sql_partition.cc 198 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (C) 2005 MySQL AB

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */

/*
  This file was introduced as a container for general functionality related
  to partitioning introduced in MySQL version 5.1. It contains functionality
  used by all handlers that support partitioning, which in the first version
  is the partitioning handler itself and the NDB handler.

unknown's avatar
unknown committed
23
  The first version was written by Mikael Ronstrom.
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

  This version supports RANGE partitioning, LIST partitioning, HASH
  partitioning and composite partitioning (hereafter called subpartitioning)
  where each RANGE/LIST partitioning is HASH partitioned. The hash function
  can either be supplied by the user or by only a list of fields (also
  called KEY partitioning, where the MySQL server will use an internal
  hash function.
  There are quite a few defaults that can be used as well.
*/

/* Some general useful functions */

#include "mysql_priv.h"
#include <errno.h>
#include <m_ctype.h>
#include "md5.h"

41
#ifdef WITH_PARTITION_STORAGE_ENGINE
unknown's avatar
unknown committed
42
#include "ha_partition.h"
43 44 45
/*
  Partition related functions declarations and some static constants;
*/
46 47 48 49 50 51 52 53 54
const LEX_STRING partition_keywords[]=
{
  { (char *) STRING_WITH_LEN("HASH") },
  { (char *) STRING_WITH_LEN("RANGE") },
  { (char *) STRING_WITH_LEN("LIST") }, 
  { (char *) STRING_WITH_LEN("KEY") },
  { (char *) STRING_WITH_LEN("MAXVALUE") },
  { (char *) STRING_WITH_LEN("LINEAR ") }
};
55 56 57 58 59 60 61 62
static const char *part_str= "PARTITION";
static const char *sub_str= "SUB";
static const char *by_str= "BY";
static const char *space_str= " ";
static const char *equal_str= "=";
static const char *end_paren_str= ")";
static const char *begin_paren_str= "(";
static const char *comma_str= ",";
63 64
static char buff[22];

unknown's avatar
unknown committed
65
int get_partition_id_list(partition_info *part_info,
66 67
                           uint32 *part_id,
                           longlong *func_value);
unknown's avatar
unknown committed
68
int get_partition_id_range(partition_info *part_info,
69 70
                            uint32 *part_id,
                            longlong *func_value);
unknown's avatar
unknown committed
71
int get_partition_id_hash_nosub(partition_info *part_info,
72 73
                                 uint32 *part_id,
                                 longlong *func_value);
unknown's avatar
unknown committed
74
int get_partition_id_key_nosub(partition_info *part_info,
75 76
                                uint32 *part_id,
                                longlong *func_value);
unknown's avatar
unknown committed
77
int get_partition_id_linear_hash_nosub(partition_info *part_info,
78 79
                                        uint32 *part_id,
                                        longlong *func_value);
unknown's avatar
unknown committed
80
int get_partition_id_linear_key_nosub(partition_info *part_info,
81 82
                                       uint32 *part_id,
                                       longlong *func_value);
unknown's avatar
unknown committed
83
int get_partition_id_range_sub_hash(partition_info *part_info,
84 85
                                     uint32 *part_id,
                                     longlong *func_value);
unknown's avatar
unknown committed
86
int get_partition_id_range_sub_key(partition_info *part_info,
87 88
                                    uint32 *part_id,
                                    longlong *func_value);
unknown's avatar
unknown committed
89
int get_partition_id_range_sub_linear_hash(partition_info *part_info,
90 91
                                            uint32 *part_id,
                                            longlong *func_value);
unknown's avatar
unknown committed
92
int get_partition_id_range_sub_linear_key(partition_info *part_info,
93 94
                                           uint32 *part_id,
                                           longlong *func_value);
unknown's avatar
unknown committed
95
int get_partition_id_list_sub_hash(partition_info *part_info,
96 97
                                    uint32 *part_id,
                                    longlong *func_value);
unknown's avatar
unknown committed
98
int get_partition_id_list_sub_key(partition_info *part_info,
99 100
                                   uint32 *part_id,
                                   longlong *func_value);
unknown's avatar
unknown committed
101
int get_partition_id_list_sub_linear_hash(partition_info *part_info,
102 103
                                           uint32 *part_id,
                                           longlong *func_value);
unknown's avatar
unknown committed
104
int get_partition_id_list_sub_linear_key(partition_info *part_info,
105 106
                                          uint32 *part_id,
                                          longlong *func_value);
107 108 109 110
uint32 get_partition_id_hash_sub(partition_info *part_info); 
uint32 get_partition_id_key_sub(partition_info *part_info); 
uint32 get_partition_id_linear_hash_sub(partition_info *part_info); 
uint32 get_partition_id_linear_key_sub(partition_info *part_info); 
unknown's avatar
unknown committed
111 112
#endif

unknown's avatar
unknown committed
113 114 115 116 117 118
static uint32 get_next_partition_via_walking(PARTITION_ITERATOR*);
static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR*);
uint32 get_next_partition_id_range(PARTITION_ITERATOR* part_iter);
uint32 get_next_partition_id_list(PARTITION_ITERATOR* part_iter);
int get_part_iter_for_interval_via_mapping(partition_info *part_info,
                                           bool is_subpart,
119
                                           char *min_value, char *max_value,
unknown's avatar
unknown committed
120 121 122 123
                                           uint flags,
                                           PARTITION_ITERATOR *part_iter);
int get_part_iter_for_interval_via_walking(partition_info *part_info,
                                           bool is_subpart,
124
                                           char *min_value, char *max_value,
unknown's avatar
unknown committed
125 126 127
                                           uint flags,
                                           PARTITION_ITERATOR *part_iter);
static void set_up_range_analysis_info(partition_info *part_info);
unknown's avatar
unknown committed
128 129 130 131

/*
  A routine used by the parser to decide whether we are specifying a full
  partitioning or if only partitions to add or to split.
unknown's avatar
unknown committed
132

unknown's avatar
unknown committed
133 134 135
  SYNOPSIS
    is_partition_management()
    lex                    Reference to the lex object
unknown's avatar
unknown committed
136

unknown's avatar
unknown committed
137 138 139
  RETURN VALUE
    TRUE                   Yes, it is part of a management partition command
    FALSE                  No, not a management partition command
unknown's avatar
unknown committed
140

unknown's avatar
unknown committed
141
  DESCRIPTION
142 143
    This needs to be outside of WITH_PARTITION_STORAGE_ENGINE since it is
    used from the sql parser that doesn't have any #ifdef's
unknown's avatar
unknown committed
144 145 146 147 148 149
*/

my_bool is_partition_management(LEX *lex)
{
  return (lex->sql_command == SQLCOM_ALTER_TABLE &&
          (lex->alter_info.flags == ALTER_ADD_PARTITION ||
unknown's avatar
unknown committed
150
           lex->alter_info.flags == ALTER_REORGANIZE_PARTITION));
unknown's avatar
unknown committed
151 152
}

153
#ifdef WITH_PARTITION_STORAGE_ENGINE
unknown's avatar
unknown committed
154
/*
unknown's avatar
unknown committed
155 156
  A support function to check if a name is in a list of strings

unknown's avatar
unknown committed
157
  SYNOPSIS
unknown's avatar
unknown committed
158 159 160 161
    is_name_in_list()
    name               String searched for
    list_names         A list of names searched in

unknown's avatar
unknown committed
162 163 164 165 166
  RETURN VALUES
    TRUE               String found
    FALSE              String not found
*/

unknown's avatar
unknown committed
167 168
bool is_name_in_list(char *name,
                          List<char> list_names)
unknown's avatar
unknown committed
169
{
unknown's avatar
unknown committed
170 171
  List_iterator<char> names_it(list_names);
  uint no_names= list_names.elements;
unknown's avatar
unknown committed
172
  uint i= 0;
unknown's avatar
unknown committed
173

unknown's avatar
unknown committed
174 175
  do
  {
unknown's avatar
unknown committed
176 177
    char *list_name= names_it++;
    if (!(my_strcasecmp(system_charset_info, name, list_name)))
unknown's avatar
unknown committed
178 179 180 181 182 183 184 185 186
      return TRUE;
  } while (++i < no_names);
  return FALSE;
}


/*
  A support function to check partition names for duplication in a
  partitioned table
unknown's avatar
unknown committed
187

unknown's avatar
unknown committed
188
  SYNOPSIS
unknown's avatar
unknown committed
189
    are_partitions_in_table()
unknown's avatar
unknown committed
190 191
    new_part_info      New partition info
    old_part_info      Old partition info
unknown's avatar
unknown committed
192

unknown's avatar
unknown committed
193 194 195
  RETURN VALUES
    TRUE               Duplicate names found
    FALSE              Duplicate names not found
unknown's avatar
unknown committed
196

unknown's avatar
unknown committed
197 198 199 200 201 202
  DESCRIPTION
    Can handle that the new and old parts are the same in which case it
    checks that the list of names in the partitions doesn't contain any
    duplicated names.
*/

unknown's avatar
unknown committed
203 204
char *are_partitions_in_table(partition_info *new_part_info,
                              partition_info *old_part_info)
unknown's avatar
unknown committed
205
{
unknown's avatar
unknown committed
206 207 208
  uint no_new_parts= new_part_info->partitions.elements;
  uint no_old_parts= old_part_info->partitions.elements;
  uint new_count, old_count;
unknown's avatar
unknown committed
209
  List_iterator<partition_element> new_parts_it(new_part_info->partitions);
unknown's avatar
unknown committed
210 211 212
  bool is_same_part_info= (new_part_info == old_part_info);
  DBUG_ENTER("are_partitions_in_table");
  DBUG_PRINT("enter", ("%u", no_new_parts));
unknown's avatar
unknown committed
213 214 215 216 217 218

  new_count= 0;
  do
  {
    List_iterator<partition_element> old_parts_it(old_part_info->partitions);
    char *new_name= (new_parts_it++)->partition_name;
unknown's avatar
unknown committed
219
    DBUG_PRINT("info", ("%s", new_name));
unknown's avatar
unknown committed
220 221 222 223 224 225
    new_count++;
    old_count= 0;
    do
    {
      char *old_name= (old_parts_it++)->partition_name;
      old_count++;
unknown's avatar
unknown committed
226
      if (is_same_part_info && old_count == new_count)
unknown's avatar
unknown committed
227 228 229
        break;
      if (!(my_strcasecmp(system_charset_info, old_name, new_name)))
      {
unknown's avatar
unknown committed
230 231
        DBUG_PRINT("info", ("old_name = %s, not ok", old_name));
        DBUG_RETURN(old_name);
unknown's avatar
unknown committed
232 233 234
      }
    } while (old_count < no_old_parts);
  } while (new_count < no_new_parts);
unknown's avatar
unknown committed
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
  DBUG_RETURN(NULL);
}

/*
  Set-up defaults for partitions. 

  SYNOPSIS
    partition_default_handling()
    table                         Table object
    table_name                    Table name to use when getting no_parts
    db_name                       Database name to use when getting no_parts
    part_info                     Partition info to set up

  RETURN VALUES
    TRUE                          Error
    FALSE                         Success
*/

253 254
bool partition_default_handling(TABLE *table, partition_info *part_info,
                                const char *normalized_path)
unknown's avatar
unknown committed
255 256 257 258 259
{
  DBUG_ENTER("partition_default_handling");

  if (part_info->use_default_no_partitions)
  {
260
    if (table->file->get_no_parts(normalized_path, &part_info->no_parts))
unknown's avatar
unknown committed
261 262 263 264 265 266 267 268
    {
      DBUG_RETURN(TRUE);
    }
  }
  else if (is_sub_partitioned(part_info) &&
           part_info->use_default_no_subpartitions)
  {
    uint no_parts;
269
    if (table->file->get_no_parts(normalized_path, &no_parts))
unknown's avatar
unknown committed
270 271 272 273 274 275 276 277 278
    {
      DBUG_RETURN(TRUE);
    }
    DBUG_ASSERT(part_info->no_parts > 0);
    part_info->no_subparts= no_parts / part_info->no_parts;
    DBUG_ASSERT((no_parts % part_info->no_parts) == 0);
  }
  set_up_defaults_for_partitioning(part_info, table->file,
                                   (ulonglong)0, (uint)0);
unknown's avatar
unknown committed
279 280 281 282
  DBUG_RETURN(FALSE);
}


283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
/*
  Check that the reorganized table will not have duplicate partitions.

  SYNOPSIS
    check_reorganise_list()
    new_part_info      New partition info
    old_part_info      Old partition info
    list_part_names    The list of partition names that will go away and can be reused in the
                       new table.

  RETURN VALUES
    TRUE               Inacceptable name conflict detected.
    FALSE              New names are OK.

  DESCRIPTION
    Can handle that the 'new_part_info' and 'old_part_info' the same
    in which case it checks that the list of names in the partitions
    doesn't contain any duplicated names.
*/

bool check_reorganise_list(partition_info *new_part_info,
                           partition_info *old_part_info,
                           List<char> list_part_names)
{
  uint new_count, old_count;
  uint no_new_parts= new_part_info->partitions.elements;
  uint no_old_parts= old_part_info->partitions.elements;
  List_iterator<partition_element> new_parts_it(new_part_info->partitions);
  bool same_part_info= (new_part_info == old_part_info);
  DBUG_ENTER("check_reorganise_list");

  new_count= 0;
  do
  {
    List_iterator<partition_element> old_parts_it(old_part_info->partitions);
    char *new_name= (new_parts_it++)->partition_name;
    new_count++;
    old_count= 0;
    do
    {
      char *old_name= (old_parts_it++)->partition_name;
      old_count++;
      if (same_part_info && old_count == new_count)
        break;
      if (!(my_strcasecmp(system_charset_info, old_name, new_name)))
      {
unknown's avatar
unknown committed
329
        if (!is_name_in_list(old_name, list_part_names))
330 331 332 333 334 335 336 337
          DBUG_RETURN(TRUE);
      }
    } while (old_count < no_old_parts);
  } while (new_count < no_new_parts);
  DBUG_RETURN(FALSE);
}


338 339 340
/*
  A useful routine used by update_row for partition handlers to calculate
  the partition ids of the old and the new record.
unknown's avatar
unknown committed
341

342 343 344 345 346 347
  SYNOPSIS
    get_part_for_update()
    old_data                Buffer of old record
    new_data                Buffer of new record
    rec0                    Reference to table->record[0]
    part_info               Reference to partition information
unknown's avatar
unknown committed
348 349 350
    out:old_part_id         The returned partition id of old record 
    out:new_part_id         The returned partition id of new record

351 352 353 354 355 356 357
  RETURN VALUE
    0                       Success
    > 0                     Error code
*/

int get_parts_for_update(const byte *old_data, byte *new_data,
                         const byte *rec0, partition_info *part_info,
358 359
                         uint32 *old_part_id, uint32 *new_part_id,
                         longlong *new_func_value)
360 361 362
{
  Field **part_field_array= part_info->full_part_field_array;
  int error;
363
  longlong old_func_value;
364 365
  DBUG_ENTER("get_parts_for_update");

unknown's avatar
unknown committed
366
  DBUG_ASSERT(new_data == rec0);
367
  set_field_ptr(part_field_array, old_data, rec0);
368 369
  error= part_info->get_partition_id(part_info, old_part_id,
                                     &old_func_value);
370 371 372 373 374 375 376 377 378 379
  set_field_ptr(part_field_array, rec0, old_data);
  if (unlikely(error))                             // Should never happen
  {
    DBUG_ASSERT(0);
    DBUG_RETURN(error);
  }
#ifdef NOT_NEEDED
  if (new_data == rec0)
#endif
  {
380 381 382
    if (unlikely(error= part_info->get_partition_id(part_info,
                                                    new_part_id,
                                                    new_func_value)))
383 384 385 386 387 388 389 390 391 392 393 394 395
    {
      DBUG_RETURN(error);
    }
  }
#ifdef NOT_NEEDED
  else
  {
    /*
      This branch should never execute but it is written anyways for
      future use. It will be tested by ensuring that the above
      condition is false in one test situation before pushing the code.
    */
    set_field_ptr(part_field_array, new_data, rec0);
396 397
    error= part_info->get_partition_id(part_info, new_part_id,
                                       new_func_value);
398 399 400 401 402 403 404 405 406 407 408 409 410 411
    set_field_ptr(part_field_array, rec0, new_data);
    if (unlikely(error))
    {
      DBUG_RETURN(error);
    }
  }
#endif
  DBUG_RETURN(0);
}


/*
  A useful routine used by delete_row for partition handlers to calculate
  the partition id.
unknown's avatar
unknown committed
412

413 414 415 416 417
  SYNOPSIS
    get_part_for_delete()
    buf                     Buffer of old record
    rec0                    Reference to table->record[0]
    part_info               Reference to partition information
unknown's avatar
unknown committed
418 419
    out:part_id             The returned partition id to delete from

420 421 422
  RETURN VALUE
    0                       Success
    > 0                     Error code
unknown's avatar
unknown committed
423

424 425 426 427 428 429 430 431 432 433
  DESCRIPTION
    Dependent on whether buf is not record[0] we need to prepare the
    fields. Then we call the function pointer get_partition_id to
    calculate the partition id.
*/

int get_part_for_delete(const byte *buf, const byte *rec0,
                        partition_info *part_info, uint32 *part_id)
{
  int error;
434
  longlong func_value;
435 436 437 438
  DBUG_ENTER("get_part_for_delete");

  if (likely(buf == rec0))
  {
439 440
    if (unlikely((error= part_info->get_partition_id(part_info, part_id,
                                                     &func_value))))
441 442 443 444 445 446 447 448 449
    {
      DBUG_RETURN(error);
    }
    DBUG_PRINT("info", ("Delete from partition %d", *part_id));
  }
  else
  {
    Field **part_field_array= part_info->full_part_field_array;
    set_field_ptr(part_field_array, buf, rec0);
450
    error= part_info->get_partition_id(part_info, part_id, &func_value);
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
    set_field_ptr(part_field_array, rec0, buf);
    if (unlikely(error))
    {
      DBUG_RETURN(error);
    }
    DBUG_PRINT("info", ("Delete from partition %d (path2)", *part_id));
  }
  DBUG_RETURN(0);
}


/*
  This routine allocates an array for all range constants to achieve a fast
  check what partition a certain value belongs to. At the same time it does
  also check that the range constants are defined in increasing order and
  that the expressions are constant integer expressions.
unknown's avatar
unknown committed
467

468 469
  SYNOPSIS
    check_range_constants()
unknown's avatar
unknown committed
470 471
    part_info             Partition info

472 473 474
  RETURN VALUE
    TRUE                An error occurred during creation of range constants
    FALSE               Successful creation of range constant mapping
unknown's avatar
unknown committed
475

476 477 478 479 480 481 482 483 484 485
  DESCRIPTION
    This routine is called from check_partition_info to get a quick error
    before we came too far into the CREATE TABLE process. It is also called
    from fix_partition_func every time we open the .frm file. It is only
    called for RANGE PARTITIONed tables.
*/

static bool check_range_constants(partition_info *part_info)
{
  partition_element* part_def;
unknown's avatar
unknown committed
486 487 488 489
  longlong current_largest_int= LONGLONG_MIN;
  longlong part_range_value_int;
  uint no_parts= part_info->no_parts;
  uint i;
490 491 492 493 494 495 496 497 498 499
  List_iterator<partition_element> it(part_info->partitions);
  bool result= TRUE;
  DBUG_ENTER("check_range_constants");
  DBUG_PRINT("enter", ("INT_RESULT with %d parts", no_parts));

  part_info->part_result_type= INT_RESULT;
  part_info->range_int_array= 
                      (longlong*)sql_alloc(no_parts * sizeof(longlong));
  if (unlikely(part_info->range_int_array == NULL))
  {
unknown's avatar
unknown committed
500
    mem_alloc_error(no_parts * sizeof(longlong));
501 502 503 504 505 506 507
    goto end;
  }
  i= 0;
  do
  {
    part_def= it++;
    if ((i != (no_parts - 1)) || !part_info->defined_max_value)
unknown's avatar
unknown committed
508
      part_range_value_int= part_def->range_value; 
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
    else
      part_range_value_int= LONGLONG_MAX;
    if (likely(current_largest_int < part_range_value_int))
    {
      current_largest_int= part_range_value_int;
      part_info->range_int_array[i]= part_range_value_int;
    }
    else
    {
      my_error(ER_RANGE_NOT_INCREASING_ERROR, MYF(0));
      goto end;
    }
  } while (++i < no_parts);
  result= FALSE;
end:
  DBUG_RETURN(result);
}


/*
  A support routine for check_list_constants used by qsort to sort the
  constant list expressions.
unknown's avatar
unknown committed
531

532 533 534 535
  SYNOPSIS
    list_part_cmp()
      a                First list constant to compare with
      b                Second list constant to compare with
unknown's avatar
unknown committed
536

537 538 539 540 541 542 543 544
  RETURN VALUE
    +1                 a > b
    0                  a  == b
    -1                 a < b
*/

static int list_part_cmp(const void* a, const void* b)
{
unknown's avatar
unknown committed
545 546
  longlong a1= ((LIST_PART_ENTRY*)a)->list_value;
  longlong b1= ((LIST_PART_ENTRY*)b)->list_value;
547 548 549 550 551 552 553 554 555 556 557 558 559 560
  if (a1 < b1)
    return -1;
  else if (a1 > b1)
    return +1;
  else
    return 0;
}


/*
  This routine allocates an array for all list constants to achieve a fast
  check what partition a certain value belongs to. At the same time it does
  also check that there are no duplicates among the list constants and that
  that the list expressions are constant integer expressions.
unknown's avatar
unknown committed
561

562 563
  SYNOPSIS
    check_list_constants()
unknown's avatar
unknown committed
564 565
    part_info             Partition info

566 567 568
  RETURN VALUE
    TRUE                  An error occurred during creation of list constants
    FALSE                 Successful creation of list constant mapping
unknown's avatar
unknown committed
569

570 571 572 573 574 575 576 577 578
  DESCRIPTION
    This routine is called from check_partition_info to get a quick error
    before we came too far into the CREATE TABLE process. It is also called
    from fix_partition_func every time we open the .frm file. It is only
    called for LIST PARTITIONed tables.
*/

static bool check_list_constants(partition_info *part_info)
{
unknown's avatar
unknown committed
579 580 581
  uint i, no_parts;
  uint no_list_values= 0;
  uint list_index= 0;
unknown's avatar
unknown committed
582
  longlong *list_value;
unknown's avatar
unknown committed
583 584
  bool not_first;
  bool result= TRUE;
585 586 587 588 589 590 591 592 593 594 595 596 597
  longlong curr_value, prev_value;
  partition_element* part_def;
  List_iterator<partition_element> list_func_it(part_info->partitions);
  DBUG_ENTER("check_list_constants");

  part_info->part_result_type= INT_RESULT;

  /*
    We begin by calculating the number of list values that have been
    defined in the first step.

    We use this number to allocate a properly sized array of structs
    to keep the partition id and the value to use in that partition.
unknown's avatar
unknown committed
598
    In the second traversal we assign them values in the struct array.
599 600 601 602 603 604 605 606 607 608 609 610 611

    Finally we sort the array of structs in order of values to enable
    a quick binary search for the proper value to discover the
    partition id.
    After sorting the array we check that there are no duplicates in the
    list.
  */

  no_parts= part_info->no_parts;
  i= 0;
  do
  {
    part_def= list_func_it++;
unknown's avatar
unknown committed
612
    List_iterator<longlong> list_val_it1(part_def->list_val_list);
613 614 615 616 617 618 619 620 621
    while (list_val_it1++)
      no_list_values++;
  } while (++i < no_parts);
  list_func_it.rewind();
  part_info->no_list_values= no_list_values;
  part_info->list_array=
      (LIST_PART_ENTRY*)sql_alloc(no_list_values*sizeof(LIST_PART_ENTRY));
  if (unlikely(part_info->list_array == NULL))
  {
unknown's avatar
unknown committed
622
    mem_alloc_error(no_list_values * sizeof(LIST_PART_ENTRY));
623 624 625 626 627 628 629
    goto end;
  }

  i= 0;
  do
  {
    part_def= list_func_it++;
unknown's avatar
unknown committed
630 631
    List_iterator<longlong> list_val_it2(part_def->list_val_list);
    while ((list_value= list_val_it2++))
632
    {
unknown's avatar
unknown committed
633 634
      part_info->list_array[list_index].list_value= *list_value;
      part_info->list_array[list_index++].partition_id= i;
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
    }
  } while (++i < no_parts);

  qsort((void*)part_info->list_array, no_list_values,
        sizeof(LIST_PART_ENTRY), &list_part_cmp);

  not_first= FALSE;
  i= prev_value= 0; //prev_value initialised to quiet compiler
  do
  {
    curr_value= part_info->list_array[i].list_value;
    if (likely(!not_first || prev_value != curr_value))
    {
      prev_value= curr_value;
      not_first= TRUE;
    }
    else
    {
      my_error(ER_MULTIPLE_DEF_CONST_IN_LIST_PART_ERROR, MYF(0));
      goto end;
    }
  } while (++i < no_list_values);
  result= FALSE;
end:
  DBUG_RETURN(result);
}


/*
  Create a memory area where default partition names are stored and fill it
  up with the names.
unknown's avatar
unknown committed
666

667 668 669
  SYNOPSIS
    create_default_partition_names()
    no_parts                        Number of partitions
unknown's avatar
unknown committed
670
    start_no                        Starting partition number
671
    subpart                         Is it subpartitions
unknown's avatar
unknown committed
672

673 674
  RETURN VALUE
    A pointer to the memory area of the default partition names
unknown's avatar
unknown committed
675

676 677 678 679 680 681 682 683
  DESCRIPTION
    A support routine for the partition code where default values are
    generated.
    The external routine needing this code is check_partition_info
*/

#define MAX_PART_NAME_SIZE 8

unknown's avatar
unknown committed
684
static char *create_default_partition_names(uint no_parts, uint start_no,
unknown's avatar
unknown committed
685
                                            bool is_subpart)
686 687 688 689 690
{
  char *ptr= sql_calloc(no_parts*MAX_PART_NAME_SIZE);
  char *move_ptr= ptr;
  uint i= 0;
  DBUG_ENTER("create_default_partition_names");
unknown's avatar
unknown committed
691

692 693 694 695
  if (likely(ptr != 0))
  {
    do
    {
unknown's avatar
unknown committed
696
      if (is_subpart)
unknown's avatar
unknown committed
697
        my_sprintf(move_ptr, (move_ptr,"sp%u", (start_no + i)));
698
      else
unknown's avatar
unknown committed
699
        my_sprintf(move_ptr, (move_ptr,"p%u", (start_no + i)));
700 701 702 703 704
      move_ptr+=MAX_PART_NAME_SIZE;
    } while (++i < no_parts);
  }
  else
  {
unknown's avatar
unknown committed
705
    mem_alloc_error(no_parts*MAX_PART_NAME_SIZE);
706 707 708 709 710 711 712 713 714
  }
  DBUG_RETURN(ptr);
}


/*
  Set up all the default partitions not set-up by the user in the SQL
  statement. Also perform a number of checks that the user hasn't tried
  to use default values where no defaults exists.
unknown's avatar
unknown committed
715

716 717 718 719 720
  SYNOPSIS
    set_up_default_partitions()
    part_info           The reference to all partition information
    file                A reference to a handler of the table
    max_rows            Maximum number of rows stored in the table
unknown's avatar
unknown committed
721 722
    start_no            Starting partition number

723 724 725
  RETURN VALUE
    TRUE                Error, attempted default values not possible
    FALSE               Ok, default partitions set-up
unknown's avatar
unknown committed
726

