Number of records that will be retrieved

  DESCRIPTION
unknown's avatar
unknown committed
1374 1375 1376 1377
    Find the best index that allows to retrieve first #limit records in the 
    given order cheaper then one would retrieve them using full table scan.

  IMPLEMENTATION
1378
    Run through all table indexes and find the shortest index that allows
unknown's avatar
unknown committed
1379 1380
    records to be retrieved in given order. We look for the shortest index
    as we will have fewer index pages to read with it.
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402

    This function is used only by UPDATE/DELETE, so we take into account how
    the UPDATE/DELETE code will work:
     * index can only be scanned in forward direction
     * HA_EXTRA_KEYREAD will not be used
    Perhaps these assumptions could be relaxed

  RETURN
    index number
    MAX_KEY if no such index was found.
*/

uint get_index_for_order(TABLE *table, ORDER *order, ha_rows limit)
{
  uint idx;
  uint match_key= MAX_KEY, match_key_len= MAX_KEY_LENGTH + 1;
  ORDER *ord;
  
  for (ord= order; ord; ord= ord->next)
    if (!ord->asc)
      return MAX_KEY;

unknown's avatar
unknown committed
1403
  for (idx= 0; idx < table->s->keys; idx++)
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
  {
    if (!(table->keys_in_use_for_query.is_set(idx)))
      continue;
    KEY_PART_INFO *keyinfo= table->key_info[idx].key_part;
    uint partno= 0;
    
    /* 
      The below check is sufficient considering we now have either BTREE 
      indexes (records are returned in order for any index prefix) or HASH 
      indexes (records are not returned in order for any index prefix).
    */
    if (!(table->file->index_flags(idx, 0, 1) & HA_READ_ORDER))
      continue;
    for (ord= order; ord; ord= ord->next, partno++)
    {
      Item *item= order->item[0];
      if (!(item->type() == Item::FIELD_ITEM &&
           ((Item_field*)item)->field->eq(keyinfo[partno].field)))
        break;
    }
    
    if (!ord && table->key_info[idx].key_length < match_key_len)
    {
      /* 
        Ok, the ordering is compatible and this key is shorter then
        previous match (we want shorter keys as we'll have to read fewer
        index pages for the same number of records)
      */
      match_key= idx;
      match_key_len= table->key_info[idx].key_length;
    }
  }

  if (match_key != MAX_KEY)
  {
    /* 
      Found an index that allows records to be retrieved in the requested 
      order. Now we'll check if using the index is cheaper then doing a table
      scan.
    */
    double full_scan_time= table->file->scan_time();
    double index_scan_time= table->file->read_time(match_key, 1, limit);
    if (index_scan_time > full_scan_time)
      match_key= MAX_KEY;
  }
  return match_key;
}


unknown's avatar
unknown committed
1453
/*
unknown's avatar
unknown committed
1454
  Table rows retrieval plan. Range optimizer creates QUICK_SELECT_I-derived
1455 1456 1457 1458 1459
  objects from table read plans.
*/
class TABLE_READ_PLAN
{
public:
unknown's avatar
unknown committed
1460 1461
  /*
    Plan read cost, with or without cost of full row retrieval, depending
1462 1463
    on plan creation parameters.
  */
unknown's avatar
unknown committed
1464
  double read_cost;
1465
  ha_rows records; /* estimate of #rows to be examined */
unknown's avatar
unknown committed
1466

unknown's avatar
unknown committed
1467 1468
  /*
    If TRUE, the scan returns rows in rowid order. This is used only for
1469 1470
    scans that can be both ROR and non-ROR.
  */
1471
  bool is_ror;
unknown's avatar
unknown committed
1472

1473 1474 1475 1476 1477
  /*
    Create quick select for this plan.
    SYNOPSIS
     make_quick()
       param               Parameter from test_quick_select
unknown's avatar
unknown committed
1478
       retrieve_full_rows  If TRUE, created quick select will do full record
1479 1480
                           retrieval.
       parent_alloc        Memory pool to use, if any.
unknown's avatar
unknown committed
1481

1482 1483
    NOTES
      retrieve_full_rows is ignored by some implementations.
unknown's avatar
unknown committed
1484 1485

    RETURN
1486 1487 1488
      created quick select
      NULL on any error.
  */
1489 1490 1491 1492
  virtual QUICK_SELECT_I *make_quick(PARAM *param,
                                     bool retrieve_full_rows,
                                     MEM_ROOT *parent_alloc=NULL) = 0;

1493
  /* Table read plans are allocated on MEM_ROOT and are never deleted */
1494 1495
  static void *operator new(size_t size, MEM_ROOT *mem_root)
  { return (void*) alloc_root(mem_root, (uint) size); }
unknown's avatar
unknown committed
1496
  static void operator delete(void *ptr,size_t size) { TRASH(ptr, size); }
1497
  static void operator delete(void *ptr, MEM_ROOT *mem_root) { /* Never called */ }
1498 1499
  virtual ~TABLE_READ_PLAN() {}               /* Remove gcc warning */

1500 1501 1502 1503 1504 1505 1506
};

class TRP_ROR_INTERSECT;
class TRP_ROR_UNION;
class TRP_INDEX_MERGE;


1507
/*
unknown's avatar
unknown committed
1508
  Plan for a QUICK_RANGE_SELECT scan.
1509 1510 1511
  TRP_RANGE::make_quick ignores retrieve_full_rows parameter because
  QUICK_RANGE_SELECT doesn't distinguish between 'index only' scans and full
  record retrieval scans.
unknown's avatar
unknown committed
1512
*/
unknown's avatar
unknown committed
1513

1514
class TRP_RANGE : public TABLE_READ_PLAN
unknown's avatar
unknown committed
1515
{
1516
public:
1517 1518
  SEL_ARG *key; /* set of intervals to be used in "range" method retrieval */
  uint     key_idx; /* key number in PARAM::key */
unknown's avatar
unknown committed
1519

unknown's avatar
unknown committed
1520
  TRP_RANGE(SEL_ARG *key_arg, uint idx_arg)
1521 1522
   : key(key_arg), key_idx(idx_arg)
  {}
1523
  virtual ~TRP_RANGE() {}                     /* Remove gcc warning */
unknown's avatar
unknown committed
1524

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
                             MEM_ROOT *parent_alloc)
  {
    DBUG_ENTER("TRP_RANGE::make_quick");
    QUICK_RANGE_SELECT *quick;
    if ((quick= get_quick_select(param, key_idx, key, parent_alloc)))
    {
      quick->records= records;
      quick->read_time= read_cost;
    }
    DBUG_RETURN(quick);
  }
};
unknown's avatar
unknown committed
1538 1539


1540 1541
/* Plan for QUICK_ROR_INTERSECT_SELECT scan. */

1542 1543 1544
class TRP_ROR_INTERSECT : public TABLE_READ_PLAN
{
public:
1545 1546
  TRP_ROR_INTERSECT() {}                      /* Remove gcc warning */
  virtual ~TRP_ROR_INTERSECT() {}             /* Remove gcc warning */
unknown's avatar
unknown committed
1547
  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
1548
                             MEM_ROOT *parent_alloc);
unknown's avatar
unknown committed
1549

1550
  /* Array of pointers to ROR range scans used in this intersection */
1551
  struct st_ror_scan_info **first_scan;
1552 1553
  struct st_ror_scan_info **last_scan; /* End of the above array */
  struct st_ror_scan_info *cpk_scan;  /* Clustered PK scan, if there is one */
unknown's avatar
unknown committed
1554
  bool is_covering; /* TRUE if no row retrieval phase is necessary */
1555
  double index_scan_costs; /* SUM(cost(index_scan)) */
1556 1557
};

1558

unknown's avatar
unknown committed
1559
/*
1560 1561
  Plan for QUICK_ROR_UNION_SELECT scan.
  QUICK_ROR_UNION_SELECT always retrieves full rows, so retrieve_full_rows
unknown's avatar
unknown committed
1562
  is ignored by make_quick.
1563
*/
1564

1565 1566 1567
class TRP_ROR_UNION : public TABLE_READ_PLAN
{
public:
1568 1569
  TRP_ROR_UNION() {}                          /* Remove gcc warning */
  virtual ~TRP_ROR_UNION() {}                 /* Remove gcc warning */
unknown's avatar
unknown committed
1570
  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
1571
                             MEM_ROOT *parent_alloc);
1572 1573
  TABLE_READ_PLAN **first_ror; /* array of ptrs to plans for merged scans */
  TABLE_READ_PLAN **last_ror;  /* end of the above array */
1574 1575
};

1576 1577 1578 1579

/*
  Plan for QUICK_INDEX_MERGE_SELECT scan.
  QUICK_ROR_INTERSECT_SELECT always retrieves full rows, so retrieve_full_rows
unknown's avatar
unknown committed
1580
  is ignored by make_quick.
1581 1582
*/

1583 1584 1585
class TRP_INDEX_MERGE : public TABLE_READ_PLAN
{
public:
1586 1587
  TRP_INDEX_MERGE() {}                        /* Remove gcc warning */
  virtual ~TRP_INDEX_MERGE() {}               /* Remove gcc warning */
unknown's avatar
unknown committed
1588
  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
1589
                             MEM_ROOT *parent_alloc);
1590 1591
  TRP_RANGE **range_scans; /* array of ptrs to plans of merged scans */
  TRP_RANGE **range_scans_end; /* end of the array */
1592 1593 1594
};


1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
/*
  Plan for a QUICK_GROUP_MIN_MAX_SELECT scan. 
*/

class TRP_GROUP_MIN_MAX : public TABLE_READ_PLAN
{
private:
  bool have_min, have_max;
  KEY_PART_INFO *min_max_arg_part;
  uint group_prefix_len;
  uint used_key_parts;
  uint group_key_parts;
  KEY *index_info;
  uint index;
  uint key_infix_len;
  byte key_infix[MAX_KEY_LENGTH];
  SEL_TREE *range_tree; /* Represents all range predicates in the query. */
  SEL_ARG  *index_tree; /* The SEL_ARG sub-tree corresponding to index_info. */
  uint param_idx; /* Index of used key in param->key. */
  /* Number of records selected by the ranges in index_tree. */
public:
  ha_rows quick_prefix_records;
public:
1618 1619 1620 1621
  TRP_GROUP_MIN_MAX(bool have_min_arg, bool have_max_arg,
                    KEY_PART_INFO *min_max_arg_part_arg,
                    uint group_prefix_len_arg, uint used_key_parts_arg,
                    uint group_key_parts_arg, KEY *index_info_arg,
1622 1623
                    uint index_arg, uint key_infix_len_arg,
                    byte *key_infix_arg,
1624 1625 1626 1627 1628 1629 1630 1631 1632
                    SEL_TREE *tree_arg, SEL_ARG *index_tree_arg,
                    uint param_idx_arg, ha_rows quick_prefix_records_arg)
  : have_min(have_min_arg), have_max(have_max_arg),
    min_max_arg_part(min_max_arg_part_arg),
    group_prefix_len(group_prefix_len_arg), used_key_parts(used_key_parts_arg),
    group_key_parts(group_key_parts_arg), index_info(index_info_arg),
    index(index_arg), key_infix_len(key_infix_len_arg), range_tree(tree_arg),
    index_tree(index_tree_arg), param_idx(param_idx_arg),
    quick_prefix_records(quick_prefix_records_arg)
1633 1634 1635 1636
    {
      if (key_infix_len)
        memcpy(this->key_infix, key_infix_arg, key_infix_len);
    }
1637
  virtual ~TRP_GROUP_MIN_MAX() {}             /* Remove gcc warning */
1638 1639 1640 1641 1642 1643

  QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
                             MEM_ROOT *parent_alloc);
};


unknown's avatar
unknown committed
1644
/*
1645
  Fill param->needed_fields with bitmap of fields used in the query.
unknown's avatar
unknown committed
1646
  SYNOPSIS
1647 1648
    fill_used_fields_bitmap()
      param Parameter from test_quick_select function.
unknown's avatar
unknown committed
1649

1650 1651 1652
  NOTES
    Clustered PK members are not put into the bitmap as they are implicitly
    present in all keys (and it is impossible to avoid reading them).
unknown's avatar
unknown committed
1653 1654 1655
  RETURN
    0  Ok
    1  Out of memory.
1656 1657 1658 1659 1660
*/

static int fill_used_fields_bitmap(PARAM *param)
{
  TABLE *table= param->table;
1661
  param->fields_bitmap_size= (table->s->fields/8 + 1);
1662 1663 1664
  uchar *tmp;
  uint pk;
  if (!(tmp= (uchar*)alloc_root(param->mem_root,param->fields_bitmap_size)) ||
unknown's avatar
unknown committed
1665
      bitmap_init(&param->needed_fields, tmp, param->fields_bitmap_size*8,
unknown's avatar
unknown committed
1666
                  FALSE))
1667
    return 1;
unknown's avatar
unknown committed
1668

1669
  bitmap_clear_all(&param->needed_fields);
1670
  for (uint i= 0; i < table->s->fields; i++)
1671 1672 1673 1674 1675
  {
    if (param->thd->query_id == table->field[i]->query_id)
      bitmap_set_bit(&param->needed_fields, i+1);
  }

1676
  pk= param->table->s->primary_key;
1677 1678
  if (param->table->file->primary_key_is_clustered() && pk != MAX_KEY)
  {
1679
    /* The table uses clustered PK and it is not internally generated */
1680
    KEY_PART_INFO *key_part= param->table->key_info[pk].key_part;
unknown's avatar
unknown committed
1681
    KEY_PART_INFO *key_part_end= key_part +
1682
                                 param->table->key_info[pk].key_parts;
unknown's avatar
unknown committed
1683
    for (;key_part != key_part_end; ++key_part)
1684 1685 1686 1687 1688 1689 1690 1691
    {
      bitmap_clear_bit(&param->needed_fields, key_part->fieldnr);
    }
  }
  return 0;
}


unknown's avatar
unknown committed
1692
/*
unknown's avatar
unknown committed
1693
  Test if a key can be used in different ranges
unknown's avatar
unknown committed
1694 1695

  SYNOPSIS
1696 1697 1698 1699 1700
    SQL_SELECT::test_quick_select()
      thd               Current thread
      keys_to_use       Keys to use for range retrieval
      prev_tables       Tables assumed to be already read when the scan is
                        performed (but not read at the moment of this call)
unknown's avatar
unknown committed
1701 1702 1703
      limit             Query limit
      force_quick_range Prefer to use range (instead of full table scan) even
                        if it is more expensive.
1704 1705 1706 1707 1708

  NOTES
    Updates the following in the select parameter:
      needed_reg - Bits for keys with may be used if all prev regs are read
      quick      - Parameter to use when reading records.
unknown's avatar
unknown committed
1709

1710 1711 1712
    In the table struct the following information is updated:
      quick_keys - Which keys can be used
      quick_rows - How many rows the key matches
unknown's avatar
unknown committed
1713

1714 1715 1716 1717
  TODO
   Check if this function really needs to modify keys_to_use, and change the
   code to pass it by reference if it doesn't.

unknown's avatar
unknown committed
1718
   In addition to force_quick_range other means can be (an usually are) used
1719 1720
   to make this function prefer range over full table scan. Figure out if
   force_quick_range is really needed.
unknown's avatar
unknown committed
1721

1722 1723 1724 1725
  RETURN
   -1 if impossible select (i.e. certainly no rows will be selected)
    0 if can't use quick_select
    1 if found usable ranges and quick select has been successfully created.
unknown's avatar
unknown committed
1726
*/
unknown's avatar
unknown committed
1727

1728 1729
int SQL_SELECT::test_quick_select(THD *thd, key_map keys_to_use,
				  table_map prev_tables,
unknown's avatar
unknown committed
1730 1731 1732 1733
				  ha_rows limit, bool force_quick_range)
{
  uint idx;
  double scan_time;
1734
  DBUG_ENTER("SQL_SELECT::test_quick_select");
unknown's avatar
unknown committed
1735 1736 1737
  DBUG_PRINT("enter",("keys_to_use: %lu  prev_tables: %lu  const_tables: %lu",
		      keys_to_use.to_ulonglong(), (ulong) prev_tables,
		      (ulong) const_tables));
1738
  DBUG_PRINT("info", ("records=%lu", (ulong)head->file->records));
unknown's avatar
unknown committed
1739 1740
  delete quick;
  quick=0;
1741 1742 1743
  needed_reg.clear_all();
  quick_keys.clear_all();
  if ((specialflag & SPECIAL_SAFE_MODE) && ! force_quick_range ||
unknown's avatar
unknown committed
1744 1745
      !limit)
    DBUG_RETURN(0); /* purecov: inspected */
unknown's avatar
unknown committed
1746 1747
  if (keys_to_use.is_clear_all())
    DBUG_RETURN(0);
1748
  records= head->file->records;
unknown's avatar
unknown committed
1749 1750
  if (!records)
    records++;					/* purecov: inspected */
1751 1752
  scan_time= (double) records / TIME_FOR_COMPARE + 1;
  read_time= (double) head->file->scan_time() + scan_time + 1.1;
1753 1754
  if (head->force_index)
    scan_time= read_time= DBL_MAX;
unknown's avatar
unknown committed
1755
  if (limit < records)
1756
    read_time= (double) records + scan_time + 1; // Force to use index
unknown's avatar
unknown committed
1757
  else if (read_time <= 2.0 && !force_quick_range)
1758
    DBUG_RETURN(0);				/* No need for quick select */
unknown's avatar
unknown committed
1759

1760
  DBUG_PRINT("info",("Time to scan table: %g", read_time));
unknown's avatar
unknown committed
1761

1762 1763
  keys_to_use.intersect(head->keys_in_use_for_query);
  if (!keys_to_use.is_clear_all())
unknown's avatar
unknown committed
1764
  {
1765
    MEM_ROOT alloc;
1766
    SEL_TREE *tree= NULL;
unknown's avatar
unknown committed
1767
    KEY_PART *key_parts;
unknown's avatar
unknown committed
1768
    KEY *key_info;
unknown's avatar
unknown committed
1769
    PARAM param;
unknown's avatar
unknown committed
1770

unknown's avatar
unknown committed
1771
    /* set up parameter that is passed to all functions */
1772
    param.thd= thd;
unknown's avatar
unknown committed
1773
    param.baseflag=head->file->table_flags();
unknown's avatar
unknown committed
1774 1775 1776 1777 1778
    param.prev_tables=prev_tables | const_tables;
    param.read_tables=read_tables;
    param.current_table= head->map;
    param.table=head;
    param.keys=0;
1779
    param.mem_root= &alloc;
1780
    param.old_root= thd->mem_root;
1781
    param.needed_reg= &needed_reg;
1782
    param.imerge_cost_buff_size= 0;
unknown's avatar
unknown committed
1783

unknown's avatar
unknown committed
1784
    thd->no_errors=1;				// Don't warn about NULL
1785
    init_sql_alloc(&alloc, thd->variables.range_alloc_block_size, 0);
1786 1787 1788 1789
    if (!(param.key_parts= (KEY_PART*) alloc_root(&alloc,
                                                  sizeof(KEY_PART)*
                                                  head->s->key_parts)) ||
        fill_used_fields_bitmap(&param))
unknown's avatar
unknown committed
1790
    {
unknown's avatar
unknown committed
1791
      thd->no_errors=0;
1792
      free_root(&alloc,MYF(0));			// Return memory & allocator
unknown's avatar
unknown committed
1793 1794 1795
      DBUG_RETURN(0);				// Can't use range
    }
    key_parts= param.key_parts;
1796
    thd->mem_root= &alloc;
unknown's avatar
unknown committed
1797 1798 1799 1800

    /*
      Make an array with description of all key parts of all table keys.
      This is used in get_mm_parts function.
1801
    */
unknown's avatar
unknown committed
1802
    key_info= head->key_info;
1803
    for (idx=0 ; idx < head->s->keys ; idx++, key_info++)
unknown's avatar
unknown committed
1804
    {
unknown's avatar
unknown committed
1805
      KEY_PART_INFO *key_part_info;
1806
      if (!keys_to_use.is_set(idx))
unknown's avatar
unknown committed
1807 1808 1809 1810 1811
	continue;
      if (key_info->flags & HA_FULLTEXT)
	continue;    // ToDo: ft-keys in non-ft ranges, if possible   SerG

      param.key[param.keys]=key_parts;
unknown's avatar
unknown committed
1812 1813 1814
      key_part_info= key_info->key_part;
      for (uint part=0 ; part < key_info->key_parts ;
	   part++, key_parts++, key_part_info++)
unknown's avatar
unknown committed
1815
      {
unknown's avatar
unknown committed
1816 1817 1818 1819 1820 1821
	key_parts->key=		 param.keys;
	key_parts->part=	 part;
	key_parts->length=       key_part_info->length;
	key_parts->store_length= key_part_info->store_length;
	key_parts->field=	 key_part_info->field;
	key_parts->null_bit=	 key_part_info->null_bit;
1822
        key_parts->image_type =
unknown's avatar
unknown committed
1823
          (key_info->flags & HA_SPATIAL) ? Field::itMBR : Field::itRAW;
unknown's avatar
unknown committed
1824 1825 1826 1827 1828
      }
      param.real_keynr[param.keys++]=idx;
    }
    param.key_parts_end=key_parts;

unknown's avatar
unknown committed
1829 1830 1831 1832
    /* Calculate cost of full index read for the shortest covering index */
    if (!head->used_keys.is_clear_all())
    {
      int key_for_use= find_shortest_key(head, &head->used_keys);
1833 1834 1835
      double key_read_time= (get_index_only_read_time(&param, records,
                                                     key_for_use) +
                             (double) records / TIME_FOR_COMPARE);
unknown's avatar
unknown committed
1836 1837 1838 1839 1840
      DBUG_PRINT("info",  ("'all'+'using index' scan will be using key %d, "
                           "read time %g", key_for_use, key_read_time));
      if (key_read_time < read_time)
        read_time= key_read_time;
    }
unknown's avatar
unknown committed
1841

1842 1843 1844 1845 1846
    TABLE_READ_PLAN *best_trp= NULL;
    TRP_GROUP_MIN_MAX *group_trp;
    double best_read_time= read_time;

    if (cond)
unknown's avatar
unknown committed
1847
    {
unknown's avatar
unknown committed
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
      if ((tree= get_mm_tree(&param,cond)))
      {
        if (tree->type == SEL_TREE::IMPOSSIBLE)
        {
          records=0L;                      /* Return -1 from this function. */
          read_time= (double) HA_POS_ERROR;
          goto free_mem;
        }
        if (tree->type != SEL_TREE::KEY &&
            tree->type != SEL_TREE::KEY_SMALLER)
          goto free_mem;
      }
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
    }

    /*
      Try to construct a QUICK_GROUP_MIN_MAX_SELECT.
      Notice that it can be constructed no matter if there is a range tree.
    */
    group_trp= get_best_group_min_max(&param, tree);
    if (group_trp && group_trp->read_cost < best_read_time)
    {
      best_trp= group_trp;
      best_read_time= best_trp->read_cost;
    }

    if (tree)
unknown's avatar
unknown committed
1874
    {
unknown's avatar
unknown committed
1875 1876 1877
      /*
        It is possible to use a range-based quick select (but it might be
        slower than 'all' table scan).
1878 1879
      */
      if (tree->merges.is_empty())
unknown's avatar
unknown committed
1880
      {
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
        TRP_RANGE         *range_trp;
        TRP_ROR_INTERSECT *rori_trp;
        bool can_build_covering= FALSE;

        /* Get best 'range' plan and prepare data for making other plans */
        if ((range_trp= get_key_scans_params(&param, tree, FALSE,
                                             best_read_time)))
        {
          best_trp= range_trp;
          best_read_time= best_trp->read_cost;
        }

unknown's avatar
unknown committed
1893
        /*
1894 1895 1896
          Simultaneous key scans and row deletes on several handler
          objects are not allowed so don't use ROR-intersection for
          table deletes.
unknown's avatar
unknown committed
1897
        */
1898 1899 1900 1901
        if ((thd->lex->sql_command != SQLCOM_DELETE))
#ifdef NOT_USED
          if ((thd->lex->sql_command != SQLCOM_UPDATE))
#endif
unknown's avatar
unknown committed
1902
        {
unknown's avatar
unknown committed
1903
          /*
1904 1905
            Get best non-covering ROR-intersection plan and prepare data for
            building covering ROR-intersection.
unknown's avatar
unknown committed
1906
          */
1907 1908
          if ((rori_trp= get_best_ror_intersect(&param, tree, best_read_time,
                                                &can_build_covering)))
unknown's avatar
unknown committed
1909
          {
1910 1911
            best_trp= rori_trp;
            best_read_time= best_trp->read_cost;
unknown's avatar
unknown committed
1912 1913
            /*
              Try constructing covering ROR-intersect only if it looks possible
1914 1915
              and worth doing.
            */
1916 1917 1918 1919
            if (!rori_trp->is_covering && can_build_covering &&
                (rori_trp= get_best_covering_ror_intersect(&param, tree,
                                                           best_read_time)))
              best_trp= rori_trp;
unknown's avatar
unknown committed
1920 1921
          }
        }
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
      }
      else
      {
        /* Try creating index_merge/ROR-union scan. */
        SEL_IMERGE *imerge;
        TABLE_READ_PLAN *best_conj_trp= NULL, *new_conj_trp;
        LINT_INIT(new_conj_trp); /* no empty index_merge lists possible */

        DBUG_PRINT("info",("No range reads possible,"
                           " trying to construct index_merge"));
        List_iterator_fast<SEL_IMERGE> it(tree->merges);
        while ((imerge= it++))
unknown's avatar
unknown committed
1934
        {
1935 1936 1937 1938
          new_conj_trp= get_best_disjunct_quick(&param, imerge, best_read_time);
          if (!best_conj_trp || (new_conj_trp && new_conj_trp->read_cost <
                                 best_conj_trp->read_cost))
            best_conj_trp= new_conj_trp;
1939
        }
1940 1941 1942 1943
        if (best_conj_trp)
          best_trp= best_conj_trp;
      }
    }
unknown's avatar
unknown committed
1944

1945
    thd->mem_root= param.old_root;
1946 1947 1948 1949 1950 1951 1952 1953 1954

    /* If we got a read plan, create a quick select from it. */
    if (best_trp)
    {
      records= best_trp->records;
      if (!(quick= best_trp->make_quick(&param, TRUE)) || quick->init())
      {
        delete quick;
        quick= NULL;
unknown's avatar
unknown committed
1955 1956
      }
    }
1957 1958

  free_mem:
1959
    free_root(&alloc,MYF(0));			// Return memory & allocator
1960
    thd->mem_root= param.old_root;
unknown's avatar
unknown committed
1961
    thd->no_errors=0;
unknown's avatar
unknown committed
1962
  }
unknown's avatar
unknown committed
1963

1964
  DBUG_EXECUTE("info", print_quick(quick, &needed_reg););
unknown's avatar
unknown committed
1965

unknown's avatar
unknown committed
1966 1967 1968 1969 1970 1971 1972
  /*
    Assume that if the user is using 'limit' we will only need to scan
    limit rows if we are using a key
  */
  DBUG_RETURN(records ? test(quick) : -1);
}

unknown's avatar
unknown committed
1973

unknown's avatar
unknown committed
1974
/*
1975 1976 1977 1978
  Get cost of 'sweep' full records retrieval.
  SYNOPSIS
    get_sweep_read_cost()
      param            Parameter from test_quick_select
unknown's avatar
unknown committed
1979
      records          # of records to be retrieved
1980
  RETURN
unknown's avatar
unknown committed
1981
    cost of sweep
1982
*/
1983

1984
double get_sweep_read_cost(const PARAM *param, ha_rows records)
1985
{
1986
  double result;
1987
  DBUG_ENTER("get_sweep_read_cost");
1988 1989
  if (param->table->file->primary_key_is_clustered())
  {
1990
    result= param->table->file->read_time(param->table->s->primary_key,
1991
                                          records, records);
1992 1993
  }
  else
unknown's avatar
unknown committed
1994
  {
1995
    double n_blocks=
unknown's avatar
unknown committed
1996
      ceil(ulonglong2double(param->table->file->data_file_length) / IO_SIZE);
1997 1998 1999 2000
    double busy_blocks=
      n_blocks * (1.0 - pow(1.0 - 1.0/n_blocks, rows2double(records)));
    if (busy_blocks < 1.0)
      busy_blocks= 1.0;
unknown's avatar
unknown committed
2001
    DBUG_PRINT("info",("sweep: nblocks=%g, busy_blocks=%g", n_blocks,
2002
                       busy_blocks));
2003
    /*
unknown's avatar
unknown committed
2004
      Disabled: Bail out if # of blocks to read is bigger than # of blocks in
2005 2006 2007 2008 2009 2010 2011 2012
      table data file.
    if (max_cost != DBL_MAX  && (busy_blocks+index_reads_cost) >= n_blocks)
      return 1;
    */
    JOIN *join= param->thd->lex->select_lex.join;
    if (!join || join->tables == 1)
    {
      /* No join, assume reading is done in one 'sweep' */
unknown's avatar
unknown committed
2013
      result= busy_blocks*(DISK_SEEK_BASE_COST +
2014 2015 2016 2017
                          DISK_SEEK_PROP_COST*n_blocks/busy_blocks);
    }
    else
    {
unknown's avatar
unknown committed
2018
      /*
2019 2020 2021
        Possibly this is a join with source table being non-last table, so
        assume that disk seeks are random here.
      */
2022
      result= busy_blocks;
2023 2024
    }
  }
2025
  DBUG_PRINT("info",("returning cost=%g", result));
2026
  DBUG_RETURN(result);
2027
}
2028 2029


2030 2031 2032 2033
/*
  Get best plan for a SEL_IMERGE disjunctive expression.
  SYNOPSIS
    get_best_disjunct_quick()
2034 2035
      param     Parameter from check_quick_select function
      imerge    Expression to use
2036
      read_time Don't create scans with cost > read_time
unknown's avatar
unknown committed
2037

2038
  NOTES
2039
    index_merge cost is calculated as follows:
unknown's avatar
unknown committed
2040
    index_merge_cost =
2041 2042 2043 2044 2045
      cost(index_reads) +         (see #1)
      cost(rowid_to_row_scan) +   (see #2)
      cost(unique_use)            (see #3)

    1. cost(index_reads) =SUM_i(cost(index_read_i))
unknown's avatar
unknown committed
2046 2047
       For non-CPK scans,
         cost(index_read_i) = {cost of ordinary 'index only' scan}
2048 2049 2050 2051 2052
       For CPK scan,
         cost(index_read_i) = {cost of non-'index only' scan}

    2. cost(rowid_to_row_scan)
      If table PK is clustered then
unknown's avatar
unknown committed
2053
        cost(rowid_to_row_scan) =
2054
          {cost of ordinary clustered PK scan with n_ranges=n_rows}
unknown's avatar
unknown committed
2055 2056

      Otherwise, we use the following model to calculate costs:
2057
      We need to retrieve n_rows rows from file that occupies n_blocks blocks.
unknown's avatar
unknown committed
2058
      We assume that offsets of rows we need are independent variates with
2059
      uniform distribution in [0..max_file_offset] range.
unknown's avatar
unknown committed
2060

2061 2062
      We'll denote block as "busy" if it contains row(s) we need to retrieve
      and "empty" if doesn't contain rows we need.
unknown's avatar
unknown committed
2063

2064
      Probability that a block is empty is (1 - 1/n_blocks)^n_rows (this
unknown's avatar
unknown committed
2065
      applies to any block in file). Let x_i be a variate taking value 1 if
2066
      block #i is empty and 0 otherwise.
unknown's avatar
unknown committed
2067

2068 2069
      Then E(x_i) = (1 - 1/n_blocks)^n_rows;

unknown's avatar
unknown committed
2070 2071
      E(n_empty_blocks) = E(sum(x_i)) = sum(E(x_i)) =
        = n_blocks * ((1 - 1/n_blocks)^n_rows) =
2072 2073 2074 2075
       ~= n_blocks * exp(-n_rows/n_blocks).

      E(n_busy_blocks) = n_blocks*(1 - (1 - 1/n_blocks)^n_rows) =
       ~= n_blocks * (1 - exp(-n_rows/n_blocks)).
unknown's avatar
unknown committed
2076

2077 2078
      Average size of "hole" between neighbor non-empty blocks is
           E(hole_size) = n_blocks/E(n_busy_blocks).
unknown's avatar
unknown committed
2079

2080 2081 2082 2083 2084 2085
      The total cost of reading all needed blocks in one "sweep" is:

      E(n_busy_blocks)*
       (DISK_SEEK_BASE_COST + DISK_SEEK_PROP_COST*n_blocks/E(n_busy_blocks)).

    3. Cost of Unique use is calculated in Unique::get_use_cost function.
unknown's avatar
unknown committed
2086 2087 2088 2089 2090

  ROR-union cost is calculated in the same way index_merge, but instead of
  Unique a priority queue is used.

  RETURN
2091 2092
    Created read plan
    NULL - Out of memory or no read scan could be built.
2093
*/
2094

2095 2096
static
TABLE_READ_PLAN *get_best_disjunct_quick(PARAM *param, SEL_IMERGE *imerge,
2097
                                         double read_time)
2098 2099 2100 2101 2102 2103 2104
{
  SEL_TREE **ptree;
  TRP_INDEX_MERGE *imerge_trp= NULL;
  uint n_child_scans= imerge->trees_next - imerge->trees;
  TRP_RANGE **range_scans;
  TRP_RANGE **cur_child;
  TRP_RANGE **cpk_scan= NULL;
unknown's avatar
unknown committed
2105
  bool imerge_too_expensive= FALSE;
2106 2107 2108 2109
  double imerge_cost= 0.0;
  ha_rows cpk_scan_records= 0;
  ha_rows non_cpk_scan_records= 0;
  bool pk_is_clustered= param->table->file->primary_key_is_clustered();
unknown's avatar
unknown committed
2110 2111
  bool all_scans_ror_able= TRUE;
  bool all_scans_rors= TRUE;
2112 2113 2114 2115 2116 2117 2118 2119 2120
  uint unique_calc_buff_size;
  TABLE_READ_PLAN **roru_read_plans;
  TABLE_READ_PLAN **cur_roru_plan;
  double roru_index_costs;
  ha_rows roru_total_records;
  double roru_intersect_part= 1.0;
  DBUG_ENTER("get_best_disjunct_quick");
  DBUG_PRINT("info", ("Full table scan cost =%g", read_time));

unknown's avatar
unknown committed
2121
  if (!(range_scans= (TRP_RANGE**)alloc_root(param->mem_root,
2122 2123 2124
                                             sizeof(TRP_RANGE*)*
                                             n_child_scans)))
    DBUG_RETURN(NULL);
2125
  /*
2126 2127 2128
    Collect best 'range' scan for each of disjuncts, and, while doing so,
    analyze possibility of ROR scans. Also calculate some values needed by
    other parts of the code.
2129
  */
2130
  for (ptree= imerge->trees, cur_child= range_scans;
2131
       ptree != imerge->trees_next;
2132
       ptree++, cur_child++)
2133
  {
2134 2135
    DBUG_EXECUTE("info", print_sel_tree(param, *ptree, &(*ptree)->keys_map,
                                        "tree in SEL_IMERGE"););
unknown's avatar
unknown committed
2136
    if (!(*cur_child= get_key_scans_params(param, *ptree, TRUE, read_time)))
2137 2138
    {
      /*
2139
        One of index scans in this index_merge is more expensive than entire
2140 2141 2142
        table read for another available option. The entire index_merge (and
        any possible ROR-union) will be more expensive then, too. We continue
        here only to update SQL_SELECT members.
2143
      */
unknown's avatar
unknown committed
2144
      imerge_too_expensive= TRUE;
2145 2146 2147
    }
    if (imerge_too_expensive)
      continue;
unknown's avatar
unknown committed
2148

2149 2150 2151
    imerge_cost += (*cur_child)->read_cost;
    all_scans_ror_able &= ((*ptree)->n_ror_scans > 0);
    all_scans_rors &= (*cur_child)->is_ror;
unknown's avatar
unknown committed
2152
    if (pk_is_clustered &&
2153 2154
        param->real_keynr[(*cur_child)->key_idx] ==
        param->table->s->primary_key)
2155
    {
2156 2157
      cpk_scan= cur_child;
      cpk_scan_records= (*cur_child)->records;
2158 2159
    }
    else
2160
      non_cpk_scan_records += (*cur_child)->records;
2161
  }
unknown's avatar
unknown committed
2162

2163
  DBUG_PRINT("info", ("index_merge scans cost=%g", imerge_cost));
unknown's avatar
unknown committed
2164
  if (imerge_too_expensive || (imerge_cost > read_time) ||
2165 2166
      (non_cpk_scan_records+cpk_scan_records >= param->table->file->records) &&
      read_time != DBL_MAX)
2167
  {
unknown's avatar
unknown committed
2168 2169
    /*
      Bail out if it is obvious that both index_merge and ROR-union will be
2170
      more expensive
2171
    */
2172 2173
    DBUG_PRINT("info", ("Sum of index_merge scans is more expensive than "
                        "full table scan, bailing out"));
unknown's avatar
unknown committed
2174
    DBUG_RETURN(NULL);
2175
  }
2176
  if (all_scans_rors)
2177
  {
2178 2179
    roru_read_plans= (TABLE_READ_PLAN**)range_scans;
    goto skip_to_ror_scan;
2180
  }
unknown's avatar
unknown committed
2181 2182
  if (cpk_scan)
  {
2183 2184
    /*
      Add one ROWID comparison for each row retrieved on non-CPK scan.  (it
unknown's avatar
unknown committed
2185 2186 2187
      is done in QUICK_RANGE_SELECT::row_in_ranges)
     */
    imerge_cost += non_cpk_scan_records / TIME_FOR_COMPARE_ROWID;
2188 2189 2190
  }

  /* Calculate cost(rowid_to_row_scan) */
2191
  imerge_cost += get_sweep_read_cost(param, non_cpk_scan_records);
unknown's avatar
unknown committed
2192
  DBUG_PRINT("info",("index_merge cost with rowid-to-row scan: %g",
2193
                     imerge_cost));
2194 2195
  if (imerge_cost > read_time)
    goto build_ror_index_merge;
2196 2197

  /* Add Unique operations cost */
unknown's avatar
unknown committed
2198 2199
  unique_calc_buff_size=
    Unique::get_cost_calc_buff_size(non_cpk_scan_records,
2200 2201 2202 2203 2204 2205
                                    param->table->file->ref_length,
                                    param->thd->variables.sortbuff_size);
  if (param->imerge_cost_buff_size < unique_calc_buff_size)
  {
    if (!(param->imerge_cost_buff= (uint*)alloc_root(param->mem_root,
                                                     unique_calc_buff_size)))
2206
      DBUG_RETURN(NULL);
2207 2208 2209
    param->imerge_cost_buff_size= unique_calc_buff_size;
  }

unknown's avatar
unknown committed
2210
  imerge_cost +=
2211
    Unique::get_use_cost(param->imerge_cost_buff, non_cpk_scan_records,
unknown's avatar
unknown committed
2212 2213
                         param->table->file->ref_length,
                         param->thd->variables.sortbuff_size);
unknown's avatar
unknown committed
2214
  DBUG_PRINT("info",("index_merge total cost: %g (wanted: less then %g)",
2215 2216 2217 2218 2219 2220 2221
                     imerge_cost, read_time));
  if (imerge_cost < read_time)
  {
    if ((imerge_trp= new (param->mem_root)TRP_INDEX_MERGE))
    {
      imerge_trp->read_cost= imerge_cost;
      imerge_trp->records= non_cpk_scan_records + cpk_scan_records;
unknown's avatar
unknown committed
2222
      imerge_trp->records= min(imerge_trp->records,
2223 2224 2225 2226 2227 2228
                               param->table->file->records);
      imerge_trp->range_scans= range_scans;
      imerge_trp->range_scans_end= range_scans + n_child_scans;
      read_time= imerge_cost;
    }
  }
unknown's avatar
unknown committed
2229

unknown's avatar
unknown committed
2230
build_ror_index_merge:
2231 2232
  if (!all_scans_ror_able || param->thd->lex->sql_command == SQLCOM_DELETE)
    DBUG_RETURN(imerge_trp);
unknown's avatar
unknown committed
2233

2234 2235
  /* Ok, it is possible to build a ROR-union, try it. */
  bool dummy;
unknown's avatar
unknown committed
2236
  if (!(roru_read_plans=
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
          (TABLE_READ_PLAN**)alloc_root(param->mem_root,
                                        sizeof(TABLE_READ_PLAN*)*
                                        n_child_scans)))
    DBUG_RETURN(imerge_trp);
skip_to_ror_scan:
  roru_index_costs= 0.0;
  roru_total_records= 0;
  cur_roru_plan= roru_read_plans;

  /* Find 'best' ROR scan for each of trees in disjunction */
  for (ptree= imerge->trees, cur_child= range_scans;
       ptree != imerge->trees_next;
       ptree++, cur_child++, cur_roru_plan++)
2250
  {
2251 2252
    /*
      Assume the best ROR scan is the one that has cheapest full-row-retrieval
unknown's avatar
unknown committed
2253 2254
      scan cost.
      Also accumulate index_only scan costs as we'll need them to calculate
2255 2256 2257 2258 2259 2260 2261
      overall index_intersection cost.
    */
    double cost;
    if ((*cur_child)->is_ror)
    {
      /* Ok, we have index_only cost, now get full rows scan cost */
      cost= param->table->file->
unknown's avatar
unknown committed
2262
              read_time(param->real_keynr[(*cur_child)->key_idx], 1,
2263 2264 2265 2266 2267 2268 2269
                        (*cur_child)->records) +
              rows2double((*cur_child)->records) / TIME_FOR_COMPARE;
    }
    else
      cost= read_time;

    TABLE_READ_PLAN *prev_plan= *cur_child;
unknown's avatar
unknown committed
2270
    if (!(*cur_roru_plan= get_best_ror_intersect(param, *ptree, cost,
2271 2272 2273 2274 2275 2276 2277 2278 2279
                                                 &dummy)))
    {
      if (prev_plan->is_ror)
        *cur_roru_plan= prev_plan;
      else
        DBUG_RETURN(imerge_trp);
      roru_index_costs += (*cur_roru_plan)->read_cost;
    }
    else
unknown's avatar
unknown committed
2280 2281
      roru_index_costs +=
        ((TRP_ROR_INTERSECT*)(*cur_roru_plan))->index_scan_costs;
2282
    roru_total_records += (*cur_roru_plan)->records;
unknown's avatar
unknown committed
2283
    roru_intersect_part *= (*cur_roru_plan)->records /
2284
                           param->table->file->records;
2285
  }
2286

unknown's avatar
unknown committed
2287 2288
  /*
    rows to retrieve=
2289
      SUM(rows_in_scan_i) - table_rows * PROD(rows_in_scan_i / table_rows).
2290
    This is valid because index_merge construction guarantees that conditions
2291 2292 2293
    in disjunction do not share key parts.
  */
  roru_total_records -= (ha_rows)(roru_intersect_part*
unknown's avatar
unknown committed
2294 2295 2296
                                  param->table->file->records);
  /* ok, got a ROR read plan for each of the disjuncts
    Calculate cost:
2297 2298 2299 2300 2301 2302
    cost(index_union_scan(scan_1, ... scan_n)) =
      SUM_i(cost_of_index_only_scan(scan_i)) +
      queue_use_cost(rowid_len, n) +
      cost_of_row_retrieval
    See get_merge_buffers_cost function for queue_use_cost formula derivation.
  */
unknown's avatar
unknown committed
2303

2304
  double roru_total_cost;
unknown's avatar
unknown committed
2305 2306 2307
  roru_total_cost= roru_index_costs +
                   rows2double(roru_total_records)*log((double)n_child_scans) /
                   (TIME_FOR_COMPARE_ROWID * M_LN2) +
2308 2309
                   get_sweep_read_cost(param, roru_total_records);

unknown's avatar
unknown committed
2310
  DBUG_PRINT("info", ("ROR-union: cost %g, %d members", roru_total_cost,
2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
                      n_child_scans));
  TRP_ROR_UNION* roru;
  if (roru_total_cost < read_time)
  {
    if ((roru= new (param->mem_root) TRP_ROR_UNION))
    {
      roru->first_ror= roru_read_plans;
      roru->last_ror= roru_read_plans + n_child_scans;
      roru->read_cost= roru_total_cost;
      roru->records= roru_total_records;
      DBUG_RETURN(roru);
    }
  }
  DBUG_RETURN(imerge_trp);
2325 2326 2327 2328 2329 2330 2331
}


/*
  Calculate cost of 'index only' scan for given index and number of records.

