sync0sync.c 42.2 KB
Newer Older
1 2
/*****************************************************************************

3
Copyright (c) 1995, 2010, Innobase Oy. All Rights Reserved.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Copyright (c) 2008, Google Inc.

Portions of this file contain modifications contributed and copyrighted by
Google, Inc. Those modifications are gratefully acknowledged and are described
briefly in the InnoDB documentation. The contributions by Google are
incorporated with their permission, and subject to the conditions contained in
the file COPYING.Google.

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; version 2 of the License.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA

*****************************************************************************/

26 27
/**************************************************//**
@file sync/sync0sync.c
osku's avatar
osku committed
28 29 30 31 32 33 34 35 36 37 38 39 40 41
Mutex, the basic synchronization primitive

Created 9/5/1995 Heikki Tuuri
*******************************************************/

#include "sync0sync.h"
#ifdef UNIV_NONINL
#include "sync0sync.ic"
#endif

#include "sync0rw.h"
#include "buf0buf.h"
#include "srv0srv.h"
#include "buf0types.h"
42
#include "os0sync.h" /* for HAVE_ATOMIC_BUILTINS */
osku's avatar
osku committed
43 44 45 46 47 48 49 50 51 52 53 54

/*
	REASONS FOR IMPLEMENTING THE SPIN LOCK MUTEX
	============================================

Semaphore operations in operating systems are slow: Solaris on a 1993 Sparc
takes 3 microseconds (us) for a lock-unlock pair and Windows NT on a 1995
Pentium takes 20 microseconds for a lock-unlock pair. Therefore, we have to
implement our own efficient spin lock mutex. Future operating systems may
provide efficient spin locks, but we cannot count on that.

Another reason for implementing a spin lock is that on multiprocessor systems
55
it can be more efficient for a processor to run a loop waiting for the
osku's avatar
osku committed
56 57 58 59 60 61 62
semaphore to be released than to switch to a different thread. A thread switch
takes 25 us on both platforms mentioned above. See Gray and Reuter's book
Transaction processing for background.

How long should the spin loop last before suspending the thread? On a
uniprocessor, spinning does not help at all, because if the thread owning the
mutex is not executing, it cannot be released. Spinning actually wastes
63
resources.
osku's avatar
osku committed
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

On a multiprocessor, we do not know if the thread owning the mutex is
executing or not. Thus it would make sense to spin as long as the operation
guarded by the mutex would typically last assuming that the thread is
executing. If the mutex is not released by that time, we may assume that the
thread owning the mutex is not executing and suspend the waiting thread.

A typical operation (where no i/o involved) guarded by a mutex or a read-write
lock may last 1 - 20 us on the current Pentium platform. The longest
operations are the binary searches on an index node.

We conclude that the best choice is to set the spin time at 20 us. Then the
system should work well on a multiprocessor. On a uniprocessor we have to
make sure that thread swithches due to mutex collisions are not frequent,
i.e., they do not happen every 100 us or so, because that wastes too much
resources. If the thread switches are not frequent, the 20 us wasted in spin
80
loop is not too much.
osku's avatar
osku committed
81 82 83 84

Empirical studies on the effect of spin time should be done for different
platforms.

85

osku's avatar
osku committed
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
	IMPLEMENTATION OF THE MUTEX
	===========================

For background, see Curt Schimmel's book on Unix implementation on modern
architectures. The key points in the implementation are atomicity and
serialization of memory accesses. The test-and-set instruction (XCHG in
Pentium) must be atomic. As new processors may have weak memory models, also
serialization of memory references may be necessary. The successor of Pentium,
P6, has at least one mode where the memory model is weak. As far as we know,
in Pentium all memory accesses are serialized in the program order and we do
not have to worry about the memory model. On other processors there are
special machine instructions called a fence, memory barrier, or storage
barrier (STBAR in Sparc), which can be used to serialize the memory accesses
to happen in program order relative to the fence instruction.

Leslie Lamport has devised a "bakery algorithm" to implement a mutex without
the atomic test-and-set, but his algorithm should be modified for weak memory
models. We do not use Lamport's algorithm, because we guess it is slower than
the atomic test-and-set.

Our mutex implementation works as follows: After that we perform the atomic
test-and-set instruction on the memory word. If the test returns zero, we
know we got the lock first. If the test returns not zero, some other thread
was quicker and got the lock: then we spin in a loop reading the memory word,
waiting it to become zero. It is wise to just read the word in the loop, not
perform numerous test-and-set instructions, because they generate memory
traffic between the cache and the main memory. The read loop can just access
the cache, saving bus bandwidth.

If we cannot acquire the mutex lock in the specified time, we reserve a cell
in the wait array, set the waiters byte in the mutex to 1. To avoid a race
condition, after setting the waiters byte and before suspending the waiting
thread, we still have to check that the mutex is reserved, because it may
have happened that the thread which was holding the mutex has just released
it and did not see the waiters byte set to 1, a case which would lead the
other thread to an infinite wait.

123 124 125 126
LEMMA 1: After a thread resets the event of a mutex (or rw_lock), some
=======
thread will eventually call os_event_set() on that particular event.
Thus no infinite wait is possible in this case.
osku's avatar
osku committed
127 128 129 130 131 132

Proof:	After making the reservation the thread sets the waiters field in the
mutex to 1. Then it checks that the mutex is still reserved by some thread,
or it reserves the mutex for itself. In any case, some thread (which may be
also some earlier thread, not necessarily the one currently holding the mutex)
will set the waiters field to 0 in mutex_exit, and then call
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
os_event_set() with the mutex as an argument.
Q.E.D.

LEMMA 2: If an os_event_set() call is made after some thread has called
=======
the os_event_reset() and before it starts wait on that event, the call
will not be lost to the second thread. This is true even if there is an
intervening call to os_event_reset() by another thread.
Thus no infinite wait is possible in this case.

Proof (non-windows platforms): os_event_reset() returns a monotonically
increasing value of signal_count. This value is increased at every
call of os_event_set() If thread A has called os_event_reset() followed
by thread B calling os_event_set() and then some other thread C calling
os_event_reset(), the is_set flag of the event will be set to FALSE;
but now if thread A calls os_event_wait_low() with the signal_count
value returned from the earlier call of os_event_reset(), it will
return immediately without waiting.
Q.E.D.