727 728 729 730 731 732 733 734 735 736
  DESCRIPTION
    The routine uses the underlying handler of the partitioning to define
    the default number of partitions. For some handlers this requires
    knowledge of the maximum number of rows to be stored in the table.
    This routine only accepts HASH and KEY partitioning and thus there is
    no subpartitioning if this routine is successful.
    The external routine needing this code is check_partition_info
*/

static bool set_up_default_partitions(partition_info *part_info,
unknown's avatar
unknown committed
737 738
                                      handler *file, ulonglong max_rows,
                                      uint start_no)
739 740 741 742 743 744 745 746
{
  uint no_parts, i;
  char *default_name;
  bool result= TRUE;
  DBUG_ENTER("set_up_default_partitions");

  if (part_info->part_type != HASH_PARTITION)
  {
747
    const char *error_string;
748
    if (part_info->part_type == RANGE_PARTITION)
749
      error_string= partition_keywords[PKW_RANGE].str;
750
    else
751
      error_string= partition_keywords[PKW_LIST].str;
752 753 754 755 756 757 758 759 760 761 762 763
    my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), error_string);
    goto end;
  }
  if (part_info->no_parts == 0)
    part_info->no_parts= file->get_default_no_partitions(max_rows);
  no_parts= part_info->no_parts;
  if (unlikely(no_parts > MAX_PARTITIONS))
  {
    my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
    goto end;
  }
  if (unlikely((!(default_name= create_default_partition_names(no_parts,
unknown's avatar
unknown committed
764
                                                               start_no,
765 766 767 768 769 770
                                                               FALSE)))))
    goto end;
  i= 0;
  do
  {
    partition_element *part_elem= new partition_element();
unknown's avatar
unknown committed
771 772
    if (likely(part_elem != 0 &&
               (!part_info->partitions.push_back(part_elem))))
773
    {
unknown's avatar
unknown committed
774
      part_elem->engine_type= part_info->default_engine_type;
775 776 777 778 779
      part_elem->partition_name= default_name;
      default_name+=MAX_PART_NAME_SIZE;
    }
    else
    {
unknown's avatar
unknown committed
780
      mem_alloc_error(sizeof(partition_element));
781 782 783 784 785 786 787 788 789 790 791 792 793
      goto end;
    }
  } while (++i < no_parts);
  result= FALSE;
end:
  DBUG_RETURN(result);
}


/*
  Set up all the default subpartitions not set-up by the user in the SQL
  statement. Also perform a number of checks that the default partitioning
  becomes an allowed partitioning scheme.
unknown's avatar
unknown committed
794

795 796 797 798 799
  SYNOPSIS
    set_up_default_subpartitions()
    part_info           The reference to all partition information
    file                A reference to a handler of the table
    max_rows            Maximum number of rows stored in the table
unknown's avatar
unknown committed
800

801 802 803
  RETURN VALUE
    TRUE                Error, attempted default values not possible
    FALSE               Ok, default partitions set-up
unknown's avatar
unknown committed
804

805 806 807 808 809 810 811 812 813 814 815 816
  DESCRIPTION
    The routine uses the underlying handler of the partitioning to define
    the default number of partitions. For some handlers this requires
    knowledge of the maximum number of rows to be stored in the table.
    This routine is only called for RANGE or LIST partitioning and those
    need to be specified so only subpartitions are specified.
    The external routine needing this code is check_partition_info
*/

static bool set_up_default_subpartitions(partition_info *part_info,
                                         handler *file, ulonglong max_rows)
{
unknown's avatar
unknown committed
817 818
  uint i, j, no_parts, no_subparts;
  char *default_name, *name_ptr;
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
  bool result= TRUE;
  partition_element *part_elem;
  List_iterator<partition_element> part_it(part_info->partitions);
  DBUG_ENTER("set_up_default_subpartitions");

  if (part_info->no_subparts == 0)
    part_info->no_subparts= file->get_default_no_partitions(max_rows);
  no_parts= part_info->no_parts;
  no_subparts= part_info->no_subparts;
  if (unlikely((no_parts * no_subparts) > MAX_PARTITIONS))
  {
    my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
    goto end;
  }
  if (unlikely((!(default_name=
unknown's avatar
unknown committed
834
             create_default_partition_names(no_subparts, (uint)0, TRUE)))))
835 836 837 838 839
    goto end;
  i= 0;
  do
  {
    part_elem= part_it++;
unknown's avatar
unknown committed
840 841
    j= 0;
    name_ptr= default_name;
842 843 844
    do
    {
      partition_element *subpart_elem= new partition_element();
unknown's avatar
unknown committed
845 846
      if (likely(subpart_elem != 0 &&
          (!part_elem->subpartitions.push_back(subpart_elem))))
847
      {
unknown's avatar
unknown committed
848
        subpart_elem->engine_type= part_info->default_engine_type;
unknown's avatar
unknown committed
849 850
        subpart_elem->partition_name= name_ptr;
        name_ptr+= MAX_PART_NAME_SIZE;
851 852 853
      }
      else
      {
unknown's avatar
unknown committed
854
        mem_alloc_error(sizeof(partition_element));
855 856 857 858 859 860 861 862 863 864 865
        goto end;
      }
    } while (++j < no_subparts);
  } while (++i < no_parts);
  result= FALSE;
end:
  DBUG_RETURN(result);
}


/*
unknown's avatar
unknown committed
866 867
  Support routine for check_partition_info

868 869 870 871 872
  SYNOPSIS
    set_up_defaults_for_partitioning()
    part_info           The reference to all partition information
    file                A reference to a handler of the table
    max_rows            Maximum number of rows stored in the table
unknown's avatar
unknown committed
873 874
    start_no            Starting partition number

875 876 877
  RETURN VALUE
    TRUE                Error, attempted default values not possible
    FALSE               Ok, default partitions set-up
unknown's avatar
unknown committed
878

879
  DESCRIPTION
unknown's avatar
unknown committed
880 881
    Set up defaults for partition or subpartition (cannot set-up for both,
    this will return an error.
882 883
*/

unknown's avatar
unknown committed
884 885 886
bool set_up_defaults_for_partitioning(partition_info *part_info,
                                      handler *file,
                                      ulonglong max_rows, uint start_no)
887 888 889
{
  DBUG_ENTER("set_up_defaults_for_partitioning");

unknown's avatar
unknown committed
890 891 892 893 894 895 896 897 898
  if (!part_info->default_partitions_setup)
  {
    part_info->default_partitions_setup= TRUE;
    if (part_info->use_default_partitions)
      DBUG_RETURN(set_up_default_partitions(part_info, file, max_rows,
                                            start_no));
    if (is_sub_partitioned(part_info) && part_info->use_default_subpartitions)
      DBUG_RETURN(set_up_default_subpartitions(part_info, file, max_rows));
  }
899 900 901 902 903 904 905
  DBUG_RETURN(FALSE);
}


/*
  Check that all partitions use the same storage engine.
  This is currently a limitation in this version.
unknown's avatar
unknown committed
906

907 908 909 910
  SYNOPSIS
    check_engine_mix()
    engine_array           An array of engine identifiers
    no_parts               Total number of partitions
unknown's avatar
unknown committed
911

912 913 914
  RETURN VALUE
    TRUE                   Error, mixed engines
    FALSE                  Ok, no mixed engines
unknown's avatar
unknown committed
915 916 917
  DESCRIPTION
    Current check verifies only that all handlers are the same.
    Later this check will be more sophisticated.
918 919
*/

unknown's avatar
unknown committed
920
static bool check_engine_mix(handlerton **engine_array, uint no_parts)
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
{
  uint i= 0;
  bool result= FALSE;
  DBUG_ENTER("check_engine_mix");

  do
  {
    if (engine_array[i] != engine_array[0])
    {
      result= TRUE;
      break;
    }
  } while (++i < no_parts);
  DBUG_RETURN(result);
}


/*
unknown's avatar
unknown committed
939 940
  This code is used early in the CREATE TABLE and ALTER TABLE process.

941 942 943 944 945
  SYNOPSIS
    check_partition_info()
    part_info           The reference to all partition information
    file                A reference to a handler of the table
    max_rows            Maximum number of rows stored in the table
unknown's avatar
unknown committed
946 947
    engine_type         Return value for used engine in partitions

948 949 950
  RETURN VALUE
    TRUE                 Error, something went wrong
    FALSE                Ok, full partition data structures are now generated
unknown's avatar
unknown committed
951

952
  DESCRIPTION
unknown's avatar
unknown committed
953 954 955 956 957
    We will check that the partition info requested is possible to set-up in
    this version. This routine is an extension of the parser one could say.
    If defaults were used we will generate default data structures for all
    partitions.

958 959
*/

unknown's avatar
unknown committed
960
bool check_partition_info(partition_info *part_info,handlerton **eng_type,
961 962
                          handler *file, ulonglong max_rows)
{
unknown's avatar
unknown committed
963
  handlerton **engine_array= NULL;
unknown's avatar
unknown committed
964 965
  uint part_count= 0;
  uint i, no_parts, tot_partitions;
966
  bool result= TRUE;
unknown's avatar
unknown committed
967
  char *same_name;
968 969 970 971 972 973 974 975 976 977
  DBUG_ENTER("check_partition_info");

  if (unlikely(is_sub_partitioned(part_info) &&
              (!(part_info->part_type == RANGE_PARTITION ||
                 part_info->part_type == LIST_PARTITION))))
  {
    /* Only RANGE and LIST partitioning can be subpartitioned */
    my_error(ER_SUBPARTITION_ERROR, MYF(0));
    goto end;
  }
unknown's avatar
unknown committed
978 979
  if (unlikely(set_up_defaults_for_partitioning(part_info, file,
                                                max_rows, (uint)0)))
980 981 982 983 984 985 986
    goto end;
  tot_partitions= get_tot_partitions(part_info);
  if (unlikely(tot_partitions > MAX_PARTITIONS))
  {
    my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
    goto end;
  }
unknown's avatar
unknown committed
987 988
  if (((same_name= are_partitions_in_table(part_info,
                                           part_info))))
unknown's avatar
unknown committed
989
  {
unknown's avatar
unknown committed
990
    my_error(ER_SAME_NAME_PARTITION, MYF(0), same_name);
unknown's avatar
unknown committed
991 992
    goto end;
  }
unknown's avatar
unknown committed
993 994
  engine_array= (handlerton**)my_malloc(tot_partitions * sizeof(handlerton *), 
                                        MYF(MY_WME));
995 996 997 998 999
  if (unlikely(!engine_array))
    goto end;
  i= 0;
  no_parts= part_info->no_parts;
  {
unknown's avatar
unknown committed
1000 1001
    List_iterator<partition_element> part_it(part_info->partitions);
    do
1002
    {
unknown's avatar
unknown committed
1003 1004
      partition_element *part_elem= part_it++;
      if (!is_sub_partitioned(part_info))
1005
      {
unknown's avatar
unknown committed
1006
        if (part_elem->engine_type == NULL)
unknown's avatar
unknown committed
1007 1008 1009
          part_elem->engine_type= part_info->default_engine_type;
        DBUG_PRINT("info", ("engine = %d",
                   ha_legacy_type(part_elem->engine_type)));
unknown's avatar
unknown committed
1010
        engine_array[part_count++]= part_elem->engine_type;
unknown's avatar
unknown committed
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
      }
      else
      {
        uint j= 0, no_subparts= part_info->no_subparts;;
        List_iterator<partition_element> sub_it(part_elem->subpartitions);
        do
        {
          part_elem= sub_it++;
          if (part_elem->engine_type == NULL)
            part_elem->engine_type= part_info->default_engine_type;
          DBUG_PRINT("info", ("engine = %u",
                     ha_legacy_type(part_elem->engine_type)));
          engine_array[part_count++]= part_elem->engine_type;
        } while (++j < no_subparts);
      }
    } while (++i < part_info->no_parts);
  }
1028 1029 1030 1031 1032 1033
  if (unlikely(check_engine_mix(engine_array, part_count)))
  {
    my_error(ER_MIX_HANDLER_ERROR, MYF(0));
    goto end;
  }

unknown's avatar
unknown committed
1034 1035 1036
  if (eng_type)
    *eng_type= (handlerton*)engine_array[0];

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
  /*
    We need to check all constant expressions that they are of the correct
    type and that they are increasing for ranges and not overlapping for
    list constants.
  */

  if (unlikely((part_info->part_type == RANGE_PARTITION &&
                check_range_constants(part_info)) ||
               (part_info->part_type == LIST_PARTITION &&
                check_list_constants(part_info))))
    goto end;
  result= FALSE;
end:
  my_free((char*)engine_array,MYF(MY_ALLOW_ZERO_PTR));
  DBUG_RETURN(result);
}


/*
unknown's avatar
unknown committed
1056 1057 1058
  This method is used to set-up both partition and subpartitioning
  field array and used for all types of partitioning.
  It is part of the logic around fix_partition_func.
1059 1060 1061 1062 1063

  SYNOPSIS
    set_up_field_array()
    table                TABLE object for which partition fields are set-up
    sub_part             Is the table subpartitioned as well
unknown's avatar
unknown committed
1064

1065 1066 1067
  RETURN VALUE
    TRUE                 Error, some field didn't meet requirements
    FALSE                Ok, partition field array set-up
unknown's avatar
unknown committed
1068

1069
  DESCRIPTION
unknown's avatar
unknown committed
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

    A great number of functions below here is part of the fix_partition_func
    method. It is used to set up the partition structures for execution from
    openfrm. It is called at the end of the openfrm when the table struct has
    been set-up apart from the partition information.
    It involves:
    1) Setting arrays of fields for the partition functions.
    2) Setting up binary search array for LIST partitioning
    3) Setting up array for binary search for RANGE partitioning
    4) Setting up key_map's to assist in quick evaluation whether one
       can deduce anything from a given index of what partition to use
    5) Checking whether a set of partitions can be derived from a range on
       a field in the partition function.
    As part of doing this there is also a great number of error controls.
    This is actually the place where most of the things are checked for
    partition information when creating a table.
    Things that are checked includes
    1) All fields of partition function in Primary keys and unique indexes
       (if not supported)


    Create an array of partition fields (NULL terminated). Before this method
    is called fix_fields or find_table_in_sef has been called to set
    GET_FIXED_FIELDS_FLAG on all fields that are part of the partition
    function.
1095
*/
unknown's avatar
unknown committed
1096

1097
static bool set_up_field_array(TABLE *table,
unknown's avatar
unknown committed
1098
                              bool is_sub_part)
1099 1100
{
  Field **ptr, *field, **field_array;
unknown's avatar
unknown committed
1101 1102 1103
  uint no_fields= 0;
  uint size_field_array;
  uint i= 0;
unknown's avatar
unknown committed
1104
  partition_info *part_info= table->part_info;
1105 1106 1107 1108 1109 1110 1111 1112 1113
  int result= FALSE;
  DBUG_ENTER("set_up_field_array");

  ptr= table->field;
  while ((field= *(ptr++))) 
  {
    if (field->flags & GET_FIXED_FIELDS_FLAG)
      no_fields++;
  }
unknown's avatar
unknown committed
1114 1115 1116 1117 1118 1119 1120 1121
  if (no_fields == 0)
  {
    /*
      We are using hidden key as partitioning field
    */
    DBUG_ASSERT(!is_sub_part);
    DBUG_RETURN(result);
  }
1122 1123 1124 1125
  size_field_array= (no_fields+1)*sizeof(Field*);
  field_array= (Field**)sql_alloc(size_field_array);
  if (unlikely(!field_array))
  {
unknown's avatar
unknown committed
1126
    mem_alloc_error(size_field_array);
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
    result= TRUE;
  }
  ptr= table->field;
  while ((field= *(ptr++))) 
  {
    if (field->flags & GET_FIXED_FIELDS_FLAG)
    {
      field->flags&= ~GET_FIXED_FIELDS_FLAG;
      field->flags|= FIELD_IN_PART_FUNC_FLAG;
      if (likely(!result))
      {
        field_array[i++]= field;

        /*
          We check that the fields are proper. It is required for each
          field in a partition function to:
          1) Not be a BLOB of any type
            A BLOB takes too long time to evaluate so we don't want it for
            performance reasons.
        */

        if (unlikely(field->flags & BLOB_FLAG))
        {
          my_error(ER_BLOB_FIELD_IN_PART_FUNC_ERROR, MYF(0));
          result= TRUE;
        }
      }
    }
  }
  field_array[no_fields]= 0;
unknown's avatar
unknown committed
1157
  if (!is_sub_part)
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
  {
    part_info->part_field_array= field_array;
    part_info->no_part_fields= no_fields;
  }
  else
  {
    part_info->subpart_field_array= field_array;
    part_info->no_subpart_fields= no_fields;
  }
  DBUG_RETURN(result);
}


/*
  Create a field array including all fields of both the partitioning and the
  subpartitioning functions.
unknown's avatar
unknown committed
1174

1175 1176 1177 1178
  SYNOPSIS
    create_full_part_field_array()
    table                TABLE object for which partition fields are set-up
    part_info            Reference to partitioning data structure
unknown's avatar
unknown committed
1179

1180 1181 1182
  RETURN VALUE
    TRUE                 Memory allocation of field array failed
    FALSE                Ok
unknown's avatar
unknown committed
1183

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
  DESCRIPTION
    If there is no subpartitioning then the same array is used as for the
    partitioning. Otherwise a new array is built up using the flag
    FIELD_IN_PART_FUNC in the field object.
    This function is called from fix_partition_func
*/

static bool create_full_part_field_array(TABLE *table,
                                         partition_info *part_info)
{
  bool result= FALSE;
  DBUG_ENTER("create_full_part_field_array");

  if (!is_sub_partitioned(part_info))
  {
    part_info->full_part_field_array= part_info->part_field_array;
    part_info->no_full_part_fields= part_info->no_part_fields;
  }
  else
  {
    Field **ptr, *field, **field_array;
    uint no_part_fields=0, size_field_array;
    ptr= table->field;
    while ((field= *(ptr++)))
    {
      if (field->flags & FIELD_IN_PART_FUNC_FLAG)
        no_part_fields++;
    }
    size_field_array= (no_part_fields+1)*sizeof(Field*);
    field_array= (Field**)sql_alloc(size_field_array);
    if (unlikely(!field_array))
    {
unknown's avatar
unknown committed
1216
      mem_alloc_error(size_field_array);
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
      result= TRUE;
      goto end;
    }
    no_part_fields= 0;
    ptr= table->field;
    while ((field= *(ptr++)))
    {
      if (field->flags & FIELD_IN_PART_FUNC_FLAG)
        field_array[no_part_fields++]= field;
    }
    field_array[no_part_fields]=0;
    part_info->full_part_field_array= field_array;
    part_info->no_full_part_fields= no_part_fields;
  }
end:
  DBUG_RETURN(result);
}


/*

  Clear flag GET_FIXED_FIELDS_FLAG in all fields of a key previously set by
  set_indicator_in_key_fields (always used in pairs).
unknown's avatar
unknown committed
1240

1241 1242 1243
  SYNOPSIS
    clear_indicator_in_key_fields()
    key_info                  Reference to find the key fields
unknown's avatar
unknown committed
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

  RETURN VALUE
    NONE

  DESCRIPTION
    These support routines is used to set/reset an indicator of all fields
    in a certain key. It is used in conjunction with another support routine
    that traverse all fields in the PF to find if all or some fields in the
    PF is part of the key. This is used to check primary keys and unique
    keys involve all fields in PF (unless supported) and to derive the
    key_map's used to quickly decide whether the index can be used to
    derive which partitions are needed to scan.
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
*/

static void clear_indicator_in_key_fields(KEY *key_info)
{
  KEY_PART_INFO *key_part;
  uint key_parts= key_info->key_parts, i;
  for (i= 0, key_part=key_info->key_part; i < key_parts; i++, key_part++)
    key_part->field->flags&= (~GET_FIXED_FIELDS_FLAG);
}


/*
  Set flag GET_FIXED_FIELDS_FLAG in all fields of a key.
unknown's avatar
unknown committed
1269

1270 1271 1272
  SYNOPSIS
    set_indicator_in_key_fields
    key_info                  Reference to find the key fields
unknown's avatar
unknown committed
1273 1274 1275

  RETURN VALUE
    NONE
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
*/

static void set_indicator_in_key_fields(KEY *key_info)
{
  KEY_PART_INFO *key_part;
  uint key_parts= key_info->key_parts, i;
  for (i= 0, key_part=key_info->key_part; i < key_parts; i++, key_part++)
    key_part->field->flags|= GET_FIXED_FIELDS_FLAG;
}


/*
  Check if all or some fields in partition field array is part of a key
  previously used to tag key fields.
unknown's avatar
unknown committed
1290

1291 1292 1293
  SYNOPSIS
    check_fields_in_PF()
    ptr                  Partition field array
unknown's avatar
unknown committed
1294 1295 1296
    out:all_fields       Is all fields of partition field array used in key
    out:some_fields      Is some fields of partition field array used in key

1297 1298 1299 1300 1301 1302 1303 1304
  RETURN VALUE
    all_fields, some_fields
*/

static void check_fields_in_PF(Field **ptr, bool *all_fields,
                               bool *some_fields)
{
  DBUG_ENTER("check_fields_in_PF");
unknown's avatar
unknown committed
1305

1306 1307
  *all_fields= TRUE;
  *some_fields= FALSE;
1308 1309 1310 1311 1312
  if ((!ptr) || !(*ptr))
  {
    *all_fields= FALSE;
    DBUG_VOID_RETURN;
  }
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
  do
  {
  /* Check if the field of the PF is part of the current key investigated */
    if ((*ptr)->flags & GET_FIXED_FIELDS_FLAG)
      *some_fields= TRUE; 
    else
      *all_fields= FALSE;
  } while (*(++ptr));
  DBUG_VOID_RETURN;
}


/*
  Clear flag GET_FIXED_FIELDS_FLAG in all fields of the table.
  This routine is used for error handling purposes.
unknown's avatar
unknown committed
1328

1329 1330 1331
  SYNOPSIS
    clear_field_flag()
    table                TABLE object for which partition fields are set-up
unknown's avatar
unknown committed
1332 1333 1334

  RETURN VALUE
    NONE
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
*/

static void clear_field_flag(TABLE *table)
{
  Field **ptr;
  DBUG_ENTER("clear_field_flag");

  for (ptr= table->field; *ptr; ptr++)
    (*ptr)->flags&= (~GET_FIXED_FIELDS_FLAG);
  DBUG_VOID_RETURN;
}


/*
unknown's avatar
unknown committed
1349 1350 1351
  find_field_in_table_sef finds the field given its name. All fields get
  GET_FIXED_FIELDS_FLAG set.

1352 1353 1354 1355 1356 1357
  SYNOPSIS
    handle_list_of_fields()
    it                   A list of field names for the partition function
    table                TABLE object for which partition fields are set-up
    part_info            Reference to partitioning data structure
    sub_part             Is the table subpartitioned as well
unknown's avatar
unknown committed
1358

1359 1360 1361
  RETURN VALUE
    TRUE                 Fields in list of fields not part of table
    FALSE                All fields ok and array created
unknown's avatar
unknown committed
1362

1363
  DESCRIPTION
unknown's avatar
unknown committed
1364 1365 1366 1367
    This routine sets-up the partition field array for KEY partitioning, it
    also verifies that all fields in the list of fields is actually a part of
    the table.

1368 1369
*/

unknown's avatar
unknown committed
1370

1371 1372 1373
static bool handle_list_of_fields(List_iterator<char> it,
                                  TABLE *table,
                                  partition_info *part_info,
unknown's avatar
unknown committed
1374
                                  bool is_sub_part)
1375 1376 1377 1378
{
  Field *field;
  bool result;
  char *field_name;
unknown's avatar
unknown committed
1379
  bool is_list_empty= TRUE;
1380 1381 1382 1383
  DBUG_ENTER("handle_list_of_fields");

  while ((field_name= it++))
  {
unknown's avatar
unknown committed
1384
    is_list_empty= FALSE;
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
    field= find_field_in_table_sef(table, field_name);
    if (likely(field != 0))
      field->flags|= GET_FIXED_FIELDS_FLAG;
    else
    {
      my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0));
      clear_field_flag(table);
      result= TRUE;
      goto end;
    }
  }
unknown's avatar
unknown committed
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
  if (is_list_empty)
  {
    uint primary_key= table->s->primary_key;
    if (primary_key != MAX_KEY)
    {
      uint no_key_parts= table->key_info[primary_key].key_parts, i;
      /*
        In the case of an empty list we use primary key as partition key.
      */
      for (i= 0; i < no_key_parts; i++)
      {
        Field *field= table->key_info[primary_key].key_part[i].field;
        field->flags|= GET_FIXED_FIELDS_FLAG;
      }
    }
    else
    {
      if (table->s->db_type->partition_flags &&
          (table->s->db_type->partition_flags() & HA_USE_AUTO_PARTITION) &&
          (table->s->db_type->partition_flags() & HA_CAN_PARTITION))
      {
        /*
          This engine can handle automatic partitioning and there is no
          primary key. In this case we rely on that the engine handles
          partitioning based on a hidden key. Thus we allocate no
          array for partitioning fields.
        */
        DBUG_RETURN(FALSE);
      }
      else
      {
        my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0));
        DBUG_RETURN(TRUE);
      }
    }
  }
  result= set_up_field_array(table, is_sub_part);
1433 1434 1435 1436 1437 1438
end:
  DBUG_RETURN(result);
}


/*
unknown's avatar
unknown committed
1439 1440 1441 1442 1443
  The function uses a new feature in fix_fields where the flag 
  GET_FIXED_FIELDS_FLAG is set for all fields in the item tree.
  This field must always be reset before returning from the function
  since it is used for other purposes as well.