  SYNOPSIS
2332
    get_index_only_read_time()
2333 2334 2335 2336 2337
      param    parameters structure
      records  #of records to read
      keynr    key to read

  NOTES
unknown's avatar
unknown committed
2338
    It is assumed that we will read trough the whole key range and that all
2339 2340 2341 2342
    key blocks are half full (normally things are much better). It is also
    assumed that each time we read the next key from the index, the handler
    performs a random seek, thus the cost is proportional to the number of
    blocks read.
2343 2344 2345 2346 2347 2348

  TODO:
    Move this to handler->read_time() by adding a flag 'index-only-read' to
    this call. The reason for doing this is that the current function doesn't
    handle the case when the row is stored in the b-tree (like in innodb
    clustered index)
2349 2350
*/

unknown's avatar
unknown committed
2351
static double get_index_only_read_time(const PARAM* param, ha_rows records,
unknown's avatar
unknown committed
2352
                                       int keynr)
2353 2354 2355 2356 2357 2358 2359
{
  double read_time;
  uint keys_per_block= (param->table->file->block_size/2/
			(param->table->key_info[keynr].key_length+
			 param->table->file->ref_length) + 1);
  read_time=((double) (records+keys_per_block-1)/
             (double) keys_per_block);
2360
  return read_time;
2361 2362
}

2363

2364 2365
typedef struct st_ror_scan_info
{
2366 2367 2368 2369 2370
  uint      idx;      /* # of used key in param->keys */
  uint      keynr;    /* # of used key in table */
  ha_rows   records;  /* estimate of # records this scan will return */

  /* Set of intervals over key fields that will be used for row retrieval. */
unknown's avatar
unknown committed
2371
  SEL_ARG   *sel_arg;
2372 2373

  /* Fields used in the query and covered by this ROR scan. */
unknown's avatar
unknown committed
2374 2375
  MY_BITMAP covered_fields;
  uint      used_fields_covered; /* # of set bits in covered_fields */
2376
  int       key_rec_length; /* length of key record (including rowid) */
2377 2378

  /*
2379 2380
    Cost of reading all index records with values in sel_arg intervals set
    (assuming there is no need to access full table records)
unknown's avatar
unknown committed
2381 2382
  */
  double    index_read_cost;
2383 2384 2385
  uint      first_uncovered_field; /* first unused bit in covered_fields */
  uint      key_components; /* # of parts in the key */
} ROR_SCAN_INFO;
2386 2387 2388


/*
unknown's avatar
unknown committed
2389
  Create ROR_SCAN_INFO* structure with a single ROR scan on index idx using
2390
  sel_arg set of intervals.
unknown's avatar
unknown committed
2391

2392 2393
  SYNOPSIS
    make_ror_scan()
2394 2395 2396
      param    Parameter from test_quick_select function
      idx      Index of key in param->keys
      sel_arg  Set of intervals for a given key
unknown's avatar
unknown committed
2397

2398
  RETURN
unknown's avatar
unknown committed
2399
    NULL - out of memory
2400
    ROR scan structure containing a scan for {idx, sel_arg}
2401 2402 2403 2404 2405 2406 2407 2408 2409
*/

static
ROR_SCAN_INFO *make_ror_scan(const PARAM *param, int idx, SEL_ARG *sel_arg)
{
  ROR_SCAN_INFO *ror_scan;
  uchar *bitmap_buf;
  uint keynr;
  DBUG_ENTER("make_ror_scan");
unknown's avatar
unknown committed
2410

2411 2412 2413 2414 2415 2416
  if (!(ror_scan= (ROR_SCAN_INFO*)alloc_root(param->mem_root,
                                             sizeof(ROR_SCAN_INFO))))
    DBUG_RETURN(NULL);

  ror_scan->idx= idx;
  ror_scan->keynr= keynr= param->real_keynr[idx];
unknown's avatar
unknown committed
2417 2418
  ror_scan->key_rec_length= (param->table->key_info[keynr].key_length +
                             param->table->file->ref_length);
2419 2420
  ror_scan->sel_arg= sel_arg;
  ror_scan->records= param->table->quick_rows[keynr];
unknown's avatar
unknown committed
2421 2422

  if (!(bitmap_buf= (uchar*)alloc_root(param->mem_root,
unknown's avatar
unknown committed
2423
                                       param->fields_bitmap_size)))
2424
    DBUG_RETURN(NULL);
unknown's avatar
unknown committed
2425

2426
  if (bitmap_init(&ror_scan->covered_fields, bitmap_buf,
unknown's avatar
unknown committed
2427
                  param->fields_bitmap_size*8, FALSE))
2428 2429
    DBUG_RETURN(NULL);
  bitmap_clear_all(&ror_scan->covered_fields);
unknown's avatar
unknown committed
2430

2431
  KEY_PART_INFO *key_part= param->table->key_info[keynr].key_part;
unknown's avatar
unknown committed
2432
  KEY_PART_INFO *key_part_end= key_part +
2433 2434 2435 2436 2437 2438
                               param->table->key_info[keynr].key_parts;
  for (;key_part != key_part_end; ++key_part)
  {
    if (bitmap_is_set(&param->needed_fields, key_part->fieldnr))
      bitmap_set_bit(&ror_scan->covered_fields, key_part->fieldnr);
  }
unknown's avatar
unknown committed
2439
  ror_scan->index_read_cost=
2440 2441 2442 2443 2444 2445
    get_index_only_read_time(param, param->table->quick_rows[ror_scan->keynr],
                             ror_scan->keynr);
  DBUG_RETURN(ror_scan);
}


unknown's avatar
unknown committed
2446
/*
2447 2448 2449 2450 2451 2452 2453
  Compare two ROR_SCAN_INFO** by  E(#records_matched) * key_record_length.
  SYNOPSIS
    cmp_ror_scan_info()
      a ptr to first compared value
      b ptr to second compared value

  RETURN
unknown's avatar
unknown committed
2454
   -1 a < b
2455 2456
    0 a = b
    1 a > b
2457
*/
unknown's avatar
unknown committed
2458

2459
static int cmp_ror_scan_info(ROR_SCAN_INFO** a, ROR_SCAN_INFO** b)
2460 2461 2462 2463 2464 2465 2466
{
  double val1= rows2double((*a)->records) * (*a)->key_rec_length;
  double val2= rows2double((*b)->records) * (*b)->key_rec_length;
  return (val1 < val2)? -1: (val1 == val2)? 0 : 1;
}

/*
unknown's avatar
unknown committed
2467 2468 2469
  Compare two ROR_SCAN_INFO** by
   (#covered fields in F desc,
    #components asc,
2470
    number of first not covered component asc)
2471 2472 2473 2474 2475 2476 2477

  SYNOPSIS
    cmp_ror_scan_info_covering()
      a ptr to first compared value
      b ptr to second compared value

  RETURN
unknown's avatar
unknown committed
2478
   -1 a < b
2479 2480
    0 a = b
    1 a > b
2481
*/
unknown's avatar
unknown committed
2482

2483
static int cmp_ror_scan_info_covering(ROR_SCAN_INFO** a, ROR_SCAN_INFO** b)
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
{
  if ((*a)->used_fields_covered > (*b)->used_fields_covered)
    return -1;
  if ((*a)->used_fields_covered < (*b)->used_fields_covered)
    return 1;
  if ((*a)->key_components < (*b)->key_components)
    return -1;
  if ((*a)->key_components > (*b)->key_components)
    return 1;
  if ((*a)->first_uncovered_field < (*b)->first_uncovered_field)
    return -1;
  if ((*a)->first_uncovered_field > (*b)->first_uncovered_field)
    return 1;
  return 0;
}

unknown's avatar
unknown committed
2500

2501
/* Auxiliary structure for incremental ROR-intersection creation */
unknown's avatar
unknown committed
2502
typedef struct
2503 2504 2505
{
  const PARAM *param;
  MY_BITMAP covered_fields; /* union of fields covered by all scans */
unknown's avatar
unknown committed
2506
  /*
2507
    Fraction of table records that satisfies conditions of all scans.
unknown's avatar
unknown committed
2508
    This is the number of full records that will be retrieved if a
2509 2510
    non-index_only index intersection will be employed.
  */
2511 2512 2513 2514
  double out_rows;
  /* TRUE if covered_fields is a superset of needed_fields */
  bool is_covering;

2515
  ha_rows index_records; /* sum(#records to look in indexes) */
2516 2517
  double index_scan_costs; /* SUM(cost of 'index-only' scans) */
  double total_cost;
2518
} ROR_INTERSECT_INFO;
2519 2520


2521 2522 2523 2524
/*
  Allocate a ROR_INTERSECT_INFO and initialize it to contain zero scans.

  SYNOPSIS
unknown's avatar
unknown committed
2525 2526 2527
    ror_intersect_init()
      param         Parameter from test_quick_select

2528 2529 2530 2531 2532 2533
  RETURN
    allocated structure
    NULL on error
*/

static
2534
ROR_INTERSECT_INFO* ror_intersect_init(const PARAM *param)
2535 2536 2537
{
  ROR_INTERSECT_INFO *info;
  uchar* buf;
unknown's avatar
unknown committed
2538
  if (!(info= (ROR_INTERSECT_INFO*)alloc_root(param->mem_root,
2539 2540 2541 2542 2543 2544
                                              sizeof(ROR_INTERSECT_INFO))))
    return NULL;
  info->param= param;
  if (!(buf= (uchar*)alloc_root(param->mem_root, param->fields_bitmap_size)))
    return NULL;
  if (bitmap_init(&info->covered_fields, buf, param->fields_bitmap_size*8,
unknown's avatar
unknown committed
2545
                  FALSE))
2546
    return NULL;
2547
  info->is_covering= FALSE;
2548
  info->index_scan_costs= 0.0;
2549 2550 2551
  info->index_records= 0;
  info->out_rows= param->table->file->records;
  bitmap_clear_all(&info->covered_fields);
2552 2553 2554
  return info;
}

2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
void ror_intersect_cpy(ROR_INTERSECT_INFO *dst, const ROR_INTERSECT_INFO *src)
{
  dst->param= src->param;
  memcpy(dst->covered_fields.bitmap, src->covered_fields.bitmap, 
         src->covered_fields.bitmap_size);
  dst->out_rows= src->out_rows;
  dst->is_covering= src->is_covering;
  dst->index_records= src->index_records;
  dst->index_scan_costs= src->index_scan_costs;
  dst->total_cost= src->total_cost;
}
unknown's avatar
unknown committed
2566 2567


2568
/*
2569
  Get selectivity of a ROR scan wrt ROR-intersection.
2570

2571
  SYNOPSIS
2572 2573 2574 2575
    ror_scan_selectivity()
      info  ROR-interection 
      scan  ROR scan
      
2576
  NOTES
2577
    Suppose we have a condition on several keys
unknown's avatar
unknown committed
2578 2579
    cond=k_11=c_11 AND k_12=c_12 AND ...  // parts of first key
         k_21=c_21 AND k_22=c_22 AND ...  // parts of second key
2580
          ...
2581
         k_n1=c_n1 AND k_n3=c_n3 AND ...  (1) //parts of the key used by *scan
unknown's avatar
unknown committed
2582

2583 2584
    where k_ij may be the same as any k_pq (i.e. keys may have common parts).

unknown's avatar
unknown committed
2585
    A full row is retrieved if entire condition holds.
2586 2587

    The recursive procedure for finding P(cond) is as follows:
unknown's avatar
unknown committed
2588

2589
    First step:
unknown's avatar
unknown committed
2590
    Pick 1st part of 1st key and break conjunction (1) into two parts:
2591 2592
      cond= (k_11=c_11 AND R)

unknown's avatar
unknown committed
2593
    Here R may still contain condition(s) equivalent to k_11=c_11.
2594 2595
    Nevertheless, the following holds:

unknown's avatar
unknown committed
2596
      P(k_11=c_11 AND R) = P(k_11=c_11) * P(R | k_11=c_11).
2597 2598 2599 2600 2601

    Mark k_11 as fixed field (and satisfied condition) F, save P(F),
    save R to be cond and proceed to recursion step.

    Recursion step:
2602
    We have a set of fixed fields/satisfied conditions) F, probability P(F),
2603 2604 2605
    and remaining conjunction R
    Pick next key part on current key and its condition "k_ij=c_ij".
    We will add "k_ij=c_ij" into F and update P(F).
2606
    Lets denote k_ij as t,  R = t AND R1, where R1 may still contain t. Then
2607

2608
     P((t AND R1)|F) = P(t|F) * P(R1|t|F) = P(t|F) * P(R1|(t AND F)) (2)
2609 2610 2611 2612 2613 2614 2615

    (where '|' mean conditional probability, not "or")

    Consider the first multiplier in (2). One of the following holds:
    a) F contains condition on field used in t (i.e. t AND F = F).
      Then P(t|F) = 1

unknown's avatar
unknown committed
2616 2617
    b) F doesn't contain condition on field used in t. Then F and t are
     considered independent.
2618

unknown's avatar
unknown committed
2619
     P(t|F) = P(t|(fields_before_t_in_key AND other_fields)) =
2620 2621
          = P(t|fields_before_t_in_key).

2622 2623
     P(t|fields_before_t_in_key) = #records(fields_before_t_in_key) /
                                   #records(fields_before_t_in_key, t)
unknown's avatar
unknown committed
2624 2625

    The second multiplier is calculated by applying this step recursively.
2626

2627 2628 2629 2630 2631
  IMPLEMENTATION
    This function calculates the result of application of the "recursion step"
    described above for all fixed key members of a single key, accumulating set
    of covered fields, selectivity, etc.

unknown's avatar
unknown committed
2632
    The calculation is conducted as follows:
2633
    Lets denote #records(keypart1, ... keypartK) as n_k. We need to calculate
unknown's avatar
unknown committed
2634

2635 2636
     n_{k1}      n_{k_2}
    --------- * ---------  * .... (3)
unknown's avatar
unknown committed
2637
     n_{k1-1}    n_{k2_1}
2638

unknown's avatar
unknown committed
2639 2640 2641 2642
    where k1,k2,... are key parts which fields were not yet marked as fixed
    ( this is result of application of option b) of the recursion step for
      parts of a single key).
    Since it is reasonable to expect that most of the fields are not marked
unknown's avatar
unknown committed
2643
    as fixed, we calculate (3) as
2644 2645 2646

                                  n_{i1}      n_{i_2}
    (3) = n_{max_key_part}  / (   --------- * ---------  * ....  )
unknown's avatar
unknown committed
2647 2648 2649 2650
                                  n_{i1-1}    n_{i2_1}

    where i1,i2, .. are key parts that were already marked as fixed.

2651 2652
    In order to minimize number of expensive records_in_range calls we group
    and reduce adjacent fractions.
unknown's avatar
unknown committed
2653

2654
  RETURN
2655 2656
    Selectivity of given ROR scan.
    
2657 2658
*/

2659 2660
static double ror_scan_selectivity(const ROR_INTERSECT_INFO *info, 
                                   const ROR_SCAN_INFO *scan)
2661 2662
{
  double selectivity_mult= 1.0;
2663
  KEY_PART_INFO *key_part= info->param->table->key_info[scan->keynr].key_part;
unknown's avatar
unknown committed
2664
  byte key_val[MAX_KEY_LENGTH+MAX_FIELD_WIDTH]; /* key values tuple */
2665
  char *key_ptr= (char*) key_val;
2666 2667
  SEL_ARG *sel_arg, *tuple_arg= NULL;
  bool cur_covered;
2668 2669
  bool prev_covered= test(bitmap_is_set(&info->covered_fields,
                                        key_part->fieldnr));
unknown's avatar
unknown committed
2670 2671 2672 2673 2674 2675
  key_range min_range;
  key_range max_range;
  min_range.key= (byte*) key_val;
  min_range.flag= HA_READ_KEY_EXACT;
  max_range.key= (byte*) key_val;
  max_range.flag= HA_READ_AFTER_KEY;
2676 2677
  ha_rows prev_records= info->param->table->file->records;
  DBUG_ENTER("ror_intersect_selectivity");
unknown's avatar
unknown committed
2678 2679 2680

  for (sel_arg= scan->sel_arg; sel_arg;
       sel_arg= sel_arg->next_key_part)
2681
  {
2682
    DBUG_PRINT("info",("sel_arg step"));
2683
    cur_covered= test(bitmap_is_set(&info->covered_fields,
unknown's avatar
unknown committed
2684
                                    key_part[sel_arg->part].fieldnr));
2685
    if (cur_covered != prev_covered)
2686
    {
2687
      /* create (part1val, ..., part{n-1}val) tuple. */
unknown's avatar
unknown committed
2688 2689
      ha_rows records;
      if (!tuple_arg)
2690
      {
unknown's avatar
unknown committed
2691 2692
        tuple_arg= scan->sel_arg;
        /* Here we use the length of the first key part */
2693
        tuple_arg->store_min(key_part->store_length, &key_ptr, 0);
unknown's avatar
unknown committed
2694 2695 2696 2697
      }
      while (tuple_arg->next_key_part != sel_arg)
      {
        tuple_arg= tuple_arg->next_key_part;
2698
        tuple_arg->store_min(key_part[tuple_arg->part].store_length, &key_ptr, 0);
unknown's avatar
unknown committed
2699
      }
2700
      min_range.length= max_range.length= ((char*) key_ptr - (char*) key_val);
unknown's avatar
unknown committed
2701 2702
      records= (info->param->table->file->
                records_in_range(scan->keynr, &min_range, &max_range));
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
      if (cur_covered)
      {
        /* uncovered -> covered */
        double tmp= rows2double(records)/rows2double(prev_records);
        DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp));
        selectivity_mult *= tmp;
        prev_records= HA_POS_ERROR;
      }
      else
      {
        /* covered -> uncovered */
unknown's avatar
unknown committed
2714
        prev_records= records;
2715
      }
2716
    }
2717 2718 2719 2720
    prev_covered= cur_covered;
  }
  if (!prev_covered)
  {
2721
    double tmp= rows2double(info->param->table->quick_rows[scan->keynr]) /
2722 2723
                rows2double(prev_records);
    DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp));
unknown's avatar
unknown committed
2724
    selectivity_mult *= tmp;
2725
  }
2726 2727 2728
  DBUG_PRINT("info", ("Returning multiplier: %g", selectivity_mult));
  DBUG_RETURN(selectivity_mult);
}
2729

unknown's avatar
unknown committed
2730

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
/*
  Check if adding a ROR scan to a ROR-intersection reduces its cost of
  ROR-intersection and if yes, update parameters of ROR-intersection,
  including its cost.

  SYNOPSIS
    ror_intersect_add()
      param        Parameter from test_quick_select
      info         ROR-intersection structure to add the scan to.
      ror_scan     ROR scan info to add.
      is_cpk_scan  If TRUE, add the scan as CPK scan (this can be inferred
                   from other parameters and is passed separately only to
                   avoid duplicating the inference code)

  NOTES
    Adding a ROR scan to ROR-intersect "makes sense" iff the cost of ROR-
    intersection decreases. The cost of ROR-intersection is calculated as
    follows:

    cost= SUM_i(key_scan_cost_i) + cost_of_full_rows_retrieval

    When we add a scan the first increases and the second decreases.

    cost_of_full_rows_retrieval=
      (union of indexes used covers all needed fields) ?
        cost_of_sweep_read(E(rows_to_retrieve), rows_in_table) :
        0

    E(rows_to_retrieve) = #rows_in_table * ror_scan_selectivity(null, scan1) *
                           ror_scan_selectivity({scan1}, scan2) * ... *
                           ror_scan_selectivity({scan1,...}, scanN). 
  RETURN
    TRUE   ROR scan added to ROR-intersection, cost updated.
    FALSE  It doesn't make sense to add this ROR scan to this ROR-intersection.
*/

static bool ror_intersect_add(ROR_INTERSECT_INFO *info,
unknown's avatar
unknown committed
2768
                              ROR_SCAN_INFO* ror_scan, bool is_cpk_scan)
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
{
  double selectivity_mult= 1.0;

  DBUG_ENTER("ror_intersect_add");
  DBUG_PRINT("info", ("Current out_rows= %g", info->out_rows));
  DBUG_PRINT("info", ("Adding scan on %s",
                      info->param->table->key_info[ror_scan->keynr].name));
  DBUG_PRINT("info", ("is_cpk_scan=%d",is_cpk_scan));

  selectivity_mult = ror_scan_selectivity(info, ror_scan);
2779 2780 2781
  if (selectivity_mult == 1.0)
  {
    /* Don't add this scan if it doesn't improve selectivity. */
2782
    DBUG_PRINT("info", ("The scan doesn't improve selectivity."));
unknown's avatar
unknown committed
2783
    DBUG_RETURN(FALSE);
2784
  }
2785 2786 2787 2788
  
  info->out_rows *= selectivity_mult;
  DBUG_PRINT("info", ("info->total_cost= %g", info->total_cost));
  
2789
  if (is_cpk_scan)
unknown's avatar
unknown committed
2790
  {
2791 2792 2793 2794 2795 2796
    /*
      CPK scan is used to filter out rows. We apply filtering for 
      each record of every scan. Assuming 1/TIME_FOR_COMPARE_ROWID
      per check this gives us:
    */
    info->index_scan_costs += rows2double(info->index_records) / 
2797 2798 2799 2800
                              TIME_FOR_COMPARE_ROWID;
  }
  else
  {
2801
    info->index_records += info->param->table->quick_rows[ror_scan->keynr];
2802 2803
    info->index_scan_costs += ror_scan->index_read_cost;
    bitmap_union(&info->covered_fields, &ror_scan->covered_fields);
2804 2805 2806 2807 2808 2809
    if (!info->is_covering && bitmap_is_subset(&info->param->needed_fields,
                                               &info->covered_fields))
    {
      DBUG_PRINT("info", ("ROR-intersect is covering now"));
      info->is_covering= TRUE;
    }
2810
  }
unknown's avatar
unknown committed
2811

2812
  info->total_cost= info->index_scan_costs;
2813
  DBUG_PRINT("info", ("info->total_cost= %g", info->total_cost));
2814 2815
  if (!info->is_covering)
  {
2816 2817 2818
    info->total_cost += 
      get_sweep_read_cost(info->param, double2rows(info->out_rows));
    DBUG_PRINT("info", ("info->total_cost= %g", info->total_cost));
2819
  }
2820
  DBUG_PRINT("info", ("New out_rows= %g", info->out_rows));
unknown's avatar
unknown committed
2821
  DBUG_PRINT("info", ("New cost= %g, %scovering", info->total_cost,
2822
                      info->is_covering?"" : "non-"));
2823
  DBUG_RETURN(TRUE);
2824 2825
}

2826

unknown's avatar
unknown committed
2827 2828
/*
  Get best ROR-intersection plan using non-covering ROR-intersection search
2829 2830 2831 2832
  algorithm. The returned plan may be covering.

  SYNOPSIS
    get_best_ror_intersect()
2833 2834 2835
      param            Parameter from test_quick_select function.
      tree             Transformed restriction condition to be used to look
                       for ROR scans.
2836
      read_time        Do not return read plans with cost > read_time.
unknown's avatar
unknown committed
2837
      are_all_covering [out] set to TRUE if union of all scans covers all
2838 2839
                       fields needed by the query (and it is possible to build
                       a covering ROR-intersection)
2840

2841
  NOTES
2842 2843 2844 2845 2846
    get_key_scans_params must be called before this function can be called.
    
    When this function is called by ROR-union construction algorithm it
    assumes it is building an uncovered ROR-intersection (and thus # of full
    records to be retrieved is wrong here). This is a hack.
unknown's avatar
unknown committed
2847

2848
  IMPLEMENTATION
2849
    The approximate best non-covering plan search algorithm is as follows:
2850

2851 2852 2853 2854
    find_min_ror_intersection_scan()
    {
      R= select all ROR scans;
      order R by (E(#records_matched) * key_record_length).
unknown's avatar
unknown committed
2855

2856 2857 2858 2859 2860 2861
      S= first(R); -- set of scans that will be used for ROR-intersection
      R= R-first(S);
      min_cost= cost(S);
      min_scan= make_scan(S);
      while (R is not empty)
      {
2862 2863
        firstR= R - first(R);
        if (!selectivity(S + firstR < selectivity(S)))
2864
          continue;
2865
          
2866 2867 2868 2869 2870 2871 2872 2873 2874
        S= S + first(R);
        if (cost(S) < min_cost)
        {
          min_cost= cost(S);
          min_scan= make_scan(S);
        }
      }
      return min_scan;
    }
2875

2876
    See ror_intersect_add function for ROR intersection costs.
2877

2878
    Special handling for Clustered PK scans
unknown's avatar
unknown committed
2879 2880
    Clustered PK contains all table fields, so using it as a regular scan in
    index intersection doesn't make sense: a range scan on CPK will be less
2881 2882
    expensive in this case.
    Clustered PK scan has special handling in ROR-intersection: it is not used
unknown's avatar
unknown committed
2883
    to retrieve rows, instead its condition is used to filter row references
2884
    we get from scans on other keys.
2885 2886

  RETURN
unknown's avatar
unknown committed
2887
    ROR-intersection table read plan
2888
    NULL if out of memory or no suitable plan found.
2889 2890
*/

2891 2892 2893 2894 2895 2896
static
TRP_ROR_INTERSECT *get_best_ror_intersect(const PARAM *param, SEL_TREE *tree,
                                          double read_time,
                                          bool *are_all_covering)
{
  uint idx;
2897
  double min_cost= DBL_MAX;
2898
  DBUG_ENTER("get_best_ror_intersect");
2899

2900
  if ((tree->n_ror_scans < 2) || !param->table->file->records)
2901
    DBUG_RETURN(NULL);
2902 2903

  /*
2904 2905
    Step1: Collect ROR-able SEL_ARGs and create ROR_SCAN_INFO for each of 
    them. Also find and save clustered PK scan if there is one.
2906
  */
2907
  ROR_SCAN_INFO **cur_ror_scan;
2908
  ROR_SCAN_INFO *cpk_scan= NULL;
2909
  uint cpk_no;
unknown's avatar
unknown committed
2910
  bool cpk_scan_used= FALSE;
2911

2912 2913 2914 2915
  if (!(tree->ror_scans= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
                                                     sizeof(ROR_SCAN_INFO*)*
                                                     param->keys)))
    return NULL;
2916 2917
  cpk_no= ((param->table->file->primary_key_is_clustered()) ?
           param->table->s->primary_key : MAX_KEY);
unknown's avatar
unknown committed
2918

2919
  for (idx= 0, cur_ror_scan= tree->ror_scans; idx < param->keys; idx++)
2920
  {
2921
    ROR_SCAN_INFO *scan;
2922
    if (!tree->ror_scans_map.is_set(idx))
2923
      continue;
2924
    if (!(scan= make_ror_scan(param, idx, tree->keys[idx])))
2925
      return NULL;
2926
    if (param->real_keynr[idx] == cpk_no)
2927
    {
2928 2929
      cpk_scan= scan;
      tree->n_ror_scans--;
2930 2931
    }
    else
2932
      *(cur_ror_scan++)= scan;
2933
  }
unknown's avatar
unknown committed
2934

2935
  tree->ror_scans_end= cur_ror_scan;
unknown's avatar
unknown committed
2936 2937
  DBUG_EXECUTE("info",print_ror_scans_arr(param->table, "original",
                                          tree->ror_scans,
2938 2939
                                          tree->ror_scans_end););
  /*
unknown's avatar
unknown committed
2940
    Ok, [ror_scans, ror_scans_end) is array of ptrs to initialized
2941 2942
    ROR_SCAN_INFO's.
    Step 2: Get best ROR-intersection using an approximate algorithm.
2943 2944 2945
  */
  qsort(tree->ror_scans, tree->n_ror_scans, sizeof(ROR_SCAN_INFO*),
        (qsort_cmp)cmp_ror_scan_info);
unknown's avatar
unknown committed
2946 2947
  DBUG_EXECUTE("info",print_ror_scans_arr(param->table, "ordered",
                                          tree->ror_scans,
2948
                                          tree->ror_scans_end););
unknown's avatar
unknown committed
2949

2950 2951 2952 2953 2954 2955 2956 2957 2958
  ROR_SCAN_INFO **intersect_scans; /* ROR scans used in index intersection */
  ROR_SCAN_INFO **intersect_scans_end;
  if (!(intersect_scans= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
                                                     sizeof(ROR_SCAN_INFO*)*
                                                     tree->n_ror_scans)))
    return NULL;
  intersect_scans_end= intersect_scans;

  /* Create and incrementally update ROR intersection. */
2959 2960 2961
  ROR_INTERSECT_INFO *intersect, *intersect_best;
  if (!(intersect= ror_intersect_init(param)) || 
      !(intersect_best= ror_intersect_init(param)))
2962
    return NULL;
unknown's avatar
unknown committed
2963

2964
  /* [intersect_scans,intersect_scans_best) will hold the best intersection */
unknown's avatar
unknown committed
2965
  ROR_SCAN_INFO **intersect_scans_best;
2966
  cur_ror_scan= tree->ror_scans;
2967
  intersect_scans_best= intersect_scans;
2968
  while (cur_ror_scan != tree->ror_scans_end && !intersect->is_covering)
2969
  {
2970
    /* S= S + first(R);  R= R - first(R); */
unknown's avatar
unknown committed
2971
    if (!ror_intersect_add(intersect, *cur_ror_scan, FALSE))
2972 2973 2974 2975 2976 2977
    {
      cur_ror_scan++;
      continue;
    }
    
    *(intersect_scans_end++)= *(cur_ror_scan++);
unknown's avatar
unknown committed
2978

2979
    if (intersect->total_cost < min_cost)
2980
    {
2981
      /* Local minimum found, save it */
2982
      ror_intersect_cpy(intersect_best, intersect);
2983
      intersect_scans_best= intersect_scans_end;
2984
      min_cost = intersect->total_cost;
2985 2986
    }
  }
unknown's avatar
unknown committed
2987

2988 2989 2990 2991 2992 2993
  if (intersect_scans_best == intersect_scans)
  {
    DBUG_PRINT("info", ("None of scans increase selectivity"));
    DBUG_RETURN(NULL);
  }
    
2994 2995 2996 2997
  DBUG_EXECUTE("info",print_ror_scans_arr(param->table,
                                          "best ROR-intersection",
                                          intersect_scans,
                                          intersect_scans_best););
unknown's avatar
unknown committed
2998

2999
  *are_all_covering= intersect->is_covering;
unknown's avatar
unknown committed
3000
  uint best_num= intersect_scans_best - intersect_scans;
3001 3002
  ror_intersect_cpy(intersect, intersect_best);

3003 3004
  /*
    Ok, found the best ROR-intersection of non-CPK key scans.
3005 3006
    Check if we should add a CPK scan. If the obtained ROR-intersection is 
    covering, it doesn't make sense to add CPK scan.
3007 3008
  */
  if (cpk_scan && !intersect->is_covering)
3009
  {
3010
    if (ror_intersect_add(intersect, cpk_scan, TRUE) && 
3011
        (intersect->total_cost < min_cost))
3012
    {
unknown's avatar
unknown committed
3013
      cpk_scan_used= TRUE;
3014
      intersect_best= intersect; //just set pointer here
3015 3016
    }
  }
unknown's avatar
unknown committed
3017

3018
  /* Ok, return ROR-intersect plan if we have found one */
3019
  TRP_ROR_INTERSECT *trp= NULL;
3020
  if (min_cost < read_time && (cpk_scan_used || best_num > 1))
3021
  {
3022 3023
    if (!(trp= new (param->mem_root) TRP_ROR_INTERSECT))
      DBUG_RETURN(trp);
unknown's avatar
unknown committed
3024 3025
    if (!(trp->first_scan=
           (ROR_SCAN_INFO**)alloc_root(param->mem_root,
3026 3027 3028 3029
                                       sizeof(ROR_SCAN_INFO*)*best_num)))
      DBUG_RETURN(NULL);
    memcpy(trp->first_scan, intersect_scans, best_num*sizeof(ROR_SCAN_INFO*));
    trp->last_scan=  trp->first_scan + best_num;
3030 3031 3032 3033 3034 3035
    trp->is_covering= intersect_best->is_covering;
    trp->read_cost= intersect_best->total_cost;
    /* Prevent divisons by zero */
    ha_rows best_rows = double2rows(intersect_best->out_rows);
    if (!best_rows)
      best_rows= 1;
3036
    trp->records= best_rows;
3037 3038 3039 3040 3041
    trp->index_scan_costs= intersect_best->index_scan_costs;
    trp->cpk_scan= cpk_scan_used? cpk_scan: NULL;
    DBUG_PRINT("info", ("Returning non-covering ROR-intersect plan:"
                        "cost %g, records %lu",
                        trp->read_cost, (ulong) trp->records));
unknown's avatar
unknown committed
3042
  }
3043
  DBUG_RETURN(trp);
3044 3045 3046 3047
}


/*
3048
  Get best covering ROR-intersection.
3049
  SYNOPSIS
3050
    get_best_covering_ror_intersect()
3051 3052 3053
      param     Parameter from test_quick_select function.
      tree      SEL_TREE with sets of intervals for different keys.
      read_time Don't return table read plans with cost > read_time.
3054

unknown's avatar
unknown committed
3055 3056
  RETURN
    Best covering ROR-intersection plan
3057
    NULL if no plan found.
3058 3059

  NOTES
3060
    get_best_ror_intersect must be called for a tree before calling this
unknown's avatar
unknown committed
3061
    function for it.
3062
    This function invalidates tree->ror_scans member values.
unknown's avatar
unknown committed
3063

3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
  The following approximate algorithm is used:
    I=set of all covering indexes
    F=set of all fields to cover
    S={}

    do {
      Order I by (#covered fields in F desc,
                  #components asc,
                  number of first not covered component asc);
      F=F-covered by first(I);
      S=S+first(I);
      I=I-first(I);
    } while F is not empty.
3077 3078
*/

3079
static
unknown's avatar
unknown committed
3080 3081
TRP_ROR_INTERSECT *get_best_covering_ror_intersect(PARAM *param,
                                                   SEL_TREE *tree,
3082
                                                   double read_time)
3083
{
3084
  ROR_SCAN_INFO **ror_scan_mark;
unknown's avatar
unknown committed
3085
  ROR_SCAN_INFO **ror_scans_end= tree->ror_scans_end;
3086 3087 3088 3089
  DBUG_ENTER("get_best_covering_ror_intersect");
  uint nbits= param->fields_bitmap_size*8;

  for (ROR_SCAN_INFO **scan= tree->ror_scans; scan != ror_scans_end; ++scan)
unknown's avatar
unknown committed
3090
    (*scan)->key_components=
3091
      param->table->key_info[(*scan)->keynr].key_parts;
unknown's avatar
unknown committed
3092

3093 3094
  /*
    Run covering-ROR-search algorithm.
unknown's avatar
unknown committed
3095
    Assume set I is [ror_scan .. ror_scans_end)
3096
  */
unknown's avatar
unknown committed
3097