Proof (windows): If there is a writer thread which is forced to wait for
the lock, it may be able to set the state of rw_lock to RW_LOCK_WAIT_EX
The design of rw_lock ensures that there is one and only one thread
that is able to change the state to RW_LOCK_WAIT_EX and this thread is
guaranteed to acquire the lock after it is released by the current
holders and before any other waiter gets the lock.
On windows this thread waits on a separate event i.e.: wait_ex_event.
Since only one thread can wait on this event there is no chance
of this event getting reset before the writer starts wait on it.
Therefore, this thread is guaranteed to catch the os_set_event()
signalled unconditionally at the release of the lock.
osku's avatar
osku committed
164 165 166 167
Q.E.D. */

/* Number of spin waits on mutexes: for performance monitoring */

168 169 170 171 172 173 174 175 176 177 178
/** The number of iterations in the mutex_spin_wait() spin loop.
Intended for performance monitoring. */
static ib_int64_t	mutex_spin_round_count		= 0;
/** The number of mutex_spin_wait() calls.  Intended for
performance monitoring. */
static ib_int64_t	mutex_spin_wait_count		= 0;
/** The number of OS waits in mutex_spin_wait().  Intended for
performance monitoring. */
static ib_int64_t	mutex_os_wait_count		= 0;
/** The number of mutex_exit() calls. Intended for performance
monitoring. */
179
UNIV_INTERN ib_int64_t	mutex_exit_count		= 0;
osku's avatar
osku committed
180

181
/** The global array of wait cells for implementation of the database's own
osku's avatar
osku committed
182
mutexes and read-write locks */
183
UNIV_INTERN sync_array_t*	sync_primary_wait_array;
osku's avatar
osku committed
184

185
/** This variable is set to TRUE when sync_init is called */
186
UNIV_INTERN ibool	sync_initialized	= FALSE;
osku's avatar
osku committed
187

188
/** An acquired mutex or rw-lock and its level in the latching order */
osku's avatar
osku committed
189
typedef struct sync_level_struct	sync_level_t;
190
/** Mutexes or rw-locks held by a thread */
osku's avatar
osku committed
191 192
typedef struct sync_thread_struct	sync_thread_t;

193
#ifdef UNIV_SYNC_DEBUG
194
/** The latch levels currently owned by threads are stored in this data
osku's avatar
osku committed
195 196
structure; the size of this array is OS_THREAD_MAX_N */

197
UNIV_INTERN sync_thread_t*	sync_thread_level_arrays;
osku's avatar
osku committed
198

199
/** Mutex protecting sync_thread_level_arrays */
200
UNIV_INTERN mutex_t		sync_thread_mutex;
201 202 203 204

# ifdef UNIV_PFS_MUTEX
UNIV_INTERN mysql_pfs_key_t	sync_thread_mutex_key;
# endif /* UNIV_PFS_MUTEX */
205
#endif /* UNIV_SYNC_DEBUG */
osku's avatar
osku committed
206

207
/** Global list of database mutexes (not OS mutexes) created. */
208
UNIV_INTERN ut_list_base_node_t  mutex_list;
osku's avatar
osku committed
209

210
/** Mutex protecting the mutex_list variable */
211
UNIV_INTERN mutex_t mutex_list_mutex;
osku's avatar
osku committed
212

213 214 215 216
#ifdef UNIV_PFS_MUTEX
UNIV_INTERN mysql_pfs_key_t	mutex_list_mutex_key;
#endif /* UNIV_PFS_MUTEX */

217
#ifdef UNIV_SYNC_DEBUG
218
/** Latching order checks start when this is set TRUE */
219
UNIV_INTERN ibool	sync_order_checks_on	= FALSE;
220
#endif /* UNIV_SYNC_DEBUG */
osku's avatar
osku committed
221

222
/** Mutexes or rw-locks held by a thread */
osku's avatar
osku committed
223
struct sync_thread_struct{
224 225 226
	os_thread_id_t	id;	/*!< OS thread id */
	sync_level_t*	levels;	/*!< level array for this thread; if
				this is NULL this slot is unused */
osku's avatar
osku committed
227 228
};

229
/** Number of slots reserved for each OS thread in the sync level array */
osku's avatar
osku committed
230 231
#define SYNC_THREAD_N_LEVELS	10000

232
/** An acquired mutex or rw-lock and its level in the latching order */
osku's avatar
osku committed
233
struct sync_level_struct{
234
	void*	latch;	/*!< pointer to a mutex or an rw-lock; NULL means that
osku's avatar
osku committed
235
			the slot is empty */
236
	ulint	level;	/*!< level of the latch in the latching order */
osku's avatar
osku committed
237 238
};

239
/******************************************************************//**
osku's avatar
osku committed
240 241 242 243
Creates, or rather, initializes a mutex object in a specified memory
location (which must be appropriately aligned). The mutex is initialized
in the reset state. Explicit freeing of the mutex with mutex_free is
necessary only if the memory block containing it is freed. */
244
UNIV_INTERN
osku's avatar
osku committed
245 246 247
void
mutex_create_func(
/*==============*/
248
	mutex_t*	mutex,		/*!< in: pointer to memory */
249
#ifdef UNIV_DEBUG
250
	const char*	cmutex_name,	/*!< in: mutex name */
251
# ifdef UNIV_SYNC_DEBUG
252
	ulint		level,		/*!< in: level */
253 254
# endif /* UNIV_SYNC_DEBUG */
#endif /* UNIV_DEBUG */
255 256
	const char*	cfile_name,	/*!< in: file name where created */
	ulint		cline)		/*!< in: file line where created */
osku's avatar
osku committed
257
{
258
#if defined(HAVE_ATOMIC_BUILTINS)
259
	mutex_reset_lock_word(mutex);
260
#else
osku's avatar
osku committed
261 262 263
	os_fast_mutex_init(&(mutex->os_fast_mutex));
	mutex->lock_word = 0;
#endif
264
	mutex->event = os_event_create(NULL);
osku's avatar
osku committed
265
	mutex_set_waiters(mutex, 0);
266
#ifdef UNIV_DEBUG
osku's avatar
osku committed
267
	mutex->magic_n = MUTEX_MAGIC_N;
268
#endif /* UNIV_DEBUG */
osku's avatar
osku committed
269 270 271
#ifdef UNIV_SYNC_DEBUG
	mutex->line = 0;
	mutex->file_name = "not yet reserved";
272
	mutex->level = level;
273
#endif /* UNIV_SYNC_DEBUG */
osku's avatar
osku committed
274 275
	mutex->cfile_name = cfile_name;
	mutex->cline = cline;
276
	mutex->count_os_wait = 0;
277
#ifdef UNIV_DEBUG
278 279 280 281 282 283 284 285
	mutex->cmutex_name=	  cmutex_name;
	mutex->count_using=	  0;
	mutex->mutex_type=	  0;
	mutex->lspent_time=	  0;
	mutex->lmax_spent_time=     0;
	mutex->count_spin_loop= 0;
	mutex->count_spin_rounds=   0;
	mutex->count_os_yield=  0;
286
#endif /* UNIV_DEBUG */
287

osku's avatar
osku committed
288 289 290 291 292
	/* Check that lock_word is aligned; this is important on Intel */
	ut_ad(((ulint)(&(mutex->lock_word))) % 4 == 0);

	/* NOTE! The very first mutexes are not put to the mutex list */

293 294 295 296 297
	if ((mutex == &mutex_list_mutex)
#ifdef UNIV_SYNC_DEBUG
	    || (mutex == &sync_thread_mutex)
#endif /* UNIV_SYNC_DEBUG */
	    ) {
osku's avatar
osku committed
298

299
		return;
osku's avatar
osku committed
300
	}
301

osku's avatar
osku committed
302 303
	mutex_enter(&mutex_list_mutex);