1444 1445 1446 1447 1448 1449 1450
  SYNOPSIS
    fix_fields_part_func()
    thd                  The thread object
    tables               A list of one table, the partitioned table
    func_expr            The item tree reference of the partition function
    part_info            Reference to partitioning data structure
    sub_part             Is the table subpartitioned as well
unknown's avatar
unknown committed
1451

1452 1453 1454 1455
  RETURN VALUE
    TRUE                 An error occurred, something was wrong with the
                         partition function.
    FALSE                Ok, a partition field array was created
unknown's avatar
unknown committed
1456

1457
  DESCRIPTION
unknown's avatar
unknown committed
1458 1459 1460 1461 1462 1463
    This function is used to build an array of partition fields for the
    partitioning function and subpartitioning function. The partitioning
    function is an item tree that must reference at least one field in the
    table. This is checked first in the parser that the function doesn't
    contain non-cacheable parts (like a random function) and by checking
    here that the function isn't a constant function.
1464 1465 1466 1467 1468 1469 1470

    Calculate the number of fields in the partition function.
    Use it allocate memory for array of Field pointers.
    Initialise array of field pointers. Use information set when
    calling fix_fields and reset it immediately after.
    The get_fields_in_item_tree activates setting of bit in flags
    on the field object.
unknown's avatar
unknown committed
1471
*/
1472

unknown's avatar
unknown committed
1473 1474 1475 1476
static bool fix_fields_part_func(THD *thd, TABLE_LIST *tables,
                                 Item* func_expr, partition_info *part_info,
                                 bool is_sub_part)
{
1477 1478
  bool result= TRUE;
  TABLE *table= tables->table;
unknown's avatar
unknown committed
1479
  TABLE_LIST *save_table_list, *save_first_table, *save_last_table;
1480
  int error;
unknown's avatar
unknown committed
1481
  Name_resolution_context *context;
unknown's avatar
unknown committed
1482
  const char *save_where;
1483 1484
  DBUG_ENTER("fix_fields_part_func");

unknown's avatar
unknown committed
1485
  context= thd->lex->current_context();
1486 1487
  table->map= 1; //To ensure correct calculation of const item
  table->get_fields_in_item_tree= TRUE;
unknown's avatar
unknown committed
1488 1489 1490
  save_table_list= context->table_list;
  save_first_table= context->first_name_resolution_table;
  save_last_table= context->last_name_resolution_table;
1491
  context->table_list= tables;
unknown's avatar
unknown committed
1492 1493 1494
  context->first_name_resolution_table= tables;
  context->last_name_resolution_table= NULL;
  func_expr->walk(&Item::change_context_processor, (byte*) context);
unknown's avatar
unknown committed
1495
  save_where= thd->where;
1496 1497
  thd->where= "partition function";
  error= func_expr->fix_fields(thd, (Item**)0);
unknown's avatar
unknown committed
1498 1499 1500
  context->table_list= save_table_list;
  context->first_name_resolution_table= save_first_table;
  context->last_name_resolution_table= save_last_table;
1501 1502 1503 1504 1505 1506
  if (unlikely(error))
  {
    DBUG_PRINT("info", ("Field in partition function not part of table"));
    clear_field_flag(table);
    goto end;
  }
unknown's avatar
unknown committed
1507
  thd->where= save_where;
1508 1509 1510 1511 1512 1513
  if (unlikely(func_expr->const_item()))
  {
    my_error(ER_CONST_EXPR_IN_PARTITION_FUNC_ERROR, MYF(0));
    clear_field_flag(table);
    goto end;
  }
unknown's avatar
unknown committed
1514
  result= set_up_field_array(table, is_sub_part);
1515 1516 1517 1518 1519 1520 1521 1522
end:
  table->get_fields_in_item_tree= FALSE;
  table->map= 0; //Restore old value
  DBUG_RETURN(result);
}


/*
unknown's avatar
unknown committed
1523 1524
  Check that the primary key contains all partition fields if defined

1525 1526 1527
  SYNOPSIS
    check_primary_key()
    table                TABLE object for which partition fields are set-up
unknown's avatar
unknown committed
1528

1529 1530 1531 1532 1533
  RETURN VALUES
    TRUE                 Not all fields in partitioning function was part
                         of primary key
    FALSE                Ok, all fields of partitioning function were part
                         of primary key
unknown's avatar
unknown committed
1534 1535 1536 1537 1538 1539

  DESCRIPTION
    This function verifies that if there is a primary key that it contains
    all the fields of the partition function.
    This is a temporary limitation that will hopefully be removed after a
    while.
1540 1541 1542 1543 1544
*/

static bool check_primary_key(TABLE *table)
{
  uint primary_key= table->s->primary_key;
unknown's avatar
unknown committed
1545 1546
  bool all_fields, some_fields;
  bool result= FALSE;
1547 1548 1549 1550 1551
  DBUG_ENTER("check_primary_key");

  if (primary_key < MAX_KEY)
  {
    set_indicator_in_key_fields(table->key_info+primary_key);
unknown's avatar
unknown committed
1552
    check_fields_in_PF(table->part_info->full_part_field_array,
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
                        &all_fields, &some_fields);
    clear_indicator_in_key_fields(table->key_info+primary_key);
    if (unlikely(!all_fields))
    {
      my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF,MYF(0),"PRIMARY KEY");
      result= TRUE;
    }
  }
  DBUG_RETURN(result);
}


/*
unknown's avatar
unknown committed
1566 1567
  Check that unique keys contains all partition fields

1568 1569 1570
  SYNOPSIS
    check_unique_keys()
    table                TABLE object for which partition fields are set-up
unknown's avatar
unknown committed
1571

1572 1573 1574 1575 1576
  RETURN VALUES
    TRUE                 Not all fields in partitioning function was part
                         of all unique keys
    FALSE                Ok, all fields of partitioning function were part
                         of unique keys
unknown's avatar
unknown committed
1577 1578 1579 1580 1581 1582

  DESCRIPTION
    This function verifies that if there is a unique index that it contains
    all the fields of the partition function.
    This is a temporary limitation that will hopefully be removed after a
    while.
1583 1584 1585 1586
*/

static bool check_unique_keys(TABLE *table)
{
unknown's avatar
unknown committed
1587 1588 1589 1590
  bool all_fields, some_fields;
  bool result= FALSE;
  uint keys= table->s->keys;
  uint i;
1591
  DBUG_ENTER("check_unique_keys");
unknown's avatar
unknown committed
1592

1593 1594 1595 1596 1597
  for (i= 0; i < keys; i++)
  {
    if (table->key_info[i].flags & HA_NOSAME) //Unique index
    {
      set_indicator_in_key_fields(table->key_info+i);
unknown's avatar
unknown committed
1598
      check_fields_in_PF(table->part_info->full_part_field_array,
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
                         &all_fields, &some_fields);
      clear_indicator_in_key_fields(table->key_info+i);
      if (unlikely(!all_fields))
      {
        my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF,MYF(0),"UNIQUE INDEX");
        result= TRUE;
        break;
      }
    }
  }
  DBUG_RETURN(result);
}


/*
  An important optimisation is whether a range on a field can select a subset
  of the partitions.
  A prerequisite for this to happen is that the PF is a growing function OR
  a shrinking function.
  This can never happen for a multi-dimensional PF. Thus this can only happen
  with PF with at most one field involved in the PF.
  The idea is that if the function is a growing function and you know that
  the field of the PF is 4 <= A <= 6 then we can convert this to a range
  in the PF instead by setting the range to PF(4) <= PF(A) <= PF(6). In the
  case of RANGE PARTITIONING and LIST PARTITIONING this can be used to
  calculate a set of partitions rather than scanning all of them.
  Thus the following prerequisites are there to check if sets of partitions
  can be found.
  1) Only possible for RANGE and LIST partitioning (not for subpartitioning)
  2) Only possible if PF only contains 1 field
  3) Possible if PF is a growing function of the field
  4) Possible if PF is a shrinking function of the field
  OBSERVATION:
  1) IF f1(A) is a growing function AND f2(A) is a growing function THEN
     f1(A) + f2(A) is a growing function
     f1(A) * f2(A) is a growing function if f1(A) >= 0 and f2(A) >= 0
  2) IF f1(A) is a growing function and f2(A) is a shrinking function THEN
     f1(A) / f2(A) is a growing function if f1(A) >= 0 and f2(A) > 0
  3) IF A is a growing function then a function f(A) that removes the
     least significant portion of A is a growing function
     E.g. DATE(datetime) is a growing function
     MONTH(datetime) is not a growing/shrinking function
  4) IF f1(A) is a growing function and f2(A) is a growing function THEN
     f1(f2(A)) and f2(f1(A)) are also growing functions
  5) IF f1(A) is a shrinking function and f2(A) is a growing function THEN
     f1(f2(A)) is a shrinking function and f2(f1(A)) is a shrinking function
  6) f1(A) = A is a growing function
  7) f1(A) = A*a + b (where a and b are constants) is a growing function

  By analysing the item tree of the PF we can use these deducements and
  derive whether the PF is a growing function or a shrinking function or
  neither of it.

  If the PF is range capable then a flag is set on the table object
  indicating this to notify that we can use also ranges on the field
  of the PF to deduce a set of partitions if the fields of the PF were
  not all fully bound.
unknown's avatar
unknown committed
1656

1657 1658 1659
  SYNOPSIS
    check_range_capable_PF()
    table                TABLE object for which partition fields are set-up
unknown's avatar
unknown committed
1660

1661 1662 1663 1664 1665 1666 1667
  DESCRIPTION
    Support for this is not implemented yet.
*/

void check_range_capable_PF(TABLE *table)
{
  DBUG_ENTER("check_range_capable_PF");
unknown's avatar
unknown committed
1668

1669 1670 1671 1672
  DBUG_VOID_RETURN;
}


unknown's avatar
unknown committed
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
/*
  Set up partition bitmap

  SYNOPSIS
    set_up_partition_bitmap()
    thd                  Thread object
    part_info            Reference to partitioning data structure

  RETURN VALUE
    TRUE                 Memory allocation failure
    FALSE                Success

  DESCRIPTION
    Allocate memory for bitmap of the partitioned table
    and initialise it.
*/

static bool set_up_partition_bitmap(THD *thd, partition_info *part_info)
{
  uint32 *bitmap_buf;
  uint bitmap_bits= part_info->no_subparts? 
                     (part_info->no_subparts* part_info->no_parts):
                      part_info->no_parts;
  uint bitmap_bytes= bitmap_buffer_size(bitmap_bits);
  DBUG_ENTER("set_up_partition_bitmap");

  if (!(bitmap_buf= (uint32*)thd->alloc(bitmap_bytes)))
  {
    mem_alloc_error(bitmap_bytes);
    DBUG_RETURN(TRUE);
  }
  bitmap_init(&part_info->used_partitions, bitmap_buf, bitmap_bytes*8, FALSE);
  DBUG_RETURN(FALSE);
}


1709 1710
/*
  Set up partition key maps
unknown's avatar
unknown committed
1711

1712 1713 1714 1715
  SYNOPSIS
    set_up_partition_key_maps()
    table                TABLE object for which partition fields are set-up
    part_info            Reference to partitioning data structure
unknown's avatar
unknown committed
1716

1717 1718
  RETURN VALUES
    None
unknown's avatar
unknown committed
1719

1720
  DESCRIPTION
unknown's avatar
unknown committed
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
    This function sets up a couple of key maps to be able to quickly check
    if an index ever can be used to deduce the partition fields or even
    a part of the fields of the  partition function.
    We set up the following key_map's.
    PF = Partition Function
    1) All fields of the PF is set even by equal on the first fields in the
       key
    2) All fields of the PF is set if all fields of the key is set
    3) At least one field in the PF is set if all fields is set
    4) At least one field in the PF is part of the key
1731 1732 1733 1734 1735
*/

static void set_up_partition_key_maps(TABLE *table,
                                      partition_info *part_info)
{
unknown's avatar
unknown committed
1736 1737
  uint keys= table->s->keys;
  uint i;
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
  bool all_fields, some_fields;
  DBUG_ENTER("set_up_partition_key_maps");

  part_info->all_fields_in_PF.clear_all();
  part_info->all_fields_in_PPF.clear_all();
  part_info->all_fields_in_SPF.clear_all();
  part_info->some_fields_in_PF.clear_all();
  for (i= 0; i < keys; i++)
  {
    set_indicator_in_key_fields(table->key_info+i);
    check_fields_in_PF(part_info->full_part_field_array,
                       &all_fields, &some_fields);
    if (all_fields)
      part_info->all_fields_in_PF.set_bit(i);
    if (some_fields)
      part_info->some_fields_in_PF.set_bit(i);
    if (is_sub_partitioned(part_info))
    {
      check_fields_in_PF(part_info->part_field_array,
                         &all_fields, &some_fields);
      if (all_fields)
        part_info->all_fields_in_PPF.set_bit(i);
      check_fields_in_PF(part_info->subpart_field_array,
                         &all_fields, &some_fields);
      if (all_fields)
        part_info->all_fields_in_SPF.set_bit(i);
    }
    clear_indicator_in_key_fields(table->key_info+i);
  }
  DBUG_VOID_RETURN;
}


/*
unknown's avatar
unknown committed
1772 1773
  Set up function pointers for partition function

1774
  SYNOPSIS
unknown's avatar
unknown committed
1775
    set_up_partition_func_pointers()
1776
    part_info            Reference to partitioning data structure
unknown's avatar
unknown committed
1777 1778 1779 1780 1781 1782 1783 1784 1785

  RETURN VALUE
    NONE

  DESCRIPTION
    Set-up all function pointers for calculation of partition id,
    subpartition id and the upper part in subpartitioning. This is to speed up
    execution of get_partition_id which is executed once every record to be
    written and deleted and twice for updates.
1786 1787 1788 1789
*/

static void set_up_partition_func_pointers(partition_info *part_info)
{
unknown's avatar
unknown committed
1790 1791
  DBUG_ENTER("set_up_partition_func_pointers");

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
  if (is_sub_partitioned(part_info))
  {
    if (part_info->part_type == RANGE_PARTITION)
    {
      part_info->get_part_partition_id= get_partition_id_range;
      if (part_info->list_of_subpart_fields)
      {
        if (part_info->linear_hash_ind)
        {
          part_info->get_partition_id= get_partition_id_range_sub_linear_key;
          part_info->get_subpartition_id= get_partition_id_linear_key_sub;
        }
        else
        {
          part_info->get_partition_id= get_partition_id_range_sub_key;
          part_info->get_subpartition_id= get_partition_id_key_sub;
        }
      }
      else
      {
        if (part_info->linear_hash_ind)
        {
          part_info->get_partition_id= get_partition_id_range_sub_linear_hash;
          part_info->get_subpartition_id= get_partition_id_linear_hash_sub;
        }
        else
        {
          part_info->get_partition_id= get_partition_id_range_sub_hash;
          part_info->get_subpartition_id= get_partition_id_hash_sub;
        }
      }
    }
unknown's avatar
unknown committed
1824
    else /* LIST Partitioning */
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
    {
      part_info->get_part_partition_id= get_partition_id_list;
      if (part_info->list_of_subpart_fields)
      {
        if (part_info->linear_hash_ind)
        {
          part_info->get_partition_id= get_partition_id_list_sub_linear_key;
          part_info->get_subpartition_id= get_partition_id_linear_key_sub;
        }
        else
        {
          part_info->get_partition_id= get_partition_id_list_sub_key;
          part_info->get_subpartition_id= get_partition_id_key_sub;
        }
      }
      else
      {
        if (part_info->linear_hash_ind)
        {
          part_info->get_partition_id= get_partition_id_list_sub_linear_hash;
          part_info->get_subpartition_id= get_partition_id_linear_hash_sub;
        }
        else
        {
          part_info->get_partition_id= get_partition_id_list_sub_hash;
          part_info->get_subpartition_id= get_partition_id_hash_sub;
        }
      }
    }
  }
unknown's avatar
unknown committed
1855
  else /* No subpartitioning */
1856 1857 1858 1859 1860 1861 1862
  {
    part_info->get_part_partition_id= NULL;
    part_info->get_subpartition_id= NULL;
    if (part_info->part_type == RANGE_PARTITION)
      part_info->get_partition_id= get_partition_id_range;
    else if (part_info->part_type == LIST_PARTITION)
      part_info->get_partition_id= get_partition_id_list;
unknown's avatar
unknown committed
1863
    else /* HASH partitioning */
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
    {
      if (part_info->list_of_part_fields)
      {
        if (part_info->linear_hash_ind)
          part_info->get_partition_id= get_partition_id_linear_key_nosub;
        else
          part_info->get_partition_id= get_partition_id_key_nosub;
      }
      else
      {
        if (part_info->linear_hash_ind)
          part_info->get_partition_id= get_partition_id_linear_hash_nosub;
        else
          part_info->get_partition_id= get_partition_id_hash_nosub;
      }
    }
  }
unknown's avatar
unknown committed
1881
  DBUG_VOID_RETURN;
1882
}
unknown's avatar
unknown committed
1883 1884


1885 1886 1887
/*
  For linear hashing we need a mask which is on the form 2**n - 1 where
  2**n >= no_parts. Thus if no_parts is 6 then mask is 2**3 - 1 = 8 - 1 = 7.
unknown's avatar
unknown committed
1888

1889 1890 1891 1892
  SYNOPSIS
    set_linear_hash_mask()
    part_info            Reference to partitioning data structure
    no_parts             Number of parts in linear hash partitioning
unknown's avatar
unknown committed
1893 1894 1895

  RETURN VALUE
    NONE
1896 1897 1898 1899 1900
*/

static void set_linear_hash_mask(partition_info *part_info, uint no_parts)
{
  uint mask;
unknown's avatar
unknown committed
1901

1902 1903 1904 1905 1906 1907 1908 1909 1910
  for (mask= 1; mask < no_parts; mask<<=1)
    ;
  part_info->linear_hash_mask= mask - 1;
}


/*
  This function calculates the partition id provided the result of the hash
  function using linear hashing parameters, mask and number of partitions.
unknown's avatar
unknown committed
1911

1912 1913 1914 1915 1916
  SYNOPSIS
    get_part_id_from_linear_hash()
    hash_value          Hash value calculated by HASH function or KEY function
    mask                Mask calculated previously by set_linear_hash_mask
    no_parts            Number of partitions in HASH partitioned part
unknown's avatar
unknown committed
1917

1918 1919
  RETURN VALUE
    part_id             The calculated partition identity (starting at 0)
unknown's avatar
unknown committed
1920

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
  DESCRIPTION
    The partition is calculated according to the theory of linear hashing.
    See e.g. Linear hashing: a new tool for file and table addressing,
    Reprinted from VLDB-80 in Readings Database Systems, 2nd ed, M. Stonebraker
    (ed.), Morgan Kaufmann 1994.
*/

static uint32 get_part_id_from_linear_hash(longlong hash_value, uint mask,
                                           uint no_parts)
{
  uint32 part_id= (uint32)(hash_value & mask);
unknown's avatar
unknown committed
1932

1933 1934 1935
  if (part_id >= no_parts)
  {
    uint new_mask= ((mask + 1) >> 1) - 1;
1936
    part_id= (uint32)(hash_value & new_mask);
1937 1938 1939 1940 1941
  }
  return part_id;
}

/*
unknown's avatar
unknown committed
1942 1943
  fix partition functions

1944 1945 1946 1947 1948
  SYNOPSIS
    fix_partition_func()
    thd                  The thread object
    name                 The name of the partitioned table
    table                TABLE object for which partition fields are set-up
unknown's avatar
unknown committed
1949 1950
    create_table_ind     Indicator of whether openfrm was called as part of
                         CREATE or ALTER TABLE
unknown's avatar
unknown committed
1951

1952
  RETURN VALUE
unknown's avatar
unknown committed
1953 1954
    TRUE                 Error
    FALSE                Success
unknown's avatar
unknown committed
1955

1956 1957 1958 1959
  DESCRIPTION
    The name parameter contains the full table name and is used to get the
    database name of the table which is used to set-up a correct
    TABLE_LIST object for use in fix_fields.
unknown's avatar
unknown committed
1960 1961 1962 1963 1964 1965 1966

NOTES
    This function is called as part of opening the table by opening the .frm
    file. It is a part of CREATE TABLE to do this so it is quite permissible
    that errors due to erroneus syntax isn't found until we come here.
    If the user has used a non-existing field in the table is one such example
    of an error that is not discovered until here.
1967 1968
*/

unknown's avatar
unknown committed
1969 1970
bool fix_partition_func(THD *thd, const char* name, TABLE *table,
                        bool is_create_table_ind)
1971 1972 1973 1974 1975 1976 1977
{
  bool result= TRUE;
  uint dir_length, home_dir_length;
  TABLE_LIST tables;
  TABLE_SHARE *share= table->s;
  char db_name_string[FN_REFLEN];
  char* db_name;
unknown's avatar
unknown committed
1978
  partition_info *part_info= table->part_info;
1979 1980 1981
  ulong save_set_query_id= thd->set_query_id;
  DBUG_ENTER("fix_partition_func");

unknown's avatar
unknown committed
1982 1983 1984 1985
  if (part_info->fixed)
  {
    DBUG_RETURN(FALSE);
  }
1986
  thd->set_query_id= 0;
1987
  DBUG_PRINT("info", ("thd->set_query_id: %d", thd->set_query_id));
1988
  /*
unknown's avatar
unknown committed
1989 1990 1991
    Set-up the TABLE_LIST object to be a list with a single table
    Set the object to zero to create NULL pointers and set alias
    and real name to table name and get database name from file name.
1992 1993 1994
  */

  bzero((void*)&tables, sizeof(TABLE_LIST));
unknown's avatar
unknown committed
1995
  tables.alias= tables.table_name= (char*) share->table_name.str;
1996
  tables.table= table;
unknown's avatar
unknown committed
1997 1998
  tables.next_local= 0;
  tables.next_name_resolution_table= 0;
1999 2000 2001 2002 2003 2004 2005
  strmov(db_name_string, name);
  dir_length= dirname_length(db_name_string);
  db_name_string[dir_length - 1]= 0;
  home_dir_length= dirname_length(db_name_string);
  db_name= &db_name_string[home_dir_length];
  tables.db= db_name;

unknown's avatar
unknown committed
2006 2007
  if (!is_create_table_ind)
  {
2008 2009
    if (partition_default_handling(table, part_info,
                                   table->s->normalized_path.str))
unknown's avatar
unknown committed
2010 2011 2012 2013
    {
      DBUG_RETURN(TRUE);
    }
  }
2014 2015 2016 2017
  if (is_sub_partitioned(part_info))
  {
    DBUG_ASSERT(part_info->subpart_type == HASH_PARTITION);
    /*
unknown's avatar
unknown committed
2018 2019
      Subpartition is defined. We need to verify that subpartitioning
      function is correct.
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
    */
    if (part_info->linear_hash_ind)
      set_linear_hash_mask(part_info, part_info->no_subparts);
    if (part_info->list_of_subpart_fields)
    {
      List_iterator<char> it(part_info->subpart_field_list);
      if (unlikely(handle_list_of_fields(it, table, part_info, TRUE)))
        goto end;
    }
    else
    {
      if (unlikely(fix_fields_part_func(thd, &tables,
unknown's avatar
unknown committed
2032 2033
                                        part_info->subpart_expr, part_info,
                                        TRUE)))
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
        goto end;
      if (unlikely(part_info->subpart_expr->result_type() != INT_RESULT))
      {
        my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0),
                 "SUBPARTITION");
        goto end;
      }
    }
  }
  DBUG_ASSERT(part_info->part_type != NOT_A_PARTITION);
  /*
unknown's avatar
unknown committed
2045 2046
    Partition is defined. We need to verify that partitioning
    function is correct.
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
  */
  if (part_info->part_type == HASH_PARTITION)
  {
    if (part_info->linear_hash_ind)
      set_linear_hash_mask(part_info, part_info->no_parts);
    if (part_info->list_of_part_fields)
    {
      List_iterator<char> it(part_info->part_field_list);
      if (unlikely(handle_list_of_fields(it, table, part_info, FALSE)))
        goto end;
    }
    else
    {
      if (unlikely(fix_fields_part_func(thd, &tables, part_info->part_expr,
                                        part_info, FALSE)))
        goto end;
      if (unlikely(part_info->part_expr->result_type() != INT_RESULT))
      {
        my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0), part_str);
        goto end;
      }
      part_info->part_result_type= INT_RESULT;
    }
  }
  else
  {
2073
    const char *error_str;
2074 2075
    if (part_info->part_type == RANGE_PARTITION)
    {
2076
      error_str= partition_keywords[PKW_RANGE].str; 
2077 2078 2079 2080 2081
      if (unlikely(check_range_constants(part_info)))
        goto end;
    }
    else if (part_info->part_type == LIST_PARTITION)
    {
2082
      error_str= partition_keywords[PKW_LIST].str; 
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
      if (unlikely(check_list_constants(part_info)))
        goto end;
    }
    else
    {
      DBUG_ASSERT(0);
      my_error(ER_INCONSISTENT_PARTITION_INFO_ERROR, MYF(0));
      goto end;
    }
    if (unlikely(part_info->no_parts < 1))
    {
      my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), error_str);
      goto end;
    }
    if (unlikely(fix_fields_part_func(thd, &tables, part_info->part_expr,
                                      part_info, FALSE)))
      goto end;
    if (unlikely(part_info->part_expr->result_type() != INT_RESULT))
    {
      my_error(ER_PARTITION_FUNC_NOT_ALLOWED_ERROR, MYF(0), part_str);
      goto end;
    }
  }
  if (unlikely(create_full_part_field_array(table, part_info)))
    goto end;
  if (unlikely(check_primary_key(table)))
    goto end;
unknown's avatar
unknown committed
2110 2111
  if (unlikely((!(table->s->db_type->partition_flags &&
      (table->s->db_type->partition_flags() & HA_CAN_PARTITION_UNIQUE))) &&
2112 2113
               check_unique_keys(table)))
    goto end;
unknown's avatar
unknown committed
2114 2115
  if (unlikely(set_up_partition_bitmap(thd, part_info)))
    goto end;
2116 2117 2118
  check_range_capable_PF(table);
  set_up_partition_key_maps(table, part_info);
  set_up_partition_func_pointers(part_info);
unknown's avatar
unknown committed
2119
  part_info->fixed= TRUE;
unknown's avatar
unknown committed
2120
  set_up_range_analysis_info(part_info);
2121 2122 2123
  result= FALSE;
end:
  thd->set_query_id= save_set_query_id;
2124
  DBUG_PRINT("info", ("thd->set_query_id: %d", thd->set_query_id));
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
  DBUG_RETURN(result);
}


/*
  The code below is support routines for the reverse parsing of the 
  partitioning syntax. This feature is very useful to generate syntax for
  all default values to avoid all default checking when opening the frm
  file. It is also used when altering the partitioning by use of various
  ALTER TABLE commands. Finally it is used for SHOW CREATE TABLES.
*/

static int add_write(File fptr, const char *buf, uint len)
{
2139
  uint len_written= my_write(fptr, (const byte*)buf, len, MYF(0));
unknown's avatar
unknown committed
2140

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
  if (likely(len == len_written))
    return 0;
  else
    return 1;
}

static int add_string(File fptr, const char *string)
{
  return add_write(fptr, string, strlen(string));
}

static int add_string_len(File fptr, const char *string, uint len)
{
  return add_write(fptr, string, len);
}

static int add_space(File fptr)
{
  return add_string(fptr, space_str);
}

static int add_comma(File fptr)
{
  return add_string(fptr, comma_str);
}

static int add_equal(File fptr)
{
  return add_string(fptr, equal_str);
}

static int add_end_parenthesis(File fptr)
{
  return add_string(fptr, end_paren_str);
}

static int add_begin_parenthesis(File fptr)
{
  return add_string(fptr, begin_paren_str);
}

static int add_part_key_word(File fptr, const char *key_string)
{
  int err= add_string(fptr, key_string);
unknown's avatar
unknown committed
2185

2186 2187 2188 2189 2190 2191
  err+= add_space(fptr);
  return err + add_begin_parenthesis(fptr);
}

static int add_hash(File fptr)
{
2192
  return add_part_key_word(fptr, partition_keywords[PKW_HASH].str);
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
}

static int add_partition(File fptr)
{
  strxmov(buff, part_str, space_str, NullS);
  return add_string(fptr, buff);
}

static int add_subpartition(File fptr)
{
  int err= add_string(fptr, sub_str);
unknown's avatar
unknown committed
2204

2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
  return err + add_partition(fptr);
}

static int add_partition_by(File fptr)
{
  strxmov(buff, part_str, space_str, by_str, space_str, NullS);
  return add_string(fptr, buff);
}

static int add_subpartition_by(File fptr)
{
  int err= add_string(fptr, sub_str);
unknown's avatar
unknown committed
2217

2218 2219 2220 2221 2222 2223 2224
  return err + add_partition_by(fptr);
}

static int add_key_partition(File fptr, List<char> field_list)
{
  uint i, no_fields;
  int err;
unknown's avatar
unknown committed
2225

2226
  List_iterator<char> part_it(field_list);
2227
  err= add_part_key_word(fptr, partition_keywords[PKW_KEY].str);
2228 2229
  no_fields= field_list.elements;
  i= 0;
unknown's avatar
unknown committed
2230
  while (i < no_fields)
2231 2232 2233 2234 2235
  {
    const char *field_str= part_it++;
    err+= add_string(fptr, field_str);
    if (i != (no_fields-1))
      err+= add_comma(fptr);
unknown's avatar
unknown committed
2236 2237
    i++;
  }
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
  return err;
}

static int add_int(File fptr, longlong number)
{
  llstr(number, buff);
  return add_string(fptr, buff);
}

static int add_keyword_string(File fptr, const char *keyword,
2248
                              bool should_use_quotes, 
2249 2250 2251
                              const char *keystr)
{
  int err= add_string(fptr, keyword);
unknown's avatar
unknown committed
2252

2253 2254 2255
  err+= add_space(fptr);
  err+= add_equal(fptr);
  err+= add_space(fptr);
2256 2257
  if (should_use_quotes)
    err+= add_string(fptr, "'");
2258
  err+= add_string(fptr, keystr);
2259 2260
  if (should_use_quotes)
    err+= add_string(fptr, "'");
2261 2262 2263 2264 2265 2266
  return err + add_space(fptr);
}

static int add_keyword_int(File fptr, const char *keyword, longlong num)
{
  int err= add_string(fptr, keyword);
unknown's avatar
unknown committed
2267