3098 3099
  /*I=set of all covering indexes */
  ror_scan_mark= tree->ror_scans;
unknown's avatar
unknown committed
3100

3101 3102
  uchar buf[MAX_KEY/8+1];
  MY_BITMAP covered_fields;
unknown's avatar
unknown committed
3103
  if (bitmap_init(&covered_fields, buf, nbits, FALSE))
3104 3105 3106 3107 3108
    DBUG_RETURN(0);
  bitmap_clear_all(&covered_fields);

  double total_cost= 0.0f;
  ha_rows records=0;
unknown's avatar
unknown committed
3109 3110
  bool all_covered;

3111 3112 3113 3114 3115 3116
  DBUG_PRINT("info", ("Building covering ROR-intersection"));
  DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
                                           "building covering ROR-I",
                                           ror_scan_mark, ror_scans_end););
  do {
    /*
unknown's avatar
unknown committed
3117
      Update changed sorting info:
3118
        #covered fields,
unknown's avatar
unknown committed
3119
	number of first not covered component
3120 3121 3122 3123 3124
      Calculate and save these values for each of remaining scans.
    */
    for (ROR_SCAN_INFO **scan= ror_scan_mark; scan != ror_scans_end; ++scan)
    {
      bitmap_subtract(&(*scan)->covered_fields, &covered_fields);
unknown's avatar
unknown committed
3125
      (*scan)->used_fields_covered=
3126
        bitmap_bits_set(&(*scan)->covered_fields);
unknown's avatar
unknown committed
3127
      (*scan)->first_uncovered_field=
3128 3129 3130 3131 3132 3133 3134 3135 3136
        bitmap_get_first(&(*scan)->covered_fields);
    }

    qsort(ror_scan_mark, ror_scans_end-ror_scan_mark, sizeof(ROR_SCAN_INFO*),
          (qsort_cmp)cmp_ror_scan_info_covering);

    DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
                                             "remaining scans",
                                             ror_scan_mark, ror_scans_end););
unknown's avatar
unknown committed
3137

3138 3139 3140
    /* I=I-first(I) */
    total_cost += (*ror_scan_mark)->index_read_cost;
    records += (*ror_scan_mark)->records;
unknown's avatar
unknown committed
3141
    DBUG_PRINT("info", ("Adding scan on %s",
3142 3143 3144 3145 3146 3147
                        param->table->key_info[(*ror_scan_mark)->keynr].name));
    if (total_cost > read_time)
      DBUG_RETURN(NULL);
    /* F=F-covered by first(I) */
    bitmap_union(&covered_fields, &(*ror_scan_mark)->covered_fields);
    all_covered= bitmap_is_subset(&param->needed_fields, &covered_fields);
3148 3149 3150 3151
  } while ((++ror_scan_mark < ror_scans_end) && !all_covered);
  
  if (!all_covered || (ror_scan_mark - tree->ror_scans) == 1)
    DBUG_RETURN(NULL);
3152 3153 3154 3155 3156 3157 3158 3159 3160

  /*
    Ok, [tree->ror_scans .. ror_scan) holds covering index_intersection with
    cost total_cost.
  */
  DBUG_PRINT("info", ("Covering ROR-intersect scans cost: %g", total_cost));
  DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
                                           "creating covering ROR-intersect",
                                           tree->ror_scans, ror_scan_mark););
unknown's avatar
unknown committed
3161

3162
  /* Add priority queue use cost. */
unknown's avatar
unknown committed
3163 3164
  total_cost += rows2double(records)*
                log((double)(ror_scan_mark - tree->ror_scans)) /
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
                (TIME_FOR_COMPARE_ROWID * M_LN2);
  DBUG_PRINT("info", ("Covering ROR-intersect full cost: %g", total_cost));

  if (total_cost > read_time)
    DBUG_RETURN(NULL);

  TRP_ROR_INTERSECT *trp;
  if (!(trp= new (param->mem_root) TRP_ROR_INTERSECT))
    DBUG_RETURN(trp);
  uint best_num= (ror_scan_mark - tree->ror_scans);
  if (!(trp->first_scan= (ROR_SCAN_INFO**)alloc_root(param->mem_root,
                                                     sizeof(ROR_SCAN_INFO*)*
                                                     best_num)))
    DBUG_RETURN(NULL);
  memcpy(trp->first_scan, ror_scan_mark, best_num*sizeof(ROR_SCAN_INFO*));
  trp->last_scan=  trp->first_scan + best_num;
unknown's avatar
unknown committed
3181
  trp->is_covering= TRUE;
3182 3183
  trp->read_cost= total_cost;
  trp->records= records;
3184
  trp->cpk_scan= NULL;
3185

3186 3187 3188
  DBUG_PRINT("info",
             ("Returning covering ROR-intersect plan: cost %g, records %lu",
              trp->read_cost, (ulong) trp->records));
3189
  DBUG_RETURN(trp);
3190 3191 3192
}


unknown's avatar
unknown committed
3193
/*
unknown's avatar
unknown committed
3194
  Get best "range" table read plan for given SEL_TREE.
3195
  Also update PARAM members and store ROR scans info in the SEL_TREE.
3196
  SYNOPSIS
3197
    get_key_scans_params
3198
      param        parameters from test_quick_select
unknown's avatar
unknown committed
3199
      tree         make range select for this SEL_TREE
unknown's avatar
unknown committed
3200
      index_read_must_be_used if TRUE, assume 'index only' option will be set
3201
                             (except for clustered PK indexes)
3202 3203
      read_time    don't create read plans with cost > read_time.
  RETURN
unknown's avatar
unknown committed
3204
    Best range read plan
3205
    NULL if no plan found or error occurred
unknown's avatar
unknown committed
3206 3207
*/

3208
static TRP_RANGE *get_key_scans_params(PARAM *param, SEL_TREE *tree,
unknown's avatar
unknown committed
3209
                                       bool index_read_must_be_used,
3210
                                       double read_time)
unknown's avatar
unknown committed
3211 3212
{
  int idx;
3213 3214 3215
  SEL_ARG **key,**end, **key_to_read= NULL;
  ha_rows best_records;
  TRP_RANGE* read_plan= NULL;
3216
  bool pk_is_clustered= param->table->file->primary_key_is_clustered();
3217 3218
  DBUG_ENTER("get_key_scans_params");
  LINT_INIT(best_records); /* protected by key_to_read */
unknown's avatar
unknown committed
3219
  /*
unknown's avatar
unknown committed
3220 3221
    Note that there may be trees that have type SEL_TREE::KEY but contain no
    key reads at all, e.g. tree for expression "key1 is not null" where key1
3222
    is defined as "not null".
unknown's avatar
unknown committed
3223 3224
  */
  DBUG_EXECUTE("info", print_sel_tree(param, tree, &tree->keys_map,
3225 3226 3227 3228
                                      "tree scans"););
  tree->ror_scans_map.clear_all();
  tree->n_ror_scans= 0;
  for (idx= 0,key=tree->keys, end=key+param->keys;
unknown's avatar
unknown committed
3229 3230 3231 3232 3233 3234 3235
       key != end ;
       key++,idx++)
  {
    ha_rows found_records;
    double found_read_time;
    if (*key)
    {
3236
      uint keynr= param->real_keynr[idx];
unknown's avatar
unknown committed
3237 3238
      if ((*key)->type == SEL_ARG::MAYBE_KEY ||
          (*key)->maybe_flag)
3239
        param->needed_reg->set_bit(keynr);
unknown's avatar
unknown committed
3240

unknown's avatar
unknown committed
3241 3242
      bool read_index_only= index_read_must_be_used ? TRUE :
                            (bool) param->table->used_keys.is_set(keynr);
3243

3244 3245 3246 3247 3248 3249
      found_records= check_quick_select(param, idx, *key);
      if (param->is_ror_scan)
      {
        tree->n_ror_scans++;
        tree->ror_scans_map.set_bit(idx);
      }
3250
      double cpu_cost= (double) found_records / TIME_FOR_COMPARE;
unknown's avatar
unknown committed
3251
      if (found_records != HA_POS_ERROR && found_records > 2 &&
unknown's avatar
unknown committed
3252
          read_index_only &&
unknown's avatar
unknown committed
3253
          (param->table->file->index_flags(keynr, param->max_key_part,1) &
unknown's avatar
unknown committed
3254
           HA_KEYREAD_ONLY) &&
3255
          !(pk_is_clustered && keynr == param->table->s->primary_key))
3256 3257 3258 3259 3260
      {
        /*
          We can resolve this by only reading through this key. 
          0.01 is added to avoid races between range and 'index' scan.
        */
3261
        found_read_time= get_index_only_read_time(param,found_records,keynr) +
3262 3263
                         cpu_cost + 0.01;
      }
unknown's avatar
unknown committed
3264
      else
3265
      {
unknown's avatar
unknown committed
3266
        /*
3267 3268 3269
          cost(read_through_index) = cost(disk_io) + cost(row_in_range_checks)
          The row_in_range check is in QUICK_RANGE_SELECT::cmp_next function.
        */
3270 3271 3272
	found_read_time= param->table->file->read_time(keynr,
                                                       param->range_count,
                                                       found_records) +
3273 3274
			 cpu_cost + 0.01;
      }
3275 3276 3277
      DBUG_PRINT("info",("key %s: found_read_time: %g (cur. read_time: %g)",
                         param->table->key_info[keynr].name, found_read_time,
                         read_time));
3278

3279 3280
      if (read_time > found_read_time && found_records != HA_POS_ERROR
          /*|| read_time == DBL_MAX*/ )
unknown's avatar
unknown committed
3281
      {
3282
        read_time=    found_read_time;
unknown's avatar
unknown committed
3283
        best_records= found_records;
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
        key_to_read=  key;
      }

    }
  }

  DBUG_EXECUTE("info", print_sel_tree(param, tree, &tree->ror_scans_map,
                                      "ROR scans"););
  if (key_to_read)
  {
    idx= key_to_read - tree->keys;
    if ((read_plan= new (param->mem_root) TRP_RANGE(*key_to_read, idx)))
    {
      read_plan->records= best_records;
      read_plan->is_ror= tree->ror_scans_map.is_set(idx);
      read_plan->read_cost= read_time;
3300 3301 3302 3303
      DBUG_PRINT("info",
                 ("Returning range plan for key %s, cost %g, records %lu",
                  param->table->key_info[param->real_keynr[idx]].name,
                  read_plan->read_cost, (ulong) read_plan->records));
3304 3305 3306 3307 3308 3309 3310 3311 3312
    }
  }
  else
    DBUG_PRINT("info", ("No 'range' table read plan found"));

  DBUG_RETURN(read_plan);
}


unknown's avatar
unknown committed
3313
QUICK_SELECT_I *TRP_INDEX_MERGE::make_quick(PARAM *param,
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
                                            bool retrieve_full_rows,
                                            MEM_ROOT *parent_alloc)
{
  QUICK_INDEX_MERGE_SELECT *quick_imerge;
  QUICK_RANGE_SELECT *quick;
  /* index_merge always retrieves full rows, ignore retrieve_full_rows */
  if (!(quick_imerge= new QUICK_INDEX_MERGE_SELECT(param->thd, param->table)))
    return NULL;

  quick_imerge->records= records;
  quick_imerge->read_time= read_cost;
unknown's avatar
unknown committed
3325 3326
  for (TRP_RANGE **range_scan= range_scans; range_scan != range_scans_end;
       range_scan++)
3327 3328
  {
    if (!(quick= (QUICK_RANGE_SELECT*)
unknown's avatar
unknown committed
3329
          ((*range_scan)->make_quick(param, FALSE, &quick_imerge->alloc)))||
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339
        quick_imerge->push_quick_back(quick))
    {
      delete quick;
      delete quick_imerge;
      return NULL;
    }
  }
  return quick_imerge;
}

unknown's avatar
unknown committed
3340
QUICK_SELECT_I *TRP_ROR_INTERSECT::make_quick(PARAM *param,
3341 3342 3343 3344 3345 3346 3347
                                              bool retrieve_full_rows,
                                              MEM_ROOT *parent_alloc)
{
  QUICK_ROR_INTERSECT_SELECT *quick_intrsect;
  QUICK_RANGE_SELECT *quick;
  DBUG_ENTER("TRP_ROR_INTERSECT::make_quick");
  MEM_ROOT *alloc;
unknown's avatar
unknown committed
3348 3349

  if ((quick_intrsect=
3350
         new QUICK_ROR_INTERSECT_SELECT(param->thd, param->table,
unknown's avatar
unknown committed
3351
                                        retrieve_full_rows? (!is_covering):FALSE,
3352 3353
                                        parent_alloc)))
  {
unknown's avatar
unknown committed
3354
    DBUG_EXECUTE("info", print_ror_scans_arr(param->table,
3355 3356 3357
                                             "creating ROR-intersect",
                                             first_scan, last_scan););
    alloc= parent_alloc? parent_alloc: &quick_intrsect->alloc;
unknown's avatar
unknown committed
3358
    for (; first_scan != last_scan;++first_scan)
3359 3360 3361 3362
    {
      if (!(quick= get_quick_select(param, (*first_scan)->idx,
                                    (*first_scan)->sel_arg, alloc)) ||
          quick_intrsect->push_quick_back(quick))
unknown's avatar
unknown committed
3363
      {
3364 3365
        delete quick_intrsect;
        DBUG_RETURN(NULL);
unknown's avatar
unknown committed
3366 3367
      }
    }
3368 3369 3370 3371
    if (cpk_scan)
    {
      if (!(quick= get_quick_select(param, cpk_scan->idx,
                                    cpk_scan->sel_arg, alloc)))
unknown's avatar
unknown committed
3372
      {
3373 3374
        delete quick_intrsect;
        DBUG_RETURN(NULL);
unknown's avatar
unknown committed
3375
      }
unknown's avatar
unknown committed
3376
      quick->file= NULL; 
3377
      quick_intrsect->cpk_quick= quick;
unknown's avatar
unknown committed
3378
    }
unknown's avatar
unknown committed
3379
    quick_intrsect->records= records;
3380
    quick_intrsect->read_time= read_cost;
unknown's avatar
unknown committed
3381
  }
3382 3383 3384
  DBUG_RETURN(quick_intrsect);
}

3385

unknown's avatar
unknown committed
3386
QUICK_SELECT_I *TRP_ROR_UNION::make_quick(PARAM *param,
3387 3388 3389 3390 3391 3392 3393
                                          bool retrieve_full_rows,
                                          MEM_ROOT *parent_alloc)
{
  QUICK_ROR_UNION_SELECT *quick_roru;
  TABLE_READ_PLAN **scan;
  QUICK_SELECT_I *quick;
  DBUG_ENTER("TRP_ROR_UNION::make_quick");
unknown's avatar
unknown committed
3394 3395
  /*
    It is impossible to construct a ROR-union that will not retrieve full
3396
    rows, ignore retrieve_full_rows parameter.
3397 3398 3399
  */
  if ((quick_roru= new QUICK_ROR_UNION_SELECT(param->thd, param->table)))
  {
unknown's avatar
unknown committed
3400
    for (scan= first_ror; scan != last_ror; scan++)
3401
    {
unknown's avatar
unknown committed
3402
      if (!(quick= (*scan)->make_quick(param, FALSE, &quick_roru->alloc)) ||
3403 3404 3405 3406 3407
          quick_roru->push_quick_back(quick))
        DBUG_RETURN(NULL);
    }
    quick_roru->records= records;
    quick_roru->read_time= read_cost;
unknown's avatar
unknown committed
3408
  }
3409
  DBUG_RETURN(quick_roru);
unknown's avatar
unknown committed
3410 3411
}

3412

unknown's avatar
unknown committed
3413
/*
unknown's avatar
unknown committed
3414
  Build a SEL_TREE for <> or NOT BETWEEN predicate
unknown's avatar
unknown committed
3415 3416 3417 3418 3419 3420
 
  SYNOPSIS
    get_ne_mm_tree()
      param       PARAM from SQL_SELECT::test_quick_select
      cond_func   item for the predicate
      field       field in the predicate
unknown's avatar
unknown committed
3421 3422
      lt_value    constant that field should be smaller
      gt_value    constant that field should be greaterr
unknown's avatar
unknown committed
3423 3424 3425
      cmp_type    compare type for the field

  RETURN 
unknown's avatar
unknown committed
3426 3427
    #  Pointer to tree built tree
    0  on error
unknown's avatar
unknown committed
3428 3429 3430
*/

static SEL_TREE *get_ne_mm_tree(PARAM *param, Item_func *cond_func, 
unknown's avatar
unknown committed
3431 3432
                                Field *field,
                                Item *lt_value, Item *gt_value,
unknown's avatar
unknown committed
3433 3434
                                Item_result cmp_type)
{
unknown's avatar
unknown committed
3435
  SEL_TREE *tree;
unknown's avatar
unknown committed
3436
  tree= get_mm_parts(param, cond_func, field, Item_func::LT_FUNC,
unknown's avatar
unknown committed
3437
                     lt_value, cmp_type);
unknown's avatar
unknown committed
3438 3439 3440 3441
  if (tree)
  {
    tree= tree_or(param, tree, get_mm_parts(param, cond_func, field,
					    Item_func::GT_FUNC,
unknown's avatar
unknown committed
3442
					    gt_value, cmp_type));
unknown's avatar
unknown committed
3443 3444 3445 3446 3447
  }
  return tree;
}
   

unknown's avatar
unknown committed
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
/*
  Build a SEL_TREE for a simple predicate
 
  SYNOPSIS
    get_func_mm_tree()
      param       PARAM from SQL_SELECT::test_quick_select
      cond_func   item for the predicate
      field       field in the predicate
      value       constant in the predicate
      cmp_type    compare type for the field
unknown's avatar
unknown committed
3458
      inv         TRUE <> NOT cond_func is considered
unknown's avatar
unknown committed
3459
                  (makes sense only when cond_func is BETWEEN or IN) 
unknown's avatar
unknown committed
3460 3461

  RETURN 
unknown's avatar
unknown committed
3462
    Pointer to the tree built tree
unknown's avatar
unknown committed
3463 3464
*/

3465 3466
static SEL_TREE *get_func_mm_tree(PARAM *param, Item_func *cond_func, 
                                  Field *field, Item *value,
unknown's avatar
unknown committed
3467
                                  Item_result cmp_type, bool inv)
3468 3469 3470 3471
{
  SEL_TREE *tree= 0;
  DBUG_ENTER("get_func_mm_tree");

unknown's avatar
unknown committed
3472
  switch (cond_func->functype()) {
unknown's avatar
unknown committed
3473

unknown's avatar
unknown committed
3474
  case Item_func::NE_FUNC:
unknown's avatar
unknown committed
3475
    tree= get_ne_mm_tree(param, cond_func, field, value, value, cmp_type);
unknown's avatar
unknown committed
3476
    break;
unknown's avatar
unknown committed
3477

unknown's avatar
unknown committed
3478
  case Item_func::BETWEEN:
unknown's avatar
unknown committed
3479 3480
    if (inv)
    {
unknown's avatar
unknown committed
3481 3482
      tree= get_ne_mm_tree(param, cond_func, field, cond_func->arguments()[1],
                           cond_func->arguments()[2], cmp_type);
unknown's avatar
unknown committed
3483 3484
    }
    else
3485
    {
unknown's avatar
unknown committed
3486 3487 3488 3489 3490 3491 3492 3493 3494
      tree= get_mm_parts(param, cond_func, field, Item_func::GE_FUNC,
		         cond_func->arguments()[1],cmp_type);
      if (tree)
      {
        tree= tree_and(param, tree, get_mm_parts(param, cond_func, field,
					         Item_func::LE_FUNC,
					         cond_func->arguments()[2],
                                                 cmp_type));
      }
3495
    }
unknown's avatar
unknown committed
3496
    break;
unknown's avatar
unknown committed
3497

unknown's avatar
unknown committed
3498
  case Item_func::IN_FUNC:
3499 3500
  {
    Item_func_in *func=(Item_func_in*) cond_func;
unknown's avatar
unknown committed
3501 3502

    if (inv)
3503
    {
unknown's avatar
unknown committed
3504
      tree= get_ne_mm_tree(param, cond_func, field,
unknown's avatar
unknown committed
3505 3506
                           func->arguments()[1], func->arguments()[1],
                           cmp_type);
unknown's avatar
unknown committed
3507
      if (tree)
3508
      {
unknown's avatar
unknown committed
3509 3510 3511 3512 3513
        Item **arg, **end;
        for (arg= func->arguments()+2, end= arg+func->argument_count()-2;
             arg < end ; arg++)
        {
          tree=  tree_and(param, tree, get_ne_mm_tree(param, cond_func, field, 
unknown's avatar
unknown committed
3514
                                                      *arg, *arg, cmp_type));
unknown's avatar
unknown committed
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
        }
      }
    }
    else
    {    
      tree= get_mm_parts(param, cond_func, field, Item_func::EQ_FUNC,
                         func->arguments()[1], cmp_type);
      if (tree)
      {
        Item **arg, **end;
        for (arg= func->arguments()+2, end= arg+func->argument_count()-2;
             arg < end ; arg++)
        {
          tree= tree_or(param, tree, get_mm_parts(param, cond_func, field, 
                                                  Item_func::EQ_FUNC,
                                                  *arg, cmp_type));
        }
3532 3533
      }
    }
unknown's avatar
unknown committed
3534
    break;
3535
  }
unknown's avatar
unknown committed
3536
  default: 
3537
  {
unknown's avatar
unknown committed
3538 3539 3540 3541 3542 3543 3544
    /* 
       Here the function for the following predicates are processed:
       <, <=, =, >=, >, LIKE, IS NULL, IS NOT NULL.
       If the predicate is of the form (value op field) it is handled
       as the equivalent predicate (field rev_op value), e.g.
       2 <= a is handled as a >= 2.
    */
3545 3546 3547
    Item_func::Functype func_type=
      (value != cond_func->arguments()[0]) ? cond_func->functype() :
        ((Item_bool_func2*) cond_func)->rev_functype();
3548
    tree= get_mm_parts(param, cond_func, field, func_type, value, cmp_type);
3549
  }
unknown's avatar
unknown committed
3550 3551
  }

3552
  DBUG_RETURN(tree);
3553

3554 3555
}

unknown's avatar
unknown committed
3556 3557 3558 3559 3560
	/* make a select tree of all keys in condition */

static SEL_TREE *get_mm_tree(PARAM *param,COND *cond)
{
  SEL_TREE *tree=0;
3561 3562
  SEL_TREE *ftree= 0;
  Item_field *field_item= 0;
unknown's avatar
unknown committed
3563
  bool inv= FALSE;
3564
  Item *value;
unknown's avatar
unknown committed
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
  DBUG_ENTER("get_mm_tree");

  if (cond->type() == Item::COND_ITEM)
  {
    List_iterator<Item> li(*((Item_cond*) cond)->argument_list());

    if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
    {
      tree=0;
      Item *item;
      while ((item=li++))
      {
	SEL_TREE *new_tree=get_mm_tree(param,item);
3578
	if (param->thd->is_fatal_error)
3579
	  DBUG_RETURN(0);	// out of memory
unknown's avatar
unknown committed
3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
	tree=tree_and(param,tree,new_tree);
	if (tree && tree->type == SEL_TREE::IMPOSSIBLE)
	  break;
      }
    }
    else
    {						// COND OR
      tree=get_mm_tree(param,li++);
      if (tree)
      {
	Item *item;
	while ((item=li++))
	{
	  SEL_TREE *new_tree=get_mm_tree(param,item);
	  if (!new_tree)
3595
	    DBUG_RETURN(0);	// out of memory
unknown's avatar
unknown committed
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
	  tree=tree_or(param,tree,new_tree);
	  if (!tree || tree->type == SEL_TREE::ALWAYS)
	    break;
	}
      }
    }
    DBUG_RETURN(tree);
  }
  /* Here when simple cond */
  if (cond->const_item())
  {
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
    /*
      During the cond->val_int() evaluation we can come across a subselect 
      item which may allocate memory on the thd->mem_root and assumes 
      all the memory allocated has the same life span as the subselect 
      item itself. So we have to restore the thread's mem_root here.
    */
    MEM_ROOT *tmp_root= param->mem_root;
    param->thd->mem_root= param->old_root;
    tree= cond->val_int() ? new(tmp_root) SEL_TREE(SEL_TREE::ALWAYS) :
                            new(tmp_root) SEL_TREE(SEL_TREE::IMPOSSIBLE);
    param->thd->mem_root= tmp_root;
    DBUG_RETURN(tree);
unknown's avatar
unknown committed
3619
  }
3620

3621 3622 3623
  table_map ref_tables= 0;
  table_map param_comp= ~(param->prev_tables | param->read_tables |
		          param->current_table);
unknown's avatar
unknown committed
3624 3625
  if (cond->type() != Item::FUNC_ITEM)
  {						// Should be a field
3626
    ref_tables= cond->used_tables();
unknown's avatar
unknown committed
3627 3628
    if ((ref_tables & param->current_table) ||
	(ref_tables & ~(param->prev_tables | param->read_tables)))
unknown's avatar
unknown committed
3629 3630 3631
      DBUG_RETURN(0);
    DBUG_RETURN(new SEL_TREE(SEL_TREE::MAYBE));
  }
3632

unknown's avatar
unknown committed
3633
  Item_func *cond_func= (Item_func*) cond;
3634 3635 3636
  if (cond_func->functype() == Item_func::BETWEEN ||
      cond_func->functype() == Item_func::IN_FUNC)
    inv= ((Item_func_opt_neg *) cond_func)->negated;
unknown's avatar
unknown committed
3637
  else if (cond_func->select_optimize() == Item_func::OPTIMIZE_NONE)
unknown's avatar
unknown committed
3638
    DBUG_RETURN(0);			       
3639

unknown's avatar
unknown committed
3640 3641
  param->cond= cond;

unknown's avatar
unknown committed
3642 3643
  switch (cond_func->functype()) {
  case Item_func::BETWEEN:
3644
    if (cond_func->arguments()[0]->real_item()->type() != Item::FIELD_ITEM)
unknown's avatar
unknown committed
3645
      DBUG_RETURN(0);
3646
    field_item= (Item_field*) (cond_func->arguments()[0]->real_item());
unknown's avatar
unknown committed
3647 3648 3649
    value= NULL;
    break;
  case Item_func::IN_FUNC:
unknown's avatar
unknown committed
3650 3651
  {
    Item_func_in *func=(Item_func_in*) cond_func;
3652
    if (func->key_item()->real_item()->type() != Item::FIELD_ITEM)
3653
      DBUG_RETURN(0);
3654
    field_item= (Item_field*) (func->key_item()->real_item());
unknown's avatar
unknown committed
3655 3656
    value= NULL;
    break;
3657
  }
unknown's avatar
unknown committed
3658
  case Item_func::MULT_EQUAL_FUNC:
unknown's avatar
unknown committed
3659
  {
3660 3661
    Item_equal *item_equal= (Item_equal *) cond;    
    if (!(value= item_equal->get_const()))
unknown's avatar
unknown committed
3662 3663 3664 3665
      DBUG_RETURN(0);
    Item_equal_iterator it(*item_equal);
    ref_tables= value->used_tables();
    while ((field_item= it++))
unknown's avatar
unknown committed
3666
    {
unknown's avatar
unknown committed
3667 3668 3669
      Field *field= field_item->field;
      Item_result cmp_type= field->cmp_type();
      if (!((ref_tables | field->table->map) & param_comp))
unknown's avatar
unknown committed
3670
      {
3671
        tree= get_mm_parts(param, cond, field, Item_func::EQ_FUNC,
unknown's avatar
unknown committed
3672 3673
		           value,cmp_type);
        ftree= !ftree ? tree : tree_and(param, ftree, tree);
unknown's avatar
unknown committed
3674 3675
      }
    }
unknown's avatar
unknown committed
3676
    
3677
    DBUG_RETURN(ftree);
unknown's avatar
unknown committed
3678 3679
  }
  default:
unknown's avatar
unknown committed
3680
    if (cond_func->arguments()[0]->real_item()->type() == Item::FIELD_ITEM)
unknown's avatar
unknown committed
3681
    {
unknown's avatar
unknown committed
3682
      field_item= (Item_field*) (cond_func->arguments()[0]->real_item());
unknown's avatar
unknown committed
3683
      value= cond_func->arg_count > 1 ? cond_func->arguments()[1] : 0;
unknown's avatar
unknown committed
3684
    }
unknown's avatar
unknown committed
3685
    else if (cond_func->have_rev_func() &&
unknown's avatar
unknown committed
3686 3687
             cond_func->arguments()[1]->real_item()->type() ==
                                                            Item::FIELD_ITEM)
unknown's avatar
unknown committed
3688
    {
unknown's avatar
unknown committed
3689
      field_item= (Item_field*) (cond_func->arguments()[1]->real_item());
unknown's avatar
unknown committed
3690 3691 3692 3693
      value= cond_func->arguments()[0];
    }
    else
      DBUG_RETURN(0);
unknown's avatar
unknown committed
3694
  }
unknown's avatar
unknown committed
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709

  /* 
     If the where condition contains a predicate (ti.field op const),
     then not only SELL_TREE for this predicate is built, but
     the trees for the results of substitution of ti.field for
     each tj.field belonging to the same multiple equality as ti.field
     are built as well.
     E.g. for WHERE t1.a=t2.a AND t2.a > 10 
     a SEL_TREE for t2.a > 10 will be built for quick select from t2
     and   
     a SEL_TREE for t1.a > 10 will be built for quick select from t1.
  */
     
  for (uint i= 0; i < cond_func->arg_count; i++)
  {
unknown's avatar
unknown committed
3710
    Item *arg= cond_func->arguments()[i]->real_item();
unknown's avatar
unknown committed
3711 3712 3713 3714 3715 3716
    if (arg != field_item)
      ref_tables|= arg->used_tables();
  }
  Field *field= field_item->field;
  Item_result cmp_type= field->cmp_type();
  if (!((ref_tables | field->table->map) & param_comp))
unknown's avatar
unknown committed
3717
    ftree= get_func_mm_tree(param, cond_func, field, value, cmp_type, inv);
unknown's avatar
unknown committed
3718 3719 3720 3721 3722 3723
  Item_equal *item_equal= field_item->item_equal;
  if (item_equal)
  {
    Item_equal_iterator it(*item_equal);
    Item_field *item;
    while ((item= it++))
unknown's avatar
unknown committed
3724
    {
unknown's avatar
unknown committed
3725 3726 3727 3728
      Field *f= item->field;
      if (field->eq(f))
        continue;
      if (!((ref_tables | f->table->map) & param_comp))
unknown's avatar
unknown committed
3729
      {
unknown's avatar
unknown committed
3730
        tree= get_func_mm_tree(param, cond_func, f, value, cmp_type, inv);
unknown's avatar
unknown committed
3731
        ftree= !ftree ? tree : tree_and(param, ftree, tree);
unknown's avatar
unknown committed
3732 3733 3734
      }
    }
  }
unknown's avatar
unknown committed
3735
  DBUG_RETURN(ftree);
unknown's avatar
unknown committed
3736 3737 3738 3739
}


static SEL_TREE *
3740
get_mm_parts(PARAM *param, COND *cond_func, Field *field,
unknown's avatar
unknown committed
3741
	     Item_func::Functype type,
3742
	     Item *value, Item_result cmp_type)
unknown's avatar
unknown committed
3743 3744 3745 3746 3747
{
  DBUG_ENTER("get_mm_parts");
  if (field->table != param->table)
    DBUG_RETURN(0);

3748 3749
  KEY_PART *key_part = param->key_parts;
  KEY_PART *end = param->key_parts_end;
unknown's avatar
unknown committed
3750 3751 3752 3753
  SEL_TREE *tree=0;
  if (value &&
      value->used_tables() & ~(param->prev_tables | param->read_tables))
    DBUG_RETURN(0);
3754
  for (; key_part != end ; key_part++)
unknown's avatar
unknown committed
3755 3756 3757 3758
  {
    if (field->eq(key_part->field))
    {
      SEL_ARG *sel_arg=0;
3759
      if (!tree && !(tree=new SEL_TREE()))
3760
	DBUG_RETURN(0);				// OOM
unknown's avatar
unknown committed
3761 3762
      if (!value || !(value->used_tables() & ~param->read_tables))
      {
3763 3764
	sel_arg=get_mm_leaf(param,cond_func,
			    key_part->field,key_part,type,value);
unknown's avatar
unknown committed
3765 3766 3767 3768 3769 3770 3771 3772
	if (!sel_arg)
	  continue;
	if (sel_arg->type == SEL_ARG::IMPOSSIBLE)
	{
	  tree->type=SEL_TREE::IMPOSSIBLE;
	  DBUG_RETURN(tree);
	}
      }
3773 3774
      else
      {
3775
	// This key may be used later
unknown's avatar
unknown committed
3776
	if (!(sel_arg= new SEL_ARG(SEL_ARG::MAYBE_KEY)))
3777
	  DBUG_RETURN(0);			// OOM
3778
      }
unknown's avatar
unknown committed
3779 3780
      sel_arg->part=(uchar) key_part->part;
      tree->keys[key_part->key]=sel_add(tree->keys[key_part->key],sel_arg);
unknown's avatar
unknown committed
3781
      tree->keys_map.set_bit(key_part->key);
unknown's avatar
unknown committed
3782 3783
    }
  }
3784

unknown's avatar
unknown committed
3785 3786 3787 3788 3789
  DBUG_RETURN(tree);
}


static SEL_ARG *
3790
get_mm_leaf(PARAM *param, COND *conf_func, Field *field, KEY_PART *key_part,
unknown's avatar
unknown committed
3791 3792
	    Item_func::Functype type,Item *value)
{
3793
  uint maybe_null=(uint) field->real_maybe_null();
unknown's avatar
unknown committed
3794
  bool optimize_range;
3795 3796
  SEL_ARG *tree= 0;
  MEM_ROOT *alloc= param->mem_root;
3797
  char *str;
unknown's avatar
unknown committed
3798
  ulong orig_sql_mode;
unknown's avatar
unknown committed
3799 3800
  DBUG_ENTER("get_mm_leaf");

3801 3802
  /*
    We need to restore the runtime mem_root of the thread in this
unknown's avatar
unknown committed
3803
    function because it evaluates the value of its argument, while
3804 3805 3806 3807 3808 3809
    the argument can be any, e.g. a subselect. The subselect
    items, in turn, assume that all the memory allocated during
    the evaluation has the same life span as the item itself.
    TODO: opt_range.cc should not reset thd->mem_root at all.
  */
  param->thd->mem_root= param->old_root;
3810 3811
  if (!value)					// IS NULL or IS NOT NULL
  {
3812
    if (field->table->maybe_null)		// Can't use a key on this
3813
      goto end;
3814
    if (!maybe_null)				// Not null field
3815 3816 3817 3818 3819 3820 3821
    {
      if (type == Item_func::ISNULL_FUNC)
        tree= &null_element;
      goto end;
    }
    if (!(tree= new (alloc) SEL_ARG(field,is_null_string,is_null_string)))
      goto end;                                 // out of memory
3822 3823 3824 3825 3826
    if (type == Item_func::ISNOTNULL_FUNC)
    {
      tree->min_flag=NEAR_MIN;		    /* IS NOT NULL ->  X > NULL */
      tree->max_flag=NO_MAX_RANGE;
    }
3827
    goto end;
3828 3829 3830
  }

  /*
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
    1. Usually we can't use an index if the column collation
       differ from the operation collation.