304 305
	ut_ad(UT_LIST_GET_LEN(mutex_list) == 0
	      || UT_LIST_GET_FIRST(mutex_list)->magic_n == MUTEX_MAGIC_N);
osku's avatar
osku committed
306 307 308 309 310 311

	UT_LIST_ADD_FIRST(list, mutex_list, mutex);

	mutex_exit(&mutex_list_mutex);
}

312
/******************************************************************//**
313
NOTE! Use the corresponding macro mutex_free(), not directly this function!
osku's avatar
osku committed
314 315 316
Calling this function is obligatory only if the memory buffer containing
the mutex is freed. Removes a mutex object from the mutex list. The mutex
is checked to be in the reset state. */
317
UNIV_INTERN
osku's avatar
osku committed
318
void
319 320
mutex_free_func(
/*============*/
321
	mutex_t*	mutex)	/*!< in: mutex */
osku's avatar
osku committed
322
{
323
	ut_ad(mutex_validate(mutex));
osku's avatar
osku committed
324 325
	ut_a(mutex_get_lock_word(mutex) == 0);
	ut_a(mutex_get_waiters(mutex) == 0);
326

327 328 329 330 331 332 333 334 335
#ifdef UNIV_MEM_DEBUG
	if (mutex == &mem_hash_mutex) {
		ut_ad(UT_LIST_GET_LEN(mutex_list) == 1);
		ut_ad(UT_LIST_GET_FIRST(mutex_list) == &mem_hash_mutex);
		UT_LIST_REMOVE(list, mutex_list, mutex);
		goto func_exit;
	}
#endif /* UNIV_MEM_DEBUG */

336 337 338 339 340
	if (mutex != &mutex_list_mutex
#ifdef UNIV_SYNC_DEBUG
	    && mutex != &sync_thread_mutex
#endif /* UNIV_SYNC_DEBUG */
	    ) {
osku's avatar
osku committed
341

342
		mutex_enter(&mutex_list_mutex);
osku's avatar
osku committed
343

344 345 346 347 348 349
		ut_ad(!UT_LIST_GET_PREV(list, mutex)
		      || UT_LIST_GET_PREV(list, mutex)->magic_n
		      == MUTEX_MAGIC_N);
		ut_ad(!UT_LIST_GET_NEXT(list, mutex)
		      || UT_LIST_GET_NEXT(list, mutex)->magic_n
		      == MUTEX_MAGIC_N);
350 351

		UT_LIST_REMOVE(list, mutex_list, mutex);
osku's avatar
osku committed
352 353 354 355

		mutex_exit(&mutex_list_mutex);
	}

356
	os_event_free(mutex->event);
357 358 359
#ifdef UNIV_MEM_DEBUG
func_exit:
#endif /* UNIV_MEM_DEBUG */
360
#if !defined(HAVE_ATOMIC_BUILTINS)
osku's avatar
osku committed
361 362 363 364 365
	os_fast_mutex_free(&(mutex->os_fast_mutex));
#endif
	/* If we free the mutex protecting the mutex list (freeing is
	not necessary), we have to reset the magic number AFTER removing
	it from the list. */
366
#ifdef UNIV_DEBUG
osku's avatar
osku committed
367
	mutex->magic_n = 0;
368
#endif /* UNIV_DEBUG */
osku's avatar
osku committed
369 370
}

371
/********************************************************************//**
372 373
NOTE! Use the corresponding macro in the header file, not this function
directly. Tries to lock the mutex for the current thread. If the lock is not
374 375
acquired immediately, returns with return value 1.
@return	0 if succeed, 1 if not */
376
UNIV_INTERN
osku's avatar
osku committed
377
ulint
378 379
mutex_enter_nowait_func(
/*====================*/
380
	mutex_t*	mutex,		/*!< in: pointer to mutex */
osku's avatar
osku committed
381
	const char*	file_name __attribute__((unused)),
382
					/*!< in: file name where mutex
osku's avatar
osku committed
383 384
					requested */
	ulint		line __attribute__((unused)))
385
					/*!< in: line where requested */
osku's avatar
osku committed
386 387 388 389 390
{
	ut_ad(mutex_validate(mutex));

	if (!mutex_test_and_set(mutex)) {

391
		ut_d(mutex->thread_id = os_thread_get_curr_id());
osku's avatar
osku committed
392 393 394 395 396 397 398 399 400 401
#ifdef UNIV_SYNC_DEBUG
		mutex_set_debug_info(mutex, file_name, line);
#endif

		return(0);	/* Succeeded! */
	}

	return(1);
}

402
#ifdef UNIV_DEBUG
403
/******************************************************************//**
404 405
Checks that the mutex has been initialized.
@return	TRUE */
406
UNIV_INTERN
osku's avatar
osku committed
407 408 409
ibool
mutex_validate(
/*===========*/
410
	const mutex_t*	mutex)	/*!< in: mutex */
osku's avatar
osku committed
411 412 413 414 415 416
{
	ut_a(mutex);
	ut_a(mutex->magic_n == MUTEX_MAGIC_N);

	return(TRUE);
}
417

418
/******************************************************************//**
419
Checks that the current thread owns the mutex. Works only in the debug
420 421
version.
@return	TRUE if owns */
422
UNIV_INTERN
423 424 425
ibool
mutex_own(
/*======*/
426
	const mutex_t*	mutex)	/*!< in: mutex */
427 428 429 430 431 432
{
	ut_ad(mutex_validate(mutex));

	return(mutex_get_lock_word(mutex) == 1
	       && os_thread_eq(mutex->thread_id, os_thread_get_curr_id()));
}
433
#endif /* UNIV_DEBUG */
osku's avatar
osku committed
434

435
/******************************************************************//**
osku's avatar
osku committed
436
Sets the waiters field in a mutex. */
437
UNIV_INTERN
osku's avatar
osku committed
438 439 440
void
mutex_set_waiters(
/*==============*/
441 442
	mutex_t*	mutex,	/*!< in: mutex */
	ulint		n)	/*!< in: value to set */
osku's avatar
osku committed
443
{
444 445
	volatile ulint*	ptr;		/* declared volatile to ensure that
					the value is stored to memory */
osku's avatar
osku committed
446 447 448 449 450 451 452 453
	ut_ad(mutex);

	ptr = &(mutex->waiters);

	*ptr = n;		/* Here we assume that the write of a single
				word in memory is atomic */
}

454
/******************************************************************//**
osku's avatar
osku committed
455 456 457
Reserves a mutex for the current thread. If the mutex is reserved, the
function spins a preset time (controlled by SYNC_SPIN_ROUNDS), waiting
for the mutex before suspending the thread. */
458
UNIV_INTERN
osku's avatar
osku committed
459 460 461
void
mutex_spin_wait(
/*============*/
462 463
	mutex_t*	mutex,		/*!< in: pointer to mutex */
	const char*	file_name,	/*!< in: file name where mutex
464
					requested */
465
	ulint		line)		/*!< in: line where requested */
osku's avatar
osku committed
466
{
467 468
	ulint	   index; /* index of the reserved wait cell */
	ulint	   i;	  /* spin round count */
469
#ifdef UNIV_DEBUG
470
	ib_int64_t lstart_time = 0, lfinish_time; /* for timing os_wait */
471 472 473 474
	ulint ltime_diff;
	ulint sec;
	ulint ms;
	uint timer_started = 0;
475
#endif /* UNIV_DEBUG */
476
	ut_ad(mutex);
osku's avatar
osku committed
477