2268 2269 2270 2271 2272 2273 2274
  err+= add_space(fptr);
  err+= add_equal(fptr);
  err+= add_space(fptr);
  err+= add_int(fptr, num);
  return err + add_space(fptr);
}

unknown's avatar
unknown committed
2275
static int add_engine(File fptr, handlerton *engine_type)
2276
{
unknown's avatar
unknown committed
2277
  const char *engine_str= engine_type->name;
unknown's avatar
unknown committed
2278
  DBUG_PRINT("info", ("ENGINE = %s", engine_str));
2279 2280 2281 2282 2283 2284 2285
  int err= add_string(fptr, "ENGINE = ");
  return err + add_string(fptr, engine_str);
}

static int add_partition_options(File fptr, partition_element *p_elem)
{
  int err= 0;
unknown's avatar
unknown committed
2286

2287
  if (p_elem->tablespace_name)
2288 2289
    err+= add_keyword_string(fptr,"TABLESPACE", FALSE, 
                             p_elem->tablespace_name);
2290 2291 2292 2293 2294 2295 2296
  if (p_elem->nodegroup_id != UNDEF_NODEGROUP)
    err+= add_keyword_int(fptr,"NODEGROUP",(longlong)p_elem->nodegroup_id);
  if (p_elem->part_max_rows)
    err+= add_keyword_int(fptr,"MAX_ROWS",(longlong)p_elem->part_max_rows);
  if (p_elem->part_min_rows)
    err+= add_keyword_int(fptr,"MIN_ROWS",(longlong)p_elem->part_min_rows);
  if (p_elem->data_file_name)
2297 2298
    err+= add_keyword_string(fptr, "DATA DIRECTORY", TRUE, 
                             p_elem->data_file_name);
2299
  if (p_elem->index_file_name)
2300 2301
    err+= add_keyword_string(fptr, "INDEX DIRECTORY", TRUE, 
                             p_elem->index_file_name);
2302
  if (p_elem->part_comment)
2303
    err+= add_keyword_string(fptr, "COMMENT", FALSE, p_elem->part_comment);
2304 2305 2306 2307 2308 2309 2310
  return err + add_engine(fptr,p_elem->engine_type);
}

static int add_partition_values(File fptr, partition_info *part_info,
                         partition_element *p_elem)
{
  int err= 0;
unknown's avatar
unknown committed
2311

2312 2313 2314
  if (part_info->part_type == RANGE_PARTITION)
  {
    err+= add_string(fptr, "VALUES LESS THAN ");
unknown's avatar
unknown committed
2315
    if (p_elem->range_value != LONGLONG_MAX)
2316 2317
    {
      err+= add_begin_parenthesis(fptr);
unknown's avatar
unknown committed
2318
      err+= add_int(fptr, p_elem->range_value);
2319 2320 2321
      err+= add_end_parenthesis(fptr);
    }
    else
2322
      err+= add_string(fptr, partition_keywords[PKW_MAXVALUE].str);
2323 2324 2325 2326
  }
  else if (part_info->part_type == LIST_PARTITION)
  {
    uint i;
unknown's avatar
unknown committed
2327
    List_iterator<longlong> list_val_it(p_elem->list_val_list);
2328
    err+= add_string(fptr, "VALUES IN ");
unknown's avatar
unknown committed
2329
    uint no_items= p_elem->list_val_list.elements;
2330 2331 2332 2333
    err+= add_begin_parenthesis(fptr);
    i= 0;
    do
    {
unknown's avatar
unknown committed
2334 2335
      longlong *list_value= list_val_it++;
      err+= add_int(fptr, *list_value);
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
      if (i != (no_items-1))
        err+= add_comma(fptr);
    } while (++i < no_items);
    err+= add_end_parenthesis(fptr);
  }
  return err + add_space(fptr);
}

/*
  Generate the partition syntax from the partition data structure.
  Useful for support of generating defaults, SHOW CREATE TABLES
  and easy partition management.
unknown's avatar
unknown committed
2348

2349 2350 2351 2352 2353 2354
  SYNOPSIS
    generate_partition_syntax()
    part_info                  The partitioning data structure
    buf_length                 A pointer to the returned buffer length
    use_sql_alloc              Allocate buffer from sql_alloc if true
                               otherwise use my_malloc
unknown's avatar
unknown committed
2355 2356
    write_all                  Write everything, also default values

2357 2358 2359
  RETURN VALUES
    NULL error
    buf, buf_length            Buffer and its length
unknown's avatar
unknown committed
2360

2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
  DESCRIPTION
  Here we will generate the full syntax for the given command where all
  defaults have been expanded. By so doing the it is also possible to
  make lots of checks of correctness while at it.
  This could will also be reused for SHOW CREATE TABLES and also for all
  type ALTER TABLE commands focusing on changing the PARTITION structure
  in any fashion.

  The implementation writes the syntax to a temporary file (essentially
  an abstraction of a dynamic array) and if all writes goes well it
  allocates a buffer and writes the syntax into this one and returns it.

  As a security precaution the file is deleted before writing into it. This
  means that no other processes on the machine can open and read the file
  while this processing is ongoing.

  The code is optimised for minimal code size since it is not used in any
  common queries.
*/

char *generate_partition_syntax(partition_info *part_info,
                                uint *buf_length,
2383
                                bool use_sql_alloc,
unknown's avatar
unknown committed
2384
                                bool write_all)
2385
{
unknown's avatar
unknown committed
2386
  uint i,j, tot_no_parts, no_subparts, no_parts;
2387
  partition_element *part_elem;
unknown's avatar
unknown committed
2388
  partition_element *save_part_elem= NULL;
2389 2390 2391
  ulonglong buffer_length;
  char path[FN_REFLEN];
  int err= 0;
unknown's avatar
unknown committed
2392 2393
  List_iterator<partition_element> part_it(part_info->partitions);
  List_iterator<partition_element> temp_it(part_info->temp_partitions);
2394 2395
  File fptr;
  char *buf= NULL; //Return buffer
unknown's avatar
unknown committed
2396 2397 2398 2399 2400 2401
  uint use_temp= 0;
  uint no_temp_parts= part_info->temp_partitions.elements;
  bool write_part_state;
  DBUG_ENTER("generate_partition_syntax");

  write_part_state= (part_info->part_state && !part_info->part_state_len);
2402 2403 2404
  if (unlikely(((fptr= create_temp_file(path,mysql_tmpdir,"psy", 
                                        O_RDWR | O_BINARY | O_TRUNC |  
                                        O_TEMPORARY, MYF(MY_WME)))) < 0))
2405
    DBUG_RETURN(NULL);
unknown's avatar
unknown committed
2406 2407
#ifndef __WIN__
  unlink(path);
2408 2409 2410 2411 2412 2413
#endif
  err+= add_space(fptr);
  err+= add_partition_by(fptr);
  switch (part_info->part_type)
  {
    case RANGE_PARTITION:
2414
      err+= add_part_key_word(fptr, partition_keywords[PKW_RANGE].str);
2415 2416
      break;
    case LIST_PARTITION:
2417
      err+= add_part_key_word(fptr, partition_keywords[PKW_LIST].str);
2418 2419 2420
      break;
    case HASH_PARTITION:
      if (part_info->linear_hash_ind)
2421
        err+= add_string(fptr, partition_keywords[PKW_LINEAR].str);
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
      if (part_info->list_of_part_fields)
        err+= add_key_partition(fptr, part_info->part_field_list);
      else
        err+= add_hash(fptr);
      break;
    default:
      DBUG_ASSERT(0);
      /* We really shouldn't get here, no use in continuing from here */
      current_thd->fatal_error();
      DBUG_RETURN(NULL);
  }
  if (part_info->part_expr)
    err+= add_string_len(fptr, part_info->part_func_string,
                         part_info->part_func_len);
  err+= add_end_parenthesis(fptr);
  err+= add_space(fptr);
unknown's avatar
unknown committed
2438 2439 2440 2441 2442 2443 2444
  if ((!part_info->use_default_no_partitions) &&
       part_info->use_default_partitions)
  {
    err+= add_string(fptr, "PARTITIONS ");
    err+= add_int(fptr, part_info->no_parts);
    err+= add_space(fptr);
  }
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
  if (is_sub_partitioned(part_info))
  {
    err+= add_subpartition_by(fptr);
    /* Must be hash partitioning for subpartitioning */
    if (part_info->list_of_subpart_fields)
      err+= add_key_partition(fptr, part_info->subpart_field_list);
    else
      err+= add_hash(fptr);
    if (part_info->subpart_expr)
      err+= add_string_len(fptr, part_info->subpart_func_string,
                           part_info->subpart_func_len);
    err+= add_end_parenthesis(fptr);
    err+= add_space(fptr);
unknown's avatar
unknown committed
2458 2459 2460 2461 2462 2463 2464 2465
    if ((!part_info->use_default_no_subpartitions) && 
          part_info->use_default_subpartitions)
    {
      err+= add_string(fptr, "SUBPARTITIONS ");
      err+= add_int(fptr, part_info->no_subparts);
      err+= add_space(fptr);
    }
  }
2466
  no_parts= part_info->no_parts;
unknown's avatar
unknown committed
2467
  tot_no_parts= no_parts + no_temp_parts;
2468
  no_subparts= part_info->no_subparts;
unknown's avatar
unknown committed
2469 2470

  if (write_all || (!part_info->use_default_partitions))
2471
  {
unknown's avatar
unknown committed
2472 2473 2474
    err+= add_begin_parenthesis(fptr);
    i= 0;
    do
2475
    {
unknown's avatar
unknown committed
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
      /*
        We need to do some clever list manipulation here since we have two
        different needs for our list processing and here we take some of the
        cost of using a simpler list processing for the other parts of the
        code.

        ALTER TABLE REORGANIZE PARTITIONS has the list of partitions to be
        the final list as the main list and the reorganised partitions is in
        the temporary partition list. Thus when finding the first part added
        we insert the temporary list if there is such a list. If there is no
        temporary list we are performing an ADD PARTITION.
      */
      if (use_temp && use_temp <= no_temp_parts)
      {
        part_elem= temp_it++;
        DBUG_ASSERT(no_temp_parts);
        no_temp_parts--;
      }
      else if (use_temp)
      {
        DBUG_ASSERT(no_parts);
        part_elem= save_part_elem;
        use_temp= 0;
        no_parts--;
      }
      else
      {
        part_elem= part_it++;
        if ((part_elem->part_state == PART_TO_BE_ADDED ||
             part_elem->part_state == PART_IS_ADDED) && no_temp_parts)
        {
          save_part_elem= part_elem;
          part_elem= temp_it++;
          no_temp_parts--;
          use_temp= 1;
        }
        else
        {
          DBUG_ASSERT(no_parts);
          no_parts--;
        }
      }

      if (part_elem->part_state != PART_IS_DROPPED)
2520
      {
unknown's avatar
unknown committed
2521 2522 2523 2524 2525 2526 2527
        if (write_part_state)
        {
          uint32 part_state_id= part_info->part_state_len;
          part_info->part_state[part_state_id]= (uchar)part_elem->part_state;
          part_info->part_state_len= part_state_id+1;
        }
        err+= add_partition(fptr);
2528 2529
        err+= add_string(fptr, part_elem->partition_name);
        err+= add_space(fptr);
unknown's avatar
unknown committed
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
        err+= add_partition_values(fptr, part_info, part_elem);
        if (!is_sub_partitioned(part_info))
          err+= add_partition_options(fptr, part_elem);
        if (is_sub_partitioned(part_info) &&
            (write_all || (!part_info->use_default_subpartitions)))
        {
          err+= add_space(fptr);
          err+= add_begin_parenthesis(fptr);
          List_iterator<partition_element> sub_it(part_elem->subpartitions);
          j= 0;
          do
          {
            part_elem= sub_it++;
            err+= add_subpartition(fptr);
            err+= add_string(fptr, part_elem->partition_name);
            err+= add_space(fptr);
            err+= add_partition_options(fptr, part_elem);
            if (j != (no_subparts-1))
            {
              err+= add_comma(fptr);
              err+= add_space(fptr);
            }
            else
              err+= add_end_parenthesis(fptr);
          } while (++j < no_subparts);
        }
        if (i != (tot_no_parts-1))
2557 2558 2559 2560
        {
          err+= add_comma(fptr);
          err+= add_space(fptr);
        }
unknown's avatar
unknown committed
2561 2562 2563 2564 2565
      }
      if (i == (tot_no_parts-1))
        err+= add_end_parenthesis(fptr);
    } while (++i < tot_no_parts);
    DBUG_ASSERT(!no_parts && !no_temp_parts);
2566
  }
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
  if (err)
    goto close_file;
  buffer_length= my_seek(fptr, 0L,MY_SEEK_END,MYF(0));
  if (unlikely(buffer_length == MY_FILEPOS_ERROR))
    goto close_file;
  if (unlikely(my_seek(fptr, 0L, MY_SEEK_SET, MYF(0)) == MY_FILEPOS_ERROR))
    goto close_file;
  *buf_length= (uint)buffer_length;
  if (use_sql_alloc)
    buf= sql_alloc(*buf_length+1);
  else
    buf= my_malloc(*buf_length+1, MYF(MY_WME));
  if (!buf)
    goto close_file;

2582
  if (unlikely(my_read(fptr, (byte*)buf, *buf_length, MYF(MY_FNABP))))
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
  {
    if (!use_sql_alloc)
      my_free(buf, MYF(0));
    else
      buf= NULL;
  }
  else
    buf[*buf_length]= 0;

close_file:
  my_close(fptr, MYF(0));
  DBUG_RETURN(buf);
}


/*
  Check if partition key fields are modified and if it can be handled by the
  underlying storage engine.
unknown's avatar
unknown committed
2601

2602 2603 2604 2605
  SYNOPSIS
    partition_key_modified
    table                TABLE object for which partition fields are set-up
    fields               A list of the to be modifed
unknown's avatar
unknown committed
2606

2607 2608 2609 2610 2611 2612 2613 2614
  RETURN VALUES
    TRUE                 Need special handling of UPDATE
    FALSE                Normal UPDATE handling is ok
*/

bool partition_key_modified(TABLE *table, List<Item> &fields)
{
  List_iterator_fast<Item> f(fields);
unknown's avatar
unknown committed
2615
  partition_info *part_info= table->part_info;
2616 2617
  Item_field *item_field;
  DBUG_ENTER("partition_key_modified");
unknown's avatar
unknown committed
2618

2619 2620
  if (!part_info)
    DBUG_RETURN(FALSE);
unknown's avatar
unknown committed
2621 2622
  if (table->s->db_type->partition_flags &&
      (table->s->db_type->partition_flags() & HA_CAN_UPDATE_PARTITION_KEY))
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
    DBUG_RETURN(FALSE);
  f.rewind();
  while ((item_field=(Item_field*) f++))
    if (item_field->field->flags & FIELD_IN_PART_FUNC_FLAG)
      DBUG_RETURN(TRUE);
  DBUG_RETURN(FALSE);
}


/*
  The next set of functions are used to calculate the partition identity.
  A handler sets up a variable that corresponds to one of these functions
  to be able to quickly call it whenever the partition id needs to calculated
  based on the record in table->record[0] (or set up to fake that).
  There are 4 functions for hash partitioning and 2 for RANGE/LIST partitions.
  In addition there are 4 variants for RANGE subpartitioning and 4 variants
  for LIST subpartitioning thus in total there are 14 variants of this
  function.

  We have a set of support functions for these 14 variants. There are 4
  variants of hash functions and there is a function for each. The KEY
  partitioning uses the function calculate_key_value to calculate the hash
  value based on an array of fields. The linear hash variants uses the
  method get_part_id_from_linear_hash to get the partition id using the
  hash value and some parameters calculated from the number of partitions.
*/

/*
  Calculate hash value for KEY partitioning using an array of fields.
unknown's avatar
unknown committed
2652

2653 2654 2655
  SYNOPSIS
    calculate_key_value()
    field_array             An array of the fields in KEY partitioning
unknown's avatar
unknown committed
2656

2657 2658
  RETURN VALUE
    hash_value calculated
unknown's avatar
unknown committed
2659

2660 2661 2662 2663 2664 2665 2666 2667 2668
  DESCRIPTION
    Uses the hash function on the character set of the field. Integer and
    floating point fields use the binary character set by default.
*/

static uint32 calculate_key_value(Field **field_array)
{
  uint32 hashnr= 0;
  ulong nr2= 4;
unknown's avatar
unknown committed
2669

2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
  do
  {
    Field *field= *field_array;
    if (field->is_null())
    {
      hashnr^= (hashnr << 1) | 1;
    }
    else
    {
      uint len= field->pack_length();
      ulong nr1= 1;
      CHARSET_INFO *cs= field->charset();
      cs->coll->hash_sort(cs, (uchar*)field->ptr, len, &nr1, &nr2);
      hashnr^= (uint32)nr1;
    }
  } while (*(++field_array));
  return hashnr;
}


/*
  A simple support function to calculate part_id given local part and
  sub part.
unknown's avatar
unknown committed
2693

2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
  SYNOPSIS
    get_part_id_for_sub()
    loc_part_id             Local partition id
    sub_part_id             Subpartition id
    no_subparts             Number of subparts
*/

inline
static uint32 get_part_id_for_sub(uint32 loc_part_id, uint32 sub_part_id,
                                  uint no_subparts)
{
  return (uint32)((loc_part_id * no_subparts) + sub_part_id);
}


/*
  Calculate part_id for (SUB)PARTITION BY HASH
unknown's avatar
unknown committed
2711

2712 2713 2714 2715
  SYNOPSIS
    get_part_id_hash()
    no_parts                 Number of hash partitions
    part_expr                Item tree of hash function
2716
    out:func_value      Value of hash function
unknown's avatar
unknown committed
2717

2718 2719 2720 2721 2722 2723
  RETURN VALUE
    Calculated partition id
*/

inline
static uint32 get_part_id_hash(uint no_parts,
2724 2725
                               Item *part_expr,
                               longlong *func_value)
2726 2727
{
  DBUG_ENTER("get_part_id_hash");
2728 2729
  *func_value= part_expr->val_int();
  longlong int_hash_id= *func_value % no_parts;
2730
  DBUG_RETURN(int_hash_id < 0 ? -int_hash_id : int_hash_id);
2731 2732 2733 2734 2735
}


/*
  Calculate part_id for (SUB)PARTITION BY LINEAR HASH
unknown's avatar
unknown committed
2736

2737 2738 2739 2740 2741 2742
  SYNOPSIS
    get_part_id_linear_hash()
    part_info           A reference to the partition_info struct where all the
                        desired information is given
    no_parts            Number of hash partitions
    part_expr           Item tree of hash function
2743
    out:func_value      Value of hash function
unknown's avatar
unknown committed
2744

2745 2746 2747 2748 2749 2750 2751
  RETURN VALUE
    Calculated partition id
*/

inline
static uint32 get_part_id_linear_hash(partition_info *part_info,
                                      uint no_parts,
2752 2753
                                      Item *part_expr,
                                      longlong *func_value)
2754 2755
{
  DBUG_ENTER("get_part_id_linear_hash");
unknown's avatar
unknown committed
2756

2757 2758
  *func_value= part_expr->val_int();
  DBUG_RETURN(get_part_id_from_linear_hash(*func_value,
2759 2760 2761 2762 2763 2764 2765
                                           part_info->linear_hash_mask,
                                           no_parts));
}


/*
  Calculate part_id for (SUB)PARTITION BY KEY
unknown's avatar
unknown committed
2766

2767 2768 2769 2770
  SYNOPSIS
    get_part_id_key()
    field_array         Array of fields for PARTTION KEY
    no_parts            Number of KEY partitions
unknown's avatar
unknown committed
2771

2772 2773 2774 2775 2776 2777
  RETURN VALUE
    Calculated partition id
*/

inline
static uint32 get_part_id_key(Field **field_array,
2778 2779
                              uint no_parts,
                              longlong *func_value)
2780 2781
{
  DBUG_ENTER("get_part_id_key");
2782 2783
  *func_value= calculate_key_value(field_array);
  DBUG_RETURN(*func_value % no_parts);
2784 2785 2786 2787 2788
}


/*
  Calculate part_id for (SUB)PARTITION BY LINEAR KEY
unknown's avatar
unknown committed
2789

2790 2791 2792 2793 2794 2795
  SYNOPSIS
    get_part_id_linear_key()
    part_info           A reference to the partition_info struct where all the
                        desired information is given
    field_array         Array of fields for PARTTION KEY
    no_parts            Number of KEY partitions
unknown's avatar
unknown committed
2796

2797 2798 2799 2800 2801 2802 2803
  RETURN VALUE
    Calculated partition id
*/

inline
static uint32 get_part_id_linear_key(partition_info *part_info,
                                     Field **field_array,
2804 2805
                                     uint no_parts,
                                     longlong *func_value)
2806 2807
{
  DBUG_ENTER("get_partition_id_linear_key");
unknown's avatar
unknown committed
2808

2809 2810
  *func_value= calculate_key_value(field_array);
  DBUG_RETURN(get_part_id_from_linear_hash(*func_value,
2811 2812 2813 2814 2815 2816 2817 2818
                                           part_info->linear_hash_mask,
                                           no_parts));
}

/*
  This function is used to calculate the partition id where all partition
  fields have been prepared to point to a record where the partition field
  values are bound.
unknown's avatar
unknown committed
2819

2820 2821 2822 2823
  SYNOPSIS
    get_partition_id()
    part_info           A reference to the partition_info struct where all the
                        desired information is given
unknown's avatar
unknown committed
2824 2825
    out:part_id         The partition id is returned through this pointer

2826 2827 2828 2829
  RETURN VALUE
    part_id
    return TRUE means that the fields of the partition function didn't fit
    into any partition and thus the values of the PF-fields are not allowed.
unknown's avatar
unknown committed
2830

2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
  DESCRIPTION
    A routine used from write_row, update_row and delete_row from any
    handler supporting partitioning. It is also a support routine for
    get_partition_set used to find the set of partitions needed to scan
    for a certain index scan or full table scan.
    
    It is actually 14 different variants of this function which are called
    through a function pointer.

    get_partition_id_list
    get_partition_id_range
    get_partition_id_hash_nosub
    get_partition_id_key_nosub
    get_partition_id_linear_hash_nosub
    get_partition_id_linear_key_nosub
    get_partition_id_range_sub_hash
    get_partition_id_range_sub_key
    get_partition_id_range_sub_linear_hash
    get_partition_id_range_sub_linear_key
    get_partition_id_list_sub_hash
    get_partition_id_list_sub_key
    get_partition_id_list_sub_linear_hash
    get_partition_id_list_sub_linear_key
*/

/*
  This function is used to calculate the main partition to use in the case of
  subpartitioning and we don't know enough to get the partition identity in
  total.
unknown's avatar
unknown committed
2860

2861 2862 2863 2864
  SYNOPSIS
    get_part_partition_id()
    part_info           A reference to the partition_info struct where all the
                        desired information is given
unknown's avatar
unknown committed
2865 2866
    out:part_id         The partition id is returned through this pointer

2867 2868 2869 2870
  RETURN VALUE
    part_id
    return TRUE means that the fields of the partition function didn't fit
    into any partition and thus the values of the PF-fields are not allowed.
unknown's avatar
unknown committed
2871

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
  DESCRIPTION
    
    It is actually 6 different variants of this function which are called
    through a function pointer.

    get_partition_id_list
    get_partition_id_range
    get_partition_id_hash_nosub
    get_partition_id_key_nosub
    get_partition_id_linear_hash_nosub
    get_partition_id_linear_key_nosub
*/


unknown's avatar
unknown committed
2886
int get_partition_id_list(partition_info *part_info,
2887 2888
                           uint32 *part_id,
                           longlong *func_value)
2889 2890
{
  LIST_PART_ENTRY *list_array= part_info->list_array;
unknown's avatar
unknown committed
2891
  int list_index;
2892
  longlong list_value;
unknown's avatar
unknown committed
2893 2894
  int min_list_index= 0;
  int max_list_index= part_info->no_list_values - 1;
2895
  longlong part_func_value= part_info->part_expr->val_int();
unknown's avatar
unknown committed
2896 2897
  DBUG_ENTER("get_partition_id_list");

2898
  *func_value= part_func_value;
2899 2900 2901 2902 2903 2904 2905
  while (max_list_index >= min_list_index)
  {
    list_index= (max_list_index + min_list_index) >> 1;
    list_value= list_array[list_index].list_value;
    if (list_value < part_func_value)
      min_list_index= list_index + 1;
    else if (list_value > part_func_value)
unknown's avatar
unknown committed
2906 2907 2908
    {
      if (!list_index)
        goto notfound;
2909
      max_list_index= list_index - 1;
unknown's avatar
unknown committed
2910 2911 2912
    }
    else
    {
2913
      *part_id= (uint32)list_array[list_index].partition_id;
unknown's avatar
unknown committed
2914
      DBUG_RETURN(0);
2915 2916
    }
  }
unknown's avatar
unknown committed
2917
notfound:
2918
  *part_id= 0;
unknown's avatar
unknown committed
2919
  DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND);
2920 2921 2922
}


unknown's avatar
unknown committed
2923
/*
2924 2925
  Find the sub-array part_info->list_array that corresponds to given interval

unknown's avatar
unknown committed
2926 2927 2928 2929 2930 2931 2932 2933
  SYNOPSIS 
    get_list_array_idx_for_endpoint()
      part_info         Partitioning info (partitioning type must be LIST)
      left_endpoint     TRUE  - the interval is [a; +inf) or (a; +inf)
                        FALSE - the interval is (-inf; a] or (-inf; a)
      include_endpoint  TRUE iff the interval includes the endpoint

  DESCRIPTION
2934
    This function finds the sub-array of part_info->list_array where values of
unknown's avatar
unknown committed
2935 2936 2937
    list_array[idx].list_value are contained within the specifed interval.
    list_array is ordered by list_value, so
    1. For [a; +inf) or (a; +inf)-type intervals (left_endpoint==TRUE), the 
2938
       sought sub-array starts at some index idx and continues till array end.
unknown's avatar
unknown committed
2939 2940 2941 2942
       The function returns first number idx, such that 
       list_array[idx].list_value is contained within the passed interval.
       
    2. For (-inf; a] or (-inf; a)-type intervals (left_endpoint==FALSE), the
2943
       sought sub-array starts at array start and continues till some last 
unknown's avatar
unknown committed
2944 2945 2946 2947 2948 2949 2950
       index idx.
       The function returns first number idx, such that 
       list_array[idx].list_value is NOT contained within the passed interval.
       If all array elements are contained, part_info->no_list_values is
       returned.

  NOTE
2951
    The caller will call this function and then will run along the sub-array of
unknown's avatar
unknown committed
2952 2953 2954 2955 2956 2957
    list_array to collect partition ids. If the number of list values is 
    significantly higher then number of partitions, this could be slow and
    we could invent some other approach. The "run over list array" part is
    already wrapped in a get_next()-like function.