    2. However, we can reuse a case insensitive index for
       the binary searches:

       WHERE latin1_swedish_ci_column = 'a' COLLATE lati1_bin;

       WHERE latin1_swedish_ci_colimn = BINARY 'a '

3841 3842 3843 3844
  */
  if (field->result_type() == STRING_RESULT &&
      value->result_type() == STRING_RESULT &&
      key_part->image_type == Field::itRAW &&
3845 3846
      ((Field_str*)field)->charset() != conf_func->compare_collation() &&
      !(conf_func->compare_collation()->state & MY_CS_BINSORT))
3847
    goto end;
3848

unknown's avatar
unknown committed
3849 3850 3851
  optimize_range= field->optimize_range(param->real_keynr[key_part->key],
                                        key_part->part);

unknown's avatar
unknown committed
3852 3853 3854 3855
  if (type == Item_func::LIKE_FUNC)
  {
    bool like_error;
    char buff1[MAX_FIELD_WIDTH],*min_str,*max_str;
3856
    String tmp(buff1,sizeof(buff1),value->collation.collation),*res;
unknown's avatar
unknown committed
3857
    uint length,offset,min_length,max_length;
3858
    uint field_length= field->pack_length()+maybe_null;
unknown's avatar
unknown committed
3859

unknown's avatar
unknown committed
3860
    if (!optimize_range)
3861
      goto end;
unknown's avatar
unknown committed
3862
    if (!(res= value->val_str(&tmp)))
3863 3864 3865 3866
    {
      tree= &null_element;
      goto end;
    }
unknown's avatar
unknown committed
3867

3868 3869 3870 3871 3872
    /*
      TODO:
      Check if this was a function. This should have be optimized away
      in the sql_select.cc
    */
unknown's avatar
unknown committed
3873 3874 3875 3876 3877 3878
    if (res != &tmp)
    {
      tmp.copy(*res);				// Get own copy
      res= &tmp;
    }
    if (field->cmp_type() != STRING_RESULT)
3879
      goto end;                                 // Can only optimize strings
unknown's avatar
unknown committed
3880 3881

    offset=maybe_null;
unknown's avatar
unknown committed
3882 3883 3884
    length=key_part->store_length;

    if (length != key_part->length  + maybe_null)
unknown's avatar
unknown committed
3885
    {
unknown's avatar
unknown committed
3886 3887 3888
      /* key packed with length prefix */
      offset+= HA_KEY_BLOB_LENGTH;
      field_length= length - HA_KEY_BLOB_LENGTH;
unknown's avatar
unknown committed
3889 3890 3891
    }
    else
    {
unknown's avatar
unknown committed
3892 3893 3894 3895 3896 3897 3898 3899
      if (unlikely(length < field_length))
      {
	/*
	  This can only happen in a table created with UNIREG where one key
	  overlaps many fields
	*/
	length= field_length;
      }
unknown's avatar
unknown committed
3900
      else
unknown's avatar
unknown committed
3901
	field_length= length;
unknown's avatar
unknown committed
3902 3903
    }
    length+=offset;
3904 3905
    if (!(min_str= (char*) alloc_root(alloc, length*2)))
      goto end;
3906

unknown's avatar
unknown committed
3907 3908 3909
    max_str=min_str+length;
    if (maybe_null)
      max_str[0]= min_str[0]=0;
3910

3911
    field_length-= maybe_null;
3912
    like_error= my_like_range(field->charset(),
unknown's avatar
unknown committed
3913
			      res->ptr(), res->length(),
unknown's avatar
unknown committed
3914 3915
			      ((Item_func_like*)(param->cond))->escape,
			      wild_one, wild_many,
3916
			      field_length,
unknown's avatar
unknown committed
3917 3918
			      min_str+offset, max_str+offset,
			      &min_length, &max_length);
unknown's avatar
unknown committed
3919
    if (like_error)				// Can't optimize with LIKE
3920
      goto end;
unknown's avatar
unknown committed
3921

3922
    if (offset != maybe_null)			// BLOB or VARCHAR
unknown's avatar
unknown committed
3923 3924 3925 3926
    {
      int2store(min_str+maybe_null,min_length);
      int2store(max_str+maybe_null,max_length);
    }
3927 3928
    tree= new (alloc) SEL_ARG(field, min_str, max_str);
    goto end;
unknown's avatar
unknown committed
3929 3930
  }

unknown's avatar
unknown committed
3931
  if (!optimize_range &&
3932
      type != Item_func::EQ_FUNC &&
unknown's avatar
unknown committed
3933
      type != Item_func::EQUAL_FUNC)
3934
    goto end;                                   // Can't optimize this
unknown's avatar
unknown committed
3935

3936 3937 3938 3939
  /*
    We can't always use indexes when comparing a string index to a number
    cmp_type() is checked to allow compare of dates to numbers
  */
unknown's avatar
unknown committed
3940 3941 3942
  if (field->result_type() == STRING_RESULT &&
      value->result_type() != STRING_RESULT &&
      field->cmp_type() != value->result_type())
3943
    goto end;
3944
  /* For comparison purposes allow invalid dates like 2000-01-32 */
unknown's avatar
unknown committed
3945
  orig_sql_mode= field->table->in_use->variables.sql_mode;
3946 3947 3948 3949
  if (value->real_item()->type() == Item::STRING_ITEM &&
      (field->type() == FIELD_TYPE_DATE ||
       field->type() == FIELD_TYPE_DATETIME))
    field->table->in_use->variables.sql_mode|= MODE_INVALID_DATES;
3950
  if (value->save_in_field_no_warnings(field, 1) < 0)
unknown's avatar
unknown committed
3951
  {
3952
    field->table->in_use->variables.sql_mode= orig_sql_mode;
3953
    /* This happens when we try to insert a NULL field in a not null column */
3954 3955
    tree= &null_element;                        // cmp with NULL is never TRUE
    goto end;
unknown's avatar
unknown committed
3956
  }
3957
  field->table->in_use->variables.sql_mode= orig_sql_mode;
3958
  str= (char*) alloc_root(alloc, key_part->store_length+1);
unknown's avatar
unknown committed
3959
  if (!str)
3960
    goto end;
unknown's avatar
unknown committed
3961
  if (maybe_null)
3962
    *str= (char) field->is_real_null();		// Set to 1 if null
3963
  field->get_key_image(str+maybe_null, key_part->length, key_part->image_type);
3964 3965
  if (!(tree= new (alloc) SEL_ARG(field, str, str)))
    goto end;                                   // out of memory
unknown's avatar
unknown committed
3966

unknown's avatar
unknown committed
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
  /*
    Check if we are comparing an UNSIGNED integer with a negative constant.
    In this case we know that:
    (a) (unsigned_int [< | <=] negative_constant) == FALSE
    (b) (unsigned_int [> | >=] negative_constant) == TRUE
    In case (a) the condition is false for all values, and in case (b) it
    is true for all values, so we can avoid unnecessary retrieval and condition
    testing, and we also get correct comparison of unsinged integers with
    negative integers (which otherwise fails because at query execution time
    negative integers are cast to unsigned if compared with unsigned).
   */
unknown's avatar
unknown committed
3978 3979
  if (field->result_type() == INT_RESULT &&
      value->result_type() == INT_RESULT &&
unknown's avatar
unknown committed
3980 3981 3982 3983 3984 3985 3986 3987
      ((Field_num*)field)->unsigned_flag && !((Item_int*)value)->unsigned_flag)
  {
    longlong item_val= value->val_int();
    if (item_val < 0)
    {
      if (type == Item_func::LT_FUNC || type == Item_func::LE_FUNC)
      {
        tree->type= SEL_ARG::IMPOSSIBLE;
3988
        goto end;
unknown's avatar
unknown committed
3989 3990
      }
      if (type == Item_func::GT_FUNC || type == Item_func::GE_FUNC)
3991 3992 3993 3994
      {
        tree= 0;
        goto end;
      }
unknown's avatar
unknown committed
3995 3996 3997
    }
  }

unknown's avatar
unknown committed
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
  switch (type) {
  case Item_func::LT_FUNC:
    if (field_is_equal_to_item(field,value))
      tree->max_flag=NEAR_MAX;
    /* fall through */
  case Item_func::LE_FUNC:
    if (!maybe_null)
      tree->min_flag=NO_MIN_RANGE;		/* From start */
    else
    {						// > NULL
      tree->min_value=is_null_string;
      tree->min_flag=NEAR_MIN;
    }
    break;
  case Item_func::GT_FUNC:
    if (field_is_equal_to_item(field,value))
      tree->min_flag=NEAR_MIN;
    /* fall through */
  case Item_func::GE_FUNC:
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4019
  case Item_func::SP_EQUALS_FUNC:
unknown's avatar
unknown committed
4020 4021 4022
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_EQUAL;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4023
  case Item_func::SP_DISJOINT_FUNC:
unknown's avatar
unknown committed
4024 4025 4026
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_DISJOINT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4027
  case Item_func::SP_INTERSECTS_FUNC:
unknown's avatar
unknown committed
4028 4029 4030
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4031
  case Item_func::SP_TOUCHES_FUNC:
unknown's avatar
unknown committed
4032 4033 4034
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4035 4036

  case Item_func::SP_CROSSES_FUNC:
unknown's avatar
unknown committed
4037 4038 4039
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4040
  case Item_func::SP_WITHIN_FUNC:
unknown's avatar
unknown committed
4041 4042 4043
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_WITHIN;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4044 4045

  case Item_func::SP_CONTAINS_FUNC:
unknown's avatar
unknown committed
4046 4047 4048
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_CONTAIN;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4049
  case Item_func::SP_OVERLAPS_FUNC:
unknown's avatar
unknown committed
4050 4051 4052
    tree->min_flag=GEOM_FLAG | HA_READ_MBR_INTERSECT;// NEAR_MIN;//512;
    tree->max_flag=NO_MAX_RANGE;
    break;
unknown's avatar
unknown committed
4053

unknown's avatar
unknown committed
4054 4055 4056
  default:
    break;
  }
4057 4058 4059

end:
  param->thd->mem_root= alloc;
unknown's avatar
unknown committed
4060 4061 4062 4063 4064 4065 4066 4067 4068
  DBUG_RETURN(tree);
}


/******************************************************************************
** Tree manipulation functions
** If tree is 0 it means that the condition can't be tested. It refers
** to a non existent table or to a field in current table with isn't a key.
** The different tree flags:
unknown's avatar
unknown committed
4069 4070
** IMPOSSIBLE:	 Condition is never TRUE
** ALWAYS:	 Condition is always TRUE
unknown's avatar
unknown committed
4071 4072 4073 4074 4075 4076
** MAYBE:	 Condition may exists when tables are read
** MAYBE_KEY:	 Condition refers to a key that may be used in join loop
** KEY_RANGE:	 Condition uses a key
******************************************************************************/

/*
4077 4078
  Add a new key test to a key when scanning through all keys
  This will never be called for same key parts.
unknown's avatar
unknown committed
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139
*/

static SEL_ARG *
sel_add(SEL_ARG *key1,SEL_ARG *key2)
{
  SEL_ARG *root,**key_link;

  if (!key1)
    return key2;
  if (!key2)
    return key1;

  key_link= &root;
  while (key1 && key2)
  {
    if (key1->part < key2->part)
    {
      *key_link= key1;
      key_link= &key1->next_key_part;
      key1=key1->next_key_part;
    }
    else
    {
      *key_link= key2;
      key_link= &key2->next_key_part;
      key2=key2->next_key_part;
    }
  }
  *key_link=key1 ? key1 : key2;
  return root;
}

#define CLONE_KEY1_MAYBE 1
#define CLONE_KEY2_MAYBE 2
#define swap_clone_flag(A) ((A & 1) << 1) | ((A & 2) >> 1)


static SEL_TREE *
tree_and(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
{
  DBUG_ENTER("tree_and");
  if (!tree1)
    DBUG_RETURN(tree2);
  if (!tree2)
    DBUG_RETURN(tree1);
  if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
    DBUG_RETURN(tree1);
  if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
    DBUG_RETURN(tree2);
  if (tree1->type == SEL_TREE::MAYBE)
  {
    if (tree2->type == SEL_TREE::KEY)
      tree2->type=SEL_TREE::KEY_SMALLER;
    DBUG_RETURN(tree2);
  }
  if (tree2->type == SEL_TREE::MAYBE)
  {
    tree1->type=SEL_TREE::KEY_SMALLER;
    DBUG_RETURN(tree1);
  }

unknown's avatar
unknown committed
4140 4141
  key_map  result_keys;
  result_keys.clear_all();
unknown's avatar
unknown committed
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
  /* Join the trees key per key */
  SEL_ARG **key1,**key2,**end;
  for (key1= tree1->keys,key2= tree2->keys,end=key1+param->keys ;
       key1 != end ; key1++,key2++)
  {
    uint flag=0;
    if (*key1 || *key2)
    {
      if (*key1 && !(*key1)->simple_key())
	flag|=CLONE_KEY1_MAYBE;
      if (*key2 && !(*key2)->simple_key())
	flag|=CLONE_KEY2_MAYBE;
      *key1=key_and(*key1,*key2,flag);
4155
      if (*key1 && (*key1)->type == SEL_ARG::IMPOSSIBLE)
unknown's avatar
unknown committed
4156 4157
      {
	tree1->type= SEL_TREE::IMPOSSIBLE;
unknown's avatar
unknown committed
4158
        DBUG_RETURN(tree1);
unknown's avatar
unknown committed
4159
      }
unknown's avatar
unknown committed
4160
      result_keys.set_bit(key1 - tree1->keys);
unknown's avatar
unknown committed
4161
#ifdef EXTRA_DEBUG
4162 4163
      if (*key1)
        (*key1)->test_use_count(*key1);
unknown's avatar
unknown committed
4164 4165 4166
#endif
    }
  }
unknown's avatar
unknown committed
4167 4168
  tree1->keys_map= result_keys;
  /* dispose index_merge if there is a "range" option */
unknown's avatar
unknown committed
4169
  if (!result_keys.is_clear_all())
unknown's avatar
unknown committed
4170 4171 4172 4173 4174 4175 4176
  {
    tree1->merges.empty();
    DBUG_RETURN(tree1);
  }

  /* ok, both trees are index_merge trees */
  imerge_list_and_list(&tree1->merges, &tree2->merges);
unknown's avatar
unknown committed
4177 4178 4179 4180
  DBUG_RETURN(tree1);
}


unknown's avatar
unknown committed
4181
/*
unknown's avatar
unknown committed
4182 4183
  Check if two SEL_TREES can be combined into one (i.e. a single key range
  read can be constructed for "cond_of_tree1 OR cond_of_tree2" ) without
4184
  using index_merge.
unknown's avatar
unknown committed
4185 4186 4187 4188
*/

bool sel_trees_can_be_ored(SEL_TREE *tree1, SEL_TREE *tree2, PARAM* param)
{
unknown's avatar
unknown committed
4189
  key_map common_keys= tree1->keys_map;
unknown's avatar
unknown committed
4190
  DBUG_ENTER("sel_trees_can_be_ored");
4191
  common_keys.intersect(tree2->keys_map);
unknown's avatar
unknown committed
4192

unknown's avatar
unknown committed
4193
  if (common_keys.is_clear_all())
unknown's avatar
unknown committed
4194
    DBUG_RETURN(FALSE);
unknown's avatar
unknown committed
4195 4196

  /* trees have a common key, check if they refer to same key part */
unknown's avatar
unknown committed
4197
  SEL_ARG **key1,**key2;
unknown's avatar
unknown committed
4198
  for (uint key_no=0; key_no < param->keys; key_no++)
unknown's avatar
unknown committed
4199
  {
unknown's avatar
unknown committed
4200
    if (common_keys.is_set(key_no))
unknown's avatar
unknown committed
4201 4202 4203 4204 4205
    {
      key1= tree1->keys + key_no;
      key2= tree2->keys + key_no;
      if ((*key1)->part == (*key2)->part)
      {
unknown's avatar
unknown committed
4206
        DBUG_RETURN(TRUE);
unknown's avatar
unknown committed
4207 4208 4209
      }
    }
  }
unknown's avatar
unknown committed
4210
  DBUG_RETURN(FALSE);
unknown's avatar
unknown committed
4211
}
unknown's avatar
unknown committed
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227

static SEL_TREE *
tree_or(PARAM *param,SEL_TREE *tree1,SEL_TREE *tree2)
{
  DBUG_ENTER("tree_or");
  if (!tree1 || !tree2)
    DBUG_RETURN(0);
  if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
    DBUG_RETURN(tree2);
  if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
    DBUG_RETURN(tree1);
  if (tree1->type == SEL_TREE::MAYBE)
    DBUG_RETURN(tree1);				// Can't use this
  if (tree2->type == SEL_TREE::MAYBE)
    DBUG_RETURN(tree2);

unknown's avatar
unknown committed
4228
  SEL_TREE *result= 0;
unknown's avatar
unknown committed
4229 4230
  key_map  result_keys;
  result_keys.clear_all();
unknown's avatar
unknown committed
4231
  if (sel_trees_can_be_ored(tree1, tree2, param))
unknown's avatar
unknown committed
4232
  {
unknown's avatar
unknown committed
4233 4234 4235 4236
    /* Join the trees key per key */
    SEL_ARG **key1,**key2,**end;
    for (key1= tree1->keys,key2= tree2->keys,end= key1+param->keys ;
         key1 != end ; key1++,key2++)
unknown's avatar
unknown committed
4237
    {
unknown's avatar
unknown committed
4238 4239 4240 4241
      *key1=key_or(*key1,*key2);
      if (*key1)
      {
        result=tree1;				// Added to tree1
unknown's avatar
unknown committed
4242
        result_keys.set_bit(key1 - tree1->keys);
unknown's avatar
unknown committed
4243
#ifdef EXTRA_DEBUG
unknown's avatar
unknown committed
4244
        (*key1)->test_use_count(*key1);
unknown's avatar
unknown committed
4245
#endif
unknown's avatar
unknown committed
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
      }
    }
    if (result)
      result->keys_map= result_keys;
  }
  else
  {
    /* ok, two trees have KEY type but cannot be used without index merge */
    if (tree1->merges.is_empty() && tree2->merges.is_empty())
    {
      SEL_IMERGE *merge;
      /* both trees are "range" trees, produce new index merge structure */
      if (!(result= new SEL_TREE()) || !(merge= new SEL_IMERGE()) ||
          (result->merges.push_back(merge)) ||
          (merge->or_sel_tree(param, tree1)) ||
          (merge->or_sel_tree(param, tree2)))
        result= NULL;
      else
        result->type= tree1->type;
    }
    else if (!tree1->merges.is_empty() && !tree2->merges.is_empty())
    {
      if (imerge_list_or_list(param, &tree1->merges, &tree2->merges))
        result= new SEL_TREE(SEL_TREE::ALWAYS);
      else
        result= tree1;
    }
    else
    {
      /* one tree is index merge tree and another is range tree */
      if (tree1->merges.is_empty())
unknown's avatar
unknown committed
4277
        swap_variables(SEL_TREE*, tree1, tree2);
unknown's avatar
unknown committed
4278 4279 4280 4281 4282 4283

      /* add tree2 to tree1->merges, checking if it collapses to ALWAYS */
      if (imerge_list_or_tree(param, &tree1->merges, tree2))
        result= new SEL_TREE(SEL_TREE::ALWAYS);
      else
        result= tree1;
unknown's avatar
unknown committed
4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304
    }
  }
  DBUG_RETURN(result);
}


/* And key trees where key1->part < key2 -> part */

static SEL_ARG *
and_all_keys(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag)
{
  SEL_ARG *next;
  ulong use_count=key1->use_count;

  if (key1->elements != 1)
  {
    key2->use_count+=key1->elements-1;
    key2->increment_use_count((int) key1->elements-1);
  }
  if (key1->type == SEL_ARG::MAYBE_KEY)
  {
4305 4306
    key1->right= key1->left= &null_element;
    key1->next= key1->prev= 0;
unknown's avatar
unknown committed
4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
  }
  for (next=key1->first(); next ; next=next->next)
  {
    if (next->next_key_part)
    {
      SEL_ARG *tmp=key_and(next->next_key_part,key2,clone_flag);
      if (tmp && tmp->type == SEL_ARG::IMPOSSIBLE)
      {
	key1=key1->tree_delete(next);
	continue;
      }
      next->next_key_part=tmp;
      if (use_count)
	next->increment_use_count(use_count);
    }
    else
      next->next_key_part=key2;
  }
  if (!key1)
    return &null_element;			// Impossible ranges
  key1->use_count++;
  return key1;
}


static SEL_ARG *
key_and(SEL_ARG *key1,SEL_ARG *key2,uint clone_flag)
{
  if (!key1)
    return key2;
  if (!key2)
    return key1;
  if (key1->part != key2->part)
  {
    if (key1->part > key2->part)
    {
4343
      swap_variables(SEL_ARG *, key1, key2);
unknown's avatar
unknown committed
4344 4345 4346 4347 4348
      clone_flag=swap_clone_flag(clone_flag);
    }
    // key1->part < key2->part
    key1->use_count--;
    if (key1->use_count > 0)
4349 4350
      if (!(key1= key1->clone_tree()))
	return 0;				// OOM
unknown's avatar
unknown committed
4351 4352 4353 4354
    return and_all_keys(key1,key2,clone_flag);
  }

  if (((clone_flag & CLONE_KEY2_MAYBE) &&
4355 4356
       !(clone_flag & CLONE_KEY1_MAYBE) &&
       key2->type != SEL_ARG::MAYBE_KEY) ||
unknown's avatar
unknown committed
4357 4358
      key1->type == SEL_ARG::MAYBE_KEY)
  {						// Put simple key in key2
4359
    swap_variables(SEL_ARG *, key1, key2);
unknown's avatar
unknown committed
4360 4361 4362
    clone_flag=swap_clone_flag(clone_flag);
  }

unknown's avatar
unknown committed
4363
  /* If one of the key is MAYBE_KEY then the found region may be smaller */
unknown's avatar
unknown committed
4364 4365 4366 4367 4368
  if (key2->type == SEL_ARG::MAYBE_KEY)
  {
    if (key1->use_count > 1)
    {
      key1->use_count--;
4369 4370
      if (!(key1=key1->clone_tree()))
	return 0;				// OOM
unknown's avatar
unknown committed
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
      key1->use_count++;
    }
    if (key1->type == SEL_ARG::MAYBE_KEY)
    {						// Both are maybe key
      key1->next_key_part=key_and(key1->next_key_part,key2->next_key_part,
				 clone_flag);
      if (key1->next_key_part &&
	  key1->next_key_part->type == SEL_ARG::IMPOSSIBLE)
	return key1;
    }
    else
    {
      key1->maybe_smaller();
      if (key2->next_key_part)
4385 4386
      {
	key1->use_count--;			// Incremented in and_all_keys
unknown's avatar
unknown committed
4387
	return and_all_keys(key1,key2,clone_flag);
4388
      }
unknown's avatar
unknown committed
4389 4390 4391 4392 4393
      key2->use_count--;			// Key2 doesn't have a tree
    }
    return key1;
  }

4394 4395 4396 4397 4398 4399 4400
  if ((key1->min_flag | key2->min_flag) & GEOM_FLAG)
  {
    key1->free_tree();
    key2->free_tree();
    return 0;					// Can't optimize this
  }

4401 4402 4403
  if ((key1->min_flag | key2->min_flag) & GEOM_FLAG)
  {
    key1->free_tree();
4404 4405 4406 4407
    key2->free_tree();
    return 0;					// Can't optimize this
  }

unknown's avatar
unknown committed
4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
  key1->use_count--;
  key2->use_count--;
  SEL_ARG *e1=key1->first(), *e2=key2->first(), *new_tree=0;

  while (e1 && e2)
  {
    int cmp=e1->cmp_min_to_min(e2);
    if (cmp < 0)
    {
      if (get_range(&e1,&e2,key1))
	continue;
    }
    else if (get_range(&e2,&e1,key2))
      continue;
    SEL_ARG *next=key_and(e1->next_key_part,e2->next_key_part,clone_flag);
    e1->increment_use_count(1);
    e2->increment_use_count(1);
    if (!next || next->type != SEL_ARG::IMPOSSIBLE)
    {
      SEL_ARG *new_arg= e1->clone_and(e2);
4428 4429
      if (!new_arg)
	return &null_element;			// End of memory
unknown's avatar
unknown committed
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480
      new_arg->next_key_part=next;
      if (!new_tree)
      {
	new_tree=new_arg;
      }
      else
	new_tree=new_tree->insert(new_arg);
    }
    if (e1->cmp_max_to_max(e2) < 0)
      e1=e1->next;				// e1 can't overlapp next e2
    else
      e2=e2->next;
  }
  key1->free_tree();
  key2->free_tree();
  if (!new_tree)
    return &null_element;			// Impossible range
  return new_tree;
}


static bool
get_range(SEL_ARG **e1,SEL_ARG **e2,SEL_ARG *root1)
{
  (*e1)=root1->find_range(*e2);			// first e1->min < e2->min
  if ((*e1)->cmp_max_to_min(*e2) < 0)
  {
    if (!((*e1)=(*e1)->next))
      return 1;
    if ((*e1)->cmp_min_to_max(*e2) > 0)
    {
      (*e2)=(*e2)->next;
      return 1;
    }
  }
  return 0;
}


static SEL_ARG *
key_or(SEL_ARG *key1,SEL_ARG *key2)
{
  if (!key1)
  {
    if (key2)
    {
      key2->use_count--;
      key2->free_tree();
    }
    return 0;
  }
4481
  if (!key2)
unknown's avatar
unknown committed
4482 4483 4484 4485 4486 4487 4488 4489
  {
    key1->use_count--;
    key1->free_tree();
    return 0;
  }
  key1->use_count--;
  key2->use_count--;

4490 4491
  if (key1->part != key2->part || 
      (key1->min_flag | key2->min_flag) & GEOM_FLAG)
unknown's avatar
unknown committed
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
  {
    key1->free_tree();
    key2->free_tree();
    return 0;					// Can't optimize this
  }

  // If one of the key is MAYBE_KEY then the found region may be bigger
  if (key1->type == SEL_ARG::MAYBE_KEY)
  {
    key2->free_tree();
    key1->use_count++;
    return key1;
  }
  if (key2->type == SEL_ARG::MAYBE_KEY)
  {
    key1->free_tree();
    key2->use_count++;
    return key2;
  }

  if (key1->use_count > 0)
  {
    if (key2->use_count == 0 || key1->elements > key2->elements)
    {
4516
      swap_variables(SEL_ARG *,key1,key2);
unknown's avatar
unknown committed
4517
    }
4518
    if (key1->use_count > 0 || !(key1=key1->clone_tree()))
4519
      return 0;					// OOM
unknown's avatar
unknown committed
4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544
  }

  // Add tree at key2 to tree at key1
  bool key2_shared=key2->use_count != 0;
  key1->maybe_flag|=key2->maybe_flag;

  for (key2=key2->first(); key2; )
  {
    SEL_ARG *tmp=key1->find_range(key2);	// Find key1.min <= key2.min
    int cmp;

    if (!tmp)
    {
      tmp=key1->first();			// tmp.min > key2.min
      cmp= -1;
    }
    else if ((cmp=tmp->cmp_max_to_min(key2)) < 0)
    {						// Found tmp.max < key2.min
      SEL_ARG *next=tmp->next;
      if (cmp == -2 && eq_tree(tmp->next_key_part,key2->next_key_part))
      {
	// Join near ranges like tmp.max < 0 and key2.min >= 0
	SEL_ARG *key2_next=key2->next;
	if (key2_shared)
	{
unknown's avatar
unknown committed
4545
	  if (!(key2=new SEL_ARG(*key2)))
4546
	    return 0;		// out of memory
unknown's avatar
unknown committed
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
	  key2->increment_use_count(key1->use_count+1);
	  key2->next=key2_next;			// New copy of key2
	}
	key2->copy_min(tmp);
	if (!(key1=key1->tree_delete(tmp)))
	{					// Only one key in tree
	  key1=key2;
	  key1->make_root();
	  key2=key2_next;
	  break;
	}
      }
      if (!(tmp=next))				// tmp.min > key2.min
	break;					// Copy rest of key2
    }
    if (cmp < 0)
    {						// tmp.min > key2.min
      int tmp_cmp;
      if ((tmp_cmp=tmp->cmp_min_to_max(key2)) > 0) // if tmp.min > key2.max
      {
	if (tmp_cmp == 2 && eq_tree(tmp->next_key_part,key2->next_key_part))
	{					// ranges are connected
	  tmp->copy_min_to_min(key2);
	  key1->merge_flags(key2);
	  if (tmp->min_flag & NO_MIN_RANGE &&
	      tmp->max_flag & NO_MAX_RANGE)
	  {
	    if (key1->maybe_flag)
	      return new SEL_ARG(SEL_ARG::MAYBE_KEY);
	    return 0;
	  }
	  key2->increment_use_count(-1);	// Free not used tree
	  key2=key2->next;
	  continue;
	}
	else
	{
	  SEL_ARG *next=key2->next;		// Keys are not overlapping
	  if (key2_shared)
	  {
4587 4588
	    SEL_ARG *cpy= new SEL_ARG(*key2);	// Must make copy
	    if (!cpy)
4589
	      return 0;				// OOM
4590
	    key1=key1->insert(cpy);
unknown's avatar
unknown committed
4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
	    key2->increment_use_count(key1->use_count+1);
	  }
	  else
	    key1=key1->insert(key2);		// Will destroy key2_root
	  key2=next;
	  continue;
	}
      }
    }

    // tmp.max >= key2.min && tmp.min <= key.max  (overlapping ranges)
    if (eq_tree(tmp->next_key_part,key2->next_key_part))
    {
      if (tmp->is_same(key2))
      {
	tmp->merge_flags(key2);			// Copy maybe flags
	key2->increment_use_count(-1);		// Free not used tree
      }
      else
      {
	SEL_ARG *last=tmp;
	while (last->next && last->next->cmp_min_to_max(key2) <= 0 &&
	       eq_tree(last->next->next_key_part,key2->next_key_part))
	{
	  SEL_ARG *save=last;
	  last=last->next;
	  key1=key1->tree_delete(save);
	}
unknown's avatar
unknown committed
4619
        last->copy_min(tmp);
unknown's avatar
unknown committed
4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
	if (last->copy_min(key2) || last->copy_max(key2))
	{					// Full range
	  key1->free_tree();
	  for (; key2 ; key2=key2->next)
	    key2->increment_use_count(-1);	// Free not used tree
	  if (key1->maybe_flag)
	    return new SEL_ARG(SEL_ARG::MAYBE_KEY);
	  return 0;
	}
      }
      key2=key2->next;
      continue;
    }

    if (cmp >= 0 && tmp->cmp_min_to_min(key2) < 0)
    {						// tmp.min <= x < key2.min
      SEL_ARG *new_arg=tmp->clone_first(key2);
4637 4638
      if (!new_arg)
	return 0;				// OOM
unknown's avatar
unknown committed
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
      if ((new_arg->next_key_part= key1->next_key_part))
	new_arg->increment_use_count(key1->use_count+1);
      tmp->copy_min_to_min(key2);
      key1=key1->insert(new_arg);
    }

    // tmp.min >= key2.min && tmp.min <= key2.max
    SEL_ARG key(*key2);				// Get copy we can modify
    for (;;)
    {
      if (tmp->cmp_min_to_min(&key) > 0)
      {						// key.min <= x < tmp.min
	SEL_ARG *new_arg=key.clone_first(tmp);
4652 4653
	if (!new_arg)
	  return 0;				// OOM
unknown's avatar
unknown committed
4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
	if ((new_arg->next_key_part=key.next_key_part))
	  new_arg->increment_use_count(key1->use_count+1);
	key1=key1->insert(new_arg);
      }
      if ((cmp=tmp->cmp_max_to_max(&key)) <= 0)
      {						// tmp.min. <= x <= tmp.max
	tmp->maybe_flag|= key.maybe_flag;
	key.increment_use_count(key1->use_count+1);
	tmp->next_key_part=key_or(tmp->next_key_part,key.next_key_part);
	if (!cmp)				// Key2 is ready
	  break;
	key.copy_max_to_min(tmp);
	if (!(tmp=tmp->next))
	{
4668 4669 4670 4671
	  SEL_ARG *tmp2= new SEL_ARG(key);
	  if (!tmp2)
	    return 0;				// OOM
	  key1=key1->insert(tmp2);
unknown's avatar
unknown committed
4672 4673 4674 4675 4676
	  key2=key2->next;
	  goto end;
	}
	if (tmp->cmp_min_to_max(&key) > 0)
	{
4677 4678 4679 4680
	  SEL_ARG *tmp2= new SEL_ARG(key);
	  if (!tmp2)
	    return 0;				// OOM
	  key1=key1->insert(tmp2);
unknown's avatar
unknown committed
4681 4682 4683 4684 4685 4686
	  break;
	}
      }
      else
      {
	SEL_ARG *new_arg=tmp->clone_last(&key); // tmp.min <= x <= key.max
4687 4688
	if (!new_arg)
	  return 0;				// OOM
unknown's avatar
unknown committed
4689 4690
	tmp->copy_max_to_min(&key);
	tmp->increment_use_count(key1->use_count+1);
4691 4692
	/* Increment key count as it may be used for next loop */
	key.increment_use_count(1);
unknown's avatar
unknown committed
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
	new_arg->next_key_part=key_or(tmp->next_key_part,key.next_key_part);
	key1=key1->insert(new_arg);
	break;
      }
    }
    key2=key2->next;
  }

end:
  while (key2)
  {
    SEL_ARG *next=key2->next;
    if (key2_shared)
    {
4707 4708 4709
      SEL_ARG *tmp=new SEL_ARG(*key2);		// Must make copy
      if (!tmp)
	return 0;
unknown's avatar
unknown committed
4710
      key2->increment_use_count(key1->use_count+1);
4711
      key1=key1->insert(tmp);
unknown's avatar
unknown committed
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758
    }
    else
      key1=key1->insert(key2);			// Will destroy key2_root
    key2=next;
  }
  key1->use_count++;
  return key1;
}


/* Compare if two trees are equal */

static bool eq_tree(SEL_ARG* a,SEL_ARG *b)
{
  if (a == b)
    return 1;
  if (!a || !b || !a->is_same(b))
    return 0;
  if (a->left != &null_element && b->left != &null_element)
  {
    if (!eq_tree(a->left,b->left))
      return 0;
  }
  else if (a->left != &null_element || b->left != &null_element)
    return 0;
  if (a->right != &null_element && b->right != &null_element)
  {
    if (!eq_tree(a->right,b->right))
      return 0;
  }
  else if (a->right != &null_element || b->right != &null_element)
    return 0;
  if (a->next_key_part != b->next_key_part)
  {						// Sub range
    if (!a->next_key_part != !b->next_key_part ||
	!eq_tree(a->next_key_part, b->next_key_part))
      return 0;
  }
  return 1;
}


SEL_ARG *
SEL_ARG::insert(SEL_ARG *key)
{
  SEL_ARG *element,**par,*last_element;
  LINT_INIT(par); LINT_INIT(last_element);
unknown's avatar
unknown committed
4759

unknown's avatar
unknown committed
4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826
  for (element= this; element != &null_element ; )
  {
    last_element=element;
    if (key->cmp_min_to_min(element) > 0)
    {
      par= &element->right; element= element->right;
    }
    else
    {
      par = &element->left; element= element->left;
    }
  }
  *par=key;
  key->parent=last_element;
	/* Link in list */
  if (par == &last_element->left)
  {
    key->next=last_element;
    if ((key->prev=last_element->prev))
      key->prev->next=key;
    last_element->prev=key;
  }
  else
  {
    if ((key->next=last_element->next))
      key->next->prev=key;
    key->prev=last_element;
    last_element->next=key;
  }
  key->left=key->right= &null_element;
  SEL_ARG *root=rb_insert(key);			// rebalance tree
  root->use_count=this->use_count;		// copy root info
  root->elements= this->elements+1;
  root->maybe_flag=this->maybe_flag;
  return root;
}


/*
** Find best key with min <= given key
** Because the call context this should never return 0 to get_range
*/

SEL_ARG *
SEL_ARG::find_range(SEL_ARG *key)
{
  SEL_ARG *element=this,*found=0;

  for (;;)
  {
    if (element == &null_element)
      return found;
    int cmp=element->cmp_min_to_min(key);
    if (cmp == 0)
      return element;
    if (cmp < 0)
    {
      found=element;
      element=element->right;
    }
    else
      element=element->left;
  }
}


/*
4827 4828 4829 4830 4831
  Remove a element from the tree

  SYNOPSIS
    tree_delete()
    key		Key that is to be deleted from tree (this)
unknown's avatar
unknown committed
4832

4833 4834 4835 4836 4837
  NOTE
    This also frees all sub trees that is used by the element

  RETURN
    root of new tree (with key deleted)
unknown's avatar
unknown committed
4838 4839 4840 4841 4842 4843 4844
*/

SEL_ARG *
SEL_ARG::tree_delete(SEL_ARG *key)
{
  enum leaf_color remove_color;
  SEL_ARG *root,*nod,**par,*fix_par;
4845 4846 4847 4848
  DBUG_ENTER("tree_delete");

  root=this;
  this->parent= 0;
unknown's avatar
unknown committed
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894

  /* Unlink from list */
  if (key->prev)
    key->prev->next=key->next;
  if (key->next)
    key->next->prev=key->prev;
  key->increment_use_count(-1);
  if (!key->parent)
    par= &root;
  else
    par=key->parent_ptr();

  if (key->left == &null_element)
  {
    *par=nod=key->right;
    fix_par=key->parent;
    if (nod != &null_element)
      nod->parent=fix_par;
    remove_color= key->color;
  }
  else if (key->right == &null_element)
  {
    *par= nod=key->left;
    nod->parent=fix_par=key->parent;
    remove_color= key->color;
  }
  else
  {
    SEL_ARG *tmp=key->next;			// next bigger key (exist!)
    nod= *tmp->parent_ptr()= tmp->right;	// unlink tmp from tree
    fix_par=tmp->parent;
    if (nod != &null_element)
      nod->parent=fix_par;
    remove_color= tmp->color;

    tmp->parent=key->parent;			// Move node in place of key
    (tmp->left=key->left)->parent=tmp;
    if ((tmp->right=key->right) != &null_element)
      tmp->right->parent=tmp;
    tmp->color=key->color;
    *par=tmp;
    if (fix_par == key)				// key->right == key->next
      fix_par=tmp;				// new parent of nod
  }

  if (root == &null_element)
4895
    DBUG_RETURN(0);				// Maybe root later
unknown's avatar
unknown committed
4896 4897 4898 4899 4900 4901 4902
  if (remove_color == BLACK)
    root=rb_delete_fixup(root,nod,fix_par);
  test_rb_tree(root,root->parent);

  root->use_count=this->use_count;		// Fix root counters
  root->elements=this->elements-1;
  root->maybe_flag=this->maybe_flag;
4903
  DBUG_RETURN(root);
unknown's avatar
unknown committed
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
}


	/* Functions to fix up the tree after insert and delete */

static void left_rotate(SEL_ARG **root,SEL_ARG *leaf)
{
  SEL_ARG *y=leaf->right;
  leaf->right=y->left;
  if (y->left != &null_element)
    y->left->parent=leaf;
  if (!(y->parent=leaf->parent))
    *root=y;
  else
    *leaf->parent_ptr()=y;
  y->left=leaf;
  leaf->parent=y;
}

static void right_rotate(SEL_ARG **root,SEL_ARG *leaf)
{
  SEL_ARG *y=leaf->left;
  leaf->left=y->right;
  if (y->right != &null_element)
    y->right->parent=leaf;
  if (!(y->parent=leaf->parent))
    *root=y;
  else
    *leaf->parent_ptr()=y;
  y->right=leaf;
  leaf->parent=y;
}


SEL_ARG *
SEL_ARG::rb_insert(SEL_ARG *leaf)
{
  SEL_ARG *y,*par,*par2,*root;
  root= this; root->parent= 0;

  leaf->color=RED;
  while (leaf != root && (par= leaf->parent)->color == RED)
  {					// This can't be root or 1 level under
    if (par == (par2= leaf->parent->parent)->left)
    {
      y= par2->right;
      if (y->color == RED)
      {
	par->color=BLACK;
	y->color=BLACK;
	leaf=par2;
	leaf->color=RED;		/* And the loop continues */
      }
      else
      {
	if (leaf == par->right)
	{
	  left_rotate(&root,leaf->parent);
	  par=leaf;			/* leaf is now parent to old leaf */
	}
	par->color=BLACK;
	par2->color=RED;
	right_rotate(&root,par2);
	break;
      }
    }
    else
    {
      y= par2->left;
      if (y->color == RED)
      {
	par->color=BLACK;
	y->color=BLACK;
	leaf=par2;
	leaf->color=RED;		/* And the loop continues */
      }
      else
      {
	if (leaf == par->left)
	{
	  right_rotate(&root,par);
	  par=leaf;
	}
	par->color=BLACK;
	par2->color=RED;
	left_rotate(&root,par2);
	break;
      }
    }
  }
  root->color=BLACK;
  test_rb_tree(root,root->parent);
  return root;
}


SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key,SEL_ARG *par)
{
  SEL_ARG *x,*w;
  root->parent=0;

  x= key;
  while (x != root && x->color == SEL_ARG::BLACK)
  {
    if (x == par->left)
    {
      w=par->right;
      if (w->color == SEL_ARG::RED)
      {
	w->color=SEL_ARG::BLACK;
	par->color=SEL_ARG::RED;
	left_rotate(&root,par);
	w=par->right;
      }
      if (w->left->color == SEL_ARG::BLACK && w->right->color == SEL_ARG::BLACK)
      {
	w->color=SEL_ARG::RED;
	x=par;
      }
      else
      {
	if (w->right->color == SEL_ARG::BLACK)
	{
	  w->left->color=SEL_ARG::BLACK;
	  w->color=SEL_ARG::RED;
	  right_rotate(&root,w);
	  w=par->right;
	}
	w->color=par->color;
	par->color=SEL_ARG::BLACK;
	w->right->color=SEL_ARG::BLACK;
	left_rotate(&root,par);
	x=root;
	break;
      }
    }
    else
    {
      w=par->left;
      if (w->color == SEL_ARG::RED)
      {
	w->color=SEL_ARG::BLACK;
	par->color=SEL_ARG::RED;
	right_rotate(&root,par);
	w=par->left;
      }
      if (w->right->color == SEL_ARG::BLACK && w->left->color == SEL_ARG::BLACK)
      {
	w->color=SEL_ARG::RED;
	x=par;
      }
      else
      {
	if (w->left->color == SEL_ARG::BLACK)
	{
	  w->right->color=SEL_ARG::BLACK;
	  w->color=SEL_ARG::RED;
	  left_rotate(&root,w);
	  w=par->left;
	}
	w->color=par->color;
	par->color=SEL_ARG::BLACK;
	w->left->color=SEL_ARG::BLACK;
	right_rotate(&root,par);
	x=root;
	break;
      }
    }
    par=x->parent;
  }
  x->color=SEL_ARG::BLACK;
  return root;
}


5079
	/* Test that the properties for a red-black tree hold */
unknown's avatar
unknown committed
5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135