478 479 480 481 482 483
	/* This update is not thread safe, but we don't mind if the count
	isn't exact. Moved out of ifdef that follows because we are willing
	to sacrifice the cost of counting this as the data is valuable.
	Count the number of calls to mutex_spin_wait. */
	mutex_spin_wait_count++;

osku's avatar
osku committed
484 485
mutex_loop:

486
	i = 0;
osku's avatar
osku committed
487

488 489 490 491 492
	/* Spin waiting for the lock word to become zero. Note that we do
	not have to assume that the read access to the lock word is atomic,
	as the actual locking is always committed with atomic test-and-set.
	In reality, however, all processors probably have an atomic read of
	a memory word. */
osku's avatar
osku committed
493 494

spin_loop:
495
	ut_d(mutex->count_spin_loop++);
osku's avatar
osku committed
496

497 498 499 500
	while (mutex_get_lock_word(mutex) != 0 && i < SYNC_SPIN_ROUNDS) {
		if (srv_spin_wait_delay) {
			ut_delay(ut_rnd_interval(0, srv_spin_wait_delay));
		}
osku's avatar
osku committed
501

502 503
		i++;
	}
osku's avatar
osku committed
504

505
	if (i == SYNC_SPIN_ROUNDS) {
506
#ifdef UNIV_DEBUG
507
		mutex->count_os_yield++;
508 509
#ifndef UNIV_HOTBACKUP
		if (timed_mutexes && timer_started == 0) {
510
			ut_usectime(&sec, &ms);
511
			lstart_time= (ib_int64_t)sec * 1000000 + ms;
512 513
			timer_started = 1;
		}
514
#endif /* UNIV_HOTBACKUP */
515
#endif /* UNIV_DEBUG */
516 517
		os_thread_yield();
	}
osku's avatar
osku committed
518 519

#ifdef UNIV_SRV_PRINT_LATCH_WAITS
520
	fprintf(stderr,
521 522
		"Thread %lu spin wait mutex at %p"
		" cfile %s cline %lu rnds %lu\n",
523
		(ulong) os_thread_pf(os_thread_get_curr_id()), (void*) mutex,
524
		mutex->cfile_name, (ulong) mutex->cline, (ulong) i);
osku's avatar
osku committed
525 526
#endif

527
	mutex_spin_round_count += i;
osku's avatar
osku committed
528

529
	ut_d(mutex->count_spin_rounds += i);
osku's avatar
osku committed
530

531 532
	if (mutex_test_and_set(mutex) == 0) {
		/* Succeeded! */
osku's avatar
osku committed
533

534
		ut_d(mutex->thread_id = os_thread_get_curr_id());
osku's avatar
osku committed
535
#ifdef UNIV_SYNC_DEBUG
536
		mutex_set_debug_info(mutex, file_name, line);
osku's avatar
osku committed
537 538
#endif

539 540
		goto finish_timing;
	}
osku's avatar
osku committed
541

542 543 544 545 546 547
	/* We may end up with a situation where lock_word is 0 but the OS
	fast mutex is still reserved. On FreeBSD the OS does not seem to
	schedule a thread which is constantly calling pthread_mutex_trylock
	(in mutex_test_and_set implementation). Then we could end up
	spinning here indefinitely. The following 'i++' stops this infinite
	spin. */
osku's avatar
osku committed
548

549
	i++;
osku's avatar
osku committed
550

551 552 553
	if (i < SYNC_SPIN_ROUNDS) {
		goto spin_loop;
	}
osku's avatar
osku committed
554

555
	sync_array_reserve_cell(sync_primary_wait_array, mutex,
556
				SYNC_MUTEX, file_name, line, &index);
osku's avatar
osku committed
557

558 559 560 561 562
	/* The memory order of the array reservation and the change in the
	waiters field is important: when we suspend a thread, we first
	reserve the cell and then set waiters field to 1. When threads are
	released in mutex_exit, the waiters field is first set to zero and
	then the event is set to the signaled state. */
osku's avatar
osku committed
563

564
	mutex_set_waiters(mutex, 1);
osku's avatar
osku committed
565

566 567 568 569
	/* Try to reserve still a few times */
	for (i = 0; i < 4; i++) {
		if (mutex_test_and_set(mutex) == 0) {
			/* Succeeded! Free the reserved wait cell */
osku's avatar
osku committed
570

571
			sync_array_free_cell(sync_primary_wait_array, index);
osku's avatar
osku committed
572

573
			ut_d(mutex->thread_id = os_thread_get_curr_id());
osku's avatar
osku committed
574
#ifdef UNIV_SYNC_DEBUG
575
			mutex_set_debug_info(mutex, file_name, line);
osku's avatar
osku committed
576 577 578
#endif

#ifdef UNIV_SRV_PRINT_LATCH_WAITS
579 580 581
			fprintf(stderr, "Thread %lu spin wait succeeds at 2:"
				" mutex at %p\n",
				(ulong) os_thread_pf(os_thread_get_curr_id()),
582
				(void*) mutex);
osku's avatar
osku committed
583 584
#endif

585
			goto finish_timing;
osku's avatar
osku committed
586

587 588 589 590 591
			/* Note that in this case we leave the waiters field
			set to 1. We cannot reset it to zero, as we do not
			know if there are other waiters. */
		}
	}
osku's avatar
osku committed
592

593 594 595
	/* Now we know that there has been some thread holding the mutex
	after the change in the wait array and the waiters field was made.
	Now there is no risk of infinite wait on the event. */
osku's avatar
osku committed
596 597

#ifdef UNIV_SRV_PRINT_LATCH_WAITS
598 599
	fprintf(stderr,
		"Thread %lu OS wait mutex at %p cfile %s cline %lu rnds %lu\n",
600
		(ulong) os_thread_pf(os_thread_get_curr_id()), (void*) mutex,
601
		mutex->cfile_name, (ulong) mutex->cline, (ulong) i);
osku's avatar
osku committed
602 603
#endif

604
	mutex_os_wait_count++;
osku's avatar
osku committed
605

606
	mutex->count_os_wait++;
607
#ifdef UNIV_DEBUG
608
	/* !!!!! Sometimes os_wait can be called without os_thread_yield */
609 610
#ifndef UNIV_HOTBACKUP
	if (timed_mutexes == 1 && timer_started == 0) {
611
		ut_usectime(&sec, &ms);
612
		lstart_time= (ib_int64_t)sec * 1000000 + ms;
613 614
		timer_started = 1;
	}
615
#endif /* UNIV_HOTBACKUP */
616
#endif /* UNIV_DEBUG */
osku's avatar
osku committed
617