  RETURN
2958
    The edge of corresponding sub-array of part_info->list_array
unknown's avatar
unknown committed
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
*/

uint32 get_list_array_idx_for_endpoint(partition_info *part_info,
                                       bool left_endpoint,
                                       bool include_endpoint)
{
  DBUG_ENTER("get_list_array_idx_for_endpoint");
  LIST_PART_ENTRY *list_array= part_info->list_array;
  uint list_index;
  longlong list_value;
  uint min_list_index= 0, max_list_index= part_info->no_list_values - 1;
2970
  /* Get the partitioning function value for the endpoint */
unknown's avatar
unknown committed
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
  longlong part_func_value= part_info->part_expr->val_int();
  while (max_list_index >= min_list_index)
  {
    list_index= (max_list_index + min_list_index) >> 1;
    list_value= list_array[list_index].list_value;
    if (list_value < part_func_value)
      min_list_index= list_index + 1;
    else if (list_value > part_func_value)
    {
      if (!list_index)
        goto notfound;
      max_list_index= list_index - 1;
    }
    else 
    {
      DBUG_RETURN(list_index + test(left_endpoint ^ include_endpoint));
    }
  }
notfound:
  if (list_value < part_func_value)
    list_index++;
  DBUG_RETURN(list_index);
}

2995

unknown's avatar
unknown committed
2996
int get_partition_id_range(partition_info *part_info,
2997 2998
                            uint32 *part_id,
                            longlong *func_value)
2999 3000 3001
{
  longlong *range_array= part_info->range_int_array;
  uint max_partition= part_info->no_parts - 1;
unknown's avatar
unknown committed
3002 3003 3004
  uint min_part_id= 0;
  uint max_part_id= max_partition;
  uint loc_part_id;
3005
  longlong part_func_value= part_info->part_expr->val_int();
unknown's avatar
unknown committed
3006 3007
  DBUG_ENTER("get_partition_id_int_range");

3008 3009 3010
  while (max_part_id > min_part_id)
  {
    loc_part_id= (max_part_id + min_part_id + 1) >> 1;
unknown's avatar
unknown committed
3011
    if (range_array[loc_part_id] <= part_func_value)
3012 3013 3014 3015 3016 3017 3018 3019 3020
      min_part_id= loc_part_id + 1;
    else
      max_part_id= loc_part_id - 1;
  }
  loc_part_id= max_part_id;
  if (part_func_value >= range_array[loc_part_id])
    if (loc_part_id != max_partition)
      loc_part_id++;
  *part_id= (uint32)loc_part_id;
3021
  *func_value= part_func_value;
3022 3023 3024
  if (loc_part_id == max_partition)
    if (range_array[loc_part_id] != LONGLONG_MAX)
      if (part_func_value >= range_array[loc_part_id])
unknown's avatar
unknown committed
3025 3026
        DBUG_RETURN(HA_ERR_NO_PARTITION_FOUND);
  DBUG_RETURN(0);
3027 3028
}

unknown's avatar
unknown committed
3029 3030

/*
3031 3032
  Find the sub-array of part_info->range_int_array that covers given interval
 
unknown's avatar
unknown committed
3033 3034 3035 3036 3037 3038 3039 3040 3041
  SYNOPSIS 
    get_partition_id_range_for_endpoint()
      part_info         Partitioning info (partitioning type must be RANGE)
      left_endpoint     TRUE  - the interval is [a; +inf) or (a; +inf)
                        FALSE - the interval is (-inf; a] or (-inf; a).
      include_endpoint  TRUE <=> the endpoint itself is included in the
                        interval

  DESCRIPTION
3042
    This function finds the sub-array of part_info->range_int_array where the
unknown's avatar
unknown committed
3043
    elements have non-empty intersections with the given interval.
3044
 
unknown's avatar
unknown committed
3045 3046 3047 3048 3049 3050 3051
    A range_int_array element at index idx represents the interval
      
      [range_int_array[idx-1], range_int_array[idx]),

    intervals are disjoint and ordered by their right bound, so
    
    1. For [a; +inf) or (a; +inf)-type intervals (left_endpoint==TRUE), the
3052
       sought sub-array starts at some index idx and continues till array end.
unknown's avatar
unknown committed
3053 3054 3055 3056 3057
       The function returns first number idx, such that the interval
       represented by range_int_array[idx] has non empty intersection with 
       the passed interval.
       
    2. For (-inf; a] or (-inf; a)-type intervals (left_endpoint==FALSE), the
3058
       sought sub-array starts at array start and continues till some last
unknown's avatar
unknown committed
3059 3060 3061 3062 3063 3064 3065 3066 3067
       index idx.
       The function returns first number idx, such that the interval
       represented by range_int_array[idx] has EMPTY intersection with the
       passed interval.
       If the interval represented by the last array element has non-empty 
       intersection with the passed interval, part_info->no_parts is
       returned.
       
  RETURN
3068
    The edge of corresponding part_info->range_int_array sub-array.
unknown's avatar
unknown committed
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
*/

uint32 get_partition_id_range_for_endpoint(partition_info *part_info,
                                           bool left_endpoint,
                                           bool include_endpoint)
{
  DBUG_ENTER("get_partition_id_range_for_endpoint");
  longlong *range_array= part_info->range_int_array;
  uint max_partition= part_info->no_parts - 1;
  uint min_part_id= 0, max_part_id= max_partition, loc_part_id;
3079
  /* Get the partitioning function value for the endpoint */
unknown's avatar
unknown committed
3080 3081 3082 3083
  longlong part_func_value= part_info->part_expr->val_int();
  while (max_part_id > min_part_id)
  {
    loc_part_id= (max_part_id + min_part_id + 1) >> 1;
unknown's avatar
unknown committed
3084
    if (range_array[loc_part_id] <= part_func_value)
unknown's avatar
unknown committed
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
      min_part_id= loc_part_id + 1;
    else
      max_part_id= loc_part_id - 1;
  }
  loc_part_id= max_part_id;
  if (loc_part_id < max_partition && 
      part_func_value >= range_array[loc_part_id+1])
  {
     loc_part_id++;
  }
  if (left_endpoint)
  {
    if (part_func_value >= range_array[loc_part_id])
      loc_part_id++;
  }
  else 
  {
    if (part_func_value == range_array[loc_part_id])
      loc_part_id += test(include_endpoint);
    else if (part_func_value > range_array[loc_part_id])
      loc_part_id++;
    loc_part_id++;
  }
  DBUG_RETURN(loc_part_id);
}


unknown's avatar
unknown committed
3112
int get_partition_id_hash_nosub(partition_info *part_info,
3113 3114
                                 uint32 *part_id,
                                 longlong *func_value)
3115
{
3116 3117
  *part_id= get_part_id_hash(part_info->no_parts, part_info->part_expr,
                             func_value);
unknown's avatar
unknown committed
3118
  return 0;
3119 3120 3121
}


unknown's avatar
unknown committed
3122
int get_partition_id_linear_hash_nosub(partition_info *part_info,
3123 3124
                                        uint32 *part_id,
                                        longlong *func_value)
3125 3126
{
  *part_id= get_part_id_linear_hash(part_info, part_info->no_parts,
3127
                                    part_info->part_expr, func_value);
unknown's avatar
unknown committed
3128
  return 0;
3129 3130 3131
}


unknown's avatar
unknown committed
3132
int get_partition_id_key_nosub(partition_info *part_info,
3133 3134
                                uint32 *part_id,
                                longlong *func_value)
3135
{
3136 3137
  *part_id= get_part_id_key(part_info->part_field_array,
                            part_info->no_parts, func_value);
unknown's avatar
unknown committed
3138
  return 0;
3139 3140 3141
}


unknown's avatar
unknown committed
3142
int get_partition_id_linear_key_nosub(partition_info *part_info,
3143 3144
                                       uint32 *part_id,
                                       longlong *func_value)
3145 3146 3147
{
  *part_id= get_part_id_linear_key(part_info,
                                   part_info->part_field_array,
3148
                                   part_info->no_parts, func_value);
unknown's avatar
unknown committed
3149
  return 0;
3150 3151 3152
}


unknown's avatar
unknown committed
3153
int get_partition_id_range_sub_hash(partition_info *part_info,
3154 3155
                                     uint32 *part_id,
                                     longlong *func_value)
3156 3157 3158
{
  uint32 loc_part_id, sub_part_id;
  uint no_subparts;
3159
  longlong local_func_value;
unknown's avatar
unknown committed
3160
  int error;
3161
  DBUG_ENTER("get_partition_id_range_sub_hash");
unknown's avatar
unknown committed
3162

3163 3164
  if (unlikely((error= get_partition_id_range(part_info, &loc_part_id,
                                              func_value))))
3165
  {
unknown's avatar
unknown committed
3166
    DBUG_RETURN(error);
3167 3168
  }
  no_subparts= part_info->no_subparts;
3169 3170
  sub_part_id= get_part_id_hash(no_subparts, part_info->subpart_expr,
                                &local_func_value);
3171
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
unknown's avatar
unknown committed
3172
  DBUG_RETURN(0);
3173 3174 3175
}


unknown's avatar
unknown committed
3176
int get_partition_id_range_sub_linear_hash(partition_info *part_info,
3177 3178
                                            uint32 *part_id,
                                            longlong *func_value)
3179 3180 3181
{
  uint32 loc_part_id, sub_part_id;
  uint no_subparts;
3182
  longlong local_func_value;
unknown's avatar
unknown committed
3183
  int error;
3184
  DBUG_ENTER("get_partition_id_range_sub_linear_hash");
unknown's avatar
unknown committed
3185

3186 3187
  if (unlikely((error= get_partition_id_range(part_info, &loc_part_id,
                                              func_value))))
3188
  {
unknown's avatar
unknown committed
3189
    DBUG_RETURN(error);
3190 3191 3192
  }
  no_subparts= part_info->no_subparts;
  sub_part_id= get_part_id_linear_hash(part_info, no_subparts,
3193 3194
                                       part_info->subpart_expr,
                                       &local_func_value);
3195
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
unknown's avatar
unknown committed
3196
  DBUG_RETURN(0);
3197 3198 3199
}


unknown's avatar
unknown committed
3200
int get_partition_id_range_sub_key(partition_info *part_info,
3201 3202
                                    uint32 *part_id,
                                    longlong *func_value)
3203 3204 3205
{
  uint32 loc_part_id, sub_part_id;
  uint no_subparts;
3206
  longlong local_func_value;
unknown's avatar
unknown committed
3207
  int error;
3208
  DBUG_ENTER("get_partition_id_range_sub_key");
unknown's avatar
unknown committed
3209

3210 3211
  if (unlikely((error= get_partition_id_range(part_info, &loc_part_id,
                                              func_value))))
3212
  {
unknown's avatar
unknown committed
3213
    DBUG_RETURN(error);
3214 3215
  }
  no_subparts= part_info->no_subparts;
3216 3217
  sub_part_id= get_part_id_key(part_info->subpart_field_array,
                               no_subparts, &local_func_value);
3218
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
unknown's avatar
unknown committed
3219
  DBUG_RETURN(0);
3220 3221 3222
}


unknown's avatar
unknown committed
3223
int get_partition_id_range_sub_linear_key(partition_info *part_info,
3224 3225
                                           uint32 *part_id,
                                           longlong *func_value)
3226 3227 3228
{
  uint32 loc_part_id, sub_part_id;
  uint no_subparts;
3229
  longlong local_func_value;
unknown's avatar
unknown committed
3230
  int error;
3231
  DBUG_ENTER("get_partition_id_range_sub_linear_key");
unknown's avatar
unknown committed
3232

3233 3234
  if (unlikely((error= get_partition_id_range(part_info, &loc_part_id,
                                              func_value))))
3235
  {
unknown's avatar
unknown committed
3236
    DBUG_RETURN(error);
3237 3238 3239 3240
  }
  no_subparts= part_info->no_subparts;
  sub_part_id= get_part_id_linear_key(part_info,
                                      part_info->subpart_field_array,
3241
                                      no_subparts, &local_func_value);
3242
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
unknown's avatar
unknown committed
3243
  DBUG_RETURN(0);
3244 3245 3246
}


unknown's avatar
unknown committed
3247
int get_partition_id_list_sub_hash(partition_info *part_info,
3248 3249
                                    uint32 *part_id,
                                    longlong *func_value)
3250 3251 3252
{
  uint32 loc_part_id, sub_part_id;
  uint no_subparts;
3253
  longlong local_func_value;
unknown's avatar
unknown committed
3254
  int error;
3255
  DBUG_ENTER("get_partition_id_list_sub_hash");
unknown's avatar
unknown committed
3256

3257 3258
  if (unlikely((error= get_partition_id_list(part_info, &loc_part_id,
                                             func_value))))
3259
  {
unknown's avatar
unknown committed
3260
    DBUG_RETURN(error);
3261 3262
  }
  no_subparts= part_info->no_subparts;
3263 3264
  sub_part_id= get_part_id_hash(no_subparts, part_info->subpart_expr,
                                &local_func_value);
3265
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
unknown's avatar
unknown committed
3266
  DBUG_RETURN(0);
3267 3268 3269
}


unknown's avatar
unknown committed
3270
int get_partition_id_list_sub_linear_hash(partition_info *part_info,
3271 3272
                                           uint32 *part_id,
                                           longlong *func_value)
3273 3274 3275
{
  uint32 loc_part_id, sub_part_id;
  uint no_subparts;
3276
  longlong local_func_value;
unknown's avatar
unknown committed
3277
  int error;
3278
  DBUG_ENTER("get_partition_id_list_sub_linear_hash");
unknown's avatar
unknown committed
3279

3280 3281
  if (unlikely((error= get_partition_id_list(part_info, &loc_part_id,
                                             func_value))))
3282
  {
unknown's avatar
unknown committed
3283
    DBUG_RETURN(error);
3284 3285
  }
  no_subparts= part_info->no_subparts;
3286 3287 3288
  sub_part_id= get_part_id_linear_hash(part_info, no_subparts,
                                       part_info->subpart_expr,
                                       &local_func_value);
3289
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
unknown's avatar
unknown committed
3290
  DBUG_RETURN(0);
3291 3292 3293
}


unknown's avatar
unknown committed
3294
int get_partition_id_list_sub_key(partition_info *part_info,
3295 3296
                                   uint32 *part_id,
                                   longlong *func_value)
3297 3298 3299
{
  uint32 loc_part_id, sub_part_id;
  uint no_subparts;
3300
  longlong local_func_value;
unknown's avatar
unknown committed
3301
  int error;
3302
  DBUG_ENTER("get_partition_id_range_sub_key");
unknown's avatar
unknown committed
3303

3304 3305
  if (unlikely((error= get_partition_id_list(part_info, &loc_part_id,
                                             func_value))))
3306
  {
unknown's avatar
unknown committed
3307
    DBUG_RETURN(error);
3308 3309
  }
  no_subparts= part_info->no_subparts;
3310 3311
  sub_part_id= get_part_id_key(part_info->subpart_field_array,
                               no_subparts, &local_func_value);
3312
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
unknown's avatar
unknown committed
3313
  DBUG_RETURN(0);
3314 3315 3316
}


unknown's avatar
unknown committed
3317
int get_partition_id_list_sub_linear_key(partition_info *part_info,
3318 3319
                                          uint32 *part_id,
                                          longlong *func_value)
3320 3321 3322
{
  uint32 loc_part_id, sub_part_id;
  uint no_subparts;
3323
  longlong local_func_value;
unknown's avatar
unknown committed
3324
  int error;
3325
  DBUG_ENTER("get_partition_id_list_sub_linear_key");
unknown's avatar
unknown committed
3326

3327 3328
  if (unlikely((error= get_partition_id_list(part_info, &loc_part_id,
                                             func_value))))
3329
  {
unknown's avatar
unknown committed
3330
    DBUG_RETURN(error);
3331 3332 3333 3334
  }
  no_subparts= part_info->no_subparts;
  sub_part_id= get_part_id_linear_key(part_info,
                                      part_info->subpart_field_array,
3335
                                      no_subparts, &local_func_value);
3336
  *part_id= get_part_id_for_sub(loc_part_id, sub_part_id, no_subparts);
unknown's avatar
unknown committed
3337
  DBUG_RETURN(0);
3338 3339 3340 3341 3342
}


/*
  This function is used to calculate the subpartition id
unknown's avatar
unknown committed
3343

3344 3345 3346 3347
  SYNOPSIS
    get_subpartition_id()
    part_info           A reference to the partition_info struct where all the
                        desired information is given
unknown's avatar
unknown committed
3348

3349
  RETURN VALUE
unknown's avatar
unknown committed
3350 3351
    part_id             The subpartition identity

3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366
  DESCRIPTION
    A routine used in some SELECT's when only partial knowledge of the
    partitions is known.
    
    It is actually 4 different variants of this function which are called
    through a function pointer.

    get_partition_id_hash_sub
    get_partition_id_key_sub
    get_partition_id_linear_hash_sub
    get_partition_id_linear_key_sub
*/

uint32 get_partition_id_hash_sub(partition_info *part_info)
{
3367 3368 3369
  longlong func_value;
  return get_part_id_hash(part_info->no_subparts, part_info->subpart_expr,
                          &func_value);
3370 3371 3372 3373 3374
}


uint32 get_partition_id_linear_hash_sub(partition_info *part_info)
{
3375
  longlong func_value;
3376
  return get_part_id_linear_hash(part_info, part_info->no_subparts,
3377
                                 part_info->subpart_expr, &func_value);
3378 3379 3380 3381 3382
}


uint32 get_partition_id_key_sub(partition_info *part_info)
{
3383
  longlong func_value;
3384
  return get_part_id_key(part_info->subpart_field_array,
3385
                         part_info->no_subparts, &func_value);
3386 3387 3388 3389 3390
}


uint32 get_partition_id_linear_key_sub(partition_info *part_info)
{
3391
  longlong func_value;
3392 3393
  return get_part_id_linear_key(part_info,
                                part_info->subpart_field_array,
3394
                                part_info->no_subparts, &func_value);
3395 3396 3397 3398
}


/*
unknown's avatar
unknown committed
3399 3400
  Set an indicator on all partition fields that are set by the key

3401 3402 3403 3404
  SYNOPSIS
    set_PF_fields_in_key()
    key_info                   Information about the index
    key_length                 Length of key
unknown's avatar
unknown committed
3405

3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
  RETURN VALUE
    TRUE                       Found partition field set by key
    FALSE                      No partition field set by key
*/

static bool set_PF_fields_in_key(KEY *key_info, uint key_length)
{
  KEY_PART_INFO *key_part;
  bool found_part_field= FALSE;
  DBUG_ENTER("set_PF_fields_in_key");

  for (key_part= key_info->key_part; (int)key_length > 0; key_part++)
  {
    if (key_part->null_bit)
      key_length--;
    if (key_part->type == HA_KEYTYPE_BIT)
    {
      if (((Field_bit*)key_part->field)->bit_len)
        key_length--;
    }
    if (key_part->key_part_flag & (HA_BLOB_PART + HA_VAR_LENGTH_PART))
    {
      key_length-= HA_KEY_BLOB_LENGTH;
    }
    if (key_length < key_part->length)
      break;
    key_length-= key_part->length;
    if (key_part->field->flags & FIELD_IN_PART_FUNC_FLAG)
    {
      found_part_field= TRUE;
      key_part->field->flags|= GET_FIXED_FIELDS_FLAG;
    }
  }
  DBUG_RETURN(found_part_field);
}


/*
  We have found that at least one partition field was set by a key, now
  check if a partition function has all its fields bound or not.
unknown's avatar
unknown committed
3446

3447 3448 3449
  SYNOPSIS
    check_part_func_bound()
    ptr                     Array of fields NULL terminated (partition fields)
unknown's avatar
unknown committed
3450

3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475
  RETURN VALUE
    TRUE                    All fields in partition function are set
    FALSE                   Not all fields in partition function are set
*/

static bool check_part_func_bound(Field **ptr)
{
  bool result= TRUE;
  DBUG_ENTER("check_part_func_bound");

  for (; *ptr; ptr++)
  {
    if (!((*ptr)->flags & GET_FIXED_FIELDS_FLAG))
    {
      result= FALSE;
      break;
    }
  }
  DBUG_RETURN(result);
}


/*
  Get the id of the subpartitioning part by using the key buffer of the
  index scan.
unknown's avatar
unknown committed
3476

3477 3478 3479 3480 3481 3482
  SYNOPSIS
    get_sub_part_id_from_key()
    table         The table object
    buf           A buffer that can be used to evaluate the partition function
    key_info      The index object
    key_spec      A key_range containing key and key length
unknown's avatar
unknown committed
3483

3484 3485
  RETURN VALUES
    part_id       Subpartition id to use
unknown's avatar
unknown committed
3486

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
  DESCRIPTION
    Use key buffer to set-up record in buf, move field pointers and
    get the partition identity and restore field pointers afterwards.
*/

static uint32 get_sub_part_id_from_key(const TABLE *table,byte *buf,
                                       KEY *key_info,
                                       const key_range *key_spec)
{
  byte *rec0= table->record[0];
unknown's avatar
unknown committed
3497
  partition_info *part_info= table->part_info;
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
  uint32 part_id;
  DBUG_ENTER("get_sub_part_id_from_key");

  key_restore(buf, (byte*)key_spec->key, key_info, key_spec->length);
  if (likely(rec0 == buf))
    part_id= part_info->get_subpartition_id(part_info);
  else
  {
    Field **part_field_array= part_info->subpart_field_array;
    set_field_ptr(part_field_array, buf, rec0);
    part_id= part_info->get_subpartition_id(part_info);
    set_field_ptr(part_field_array, rec0, buf);
  }
  DBUG_RETURN(part_id);
}

/*
  Get the id of the partitioning part by using the key buffer of the
  index scan.
unknown's avatar
unknown committed
3517

3518 3519 3520 3521 3522 3523
  SYNOPSIS
    get_part_id_from_key()
    table         The table object
    buf           A buffer that can be used to evaluate the partition function
    key_info      The index object
    key_spec      A key_range containing key and key length
unknown's avatar
unknown committed
3524 3525
    out:part_id   Partition to use

3526 3527 3528
  RETURN VALUES
    TRUE          Partition to use not found
    FALSE         Ok, part_id indicates partition to use
unknown's avatar
unknown committed
3529

3530 3531 3532 3533
  DESCRIPTION
    Use key buffer to set-up record in buf, move field pointers and
    get the partition identity and restore field pointers afterwards.
*/
unknown's avatar
unknown committed
3534

3535 3536 3537 3538 3539
bool get_part_id_from_key(const TABLE *table, byte *buf, KEY *key_info,
                          const key_range *key_spec, uint32 *part_id)
{
  bool result;
  byte *rec0= table->record[0];
unknown's avatar
unknown committed
3540
  partition_info *part_info= table->part_info;
3541
  longlong func_value;
3542 3543 3544 3545
  DBUG_ENTER("get_part_id_from_key");

  key_restore(buf, (byte*)key_spec->key, key_info, key_spec->length);
  if (likely(rec0 == buf))
3546 3547
    result= part_info->get_part_partition_id(part_info, part_id,
                                             &func_value);
3548 3549 3550 3551
  else
  {
    Field **part_field_array= part_info->part_field_array;
    set_field_ptr(part_field_array, buf, rec0);
3552 3553
    result= part_info->get_part_partition_id(part_info, part_id,
                                             &func_value);
3554 3555 3556 3557 3558 3559 3560 3561
    set_field_ptr(part_field_array, rec0, buf);
  }
  DBUG_RETURN(result);
}

/*
  Get the partitioning id of the full PF by using the key buffer of the
  index scan.
unknown's avatar
unknown committed
3562

3563 3564 3565 3566 3567 3568
  SYNOPSIS
    get_full_part_id_from_key()
    table         The table object
    buf           A buffer that is used to evaluate the partition function
    key_info      The index object
    key_spec      A key_range containing key and key length
unknown's avatar
unknown committed
3569 3570
    out:part_spec A partition id containing start part and end part

3571 3572 3573
  RETURN VALUES
    part_spec
    No partitions to scan is indicated by end_part > start_part when returning
unknown's avatar
unknown committed
3574

3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
  DESCRIPTION
    Use key buffer to set-up record in buf, move field pointers if needed and
    get the partition identity and restore field pointers afterwards.
*/

void get_full_part_id_from_key(const TABLE *table, byte *buf,
                               KEY *key_info,
                               const key_range *key_spec,
                               part_id_range *part_spec)
{
  bool result;
unknown's avatar
unknown committed
3586
  partition_info *part_info= table->part_info;
3587
  byte *rec0= table->record[0];
3588
  longlong func_value;
3589 3590 3591 3592
  DBUG_ENTER("get_full_part_id_from_key");

  key_restore(buf, (byte*)key_spec->key, key_info, key_spec->length);
  if (likely(rec0 == buf))
3593 3594
    result= part_info->get_partition_id(part_info, &part_spec->start_part,
                                        &func_value);
3595 3596 3597 3598
  else
  {
    Field **part_field_array= part_info->full_part_field_array;
    set_field_ptr(part_field_array, buf, rec0);
3599 3600
    result= part_info->get_partition_id(part_info, &part_spec->start_part,
                                        &func_value);
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
    set_field_ptr(part_field_array, rec0, buf);
  }
  part_spec->end_part= part_spec->start_part;
  if (unlikely(result))
    part_spec->start_part++;
  DBUG_VOID_RETURN;
}
    
/*
  Get the set of partitions to use in query.
unknown's avatar
unknown committed
3611

3612 3613 3614 3615 3616 3617
  SYNOPSIS
    get_partition_set()
    table         The table object
    buf           A buffer that can be used to evaluate the partition function
    index         The index of the key used, if MAX_KEY no index used
    key_spec      A key_range containing key and key length
unknown's avatar
unknown committed
3618
    out:part_spec Contains start part, end part and indicator if bitmap is
3619
                  used for which partitions to scan
unknown's avatar
unknown committed
3620

3621 3622 3623 3624 3625 3626 3627 3628 3629
  DESCRIPTION
    This function is called to discover which partitions to use in an index
    scan or a full table scan.
    It returns a range of partitions to scan. If there are holes in this
    range with partitions that are not needed to scan a bit array is used
    to signal which partitions to use and which not to use.
    If start_part > end_part at return it means no partition needs to be
    scanned. If start_part == end_part it always means a single partition
    needs to be scanned.
unknown's avatar
unknown committed
3630

3631 3632 3633 3634 3635 3636
  RETURN VALUE
    part_spec
*/
void get_partition_set(const TABLE *table, byte *buf, const uint index,
                       const key_range *key_spec, part_id_range *part_spec)
{
unknown's avatar
unknown committed
3637
  partition_info *part_info= table->part_info;
unknown's avatar
unknown committed
3638 3639
  uint no_parts= get_tot_partitions(part_info);
  uint i, part_id;
3640 3641
  uint sub_part= no_parts;
  uint32 part_part= no_parts;
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
  KEY *key_info= NULL;
  bool found_part_field= FALSE;
  DBUG_ENTER("get_partition_set");

  part_spec->start_part= 0;
  part_spec->end_part= no_parts - 1;
  if ((index < MAX_KEY) && 
       key_spec->flag == (uint)HA_READ_KEY_EXACT &&
       part_info->some_fields_in_PF.is_set(index))
  {
    key_info= table->key_info+index;
    /*
      The index can potentially provide at least one PF-field (field in the
      partition function). Thus it is interesting to continue our probe.
    */
    if (key_spec->length == key_info->key_length)
    {
      /*
        The entire key is set so we can check whether we can immediately
        derive either the complete PF or if we can derive either
        the top PF or the subpartitioning PF. This can be established by
        checking precalculated bits on each index.
      */
      if (part_info->all_fields_in_PF.is_set(index))
      {
        /*
          We can derive the exact partition to use, no more than this one
          is needed.
        */
        get_full_part_id_from_key(table,buf,key_info,key_spec,part_spec);
        DBUG_VOID_RETURN;
      }
      else if (is_sub_partitioned(part_info))
      {
        if (part_info->all_fields_in_SPF.is_set(index))
          sub_part= get_sub_part_id_from_key(table, buf, key_info, key_spec);
        else if (part_info->all_fields_in_PPF.is_set(index))
        {
unknown's avatar
unknown committed
3680 3681
          if (get_part_id_from_key(table,buf,key_info,
                                   key_spec,(uint32*)&part_part))
3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
          {
            /*
              The value of the RANGE or LIST partitioning was outside of
              allowed values. Thus it is certain that the result of this
              scan will be empty.
            */
            part_spec->start_part= no_parts;
            DBUG_VOID_RETURN;
          }
        }
      }
    }
    else
    {
      /*
        Set an indicator on all partition fields that are bound.
        If at least one PF-field was bound it pays off to check whether
        the PF or PPF or SPF has been bound.
        (PF = Partition Function, SPF = Subpartition Function and
         PPF = Partition Function part of subpartitioning)
      */
      if ((found_part_field= set_PF_fields_in_key(key_info,
                                                  key_spec->length)))
      {
        if (check_part_func_bound(part_info->full_part_field_array))
        {
          /*
            We were able to bind all fields in the partition function even
            by using only a part of the key. Calculate the partition to use.
          */
          get_full_part_id_from_key(table,buf,key_info,key_spec,part_spec);
          clear_indicator_in_key_fields(key_info);
          DBUG_VOID_RETURN; 
        }
unknown's avatar
unknown committed
3716
        else if (is_sub_partitioned(part_info))
3717
        {
unknown's avatar
unknown committed
3718 3719 3720
          if (check_part_func_bound(part_info->subpart_field_array))
            sub_part= get_sub_part_id_from_key(table, buf, key_info, key_spec);
          else if (check_part_func_bound(part_info->part_field_array))
3721
          {
unknown's avatar
unknown committed
3722 3723 3724 3725 3726 3727
            if (get_part_id_from_key(table,buf,key_info,key_spec,&part_part))
            {
              part_spec->start_part= no_parts;
              clear_indicator_in_key_fields(key_info);
              DBUG_VOID_RETURN;
            }
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
          }
        }
      }
    }
  }
  {
    /*
      The next step is to analyse the table condition to see whether any
      information about which partitions to scan can be derived from there.
      Currently not implemented.
    */
  }
  /*
    If we come here we have found a range of sorts we have either discovered
    nothing or we have discovered a range of partitions with possible holes
    in it. We need a bitvector to further the work here.
  */
  if (!(part_part == no_parts && sub_part == no_parts))
  {
    /*
      We can only arrive here if we are using subpartitioning.
    */
    if (part_part != no_parts)
    {
      /*
        We know the top partition and need to scan all underlying
        subpartitions. This is a range without holes.
      */
      DBUG_ASSERT(sub_part == no_parts);
3757
      part_spec->start_part= part_part * part_info->no_subparts;
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
      part_spec->end_part= part_spec->start_part+part_info->no_subparts - 1;
    }
    else
    {
      DBUG_ASSERT(sub_part != no_parts);
      part_spec->start_part= sub_part;
      part_spec->end_part=sub_part+
                           (part_info->no_subparts*(part_info->no_parts-1));
      for (i= 0, part_id= sub_part; i < part_info->no_parts;
           i++, part_id+= part_info->no_subparts)
        ; //Set bit part_id in bit array
    }
  }
  if (found_part_field)
    clear_indicator_in_key_fields(key_info);
  DBUG_VOID_RETURN;
}


/*
   If the table is partitioned we will read the partition info into the
   .frm file here.
   -------------------------------
   |  Fileinfo     64 bytes      |
   -------------------------------
   | Formnames     7 bytes       |
   -------------------------------
   | Not used    4021 bytes      |
   -------------------------------
   | Keyinfo + record            |
   -------------------------------
   | Padded to next multiple     |
   | of IO_SIZE                  |
   -------------------------------
   | Forminfo     288 bytes      |
   -------------------------------
   | Screen buffer, to make      |
unknown's avatar
unknown committed
3795
   | field names readable        |
3796 3797
   -------------------------------
   | Packed field info           |
unknown's avatar
unknown committed
3798
   | 17 + 1 + strlen(field_name) |
3799 3800 3801 3802 3803 3804 3805 3806
   | + 1 end of file character   |
   -------------------------------
   | Partition info              |
   -------------------------------
   We provide the length of partition length in Fileinfo[55-58].