#ifdef EXTRA_DEBUG
int test_rb_tree(SEL_ARG *element,SEL_ARG *parent)
{
  int count_l,count_r;

  if (element == &null_element)
    return 0;					// Found end of tree
  if (element->parent != parent)
  {
    sql_print_error("Wrong tree: Parent doesn't point at parent");
    return -1;
  }
  if (element->color == SEL_ARG::RED &&
      (element->left->color == SEL_ARG::RED ||
       element->right->color == SEL_ARG::RED))
  {
    sql_print_error("Wrong tree: Found two red in a row");
    return -1;
  }
  if (element->left == element->right && element->left != &null_element)
  {						// Dummy test
    sql_print_error("Wrong tree: Found right == left");
    return -1;
  }
  count_l=test_rb_tree(element->left,element);
  count_r=test_rb_tree(element->right,element);
  if (count_l >= 0 && count_r >= 0)
  {
    if (count_l == count_r)
      return count_l+(element->color == SEL_ARG::BLACK);
    sql_print_error("Wrong tree: Incorrect black-count: %d - %d",
	    count_l,count_r);
  }
  return -1;					// Error, no more warnings
}

static ulong count_key_part_usage(SEL_ARG *root, SEL_ARG *key)
{
  ulong count= 0;
  for (root=root->first(); root ; root=root->next)
  {
    if (root->next_key_part)
    {
      if (root->next_key_part == key)
	count++;
      if (root->next_key_part->part < key->part)
	count+=count_key_part_usage(root->next_key_part,key);
    }
  }
  return count;
}


void SEL_ARG::test_use_count(SEL_ARG *root)
{
5136
  uint e_count=0;
unknown's avatar
unknown committed
5137 5138
  if (this == root && use_count != 1)
  {
unknown's avatar
unknown committed
5139
    sql_print_information("Use_count: Wrong count %lu for root",use_count);
unknown's avatar
unknown committed
5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151
    return;
  }
  if (this->type != SEL_ARG::KEY_RANGE)
    return;
  for (SEL_ARG *pos=first(); pos ; pos=pos->next)
  {
    e_count++;
    if (pos->next_key_part)
    {
      ulong count=count_key_part_usage(root,pos->next_key_part);
      if (count > pos->next_key_part->use_count)
      {
unknown's avatar
unknown committed
5152
	sql_print_information("Use_count: Wrong count for key at 0x%lx, %lu should be %lu",
unknown's avatar
unknown committed
5153 5154 5155 5156 5157 5158 5159
			pos,pos->next_key_part->use_count,count);
	return;
      }
      pos->next_key_part->test_use_count(root);
    }
  }
  if (e_count != elements)
unknown's avatar
unknown committed
5160
    sql_print_warning("Wrong use count: %u (should be %u) for tree at 0x%lx",
5161
		    e_count, elements, (gptr) this);
unknown's avatar
unknown committed
5162 5163 5164 5165 5166
}

#endif


5167 5168 5169 5170 5171 5172 5173 5174 5175 5176
/*
  Calculate estimate of number records that will be retrieved by a range
  scan on given index using given SEL_ARG intervals tree.
  SYNOPSIS
    check_quick_select
      param  Parameter from test_quick_select
      idx    Number of index to use in PARAM::key SEL_TREE::key
      tree   Transformed selection condition, tree->key[idx] holds intervals
             tree to be used for scanning.
  NOTES
unknown's avatar
unknown committed
5177
    param->is_ror_scan is set to reflect if the key scan is a ROR (see
5178
    is_key_scan_ror function for more info)
unknown's avatar
unknown committed
5179
    param->table->quick_*, param->range_count (and maybe others) are
5180
    updated with data of given key scan, see check_quick_keys for details.
unknown's avatar
unknown committed
5181 5182

  RETURN
5183
    Estimate # of records to be retrieved.
unknown's avatar
unknown committed
5184
    HA_POS_ERROR if estimate calculation failed due to table handler problems.
unknown's avatar
unknown committed
5185

5186
*/
unknown's avatar
unknown committed
5187 5188 5189 5190 5191

static ha_rows
check_quick_select(PARAM *param,uint idx,SEL_ARG *tree)
{
  ha_rows records;
5192 5193
  bool    cpk_scan;
  uint key;
unknown's avatar
unknown committed
5194
  DBUG_ENTER("check_quick_select");
unknown's avatar
unknown committed
5195

unknown's avatar
unknown committed
5196
  param->is_ror_scan= FALSE;
unknown's avatar
unknown committed
5197

unknown's avatar
unknown committed
5198 5199
  if (!tree)
    DBUG_RETURN(HA_POS_ERROR);			// Can't use it
unknown's avatar
unknown committed
5200 5201
  param->max_key_part=0;
  param->range_count=0;
5202 5203
  key= param->real_keynr[idx];

unknown's avatar
unknown committed
5204 5205 5206 5207
  if (tree->type == SEL_ARG::IMPOSSIBLE)
    DBUG_RETURN(0L);				// Impossible select. return
  if (tree->type != SEL_ARG::KEY_RANGE || tree->part != 0)
    DBUG_RETURN(HA_POS_ERROR);				// Don't use tree
5208 5209 5210 5211 5212

  enum ha_key_alg key_alg= param->table->key_info[key].algorithm;
  if ((key_alg != HA_KEY_ALG_BTREE) && (key_alg!= HA_KEY_ALG_UNDEF))
  {
    /* Records are not ordered by rowid for other types of indexes. */
unknown's avatar
unknown committed
5213
    cpk_scan= FALSE;
5214 5215 5216 5217 5218 5219 5220
  }
  else
  {
    /*
      Clustered PK scan is a special case, check_quick_keys doesn't recognize
      CPK scans as ROR scans (while actually any CPK scan is a ROR scan).
    */
5221 5222
    cpk_scan= ((param->table->s->primary_key == param->real_keynr[idx]) &&
               param->table->file->primary_key_is_clustered());
unknown's avatar
unknown committed
5223
    param->is_ror_scan= !cpk_scan;
5224 5225
  }

unknown's avatar
unknown committed
5226 5227
  records=check_quick_keys(param,idx,tree,param->min_key,0,param->max_key,0);
  if (records != HA_POS_ERROR)
unknown's avatar
unknown committed
5228
  {
5229
    param->table->quick_keys.set_bit(key);
unknown's avatar
unknown committed
5230 5231
    param->table->quick_rows[key]=records;
    param->table->quick_key_parts[key]=param->max_key_part+1;
unknown's avatar
unknown committed
5232

5233
    if (cpk_scan)
unknown's avatar
unknown committed
5234
      param->is_ror_scan= TRUE;
unknown's avatar
unknown committed
5235
  }
5236 5237
  if (param->table->file->index_flags(key, 0, TRUE) & HA_KEY_SCAN_NOT_ROR)
    param->is_ror_scan= FALSE;
5238
  DBUG_PRINT("exit", ("Records: %lu", (ulong) records));
unknown's avatar
unknown committed
5239 5240 5241 5242
  DBUG_RETURN(records);
}


5243
/*
unknown's avatar
unknown committed
5244 5245
  Recursively calculate estimate of # rows that will be retrieved by
  key scan on key idx.
5246 5247
  SYNOPSIS
    check_quick_keys()
5248
      param         Parameter from test_quick select function.
unknown's avatar
unknown committed
5249
      idx           Number of key to use in PARAM::keys in list of used keys
5250 5251 5252
                    (param->real_keynr[idx] holds the key number in table)
      key_tree      SEL_ARG tree being examined.
      min_key       Buffer with partial min key value tuple
unknown's avatar
unknown committed
5253
      min_key_flag
5254
      max_key       Buffer with partial max key value tuple
5255 5256
      max_key_flag

5257
  NOTES
unknown's avatar
unknown committed
5258 5259
    The function does the recursive descent on the tree via SEL_ARG::left,
    SEL_ARG::right, and SEL_ARG::next_key_part edges. The #rows estimates
5260 5261
    are calculated using records_in_range calls at the leaf nodes and then
    summed.
5262

5263 5264
    param->min_key and param->max_key are used to hold prefixes of key value
    tuples.
5265 5266

    The side effects are:
unknown's avatar
unknown committed
5267

5268 5269
    param->max_key_part is updated to hold the maximum number of key parts used
      in scan minus 1.
unknown's avatar
unknown committed
5270 5271

    param->range_count is incremented if the function finds a range that
5272
      wasn't counted by the caller.
unknown's avatar
unknown committed
5273

5274 5275 5276
    param->is_ror_scan is cleared if the function detects that the key scan is
      not a Rowid-Ordered Retrieval scan ( see comments for is_key_scan_ror
      function for description of which key scans are ROR scans)
5277 5278
*/

unknown's avatar
unknown committed
5279 5280 5281 5282 5283
static ha_rows
check_quick_keys(PARAM *param,uint idx,SEL_ARG *key_tree,
		 char *min_key,uint min_key_flag, char *max_key,
		 uint max_key_flag)
{
unknown's avatar
unknown committed
5284 5285 5286
  ha_rows records=0, tmp;
  uint tmp_min_flag, tmp_max_flag, keynr, min_key_length, max_key_length;
  char *tmp_min_key, *tmp_max_key;
unknown's avatar
unknown committed
5287 5288 5289 5290

  param->max_key_part=max(param->max_key_part,key_tree->part);
  if (key_tree->left != &null_element)
  {
5291 5292 5293 5294 5295 5296
    /*
      There are at least two intervals for current key part, i.e. condition
      was converted to something like
        (keyXpartY less/equals c1) OR (keyXpartY more/equals c2).
      This is not a ROR scan if the key is not Clustered Primary Key.
    */
unknown's avatar
unknown committed
5297
    param->is_ror_scan= FALSE;
unknown's avatar
unknown committed
5298 5299 5300 5301 5302 5303
    records=check_quick_keys(param,idx,key_tree->left,min_key,min_key_flag,
			     max_key,max_key_flag);
    if (records == HA_POS_ERROR)			// Impossible
      return records;
  }

unknown's avatar
unknown committed
5304 5305
  tmp_min_key= min_key;
  tmp_max_key= max_key;
unknown's avatar
unknown committed
5306
  key_tree->store(param->key[idx][key_tree->part].store_length,
unknown's avatar
unknown committed
5307
		  &tmp_min_key,min_key_flag,&tmp_max_key,max_key_flag);
unknown's avatar
unknown committed
5308 5309
  min_key_length= (uint) (tmp_min_key- param->min_key);
  max_key_length= (uint) (tmp_max_key- param->max_key);
unknown's avatar
unknown committed
5310

5311 5312
  if (param->is_ror_scan)
  {
unknown's avatar
unknown committed
5313
    /*
5314
      If the index doesn't cover entire key, mark the scan as non-ROR scan.
5315
      Actually we're cutting off some ROR scans here.
5316 5317 5318
    */
    uint16 fieldnr= param->table->key_info[param->real_keynr[idx]].
                    key_part[key_tree->part].fieldnr - 1;
unknown's avatar
unknown committed
5319
    if (param->table->field[fieldnr]->key_length() !=
5320
        param->key[idx][key_tree->part].length)
unknown's avatar
unknown committed
5321
      param->is_ror_scan= FALSE;
5322 5323
  }

unknown's avatar
unknown committed
5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336
  if (key_tree->next_key_part &&
      key_tree->next_key_part->part == key_tree->part+1 &&
      key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
  {						// const key as prefix
    if (min_key_length == max_key_length &&
	!memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) &&
	!key_tree->min_flag && !key_tree->max_flag)
    {
      tmp=check_quick_keys(param,idx,key_tree->next_key_part,
			   tmp_min_key, min_key_flag | key_tree->min_flag,
			   tmp_max_key, max_key_flag | key_tree->max_flag);
      goto end;					// Ugly, but efficient
    }
5337
    else
5338 5339
    {
      /* The interval for current key part is not c1 <= keyXpartY <= c1 */
unknown's avatar
unknown committed
5340
      param->is_ror_scan= FALSE;
5341
    }
5342

unknown's avatar
unknown committed
5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360
    tmp_min_flag=key_tree->min_flag;
    tmp_max_flag=key_tree->max_flag;
    if (!tmp_min_flag)
      key_tree->next_key_part->store_min_key(param->key[idx], &tmp_min_key,
					     &tmp_min_flag);
    if (!tmp_max_flag)
      key_tree->next_key_part->store_max_key(param->key[idx], &tmp_max_key,
					     &tmp_max_flag);
    min_key_length= (uint) (tmp_min_key- param->min_key);
    max_key_length= (uint) (tmp_max_key- param->max_key);
  }
  else
  {
    tmp_min_flag=min_key_flag | key_tree->min_flag;
    tmp_max_flag=max_key_flag | key_tree->max_flag;
  }

  keynr=param->real_keynr[idx];
unknown's avatar
unknown committed
5361
  param->range_count++;
unknown's avatar
unknown committed
5362 5363
  if (!tmp_min_flag && ! tmp_max_flag &&
      (uint) key_tree->part+1 == param->table->key_info[keynr].key_parts &&
5364 5365
      (param->table->key_info[keynr].flags & (HA_NOSAME | HA_END_SPACE_KEY)) ==
      HA_NOSAME &&
unknown's avatar
unknown committed
5366 5367 5368 5369
      min_key_length == max_key_length &&
      !memcmp(param->min_key,param->max_key,min_key_length))
    tmp=1;					// Max one record
  else
unknown's avatar
unknown committed
5370
  {
5371 5372
    if (param->is_ror_scan)
    {
5373 5374 5375 5376 5377 5378 5379 5380 5381
      /*
        If we get here, the condition on the key was converted to form
        "(keyXpart1 = c1) AND ... AND (keyXpart{key_tree->part - 1} = cN) AND
          somecond(keyXpart{key_tree->part})"
        Check if
          somecond is "keyXpart{key_tree->part} = const" and
          uncovered "tail" of KeyX parts is either empty or is identical to
          first members of clustered primary key.
      */
5382 5383
      if (!(min_key_length == max_key_length &&
            !memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) &&
unknown's avatar
unknown committed
5384
            !key_tree->min_flag && !key_tree->max_flag &&
5385
            is_key_scan_ror(param, keynr, key_tree->part + 1)))
unknown's avatar
unknown committed
5386
        param->is_ror_scan= FALSE;
5387 5388
    }

unknown's avatar
unknown committed
5389
    if (tmp_min_flag & GEOM_FLAG)
unknown's avatar
unknown committed
5390
    {
unknown's avatar
unknown committed
5391 5392 5393 5394 5395 5396 5397 5398
      key_range min_range;
      min_range.key=    (byte*) param->min_key;
      min_range.length= min_key_length;
      /* In this case tmp_min_flag contains the handler-read-function */
      min_range.flag=   (ha_rkey_function) (tmp_min_flag ^ GEOM_FLAG);

      tmp= param->table->file->records_in_range(keynr, &min_range,
                                                (key_range*) 0);
unknown's avatar
unknown committed
5399 5400 5401
    }
    else
    {
unknown's avatar
unknown committed
5402 5403 5404 5405 5406 5407
      key_range min_range, max_range;

      min_range.key=    (byte*) param->min_key;
      min_range.length= min_key_length;
      min_range.flag=   (tmp_min_flag & NEAR_MIN ? HA_READ_AFTER_KEY :
                         HA_READ_KEY_EXACT);
unknown's avatar
unknown committed
5408
      max_range.key=    (byte*) param->max_key;
unknown's avatar
unknown committed
5409 5410 5411 5412 5413 5414 5415 5416
      max_range.length= max_key_length;
      max_range.flag=   (tmp_max_flag & NEAR_MAX ?
                         HA_READ_BEFORE_KEY : HA_READ_AFTER_KEY);
      tmp=param->table->file->records_in_range(keynr,
                                               (min_key_length ? &min_range :
                                                (key_range*) 0),
                                               (max_key_length ? &max_range :
                                                (key_range*) 0));
unknown's avatar
unknown committed
5417 5418
    }
  }
unknown's avatar
unknown committed
5419 5420 5421 5422 5423 5424
 end:
  if (tmp == HA_POS_ERROR)			// Impossible range
    return tmp;
  records+=tmp;
  if (key_tree->right != &null_element)
  {
5425 5426 5427 5428 5429 5430
    /*
      There are at least two intervals for current key part, i.e. condition
      was converted to something like
        (keyXpartY less/equals c1) OR (keyXpartY more/equals c2).
      This is not a ROR scan if the key is not Clustered Primary Key.
    */
unknown's avatar
unknown committed
5431
    param->is_ror_scan= FALSE;
unknown's avatar
unknown committed
5432 5433 5434 5435 5436 5437 5438 5439 5440
    tmp=check_quick_keys(param,idx,key_tree->right,min_key,min_key_flag,
			 max_key,max_key_flag);
    if (tmp == HA_POS_ERROR)
      return tmp;
    records+=tmp;
  }
  return records;
}

5441

5442
/*
unknown's avatar
unknown committed
5443
  Check if key scan on given index with equality conditions on first n key
5444 5445 5446 5447
  parts is a ROR scan.

  SYNOPSIS
    is_key_scan_ror()
unknown's avatar
unknown committed
5448
      param  Parameter from test_quick_select
5449 5450 5451 5452
      keynr  Number of key in the table. The key must not be a clustered
             primary key.
      nparts Number of first key parts for which equality conditions
             are present.
unknown's avatar
unknown committed
5453

5454 5455 5456
  NOTES
    ROR (Rowid Ordered Retrieval) key scan is a key scan that produces
    ordered sequence of rowids (ha_xxx::cmp_ref is the comparison function)
unknown's avatar
unknown committed
5457

5458 5459 5460
    An index scan is a ROR scan if it is done using a condition in form

        "key1_1=c_1 AND ... AND key1_n=c_n"  (1)
unknown's avatar
unknown committed
5461

5462 5463
    where the index is defined on (key1_1, ..., key1_N [,a_1, ..., a_n])

unknown's avatar
unknown committed
5464
    and the table has a clustered Primary Key
5465

unknown's avatar
unknown committed
5466
    PRIMARY KEY(a_1, ..., a_n, b1, ..., b_k) with first key parts being
5467
    identical to uncovered parts ot the key being scanned (2)
unknown's avatar
unknown committed
5468 5469

    Scans on HASH indexes are not ROR scans,
5470 5471 5472 5473 5474 5475
    any range scan on clustered primary key is ROR scan  (3)

    Check (1) is made in check_quick_keys()
    Check (3) is made check_quick_select()
    Check (2) is made by this function.

unknown's avatar
unknown committed
5476
  RETURN
unknown's avatar
unknown committed
5477 5478
    TRUE  If the scan is ROR-scan
    FALSE otherwise
5479
*/
5480

5481 5482 5483 5484
static bool is_key_scan_ror(PARAM *param, uint keynr, uint8 nparts)
{
  KEY *table_key= param->table->key_info + keynr;
  KEY_PART_INFO *key_part= table_key->key_part + nparts;
5485 5486 5487
  KEY_PART_INFO *key_part_end= (table_key->key_part +
                                table_key->key_parts);
  uint pk_number;
unknown's avatar
unknown committed
5488

5489
  if (key_part == key_part_end)
unknown's avatar
unknown committed
5490
    return TRUE;
5491
  pk_number= param->table->s->primary_key;
5492
  if (!param->table->file->primary_key_is_clustered() || pk_number == MAX_KEY)
unknown's avatar
unknown committed
5493
    return FALSE;
5494 5495

  KEY_PART_INFO *pk_part= param->table->key_info[pk_number].key_part;
unknown's avatar
unknown committed
5496
  KEY_PART_INFO *pk_part_end= pk_part +
5497
                              param->table->key_info[pk_number].key_parts;
unknown's avatar
unknown committed
5498 5499
  for (;(key_part!=key_part_end) && (pk_part != pk_part_end);
       ++key_part, ++pk_part)
5500
  {
unknown's avatar
unknown committed
5501
    if ((key_part->field != pk_part->field) ||
5502
        (key_part->length != pk_part->length))
unknown's avatar
unknown committed
5503
      return FALSE;
unknown's avatar
unknown committed
5504
  }
5505
  return (key_part == key_part_end);
unknown's avatar
unknown committed
5506 5507 5508
}


5509 5510
/*
  Create a QUICK_RANGE_SELECT from given key and SEL_ARG tree for that key.
unknown's avatar
unknown committed
5511

5512 5513
  SYNOPSIS
    get_quick_select()
unknown's avatar
unknown committed
5514
      param
5515
      idx          Index of used key in param->key.
unknown's avatar
unknown committed
5516 5517
      key_tree     SEL_ARG tree for the used key
      parent_alloc If not NULL, use it to allocate memory for
5518
                   quick select data. Otherwise use quick->alloc.
5519
  NOTES
5520
    The caller must call QUICK_SELECT::init for returned quick select
5521

5522
    CAUTION! This function may change thd->mem_root to a MEM_ROOT which will be
5523
    deallocated when the returned quick select is deleted.
5524 5525 5526 5527

  RETURN
    NULL on error
    otherwise created quick select
5528
*/
5529

unknown's avatar
unknown committed
5530 5531 5532
QUICK_RANGE_SELECT *
get_quick_select(PARAM *param,uint idx,SEL_ARG *key_tree,
                 MEM_ROOT *parent_alloc)
unknown's avatar
unknown committed
5533
{
unknown's avatar
unknown committed
5534
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
5535
  DBUG_ENTER("get_quick_select");
unknown's avatar
unknown committed
5536 5537 5538 5539 5540 5541 5542 5543 5544

  if (param->table->key_info[param->real_keynr[idx]].flags & HA_SPATIAL)
    quick=new QUICK_RANGE_SELECT_GEOM(param->thd, param->table,
                                      param->real_keynr[idx],
                                      test(parent_alloc),
                                      parent_alloc);
  else
    quick=new QUICK_RANGE_SELECT(param->thd, param->table,
                                 param->real_keynr[idx],
unknown's avatar
unknown committed
5545
                                 test(parent_alloc));
unknown's avatar
unknown committed
5546

unknown's avatar
unknown committed
5547
  if (quick)
unknown's avatar
unknown committed
5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558
  {
    if (quick->error ||
	get_quick_keys(param,quick,param->key[idx],key_tree,param->min_key,0,
		       param->max_key,0))
    {
      delete quick;
      quick=0;
    }
    else
    {
      quick->key_parts=(KEY_PART*)
unknown's avatar
unknown committed
5559 5560 5561 5562
        memdup_root(parent_alloc? parent_alloc : &quick->alloc,
                    (char*) param->key[idx],
                    sizeof(KEY_PART)*
                    param->table->key_info[param->real_keynr[idx]].key_parts);
unknown's avatar
unknown committed
5563
    }
unknown's avatar
unknown committed
5564
  }
unknown's avatar
unknown committed
5565 5566 5567 5568 5569 5570 5571
  DBUG_RETURN(quick);
}


/*
** Fix this to get all possible sub_ranges
*/
unknown's avatar
unknown committed
5572 5573
bool
get_quick_keys(PARAM *param,QUICK_RANGE_SELECT *quick,KEY_PART *key,
unknown's avatar
unknown committed
5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586
	       SEL_ARG *key_tree,char *min_key,uint min_key_flag,
	       char *max_key, uint max_key_flag)
{
  QUICK_RANGE *range;
  uint flag;

  if (key_tree->left != &null_element)
  {
    if (get_quick_keys(param,quick,key,key_tree->left,
		       min_key,min_key_flag, max_key, max_key_flag))
      return 1;
  }
  char *tmp_min_key=min_key,*tmp_max_key=max_key;
unknown's avatar
unknown committed
5587
  key_tree->store(key[key_tree->part].store_length,
unknown's avatar
unknown committed
5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
		  &tmp_min_key,min_key_flag,&tmp_max_key,max_key_flag);

  if (key_tree->next_key_part &&
      key_tree->next_key_part->part == key_tree->part+1 &&
      key_tree->next_key_part->type == SEL_ARG::KEY_RANGE)
  {						  // const key as prefix
    if (!((tmp_min_key - min_key) != (tmp_max_key - max_key) ||
	  memcmp(min_key,max_key, (uint) (tmp_max_key - max_key)) ||
	  key_tree->min_flag || key_tree->max_flag))
    {
      if (get_quick_keys(param,quick,key,key_tree->next_key_part,
			 tmp_min_key, min_key_flag | key_tree->min_flag,
			 tmp_max_key, max_key_flag | key_tree->max_flag))
	return 1;
      goto end;					// Ugly, but efficient
    }
    {
      uint tmp_min_flag=key_tree->min_flag,tmp_max_flag=key_tree->max_flag;
      if (!tmp_min_flag)
	key_tree->next_key_part->store_min_key(key, &tmp_min_key,
					       &tmp_min_flag);
      if (!tmp_max_flag)
	key_tree->next_key_part->store_max_key(key, &tmp_max_key,
					       &tmp_max_flag);
      flag=tmp_min_flag | tmp_max_flag;
    }
  }
  else
unknown's avatar
unknown committed
5616 5617 5618 5619
  {
    flag = (key_tree->min_flag & GEOM_FLAG) ?
      key_tree->min_flag : key_tree->min_flag | key_tree->max_flag;
  }
unknown's avatar
unknown committed
5620

5621 5622 5623 5624 5625
  /*
    Ensure that some part of min_key and max_key are used.  If not,
    regard this as no lower/upper range
  */
  if ((flag & GEOM_FLAG) == 0)
unknown's avatar
unknown committed
5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
  {
    if (tmp_min_key != param->min_key)
      flag&= ~NO_MIN_RANGE;
    else
      flag|= NO_MIN_RANGE;
    if (tmp_max_key != param->max_key)
      flag&= ~NO_MAX_RANGE;
    else
      flag|= NO_MAX_RANGE;
  }
unknown's avatar
unknown committed
5636 5637 5638 5639 5640 5641 5642 5643
  if (flag == 0)
  {
    uint length= (uint) (tmp_min_key - param->min_key);
    if (length == (uint) (tmp_max_key - param->max_key) &&
	!memcmp(param->min_key,param->max_key,length))
    {
      KEY *table_key=quick->head->key_info+quick->index;
      flag=EQ_RANGE;
5644 5645
      if ((table_key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME &&
	  key->part == table_key->key_parts-1)
5646 5647 5648 5649 5650 5651 5652 5653 5654
      {
	if (!(table_key->flags & HA_NULL_PART_KEY) ||
	    !null_part_in_key(key,
			      param->min_key,
			      (uint) (tmp_min_key - param->min_key)))
	  flag|= UNIQUE_RANGE;
	else
	  flag|= NULL_RANGE;
      }
unknown's avatar
unknown committed
5655 5656 5657 5658
    }
  }

  /* Get range for retrieving rows in QUICK_SELECT::get_next */
5659
  if (!(range= new QUICK_RANGE((const char *) param->min_key,
5660
			       (uint) (tmp_min_key - param->min_key),
5661
			       (const char *) param->max_key,
5662 5663
			       (uint) (tmp_max_key - param->max_key),
			       flag)))
5664 5665
    return 1;			// out of memory

unknown's avatar
unknown committed
5666 5667
  set_if_bigger(quick->max_used_key_length,range->min_length);
  set_if_bigger(quick->max_used_key_length,range->max_length);
unknown's avatar
unknown committed
5668
  set_if_bigger(quick->used_key_parts, (uint) key_tree->part+1);
5669 5670 5671
  if (insert_dynamic(&quick->ranges, (gptr)&range))
    return 1;

unknown's avatar
unknown committed
5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683
 end:
  if (key_tree->right != &null_element)
    return get_quick_keys(param,quick,key,key_tree->right,
			  min_key,min_key_flag,
			  max_key,max_key_flag);
  return 0;
}

/*
  Return 1 if there is only one range and this uses the whole primary key
*/

unknown's avatar
unknown committed
5684
bool QUICK_RANGE_SELECT::unique_key_range()
unknown's avatar
unknown committed
5685 5686 5687
{
  if (ranges.elements == 1)
  {
5688 5689
    QUICK_RANGE *tmp= *((QUICK_RANGE**)ranges.buffer);
    if ((tmp->flag & (EQ_RANGE | NULL_RANGE)) == EQ_RANGE)
unknown's avatar
unknown committed
5690 5691
    {
      KEY *key=head->key_info+index;
5692
      return ((key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME &&
unknown's avatar
unknown committed
5693 5694 5695 5696 5697 5698
	      key->key_length == tmp->min_length);
    }
  }
  return 0;
}

5699

unknown's avatar
unknown committed
5700
/* Returns TRUE if any part of the key is NULL */
5701 5702 5703

static bool null_part_in_key(KEY_PART *key_part, const char *key, uint length)
{
unknown's avatar
unknown committed
5704
  for (const char *end=key+length ;
5705
       key < end;
unknown's avatar
unknown committed
5706
       key+= key_part++->store_length)
5707
  {
unknown's avatar
unknown committed
5708 5709
    if (key_part->null_bit && *key)
      return 1;
5710 5711 5712 5713
  }
  return 0;
}

unknown's avatar
unknown committed
5714

5715 5716
bool QUICK_SELECT_I::check_if_keys_used(List<Item> *fields)
{
unknown's avatar
unknown committed
5717
  return check_if_key_used(head, index, *fields);
5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755
}

bool QUICK_INDEX_MERGE_SELECT::check_if_keys_used(List<Item> *fields)
{
  QUICK_RANGE_SELECT *quick;
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  while ((quick= it++))
  {
    if (check_if_key_used(head, quick->index, *fields))
      return 1;
  }
  return 0;
}

bool QUICK_ROR_INTERSECT_SELECT::check_if_keys_used(List<Item> *fields)
{
  QUICK_RANGE_SELECT *quick;
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  while ((quick= it++))
  {
    if (check_if_key_used(head, quick->index, *fields))
      return 1;
  }
  return 0;
}

bool QUICK_ROR_UNION_SELECT::check_if_keys_used(List<Item> *fields)
{
  QUICK_SELECT_I *quick;
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  while ((quick= it++))
  {
    if (quick->check_if_keys_used(fields))
      return 1;
  }
  return 0;
}

unknown's avatar
unknown committed
5756

unknown's avatar
unknown committed
5757 5758
/*
  Create quick select from ref/ref_or_null scan.
unknown's avatar
unknown committed
5759

unknown's avatar
unknown committed
5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774
  SYNOPSIS
    get_quick_select_for_ref()
      thd      Thread handle
      table    Table to access
      ref      ref[_or_null] scan parameters
      records  Estimate of number of records (needed only to construct 
               quick select)
  NOTES
    This allocates things in a new memory root, as this may be called many
    times during a query.
  
  RETURN 
    Quick select that retrieves the same rows as passed ref scan
    NULL on error.
*/
unknown's avatar
unknown committed
5775

unknown's avatar
unknown committed
5776
QUICK_RANGE_SELECT *get_quick_select_for_ref(THD *thd, TABLE *table,
unknown's avatar
unknown committed
5777
                                             TABLE_REF *ref, ha_rows records)
unknown's avatar
unknown committed
5778
{
unknown's avatar
unknown committed
5779 5780
  MEM_ROOT *old_root, *alloc;
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
5781 5782
  KEY *key_info = &table->key_info[ref->key];
  KEY_PART *key_part;
unknown's avatar
unknown committed
5783
  QUICK_RANGE *range;
unknown's avatar
unknown committed
5784
  uint part;
unknown's avatar
unknown committed
5785 5786 5787 5788 5789 5790

  old_root= thd->mem_root;
  /* The following call may change thd->mem_root */
  quick= new QUICK_RANGE_SELECT(thd, table, ref->key, 0);
  /* save mem_root set by QUICK_RANGE_SELECT constructor */
  alloc= thd->mem_root;
5791 5792 5793 5794 5795
  /*
    return back default mem_root (thd->mem_root) changed by
    QUICK_RANGE_SELECT constructor
  */
  thd->mem_root= old_root;
unknown's avatar
unknown committed
5796 5797

  if (!quick)
5798
    return 0;			/* no ranges found */
unknown's avatar
unknown committed
5799
  if (quick->init())
unknown's avatar
unknown committed
5800
    goto err;
unknown's avatar
unknown committed
5801
  quick->records= records;
5802

unknown's avatar
unknown committed
5803
  if (cp_buffer_from_ref(thd,ref) && thd->is_fatal_error ||
5804
      !(range= new(alloc) QUICK_RANGE()))
unknown's avatar
unknown committed
5805
    goto err;                                   // out of memory
5806

unknown's avatar
unknown committed
5807 5808 5809
  range->min_key=range->max_key=(char*) ref->key_buff;
  range->min_length=range->max_length=ref->key_length;
  range->flag= ((ref->key_length == key_info->key_length &&
5810 5811
		 (key_info->flags & (HA_NOSAME | HA_END_SPACE_KEY)) ==
		 HA_NOSAME) ? EQ_RANGE : 0);
unknown's avatar
unknown committed
5812 5813

  if (!(quick->key_parts=key_part=(KEY_PART *)
5814
	alloc_root(&quick->alloc,sizeof(KEY_PART)*ref->key_parts)))
unknown's avatar
unknown committed
5815 5816 5817 5818 5819 5820
    goto err;

  for (part=0 ; part < ref->key_parts ;part++,key_part++)
  {
    key_part->part=part;
    key_part->field=        key_info->key_part[part].field;
unknown's avatar
unknown committed
5821 5822
    key_part->length=  	    key_info->key_part[part].length;
    key_part->store_length= key_info->key_part[part].store_length;
unknown's avatar
unknown committed
5823 5824
    key_part->null_bit=     key_info->key_part[part].null_bit;
  }
unknown's avatar
unknown committed
5825
  if (insert_dynamic(&quick->ranges,(gptr)&range))
5826 5827
    goto err;

unknown's avatar
unknown committed
5828
  /*
5829 5830 5831 5832 5833
     Add a NULL range if REF_OR_NULL optimization is used.
     For example:
       if we have "WHERE A=2 OR A IS NULL" we created the (A=2) range above
       and have ref->null_ref_key set. Will create a new NULL range here.
  */
5834 5835 5836 5837 5838
  if (ref->null_ref_key)
  {
    QUICK_RANGE *null_range;

    *ref->null_ref_key= 1;		// Set null byte then create a range
5839 5840 5841 5842 5843
    if (!(null_range= new (alloc) QUICK_RANGE((char*)ref->key_buff,
                                              ref->key_length,
                                              (char*)ref->key_buff,
                                              ref->key_length,
                                              EQ_RANGE)))
5844 5845
      goto err;
    *ref->null_ref_key= 0;		// Clear null byte
unknown's avatar
unknown committed
5846
    if (insert_dynamic(&quick->ranges,(gptr)&null_range))
5847 5848 5849 5850
      goto err;
  }

  return quick;
unknown's avatar
unknown committed
5851 5852 5853 5854 5855 5856

err:
  delete quick;
  return 0;
}

unknown's avatar
unknown committed
5857 5858

/*
unknown's avatar
unknown committed
5859 5860 5861 5862 5863 5864
  Perform key scans for all used indexes (except CPK), get rowids and merge 
  them into an ordered non-recurrent sequence of rowids.
  
  The merge/duplicate removal is performed using Unique class. We put all
  rowids into Unique, get the sorted sequence and destroy the Unique.
  
unknown's avatar
unknown committed
5865
  If table has a clustered primary key that covers all rows (TRUE for bdb
5866
     and innodb currently) and one of the index_merge scans is a scan on PK,
unknown's avatar
unknown committed
5867
  then
unknown's avatar
unknown committed
5868 5869
    rows that will be retrieved by PK scan are not put into Unique and 
    primary key scan is not performed here, it is performed later separately.
unknown's avatar
unknown committed
5870

5871 5872 5873
  RETURN
    0     OK
    other error
unknown's avatar
unknown committed
5874
*/
5875

unknown's avatar
unknown committed
5876
int QUICK_INDEX_MERGE_SELECT::read_keys_and_merge()
unknown's avatar
unknown committed
5877
{
unknown's avatar
unknown committed
5878 5879
  List_iterator_fast<QUICK_RANGE_SELECT> cur_quick_it(quick_selects);
  QUICK_RANGE_SELECT* cur_quick;
5880
  int result;
unknown's avatar
unknown committed
5881
  Unique *unique;
5882
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::prepare_unique");
unknown's avatar
unknown committed
5883

5884
  /* We're going to just read rowids. */
5885 5886
  if (head->file->extra(HA_EXTRA_KEYREAD))
    DBUG_RETURN(1);
5887

unknown's avatar
unknown committed
5888 5889
  /*
    Make innodb retrieve all PK member fields, so
5890
     * ha_innobase::position (which uses them) call works.
5891
     * We can filter out rows that will be retrieved by clustered PK.
5892
    (This also creates a deficiency - it is possible that we will retrieve
5893
     parts of key that are not used by current query at all.)
5894
  */
5895 5896
  if (head->file->extra(HA_EXTRA_RETRIEVE_PRIMARY_KEY))
    DBUG_RETURN(1);
5897

unknown's avatar
unknown committed
5898 5899
  cur_quick_it.rewind();
  cur_quick= cur_quick_it++;
5900
  DBUG_ASSERT(cur_quick != 0);
unknown's avatar
unknown committed
5901 5902 5903 5904 5905
  
  /*
    We reuse the same instance of handler so we need to call both init and 
    reset here.
  */
unknown's avatar
unknown committed
5906
  if (cur_quick->init() || cur_quick->reset())
unknown's avatar
unknown committed
5907
    DBUG_RETURN(1);
5908

5909
  unique= new Unique(refpos_order_cmp, (void *)head->file,
5910
                     head->file->ref_length,
5911
                     thd->variables.sortbuff_size);
5912 5913
  if (!unique)
    DBUG_RETURN(1);
unknown's avatar
unknown committed
5914
  for (;;)
5915
  {
unknown's avatar
unknown committed
5916
    while ((result= cur_quick->get_next()) == HA_ERR_END_OF_FILE)
5917
    {
unknown's avatar
unknown committed
5918 5919 5920
      cur_quick->range_end();
      cur_quick= cur_quick_it++;
      if (!cur_quick)
unknown's avatar
unknown committed
5921
        break;
5922

unknown's avatar
unknown committed
5923 5924
      if (cur_quick->file->inited != handler::NONE) 
        cur_quick->file->ha_index_end();
unknown's avatar
unknown committed
5925
      if (cur_quick->init() || cur_quick->reset())
5926
        DBUG_RETURN(1);
unknown's avatar
unknown committed
5927 5928 5929
    }

    if (result)
unknown's avatar
unknown committed
5930
    {
5931
      if (result != HA_ERR_END_OF_FILE)
unknown's avatar
unknown committed
5932 5933
      {
        cur_quick->range_end();
5934
        DBUG_RETURN(result);
unknown's avatar
unknown committed
5935
      }
5936
      break;
unknown's avatar
unknown committed
5937
    }
unknown's avatar
unknown committed
5938

5939 5940
    if (thd->killed)
      DBUG_RETURN(1);
unknown's avatar
unknown committed
5941

5942
    /* skip row if it will be retrieved by clustered PK scan */
5943 5944
    if (pk_quick_select && pk_quick_select->row_in_ranges())
      continue;
5945

unknown's avatar
unknown committed
5946 5947
    cur_quick->file->position(cur_quick->record);
    result= unique->unique_add((char*)cur_quick->file->ref);
5948
    if (result)
5949 5950
      DBUG_RETURN(1);

unknown's avatar
unknown committed
5951
  }
unknown's avatar
unknown committed
5952

5953 5954
  /* ok, all row ids are in Unique */
  result= unique->get(head);
unknown's avatar
unknown committed
5955
  delete unique;
unknown's avatar
unknown committed
5956
  doing_pk_scan= FALSE;
unknown's avatar
unknown committed
5957 5958
  /* start table scan */
  init_read_record(&read_record, thd, head, (SQL_SELECT*) 0, 1, 1);
5959 5960
  /* index_merge currently doesn't support "using index" at all */
  head->file->extra(HA_EXTRA_NO_KEYREAD);
5961

5962 5963 5964
  DBUG_RETURN(result);
}

5965

5966 5967 5968
/*
  Get next row for index_merge.
  NOTES
5969 5970 5971 5972
    The rows are read from
      1. rowids stored in Unique.
      2. QUICK_RANGE_SELECT with clustered primary key (if any).
    The sets of rows retrieved in 1) and 2) are guaranteed to be disjoint.
5973
*/
5974

5975 5976
int QUICK_INDEX_MERGE_SELECT::get_next()
{
5977
  int result;
5978
  DBUG_ENTER("QUICK_INDEX_MERGE_SELECT::get_next");
unknown's avatar
unknown committed
5979

5980 5981 5982 5983 5984 5985 5986 5987 5988
  if (doing_pk_scan)
    DBUG_RETURN(pk_quick_select->get_next());

  result= read_record.read_record(&read_record);

  if (result == -1)
  {
    result= HA_ERR_END_OF_FILE;
    end_read_record(&read_record);
5989
    /* All rows from Unique have been retrieved, do a clustered PK scan */
unknown's avatar
unknown committed
5990
    if (pk_quick_select)
5991
    {
unknown's avatar
unknown committed
5992
      doing_pk_scan= TRUE;
unknown's avatar
unknown committed
5993
      if ((result= pk_quick_select->init()) || (result= pk_quick_select->reset()))
5994 5995 5996 5997 5998 5999
        DBUG_RETURN(result);
      DBUG_RETURN(pk_quick_select->get_next());
    }
  }

  DBUG_RETURN(result);
unknown's avatar
unknown committed
6000 6001
}

6002 6003

/*
unknown's avatar
unknown committed
6004
  Retrieve next record.
6005
  SYNOPSIS
unknown's avatar
unknown committed
6006 6007
     QUICK_ROR_INTERSECT_SELECT::get_next()

6008
  NOTES
6009 6010
    Invariant on enter/exit: all intersected selects have retrieved all index
    records with rowid <= some_rowid_val and no intersected select has
6011 6012 6013 6014
    retrieved any index records with rowid > some_rowid_val.
    We start fresh and loop until we have retrieved the same rowid in each of
    the key scans or we got an error.

unknown's avatar
unknown committed
6015
    If a Clustered PK scan is present, it is used only to check if row
6016 6017 6018 6019 6020
    satisfies its condition (and never used for row retrieval).