618 619
	sync_array_wait_event(sync_primary_wait_array, index);
	goto mutex_loop;
osku's avatar
osku committed
620 621

finish_timing:
622
#ifdef UNIV_DEBUG
623 624
	if (timed_mutexes == 1 && timer_started==1) {
		ut_usectime(&sec, &ms);
625
		lfinish_time= (ib_int64_t)sec * 1000000 + ms;
626 627 628 629 630 631 632 633

		ltime_diff= (ulint) (lfinish_time - lstart_time);
		mutex->lspent_time += ltime_diff;

		if (mutex->lmax_spent_time < ltime_diff) {
			mutex->lmax_spent_time= ltime_diff;
		}
	}
634
#endif /* UNIV_DEBUG */
635
	return;
osku's avatar
osku committed
636 637
}

638
/******************************************************************//**
osku's avatar
osku committed
639
Releases the threads waiting in the primary wait array for this mutex. */
640
UNIV_INTERN
osku's avatar
osku committed
641 642 643
void
mutex_signal_object(
/*================*/
644
	mutex_t*	mutex)	/*!< in: mutex */
osku's avatar
osku committed
645 646 647 648 649
{
	mutex_set_waiters(mutex, 0);

	/* The memory order of resetting the waiters field and
	signaling the object is important. See LEMMA 1 above. */
650 651
	os_event_set(mutex->event);
	sync_array_object_signalled(sync_primary_wait_array);
osku's avatar
osku committed
652 653 654
}

#ifdef UNIV_SYNC_DEBUG
655
/******************************************************************//**
osku's avatar
osku committed
656
Sets the debug information for a reserved mutex. */
657
UNIV_INTERN
osku's avatar
osku committed
658 659 660
void
mutex_set_debug_info(
/*=================*/
661 662 663
	mutex_t*	mutex,		/*!< in: mutex */
	const char*	file_name,	/*!< in: file where requested */
	ulint		line)		/*!< in: line where requested */
osku's avatar
osku committed
664 665 666 667 668 669 670
{
	ut_ad(mutex);
	ut_ad(file_name);

	sync_thread_add_level(mutex, mutex->level);

	mutex->file_name = file_name;
671 672
	mutex->line	 = line;
}
osku's avatar
osku committed
673

674
/******************************************************************//**
osku's avatar
osku committed
675
Gets the debug information for a reserved mutex. */
676
UNIV_INTERN
osku's avatar
osku committed
677 678 679
void
mutex_get_debug_info(
/*=================*/
680 681 682 683
	mutex_t*	mutex,		/*!< in: mutex */
	const char**	file_name,	/*!< out: file where requested */
	ulint*		line,		/*!< out: line where requested */
	os_thread_id_t* thread_id)	/*!< out: id of the thread which owns
osku's avatar
osku committed
684 685 686 687 688 689 690 691 692
					the mutex */
{
	ut_ad(mutex);

	*file_name = mutex->file_name;
	*line	   = mutex->line;
	*thread_id = mutex->thread_id;
}

693
/******************************************************************//**
osku's avatar
osku committed
694
Prints debug info of currently reserved mutexes. */
695
static
osku's avatar
osku committed
696
void
697 698
mutex_list_print_info(
/*==================*/
699
	FILE*	file)		/*!< in: file where to print */
osku's avatar
osku committed
700 701 702 703 704 705 706 707
{
	mutex_t*	mutex;
	const char*	file_name;
	ulint		line;
	os_thread_id_t	thread_id;
	ulint		count		= 0;

	fputs("----------\n"
708
	      "MUTEX INFO\n"
709
	      "----------\n", file);
osku's avatar
osku committed
710 711 712 713 714 715 716 717 718

	mutex_enter(&mutex_list_mutex);

	mutex = UT_LIST_GET_FIRST(mutex_list);

	while (mutex != NULL) {
		count++;

		if (mutex_get_lock_word(mutex) != 0) {
719
			mutex_get_debug_info(mutex, &file_name, &line,
720
					     &thread_id);
721
			fprintf(file,
722 723
				"Locked mutex: addr %p thread %ld"
				" file %s line %ld\n",
724
				(void*) mutex, os_thread_pf(thread_id),
osku's avatar
osku committed
725 726 727 728 729 730
				file_name, line);
		}

		mutex = UT_LIST_GET_NEXT(list, mutex);
	}

731
	fprintf(file, "Total number of mutexes %ld\n", count);
732

osku's avatar
osku committed
733 734 735
	mutex_exit(&mutex_list_mutex);
}

736
/******************************************************************//**
737 738
Counts currently reserved mutexes. Works only in the debug version.
@return	number of reserved mutexes */
739
UNIV_INTERN
osku's avatar
osku committed
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
ulint
mutex_n_reserved(void)
/*==================*/
{
	mutex_t*	mutex;
	ulint		count		= 0;

	mutex_enter(&mutex_list_mutex);

	mutex = UT_LIST_GET_FIRST(mutex_list);

	while (mutex != NULL) {
		if (mutex_get_lock_word(mutex) != 0) {

			count++;
		}

		mutex = UT_LIST_GET_NEXT(list, mutex);
	}

	mutex_exit(&mutex_list_mutex);

	ut_a(count >= 1);

	return(count - 1); /* Subtract one, because this function itself
			   was holding one mutex (mutex_list_mutex) */
}

768
/******************************************************************//**
osku's avatar
osku committed
769
Returns TRUE if no mutex or rw-lock is currently locked. Works only in
770 771
the debug version.
@return	TRUE if no mutexes and rw-locks reserved */
772
UNIV_INTERN
osku's avatar
osku committed
773 774 775 776 777 778 779
ibool
sync_all_freed(void)
/*================*/
{
	return(mutex_n_reserved() + rw_lock_n_locked() == 0);
}

780
/******************************************************************//**
781 782
Gets the value in the nth slot in the thread level arrays.
@return	pointer to thread slot */
osku's avatar
osku committed
783 784 785 786
static
sync_thread_t*
sync_thread_level_arrays_get_nth(
/*=============================*/
787
	ulint	n)	/*!< in: slot number */
osku's avatar
osku committed
788 789 790 791 792 793
{
	ut_ad(n < OS_THREAD_MAX_N);

	return(sync_thread_level_arrays + n);
}

794
/******************************************************************//**
795 796
Looks for the thread slot for the calling thread.
@return	pointer to thread slot, NULL if not found */
osku's avatar
osku committed
797 798 799 800
static
sync_thread_t*
sync_thread_level_arrays_find_slot(void)
/*====================================*/
801

osku's avatar
osku committed
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
{
	sync_thread_t*	slot;
	os_thread_id_t	id;
	ulint		i;

	id = os_thread_get_curr_id();

	for (i = 0; i < OS_THREAD_MAX_N; i++) {

		slot = sync_thread_level_arrays_get_nth(i);

		if (slot->levels && os_thread_eq(slot->id, id)) {

			return(slot);
		}
	}

	return(NULL);
}

822
/******************************************************************//**
823 824
Looks for an unused thread slot.
@return	pointer to thread slot */
osku's avatar
osku committed
825 826 827 828
static
sync_thread_t*
sync_thread_level_arrays_find_free(void)
/*====================================*/
829