   Read the partition syntax from the frm file and parse it to get the
   data structures of the partitioning.
unknown's avatar
unknown committed
3807

3808 3809 3810
   SYNOPSIS
     mysql_unpack_partition()
     thd                           Thread object
unknown's avatar
unknown committed
3811
     part_buf                      Partition info from frm file
3812 3813
     part_info_len                 Length of partition syntax
     table                         Table object of partitioned table
unknown's avatar
unknown committed
3814 3815 3816
     create_table_ind              Is it called from CREATE TABLE
     default_db_type               What is the default engine of the table

3817 3818 3819
   RETURN VALUE
     TRUE                          Error
     FALSE                         Sucess
unknown's avatar
unknown committed
3820

3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831
   DESCRIPTION
     Read the partition syntax from the current position in the frm file.
     Initiate a LEX object, save the list of item tree objects to free after
     the query is done. Set-up partition info object such that parser knows
     it is called from internally. Call parser to create data structures
     (best possible recreation of item trees and so forth since there is no
     serialisation of these objects other than in parseable text format).
     We need to save the text of the partition functions since it is not
     possible to retrace this given an item tree.
*/

unknown's avatar
unknown committed
3832
bool mysql_unpack_partition(THD *thd, const uchar *part_buf,
unknown's avatar
unknown committed
3833 3834 3835
                            uint part_info_len,
                            uchar *part_state, uint part_state_len,
                            TABLE* table, bool is_create_table_ind,
unknown's avatar
unknown committed
3836
                            handlerton *default_db_type)
3837 3838 3839 3840
{
  Item *thd_free_list= thd->free_list;
  bool result= TRUE;
  partition_info *part_info;
unknown's avatar
unknown committed
3841 3842
  LEX *old_lex= thd->lex;
  LEX lex;
3843
  DBUG_ENTER("mysql_unpack_partition");
unknown's avatar
unknown committed
3844

3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
  thd->lex= &lex;
  lex_start(thd, part_buf, part_info_len);
  /*
    We need to use the current SELECT_LEX since I need to keep the
    Name_resolution_context object which is referenced from the
    Item_field objects.
    This is not a nice solution since if the parser uses current_select
    for anything else it will corrupt the current LEX object.
  */
  thd->lex->current_select= old_lex->current_select; 
  /*
    All Items created is put into a free list on the THD object. This list
    is used to free all Item objects after completing a query. We don't
    want that to happen with the Item tree created as part of the partition
    info. This should be attached to the table object and remain so until
    the table object is released.
    Thus we move away the current list temporarily and start a new list that
    we then save in the partition info structure.
  */
  thd->free_list= NULL;
unknown's avatar
unknown committed
3865 3866 3867 3868 3869 3870 3871 3872 3873
  lex.part_info= new partition_info();/* Indicates yyparse from this place */
  if (!lex.part_info)
  {
    mem_alloc_error(sizeof(partition_info));
    goto end;
  }
  lex.part_info->part_state= part_state;
  lex.part_info->part_state_len= part_state_len;
  DBUG_PRINT("info", ("Parse: %s", part_buf));
3874 3875 3876 3877 3878
  if (yyparse((void*)thd) || thd->is_fatal_error)
  {
    free_items(thd->free_list);
    goto end;
  }
unknown's avatar
unknown committed
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
  /*
    The parsed syntax residing in the frm file can still contain defaults.
    The reason is that the frm file is sometimes saved outside of this
    MySQL Server and used in backup and restore of clusters or partitioned
    tables. It is not certain that the restore will restore exactly the
    same default partitioning.
    
    The easiest manner of handling this is to simply continue using the
    part_info we already built up during mysql_create_table if we are
    in the process of creating a table. If the table already exists we
    need to discover the number of partitions for the default parts. Since
    the handler object hasn't been created here yet we need to postpone this
    to the fix_partition_func method.
  */

  DBUG_PRINT("info", ("Successful parse"));
3895
  part_info= lex.part_info;
unknown's avatar
unknown committed
3896 3897 3898
  DBUG_PRINT("info", ("default engine = %d, default_db_type = %d",
             ha_legacy_type(part_info->default_engine_type),
             ha_legacy_type(default_db_type)));
unknown's avatar
unknown committed
3899 3900 3901 3902 3903 3904 3905 3906 3907
  if (is_create_table_ind)
  {
    if (old_lex->name)
    {
      /*
        This code is executed when we do a CREATE TABLE t1 LIKE t2
        old_lex->name contains the t2 and the table we are opening has 
        name t1.
      */
3908 3909 3910 3911 3912 3913
      Table_ident *table_ident= (Table_ident *)old_lex->name;
      char *src_db= table_ident->db.str ? table_ident->db.str : thd->db;
      char *src_table= table_ident->table.str;
      char buf[FN_REFLEN];
      build_table_filename(buf, sizeof(buf), src_db, src_table, "");
      if (partition_default_handling(table, part_info, buf))
unknown's avatar
unknown committed
3914
      {
3915 3916
        result= TRUE;
        goto end;
unknown's avatar
unknown committed
3917 3918 3919 3920 3921
      }
    }
    else
      part_info= old_lex->part_info;
  }
unknown's avatar
unknown committed
3922
  table->part_info= part_info;
3923
  table->file->set_part_info(part_info);
unknown's avatar
unknown committed
3924
  if (part_info->default_engine_type == NULL)
unknown's avatar
unknown committed
3925
  {
3926
    part_info->default_engine_type= default_db_type;
unknown's avatar
unknown committed
3927
  }
3928 3929 3930 3931
  else
  {
    DBUG_ASSERT(part_info->default_engine_type == default_db_type);
  }
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
  part_info->item_free_list= thd->free_list;

  {
  /*
    This code part allocates memory for the serialised item information for
    the partition functions. In most cases this is not needed but if the
    table is used for SHOW CREATE TABLES or ALTER TABLE that modifies
    partition information it is needed and the info is lost if we don't
    save it here so unfortunately we have to do it here even if in most
    cases it is not needed. This is a consequence of that item trees are
    not serialisable.
  */
    uint part_func_len= part_info->part_func_len;
    uint subpart_func_len= part_info->subpart_func_len; 
unknown's avatar
unknown committed
3946 3947 3948 3949
    char *part_func_string= NULL;
    char *subpart_func_string= NULL;
    if ((part_func_len &&
        !((part_func_string= thd->alloc(part_func_len)))) ||
3950
        (subpart_func_len &&
unknown's avatar
unknown committed
3951
        !((subpart_func_string= thd->alloc(subpart_func_len)))))
3952
    {
unknown's avatar
unknown committed
3953
      mem_alloc_error(part_func_len);
3954 3955 3956 3957
      free_items(thd->free_list);
      part_info->item_free_list= 0;
      goto end;
    }
unknown's avatar
unknown committed
3958 3959
    if (part_func_len)
      memcpy(part_func_string, part_info->part_func_string, part_func_len);
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972
    if (subpart_func_len)
      memcpy(subpart_func_string, part_info->subpart_func_string,
             subpart_func_len);
    part_info->part_func_string= part_func_string;
    part_info->subpart_func_string= subpart_func_string;
  }

  result= FALSE;
end:
  thd->free_list= thd_free_list;
  thd->lex= old_lex;
  DBUG_RETURN(result);
}
unknown's avatar
unknown committed
3973

3974 3975 3976

/*
  SYNOPSIS
unknown's avatar
unknown committed
3977 3978 3979 3980 3981 3982
    fast_alter_partition_error_handler()
    lpt                           Container for parameters

  RETURN VALUES
    None

3983
  DESCRIPTION
unknown's avatar
unknown committed
3984 3985
    Support routine to clean up after failures of on-line ALTER TABLE
    for partition management.
3986 3987
*/

unknown's avatar
unknown committed
3988
static void fast_alter_partition_error_handler(ALTER_PARTITION_PARAM_TYPE *lpt)
3989
{
unknown's avatar
unknown committed
3990 3991
  DBUG_ENTER("fast_alter_partition_error_handler");
  /* TODO: WL 2826 Error handling */
3992 3993 3994 3995 3996 3997
  DBUG_VOID_RETURN;
}


/*
  SYNOPSIS
unknown's avatar
unknown committed
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
    fast_end_partition()
    thd                           Thread object
    out:copied                    Number of records copied
    out:deleted                   Number of records deleted
    table_list                    Table list with the one table in it
    empty                         Has nothing been done
    lpt                           Struct to be used by error handler

  RETURN VALUES
    FALSE                         Success
    TRUE                          Failure

4010
  DESCRIPTION
unknown's avatar
unknown committed
4011 4012
    Support routine to handle the successful cases for partition
    management.
4013 4014
*/

unknown's avatar
unknown committed
4015 4016 4017 4018 4019
static int fast_end_partition(THD *thd, ulonglong copied,
                              ulonglong deleted,
                              TABLE_LIST *table_list, bool is_empty,
                              ALTER_PARTITION_PARAM_TYPE *lpt,
                              bool written_bin_log)
4020
{
unknown's avatar
unknown committed
4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
  int error;
  DBUG_ENTER("fast_end_partition");

  thd->proc_info="end";
  if (!is_empty)
    query_cache_invalidate3(thd, table_list, 0);
  error= ha_commit_stmt(thd);
  if (ha_commit(thd))
    error= 1;
  if (!error || is_empty)
  {
    char tmp_name[80];
    if ((!is_empty) && (!written_bin_log) &&
        (!thd->lex->no_write_to_binlog))
      write_bin_log(thd, FALSE, thd->query, thd->query_length);
    close_thread_tables(thd);
    my_snprintf(tmp_name, sizeof(tmp_name), ER(ER_INSERT_INFO),
                (ulong) (copied + deleted),
                (ulong) deleted,
                (ulong) 0);
    send_ok(thd,copied+deleted,0L,tmp_name);
    DBUG_RETURN(FALSE);
  }
  fast_alter_partition_error_handler(lpt);
  DBUG_RETURN(TRUE);
}


4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089
/*
  Check engine mix that it is correct
  SYNOPSIS
    check_engine_condition()
    p_elem                   Partition element
    default_engine           Have user specified engine on table level
    inout::engine_type       Current engine used
    inout::first             Is it first partition
  RETURN VALUE
    TRUE                     Failed check
    FALSE                    Ok
  DESCRIPTION
    (specified partition handler ) specified table handler
    (NDB, NDB) NDB           OK
    (MYISAM, MYISAM) -       OK
    (MYISAM, -)      -       NOT OK
    (MYISAM, -)    MYISAM    OK
    (- , MYISAM)   -         NOT OK
    (- , -)        MYISAM    OK
    (-,-)          -         OK
    (NDB, MYISAM) *          NOT OK
*/

static bool check_engine_condition(partition_element *p_elem,
                                   bool default_engine,
                                   handlerton **engine_type,
                                   bool *first)
{
  if (*first && default_engine)
    *engine_type= p_elem->engine_type;
  *first= FALSE;
  if ((!default_engine &&
      (p_elem->engine_type != *engine_type &&
       !p_elem->engine_type)) ||
      (default_engine &&
       p_elem->engine_type != *engine_type))
    return TRUE;
  else
    return FALSE;
}

unknown's avatar
unknown committed
4090 4091 4092
/*
  We need to check if engine used by all partitions can handle
  partitioning natively.
4093

unknown's avatar
unknown committed
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
  SYNOPSIS
    check_native_partitioned()
    create_info            Create info in CREATE TABLE
    out:ret_val            Return value
    part_info              Partition info
    thd                    Thread object

  RETURN VALUES
  Value returned in bool ret_value
    TRUE                   Native partitioning supported by engine
    FALSE                  Need to use partition handler

  Return value from function
    TRUE                   Error
    FALSE                  Success
*/

static bool check_native_partitioned(HA_CREATE_INFO *create_info,bool *ret_val,
                                     partition_info *part_info, THD *thd)
{
  List_iterator<partition_element> part_it(part_info->partitions);
  bool first= TRUE;
  bool default_engine;
  handlerton *engine_type= create_info->db_type;
4118
  handlerton *old_engine_type= engine_type;
unknown's avatar
unknown committed
4119 4120
  uint i= 0;
  handler *file;
4121
  uint no_parts= part_info->partitions.elements;
unknown's avatar
unknown committed
4122 4123 4124 4125 4126 4127 4128
  DBUG_ENTER("check_native_partitioned");

  default_engine= (create_info->used_fields | HA_CREATE_USED_ENGINE) ?
                   TRUE : FALSE;
  DBUG_PRINT("info", ("engine_type = %u, default = %u",
                       ha_legacy_type(engine_type),
                       default_engine));
4129
  if (no_parts)
4130
  {
4131
    do
unknown's avatar
unknown committed
4132
    {
4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
      partition_element *part_elem= part_it++;
      if (is_sub_partitioned(part_info) &&
          part_elem->subpartitions.elements)
      {
        uint no_subparts= part_elem->subpartitions.elements;
        uint j= 0;
        List_iterator<partition_element> sub_it(part_elem->subpartitions);
        do
        {
          partition_element *sub_elem= sub_it++;
          if (check_engine_condition(sub_elem, default_engine,
                                     &engine_type, &first))
            goto error;
        } while (++j < no_subparts);
        /*
          In case of subpartitioning and defaults we allow that only
          subparts have specified engines, as long as the parts haven't
          specified the wrong engine it's ok.
        */
        if (check_engine_condition(part_elem, FALSE,
                                   &engine_type, &first))
          goto error;
      }
      else if (check_engine_condition(part_elem, default_engine,
                                      &engine_type, &first))
        goto error;
    } while (++i < no_parts);
  }

unknown's avatar
unknown committed
4162 4163 4164 4165
  /*
    All engines are of the same type. Check if this engine supports
    native partitioning.
  */
4166 4167 4168 4169 4170

  if (!engine_type)
    engine_type= old_engine_type;
  DBUG_PRINT("info", ("engine_type = %s",
              ha_resolve_storage_engine_name(engine_type)));
unknown's avatar
unknown committed
4171 4172 4173 4174 4175 4176 4177 4178
  if (engine_type->partition_flags &&
      (engine_type->partition_flags() & HA_CAN_PARTITION))
  {
    create_info->db_type= engine_type;
    DBUG_PRINT("info", ("Changed to native partitioning"));
    *ret_val= TRUE;
  }
  DBUG_RETURN(FALSE);
4179 4180 4181 4182 4183 4184 4185
error:
  /*
    Mixed engines not yet supported but when supported it will need
    the partition handler
  */
  *ret_val= FALSE;
  DBUG_RETURN(TRUE);
unknown's avatar
unknown committed
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987
}


/*
  Prepare for ALTER TABLE of partition structure

  SYNOPSIS
    prep_alter_part_table()
    thd                        Thread object
    table                      Table object
    inout:alter_info           Alter information
    inout:create_info          Create info for CREATE TABLE
    old_db_type                Old engine type
    out:partition_changed      Boolean indicating whether partition changed
    out:fast_alter_partition   Boolean indicating whether fast partition
                               change is requested

  RETURN VALUES
    TRUE                       Error
    FALSE                      Success
    partition_changed
    fast_alter_partition

  DESCRIPTION
    This method handles all preparations for ALTER TABLE for partitioned
    tables
    We need to handle both partition management command such as Add Partition
    and others here as well as an ALTER TABLE that completely changes the
    partitioning and yet others that don't change anything at all. We start
    by checking the partition management variants and then check the general
    change patterns.
*/

uint prep_alter_part_table(THD *thd, TABLE *table, ALTER_INFO *alter_info,
                           HA_CREATE_INFO *create_info,
                           handlerton *old_db_type,
                           bool *partition_changed,
                           uint *fast_alter_partition)
{
  DBUG_ENTER("prep_alter_part_table");

  if (alter_info->flags &
      (ALTER_ADD_PARTITION | ALTER_DROP_PARTITION |
       ALTER_COALESCE_PARTITION | ALTER_REORGANIZE_PARTITION |
       ALTER_TABLE_REORG | ALTER_OPTIMIZE_PARTITION |
       ALTER_CHECK_PARTITION | ALTER_ANALYZE_PARTITION |
       ALTER_REPAIR_PARTITION | ALTER_REBUILD_PARTITION))
  {
    partition_info *tab_part_info= table->part_info;
    if (!tab_part_info)
    {
      my_error(ER_PARTITION_MGMT_ON_NONPARTITIONED, MYF(0));
      DBUG_RETURN(TRUE);
    }
    /*
      We are going to manipulate the partition info on the table object
      so we need to ensure that the data structure of the table object
      is freed by setting version to 0. table->s->version= 0 forces a
      flush of the table object in close_thread_tables().
    */
    uint flags;
    table->s->version= 0L;
    if (alter_info->flags == ALTER_TABLE_REORG)
    {
      uint new_part_no, curr_part_no;
      ulonglong max_rows= table->s->max_rows;
      if (tab_part_info->part_type != HASH_PARTITION ||
          tab_part_info->use_default_no_partitions)
      {
        my_error(ER_REORG_NO_PARAM_ERROR, MYF(0));
        DBUG_RETURN(TRUE);
      }
      new_part_no= table->file->get_default_no_partitions(max_rows);
      curr_part_no= tab_part_info->no_parts;
      if (new_part_no == curr_part_no)
      {
        /*
          No change is needed, we will have the same number of partitions
          after the change as before. Thus we can reply ok immediately
          without any changes at all.
        */
        DBUG_RETURN(fast_end_partition(thd, ULL(0), ULL(0), NULL,
                                       TRUE, NULL, FALSE));
      }
      else if (new_part_no > curr_part_no)
      {
        /*
          We will add more partitions, we use the ADD PARTITION without
          setting the flag for no default number of partitions
        */
        alter_info->flags|= ALTER_ADD_PARTITION;
        thd->lex->part_info->no_parts= new_part_no - curr_part_no;
      }
      else
      {
        /*
          We will remove hash partitions, we use the COALESCE PARTITION
          without setting the flag for no default number of partitions
        */
        alter_info->flags|= ALTER_COALESCE_PARTITION;
        alter_info->no_parts= curr_part_no - new_part_no;
      }
    }
    if (table->s->db_type->alter_table_flags &&
        (!(flags= table->s->db_type->alter_table_flags(alter_info->flags))))
    {
      my_error(ER_PARTITION_FUNCTION_FAILURE, MYF(0));
      DBUG_RETURN(1);
    }
    *fast_alter_partition= flags ^ HA_PARTITION_FUNCTION_SUPPORTED;
    if (alter_info->flags & ALTER_ADD_PARTITION)
    {
      /*
        We start by moving the new partitions to the list of temporary
        partitions. We will then check that the new partitions fit in the
        partitioning scheme as currently set-up.
        Partitions are always added at the end in ADD PARTITION.
      */
      partition_info *alt_part_info= thd->lex->part_info;
      uint no_new_partitions= alt_part_info->no_parts;
      uint no_orig_partitions= tab_part_info->no_parts;
      uint check_total_partitions= no_new_partitions + no_orig_partitions;
      uint new_total_partitions= check_total_partitions;
      /*
        We allow quite a lot of values to be supplied by defaults, however we
        must know the number of new partitions in this case.
      */
      if (thd->lex->no_write_to_binlog &&
          tab_part_info->part_type != HASH_PARTITION)
      {
        my_error(ER_NO_BINLOG_ERROR, MYF(0));
        DBUG_RETURN(TRUE);
      } 
      if (no_new_partitions == 0)
      {
        my_error(ER_ADD_PARTITION_NO_NEW_PARTITION, MYF(0));
        DBUG_RETURN(TRUE);
      }
      if (is_sub_partitioned(tab_part_info))
      {
        if (alt_part_info->no_subparts == 0)
          alt_part_info->no_subparts= tab_part_info->no_subparts;
        else if (alt_part_info->no_subparts != tab_part_info->no_subparts)
        {
          my_error(ER_ADD_PARTITION_SUBPART_ERROR, MYF(0));
          DBUG_RETURN(TRUE);
        }
        check_total_partitions= new_total_partitions*
                                alt_part_info->no_subparts;
      }
      if (check_total_partitions > MAX_PARTITIONS)
      {
        my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
        DBUG_RETURN(TRUE);
      }
      alt_part_info->part_type= tab_part_info->part_type;
      if (set_up_defaults_for_partitioning(alt_part_info,
                                           table->file,
                                           ULL(0),
                                           tab_part_info->no_parts))
      {
        DBUG_RETURN(TRUE);
      }
/*
Handling of on-line cases:

ADD PARTITION for RANGE/LIST PARTITIONING:
------------------------------------------
For range and list partitions add partition is simply adding a
new empty partition to the table. If the handler support this we
will use the simple method of doing this. The figure below shows
an example of this and the states involved in making this change.
            
Existing partitions                                     New added partitions
------       ------        ------        ------      |  ------    ------
|    |       |    |        |    |        |    |      |  |    |    |    |
| p0 |       | p1 |        | p2 |        | p3 |      |  | p4 |    | p5 |
------       ------        ------        ------      |  ------    ------
PART_NORMAL  PART_NORMAL   PART_NORMAL   PART_NORMAL    PART_TO_BE_ADDED*2
PART_NORMAL  PART_NORMAL   PART_NORMAL   PART_NORMAL    PART_IS_ADDED*2

The first line is the states before adding the new partitions and the 
second line is after the new partitions are added. All the partitions are
in the partitions list, no partitions are placed in the temp_partitions
list.

ADD PARTITION for HASH PARTITIONING
-----------------------------------
This little figure tries to show the various partitions involved when
adding two new partitions to a linear hash based partitioned table with
four partitions to start with, which lists are used and the states they
pass through. Adding partitions to a normal hash based is similar except
that it is always all the existing partitions that are reorganised not
only a subset of them.

Existing partitions                                     New added partitions
------       ------        ------        ------      |  ------    ------
|    |       |    |        |    |        |    |      |  |    |    |    |
| p0 |       | p1 |        | p2 |        | p3 |      |  | p4 |    | p5 |
------       ------        ------        ------      |  ------    ------
PART_CHANGED PART_CHANGED  PART_NORMAL   PART_NORMAL    PART_TO_BE_ADDED
PART_IS_CHANGED*2          PART_NORMAL   PART_NORMAL    PART_IS_ADDED
PART_NORMAL  PART_NORMAL   PART_NORMAL   PART_NORMAL    PART_IS_ADDED

Reorganised existing partitions
------      ------
|    |      |    |
| p0'|      | p1'|
------      ------

p0 - p5 will be in the partitions list of partitions.
p0' and p1' will actually not exist as separate objects, there presence can
be deduced from the state of the partition and also the names of those
partitions can be deduced this way.

After adding the partitions and copying the partition data to p0', p1',
p4 and p5 from p0 and p1 the states change to adapt for the new situation
where p0 and p1 is dropped and replaced by p0' and p1' and the new p4 and
p5 are in the table again.

The first line above shows the states of the partitions before we start
adding and copying partitions, the second after completing the adding
and copying and finally the third line after also dropping the partitions
that are reorganised.
*/
      if (*fast_alter_partition &&
          tab_part_info->part_type == HASH_PARTITION)
      {
        uint part_no= 0, start_part= 1, start_sec_part= 1;
        uint end_part= 0, end_sec_part= 0;
        uint upper_2n= tab_part_info->linear_hash_mask + 1;
        uint lower_2n= upper_2n >> 1;
        bool all_parts= TRUE;
        if (tab_part_info->linear_hash_ind &&
            no_new_partitions < upper_2n)
        {
          /*
            An analysis of which parts needs reorganisation shows that it is
            divided into two intervals. The first interval is those parts
            that are reorganised up until upper_2n - 1. From upper_2n and
            onwards it starts again from partition 0 and goes on until
            it reaches p(upper_2n - 1). If the last new partition reaches
            beyond upper_2n - 1 then the first interval will end with
            p(lower_2n - 1) and start with p(no_orig_partitions - lower_2n).
            If lower_2n partitions are added then p0 to p(lower_2n - 1) will
            be reorganised which means that the two interval becomes one
            interval at this point. Thus only when adding less than
            lower_2n partitions and going beyond a total of upper_2n we
            actually get two intervals.