  RETURN
   0     - Ok
   other - Error code if any error occurred.
6021 6022 6023 6024 6025 6026 6027 6028 6029
*/

int QUICK_ROR_INTERSECT_SELECT::get_next()
{
  List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
  QUICK_RANGE_SELECT* quick;
  int error, cmp;
  uint last_rowid_count=0;
  DBUG_ENTER("QUICK_ROR_INTERSECT_SELECT::get_next");
unknown's avatar
unknown committed
6030

6031 6032 6033 6034 6035 6036 6037 6038 6039 6040
  /* Get a rowid for first quick and save it as a 'candidate' */
  quick= quick_it++;
  if (cpk_quick)
  {
    do {
      error= quick->get_next();
    }while (!error && !cpk_quick->row_in_ranges());
  }
  else
    error= quick->get_next();
unknown's avatar
unknown committed
6041

6042 6043 6044 6045 6046 6047
  if (error)
    DBUG_RETURN(error);

  quick->file->position(quick->record);
  memcpy(last_rowid, quick->file->ref, head->file->ref_length);
  last_rowid_count= 1;
unknown's avatar
unknown committed
6048

6049 6050 6051 6052 6053 6054 6055
  while (last_rowid_count < quick_selects.elements)
  {
    if (!(quick= quick_it++))
    {
      quick_it.rewind();
      quick= quick_it++;
    }
unknown's avatar
unknown committed
6056

6057 6058 6059 6060
    do {
      if ((error= quick->get_next()))
        DBUG_RETURN(error);
      quick->file->position(quick->record);
unknown's avatar
unknown committed
6061
      cmp= head->file->cmp_ref(quick->file->ref, last_rowid);
6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076
    } while (cmp < 0);

    /* Ok, current select 'caught up' and returned ref >= cur_ref */
    if (cmp > 0)
    {
      /* Found a row with ref > cur_ref. Make it a new 'candidate' */
      if (cpk_quick)
      {
        while (!cpk_quick->row_in_ranges())
        {
          if ((error= quick->get_next()))
            DBUG_RETURN(error);
        }
      }
      memcpy(last_rowid, quick->file->ref, head->file->ref_length);
unknown's avatar
unknown committed
6077
      last_rowid_count= 1;
6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092
    }
    else
    {
      /* current 'candidate' row confirmed by this select */
      last_rowid_count++;
    }
  }

  /* We get here iff we got the same row ref in all scans. */
  if (need_to_fetch_row)
    error= head->file->rnd_pos(head->record[0], last_rowid);
  DBUG_RETURN(error);
}


unknown's avatar
unknown committed
6093 6094
/*
  Retrieve next record.
6095 6096
  SYNOPSIS
    QUICK_ROR_UNION_SELECT::get_next()
unknown's avatar
unknown committed
6097

6098
  NOTES
unknown's avatar
unknown committed
6099 6100
    Enter/exit invariant:
    For each quick select in the queue a {key,rowid} tuple has been
6101
    retrieved but the corresponding row hasn't been passed to output.
6102

unknown's avatar
unknown committed
6103
  RETURN
6104 6105
   0     - Ok
   other - Error code if any error occurred.
6106 6107 6108 6109 6110 6111 6112 6113
*/

int QUICK_ROR_UNION_SELECT::get_next()
{
  int error, dup_row;
  QUICK_SELECT_I *quick;
  byte *tmp;
  DBUG_ENTER("QUICK_ROR_UNION_SELECT::get_next");
unknown's avatar
unknown committed
6114

6115 6116 6117 6118
  do
  {
    if (!queue.elements)
      DBUG_RETURN(HA_ERR_END_OF_FILE);
6119
    /* Ok, we have a queue with >= 1 scans */
6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135

    quick= (QUICK_SELECT_I*)queue_top(&queue);
    memcpy(cur_rowid, quick->last_rowid, rowid_length);

    /* put into queue rowid from the same stream as top element */
    if ((error= quick->get_next()))
    {
      if (error != HA_ERR_END_OF_FILE)
        DBUG_RETURN(error);
      queue_remove(&queue, 0);
    }
    else
    {
      quick->save_last_pos();
      queue_replaced(&queue);
    }
unknown's avatar
unknown committed
6136

6137 6138 6139
    if (!have_prev_rowid)
    {
      /* No rows have been returned yet */
unknown's avatar
unknown committed
6140 6141
      dup_row= FALSE;
      have_prev_rowid= TRUE;
6142 6143 6144 6145
    }
    else
      dup_row= !head->file->cmp_ref(cur_rowid, prev_rowid);
  }while (dup_row);
unknown's avatar
unknown committed
6146

6147 6148 6149 6150 6151 6152 6153 6154
  tmp= cur_rowid;
  cur_rowid= prev_rowid;
  prev_rowid= tmp;

  error= head->file->rnd_pos(quick->record, prev_rowid);
  DBUG_RETURN(error);
}

unknown's avatar
unknown committed
6155
int QUICK_RANGE_SELECT::reset()
unknown's avatar
unknown committed
6156 6157 6158
{
  uint  mrange_bufsiz;
  byte  *mrange_buff;
unknown's avatar
unknown committed
6159 6160 6161
  DBUG_ENTER("QUICK_RANGE_SELECT::reset");
  next=0;
  range= NULL;
6162
  in_range= FALSE;
unknown's avatar
unknown committed
6163
  cur_range= (QUICK_RANGE**) ranges.buffer;
unknown's avatar
unknown committed
6164 6165

  if (file->inited == handler::NONE && (error= file->ha_index_init(index)))
unknown's avatar
unknown committed
6166
    DBUG_RETURN(error);
unknown's avatar
unknown committed
6167
 
unknown's avatar
unknown committed
6168 6169 6170 6171 6172 6173 6174
  /* Do not allocate the buffers twice. */
  if (multi_range_length)
  {
    DBUG_ASSERT(multi_range_length == min(multi_range_count, ranges.elements));
    DBUG_RETURN(0);
  }

unknown's avatar
unknown committed
6175 6176
  /* Allocate the ranges array. */
  DBUG_ASSERT(ranges.elements);
unknown's avatar
unknown committed
6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192
  multi_range_length= min(multi_range_count, ranges.elements);
  DBUG_ASSERT(multi_range_length > 0);
  while (multi_range_length && ! (multi_range= (KEY_MULTI_RANGE*)
                                  my_malloc(multi_range_length *
                                            sizeof(KEY_MULTI_RANGE),
                                            MYF(MY_WME))))
  {
    /* Try to shrink the buffers until it is 0. */
    multi_range_length/= 2;
  }
  if (! multi_range)
  {
    multi_range_length= 0;
    DBUG_RETURN(HA_ERR_OUT_OF_MEM);
  }

unknown's avatar
unknown committed
6193
  /* Allocate the handler buffer if necessary.  */
unknown's avatar
unknown committed
6194 6195 6196
  if (file->table_flags() & HA_NEED_READ_RANGE_BUFFER)
  {
    mrange_bufsiz= min(multi_range_bufsiz,
unknown's avatar
merge  
unknown committed
6197
                       (QUICK_SELECT_I::records + 1)* head->s->reclength);
unknown's avatar
unknown committed
6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238

    while (mrange_bufsiz &&
           ! my_multi_malloc(MYF(MY_WME),
                             &multi_range_buff, sizeof(*multi_range_buff),
                             &mrange_buff, mrange_bufsiz,
                             NullS))
    {
      /* Try to shrink the buffers until both are 0. */
      mrange_bufsiz/= 2;
    }
    if (! multi_range_buff)
    {
      my_free((char*) multi_range, MYF(0));
      multi_range= NULL;
      multi_range_length= 0;
      DBUG_RETURN(HA_ERR_OUT_OF_MEM);
    }

    /* Initialize the handler buffer. */
    multi_range_buff->buffer= mrange_buff;
    multi_range_buff->buffer_end= mrange_buff + mrange_bufsiz;
    multi_range_buff->end_of_used_area= mrange_buff;
  }
  DBUG_RETURN(0);
}


/*
  Get next possible record using quick-struct.

  SYNOPSIS
    QUICK_RANGE_SELECT::get_next()

  NOTES
    Record is read into table->record[0]

  RETURN
    0			Found row
    HA_ERR_END_OF_FILE	No (more) rows in range
    #			Error code
*/
unknown's avatar
unknown committed
6239

unknown's avatar
unknown committed
6240
int QUICK_RANGE_SELECT::get_next()
unknown's avatar
unknown committed
6241
{
unknown's avatar
unknown committed
6242 6243 6244 6245
  int             result;
  KEY_MULTI_RANGE *mrange;
  key_range       *start_key;
  key_range       *end_key;
unknown's avatar
unknown committed
6246
  DBUG_ENTER("QUICK_RANGE_SELECT::get_next");
unknown's avatar
unknown committed
6247 6248 6249
  DBUG_ASSERT(multi_range_length && multi_range &&
              (cur_range >= (QUICK_RANGE**) ranges.buffer) &&
              (cur_range <= (QUICK_RANGE**) ranges.buffer + ranges.elements));
unknown's avatar
unknown committed
6250 6251 6252

  for (;;)
  {
unknown's avatar
unknown committed
6253
    if (in_range)
unknown's avatar
unknown committed
6254
    {
unknown's avatar
unknown committed
6255 6256
      /* We did already start to read this key. */
      result= file->read_multi_range_next(&mrange);
unknown's avatar
unknown committed
6257
      if (result != HA_ERR_END_OF_FILE)
unknown's avatar
unknown committed
6258 6259
      {
        in_range= ! result;
6260
	DBUG_RETURN(result);
unknown's avatar
unknown committed
6261
      }
unknown's avatar
unknown committed
6262
    }
unknown's avatar
unknown committed
6263

unknown's avatar
unknown committed
6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293
    uint count= min(multi_range_length, ranges.elements -
                    (cur_range - (QUICK_RANGE**) ranges.buffer));
    if (count == 0)
    {
      /* Ranges have already been used up before. None is left for read. */
      in_range= FALSE;
      DBUG_RETURN(HA_ERR_END_OF_FILE);
    }
    KEY_MULTI_RANGE *mrange_slot, *mrange_end;
    for (mrange_slot= multi_range, mrange_end= mrange_slot+count;
         mrange_slot < mrange_end;
         mrange_slot++)
    {
      start_key= &mrange_slot->start_key;
      end_key= &mrange_slot->end_key;
      range= *(cur_range++);

      start_key->key=    (const byte*) range->min_key;
      start_key->length= range->min_length;
      start_key->flag=   ((range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY :
                          (range->flag & EQ_RANGE) ?
                          HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT);
      end_key->key=      (const byte*) range->max_key;
      end_key->length=   range->max_length;
      /*
        We use HA_READ_AFTER_KEY here because if we are reading on a key
        prefix. We want to find all keys with this prefix.
      */
      end_key->flag=     (range->flag & NEAR_MAX ? HA_READ_BEFORE_KEY :
                          HA_READ_AFTER_KEY);
unknown's avatar
unknown committed
6294

unknown's avatar
unknown committed
6295 6296
      mrange_slot->range_flag= range->flag;
    }
unknown's avatar
unknown committed
6297

unknown's avatar
unknown committed
6298 6299
    result= file->read_multi_range_first(&mrange, multi_range, count,
                                         sorted, multi_range_buff);
unknown's avatar
unknown committed
6300
    if (result != HA_ERR_END_OF_FILE)
unknown's avatar
unknown committed
6301 6302
    {
      in_range= ! result;
unknown's avatar
unknown committed
6303
      DBUG_RETURN(result);
unknown's avatar
unknown committed
6304 6305
    }
    in_range= FALSE; /* No matching rows; go to next set of ranges. */
unknown's avatar
unknown committed
6306 6307 6308
  }
}

6309

6310 6311 6312 6313 6314 6315
/*
  Get the next record with a different prefix.

  SYNOPSIS
    QUICK_RANGE_SELECT::get_next_prefix()
    prefix_length  length of cur_prefix
6316
    cur_prefix     prefix of a key to be searched for
6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348

  DESCRIPTION
    Each subsequent call to the method retrieves the first record that has a
    prefix with length prefix_length different from cur_prefix, such that the
    record with the new prefix is within the ranges described by
    this->ranges. The record found is stored into the buffer pointed by
    this->record.
    The method is useful for GROUP-BY queries with range conditions to
    discover the prefix of the next group that satisfies the range conditions.

  TODO
    This method is a modified copy of QUICK_RANGE_SELECT::get_next(), so both
    methods should be unified into a more general one to reduce code
    duplication.

  RETURN
    0                  on success
    HA_ERR_END_OF_FILE if returned all keys
    other              if some error occurred
*/

int QUICK_RANGE_SELECT::get_next_prefix(uint prefix_length, byte *cur_prefix)
{
  DBUG_ENTER("QUICK_RANGE_SELECT::get_next_prefix");

  for (;;)
  {
    int result;
    key_range start_key, end_key;
    if (range)
    {
      /* Read the next record in the same range with prefix after cur_prefix. */
6349
      DBUG_ASSERT(cur_prefix != 0);
6350 6351 6352 6353 6354 6355
      result= file->index_read(record, cur_prefix, prefix_length,
                               HA_READ_AFTER_KEY);
      if (result || (file->compare_key(file->end_range) <= 0))
        DBUG_RETURN(result);
    }

unknown's avatar
unknown committed
6356 6357 6358 6359 6360 6361 6362 6363
    uint count= ranges.elements - (cur_range - (QUICK_RANGE**) ranges.buffer);
    if (count == 0)
    {
      /* Ranges have already been used up before. None is left for read. */
      range= 0;
      DBUG_RETURN(HA_ERR_END_OF_FILE);
    }
    range= *(cur_range++);
6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392

    start_key.key=    (const byte*) range->min_key;
    start_key.length= min(range->min_length, prefix_length);
    start_key.flag=   ((range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY :
		       (range->flag & EQ_RANGE) ?
		       HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT);
    end_key.key=      (const byte*) range->max_key;
    end_key.length=   min(range->max_length, prefix_length);
    /*
      We use READ_AFTER_KEY here because if we are reading on a key
      prefix we want to find all keys with this prefix
    */
    end_key.flag=     (range->flag & NEAR_MAX ? HA_READ_BEFORE_KEY :
		       HA_READ_AFTER_KEY);

    result= file->read_range_first(range->min_length ? &start_key : 0,
				   range->max_length ? &end_key : 0,
                                   test(range->flag & EQ_RANGE),
				   sorted);
    if (range->flag == (UNIQUE_RANGE | EQ_RANGE))
      range=0;				// Stop searching

    if (result != HA_ERR_END_OF_FILE)
      DBUG_RETURN(result);
    range=0;				// No matching rows; go to next range
  }
}


unknown's avatar
unknown committed
6393
/* Get next for geometrical indexes */
unknown's avatar
unknown committed
6394

unknown's avatar
unknown committed
6395
int QUICK_RANGE_SELECT_GEOM::get_next()
unknown's avatar
unknown committed
6396
{
unknown's avatar
unknown committed
6397
  DBUG_ENTER("QUICK_RANGE_SELECT_GEOM::get_next");
unknown's avatar
unknown committed
6398

unknown's avatar
unknown committed
6399
  for (;;)
unknown's avatar
unknown committed
6400
  {
unknown's avatar
unknown committed
6401 6402
    int result;
    if (range)
unknown's avatar
unknown committed
6403
    {
unknown's avatar
unknown committed
6404 6405 6406 6407 6408
      // Already read through key
      result= file->index_next_same(record, (byte*) range->min_key,
				    range->min_length);
      if (result != HA_ERR_END_OF_FILE)
	DBUG_RETURN(result);
unknown's avatar
unknown committed
6409
    }
unknown's avatar
unknown committed
6410

unknown's avatar
unknown committed
6411 6412 6413 6414 6415 6416 6417 6418
    uint count= ranges.elements - (cur_range - (QUICK_RANGE**) ranges.buffer);
    if (count == 0)
    {
      /* Ranges have already been used up before. None is left for read. */
      range= 0;
      DBUG_RETURN(HA_ERR_END_OF_FILE);
    }
    range= *(cur_range++);
unknown's avatar
unknown committed
6419 6420 6421 6422 6423 6424 6425 6426

    result= file->index_read(record,
			     (byte*) range->min_key,
			     range->min_length,
			     (ha_rkey_function)(range->flag ^ GEOM_FLAG));
    if (result != HA_ERR_KEY_NOT_FOUND)
      DBUG_RETURN(result);
    range=0;				// Not found, to next range
unknown's avatar
unknown committed
6427 6428 6429
  }
}

unknown's avatar
unknown committed
6430

6431 6432 6433 6434
/*
  Check if current row will be retrieved by this QUICK_RANGE_SELECT

  NOTES
unknown's avatar
unknown committed
6435 6436
    It is assumed that currently a scan is being done on another index
    which reads all necessary parts of the index that is scanned by this
6437
    quick select.
unknown's avatar
unknown committed
6438
    The implementation does a binary search on sorted array of disjoint
6439 6440
    ranges, without taking size of range into account.

unknown's avatar
unknown committed
6441
    This function is used to filter out clustered PK scan rows in
6442 6443
    index_merge quick select.

6444
  RETURN
unknown's avatar
unknown committed
6445 6446
    TRUE  if current row will be retrieved by this quick select
    FALSE if not
6447 6448 6449 6450 6451 6452 6453 6454 6455 6456
*/

bool QUICK_RANGE_SELECT::row_in_ranges()
{
  QUICK_RANGE *range;
  uint min= 0;
  uint max= ranges.elements - 1;
  uint mid= (max + min)/2;

  while (min != max)
unknown's avatar
unknown committed
6457
  {
6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470
    if (cmp_next(*(QUICK_RANGE**)dynamic_array_ptr(&ranges, mid)))
    {
      /* current row value > mid->max */
      min= mid + 1;
    }
    else
      max= mid;
    mid= (min + max) / 2;
  }
  range= *(QUICK_RANGE**)dynamic_array_ptr(&ranges, mid);
  return (!cmp_next(range) && !cmp_prev(range));
}

6471
/*
6472 6473 6474 6475 6476 6477 6478
  This is a hack: we inherit from QUICK_SELECT so that we can use the
  get_next() interface, but we have to hold a pointer to the original
  QUICK_SELECT because its data are used all over the place.  What
  should be done is to factor out the data that is needed into a base
  class (QUICK_SELECT), and then have two subclasses (_ASC and _DESC)
  which handle the ranges and implement the get_next() function.  But
  for now, this seems to work right at least.
6479
 */
unknown's avatar
unknown committed
6480

unknown's avatar
unknown committed
6481
QUICK_SELECT_DESC::QUICK_SELECT_DESC(QUICK_RANGE_SELECT *q,
unknown's avatar
unknown committed
6482 6483
                                     uint used_key_parts)
 : QUICK_RANGE_SELECT(*q), rev_it(rev_ranges)
6484
{
unknown's avatar
unknown committed
6485
  QUICK_RANGE *r;
unknown's avatar
unknown committed
6486

6487 6488
  QUICK_RANGE **pr= (QUICK_RANGE**)ranges.buffer;
  QUICK_RANGE **last_range= pr + ranges.elements;
unknown's avatar
unknown committed
6489 6490
  for (; pr!=last_range; pr++)
    rev_ranges.push_front(*pr);
unknown's avatar
unknown committed
6491

unknown's avatar
unknown committed
6492
  /* Remove EQ_RANGE flag for keys that are not using the full key */
unknown's avatar
unknown committed
6493
  for (r = rev_it++; r; r = rev_it++)
unknown's avatar
unknown committed
6494 6495 6496 6497 6498 6499 6500 6501
  {
    if ((r->flag & EQ_RANGE) &&
	head->key_info[index].key_length != r->max_length)
      r->flag&= ~EQ_RANGE;
  }
  rev_it.rewind();
  q->dont_free=1;				// Don't free shared mem
  delete q;
6502 6503
}

unknown's avatar
unknown committed
6504

6505 6506 6507 6508 6509 6510
int QUICK_SELECT_DESC::get_next()
{
  DBUG_ENTER("QUICK_SELECT_DESC::get_next");

  /* The max key is handled as follows:
   *   - if there is NO_MAX_RANGE, start at the end and move backwards
unknown's avatar
unknown committed
6511 6512
   *   - if it is an EQ_RANGE, which means that max key covers the entire
   *     key, go directly to the key and read through it (sorting backwards is
6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524
   *     same as sorting forwards)
   *   - if it is NEAR_MAX, go to the key or next, step back once, and
   *     move backwards
   *   - otherwise (not NEAR_MAX == include the key), go after the key,
   *     step back once, and move backwards
   */

  for (;;)
  {
    int result;
    if (range)
    {						// Already read through key
unknown's avatar
unknown committed
6525 6526 6527
      result = ((range->flag & EQ_RANGE)
		? file->index_next_same(record, (byte*) range->min_key,
					range->min_length) :
6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542
		file->index_prev(record));
      if (!result)
      {
	if (cmp_prev(*rev_it.ref()) == 0)
	  DBUG_RETURN(0);
      }
      else if (result != HA_ERR_END_OF_FILE)
	DBUG_RETURN(result);
    }

    if (!(range=rev_it++))
      DBUG_RETURN(HA_ERR_END_OF_FILE);		// All ranges used

    if (range->flag & NO_MAX_RANGE)		// Read last record
    {
6543 6544 6545
      int local_error;
      if ((local_error=file->index_last(record)))
	DBUG_RETURN(local_error);		// Empty table
6546 6547 6548 6549 6550 6551
      if (cmp_prev(range) == 0)
	DBUG_RETURN(0);
      range=0;			// No matching records; go to next range
      continue;
    }

unknown's avatar
unknown committed
6552
    if (range->flag & EQ_RANGE)
6553 6554 6555 6556 6557 6558
    {
      result = file->index_read(record, (byte*) range->max_key,
				range->max_length, HA_READ_KEY_EXACT);
    }
    else
    {
6559 6560 6561 6562 6563
      DBUG_ASSERT(range->flag & NEAR_MAX || range_reads_after_key(range));
      result=file->index_read(record, (byte*) range->max_key,
			      range->max_length,
			      ((range->flag & NEAR_MAX) ?
			       HA_READ_BEFORE_KEY : HA_READ_PREFIX_LAST_OR_PREV));
6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581
    }
    if (result)
    {
      if (result != HA_ERR_KEY_NOT_FOUND)
	DBUG_RETURN(result);
      range=0;					// Not found, to next range
      continue;
    }
    if (cmp_prev(range) == 0)
    {
      if (range->flag == (UNIQUE_RANGE | EQ_RANGE))
	range = 0;				// Stop searching
      DBUG_RETURN(0);				// Found key is in range
    }
    range = 0;					// To next range
  }
}

6582

unknown's avatar
unknown committed
6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623
/*
  Compare if found key is over max-value
  Returns 0 if key <= range->max_key
*/

int QUICK_RANGE_SELECT::cmp_next(QUICK_RANGE *range_arg)
{
  if (range_arg->flag & NO_MAX_RANGE)
    return 0;                                   /* key can't be to large */

  KEY_PART *key_part=key_parts;
  uint store_length;

  for (char *key=range_arg->max_key, *end=key+range_arg->max_length;
       key < end;
       key+= store_length, key_part++)
  {
    int cmp;
    store_length= key_part->store_length;
    if (key_part->null_bit)
    {
      if (*key)
      {
        if (!key_part->field->is_null())
          return 1;
        continue;
      }
      else if (key_part->field->is_null())
        return 0;
      key++;					// Skip null byte
      store_length--;
    }
    if ((cmp=key_part->field->key_cmp((byte*) key, key_part->length)) < 0)
      return 0;
    if (cmp > 0)
      return 1;
  }
  return (range_arg->flag & NEAR_MAX) ? 1 : 0;          // Exact match
}


6624
/*
6625 6626 6627
  Returns 0 if found key is inside range (found key >= range->min_key).
*/

6628
int QUICK_RANGE_SELECT::cmp_prev(QUICK_RANGE *range_arg)
6629
{
unknown's avatar
unknown committed
6630
  int cmp;
6631
  if (range_arg->flag & NO_MIN_RANGE)
unknown's avatar
unknown committed
6632
    return 0;					/* key can't be to small */
6633

unknown's avatar
unknown committed
6634 6635
  cmp= key_cmp(key_part_info, (byte*) range_arg->min_key,
               range_arg->min_length);
unknown's avatar
unknown committed
6636 6637 6638
  if (cmp > 0 || cmp == 0 && !(range_arg->flag & NEAR_MIN))
    return 0;
  return 1;                                     // outside of range
6639 6640
}

6641

6642
/*
unknown's avatar
unknown committed
6643
 * TRUE if this range will require using HA_READ_AFTER_KEY
unknown's avatar
unknown committed
6644
   See comment in get_next() about this
6645
 */
unknown's avatar
unknown committed
6646

6647
bool QUICK_SELECT_DESC::range_reads_after_key(QUICK_RANGE *range_arg)
6648
{
unknown's avatar
unknown committed
6649
  return ((range_arg->flag & (NO_MAX_RANGE | NEAR_MAX)) ||
6650
	  !(range_arg->flag & EQ_RANGE) ||
unknown's avatar
unknown committed
6651
	  head->key_info[index].key_length != range_arg->max_length) ? 1 : 0;
6652 6653
}

6654

unknown's avatar
unknown committed
6655
/* TRUE if we are reading over a key that may have a NULL value */
unknown's avatar
unknown committed
6656

unknown's avatar
unknown committed
6657
#ifdef NOT_USED
6658
bool QUICK_SELECT_DESC::test_if_null_range(QUICK_RANGE *range_arg,
unknown's avatar
unknown committed
6659 6660
					   uint used_key_parts)
{
unknown's avatar
unknown committed
6661
  uint offset, end;
unknown's avatar
unknown committed
6662 6663 6664
  KEY_PART *key_part = key_parts,
           *key_part_end= key_part+used_key_parts;

6665
  for (offset= 0,  end = min(range_arg->min_length, range_arg->max_length) ;
unknown's avatar
unknown committed
6666
       offset < end && key_part != key_part_end ;
unknown's avatar
unknown committed
6667
       offset+= key_part++->store_length)
unknown's avatar
unknown committed
6668
  {
6669 6670
    if (!memcmp((char*) range_arg->min_key+offset,
		(char*) range_arg->max_key+offset,
unknown's avatar
unknown committed
6671
		key_part->store_length))
unknown's avatar
unknown committed
6672
      continue;
unknown's avatar
unknown committed
6673 6674

    if (key_part->null_bit && range_arg->min_key[offset])
unknown's avatar
unknown committed
6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686
      return 1;				// min_key is null and max_key isn't
    // Range doesn't cover NULL. This is ok if there is no more null parts
    break;
  }
  /*
    If the next min_range is > NULL, then we can use this, even if
    it's a NULL key
    Example:  SELECT * FROM t1 WHERE a = 2 AND b >0 ORDER BY a DESC,b DESC;

  */
  if (key_part != key_part_end && key_part->null_bit)
  {
6687
    if (offset >= range_arg->min_length || range_arg->min_key[offset])
unknown's avatar
unknown committed
6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699
      return 1;					// Could be null
    key_part++;
  }
  /*
    If any of the key parts used in the ORDER BY could be NULL, we can't
    use the key to sort the data.
  */
  for (; key_part != key_part_end ; key_part++)
    if (key_part->null_bit)
      return 1;					// Covers null part
  return 0;
}
unknown's avatar
unknown committed
6700
#endif
unknown's avatar
unknown committed
6701 6702


6703 6704 6705 6706 6707 6708 6709 6710 6711
void QUICK_RANGE_SELECT::add_info_string(String *str)
{
  KEY *key_info= head->key_info + index;
  str->append(key_info->name);
}

void QUICK_INDEX_MERGE_SELECT::add_info_string(String *str)
{
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
6712
  bool first= TRUE;
6713
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
6714
  str->append(STRING_WITH_LEN("sort_union("));
6715 6716 6717 6718 6719
  while ((quick= it++))
  {
    if (!first)
      str->append(',');
    else
unknown's avatar
unknown committed
6720
      first= FALSE;
6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732
    quick->add_info_string(str);
  }
  if (pk_quick_select)
  {
    str->append(',');
    pk_quick_select->add_info_string(str);
  }
  str->append(')');
}

void QUICK_ROR_INTERSECT_SELECT::add_info_string(String *str)
{
unknown's avatar
unknown committed
6733
  bool first= TRUE;
6734 6735
  QUICK_RANGE_SELECT *quick;
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
6736
  str->append(STRING_WITH_LEN("intersect("));
6737 6738 6739 6740 6741
  while ((quick= it++))
  {
    KEY *key_info= head->key_info + quick->index;
    if (!first)
      str->append(',');
unknown's avatar
unknown committed
6742
    else
unknown's avatar
unknown committed
6743
      first= FALSE;
6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756
    str->append(key_info->name);
  }
  if (cpk_quick)
  {
    KEY *key_info= head->key_info + cpk_quick->index;
    str->append(',');
    str->append(key_info->name);
  }
  str->append(')');
}

void QUICK_ROR_UNION_SELECT::add_info_string(String *str)
{
unknown's avatar
unknown committed
6757
  bool first= TRUE;
6758 6759
  QUICK_SELECT_I *quick;
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
6760
  str->append(STRING_WITH_LEN("union("));
6761 6762 6763 6764 6765
  while ((quick= it++))
  {
    if (!first)
      str->append(',');
    else
unknown's avatar
unknown committed
6766
      first= FALSE;
6767 6768 6769 6770 6771 6772
    quick->add_info_string(str);
  }
  str->append(')');
}


unknown's avatar
unknown committed
6773
void QUICK_RANGE_SELECT::add_keys_and_lengths(String *key_names,
6774
                                              String *used_lengths)
6775 6776 6777 6778 6779 6780 6781 6782 6783
{
  char buf[64];
  uint length;
  KEY *key_info= head->key_info + index;
  key_names->append(key_info->name);
  length= longlong2str(max_used_key_length, buf, 10) - buf;
  used_lengths->append(buf, length);
}

6784 6785
void QUICK_INDEX_MERGE_SELECT::add_keys_and_lengths(String *key_names,
                                                    String *used_lengths)
6786 6787 6788
{
  char buf[64];
  uint length;
unknown's avatar
unknown committed
6789
  bool first= TRUE;
6790
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
6791

6792 6793 6794
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  while ((quick= it++))
  {
6795
    if (first)
unknown's avatar
unknown committed
6796
      first= FALSE;
6797 6798
    else
    {
6799 6800
      key_names->append(',');
      used_lengths->append(',');
6801
    }
unknown's avatar
unknown committed
6802

6803 6804
    KEY *key_info= head->key_info + quick->index;
    key_names->append(key_info->name);
6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818
    length= longlong2str(quick->max_used_key_length, buf, 10) - buf;
    used_lengths->append(buf, length);
  }
  if (pk_quick_select)
  {
    KEY *key_info= head->key_info + pk_quick_select->index;
    key_names->append(',');
    key_names->append(key_info->name);
    length= longlong2str(pk_quick_select->max_used_key_length, buf, 10) - buf;
    used_lengths->append(',');
    used_lengths->append(buf, length);
  }
}

6819 6820
void QUICK_ROR_INTERSECT_SELECT::add_keys_and_lengths(String *key_names,
                                                      String *used_lengths)
6821 6822 6823
{
  char buf[64];
  uint length;
unknown's avatar
unknown committed
6824
  bool first= TRUE;
6825 6826 6827 6828 6829 6830
  QUICK_RANGE_SELECT *quick;
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  while ((quick= it++))
  {
    KEY *key_info= head->key_info + quick->index;
    if (first)
unknown's avatar
unknown committed
6831
      first= FALSE;
6832
    else
6833 6834
    {
      key_names->append(',');
6835
      used_lengths->append(',');
6836 6837
    }
    key_names->append(key_info->name);
6838 6839 6840
    length= longlong2str(quick->max_used_key_length, buf, 10) - buf;
    used_lengths->append(buf, length);
  }
unknown's avatar
unknown committed
6841

6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852
  if (cpk_quick)
  {
    KEY *key_info= head->key_info + cpk_quick->index;
    key_names->append(',');
    key_names->append(key_info->name);
    length= longlong2str(cpk_quick->max_used_key_length, buf, 10) - buf;
    used_lengths->append(',');
    used_lengths->append(buf, length);
  }
}

6853 6854
void QUICK_ROR_UNION_SELECT::add_keys_and_lengths(String *key_names,
                                                  String *used_lengths)
6855
{
unknown's avatar
unknown committed
6856
  bool first= TRUE;
6857 6858 6859 6860 6861
  QUICK_SELECT_I *quick;
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  while ((quick= it++))
  {
    if (first)
unknown's avatar
unknown committed
6862
      first= FALSE;
6863
    else
unknown's avatar
unknown committed
6864
    {
6865 6866 6867
      used_lengths->append(',');
      key_names->append(',');
    }
6868
    quick->add_keys_and_lengths(key_names, used_lengths);
6869 6870 6871
  }
}

6872 6873 6874 6875 6876 6877 6878 6879 6880

/*******************************************************************************
* Implementation of QUICK_GROUP_MIN_MAX_SELECT
*******************************************************************************/

static inline uint get_field_keypart(KEY *index, Field *field);
static inline SEL_ARG * get_index_range_tree(uint index, SEL_TREE* range_tree,
                                             PARAM *param, uint *param_idx);
static bool
6881
get_constant_key_infix(KEY *index_info, SEL_ARG *index_range_tree,
6882
                       KEY_PART_INFO *first_non_group_part,
6883 6884 6885 6886
                       KEY_PART_INFO *min_max_arg_part,
                       KEY_PART_INFO *last_part, THD *thd,
                       byte *key_infix, uint *key_infix_len,
                       KEY_PART_INFO **first_non_infix_part);
6887
static bool
6888 6889
check_group_min_max_predicates(COND *cond, Item_field *min_max_arg_item,
                               Field::imagetype image_type);
6890

6891 6892 6893 6894 6895 6896
static void
cost_group_min_max(TABLE* table, KEY *index_info, uint used_key_parts,
                   uint group_key_parts, SEL_TREE *range_tree,
                   SEL_ARG *index_tree, ha_rows quick_prefix_records,
                   bool have_min, bool have_max,
                   double *read_cost, ha_rows *records);
6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922

/*
  Test if this access method is applicable to a GROUP query with MIN/MAX
  functions, and if so, construct a new TRP object.

  SYNOPSIS
    get_best_group_min_max()
    param    Parameter from test_quick_select
    sel_tree Range tree generated by get_mm_tree

  DESCRIPTION
    Test whether a query can be computed via a QUICK_GROUP_MIN_MAX_SELECT.
    Queries computable via a QUICK_GROUP_MIN_MAX_SELECT must satisfy the
    following conditions:
    A) Table T has at least one compound index I of the form:
       I = <A_1, ...,A_k, [B_1,..., B_m], C, [D_1,...,D_n]>
    B) Query conditions:
    B0. Q is over a single table T.
    B1. The attributes referenced by Q are a subset of the attributes of I.
    B2. All attributes QA in Q can be divided into 3 overlapping groups:
        - SA = {S_1, ..., S_l, [C]} - from the SELECT clause, where C is
          referenced by any number of MIN and/or MAX functions if present.
        - WA = {W_1, ..., W_p} - from the WHERE clause
        - GA = <G_1, ..., G_k> - from the GROUP BY clause (if any)
             = SA              - if Q is a DISTINCT query (based on the
                                 equivalence of DISTINCT and GROUP queries.
unknown's avatar
unknown committed
6923 6924
        - NGA = QA - (GA union C) = {NG_1, ..., NG_m} - the ones not in
          GROUP BY and not referenced by MIN/MAX functions.
6925
        with the following properties specified below.
6926 6927
    B3. If Q has a GROUP BY WITH ROLLUP clause the access method is not 
        applicable.
6928 6929 6930 6931 6932 6933 6934 6935 6936 6937

    SA1. There is at most one attribute in SA referenced by any number of
         MIN and/or MAX functions which, which if present, is denoted as C.
    SA2. The position of the C attribute in the index is after the last A_k.
    SA3. The attribute C can be referenced in the WHERE clause only in
         predicates of the forms:
         - (C {< | <= | > | >= | =} const)
         - (const {< | <= | > | >= | =} C)
         - (C between const_i and const_j)
         - C IS NULL
6938 6939
         - C IS NOT NULL
         - C != const
6940 6941 6942
    SA4. If Q has a GROUP BY clause, there are no other aggregate functions
         except MIN and MAX. For queries with DISTINCT, aggregate functions
         are allowed.
6943
    SA5. The select list in DISTINCT queries should not contain expressions.
6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972
    GA1. If Q has a GROUP BY clause, then GA is a prefix of I. That is, if
         G_i = A_j => i = j.
    GA2. If Q has a DISTINCT clause, then there is a permutation of SA that
         forms a prefix of I. This permutation is used as the GROUP clause
         when the DISTINCT query is converted to a GROUP query.
    GA3. The attributes in GA may participate in arbitrary predicates, divided
         into two groups:
         - RNG(G_1,...,G_q ; where q <= k) is a range condition over the
           attributes of a prefix of GA
         - PA(G_i1,...G_iq) is an arbitrary predicate over an arbitrary subset
           of GA. Since P is applied to only GROUP attributes it filters some
           groups, and thus can be applied after the grouping.
    GA4. There are no expressions among G_i, just direct column references.
    NGA1.If in the index I there is a gap between the last GROUP attribute G_k,
         and the MIN/MAX attribute C, then NGA must consist of exactly the index
         attributes that constitute the gap. As a result there is a permutation
         of NGA that coincides with the gap in the index <B_1, ..., B_m>.
    NGA2.If BA <> {}, then the WHERE clause must contain a conjunction EQ of
         equality conditions for all NG_i of the form (NG_i = const) or
         (const = NG_i), such that each NG_i is referenced in exactly one
         conjunct. Informally, the predicates provide constants to fill the
         gap in the index.
    WA1. There are no other attributes in the WHERE clause except the ones
         referenced in predicates RNG, PA, PC, EQ defined above. Therefore
         WA is subset of (GA union NGA union C) for GA,NGA,C that pass the above
         tests. By transitivity then it also follows that each WA_i participates
         in the index I (if this was already tested for GA, NGA and C).