osku's avatar
osku committed
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
{
	sync_thread_t*	slot;
	ulint		i;

	for (i = 0; i < OS_THREAD_MAX_N; i++) {

		slot = sync_thread_level_arrays_get_nth(i);

		if (slot->levels == NULL) {

			return(slot);
		}
	}

	return(NULL);
}

847
/******************************************************************//**
848 849
Gets the value in the nth slot in the thread level array.
@return	pointer to level slot */
osku's avatar
osku committed
850 851 852 853
static
sync_level_t*
sync_thread_levels_get_nth(
/*=======================*/
854
	sync_level_t*	arr,	/*!< in: pointer to level array for an OS
osku's avatar
osku committed
855
				thread */
856
	ulint		n)	/*!< in: slot number */
osku's avatar
osku committed
857 858 859 860 861 862
{
	ut_ad(n < SYNC_THREAD_N_LEVELS);

	return(arr + n);
}

863
/******************************************************************//**
osku's avatar
osku committed
864
Checks if all the level values stored in the level array are greater than
865 866
the given limit.
@return	TRUE if all greater */
osku's avatar
osku committed
867 868 869 870
static
ibool
sync_thread_levels_g(
/*=================*/
871
	sync_level_t*	arr,	/*!< in: pointer to level array for an OS
osku's avatar
osku committed
872
				thread */
873 874
	ulint		limit,	/*!< in: level limit */
	ulint		warn)	/*!< in: TRUE=display a diagnostic message */
osku's avatar
osku committed
875 876 877 878 879 880 881 882 883 884 885 886 887
{
	sync_level_t*	slot;
	rw_lock_t*	lock;
	mutex_t*	mutex;
	ulint		i;

	for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) {

		slot = sync_thread_levels_get_nth(arr, i);

		if (slot->latch != NULL) {
			if (slot->level <= limit) {

888 889 890 891 892
				if (!warn) {

					return(FALSE);
				}

osku's avatar
osku committed
893 894 895 896
				lock = slot->latch;
				mutex = slot->latch;

				fprintf(stderr,
897
					"InnoDB: sync levels should be"
898 899
					" > %lu but a level is %lu\n",
					(ulong) limit, (ulong) slot->level);
osku's avatar
osku committed
900 901 902 903 904 905 906 907 908 909 910 911

				if (mutex->magic_n == MUTEX_MAGIC_N) {
					fprintf(stderr,
						"Mutex created at %s %lu\n",
						mutex->cfile_name,
						(ulong) mutex->cline);

					if (mutex_get_lock_word(mutex) != 0) {
						const char*	file_name;
						ulint		line;
						os_thread_id_t	thread_id;

912 913 914
						mutex_get_debug_info(
							mutex, &file_name,
							&line, &thread_id);
osku's avatar
osku committed
915 916

						fprintf(stderr,
917 918 919 920
							"InnoDB: Locked mutex:"
							" addr %p thread %ld"
							" file %s line %ld\n",
							(void*) mutex,
921 922
							os_thread_pf(
								thread_id),
923 924
							file_name,
							(ulong) line);
osku's avatar
osku committed
925 926
					} else {
						fputs("Not locked\n", stderr);
927
					}
osku's avatar
osku committed
928 929 930
				} else {
					rw_lock_print(lock);
				}
931

osku's avatar
osku committed
932 933 934 935 936 937 938 939
				return(FALSE);
			}
		}
	}

	return(TRUE);
}

940
/******************************************************************//**
941 942
Checks if the level value is stored in the level array.
@return	TRUE if stored */
osku's avatar
osku committed
943 944 945 946
static
ibool
sync_thread_levels_contain(
/*=======================*/
947
	sync_level_t*	arr,	/*!< in: pointer to level array for an OS
osku's avatar
osku committed
948
				thread */
949
	ulint		level)	/*!< in: level */
osku's avatar
osku committed
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
{
	sync_level_t*	slot;
	ulint		i;

	for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) {

		slot = sync_thread_levels_get_nth(arr, i);

		if (slot->latch != NULL) {
			if (slot->level == level) {

				return(TRUE);
			}
		}
	}

	return(FALSE);
}

969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
/******************************************************************//**
Checks if the level array for the current thread contains a
mutex or rw-latch at the specified level.
@return	a matching latch, or NULL if not found */
UNIV_INTERN
void*
sync_thread_levels_contains(
/*========================*/
	ulint	level)			/*!< in: latching order level
					(SYNC_DICT, ...)*/
{
	sync_level_t*	arr;
	sync_thread_t*	thread_slot;
	sync_level_t*	slot;
	ulint		i;

	if (!sync_order_checks_on) {

		return(NULL);
	}

	mutex_enter(&sync_thread_mutex);

	thread_slot = sync_thread_level_arrays_find_slot();

	if (thread_slot == NULL) {

		mutex_exit(&sync_thread_mutex);

		return(NULL);
	}

	arr = thread_slot->levels;

	for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) {

		slot = sync_thread_levels_get_nth(arr, i);

		if (slot->latch != NULL && slot->level == level) {

			mutex_exit(&sync_thread_mutex);
			return(slot->latch);
		}
	}

	mutex_exit(&sync_thread_mutex);

	return(NULL);
}

1019
/******************************************************************//**
1020
Checks that the level array for the current thread is empty.
1021
@return	a latch, or NULL if empty except the exceptions specified below */
1022
UNIV_INTERN
1023 1024 1025
void*
sync_thread_levels_nonempty_gen(
/*============================*/
1026
	ibool	dict_mutex_allowed)	/*!< in: TRUE if dictionary mutex is
osku's avatar
osku committed
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
					allowed to be owned by the thread,
					also purge_is_running mutex is
					allowed */
{
	sync_level_t*	arr;
	sync_thread_t*	thread_slot;
	sync_level_t*	slot;
	ulint		i;

	if (!sync_order_checks_on) {

1038
		return(NULL);
osku's avatar
osku committed
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	}

	mutex_enter(&sync_thread_mutex);

	thread_slot = sync_thread_level_arrays_find_slot();

	if (thread_slot == NULL) {

		mutex_exit(&sync_thread_mutex);

1049
		return(NULL);
osku's avatar
osku committed
1050 1051 1052 1053 1054 1055 1056 1057
	}

	arr = thread_slot->levels;

	for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) {

		slot = sync_thread_levels_get_nth(arr, i);

1058 1059 1060 1061
		if (slot->latch != NULL
		    && (!dict_mutex_allowed
			|| (slot->level != SYNC_DICT
			    && slot->level != SYNC_DICT_OPERATION))) {
osku's avatar
osku committed
1062 1063 1064 1065

			mutex_exit(&sync_thread_mutex);
			ut_error;

1066
			return(slot->latch);
osku's avatar
osku committed
1067 1068 1069 1070 1071
		}
	}

	mutex_exit(&sync_thread_mutex);