            To exemplify this assume we have 6 partitions to start with and
            add 1, 2, 3, 5, 6, 7, 8, 9 partitions.
            The first to add after p5 is p6 = 110 in bit numbers. Thus we
            can see that 10 = p2 will be partition to reorganise if only one
            partition.
            If 2 partitions are added we reorganise [p2, p3]. Those two
            cases are covered by the second if part below.
            If 3 partitions are added we reorganise [p2, p3] U [p0,p0]. This
            part is covered by the else part below.
            If 5 partitions are added we get [p2,p3] U [p0, p2] = [p0, p3].
            This is covered by the first if part where we need the max check
            to here use lower_2n - 1.
            If 7 partitions are added we get [p2,p3] U [p0, p4] = [p0, p4].
            This is covered by the first if part but here we use the first
            calculated end_part.
            Finally with 9 new partitions we would also reorganise p6 if we
            used the method below but we cannot reorganise more partitions
            than what we had from the start and thus we simply set all_parts
            to TRUE. In this case we don't get into this if-part at all.
          */
          all_parts= FALSE;
          if (no_new_partitions >= lower_2n)
          {
            /*
              In this case there is only one interval since the two intervals
              overlap and this starts from zero to last_part_no - upper_2n
            */
            start_part= 0;
            end_part= new_total_partitions - (upper_2n + 1);
            end_part= max(lower_2n - 1, end_part);
          }
          else if (new_total_partitions <= upper_2n)
          {
            /*
              Also in this case there is only one interval since we are not
              going over a 2**n boundary
            */
            start_part= no_orig_partitions - lower_2n;
            end_part= start_part + (no_new_partitions - 1);
          }
          else
          {
            /* We have two non-overlapping intervals since we are not
               passing a 2**n border and we have not at least lower_2n
               new parts that would ensure that the intervals become
               overlapping.
            */
            start_part= no_orig_partitions - lower_2n;
            end_part= upper_2n - 1;
            start_sec_part= 0;
            end_sec_part= new_total_partitions - (upper_2n + 1);
          }
        }
        List_iterator<partition_element> tab_it(tab_part_info->partitions);
        part_no= 0;
        do
        {
          partition_element *p_elem= tab_it++;
          if (all_parts ||
              (part_no >= start_part && part_no <= end_part) ||
              (part_no >= start_sec_part && part_no <= end_sec_part))
          {
            p_elem->part_state= PART_CHANGED;
          }
        } while (++part_no < no_orig_partitions);
      }
      /*
        Need to concatenate the lists here to make it possible to check the
        partition info for correctness using check_partition_info.
        For on-line add partition we set the state of this partition to
        PART_TO_BE_ADDED to ensure that it is known that it is not yet
        usable (becomes usable when partition is created and the switch of
        partition configuration is made.
      */
      {
        List_iterator<partition_element> alt_it(alt_part_info->partitions);
        uint part_count= 0;
        do
        {
          partition_element *part_elem= alt_it++;
          if (*fast_alter_partition)
            part_elem->part_state= PART_TO_BE_ADDED;
          if (tab_part_info->partitions.push_back(part_elem))
          {
            mem_alloc_error(1);
            DBUG_RETURN(TRUE);
          }
        } while (++part_count < no_new_partitions);
        tab_part_info->no_parts+= no_new_partitions;
      }
      /*
        If we specify partitions explicitly we don't use defaults anymore.
        Using ADD PARTITION also means that we don't have the default number
        of partitions anymore. We use this code also for Table reorganisations
        and here we don't set any default flags to FALSE.
      */
      if (!(alter_info->flags & ALTER_TABLE_REORG))
      {
        if (!alt_part_info->use_default_partitions)
        {
          DBUG_PRINT("info", ("part_info= %x", tab_part_info));
          tab_part_info->use_default_partitions= FALSE;
        }
        tab_part_info->use_default_no_partitions= FALSE;
      }
    }
    else if (alter_info->flags == ALTER_DROP_PARTITION)
    {
      /*
        Drop a partition from a range partition and list partitioning is
        always safe and can be made more or less immediate. It is necessary
        however to ensure that the partition to be removed is safely removed
        and that REPAIR TABLE can remove the partition if for some reason the
        command to drop the partition failed in the middle.
      */
      uint part_count= 0;
      uint no_parts_dropped= alter_info->partition_names.elements;
      uint no_parts_found= 0;
      List_iterator<partition_element> part_it(tab_part_info->partitions);
      if (!(tab_part_info->part_type == RANGE_PARTITION ||
            tab_part_info->part_type == LIST_PARTITION))
      {
        my_error(ER_ONLY_ON_RANGE_LIST_PARTITION, MYF(0), "DROP");
        DBUG_RETURN(TRUE);
      }
      if (no_parts_dropped >= tab_part_info->no_parts)
      {
        my_error(ER_DROP_LAST_PARTITION, MYF(0));
        DBUG_RETURN(TRUE);
      }
      do
      {
        partition_element *part_elem= part_it++;
        if (is_name_in_list(part_elem->partition_name,
                            alter_info->partition_names))
        {
          /*
            Set state to indicate that the partition is to be dropped.
          */
          no_parts_found++;
          part_elem->part_state= PART_TO_BE_DROPPED;
        }
      } while (++part_count < tab_part_info->no_parts);
      if (no_parts_found != no_parts_dropped)
      {
        my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), "DROP");
        DBUG_RETURN(TRUE);
      }
      if (table->file->is_fk_defined_on_table_or_index(MAX_KEY))
      {
        my_error(ER_ROW_IS_REFERENCED, MYF(0));
        DBUG_RETURN(TRUE);
      }
    }
    else if ((alter_info->flags & ALTER_OPTIMIZE_PARTITION) ||
             (alter_info->flags & ALTER_ANALYZE_PARTITION) ||
             (alter_info->flags & ALTER_CHECK_PARTITION) ||
             (alter_info->flags & ALTER_REPAIR_PARTITION) ||
             (alter_info->flags & ALTER_REBUILD_PARTITION))
    {
      uint no_parts_opt= alter_info->partition_names.elements;
      uint part_count= 0;
      uint no_parts_found= 0;
      List_iterator<partition_element> part_it(tab_part_info->partitions);

      do
      {
        partition_element *part_elem= part_it++;
        if ((alter_info->flags & ALTER_ALL_PARTITION) ||
            (is_name_in_list(part_elem->partition_name,
                             alter_info->partition_names)))
        {
          /*
            Mark the partition as a partition to be "changed" by
            analyzing/optimizing/rebuilding/checking/repairing
          */
          no_parts_found++;
          part_elem->part_state= PART_CHANGED;
        }
      } while (++part_count < tab_part_info->no_parts);
      if (no_parts_found != no_parts_opt &&
          (!(alter_info->flags & ALTER_ALL_PARTITION)))
      {
        const char *ptr;
        if (alter_info->flags & ALTER_OPTIMIZE_PARTITION)
          ptr= "OPTIMIZE";
        else if (alter_info->flags & ALTER_ANALYZE_PARTITION)
          ptr= "ANALYZE";
        else if (alter_info->flags & ALTER_CHECK_PARTITION)
          ptr= "CHECK";
        else if (alter_info->flags & ALTER_REPAIR_PARTITION)
          ptr= "REPAIR";
        else
          ptr= "REBUILD";
        my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), ptr);
        DBUG_RETURN(TRUE);
      }
    }
    else if (alter_info->flags & ALTER_COALESCE_PARTITION)
    {
      uint no_parts_coalesced= alter_info->no_parts;
      uint no_parts_remain= tab_part_info->no_parts - no_parts_coalesced;
      List_iterator<partition_element> part_it(tab_part_info->partitions);
      if (tab_part_info->part_type != HASH_PARTITION)
      {
        my_error(ER_COALESCE_ONLY_ON_HASH_PARTITION, MYF(0));
        DBUG_RETURN(TRUE);
      }
      if (no_parts_coalesced == 0)
      {
        my_error(ER_COALESCE_PARTITION_NO_PARTITION, MYF(0));
        DBUG_RETURN(TRUE);
      }
      if (no_parts_coalesced >= tab_part_info->no_parts)
      {
        my_error(ER_DROP_LAST_PARTITION, MYF(0));
        DBUG_RETURN(TRUE);
      }
/*
Online handling:
COALESCE PARTITION:
-------------------
The figure below shows the manner in which partitions are handled when
performing an on-line coalesce partition and which states they go through
at start, after adding and copying partitions and finally after dropping
the partitions to drop. The figure shows an example using four partitions
to start with, using linear hash and coalescing one partition (always the
last partition).

Using linear hash then all remaining partitions will have a new reorganised
part.

Existing partitions                     Coalesced partition 
------       ------              ------   |      ------
|    |       |    |              |    |   |      |    |
| p0 |       | p1 |              | p2 |   |      | p3 |
------       ------              ------   |      ------
PART_NORMAL  PART_CHANGED        PART_NORMAL     PART_REORGED_DROPPED
PART_NORMAL  PART_IS_CHANGED     PART_NORMAL     PART_TO_BE_DROPPED
PART_NORMAL  PART_NORMAL         PART_NORMAL     PART_IS_DROPPED

Reorganised existing partitions
            ------
            |    |
            | p1'|
            ------

p0 - p3 is in the partitions list.
The p1' partition will actually not be in any list it is deduced from the
state of p1.
*/
      {
        uint part_count= 0, start_part= 1, start_sec_part= 1;
        uint end_part= 0, end_sec_part= 0;
        bool all_parts= TRUE;
        if (*fast_alter_partition &&
            tab_part_info->linear_hash_ind)
        {
          uint upper_2n= tab_part_info->linear_hash_mask + 1;
          uint lower_2n= upper_2n >> 1;
          all_parts= FALSE;
          if (no_parts_coalesced >= lower_2n)
          {
            all_parts= TRUE;
          }
          else if (no_parts_remain >= lower_2n)
          {
            end_part= tab_part_info->no_parts - (lower_2n + 1);
            start_part= no_parts_remain - lower_2n;
          }
          else
          {
            start_part= 0;
            end_part= tab_part_info->no_parts - (lower_2n + 1);
            end_sec_part= (lower_2n >> 1) - 1;
            start_sec_part= end_sec_part - (lower_2n - (no_parts_remain + 1));
          }
        }
        do
        {
          partition_element *p_elem= part_it++;
          if (*fast_alter_partition &&
              (all_parts ||
              (part_count >= start_part && part_count <= end_part) ||
              (part_count >= start_sec_part && part_count <= end_sec_part)))
            p_elem->part_state= PART_CHANGED;
          if (++part_count > no_parts_remain)
          {
            if (*fast_alter_partition)
              p_elem->part_state= PART_REORGED_DROPPED;
            else
              part_it.remove();
          }
        } while (part_count < tab_part_info->no_parts);
        tab_part_info->no_parts= no_parts_remain;
      }
      if (!(alter_info->flags & ALTER_TABLE_REORG))
        tab_part_info->use_default_no_partitions= FALSE;
    }
    else if (alter_info->flags == ALTER_REORGANIZE_PARTITION)
    {
      /*
        Reorganise partitions takes a number of partitions that are next
        to each other (at least for RANGE PARTITIONS) and then uses those
        to create a set of new partitions. So data is copied from those
        partitions into the new set of partitions. Those new partitions
        can have more values in the LIST value specifications or less both
        are allowed. The ranges can be different but since they are 
        changing a set of consecutive partitions they must cover the same
        range as those changed from.
        This command can be used on RANGE and LIST partitions.
      */
      uint no_parts_reorged= alter_info->partition_names.elements;
      uint no_parts_new= thd->lex->part_info->partitions.elements;
      partition_info *alt_part_info= thd->lex->part_info;
      uint check_total_partitions;
      if (no_parts_reorged > tab_part_info->no_parts)
      {
        my_error(ER_REORG_PARTITION_NOT_EXIST, MYF(0));
        DBUG_RETURN(TRUE);
      }
      if (!(tab_part_info->part_type == RANGE_PARTITION ||
            tab_part_info->part_type == LIST_PARTITION) &&
           (no_parts_new != no_parts_reorged))
      {
        my_error(ER_REORG_HASH_ONLY_ON_SAME_NO, MYF(0));
        DBUG_RETURN(TRUE);
      }
      check_total_partitions= tab_part_info->no_parts + no_parts_new;
      check_total_partitions-= no_parts_reorged;
      if (check_total_partitions > MAX_PARTITIONS)
      {
        my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0));
        DBUG_RETURN(TRUE);
      }
/*
Online handling:
REORGANIZE PARTITION:
---------------------
The figure exemplifies the handling of partitions, their state changes and
how they are organised. It exemplifies four partitions where two of the
partitions are reorganised (p1 and p2) into two new partitions (p4 and p5).
The reason of this change could be to change range limits, change list
values or for hash partitions simply reorganise the partition which could
also involve moving them to new disks or new node groups (MySQL Cluster).

Existing partitions                                  
------       ------        ------        ------
|    |       |    |        |    |        |    |
| p0 |       | p1 |        | p2 |        | p3 |
------       ------        ------        ------
PART_NORMAL  PART_TO_BE_REORGED          PART_NORMAL
PART_NORMAL  PART_TO_BE_DROPPED          PART_NORMAL
PART_NORMAL  PART_IS_DROPPED             PART_NORMAL

Reorganised new partitions (replacing p1 and p2)
------      ------
|    |      |    |
| p4 |      | p5 |
------      ------
PART_TO_BE_ADDED
PART_IS_ADDED
PART_IS_ADDED

All unchanged partitions and the new partitions are in the partitions list
in the order they will have when the change is completed. The reorganised
partitions are placed in the temp_partitions list. PART_IS_ADDED is only a
temporary state not written in the frm file. It is used to ensure we write
the generated partition syntax in a correct manner.
*/
      {
        List_iterator<partition_element> tab_it(tab_part_info->partitions);
        uint part_count= 0;
        bool found_first= FALSE;
        bool found_last= FALSE;
        bool is_last_partition_reorged;
        uint drop_count= 0;
        longlong tab_max_range= 0, alt_max_range= 0;
        do
        {
          partition_element *part_elem= tab_it++;
          is_last_partition_reorged= FALSE;
          if (is_name_in_list(part_elem->partition_name,
                              alter_info->partition_names))
          {
            is_last_partition_reorged= TRUE;
            drop_count++;
            tab_max_range= part_elem->range_value;
            if (*fast_alter_partition &&
                tab_part_info->temp_partitions.push_back(part_elem))
            {
              mem_alloc_error(1);
              DBUG_RETURN(TRUE);
            }
            if (*fast_alter_partition)
              part_elem->part_state= PART_TO_BE_REORGED;
            if (!found_first)
            {
              uint alt_part_count= 0;
              found_first= TRUE;
              List_iterator<partition_element>
                                 alt_it(alt_part_info->partitions);
              do
              {
                partition_element *alt_part_elem= alt_it++;
                alt_max_range= alt_part_elem->range_value;
                if (*fast_alter_partition)
                  alt_part_elem->part_state= PART_TO_BE_ADDED;
                if (alt_part_count == 0)
                  tab_it.replace(alt_part_elem);
                else
                  tab_it.after(alt_part_elem);
              } while (++alt_part_count < no_parts_new);
            }
            else if (found_last)
            {
              my_error(ER_CONSECUTIVE_REORG_PARTITIONS, MYF(0));
              DBUG_RETURN(TRUE);
            }
            else
              tab_it.remove();
          }
          else
          {
            if (found_first)
              found_last= TRUE;
          }
        } while (++part_count < tab_part_info->no_parts);
        if (drop_count != no_parts_reorged)
        {
          my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), "REORGANIZE");
          DBUG_RETURN(TRUE);
        }
        if (tab_part_info->part_type == RANGE_PARTITION &&
            ((is_last_partition_reorged &&
               alt_max_range < tab_max_range) ||
              (!is_last_partition_reorged &&
               alt_max_range != tab_max_range)))
        {
          /*
            For range partitioning the total resulting range before and
            after the change must be the same except in one case. This is
            when the last partition is reorganised, in this case it is
            acceptable to increase the total range.
            The reason is that it is not allowed to have "holes" in the
            middle of the ranges and thus we should not allow to reorganise
            to create "holes". Also we should not allow using REORGANIZE
            to drop data.
          */
          my_error(ER_REORG_OUTSIDE_RANGE, MYF(0));
          DBUG_RETURN(TRUE);
        }
        tab_part_info->no_parts= check_total_partitions;
      }
    }
    else
    {
      DBUG_ASSERT(FALSE);
    }
    *partition_changed= TRUE;
    create_info->db_type= &partition_hton;
    thd->lex->part_info= tab_part_info;
    if (alter_info->flags == ALTER_ADD_PARTITION ||
        alter_info->flags == ALTER_REORGANIZE_PARTITION)
    {
      if (check_partition_info(tab_part_info, (handlerton**)NULL,
                               table->file, ULL(0)))
      {
        DBUG_RETURN(TRUE);
      }
    }
  }
  else
  {
    /*
     When thd->lex->part_info has a reference to a partition_info the
     ALTER TABLE contained a definition of a partitioning.

     Case I:
       If there was a partition before and there is a new one defined.
       We use the new partitioning. The new partitioning is already
       defined in the correct variable so no work is needed to
       accomplish this.
       We do however need to update partition_changed to ensure that not
       only the frm file is changed in the ALTER TABLE command.

     Case IIa:
       There was a partitioning before and there is no new one defined.
       Also the user has not specified an explicit engine to use.

       We use the old partitioning also for the new table. We do this
       by assigning the partition_info from the table loaded in
       open_ltable to the partition_info struct used by mysql_create_table
       later in this method.

     Case IIb:
       There was a partitioning before and there is no new one defined.
       The user has specified an explicit engine to use.

       Since the user has specified an explicit engine to use we override
       the old partitioning info and create a new table using the specified
       engine. This is the reason for the extra check if old and new engine
       is equal.
       In this case the partition also is changed.

     Case III:
       There was no partitioning before altering the table, there is
       partitioning defined in the altered table. Use the new partitioning.
       No work needed since the partitioning info is already in the
       correct variable.

       In this case we discover one case where the new partitioning is using
       the same partition function as the default (PARTITION BY KEY or
       PARTITION BY LINEAR KEY with the list of fields equal to the primary
       key fields OR PARTITION BY [LINEAR] KEY() for tables without primary
       key)
       Also here partition has changed and thus a new table must be
       created.

     Case IV:
       There was no partitioning before and no partitioning defined.
       Obviously no work needed.
    */
    if (table->part_info)
    {
      if (!thd->lex->part_info &&
          create_info->db_type == old_db_type)
        thd->lex->part_info= table->part_info;
    }
    if (thd->lex->part_info)
    {
      /*
        Need to cater for engine types that can handle partition without
        using the partition handler.
      */
      if (thd->lex->part_info != table->part_info)
        *partition_changed= TRUE;
      if (create_info->db_type == &partition_hton)
      {
        if (table->part_info)
        {
          thd->lex->part_info->default_engine_type=
                               table->part_info->default_engine_type;
        }
        else
        {
          thd->lex->part_info->default_engine_type= 
                           ha_checktype(thd, DB_TYPE_DEFAULT, FALSE, FALSE);
        }
      }
      else
      {
4988
        bool is_native_partitioned= FALSE;
unknown's avatar
unknown committed
4989 4990 4991 4992 4993 4994 4995 4996 4997
        partition_info *part_info= thd->lex->part_info;
        part_info->default_engine_type= create_info->db_type;
        if (check_native_partitioned(create_info, &is_native_partitioned,
                                     part_info, thd))
        {
          DBUG_RETURN(TRUE);
        }
        if (!is_native_partitioned)
        {
4998
          DBUG_ASSERT(create_info->db_type != &default_hton);
unknown's avatar
unknown committed
4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
          create_info->db_type= &partition_hton;
        }
      }
      DBUG_PRINT("info", ("default_db_type = %s",
                 thd->lex->part_info->default_engine_type->name));
    }
  }
  DBUG_RETURN(FALSE);
}


/*
  Change partitions, used to implement ALTER TABLE ADD/REORGANIZE/COALESCE
  partitions. This method is used to implement both single-phase and multi-
  phase implementations of ADD/REORGANIZE/COALESCE partitions.

  SYNOPSIS
    mysql_change_partitions()
    lpt                        Struct containing parameters

  RETURN VALUES
    TRUE                          Failure
    FALSE                         Success

  DESCRIPTION
    Request handler to add partitions as set in states of the partition

    Elements of the lpt parameters used:
    create_info                Create information used to create partitions
    db                         Database name
    table_name                 Table name
    copied                     Output parameter where number of copied
                               records are added
    deleted                    Output parameter where number of deleted
                               records are added
*/

static bool mysql_change_partitions(ALTER_PARTITION_PARAM_TYPE *lpt)
{
  char path[FN_REFLEN+1];
  DBUG_ENTER("mysql_change_partitions");

  build_table_filename(path, sizeof(path), lpt->db, lpt->table_name, "");
  DBUG_RETURN(lpt->table->file->change_partitions(lpt->create_info, path,
                                                  &lpt->copied,
                                                  &lpt->deleted,
                                                  lpt->pack_frm_data,
                                                  lpt->pack_frm_len));
}


/*
  Rename partitions in an ALTER TABLE of partitions

  SYNOPSIS
    mysql_rename_partitions()
    lpt                        Struct containing parameters

  RETURN VALUES
    TRUE                          Failure
    FALSE                         Success

  DESCRIPTION
    Request handler to rename partitions as set in states of the partition

    Parameters used:
    db                         Database name
    table_name                 Table name
*/

static bool mysql_rename_partitions(ALTER_PARTITION_PARAM_TYPE *lpt)
{
  char path[FN_REFLEN+1];
  DBUG_ENTER("mysql_rename_partitions");

  build_table_filename(path, sizeof(path), lpt->db, lpt->table_name, "");
  DBUG_RETURN(lpt->table->file->rename_partitions(path));
}


/*
  Drop partitions in an ALTER TABLE of partitions

  SYNOPSIS
    mysql_drop_partitions()
    lpt                        Struct containing parameters

  RETURN VALUES
    TRUE                          Failure
    FALSE                         Success
  DESCRIPTION
    Drop the partitions marked with PART_TO_BE_DROPPED state and remove
    those partitions from the list.

    Parameters used:
    table                       Table object
    db                          Database name
    table_name                  Table name
*/

static bool mysql_drop_partitions(ALTER_PARTITION_PARAM_TYPE *lpt)
{
  char path[FN_REFLEN+1];
  partition_info *part_info= lpt->table->part_info;
  List_iterator<partition_element> part_it(part_info->partitions);
  uint i= 0;
  uint remove_count= 0;
  DBUG_ENTER("mysql_drop_partitions");

  build_table_filename(path, sizeof(path), lpt->db, lpt->table_name, "");
  if (lpt->table->file->drop_partitions(path))
  {
    DBUG_RETURN(TRUE);
  }
  do
  {
    partition_element *part_elem= part_it++;
    if (part_elem->part_state == PART_IS_DROPPED)
    {
      part_it.remove();
      remove_count++;
    }
  } while (++i < part_info->no_parts);
  part_info->no_parts-= remove_count;
  DBUG_RETURN(FALSE);
}


/*
  Actually perform the change requested by ALTER TABLE of partitions
  previously prepared.

  SYNOPSIS
    fast_alter_partition_table()
    thd                           Thread object
    table                         Table object
    alter_info                    ALTER TABLE info
    create_info                   Create info for CREATE TABLE
    table_list                    List of the table involved
    create_list                   The fields in the resulting table
    key_list                      The keys in the resulting table
    db                            Database name of new table
    table_name                    Table name of new table

  RETURN VALUES
    TRUE                          Error
    FALSE                         Success

  DESCRIPTION
    Perform all ALTER TABLE operations for partitioned tables that can be
    performed fast without a full copy of the original table.
*/

uint fast_alter_partition_table(THD *thd, TABLE *table,
                                ALTER_INFO *alter_info,
                                HA_CREATE_INFO *create_info,
                                TABLE_LIST *table_list,
                                List<create_field> *create_list,
                                List<Key> *key_list, const char *db,
                                const char *table_name,
                                uint fast_alter_partition)
{
  /* Set-up struct used to write frm files */
  ulonglong copied= 0;
  ulonglong deleted= 0;
  partition_info *part_info= table->part_info;
  ALTER_PARTITION_PARAM_TYPE lpt_obj;
  ALTER_PARTITION_PARAM_TYPE *lpt= &lpt_obj;
  bool written_bin_log= TRUE;
  DBUG_ENTER("fast_alter_partition_table");

  lpt->thd= thd;
  lpt->create_info= create_info;
  lpt->create_list= create_list;
  lpt->key_list= key_list;
  lpt->db_options= create_info->table_options;
  if (create_info->row_type == ROW_TYPE_DYNAMIC)
    lpt->db_options|= HA_OPTION_PACK_RECORD;
  lpt->table= table;
  lpt->key_info_buffer= 0;
  lpt->key_count= 0;
  lpt->db= db;
  lpt->table_name= table_name;
  lpt->copied= 0;
  lpt->deleted= 0;
  lpt->pack_frm_data= NULL;
  lpt->pack_frm_len= 0;
  thd->lex->part_info= part_info;

  if (alter_info->flags & ALTER_OPTIMIZE_PARTITION ||
      alter_info->flags & ALTER_ANALYZE_PARTITION ||
      alter_info->flags & ALTER_CHECK_PARTITION ||
      alter_info->flags & ALTER_REPAIR_PARTITION)
  {
    /*
      In this case the user has specified that he wants a set of partitions
      to be optimised and the partition engine can handle optimising
      partitions natively without requiring a full rebuild of the
      partitions.

      In this case it is enough to call optimise_partitions, there is no
      need to change frm files or anything else.
    */
    written_bin_log= FALSE;
    if (((alter_info->flags & ALTER_OPTIMIZE_PARTITION) &&
         (table->file->optimize_partitions(thd))) ||
        ((alter_info->flags & ALTER_ANALYZE_PARTITION) &&
         (table->file->analyze_partitions(thd))) ||
        ((alter_info->flags & ALTER_CHECK_PARTITION) &&
         (table->file->check_partitions(thd))) ||
        ((alter_info->flags & ALTER_REPAIR_PARTITION) &&
         (table->file->repair_partitions(thd))))
    {
      fast_alter_partition_error_handler(lpt);
      DBUG_RETURN(TRUE);
    }
  }
  else if (fast_alter_partition & HA_PARTITION_ONE_PHASE)
  {
    /*
      In the case where the engine supports one phase online partition
      changes it is not necessary to have any exclusive locks. The
      correctness is upheld instead by transactions being aborted if they
      access the table after its partition definition has changed (if they
      are still using the old partition definition).

      The handler is in this case responsible to ensure that all users
      start using the new frm file after it has changed. To implement
      one phase it is necessary for the handler to have the master copy
      of the frm file and use discovery mechanisms to renew it. Thus
      write frm will write the frm, pack the new frm and finally
      the frm is deleted and the discovery mechanisms will either restore
      back to the old or installing the new after the change is activated.

      Thus all open tables will be discovered that they are old, if not
      earlier as soon as they try an operation using the old table. One
      should ensure that this is checked already when opening a table,
      even if it is found in the cache of open tables.

      change_partitions will perform all operations and it is the duty of
      the handler to ensure that the frm files in the system gets updated
      in synch with the changes made and if an error occurs that a proper
      error handling is done.

      If the MySQL Server crashes at this moment but the handler succeeds
      in performing the change then the binlog is not written for the
      change. There is no way to solve this as long as the binlog is not
      transactional and even then it is hard to solve it completely.
 
      The first approach here was to downgrade locks. Now a different approach
      is decided upon. The idea is that the handler will have access to the
      ALTER_INFO when store_lock arrives with TL_WRITE_ALLOW_READ. So if the
      handler knows that this functionality can be handled with a lower lock
      level it will set the lock level to TL_WRITE_ALLOW_WRITE immediately.
      Thus the need to downgrade the lock disappears.
      1) Write the new frm, pack it and then delete it
      2) Perform the change within the handler
    */
    if ((mysql_write_frm(lpt, WFRM_INITIAL_WRITE | WFRM_PACK_FRM)) ||
        (mysql_change_partitions(lpt)))
    {
      fast_alter_partition_error_handler(lpt);
      DBUG_RETURN(TRUE);
    }
  }
  else if (alter_info->flags == ALTER_DROP_PARTITION)
  {
    /*
      Now after all checks and setting state on dropped partitions we can
      start the actual dropping of the partitions.