    C) Overall query form:
6973 6974 6975 6976
       SELECT EXPR([A_1,...,A_k], [B_1,...,B_m], [MIN(C)], [MAX(C)])
         FROM T
        WHERE [RNG(A_1,...,A_p ; where p <= k)]
         [AND EQ(B_1,...,B_m)]
6977 6978
         [AND PC(C)]
         [AND PA(A_i1,...,A_iq)]
6979 6980 6981 6982
       GROUP BY A_1,...,A_k
       [HAVING PH(A_1, ..., B_1,..., C)]
    where EXPR(...) is an arbitrary expression over some or all SELECT fields,
    or:
6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011
       SELECT DISTINCT A_i1,...,A_ik
         FROM T
        WHERE [RNG(A_1,...,A_p ; where p <= k)]
         [AND PA(A_i1,...,A_iq)];

  NOTES
    If the current query satisfies the conditions above, and if
    (mem_root! = NULL), then the function constructs and returns a new TRP
    object, that is later used to construct a new QUICK_GROUP_MIN_MAX_SELECT.
    If (mem_root == NULL), then the function only tests whether the current
    query satisfies the conditions above, and, if so, sets
    is_applicable = TRUE.

    Queries with DISTINCT for which index access can be used are transformed
    into equivalent group-by queries of the form:

    SELECT A_1,...,A_k FROM T
     WHERE [RNG(A_1,...,A_p ; where p <= k)]
      [AND PA(A_i1,...,A_iq)]
    GROUP BY A_1,...,A_k;

    The group-by list is a permutation of the select attributes, according
    to their order in the index.

  TODO
  - What happens if the query groups by the MIN/MAX field, and there is no
    other field as in: "select min(a) from t1 group by a" ?
  - We assume that the general correctness of the GROUP-BY query was checked
    before this point. Is this correct, or do we have to check it completely?
7012 7013
  - Lift the limitation in condition (B3), that is, make this access method 
    applicable to ROLLUP queries.
7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052

  RETURN
    If mem_root != NULL
    - valid TRP_GROUP_MIN_MAX object if this QUICK class can be used for
      the query
    -  NULL o/w.
    If mem_root == NULL
    - NULL
*/

static TRP_GROUP_MIN_MAX *
get_best_group_min_max(PARAM *param, SEL_TREE *tree)
{
  THD *thd= param->thd;
  JOIN *join= thd->lex->select_lex.join;
  TABLE *table= param->table;
  bool have_min= FALSE;              /* TRUE if there is a MIN function. */
  bool have_max= FALSE;              /* TRUE if there is a MAX function. */
  Item_field *min_max_arg_item= NULL;/* The argument of all MIN/MAX functions.*/
  KEY_PART_INFO *min_max_arg_part= NULL; /* The corresponding keypart. */
  uint group_prefix_len= 0; /* Length (in bytes) of the key prefix. */
  KEY *index_info= NULL;    /* The index chosen for data access. */
  uint index= 0;            /* The id of the chosen index. */
  uint group_key_parts= 0;  /* Number of index key parts in the group prefix. */
  uint used_key_parts= 0;   /* Number of index key parts used for access. */
  byte key_infix[MAX_KEY_LENGTH]; /* Constants from equality predicates.*/
  uint key_infix_len= 0;          /* Length of key_infix. */
  TRP_GROUP_MIN_MAX *read_plan= NULL; /* The eventually constructed TRP. */
  uint key_part_nr;
  ORDER *tmp_group;
  Item *item;
  Item_field *item_field;
  DBUG_ENTER("get_best_group_min_max");

  /* Perform few 'cheap' tests whether this access method is applicable. */
  if (!join || (thd->lex->sql_command != SQLCOM_SELECT))
    DBUG_RETURN(NULL);        /* This is not a select statement. */
  if ((join->tables != 1) ||  /* The query must reference one table. */
      ((!join->group_list) && /* Neither GROUP BY nor a DISTINCT query. */
7053 7054
       (!join->select_distinct)) ||
      (thd->lex->select_lex.olap == ROLLUP_TYPE)) /* Check (B3) for ROLLUP */
7055
    DBUG_RETURN(NULL);
7056
  if (table->s->keys == 0)        /* There are no indexes to use. */
7057 7058 7059
    DBUG_RETURN(NULL);

  /* Analyze the query in more detail. */
7060
  List_iterator<Item> select_items_it(join->fields_list);
7061

7062
  /* Check (SA1,SA4) and store the only MIN/MAX argument - the C attribute.*/
unknown's avatar
unknown committed
7063
  if (join->make_sum_func_list(join->all_fields, join->fields_list, 1))
7064 7065
    DBUG_RETURN(NULL);
  if (join->sum_funcs[0])
7066
  {
7067 7068 7069
    Item_sum *min_max_item;
    Item_sum **func_ptr= join->sum_funcs;
    while ((min_max_item= *(func_ptr++)))
7070
    {
7071 7072 7073 7074 7075
      if (min_max_item->sum_func() == Item_sum::MIN_FUNC)
        have_min= TRUE;
      else if (min_max_item->sum_func() == Item_sum::MAX_FUNC)
        have_max= TRUE;
      else
7076 7077
        DBUG_RETURN(NULL);

7078 7079
      Item *expr= min_max_item->args[0];    /* The argument of MIN/MAX. */
      if (expr->type() == Item::FIELD_ITEM) /* Is it an attribute? */
7080
      {
7081 7082 7083 7084
        if (! min_max_arg_item)
          min_max_arg_item= (Item_field*) expr;
        else if (! min_max_arg_item->eq(expr, 1))
          DBUG_RETURN(NULL);
7085
      }
7086 7087
      else
        DBUG_RETURN(NULL);
7088
    }
7089
  }
7090

7091 7092 7093 7094
  /* Check (SA5). */
  if (join->select_distinct)
  {
    while ((item= select_items_it++))
7095
    {
7096 7097
      if (item->type() != Item::FIELD_ITEM)
        DBUG_RETURN(NULL);
7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113
    }
  }

  /* Check (GA4) - that there are no expressions among the group attributes. */
  for (tmp_group= join->group_list; tmp_group; tmp_group= tmp_group->next)
  {
    if ((*tmp_group->item)->type() != Item::FIELD_ITEM)
      DBUG_RETURN(NULL);
  }

  /*
    Check that table has at least one compound index such that the conditions
    (GA1,GA2) are all TRUE. If there is more than one such index, select the
    first one. Here we set the variables: group_prefix_len and index_info.
  */
  KEY *cur_index_info= table->key_info;
7114
  KEY *cur_index_info_end= cur_index_info + table->s->keys;
7115
  KEY_PART_INFO *cur_part= NULL;
7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133
  KEY_PART_INFO *end_part; /* Last part for loops. */
  /* Last index part. */
  KEY_PART_INFO *last_part= NULL;
  KEY_PART_INFO *first_non_group_part= NULL;
  KEY_PART_INFO *first_non_infix_part= NULL;
  uint key_infix_parts= 0;
  uint cur_group_key_parts= 0;
  uint cur_group_prefix_len= 0;
  /* Cost-related variables for the best index so far. */
  double best_read_cost= DBL_MAX;
  ha_rows best_records= 0;
  SEL_ARG *best_index_tree= NULL;
  ha_rows best_quick_prefix_records= 0;
  uint best_param_idx= 0;
  double cur_read_cost= DBL_MAX;
  ha_rows cur_records;
  SEL_ARG *cur_index_tree= NULL;
  ha_rows cur_quick_prefix_records= 0;
7134
  uint cur_param_idx=MAX_KEY;
unknown's avatar
unknown committed
7135
  key_map cur_used_key_parts;
unknown's avatar
unknown committed
7136
  uint pk= param->table->s->primary_key;
7137 7138 7139 7140 7141 7142 7143

  for (uint cur_index= 0 ; cur_index_info != cur_index_info_end ;
       cur_index_info++, cur_index++)
  {
    /* Check (B1) - if current index is covering. */
    if (!table->used_keys.is_set(cur_index))
      goto next_index;
7144

unknown's avatar
unknown committed
7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168
    /*
      If the current storage manager is such that it appends the primary key to
      each index, then the above condition is insufficient to check if the
      index is covering. In such cases it may happen that some fields are
      covered by the PK index, but not by the current index. Since we can't
      use the concatenation of both indexes for index lookup, such an index
      does not qualify as covering in our case. If this is the case, below
      we check that all query fields are indeed covered by 'cur_index'.
    */
    if (pk < MAX_KEY && cur_index != pk &&
        (table->file->table_flags() & HA_PRIMARY_KEY_IN_READ_INDEX))
    {
      /* For each table field */
      for (uint i= 0; i < table->s->fields; i++)
      {
        Field *cur_field= table->field[i];
        /*
          If the field is used in the current query, check that the
          field is covered by some keypart of the current index.
        */
        if (thd->query_id == cur_field->query_id)
        {
          KEY_PART_INFO *key_part= cur_index_info->key_part;
          KEY_PART_INFO *key_part_end= key_part + cur_index_info->key_parts;
7169
          for (;;)
unknown's avatar
unknown committed
7170 7171 7172
          {
            if (key_part->field == cur_field)
              break;
7173 7174
            if (++key_part == key_part_end)
              goto next_index;                  // Field was not part of key
unknown's avatar
unknown committed
7175 7176 7177 7178 7179
          }
        }
      }
    }

7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200
    /*
      Check (GA1) for GROUP BY queries.
    */
    if (join->group_list)
    {
      cur_part= cur_index_info->key_part;
      end_part= cur_part + cur_index_info->key_parts;
      /* Iterate in parallel over the GROUP list and the index parts. */
      for (tmp_group= join->group_list; tmp_group && (cur_part != end_part);
           tmp_group= tmp_group->next, cur_part++)
      {
        /*
          TODO:
          tmp_group::item is an array of Item, is it OK to consider only the
          first Item? If so, then why? What is the array for?
        */
        /* Above we already checked that all group items are fields. */
        DBUG_ASSERT((*tmp_group->item)->type() == Item::FIELD_ITEM);
        Item_field *group_field= (Item_field *) (*tmp_group->item);
        if (group_field->field->eq(cur_part->field))
        {
7201 7202
          cur_group_prefix_len+= cur_part->store_length;
          ++cur_group_key_parts;
7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217
        }
        else
          goto next_index;
      }
    }
    /*
      Check (GA2) if this is a DISTINCT query.
      If GA2, then Store a new ORDER object in group_fields_array at the
      position of the key part of item_field->field. Thus we get the ORDER
      objects for each field ordered as the corresponding key parts.
      Later group_fields_array of ORDER objects is used to convert the query
      to a GROUP query.
    */
    else if (join->select_distinct)
    {
7218
      select_items_it.rewind();
unknown's avatar
unknown committed
7219
      cur_used_key_parts.clear_all();
7220
      uint max_key_part= 0;
7221
      while ((item= select_items_it++))
7222
      {
7223
        item_field= (Item_field*) item; /* (SA5) already checked above. */
7224 7225
        /* Find the order of the key part in the index. */
        key_part_nr= get_field_keypart(cur_index_info, item_field->field);
unknown's avatar
unknown committed
7226 7227 7228 7229 7230 7231
        /*
          Check if this attribute was already present in the select list.
          If it was present, then its corresponding key part was alredy used.
        */
        if (cur_used_key_parts.is_set(key_part_nr))
          continue;
7232
        if (key_part_nr < 1 || key_part_nr > join->fields_list.elements)
7233 7234
          goto next_index;
        cur_part= cur_index_info->key_part + key_part_nr - 1;
7235
        cur_group_prefix_len+= cur_part->store_length;
unknown's avatar
unknown committed
7236 7237
        cur_used_key_parts.set_bit(key_part_nr);
        ++cur_group_key_parts;
7238
        max_key_part= max(max_key_part,key_part_nr);
7239
      }
7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250
      /*
        Check that used key parts forms a prefix of the index.
        To check this we compare bits in all_parts and cur_parts.
        all_parts have all bits set from 0 to (max_key_part-1).
        cur_parts have bits set for only used keyparts.
      */
      ulonglong all_parts, cur_parts;
      all_parts= (1<<max_key_part) - 1;
      cur_parts= cur_used_key_parts.to_ulonglong() >> 1;
      if (all_parts != cur_parts)
        goto next_index;
7251 7252 7253 7254 7255 7256 7257 7258
    }
    else
      DBUG_ASSERT(FALSE);

    /* Check (SA2). */
    if (min_max_arg_item)
    {
      key_part_nr= get_field_keypart(cur_index_info, min_max_arg_item->field);
7259
      if (key_part_nr <= cur_group_key_parts)
7260 7261 7262 7263 7264 7265 7266 7267
        goto next_index;
      min_max_arg_part= cur_index_info->key_part + key_part_nr - 1;
    }

    /*
      Check (NGA1, NGA2) and extract a sequence of constants to be used as part
      of all search keys.
    */
7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289

    /*
      If there is MIN/MAX, each keypart between the last group part and the
      MIN/MAX part must participate in one equality with constants, and all
      keyparts after the MIN/MAX part must not be referenced in the query.

      If there is no MIN/MAX, the keyparts after the last group part can be
      referenced only in equalities with constants, and the referenced keyparts
      must form a sequence without any gaps that starts immediately after the
      last group keypart.
    */
    last_part= cur_index_info->key_part + cur_index_info->key_parts;
    first_non_group_part= (cur_group_key_parts < cur_index_info->key_parts) ?
                          cur_index_info->key_part + cur_group_key_parts :
                          NULL;
    first_non_infix_part= min_max_arg_part ?
                          (min_max_arg_part < last_part) ?
                             min_max_arg_part + 1 :
                             NULL :
                           NULL;
    if (first_non_group_part &&
        (!min_max_arg_part || (min_max_arg_part - first_non_group_part > 0)))
7290
    {
7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307
      if (tree)
      {
        uint dummy;
        SEL_ARG *index_range_tree= get_index_range_tree(cur_index, tree, param,
                                                        &dummy);
        if (!get_constant_key_infix(cur_index_info, index_range_tree,
                                    first_non_group_part, min_max_arg_part,
                                    last_part, thd, key_infix, &key_infix_len,
                                    &first_non_infix_part))
          goto next_index;
      }
      else if (min_max_arg_part &&
               (min_max_arg_part - first_non_group_part > 0))
        /*
          There is a gap but no range tree, thus no predicates at all for the
          non-group keyparts.
        */
7308 7309 7310
        goto next_index;
    }

7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323
    /*
      Test (WA1) partially - that no other keypart after the last infix part is
      referenced in the query.
    */
    if (first_non_infix_part)
    {
      for (cur_part= first_non_infix_part; cur_part != last_part; cur_part++)
      {
        if (cur_part->field->query_id == thd->query_id)
          goto next_index;
      }
    }

7324
    /* If we got to this point, cur_index_info passes the test. */
7325 7326 7327
    key_infix_parts= key_infix_len ?
                     (first_non_infix_part - first_non_group_part) : 0;
    used_key_parts= cur_group_key_parts + key_infix_parts;
7328

7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342
    /* Compute the cost of using this index. */
    if (tree)
    {
      /* Find the SEL_ARG sub-tree that corresponds to the chosen index. */
      cur_index_tree= get_index_range_tree(cur_index, tree, param,
                                           &cur_param_idx);
      /* Check if this range tree can be used for prefix retrieval. */
      cur_quick_prefix_records= check_quick_select(param, cur_param_idx,
                                                    cur_index_tree);
    }
    cost_group_min_max(table, cur_index_info, used_key_parts,
                       cur_group_key_parts, tree, cur_index_tree,
                       cur_quick_prefix_records, have_min, have_max,
                       &cur_read_cost, &cur_records);
unknown's avatar
unknown committed
7343 7344 7345 7346 7347 7348
    /*
      If cur_read_cost is lower than best_read_cost use cur_index.
      Do not compare doubles directly because they may have different
      representations (64 vs. 80 bits).
    */
    if (cur_read_cost < best_read_cost - (DBL_EPSILON * cur_read_cost))
7349
    {
7350
      DBUG_ASSERT(tree != 0 || cur_param_idx == MAX_KEY);
7351 7352 7353 7354 7355 7356 7357 7358 7359 7360
      index_info= cur_index_info;
      index= cur_index;
      best_read_cost= cur_read_cost;
      best_records= cur_records;
      best_index_tree= cur_index_tree;
      best_quick_prefix_records= cur_quick_prefix_records;
      best_param_idx= cur_param_idx;
      group_key_parts= cur_group_key_parts;
      group_prefix_len= cur_group_prefix_len;
    }
7361 7362

  next_index:
7363 7364
    cur_group_key_parts= 0;
    cur_group_prefix_len= 0;
7365 7366 7367 7368
  }
  if (!index_info) /* No usable index found. */
    DBUG_RETURN(NULL);

7369 7370 7371
  /* Check (SA3) for the where clause. */
  if (join->conds && min_max_arg_item &&
      !check_group_min_max_predicates(join->conds, min_max_arg_item,
7372 7373
                                      (index_info->flags & HA_SPATIAL) ?
                                      Field::itMBR : Field::itRAW))
7374 7375 7376 7377
    DBUG_RETURN(NULL);

  /* The query passes all tests, so construct a new TRP object. */
  read_plan= new (param->mem_root)
7378 7379 7380 7381
                 TRP_GROUP_MIN_MAX(have_min, have_max, min_max_arg_part,
                                   group_prefix_len, used_key_parts,
                                   group_key_parts, index_info, index,
                                   key_infix_len,
7382
                                   (key_infix_len > 0) ? key_infix : NULL,
7383
                                   tree, best_index_tree, best_param_idx,
7384
                                   best_quick_prefix_records);
7385 7386 7387 7388 7389
  if (read_plan)
  {
    if (tree && read_plan->quick_prefix_records == 0)
      DBUG_RETURN(NULL);

7390 7391 7392
    read_plan->read_cost= best_read_cost;
    read_plan->records=   best_records;

7393 7394 7395 7396 7397 7398 7399 7400 7401 7402
    DBUG_PRINT("info",
               ("Returning group min/max plan: cost: %g, records: %lu",
                read_plan->read_cost, (ulong) read_plan->records));
  }

  DBUG_RETURN(read_plan);
}


/*
7403 7404
  Check that the MIN/MAX attribute participates only in range predicates
  with constants.
7405 7406 7407 7408 7409 7410

  SYNOPSIS
    check_group_min_max_predicates()
    cond              tree (or subtree) describing all or part of the WHERE
                      clause being analyzed
    min_max_arg_item  the field referenced by the MIN/MAX function(s)
7411
    min_max_arg_part  the keypart of the MIN/MAX argument if any
7412 7413 7414

  DESCRIPTION
    The function walks recursively over the cond tree representing a WHERE
7415
    clause, and checks condition (SA3) - if a field is referenced by a MIN/MAX
7416 7417
    aggregate function, it is referenced only by one of the following
    predicates: {=, !=, <, <=, >, >=, between, is null, is not null}.
7418 7419 7420 7421 7422 7423 7424

  RETURN
    TRUE  if cond passes the test
    FALSE o/w
*/

static bool
7425 7426
check_group_min_max_predicates(COND *cond, Item_field *min_max_arg_item,
                               Field::imagetype image_type)
7427 7428
{
  DBUG_ENTER("check_group_min_max_predicates");
7429
  DBUG_ASSERT(cond && min_max_arg_item);
7430 7431 7432 7433 7434 7435 7436 7437 7438

  Item::Type cond_type= cond->type();
  if (cond_type == Item::COND_ITEM) /* 'AND' or 'OR' */
  {
    DBUG_PRINT("info", ("Analyzing: %s", ((Item_func*) cond)->func_name()));
    List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
    Item *and_or_arg;
    while ((and_or_arg= li++))
    {
unknown's avatar
unknown committed
7439
      if (!check_group_min_max_predicates(and_or_arg, min_max_arg_item,
7440
                                         image_type))
7441 7442 7443 7444 7445
        DBUG_RETURN(FALSE);
    }
    DBUG_RETURN(TRUE);
  }

7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458
  /*
    TODO:
    This is a very crude fix to handle sub-selects in the WHERE clause
    (Item_subselect objects). With the test below we rule out from the
    optimization all queries with subselects in the WHERE clause. What has to
    be done, is that here we should analyze whether the subselect references
    the MIN/MAX argument field, and disallow the optimization only if this is
    so.
  */
  if (cond_type == Item::SUBSELECT_ITEM)
    DBUG_RETURN(FALSE);
  
  /* We presume that at this point there are no other Items than functions. */
7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471
  DBUG_ASSERT(cond_type == Item::FUNC_ITEM);

  /* Test if cond references only group-by or non-group fields. */
  Item_func *pred= (Item_func*) cond;
  Item **arguments= pred->arguments();
  Item *cur_arg;
  DBUG_PRINT("info", ("Analyzing: %s", pred->func_name()));
  for (uint arg_idx= 0; arg_idx < pred->argument_count (); arg_idx++)
  {
    cur_arg= arguments[arg_idx];
    DBUG_PRINT("info", ("cur_arg: %s", cur_arg->full_name()));
    if (cur_arg->type() == Item::FIELD_ITEM)
    {
7472
      if (min_max_arg_item->eq(cur_arg, 1)) 
7473 7474 7475
      {
       /*
         If pred references the MIN/MAX argument, check whether pred is a range
7476
         condition that compares the MIN/MAX argument with a constant.
7477 7478
       */
        Item_func::Functype pred_type= pred->functype();
7479 7480 7481 7482 7483 7484 7485 7486 7487 7488
        if (pred_type != Item_func::EQUAL_FUNC     &&
            pred_type != Item_func::LT_FUNC        &&
            pred_type != Item_func::LE_FUNC        &&
            pred_type != Item_func::GT_FUNC        &&
            pred_type != Item_func::GE_FUNC        &&
            pred_type != Item_func::BETWEEN        &&
            pred_type != Item_func::ISNULL_FUNC    &&
            pred_type != Item_func::ISNOTNULL_FUNC &&
            pred_type != Item_func::EQ_FUNC        &&
            pred_type != Item_func::NE_FUNC)
7489 7490 7491 7492
          DBUG_RETURN(FALSE);

        /* Check that pred compares min_max_arg_item with a constant. */
        Item *args[3];
7493
        bzero(args, 3 * sizeof(Item*));
7494 7495 7496 7497
        bool inv;
        /* Test if this is a comparison of a field and a constant. */
        if (!simple_pred(pred, args, &inv))
          DBUG_RETURN(FALSE);
7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516

        /* Check for compatible string comparisons - similar to get_mm_leaf. */
        if (args[0] && args[1] && !args[2] && // this is a binary function
            min_max_arg_item->result_type() == STRING_RESULT &&
            /*
              Don't use an index when comparing strings of different collations.
            */
            ((args[1]->result_type() == STRING_RESULT &&
              image_type == Field::itRAW &&
              ((Field_str*) min_max_arg_item->field)->charset() !=
              pred->compare_collation())
             ||
             /*
               We can't always use indexes when comparing a string index to a
               number.
             */
             (args[1]->result_type() != STRING_RESULT &&
              min_max_arg_item->field->cmp_type() != args[1]->result_type())))
          DBUG_RETURN(FALSE);
7517 7518 7519 7520
      }
    }
    else if (cur_arg->type() == Item::FUNC_ITEM)
    {
unknown's avatar
unknown committed
7521
      if (!check_group_min_max_predicates(cur_arg, min_max_arg_item,
7522
                                         image_type))
7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541
        DBUG_RETURN(FALSE);
    }
    else if (cur_arg->const_item())
    {
      DBUG_RETURN(TRUE);
    }
    else
      DBUG_RETURN(FALSE);
  }

  DBUG_RETURN(TRUE);
}


/*
  Extract a sequence of constants from a conjunction of equality predicates.

  SYNOPSIS
    get_constant_key_infix()
7542 7543 7544 7545 7546 7547 7548 7549 7550
    index_info             [in]  Descriptor of the chosen index.
    index_range_tree       [in]  Range tree for the chosen index
    first_non_group_part   [in]  First index part after group attribute parts
    min_max_arg_part       [in]  The keypart of the MIN/MAX argument if any
    last_part              [in]  Last keypart of the index
    thd                    [in]  Current thread
    key_infix              [out] Infix of constants to be used for index lookup
    key_infix_len          [out] Lenghth of the infix
    first_non_infix_part   [out] The first keypart after the infix (if any)
7551 7552 7553
    
  DESCRIPTION
    Test conditions (NGA1, NGA2) from get_best_group_min_max(). Namely,
unknown's avatar
unknown committed
7554 7555
    for each keypart field NGF_i not in GROUP-BY, check that there is a
    constant equality predicate among conds with the form (NGF_i = const_ci) or
7556 7557
    (const_ci = NGF_i).
    Thus all the NGF_i attributes must fill the 'gap' between the last group-by
7558 7559 7560 7561 7562 7563
    attribute and the MIN/MAX attribute in the index (if present). If these
    conditions hold, copy each constant from its corresponding predicate into
    key_infix, in the order its NG_i attribute appears in the index, and update
    key_infix_len with the total length of the key parts in key_infix.

  RETURN
7564
    TRUE  if the index passes the test
7565 7566 7567 7568
    FALSE o/w
*/

static bool
7569
get_constant_key_infix(KEY *index_info, SEL_ARG *index_range_tree,
7570
                       KEY_PART_INFO *first_non_group_part,
7571 7572 7573 7574
                       KEY_PART_INFO *min_max_arg_part,
                       KEY_PART_INFO *last_part, THD *thd,
                       byte *key_infix, uint *key_infix_len,
                       KEY_PART_INFO **first_non_infix_part)
7575 7576 7577
{
  SEL_ARG       *cur_range;
  KEY_PART_INFO *cur_part;
7578 7579
  /* End part for the first loop below. */
  KEY_PART_INFO *end_part= min_max_arg_part ? min_max_arg_part : last_part;
7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596

  *key_infix_len= 0;
  byte *key_ptr= key_infix;
  for (cur_part= first_non_group_part; cur_part != end_part; cur_part++)
  {
    /*
      Find the range tree for the current keypart. We assume that
      index_range_tree points to the leftmost keypart in the index.
    */
    for (cur_range= index_range_tree; cur_range;
         cur_range= cur_range->next_key_part)
    {
      if (cur_range->field->eq(cur_part->field))
        break;
    }
    if (!cur_range)
    {
7597 7598 7599 7600 7601 7602 7603
      if (min_max_arg_part)
        return FALSE; /* The current keypart has no range predicates at all. */
      else
      {
        *first_non_infix_part= cur_part;
        return TRUE;
      }
7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627
    }

    /* Check that the current range tree is a single point interval. */
    if (cur_range->prev || cur_range->next)
      return FALSE; /* This is not the only range predicate for the field. */
    if ((cur_range->min_flag & NO_MIN_RANGE) ||
        (cur_range->max_flag & NO_MAX_RANGE) ||
        (cur_range->min_flag & NEAR_MIN) || (cur_range->max_flag & NEAR_MAX))
      return FALSE;

    uint field_length= cur_part->store_length;
    if ((cur_range->maybe_null &&
         cur_range->min_value[0] && cur_range->max_value[0])
        ||
        (memcmp(cur_range->min_value, cur_range->max_value, field_length) == 0))
    { /* cur_range specifies 'IS NULL' or an equality condition. */
      memcpy(key_ptr, cur_range->min_value, field_length);
      key_ptr+= field_length;
      *key_infix_len+= field_length;
    }
    else
      return FALSE;
  }

7628 7629 7630
  if (!min_max_arg_part && (cur_part == last_part))
    *first_non_infix_part= last_part;

7631 7632 7633 7634
  return TRUE;
}


7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654
/*
  Find the key part referenced by a field.

  SYNOPSIS
    get_field_keypart()
    index  descriptor of an index
    field  field that possibly references some key part in index

  NOTES
    The return value can be used to get a KEY_PART_INFO pointer by
    part= index->key_part + get_field_keypart(...) - 1;

  RETURN
    Positive number which is the consecutive number of the key part, or
    0 if field does not reference any index field.
*/

static inline uint
get_field_keypart(KEY *index, Field *field)
{
7655
  KEY_PART_INFO *part, *end;
7656

7657
  for (part= index->key_part, end= part + index->key_parts; part < end; part++)
7658 7659
  {
    if (field->eq(part->field))
unknown's avatar
unknown committed
7660
      return part - index->key_part + 1;
7661
  }
7662
  return 0;
7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703
}


/*
  Find the SEL_ARG sub-tree that corresponds to the chosen index.

  SYNOPSIS
    get_index_range_tree()
    index     [in]  The ID of the index being looked for
    range_tree[in]  Tree of ranges being searched
    param     [in]  PARAM from SQL_SELECT::test_quick_select
    param_idx [out] Index in the array PARAM::key that corresponds to 'index'

  DESCRIPTION

    A SEL_TREE contains range trees for all usable indexes. This procedure
    finds the SEL_ARG sub-tree for 'index'. The members of a SEL_TREE are
    ordered in the same way as the members of PARAM::key, thus we first find
    the corresponding index in the array PARAM::key. This index is returned
    through the variable param_idx, to be used later as argument of
    check_quick_select().

  RETURN
    Pointer to the SEL_ARG subtree that corresponds to index.
*/

SEL_ARG * get_index_range_tree(uint index, SEL_TREE* range_tree, PARAM *param,
                               uint *param_idx)
{
  uint idx= 0; /* Index nr in param->key_parts */
  while (idx < param->keys)
  {
    if (index == param->real_keynr[idx])
      break;
    idx++;
  }
  *param_idx= idx;
  return(range_tree->keys[idx]);
}


7704
/*
7705
  Compute the cost of a quick_group_min_max_select for a particular index.
7706 7707

  SYNOPSIS
7708 7709 7710 7711 7712 7713 7714
    cost_group_min_max()
    table                [in] The table being accessed
    index_info           [in] The index used to access the table
    used_key_parts       [in] Number of key parts used to access the index
    group_key_parts      [in] Number of index key parts in the group prefix
    range_tree           [in] Tree of ranges for all indexes
    index_tree           [in] The range tree for the current index
unknown's avatar
unknown committed
7715 7716
    quick_prefix_records [in] Number of records retrieved by the internally
			      used quick range select if any
7717 7718 7719 7720
    have_min             [in] True if there is a MIN function
    have_max             [in] True if there is a MAX function
    read_cost           [out] The cost to retrieve rows via this quick select
    records             [out] The number of rows retrieved
7721 7722

  DESCRIPTION
unknown's avatar
unknown committed
7723 7724
    This method computes the access cost of a TRP_GROUP_MIN_MAX instance and
    the number of rows returned. It updates this->read_cost and this->records.
7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763

  NOTES
    The cost computation distinguishes several cases:
    1) No equality predicates over non-group attributes (thus no key_infix).
       If groups are bigger than blocks on the average, then we assume that it
       is very unlikely that block ends are aligned with group ends, thus even
       if we look for both MIN and MAX keys, all pairs of neighbor MIN/MAX
       keys, except for the first MIN and the last MAX keys, will be in the
       same block.  If groups are smaller than blocks, then we are going to
       read all blocks.
    2) There are equality predicates over non-group attributes.
       In this case the group prefix is extended by additional constants, and
       as a result the min/max values are inside sub-groups of the original
       groups. The number of blocks that will be read depends on whether the
       ends of these sub-groups will be contained in the same or in different
       blocks. We compute the probability for the two ends of a subgroup to be
       in two different blocks as the ratio of:
       - the number of positions of the left-end of a subgroup inside a group,
         such that the right end of the subgroup is past the end of the buffer
         containing the left-end, and
       - the total number of possible positions for the left-end of the
         subgroup, which is the number of keys in the containing group.
       We assume it is very unlikely that two ends of subsequent subgroups are
       in the same block.
    3) The are range predicates over the group attributes.
       Then some groups may be filtered by the range predicates. We use the
       selectivity of the range predicates to decide how many groups will be
       filtered.

  TODO
     - Take into account the optional range predicates over the MIN/MAX
       argument.
     - Check if we have a PK index and we use all cols - then each key is a
       group, and it will be better to use an index scan.

  RETURN
    None
*/

7764 7765 7766 7767 7768
void cost_group_min_max(TABLE* table, KEY *index_info, uint used_key_parts,
                        uint group_key_parts, SEL_TREE *range_tree,
                        SEL_ARG *index_tree, ha_rows quick_prefix_records,
                        bool have_min, bool have_max,
                        double *read_cost, ha_rows *records)
7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780
{
  uint table_records;
  uint num_groups;
  uint num_blocks;
  uint keys_per_block;
  uint keys_per_group;
  uint keys_per_subgroup; /* Average number of keys in sub-groups */
                          /* formed by a key infix. */
  double p_overlap; /* Probability that a sub-group overlaps two blocks. */
  double quick_prefix_selectivity;
  double io_cost;
  double cpu_cost= 0; /* TODO: CPU cost of index_read calls? */
unknown's avatar
unknown committed
7781
  DBUG_ENTER("cost_group_min_max");
unknown's avatar
unknown committed
7782

7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800
  table_records= table->file->records;
  keys_per_block= (table->file->block_size / 2 /
                   (index_info->key_length + table->file->ref_length)
                        + 1);
  num_blocks= (table_records / keys_per_block) + 1;

  /* Compute the number of keys in a group. */
  keys_per_group= index_info->rec_per_key[group_key_parts - 1];
  if (keys_per_group == 0) /* If there is no statistics try to guess */
    /* each group contains 10% of all records */
    keys_per_group= (table_records / 10) + 1;
  num_groups= (table_records / keys_per_group) + 1;

  /* Apply the selectivity of the quick select for group prefixes. */
  if (range_tree && (quick_prefix_records != HA_POS_ERROR))
  {
    quick_prefix_selectivity= (double) quick_prefix_records /
                              (double) table_records;
unknown's avatar
unknown committed
7801
    num_groups= (uint) rint(num_groups * quick_prefix_selectivity);
unknown's avatar
unknown committed
7802
    set_if_bigger(num_groups, 1);
7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833
  }

  if (used_key_parts > group_key_parts)
  { /*
      Compute the probability that two ends of a subgroup are inside
      different blocks.
    */
    keys_per_subgroup= index_info->rec_per_key[used_key_parts - 1];
    if (keys_per_subgroup >= keys_per_block) /* If a subgroup is bigger than */
      p_overlap= 1.0;       /* a block, it will overlap at least two blocks. */
    else
    {
      double blocks_per_group= (double) num_blocks / (double) num_groups;
      p_overlap= (blocks_per_group * (keys_per_subgroup - 1)) / keys_per_group;
      p_overlap= min(p_overlap, 1.0);
    }
    io_cost= (double) min(num_groups * (1 + p_overlap), num_blocks);
  }
  else
    io_cost= (keys_per_group > keys_per_block) ?
             (have_min && have_max) ? (double) (num_groups + 1) :
                                      (double) num_groups :
             (double) num_blocks;

  /*
    TODO: If there is no WHERE clause and no other expressions, there should be
    no CPU cost. We leave it here to make this cost comparable to that of index
    scan as computed in SQL_SELECT::test_quick_select().
  */
  cpu_cost= (double) num_groups / TIME_FOR_COMPARE;

7834
  *read_cost= io_cost + cpu_cost;
7835
  *records= num_groups;
7836 7837

  DBUG_PRINT("info",
7838 7839
             ("table rows=%u, keys/block=%u, keys/group=%u, result rows=%u, blocks=%u",
              table_records, keys_per_block, keys_per_group, *records,
7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872
              num_blocks));
  DBUG_VOID_RETURN;
}


/*
  Construct a new quick select object for queries with group by with min/max.

  SYNOPSIS
    TRP_GROUP_MIN_MAX::make_quick()
    param              Parameter from test_quick_select
    retrieve_full_rows ignored
    parent_alloc       Memory pool to use, if any.

  NOTES
    Make_quick ignores the retrieve_full_rows parameter because
    QUICK_GROUP_MIN_MAX_SELECT always performs 'index only' scans.
    The other parameter are ignored as well because all necessary
    data to create the QUICK object is computed at this TRP creation
    time.

  RETURN
    New QUICK_GROUP_MIN_MAX_SELECT object if successfully created,
    NULL o/w.
*/

QUICK_SELECT_I *
TRP_GROUP_MIN_MAX::make_quick(PARAM *param, bool retrieve_full_rows,
                              MEM_ROOT *parent_alloc)
{
  QUICK_GROUP_MIN_MAX_SELECT *quick;
  DBUG_ENTER("TRP_GROUP_MIN_MAX::make_quick");

7873 7874 7875 7876 7877
  quick= new QUICK_GROUP_MIN_MAX_SELECT(param->table,
                                        param->thd->lex->select_lex.join,
                                        have_min, have_max, min_max_arg_part,
                                        group_prefix_len, used_key_parts,
                                        index_info, index, read_cost, records,
unknown's avatar
unknown committed
7878 7879
                                        key_infix_len, key_infix,
                                        parent_alloc);
7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895
  if (!quick)
    DBUG_RETURN(NULL);

  if (quick->init())
  {
    delete quick;
    DBUG_RETURN(NULL);
  }

  if (range_tree)
  {
    DBUG_ASSERT(quick_prefix_records > 0);
    if (quick_prefix_records == HA_POS_ERROR)
      quick->quick_prefix_select= NULL; /* Can't construct a quick select. */
    else
      /* Make a QUICK_RANGE_SELECT to be used for group prefix retrieval. */
7896 7897
      quick->quick_prefix_select= get_quick_select(param, param_idx,
                                                   index_tree,
7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919
                                                   &quick->alloc);

    /*
      Extract the SEL_ARG subtree that contains only ranges for the MIN/MAX
      attribute, and create an array of QUICK_RANGES to be used by the
      new quick select.
    */
    if (min_max_arg_part)
    {
      SEL_ARG *min_max_range= index_tree;
      while (min_max_range) /* Find the tree for the MIN/MAX key part. */
      {
        if (min_max_range->field->eq(min_max_arg_part->field))
          break;
        min_max_range= min_max_range->next_key_part;
      }
      /* Scroll to the leftmost interval for the MIN/MAX argument. */
      while (min_max_range && min_max_range->prev)
        min_max_range= min_max_range->prev;
      /* Create an array of QUICK_RANGEs for the MIN/MAX argument. */
      while (min_max_range)
      {
7920
        if (quick->add_range(min_max_range))
7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962
        {
          delete quick;
          quick= NULL;
          DBUG_RETURN(NULL);
        }
        min_max_range= min_max_range->next;
      }
    }
  }
  else
    quick->quick_prefix_select= NULL;

  quick->update_key_stat();

  DBUG_RETURN(quick);
}


/*
  Construct new quick select for group queries with min/max.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::QUICK_GROUP_MIN_MAX_SELECT()
    table             The table being accessed
    join              Descriptor of the current query
    have_min          TRUE if the query selects a MIN function
    have_max          TRUE if the query selects a MAX function
    min_max_arg_part  The only argument field of all MIN/MAX functions
    group_prefix_len  Length of all key parts in the group prefix
    prefix_key_parts  All key parts in the group prefix
    index_info        The index chosen for data access
    use_index         The id of index_info
    read_cost         Cost of this access method
    records           Number of records returned
    key_infix_len     Length of the key infix appended to the group prefix
    key_infix         Infix of constants from equality predicates
    parent_alloc      Memory pool for this and quick_prefix_select data

  RETURN
    None
*/

unknown's avatar
unknown committed
7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975
QUICK_GROUP_MIN_MAX_SELECT::
QUICK_GROUP_MIN_MAX_SELECT(TABLE *table, JOIN *join_arg, bool have_min_arg,
                           bool have_max_arg,
                           KEY_PART_INFO *min_max_arg_part_arg,
                           uint group_prefix_len_arg,
                           uint used_key_parts_arg, KEY *index_info_arg,
                           uint use_index, double read_cost_arg,
                           ha_rows records_arg, uint key_infix_len_arg,
                           byte *key_infix_arg, MEM_ROOT *parent_alloc)
  :join(join_arg), index_info(index_info_arg),
   group_prefix_len(group_prefix_len_arg), have_min(have_min_arg),
   have_max(have_max_arg), seen_first_key(FALSE),
   min_max_arg_part(min_max_arg_part_arg), key_infix(key_infix_arg),
7976 7977
   key_infix_len(key_infix_len_arg), min_functions_it(NULL),
   max_functions_it(NULL)
7978 7979 7980 7981 7982 7983
{
  head=       table;
  file=       head->file;
  index=      use_index;
  record=     head->record[0];
  tmp_record= head->record[1];
7984 7985 7986
  read_time= read_cost_arg;
  records= records_arg;
  used_key_parts= used_key_parts_arg;
7987 7988 7989
  real_prefix_len= group_prefix_len + key_infix_len;
  group_prefix= NULL;
  min_max_arg_len= min_max_arg_part ? min_max_arg_part->store_length : 0;
unknown's avatar
unknown committed
7990 7991 7992 7993 7994 7995

  /*
    We can't have parent_alloc set as the init function can't handle this case
    yet.
  */
  DBUG_ASSERT(!parent_alloc);
7996 7997 7998
  if (!parent_alloc)
  {
    init_sql_alloc(&alloc, join->thd->variables.range_alloc_block_size, 0);
unknown's avatar
unknown committed
7999
    join->thd->mem_root= &alloc;
8000 8001
  }
  else
8002
    bzero(&alloc, sizeof(MEM_ROOT));            // ensure that it's not used
8003 8004 8005 8006 8007 8008 8009 8010 8011
}


/*
  Do post-constructor initialization.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::init()
  
8012 8013 8014 8015 8016 8017
  DESCRIPTION
    The method performs initialization that cannot be done in the constructor
    such as memory allocations that may fail. It allocates memory for the
    group prefix and inifix buffers, and for the lists of MIN/MAX item to be
    updated during execution.