1072
	return(NULL);
osku's avatar
osku committed
1073 1074
}

1075
/******************************************************************//**
1076 1077
Checks that the level array for the current thread is empty.
@return	TRUE if empty */
1078
UNIV_INTERN
osku's avatar
osku committed
1079 1080 1081 1082 1083 1084 1085
ibool
sync_thread_levels_empty(void)
/*==========================*/
{
	return(sync_thread_levels_empty_gen(FALSE));
}

1086
/******************************************************************//**
osku's avatar
osku committed
1087 1088 1089
Adds a latch and its level in the thread level array. Allocates the memory
for the array if called first time for this OS thread. Makes the checks
against other latch levels stored in the array for this thread. */
1090
UNIV_INTERN
osku's avatar
osku committed
1091 1092 1093
void
sync_thread_add_level(
/*==================*/
1094 1095
	void*	latch,	/*!< in: pointer to a mutex or an rw-lock */
	ulint	level)	/*!< in: level in the latching order; if
1096
			SYNC_LEVEL_VARYING, nothing is done */
osku's avatar
osku committed
1097 1098 1099 1100 1101
{
	sync_level_t*	array;
	sync_level_t*	slot;
	sync_thread_t*	thread_slot;
	ulint		i;
1102

osku's avatar
osku committed
1103 1104 1105 1106 1107 1108
	if (!sync_order_checks_on) {

		return;
	}

	if ((latch == (void*)&sync_thread_mutex)
1109 1110 1111
	    || (latch == (void*)&mutex_list_mutex)
	    || (latch == (void*)&rw_lock_debug_mutex)
	    || (latch == (void*)&rw_lock_list_mutex)) {
osku's avatar
osku committed
1112 1113 1114 1115

		return;
	}

1116
	if (level == SYNC_LEVEL_VARYING) {
osku's avatar
osku committed
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

		return;
	}

	mutex_enter(&sync_thread_mutex);

	thread_slot = sync_thread_level_arrays_find_slot();

	if (thread_slot == NULL) {
		/* We have to allocate the level array for a new thread */
		array = ut_malloc(sizeof(sync_level_t) * SYNC_THREAD_N_LEVELS);
1128

osku's avatar
osku committed
1129
		thread_slot = sync_thread_level_arrays_find_free();
1130 1131

		thread_slot->id = os_thread_get_curr_id();
osku's avatar
osku committed
1132
		thread_slot->levels = array;
1133

osku's avatar
osku committed
1134 1135 1136 1137 1138 1139 1140 1141 1142
		for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) {

			slot = sync_thread_levels_get_nth(array, i);

			slot->latch = NULL;
		}
	}

	array = thread_slot->levels;
1143

osku's avatar
osku committed
1144 1145 1146 1147 1148
	/* NOTE that there is a problem with _NODE and _LEAF levels: if the
	B-tree height changes, then a leaf can change to an internal node
	or the other way around. We do not know at present if this can cause
	unnecessary assertion failures below. */

1149 1150 1151 1152
	switch (level) {
	case SYNC_NO_ORDER_CHECK:
	case SYNC_EXTERN_STORAGE:
	case SYNC_TREE_NODE_FROM_HASH:
osku's avatar
osku committed
1153
		/* Do no order checking */
1154 1155 1156 1157
		break;
	case SYNC_MEM_POOL:
	case SYNC_MEM_HASH:
	case SYNC_RECV:
1158
	case SYNC_WORK_QUEUE:
1159
	case SYNC_LOG:
irana's avatar
irana committed
1160
	case SYNC_LOG_FLUSH_ORDER:
1161 1162 1163
	case SYNC_THR_LOCAL:
	case SYNC_ANY_LATCH:
	case SYNC_TRX_SYS_HEADER:
1164
	case SYNC_FILE_FORMAT_TAG:
1165
	case SYNC_DOUBLEWRITE:
1166
	case SYNC_SEARCH_SYS:
1167
	case SYNC_SEARCH_SYS_CONF:
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	case SYNC_TRX_LOCK_HEAP:
	case SYNC_KERNEL:
	case SYNC_IBUF_BITMAP_MUTEX:
	case SYNC_RSEG:
	case SYNC_TRX_UNDO:
	case SYNC_PURGE_LATCH:
	case SYNC_PURGE_SYS:
	case SYNC_DICT_AUTOINC_MUTEX:
	case SYNC_DICT_OPERATION:
	case SYNC_DICT_HEADER:
vasil's avatar
vasil committed
1178 1179
	case SYNC_TRX_I_S_RWLOCK:
	case SYNC_TRX_I_S_LAST_READ:
1180
		if (!sync_thread_levels_g(array, level, TRUE)) {
1181 1182
			fprintf(stderr,
				"InnoDB: sync_thread_levels_g(array, %lu)"
vasil's avatar
vasil committed
1183
				" does not hold!\n", level);
1184 1185
			ut_error;
		}
1186
		break;
irana's avatar
irana committed
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	case SYNC_BUF_FLUSH_LIST:
	case SYNC_BUF_POOL:
		/* We can have multiple mutexes of this type therefore we
		can only check whether the greater than condition holds. */
		if (!sync_thread_levels_g(array, level-1, TRUE)) {
			fprintf(stderr,
				"InnoDB: sync_thread_levels_g(array, %lu)"
				" does not hold!\n", level-1);
			ut_error;
		}
		break;