      Drop partition is actually two things happening. The first is that
      a lot of records are deleted. The second is that the behaviour of
      subsequent updates and writes and deletes will change. The delete
      part can be handled without any particular high lock level by
      transactional engines whereas non-transactional engines need to
      ensure that this change is done with an exclusive lock on the table.
      The second part, the change of partitioning does however require
      an exclusive lock to install the new partitioning as one atomic
      operation. If this is not the case, it is possible for two
      transactions to see the change in a different order than their
      serialisation order. Thus we need an exclusive lock for both
      transactional and non-transactional engines.

      For LIST partitions it could be possible to avoid the exclusive lock
      (and for RANGE partitions if they didn't rearrange range definitions
      after a DROP PARTITION) if one ensured that failed accesses to the
      dropped partitions was aborted for sure (thus only possible for
      transactional engines).
      
      1) Lock the table in TL_WRITE_ONLY to ensure all other accesses to
         the table have completed
      2) Write the new frm file where the partitions have changed but are
         still remaining with the state PART_TO_BE_DROPPED
      3) Write the bin log
      4) Prepare MyISAM handlers for drop of partitions
      5) Ensure that any users that has opened the table but not yet
         reached the abort lock do that before downgrading the lock.
      6) Drop the partitions
      7) Write the frm file that the partition has been dropped
      8) Wait until all accesses using the old frm file has completed
      9) Complete query
    */
    if ((abort_and_upgrade_lock(lpt)) ||
        (mysql_write_frm(lpt, WFRM_INITIAL_WRITE)) ||
        ((!thd->lex->no_write_to_binlog) &&
         (write_bin_log(thd, FALSE,
                       thd->query, thd->query_length), FALSE)) ||
        (table->file->extra(HA_EXTRA_PREPARE_FOR_DELETE)) ||
        (close_open_tables_and_downgrade(lpt), FALSE) || 
        (mysql_drop_partitions(lpt)) ||
        (mysql_write_frm(lpt, WFRM_CREATE_HANDLER_FILES)) ||
        (mysql_wait_completed_table(lpt, table), FALSE))
    {
      fast_alter_partition_error_handler(lpt);
      DBUG_RETURN(TRUE);
    }
  }
  else if ((alter_info->flags & ALTER_ADD_PARTITION) &&
           (part_info->part_type == RANGE_PARTITION ||
            part_info->part_type == LIST_PARTITION))
  {
    /*
      ADD RANGE/LIST PARTITIONS
      In this case there are no tuples removed and no tuples are added.
      Thus the operation is merely adding a new partition. Thus it is
      necessary to perform the change as an atomic operation. Otherwise
      someone reading without seeing the new partition could potentially
      miss updates made by a transaction serialised before it that are
      inserted into the new partition.

      1) Write the new frm file where state of added partitions is
         changed to PART_TO_BE_ADDED
      2) Add the new partitions
      3) Lock all partitions in TL_WRITE_ONLY to ensure that no users
         are still using the old partitioning scheme. Wait until all
         ongoing users have completed before progressing.
      4) Write a new frm file of the table where the partitions are added
         to the table.
      5) Write binlog
      6) Wait until all accesses using the old frm file has completed
      7) Complete query
    */
    if ((mysql_write_frm(lpt, WFRM_INITIAL_WRITE)) ||
        (mysql_change_partitions(lpt)) ||
        (abort_and_upgrade_lock(lpt)) ||
        (mysql_write_frm(lpt, WFRM_CREATE_HANDLER_FILES)) ||
        ((!thd->lex->no_write_to_binlog) &&
         (write_bin_log(thd, FALSE,
                        thd->query, thd->query_length), FALSE)) ||
        (close_open_tables_and_downgrade(lpt), FALSE))
    {
      fast_alter_partition_error_handler(lpt);
      DBUG_RETURN(TRUE);
    }
  }
  else
  {
    /*
      ADD HASH PARTITION/
      COALESCE PARTITION/
      REBUILD PARTITION/
      REORGANIZE PARTITION
 
      In this case all records are still around after the change although
      possibly organised into new partitions, thus by ensuring that all
      updates go to both the old and the new partitioning scheme we can
      actually perform this operation lock-free. The only exception to
      this is when REORGANIZE PARTITION adds/drops ranges. In this case
      there needs to be an exclusive lock during the time when the range
      changes occur.
      This is only possible if the handler can ensure double-write for a
      period. The double write will ensure that it doesn't matter where the
      data is read from since both places are updated for writes. If such
      double writing is not performed then it is necessary to perform the
      change with the usual exclusive lock. With double writes it is even
      possible to perform writes in parallel with the reorganisation of
      partitions.

      Without double write procedure we get the following procedure.
      The only difference with using double write is that we can downgrade
      the lock to TL_WRITE_ALLOW_WRITE. Double write in this case only
      double writes from old to new. If we had double writing in both
      directions we could perform the change completely without exclusive
      lock for HASH partitions.
      Handlers that perform double writing during the copy phase can actually
      use a lower lock level. This can be handled inside store_lock in the
      respective handler.

      1) Write the new frm file where state of added partitions is
         changed to PART_TO_BE_ADDED and the reorganised partitions
         are set in state PART_TO_BE_REORGED.
      2) Add the new partitions
         Copy from the reorganised partitions to the new partitions
      3) Lock all partitions in TL_WRITE_ONLY to ensure that no users
         are still using the old partitioning scheme. Wait until all
         ongoing users have completed before progressing.
      4) Prepare MyISAM handlers for rename and delete of partitions
      5) Write a new frm file of the table where the partitions are
         reorganised.
      6) Rename the reorged partitions such that they are no longer
         used and rename those added to their real new names.
      7) Write bin log
      8) Wait until all accesses using the old frm file has completed
      9) Drop the reorganised partitions
      10)Write a new frm file of the table where the partitions are
         reorganised.
      11)Wait until all accesses using the old frm file has completed
      12)Complete query
    */

    if ((mysql_write_frm(lpt, WFRM_INITIAL_WRITE)) ||
        (mysql_change_partitions(lpt)) ||
        (abort_and_upgrade_lock(lpt)) ||
        (mysql_write_frm(lpt, WFRM_CREATE_HANDLER_FILES)) ||
        (table->file->extra(HA_EXTRA_PREPARE_FOR_DELETE)) ||
        (mysql_rename_partitions(lpt)) ||
        ((!thd->lex->no_write_to_binlog) &&
         (write_bin_log(thd, FALSE,
                        thd->query, thd->query_length), FALSE)) ||
        (close_open_tables_and_downgrade(lpt), FALSE) ||
        (mysql_drop_partitions(lpt)) ||
        (mysql_write_frm(lpt, 0UL)) ||
        (mysql_wait_completed_table(lpt, table), FALSE))
    {
        fast_alter_partition_error_handler(lpt);
        DBUG_RETURN(TRUE);
    }
  }
  /*
    A final step is to write the query to the binlog and send ok to the
    user
  */
  DBUG_RETURN(fast_end_partition(thd, lpt->copied, lpt->deleted,
                                 table_list, FALSE, lpt,
                                 written_bin_log));
}
#endif


/*
  Prepare for calling val_int on partition function by setting fields to
  point to the record where the values of the PF-fields are stored.

  SYNOPSIS
    set_field_ptr()
    ptr                 Array of fields to change ptr
    new_buf             New record pointer
    old_buf             Old record pointer

  DESCRIPTION
    Set ptr in field objects of field array to refer to new_buf record
    instead of previously old_buf. Used before calling val_int and after
    it is used to restore pointers to table->record[0].
    This routine is placed outside of partition code since it can be useful
    also for other programs.
*/

void set_field_ptr(Field **ptr, const byte *new_buf,
                   const byte *old_buf)
{
  my_ptrdiff_t diff= (new_buf - old_buf);
  DBUG_ENTER("set_field_ptr");

  do
  {
    (*ptr)->move_field_offset(diff);
  } while (*(++ptr));
  DBUG_VOID_RETURN;
}


/*
  Prepare for calling val_int on partition function by setting fields to
  point to the record where the values of the PF-fields are stored.
  This variant works on a key_part reference.
  It is not required that all fields are NOT NULL fields.

  SYNOPSIS
    set_key_field_ptr()
    key_info            key info with a set of fields to change ptr
    new_buf             New record pointer
    old_buf             Old record pointer

  DESCRIPTION
    Set ptr in field objects of field array to refer to new_buf record
    instead of previously old_buf. Used before calling val_int and after
    it is used to restore pointers to table->record[0].
    This routine is placed outside of partition code since it can be useful
    also for other programs.
*/

void set_key_field_ptr(KEY *key_info, const byte *new_buf,
                       const byte *old_buf)
{
  KEY_PART_INFO *key_part= key_info->key_part;
  uint key_parts= key_info->key_parts;
  uint i= 0;
  my_ptrdiff_t diff= (new_buf - old_buf);
  DBUG_ENTER("set_key_field_ptr");

  do
  {
    key_part->field->move_field_offset(diff);
    key_part++;
  } while (++i < key_parts);
  DBUG_VOID_RETURN;
}


/*
  SYNOPSIS
    mem_alloc_error()
    size                Size of memory attempted to allocate
    None

  RETURN VALUES
    None

  DESCRIPTION
    A routine to use for all the many places in the code where memory
    allocation error can happen, a tremendous amount of them, needs
    simple routine that signals this error.
*/

void mem_alloc_error(size_t size)
{
  my_error(ER_OUTOFMEMORY, MYF(0), size);
5527
}
unknown's avatar
unknown committed
5528

5529
#ifdef WITH_PARTITION_STORAGE_ENGINE
unknown's avatar
unknown committed
5530
/*
5531 5532
  Return comma-separated list of used partitions in the provided given string

unknown's avatar
unknown committed
5533 5534 5535 5536
  SYNOPSIS
    make_used_partitions_str()
      part_info  IN  Partitioning info
      parts_str  OUT The string to fill
5537 5538 5539 5540 5541 5542 5543

  DESCRIPTION
    Generate a list of used partitions (from bits in part_info->used_partitions
    bitmap), asd store it into the provided String object.
    
  NOTE
    The produced string must not be longer then MAX_PARTITIONS * (1 + FN_LEN).
unknown's avatar
unknown committed
5544 5545 5546 5547 5548 5549 5550 5551 5552
*/

void make_used_partitions_str(partition_info *part_info, String *parts_str)
{
  parts_str->length(0);
  partition_element *pe;
  uint partition_id= 0;
  List_iterator<partition_element> it(part_info->partitions);
  
unknown's avatar
unknown committed
5553
  if (is_sub_partitioned(part_info))
unknown's avatar
unknown committed
5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591
  {
    partition_element *head_pe;
    while ((head_pe= it++))
    {
      List_iterator<partition_element> it2(head_pe->subpartitions);
      while ((pe= it2++))
      {
        if (bitmap_is_set(&part_info->used_partitions, partition_id))
        {
          if (parts_str->length())
            parts_str->append(',');
          parts_str->append(head_pe->partition_name,
                           strlen(head_pe->partition_name),
                           system_charset_info);
          parts_str->append('_');
          parts_str->append(pe->partition_name,
                           strlen(pe->partition_name),
                           system_charset_info);
        }
        partition_id++;
      }
    }
  }
  else
  {
    while ((pe= it++))
    {
      if (bitmap_is_set(&part_info->used_partitions, partition_id))
      {
        if (parts_str->length())
          parts_str->append(',');
        parts_str->append(pe->partition_name, strlen(pe->partition_name),
                         system_charset_info);
      }
      partition_id++;
    }
  }
}
5592
#endif
unknown's avatar
unknown committed
5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629

/****************************************************************************
 * Partition interval analysis support
 ***************************************************************************/

/*
  Setup partition_info::* members related to partitioning range analysis

  SYNOPSIS
    set_up_partition_func_pointers()
      part_info  Partitioning info structure

  DESCRIPTION
    Assuming that passed partition_info structure already has correct values
    for members that specify [sub]partitioning type, table fields, and
    functions, set up partition_info::* members that are related to
    Partitioning Interval Analysis (see get_partitions_in_range_iter for its
    definition)

  IMPLEMENTATION
    There are two available interval analyzer functions:
    (1) get_part_iter_for_interval_via_mapping 
    (2) get_part_iter_for_interval_via_walking

    They both have limited applicability:
    (1) is applicable for "PARTITION BY <RANGE|LIST>(func(t.field))", where
    func is a monotonic function.
    
    (2) is applicable for 
      "[SUB]PARTITION BY <any-partitioning-type>(any_func(t.integer_field))"
      
    If both are applicable, (1) is preferred over (2).
    
    This function sets part_info::get_part_iter_for_interval according to
    this criteria, and also sets some auxilary fields that the function
    uses.
*/
5630
#ifdef WITH_PARTITION_STORAGE_ENGINE
unknown's avatar
unknown committed
5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720
static void set_up_range_analysis_info(partition_info *part_info)
{
  enum_monotonicity_info minfo;

  /* Set the catch-all default */
  part_info->get_part_iter_for_interval= NULL;
  part_info->get_subpart_iter_for_interval= NULL;

  /* 
    Check if get_part_iter_for_interval_via_mapping() can be used for 
    partitioning
  */
  switch (part_info->part_type) {
  case RANGE_PARTITION:
  case LIST_PARTITION:
    minfo= part_info->part_expr->get_monotonicity_info();
    if (minfo != NON_MONOTONIC)
    {
      part_info->range_analysis_include_bounds=
        test(minfo == MONOTONIC_INCREASING);
      part_info->get_part_iter_for_interval=
        get_part_iter_for_interval_via_mapping;
      goto setup_subparts;
    }
  default:
    ;
  }
   
  /*
    Check get_part_iter_for_interval_via_walking() can be used for
    partitioning
  */
  if (part_info->no_part_fields == 1)
  {
    Field *field= part_info->part_field_array[0];
    switch (field->type()) {
    case MYSQL_TYPE_TINY:
    case MYSQL_TYPE_SHORT:
    case MYSQL_TYPE_LONG:
    case MYSQL_TYPE_LONGLONG:
      part_info->get_part_iter_for_interval=
        get_part_iter_for_interval_via_walking;
      break;
    default:
      ;
    }
  }

setup_subparts:
  /*
    Check get_part_iter_for_interval_via_walking() can be used for
    subpartitioning
  */
  if (part_info->no_subpart_fields == 1)
  {
    Field *field= part_info->subpart_field_array[0];
    switch (field->type()) {
    case MYSQL_TYPE_TINY:
    case MYSQL_TYPE_SHORT:
    case MYSQL_TYPE_LONG:
    case MYSQL_TYPE_LONGLONG:
      part_info->get_subpart_iter_for_interval=
        get_part_iter_for_interval_via_walking;
      break;
    default:
      ;
    }
  }
}


typedef uint32 (*get_endpoint_func)(partition_info*, bool left_endpoint,
                                    bool include_endpoint);

/*
  Partitioning Interval Analysis: Initialize the iterator for "mapping" case

  SYNOPSIS
    get_part_iter_for_interval_via_mapping()
      part_info   Partition info
      is_subpart  TRUE  - act for subpartitioning
                  FALSE - act for partitioning
      min_value   minimum field value, in opt_range key format.
      max_value   minimum field value, in opt_range key format.
      flags       Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
                  NO_MAX_RANGE.
      part_iter   Iterator structure to be initialized

  DESCRIPTION
    Initialize partition set iterator to walk over the interval in
5721 5722
    ordered-array-of-partitions (for RANGE partitioning) or 
    ordered-array-of-list-constants (for LIST partitioning) space.
unknown's avatar
unknown committed
5723 5724

  IMPLEMENTATION
5725
    This function is used when partitioning is done by
unknown's avatar
unknown committed
5726 5727 5728 5729 5730 5731 5732 5733
    <RANGE|LIST>(ascending_func(t.field)), and we can map an interval in
    t.field space into a sub-array of partition_info::range_int_array or
    partition_info::list_array (see get_partition_id_range_for_endpoint,
    get_list_array_idx_for_endpoint for details).
    
    The function performs this interval mapping, and sets the iterator to
    traverse the sub-array and return appropriate partitions.
    
5734
  RETURN
unknown's avatar
unknown committed
5735 5736 5737 5738 5739 5740 5741
    0 - No matching partitions (iterator not initialized)
    1 - Ok, iterator intialized for traversal of matching partitions.
   -1 - All partitions would match (iterator not initialized)
*/

int get_part_iter_for_interval_via_mapping(partition_info *part_info,
                                           bool is_subpart,
5742
                                           char *min_value, char *max_value,
unknown's avatar
unknown committed
5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769
                                           uint flags,
                                           PARTITION_ITERATOR *part_iter)
{
  DBUG_ASSERT(!is_subpart);
  Field *field= part_info->part_field_array[0];
  uint32             max_endpoint_val;
  get_endpoint_func  get_endpoint;
  uint field_len= field->pack_length_in_rec();

  if (part_info->part_type == RANGE_PARTITION)
  {
    get_endpoint=        get_partition_id_range_for_endpoint;
    max_endpoint_val=    part_info->no_parts;
    part_iter->get_next= get_next_partition_id_range;
  }
  else if (part_info->part_type == LIST_PARTITION)
  {
    get_endpoint=        get_list_array_idx_for_endpoint;
    max_endpoint_val=    part_info->no_list_values;
    part_iter->get_next= get_next_partition_id_list;
    part_iter->part_info= part_info;
  }
  else
    DBUG_ASSERT(0);

  /* Find minimum */
  if (flags & NO_MIN_RANGE)
5770
    part_iter->part_nums.start= 0;
unknown's avatar
unknown committed
5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781
  else
  {
    /*
      Store the interval edge in the record buffer, and call the
      function that maps the edge in table-field space to an edge
      in ordered-set-of-partitions (for RANGE partitioning) or 
      index-in-ordered-array-of-list-constants (for LIST) space.
    */
    store_key_image_to_rec(field, min_value, field_len);
    bool include_endp= part_info->range_analysis_include_bounds ||
                       !test(flags & NEAR_MIN);
5782 5783
    part_iter->part_nums.start= get_endpoint(part_info, 1, include_endp);
    if (part_iter->part_nums.start == max_endpoint_val)
unknown's avatar
unknown committed
5784 5785 5786 5787 5788
      return 0; /* No partitions */
  }

  /* Find maximum, do the same as above but for right interval bound */
  if (flags & NO_MAX_RANGE)
5789
    part_iter->part_nums.end= max_endpoint_val;
unknown's avatar
unknown committed
5790 5791 5792 5793 5794
  else
  {
    store_key_image_to_rec(field, max_value, field_len);
    bool include_endp= part_info->range_analysis_include_bounds ||
                       !test(flags & NEAR_MAX);
5795 5796
    part_iter->part_nums.end= get_endpoint(part_info, 0, include_endp);
    if (part_iter->part_nums.start== part_iter->part_nums.end)
unknown's avatar
unknown committed
5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807
      return 0; /* No partitions */
  }
  return 1; /* Ok, iterator initialized */
}


/* See get_part_iter_for_interval_via_walking for definition of what this is */
#define MAX_RANGE_TO_WALK 10


/*
5808
  Partitioning Interval Analysis: Initialize iterator to walk field interval
unknown's avatar
unknown committed
5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823

  SYNOPSIS
    get_part_iter_for_interval_via_walking()
      part_info   Partition info
      is_subpart  TRUE  - act for subpartitioning
                  FALSE - act for partitioning
      min_value   minimum field value, in opt_range key format.
      max_value   minimum field value, in opt_range key format.
      flags       Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE,
                  NO_MAX_RANGE.
      part_iter   Iterator structure to be initialized

  DESCRIPTION
    Initialize partition set iterator to walk over interval in integer field
    space. That is, for "const1 <=? t.field <=? const2" interval, initialize 
5824 5825
    the iterator to return a set of [sub]partitions obtained with the
    following procedure:
unknown's avatar
unknown committed
5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838
      get partition id for t.field = const1,   return it
      get partition id for t.field = const1+1, return it
       ...                 t.field = const1+2, ...
       ...                           ...       ...
       ...                 t.field = const2    ...

  IMPLEMENTATION
    See get_partitions_in_range_iter for general description of interval
    analysis. We support walking over the following intervals: 
      "t.field IS NULL" 
      "c1 <=? t.field <=? c2", where c1 and c2 are finite. 
    Intervals with +inf/-inf, and [NULL, c1] interval can be processed but
    that is more tricky and I don't have time to do it right now.
5839

unknown's avatar
unknown committed
5840 5841 5842 5843 5844 5845 5846 5847
    Additionally we have these requirements:
    * number of values in the interval must be less then number of
      [sub]partitions, and 
    * Number of values in the interval must be less then MAX_RANGE_TO_WALK.
    
    The rationale behind these requirements is that if they are not met
    we're likely to hit most of the partitions and traversing the interval
    will only add overhead. So it's better return "all partitions used" in
5848
    that case.
unknown's avatar
unknown committed
5849 5850 5851 5852 5853 5854 5855 5856 5857

  RETURN
    0 - No matching partitions, iterator not initialized
    1 - Some partitions would match, iterator intialized for traversing them
   -1 - All partitions would match, iterator not initialized
*/

int get_part_iter_for_interval_via_walking(partition_info *part_info,
                                           bool is_subpart,
5858
                                           char *min_value, char *max_value,
unknown's avatar
unknown committed
5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896
                                           uint flags,
                                           PARTITION_ITERATOR *part_iter)
{
  Field *field;
  uint total_parts;
  partition_iter_func get_next_func;
  if (is_subpart)
  {
    field= part_info->subpart_field_array[0];
    total_parts= part_info->no_subparts;
    get_next_func=  get_next_subpartition_via_walking;
  }
  else
  {
    field= part_info->part_field_array[0];
    total_parts= part_info->no_parts;
    get_next_func=  get_next_partition_via_walking;
  }

  /* Handle the "t.field IS NULL" interval, it is a special case */
  if (field->real_maybe_null() && !(flags & (NO_MIN_RANGE | NO_MAX_RANGE)) &&
      *min_value && *max_value)
  {
    /* 
      We don't have a part_iter->get_next() function that would find which
      partition "t.field IS NULL" belongs to, so find partition that contains 
      NULL right here, and return an iterator over singleton set.
    */
    uint32 part_id;
    field->set_null();
    if (is_subpart)
    {
      part_id= part_info->get_subpartition_id(part_info);
      init_single_partition_iterator(part_id, part_iter);
      return 1; /* Ok, iterator initialized */
    }
    else
    {
unknown's avatar
unknown committed
5897 5898
      longlong dummy;
      if (!part_info->get_partition_id(part_info, &part_id, &dummy))
unknown's avatar
unknown committed
5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925
      {
        init_single_partition_iterator(part_id, part_iter);
        return 1; /* Ok, iterator initialized */
      }
    }
    return 0; /* No partitions match */
  }

  if (flags & (NO_MIN_RANGE | NO_MAX_RANGE))
    return -1; /* Can't handle this interval, have to use all partitions */
  
  /* Get integers for left and right interval bound */
  longlong a, b;
  uint len= field->pack_length_in_rec();
  store_key_image_to_rec(field, min_value, len);
  a= field->val_int();
  
  store_key_image_to_rec(field, max_value, len);
  b= field->val_int();

  a += test(flags & NEAR_MIN);
  b += test(!(flags & NEAR_MAX));
  uint n_values= b - a;
  
  if (n_values > total_parts || n_values > MAX_RANGE_TO_WALK)
    return -1;

5926 5927
  part_iter->field_vals.start= a;
  part_iter->field_vals.end=   b;
unknown's avatar
unknown committed
5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951
  part_iter->part_info= part_info;
  part_iter->get_next=  get_next_func;
  return 1;
}


/*
  PARTITION_ITERATOR::get_next implementation: enumerate partitions in range

  SYNOPSIS
    get_next_partition_id_list()
      part_iter  Partition set iterator structure

  DESCRIPTION
    This is implementation of PARTITION_ITERATOR::get_next() that returns
    [sub]partition ids in [min_partition_id, max_partition_id] range.

  RETURN
    partition id
    NOT_A_PARTITION_ID if there are no more partitions
*/

uint32 get_next_partition_id_range(PARTITION_ITERATOR* part_iter)
{
5952
  if (part_iter->part_nums.start== part_iter->part_nums.end)
unknown's avatar
unknown committed
5953 5954
    return NOT_A_PARTITION_ID;
  else
5955
    return part_iter->part_nums.start++;
unknown's avatar
unknown committed
5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966
}


/*
  PARTITION_ITERATOR::get_next implementation for LIST partitioning

  SYNOPSIS
    get_next_partition_id_list()
      part_iter  Partition set iterator structure

  DESCRIPTION
5967
    This implementation of PARTITION_ITERATOR::get_next() is special for 
unknown's avatar
unknown committed
5968 5969 5970 5971 5972 5973 5974 5975 5976 5977
    LIST partitioning: it enumerates partition ids in 
    part_info->list_array[i] where i runs over [min_idx, max_idx] interval.

  RETURN 
    partition id
    NOT_A_PARTITION_ID if there are no more partitions
*/

uint32 get_next_partition_id_list(PARTITION_ITERATOR *part_iter)
{
5978
  if (part_iter->part_nums.start == part_iter->part_nums.end)
unknown's avatar
unknown committed
5979 5980 5981
    return NOT_A_PARTITION_ID;
  else
    return part_iter->part_info->list_array[part_iter->
5982
                                            part_nums.start++].partition_id;
unknown's avatar
unknown committed
5983 5984 5985 5986
}


/*
5987
  PARTITION_ITERATOR::get_next implementation: walk over field-space interval
unknown's avatar
unknown committed
5988 5989 5990 5991 5992 5993

  SYNOPSIS
    get_next_partition_via_walking()
      part_iter  Partitioning iterator

  DESCRIPTION
5994 5995 5996
    This implementation of PARTITION_ITERATOR::get_next() returns ids of
    partitions that contain records with partitioning field value within
    [start_val, end_val] interval.
unknown's avatar
unknown committed
5997 5998 5999 6000 6001 6002 6003 6004 6005 6006

  RETURN 
    partition id
    NOT_A_PARTITION_ID if there are no more partitioning.
*/

static uint32 get_next_partition_via_walking(PARTITION_ITERATOR *part_iter)
{
  uint32 part_id;
  Field *field= part_iter->part_info->part_field_array[0];
6007
  while (part_iter->field_vals.start != part_iter->field_vals.end)
unknown's avatar
unknown committed
6008
  {
6009 6010
    field->store(part_iter->field_vals.start, FALSE);
    part_iter->field_vals.start++;
unknown's avatar
unknown committed
6011
    longlong dummy;
unknown's avatar
unknown committed
6012
    if (!part_iter->part_info->get_partition_id(part_iter->part_info, 
unknown's avatar
unknown committed
6013
                                                &part_id, &dummy))
unknown's avatar
unknown committed
6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025
      return part_id;
  }
  return NOT_A_PARTITION_ID;
}


/* Same as get_next_partition_via_walking, but for subpartitions */

static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR *part_iter)
{
  uint32 part_id;
  Field *field= part_iter->part_info->subpart_field_array[0];
6026
  if (part_iter->field_vals.start == part_iter->field_vals.end)
unknown's avatar
unknown committed
6027
    return NOT_A_PARTITION_ID;
6028 6029
  field->store(part_iter->field_vals.start, FALSE);
  part_iter->field_vals.start++;
unknown's avatar
unknown committed
6030 6031
  return part_iter->part_info->get_subpartition_id(part_iter->part_info);
}
6032
#endif
unknown's avatar
unknown committed
6033