8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052
  RETURN
    0      OK
    other  Error code
*/

int QUICK_GROUP_MIN_MAX_SELECT::init()
{
  if (group_prefix) /* Already initialized. */
    return 0;

  if (!(last_prefix= (byte*) alloc_root(&alloc, group_prefix_len)))
      return 1;
  /*
    We may use group_prefix to store keys with all select fields, so allocate
    enough space for it.
  */
  if (!(group_prefix= (byte*) alloc_root(&alloc,
                                         real_prefix_len + min_max_arg_len)))
    return 1;

  if (key_infix_len > 0)
  {
    /*
      The memory location pointed to by key_infix will be deleted soon, so
      allocate a new buffer and copy the key_infix into it.
    */
    byte *tmp_key_infix= (byte*) alloc_root(&alloc, key_infix_len);
    if (!tmp_key_infix)
      return 1;
    memcpy(tmp_key_infix, this->key_infix, key_infix_len);
    this->key_infix= tmp_key_infix;
  }

  if (min_max_arg_part)
  {
unknown's avatar
unknown committed
8053
    if (my_init_dynamic_array(&min_max_ranges, sizeof(QUICK_RANGE*), 16, 16))
8054 8055
      return 1;

8056 8057
    if (have_min)
    {
unknown's avatar
unknown committed
8058
      if (!(min_functions= new List<Item_sum>))
8059 8060 8061 8062 8063 8064
        return 1;
    }
    else
      min_functions= NULL;
    if (have_max)
    {
unknown's avatar
unknown committed
8065
      if (!(max_functions= new List<Item_sum>))
8066 8067 8068 8069
        return 1;
    }
    else
      max_functions= NULL;
8070

8071 8072 8073
    Item_sum *min_max_item;
    Item_sum **func_ptr= join->sum_funcs;
    while ((min_max_item= *(func_ptr++)))
8074
    {
8075 8076 8077 8078
      if (have_min && (min_max_item->sum_func() == Item_sum::MIN_FUNC))
        min_functions->push_back(min_max_item);
      else if (have_max && (min_max_item->sum_func() == Item_sum::MAX_FUNC))
        max_functions->push_back(min_max_item);
8079 8080
    }

8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091
    if (have_min)
    {
      if (!(min_functions_it= new List_iterator<Item_sum>(*min_functions)))
        return 1;
    }

    if (have_max)
    {
      if (!(max_functions_it= new List_iterator<Item_sum>(*max_functions)))
        return 1;
    }
8092
  }
unknown's avatar
unknown committed
8093 8094
  else
    min_max_ranges.elements= 0;
8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107

  return 0;
}


QUICK_GROUP_MIN_MAX_SELECT::~QUICK_GROUP_MIN_MAX_SELECT()
{
  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::~QUICK_GROUP_MIN_MAX_SELECT");
  if (file->inited != handler::NONE) 
    file->ha_index_end();
  if (min_max_arg_part)
    delete_dynamic(&min_max_ranges);
  free_root(&alloc,MYF(0));
8108 8109
  delete min_functions_it;
  delete max_functions_it;
8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128
  delete quick_prefix_select;
  DBUG_VOID_RETURN; 
}


/*
  Eventually create and add a new quick range object.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::add_range()
    sel_range  Range object from which a 

  NOTES
    Construct a new QUICK_RANGE object from a SEL_ARG object, and
    add it to the array min_max_ranges. If sel_arg is an infinite
    range, e.g. (x < 5 or x > 4), then skip it and do not construct
    a quick range.

  RETURN
8129 8130
    FALSE on success
    TRUE  otherwise
8131 8132 8133 8134 8135 8136 8137 8138
*/

bool QUICK_GROUP_MIN_MAX_SELECT::add_range(SEL_ARG *sel_range)
{
  QUICK_RANGE *range;
  uint range_flag= sel_range->min_flag | sel_range->max_flag;

  /* Skip (-inf,+inf) ranges, e.g. (x < 5 or x > 4). */
unknown's avatar
unknown committed
8139
  if ((range_flag & NO_MIN_RANGE) && (range_flag & NO_MAX_RANGE))
8140
    return FALSE;
8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155

  if (!(sel_range->min_flag & NO_MIN_RANGE) &&
      !(sel_range->max_flag & NO_MAX_RANGE))
  {
    if (sel_range->maybe_null &&
        sel_range->min_value[0] && sel_range->max_value[0])
      range_flag|= NULL_RANGE; /* IS NULL condition */
    else if (memcmp(sel_range->min_value, sel_range->max_value,
                    min_max_arg_len) == 0)
      range_flag|= EQ_RANGE;  /* equality condition */
  }
  range= new QUICK_RANGE(sel_range->min_value, min_max_arg_len,
                         sel_range->max_value, min_max_arg_len,
                         range_flag);
  if (!range)
8156
    return TRUE;
8157
  if (insert_dynamic(&min_max_ranges, (gptr)&range))
8158 8159
    return TRUE;
  return FALSE;
8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188
}


/*
  Determine the total number and length of the keys that will be used for
  index lookup.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::update_key_stat()

  DESCRIPTION
    The total length of the keys used for index lookup depends on whether
    there are any predicates referencing the min/max argument, and/or if
    the min/max argument field can be NULL.
    This function does an optimistic analysis whether the search key might
    be extended by a constant for the min/max keypart. It is 'optimistic'
    because during actual execution it may happen that a particular range
    is skipped, and then a shorter key will be used. However this is data
    dependent and can't be easily estimated here.

  RETURN
    None
*/

void QUICK_GROUP_MIN_MAX_SELECT::update_key_stat()
{
  max_used_key_length= real_prefix_len;
  if (min_max_ranges.elements > 0)
  {
8189
    QUICK_RANGE *cur_range;
8190 8191 8192 8193 8194 8195 8196
    if (have_min)
    { /* Check if the right-most range has a lower boundary. */
      get_dynamic(&min_max_ranges, (gptr)&cur_range,
                  min_max_ranges.elements - 1);
      if (!(cur_range->flag & NO_MIN_RANGE))
      {
        max_used_key_length+= min_max_arg_len;
8197
        used_key_parts++;
8198 8199 8200 8201 8202 8203 8204 8205 8206
        return;
      }
    }
    if (have_max)
    { /* Check if the left-most range has an upper boundary. */
      get_dynamic(&min_max_ranges, (gptr)&cur_range, 0);
      if (!(cur_range->flag & NO_MAX_RANGE))
      {
        max_used_key_length+= min_max_arg_len;
8207
        used_key_parts++;
8208 8209 8210 8211
        return;
      }
    }
  }
8212 8213
  else if (have_min && min_max_arg_part &&
           min_max_arg_part->field->real_maybe_null())
8214
  {
8215 8216 8217 8218 8219 8220 8221 8222
    /*
      If a MIN/MAX argument value is NULL, we can quickly determine
      that we're in the beginning of the next group, because NULLs
      are always < any other value. This allows us to quickly
      determine the end of the current group and jump to the next
      group (see next_min()) and thus effectively increases the
      usable key length.
    */
8223
    max_used_key_length+= min_max_arg_len;
8224
    used_key_parts++;
8225 8226 8227 8228 8229 8230 8231 8232 8233 8234
  }
}


/*
  Initialize a quick group min/max select for key retrieval.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::reset()

8235 8236 8237 8238
  DESCRIPTION
    Initialize the index chosen for access and find and store the prefix
    of the last group. The method is expensive since it performs disk access.

8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251
  RETURN
    0      OK
    other  Error code
*/

int QUICK_GROUP_MIN_MAX_SELECT::reset(void)
{
  int result;
  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::reset");

  file->extra(HA_EXTRA_KEYREAD); /* We need only the key attributes */
  result= file->ha_index_init(index);
  result= file->index_last(record);
unknown's avatar
unknown committed
8252 8253
  if (result == HA_ERR_END_OF_FILE)
    DBUG_RETURN(0);
8254 8255
  if (result)
    DBUG_RETURN(result);
unknown's avatar
unknown committed
8256 8257
  if (quick_prefix_select && quick_prefix_select->reset())
    DBUG_RETURN(1);
8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296
  /* Save the prefix of the last group. */
  key_copy(last_prefix, record, index_info, group_prefix_len);

  DBUG_RETURN(0);
}



/* 
  Get the next key containing the MIN and/or MAX key for the next group.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::get_next()

  DESCRIPTION
    The method finds the next subsequent group of records that satisfies the
    query conditions and finds the keys that contain the MIN/MAX values for
    the key part referenced by the MIN/MAX function(s). Once a group and its
    MIN/MAX values are found, store these values in the Item_sum objects for
    the MIN/MAX functions. The rest of the values in the result row are stored
    in the Item_field::result_field of each select field. If the query does
    not contain MIN and/or MAX functions, then the function only finds the
    group prefix, which is a query answer itself.

  NOTES
    If both MIN and MAX are computed, then we use the fact that if there is
    no MIN key, there can't be a MAX key as well, so we can skip looking
    for a MAX key in this case.

  RETURN
    0                  on success
    HA_ERR_END_OF_FILE if returned all keys
    other              if some error occurred
*/

int QUICK_GROUP_MIN_MAX_SELECT::get_next()
{
  int min_res= 0;
  int max_res= 0;
unknown's avatar
unknown committed
8297 8298 8299 8300 8301 8302 8303
#ifdef HPUX11
  /*
    volatile is required by a bug in the HP compiler due to which the
    last test of result fails.
  */
  volatile int result;
#else
8304
  int result;
unknown's avatar
unknown committed
8305
#endif
8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345
  int is_last_prefix;

  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::get_next");

  /*
    Loop until a group is found that satisfies all query conditions or the last
    group is reached.
  */
  do
  {
    result= next_prefix();
    /*
      Check if this is the last group prefix. Notice that at this point
      this->record contains the current prefix in record format.
    */
    is_last_prefix= key_cmp(index_info->key_part, last_prefix,
                            group_prefix_len);
    DBUG_ASSERT(is_last_prefix <= 0);
    if (result == HA_ERR_KEY_NOT_FOUND)
      continue;
    else if (result)
      break;

    if (have_min)
    {
      min_res= next_min();
      if (min_res == 0)
        update_min_result();
    }
    /* If there is no MIN in the group, there is no MAX either. */
    if ((have_max && !have_min) ||
        (have_max && have_min && (min_res == 0)))
    {
      max_res= next_max();
      if (max_res == 0)
        update_max_result();
      /* If a MIN was found, a MAX must have been found as well. */
      DBUG_ASSERT((have_max && !have_min) ||
                  (have_max && have_min && (max_res == 0)));
    }
8346
    /*
unknown's avatar
unknown committed
8347
      If this is just a GROUP BY or DISTINCT without MIN or MAX and there
8348 8349 8350 8351 8352 8353 8354
      are equality predicates for the key parts after the group, find the
      first sub-group with the extended prefix.
    */
    if (!have_min && !have_max && key_infix_len > 0)
      result= file->index_read(record, group_prefix, real_prefix_len,
                               HA_READ_KEY_EXACT);

8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380
    result= have_min ? min_res : have_max ? max_res : result;
  }
  while (result == HA_ERR_KEY_NOT_FOUND && is_last_prefix != 0);

  if (result == 0)
    /*
      Partially mimic the behavior of end_select_send. Copy the
      field data from Item_field::field into Item_field::result_field
      of each non-aggregated field (the group fields, and optionally
      other fields in non-ANSI SQL mode).
    */
    copy_fields(&join->tmp_table_param);
  else if (result == HA_ERR_KEY_NOT_FOUND)
    result= HA_ERR_END_OF_FILE;

  DBUG_RETURN(result);
}


/*
  Retrieve the minimal key in the next group.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_min()

  DESCRIPTION
8381 8382
    Find the minimal key within this group such that the key satisfies the query
    conditions and NULL semantics. The found key is loaded into this->record.
8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408

  IMPLEMENTATION
    Depending on the values of min_max_ranges.elements, key_infix_len, and
    whether there is a  NULL in the MIN field, this function may directly
    return without any data access. In this case we use the key loaded into
    this->record by the call to this->next_prefix() just before this call.

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if no MIN key was found that fulfills all conditions.
    other                if some error occurred
*/

int QUICK_GROUP_MIN_MAX_SELECT::next_min()
{
  int result= 0;
  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_min");

  /* Find the MIN key using the eventually extended group prefix. */
  if (min_max_ranges.elements > 0)
  {
    if ((result= next_min_in_range()))
      DBUG_RETURN(result);
  }
  else
  {
unknown's avatar
unknown committed
8409
    /* Apply the constant equality conditions to the non-group select fields */
8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442
    if (key_infix_len > 0)
    {
      if ((result= file->index_read(record, group_prefix, real_prefix_len,
                                    HA_READ_KEY_EXACT)))
        DBUG_RETURN(result);
    }

    /*
      If the min/max argument field is NULL, skip subsequent rows in the same
      group with NULL in it. Notice that:
      - if the first row in a group doesn't have a NULL in the field, no row
      in the same group has (because NULL < any other value),
      - min_max_arg_part->field->ptr points to some place in 'record'.
    */
    if (min_max_arg_part && min_max_arg_part->field->is_null())
    {
      /* Find the first subsequent record without NULL in the MIN/MAX field. */
      key_copy(tmp_record, record, index_info, 0);
      result= file->index_read(record, tmp_record,
                               real_prefix_len + min_max_arg_len,
                               HA_READ_AFTER_KEY);
      /*
        Check if the new record belongs to the current group by comparing its
        prefix with the group's prefix. If it is from the next group, then the
        whole group has NULLs in the MIN/MAX field, so use the first record in
        the group as a result.
        TODO:
        It is possible to reuse this new record as the result candidate for the
        next call to next_min(), and to save one lookup in the next call. For
        this add a new member 'this->next_group_prefix'.
      */
      if (!result)
      {
unknown's avatar
unknown committed
8443
        if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
8444
          key_restore(record, tmp_record, index_info, 0);
unknown's avatar
unknown committed
8445 8446
      }
      else if (result == HA_ERR_KEY_NOT_FOUND) 
8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465
        result= 0; /* There is a result in any case. */
    }
  }

  /*
    If the MIN attribute is non-nullable, this->record already contains the
    MIN key in the group, so just return.
  */
  DBUG_RETURN(result);
}


/* 
  Retrieve the maximal key in the next group.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_max()

  DESCRIPTION
8466
    Lookup the maximal key of the group, and store it into this->record.
8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if no MAX key was found that fulfills all conditions.
    other                if some error occurred
*/

int QUICK_GROUP_MIN_MAX_SELECT::next_max()
{
  int result;

  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_max");

  /* Get the last key in the (possibly extended) group. */
  if (min_max_ranges.elements > 0)
    result= next_max_in_range();
  else
    result= file->index_read(record, group_prefix, real_prefix_len,
                             HA_READ_PREFIX_LAST);
  DBUG_RETURN(result);
}


/*
  Determine the prefix of the next group.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_prefix()

  DESCRIPTION
    Determine the prefix of the next group that satisfies the query conditions.
    If there is a range condition referencing the group attributes, use a
    QUICK_RANGE_SELECT object to retrieve the *first* key that satisfies the
    condition. If there is a key infix of constants, append this infix
    immediately after the group attributes. The possibly extended prefix is
    stored in this->group_prefix. The first key of the found group is stored in
    this->record, on which relies this->next_min().

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if there is no key with the formed prefix
    HA_ERR_END_OF_FILE   if there are no more keys
    other                if some error occurred
*/
int QUICK_GROUP_MIN_MAX_SELECT::next_prefix()
{
  int result;
  DBUG_ENTER("QUICK_GROUP_MIN_MAX_SELECT::next_prefix");

  if (quick_prefix_select)
  {
    byte *cur_prefix= seen_first_key ? group_prefix : NULL;
    if ((result= quick_prefix_select->get_next_prefix(group_prefix_len,
                                                      cur_prefix)))
      DBUG_RETURN(result);
    seen_first_key= TRUE;
  }
  else
  {
    if (!seen_first_key)
    {
      result= file->index_first(record);
      if (result)
        DBUG_RETURN(result);
      seen_first_key= TRUE;
    }
    else
    {
      /* Load the first key in this group into record. */
      result= file->index_read(record, group_prefix, group_prefix_len,
                               HA_READ_AFTER_KEY);
      if (result)
        DBUG_RETURN(result);
    }
  }

  /* Save the prefix of this group for subsequent calls. */
  key_copy(group_prefix, record, index_info, group_prefix_len);
  /* Append key_infix to group_prefix. */
  if (key_infix_len > 0)
    memcpy(group_prefix + group_prefix_len,
           key_infix, key_infix_len);

  DBUG_RETURN(0);
}


/*
  Find the minimal key in a group that satisfies some range conditions for the
  min/max argument field.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_min_in_range()

  DESCRIPTION
    Given the sequence of ranges min_max_ranges, find the minimal key that is
    in the left-most possible range. If there is no such key, then the current
    group does not have a MIN key that satisfies the WHERE clause. If a key is
    found, its value is stored in this->record.

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if there is no key with the given prefix in any of
                         the ranges
    other                if some error
*/

int QUICK_GROUP_MIN_MAX_SELECT::next_min_in_range()
{
  ha_rkey_function find_flag;
  uint search_prefix_len;
  QUICK_RANGE *cur_range;
  bool found_null= FALSE;
  int result= HA_ERR_KEY_NOT_FOUND;

  DBUG_ASSERT(min_max_ranges.elements > 0);

  for (uint range_idx= 0; range_idx < min_max_ranges.elements; range_idx++)
  { /* Search from the left-most range to the right. */
    get_dynamic(&min_max_ranges, (gptr)&cur_range, range_idx);

    /*
      If the current value for the min/max argument is bigger than the right
      boundary of cur_range, there is no need to check this range.
    */
    if (range_idx != 0 && !(cur_range->flag & NO_MAX_RANGE) &&
8593
        (key_cmp(min_max_arg_part, (const byte*) cur_range->max_key,
8594
                 min_max_arg_len) == 1))
8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618
      continue;

    if (cur_range->flag & NO_MIN_RANGE)
    {
      find_flag= HA_READ_KEY_EXACT;
      search_prefix_len= real_prefix_len;
    }
    else
    {
      /* Extend the search key with the lower boundary for this range. */
      memcpy(group_prefix + real_prefix_len, cur_range->min_key,
             cur_range->min_length);
      search_prefix_len= real_prefix_len + min_max_arg_len;
      find_flag= (cur_range->flag & (EQ_RANGE | NULL_RANGE)) ?
                 HA_READ_KEY_EXACT : (cur_range->flag & NEAR_MIN) ?
                 HA_READ_AFTER_KEY : HA_READ_KEY_OR_NEXT;
    }

    result= file->index_read(record, group_prefix, search_prefix_len,
                             find_flag);
    if ((result == HA_ERR_KEY_NOT_FOUND) &&
        (cur_range->flag & (EQ_RANGE | NULL_RANGE)))
        continue; /* Check the next range. */
    else if (result)
8619 8620 8621 8622 8623 8624
    {
      /*
        In all other cases (HA_ERR_*, HA_READ_KEY_EXACT with NO_MIN_RANGE,
        HA_READ_AFTER_KEY, HA_READ_KEY_OR_NEXT) if the lookup failed for this
        range, it can't succeed for any other subsequent range.
      */
8625
      break;
8626
    }
8627 8628 8629 8630 8631 8632

    /* A key was found. */
    if (cur_range->flag & EQ_RANGE)
      break; /* No need to perform the checks below for equal keys. */

    if (cur_range->flag & NULL_RANGE)
8633 8634 8635 8636 8637 8638
    {
      /*
        Remember this key, and continue looking for a non-NULL key that
        satisfies some other condition.
      */
      memcpy(tmp_record, record, head->s->rec_buff_length);
8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678
      found_null= TRUE;
      continue;
    }

    /* Check if record belongs to the current group. */
    if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
    {
      result = HA_ERR_KEY_NOT_FOUND;
      continue;
    }

    /* If there is an upper limit, check if the found key is in the range. */
    if ( !(cur_range->flag & NO_MAX_RANGE) )
    {
      /* Compose the MAX key for the range. */
      byte *max_key= (byte*) my_alloca(real_prefix_len + min_max_arg_len);
      memcpy(max_key, group_prefix, real_prefix_len);
      memcpy(max_key + real_prefix_len, cur_range->max_key,
             cur_range->max_length);
      /* Compare the found key with max_key. */
      int cmp_res= key_cmp(index_info->key_part, max_key,
                           real_prefix_len + min_max_arg_len);
      if (!((cur_range->flag & NEAR_MAX) && (cmp_res == -1) ||
            (cmp_res <= 0)))
      {
        result = HA_ERR_KEY_NOT_FOUND;
        continue;
      }
    }
    /* If we got to this point, the current key qualifies as MIN. */
    DBUG_ASSERT(result == 0);
    break;
  }
  /*
    If there was a key with NULL in the MIN/MAX field, and there was no other
    key without NULL from the same group that satisfies some other condition,
    then use the key with the NULL.
  */
  if (found_null && result)
  {
8679
    memcpy(record, tmp_record, head->s->rec_buff_length);
8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724
    result= 0;
  }
  return result;
}


/*
  Find the maximal key in a group that satisfies some range conditions for the
  min/max argument field.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::next_max_in_range()

  DESCRIPTION
    Given the sequence of ranges min_max_ranges, find the maximal key that is
    in the right-most possible range. If there is no such key, then the current
    group does not have a MAX key that satisfies the WHERE clause. If a key is
    found, its value is stored in this->record.

  RETURN
    0                    on success
    HA_ERR_KEY_NOT_FOUND if there is no key with the given prefix in any of
                         the ranges
    other                if some error
*/

int QUICK_GROUP_MIN_MAX_SELECT::next_max_in_range()
{
  ha_rkey_function find_flag;
  uint search_prefix_len;
  QUICK_RANGE *cur_range;
  int result;

  DBUG_ASSERT(min_max_ranges.elements > 0);

  for (uint range_idx= min_max_ranges.elements; range_idx > 0; range_idx--)
  { /* Search from the right-most range to the left. */
    get_dynamic(&min_max_ranges, (gptr)&cur_range, range_idx - 1);

    /*
      If the current value for the min/max argument is smaller than the left
      boundary of cur_range, there is no need to check this range.
    */
    if (range_idx != min_max_ranges.elements &&
        !(cur_range->flag & NO_MIN_RANGE) &&
8725
        (key_cmp(min_max_arg_part, (const byte*) cur_range->min_key,
8726
                 min_max_arg_len) == -1))
8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749
      continue;

    if (cur_range->flag & NO_MAX_RANGE)
    {
      find_flag= HA_READ_PREFIX_LAST;
      search_prefix_len= real_prefix_len;
    }
    else
    {
      /* Extend the search key with the upper boundary for this range. */
      memcpy(group_prefix + real_prefix_len, cur_range->max_key,
             cur_range->max_length);
      search_prefix_len= real_prefix_len + min_max_arg_len;
      find_flag= (cur_range->flag & EQ_RANGE) ?
                 HA_READ_KEY_EXACT : (cur_range->flag & NEAR_MAX) ?
                 HA_READ_BEFORE_KEY : HA_READ_PREFIX_LAST_OR_PREV;
    }

    result= file->index_read(record, group_prefix, search_prefix_len,
                             find_flag);

    if ((result == HA_ERR_KEY_NOT_FOUND) && (cur_range->flag & EQ_RANGE))
      continue; /* Check the next range. */
unknown's avatar
unknown committed
8750 8751
    if (result)
    {
8752 8753 8754 8755 8756
      /*
        In no key was found with this upper bound, there certainly are no keys
        in the ranges to the left.
      */
      return result;
unknown's avatar
unknown committed
8757
    }
8758 8759
    /* A key was found. */
    if (cur_range->flag & EQ_RANGE)
unknown's avatar
unknown committed
8760
      return 0; /* No need to perform the checks below for equal keys. */
8761 8762 8763

    /* Check if record belongs to the current group. */
    if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
unknown's avatar
unknown committed
8764
      continue;                                 // Row not found
8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852

    /* If there is a lower limit, check if the found key is in the range. */
    if ( !(cur_range->flag & NO_MIN_RANGE) )
    {
      /* Compose the MIN key for the range. */
      byte *min_key= (byte*) my_alloca(real_prefix_len + min_max_arg_len);
      memcpy(min_key, group_prefix, real_prefix_len);
      memcpy(min_key + real_prefix_len, cur_range->min_key,
             cur_range->min_length);
      /* Compare the found key with min_key. */
      int cmp_res= key_cmp(index_info->key_part, min_key,
                           real_prefix_len + min_max_arg_len);
      if (!((cur_range->flag & NEAR_MIN) && (cmp_res == 1) ||
            (cmp_res >= 0)))
        continue;
    }
    /* If we got to this point, the current key qualifies as MAX. */
    return result;
  }
  return HA_ERR_KEY_NOT_FOUND;
}


/*
  Update all MIN function results with the newly found value.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::update_min_result()

  DESCRIPTION
    The method iterates through all MIN functions and updates the result value
    of each function by calling Item_sum::reset(), which in turn picks the new
    result value from this->head->record[0], previously updated by
    next_min(). The updated value is stored in a member variable of each of the
    Item_sum objects, depending on the value type.

  IMPLEMENTATION
    The update must be done separately for MIN and MAX, immediately after
    next_min() was called and before next_max() is called, because both MIN and
    MAX take their result value from the same buffer this->head->record[0]
    (i.e.  this->record).

  RETURN
    None
*/

void QUICK_GROUP_MIN_MAX_SELECT::update_min_result()
{
  Item_sum *min_func;

  min_functions_it->rewind();
  while ((min_func= (*min_functions_it)++))
    min_func->reset();
}


/*
  Update all MAX function results with the newly found value.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::update_max_result()

  DESCRIPTION
    The method iterates through all MAX functions and updates the result value
    of each function by calling Item_sum::reset(), which in turn picks the new
    result value from this->head->record[0], previously updated by
    next_max(). The updated value is stored in a member variable of each of the
    Item_sum objects, depending on the value type.

  IMPLEMENTATION
    The update must be done separately for MIN and MAX, immediately after
    next_max() was called, because both MIN and MAX take their result value
    from the same buffer this->head->record[0] (i.e.  this->record).

  RETURN
    None
*/

void QUICK_GROUP_MIN_MAX_SELECT::update_max_result()
{
  Item_sum *max_func;

  max_functions_it->rewind();
  while ((max_func= (*max_functions_it)++))
    max_func->reset();
}


8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867
/*
  Append comma-separated list of keys this quick select uses to key_names;
  append comma-separated list of corresponding used lengths to used_lengths.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::add_keys_and_lengths()
    key_names    [out] Names of used indexes
    used_lengths [out] Corresponding lengths of the index names

  DESCRIPTION
    This method is used by select_describe to extract the names of the
    indexes used by a quick select.

*/

8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878
void QUICK_GROUP_MIN_MAX_SELECT::add_keys_and_lengths(String *key_names,
                                                      String *used_lengths)
{
  char buf[64];
  uint length;
  key_names->append(index_info->name);
  length= longlong2str(max_used_key_length, buf, 10) - buf;
  used_lengths->append(buf, length);
}


8879
#ifndef DBUG_OFF
8880

8881 8882 8883 8884 8885 8886 8887 8888 8889
static void print_sel_tree(PARAM *param, SEL_TREE *tree, key_map *tree_map,
                           const char *msg)
{
  SEL_ARG **key,**end;
  int idx;
  char buff[1024];
  DBUG_ENTER("print_sel_tree");
  if (! _db_on_)
    DBUG_VOID_RETURN;
8890

8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905
  String tmp(buff,sizeof(buff),&my_charset_bin);
  tmp.length(0);
  for (idx= 0,key=tree->keys, end=key+param->keys ;
       key != end ;
       key++,idx++)
  {
    if (tree_map->is_set(idx))
    {
      uint keynr= param->real_keynr[idx];
      if (tmp.length())
        tmp.append(',');
      tmp.append(param->table->key_info[keynr].name);
    }
  }
  if (!tmp.length())
8906
    tmp.append(STRING_WITH_LEN("(empty)"));
8907

8908
  DBUG_PRINT("info", ("SEL_TREE %p (%s) scans:%s", tree, msg, tmp.ptr()));
8909

8910 8911
  DBUG_VOID_RETURN;
}
8912

8913 8914 8915 8916

static void print_ror_scans_arr(TABLE *table, const char *msg,
                                struct st_ror_scan_info **start,
                                struct st_ror_scan_info **end)
8917
{
8918 8919 8920 8921 8922 8923 8924
  DBUG_ENTER("print_ror_scans");
  if (! _db_on_)
    DBUG_VOID_RETURN;

  char buff[1024];
  String tmp(buff,sizeof(buff),&my_charset_bin);
  tmp.length(0);
unknown's avatar
unknown committed
8925
  for (;start != end; start++)
8926
  {
8927 8928 8929
    if (tmp.length())
      tmp.append(',');
    tmp.append(table->key_info[(*start)->keynr].name);
8930
  }
8931
  if (!tmp.length())
8932
    tmp.append(STRING_WITH_LEN("(empty)"));
8933 8934
  DBUG_PRINT("info", ("ROR key scans (%s): %s", msg, tmp.ptr()));
  DBUG_VOID_RETURN;
8935 8936 8937
}


unknown's avatar
unknown committed
8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948
/*****************************************************************************
** Print a quick range for debugging
** TODO:
** This should be changed to use a String to store each row instead
** of locking the DEBUG stream !
*****************************************************************************/

static void
print_key(KEY_PART *key_part,const char *key,uint used_length)
{
  char buff[1024];
unknown's avatar
unknown committed
8949
  const char *key_end= key+used_length;
unknown's avatar
unknown committed
8950
  String tmp(buff,sizeof(buff),&my_charset_bin);
unknown's avatar
unknown committed
8951
  uint store_length;
unknown's avatar
unknown committed
8952

unknown's avatar
unknown committed
8953
  for (; key < key_end; key+=store_length, key_part++)
unknown's avatar
unknown committed
8954
  {
unknown's avatar
unknown committed
8955 8956 8957
    Field *field=      key_part->field;
    store_length= key_part->store_length;

unknown's avatar
unknown committed
8958 8959
    if (field->real_maybe_null())
    {
unknown's avatar
unknown committed
8960
      if (*key)
unknown's avatar
unknown committed
8961 8962 8963 8964
      {
	fwrite("NULL",sizeof(char),4,DBUG_FILE);
	continue;
      }
unknown's avatar
unknown committed
8965 8966
      key++;					// Skip null byte
      store_length--;
unknown's avatar
unknown committed
8967
    }
8968
    field->set_key_image((char*) key, key_part->length);
unknown's avatar
unknown committed
8969 8970 8971 8972
    if (field->type() == MYSQL_TYPE_BIT)
      (void) field->val_int_as_str(&tmp, 1);
    else
      field->val_str(&tmp);
unknown's avatar
unknown committed
8973
    fwrite(tmp.ptr(),sizeof(char),tmp.length(),DBUG_FILE);
unknown's avatar
unknown committed
8974 8975
    if (key+store_length < key_end)
      fputc('/',DBUG_FILE);
unknown's avatar
unknown committed
8976 8977 8978
  }
}

unknown's avatar
unknown committed
8979

8980
static void print_quick(QUICK_SELECT_I *quick, const key_map *needed_reg)
unknown's avatar
unknown committed
8981
{
8982
  char buf[MAX_KEY/8+1];
8983
  DBUG_ENTER("print_quick");
unknown's avatar
unknown committed
8984 8985
  if (! _db_on_ || !quick)
    DBUG_VOID_RETURN;
8986
  DBUG_LOCK_FILE;
unknown's avatar
unknown committed
8987

unknown's avatar
unknown committed
8988
  quick->dbug_dump(0, TRUE);
8989
  fprintf(DBUG_FILE,"other_keys: 0x%s:\n", needed_reg->print(buf));
unknown's avatar
unknown committed
8990

8991
  DBUG_UNLOCK_FILE;
unknown's avatar
unknown committed
8992 8993 8994
  DBUG_VOID_RETURN;
}

unknown's avatar
unknown committed
8995

8996
static void print_rowid(byte* val, int len)
unknown's avatar
unknown committed
8997
{
8998
  byte *pb;
unknown's avatar
unknown committed
8999
  DBUG_LOCK_FILE;
9000 9001 9002 9003 9004 9005 9006 9007 9008 9009
  fputc('\"', DBUG_FILE);
  for (pb= val; pb!= val + len; ++pb)
    fprintf(DBUG_FILE, "%c", *pb);
  fprintf(DBUG_FILE, "\", hex: ");

  for (pb= val; pb!= val + len; ++pb)
    fprintf(DBUG_FILE, "%x ", *pb);
  fputc('\n', DBUG_FILE);
  DBUG_UNLOCK_FILE;
}
9010

9011 9012 9013 9014
void QUICK_RANGE_SELECT::dbug_dump(int indent, bool verbose)
{
  fprintf(DBUG_FILE, "%*squick range select, key %s, length: %d\n",
	  indent, "", head->key_info[index].name, max_used_key_length);
unknown's avatar
unknown committed
9015

9016
  if (verbose)
unknown's avatar
unknown committed
9017
  {
9018 9019
    QUICK_RANGE *range;
    QUICK_RANGE **pr= (QUICK_RANGE**)ranges.buffer;
unknown's avatar
unknown committed
9020
    QUICK_RANGE **last_range= pr + ranges.elements;
9021
    for (; pr!=last_range; ++pr)
unknown's avatar
unknown committed
9022
    {
9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033
      fprintf(DBUG_FILE, "%*s", indent + 2, "");
      range= *pr;
      if (!(range->flag & NO_MIN_RANGE))
      {
        print_key(key_parts,range->min_key,range->min_length);
        if (range->flag & NEAR_MIN)
	  fputs(" < ",DBUG_FILE);
        else
	  fputs(" <= ",DBUG_FILE);
      }
      fputs("X",DBUG_FILE);
unknown's avatar
unknown committed
9034

9035 9036 9037 9038 9039 9040 9041 9042 9043
      if (!(range->flag & NO_MAX_RANGE))
      {
        if (range->flag & NEAR_MAX)
	  fputs(" < ",DBUG_FILE);
        else
	  fputs(" <= ",DBUG_FILE);
        print_key(key_parts,range->max_key,range->max_length);
      }
      fputs("\n",DBUG_FILE);
unknown's avatar
unknown committed
9044 9045
    }
  }
9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057
}

void QUICK_INDEX_MERGE_SELECT::dbug_dump(int indent, bool verbose)
{
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  QUICK_RANGE_SELECT *quick;
  fprintf(DBUG_FILE, "%*squick index_merge select\n", indent, "");
  fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
  while ((quick= it++))
    quick->dbug_dump(indent+2, verbose);
  if (pk_quick_select)
  {
unknown's avatar
unknown committed
9058
    fprintf(DBUG_FILE, "%*sclustered PK quick:\n", indent, "");
9059 9060 9061 9062 9063 9064 9065 9066 9067
    pk_quick_select->dbug_dump(indent+2, verbose);
  }
  fprintf(DBUG_FILE, "%*s}\n", indent, "");
}

void QUICK_ROR_INTERSECT_SELECT::dbug_dump(int indent, bool verbose)
{
  List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
  QUICK_RANGE_SELECT *quick;
unknown's avatar
unknown committed
9068
  fprintf(DBUG_FILE, "%*squick ROR-intersect select, %scovering\n",
9069 9070 9071
          indent, "", need_to_fetch_row? "":"non-");
  fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
  while ((quick= it++))
unknown's avatar
unknown committed
9072
    quick->dbug_dump(indent+2, verbose);
9073 9074
  if (cpk_quick)
  {
unknown's avatar
unknown committed
9075
    fprintf(DBUG_FILE, "%*sclustered PK quick:\n", indent, "");
9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089
    cpk_quick->dbug_dump(indent+2, verbose);
  }
  fprintf(DBUG_FILE, "%*s}\n", indent, "");
}

void QUICK_ROR_UNION_SELECT::dbug_dump(int indent, bool verbose)
{
  List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
  QUICK_SELECT_I *quick;
  fprintf(DBUG_FILE, "%*squick ROR-union select\n", indent, "");
  fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
  while ((quick= it++))
    quick->dbug_dump(indent+2, verbose);
  fprintf(DBUG_FILE, "%*s}\n", indent, "");
unknown's avatar
unknown committed
9090 9091
}

9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135

/*
  Print quick select information to DBUG_FILE.

  SYNOPSIS
    QUICK_GROUP_MIN_MAX_SELECT::dbug_dump()
    indent  Indentation offset
    verbose If TRUE show more detailed output.

  DESCRIPTION
    Print the contents of this quick select to DBUG_FILE. The method also
    calls dbug_dump() for the used quick select if any.

  IMPLEMENTATION
    Caller is responsible for locking DBUG_FILE before this call and unlocking
    it afterwards.

  RETURN
    None
*/

void QUICK_GROUP_MIN_MAX_SELECT::dbug_dump(int indent, bool verbose)
{
  fprintf(DBUG_FILE,
          "%*squick_group_min_max_select: index %s (%d), length: %d\n",
	  indent, "", index_info->name, index, max_used_key_length);
  if (key_infix_len > 0)
  {
    fprintf(DBUG_FILE, "%*susing key_infix with length %d:\n",
            indent, "", key_infix_len);
  }
  if (quick_prefix_select)
  {
    fprintf(DBUG_FILE, "%*susing quick_range_select:\n", indent, "");
    quick_prefix_select->dbug_dump(indent + 2, verbose);
  }
  if (min_max_ranges.elements > 0)
  {
    fprintf(DBUG_FILE, "%*susing %d quick_ranges for MIN/MAX:\n",
            indent, "", min_max_ranges.elements);
  }
}


unknown's avatar
unknown committed
9136
#endif /* NOT_USED */
unknown's avatar
unknown committed
9137 9138

/*****************************************************************************
9139
** Instantiate templates
unknown's avatar
unknown committed
9140 9141
*****************************************************************************/

9142
#ifdef HAVE_EXPLICIT_TEMPLATE_INSTANTIATION
unknown's avatar
unknown committed
9143 9144 9145
template class List<QUICK_RANGE>;
template class List_iterator<QUICK_RANGE>;
#endif