1199
	case SYNC_BUF_BLOCK:
1200 1201 1202
		/* Either the thread must own the buffer pool mutex
		(buf_pool_mutex), or it is allowed to latch only ONE
		buffer block (block->mutex or buf_pool_zip_mutex). */
1203 1204
		if (!sync_thread_levels_g(array, level, FALSE)) {
			ut_a(sync_thread_levels_g(array, level - 1, TRUE));
1205 1206
			ut_a(sync_thread_levels_contain(array, SYNC_BUF_POOL));
		}
1207 1208
		break;
	case SYNC_REC_LOCK:
1209 1210 1211 1212 1213 1214
		if (sync_thread_levels_contain(array, SYNC_KERNEL)) {
			ut_a(sync_thread_levels_g(array, SYNC_REC_LOCK - 1,
						  TRUE));
		} else {
			ut_a(sync_thread_levels_g(array, SYNC_REC_LOCK, TRUE));
		}
1215 1216
		break;
	case SYNC_IBUF_BITMAP:
1217 1218 1219
		/* Either the thread must own the master mutex to all
		the bitmap pages, or it is allowed to latch only ONE
		bitmap page. */
1220 1221 1222 1223 1224 1225 1226 1227
		if (sync_thread_levels_contain(array,
					       SYNC_IBUF_BITMAP_MUTEX)) {
			ut_a(sync_thread_levels_g(array, SYNC_IBUF_BITMAP - 1,
						  TRUE));
		} else {
			ut_a(sync_thread_levels_g(array, SYNC_IBUF_BITMAP,
						  TRUE));
		}
1228 1229
		break;
	case SYNC_FSP_PAGE:
osku's avatar
osku committed
1230
		ut_a(sync_thread_levels_contain(array, SYNC_FSP));
1231 1232
		break;
	case SYNC_FSP:
osku's avatar
osku committed
1233
		ut_a(sync_thread_levels_contain(array, SYNC_FSP)
1234
		     || sync_thread_levels_g(array, SYNC_FSP, TRUE));
1235 1236
		break;
	case SYNC_TRX_UNDO_PAGE:
osku's avatar
osku committed
1237
		ut_a(sync_thread_levels_contain(array, SYNC_TRX_UNDO)
1238 1239
		     || sync_thread_levels_contain(array, SYNC_RSEG)
		     || sync_thread_levels_contain(array, SYNC_PURGE_SYS)
1240
		     || sync_thread_levels_g(array, SYNC_TRX_UNDO_PAGE, TRUE));
1241 1242
		break;
	case SYNC_RSEG_HEADER:
osku's avatar
osku committed
1243
		ut_a(sync_thread_levels_contain(array, SYNC_RSEG));
1244 1245
		break;
	case SYNC_RSEG_HEADER_NEW:
osku's avatar
osku committed
1246
		ut_a(sync_thread_levels_contain(array, SYNC_KERNEL)
1247
		     && sync_thread_levels_contain(array, SYNC_FSP_PAGE));
1248 1249
		break;
	case SYNC_TREE_NODE:
osku's avatar
osku committed
1250
		ut_a(sync_thread_levels_contain(array, SYNC_INDEX_TREE)
1251
		     || sync_thread_levels_contain(array, SYNC_DICT_OPERATION)
1252
		     || sync_thread_levels_g(array, SYNC_TREE_NODE - 1, TRUE));
1253 1254
		break;
	case SYNC_TREE_NODE_NEW:
osku's avatar
osku committed
1255
		ut_a(sync_thread_levels_contain(array, SYNC_FSP_PAGE)
1256
		     || sync_thread_levels_contain(array, SYNC_IBUF_MUTEX));
1257 1258
		break;
	case SYNC_INDEX_TREE:
1259 1260 1261 1262 1263 1264 1265 1266
		if (sync_thread_levels_contain(array, SYNC_IBUF_MUTEX)
		    && sync_thread_levels_contain(array, SYNC_FSP)) {
			ut_a(sync_thread_levels_g(array, SYNC_FSP_PAGE - 1,
						  TRUE));
		} else {
			ut_a(sync_thread_levels_g(array, SYNC_TREE_NODE - 1,
						  TRUE));
		}
1267 1268
		break;
	case SYNC_IBUF_MUTEX:
1269
		ut_a(sync_thread_levels_g(array, SYNC_FSP_PAGE - 1, TRUE));
1270 1271
		break;
	case SYNC_IBUF_PESS_INSERT_MUTEX:
1272 1273
		ut_a(sync_thread_levels_g(array, SYNC_FSP - 1, TRUE));
		ut_a(!sync_thread_levels_contain(array, SYNC_IBUF_MUTEX));
1274 1275
		break;
	case SYNC_IBUF_HEADER:
1276 1277 1278 1279
		ut_a(sync_thread_levels_g(array, SYNC_FSP - 1, TRUE));
		ut_a(!sync_thread_levels_contain(array, SYNC_IBUF_MUTEX));
		ut_a(!sync_thread_levels_contain(array,
						 SYNC_IBUF_PESS_INSERT_MUTEX));
1280 1281
		break;
	case SYNC_DICT:
osku's avatar
osku committed
1282 1283
#ifdef UNIV_DEBUG
		ut_a(buf_debug_prints
1284
		     || sync_thread_levels_g(array, SYNC_DICT, TRUE));
osku's avatar
osku committed
1285
#else /* UNIV_DEBUG */
1286
		ut_a(sync_thread_levels_g(array, SYNC_DICT, TRUE));
osku's avatar
osku committed
1287
#endif /* UNIV_DEBUG */
1288 1289
		break;
	default:
osku's avatar
osku committed
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
		ut_error;
	}

	for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) {

		slot = sync_thread_levels_get_nth(array, i);

		if (slot->latch == NULL) {
			slot->latch = latch;
			slot->level = level;

			break;
		}
	}

	ut_a(i < SYNC_THREAD_N_LEVELS);

	mutex_exit(&sync_thread_mutex);
}
1309

1310
/******************************************************************//**
1311
Removes a latch from the thread level array if it is found there.
1312 1313 1314
@return TRUE if found in the array; it is no error if the latch is
not found, as we presently are not able to determine the level for
every latch reservation the program does */
1315
UNIV_INTERN
osku's avatar
osku committed
1316 1317 1318
ibool
sync_thread_reset_level(
/*====================*/
1319
	void*	latch)	/*!< in: pointer to a mutex or an rw-lock */
osku's avatar
osku committed
1320 1321 1322 1323 1324
{
	sync_level_t*	array;
	sync_level_t*	slot;
	sync_thread_t*	thread_slot;
	ulint		i;
1325

osku's avatar
osku committed
1326 1327 1328 1329 1330 1331
	if (!sync_order_checks_on) {

		return(FALSE);
	}

	if ((latch == (void*)&sync_thread_mutex)
1332 1333 1334
	    || (latch == (void*)&mutex_list_mutex)
	    || (latch == (void*)&rw_lock_debug_mutex)
	    || (latch == (void*)&rw_lock_list_mutex)) {
osku's avatar
osku committed
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351

		return(FALSE);
	}

	mutex_enter(&sync_thread_mutex);

	thread_slot = sync_thread_level_arrays_find_slot();

	if (thread_slot == NULL) {

		ut_error;

		mutex_exit(&sync_thread_mutex);
		return(FALSE);
	}

	array = thread_slot->levels;
1352

osku's avatar
osku committed
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
	for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) {

		slot = sync_thread_levels_get_nth(array, i);

		if (slot->latch == latch) {
			slot->latch = NULL;

			mutex_exit(&sync_thread_mutex);

			return(TRUE);
		}
	}

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	if (((mutex_t*) latch)->magic_n != MUTEX_MAGIC_N) {
		rw_lock_t*	rw_lock;

		rw_lock = (rw_lock_t*) latch;

		if (rw_lock->level == SYNC_LEVEL_VARYING) {
			mutex_exit(&sync_thread_mutex);

			return(TRUE);
		}
	}

osku's avatar
osku committed
1378 1379 1380 1381 1382 1383
	ut_error;

	mutex_exit(&sync_thread_mutex);

	return(FALSE);
}
1384
#endif /* UNIV_SYNC_DEBUG */
1385

1386
/******************************************************************//**
osku's avatar
osku committed
1387
Initializes the synchronization data structures. */
1388
UNIV_INTERN
osku's avatar
osku committed
1389 1390 1391 1392
void
sync_init(void)
/*===========*/
{
1393
#ifdef UNIV_SYNC_DEBUG
osku's avatar
osku committed
1394 1395
	sync_thread_t*	thread_slot;
	ulint		i;
1396
#endif /* UNIV_SYNC_DEBUG */
1397

osku's avatar
osku committed
1398 1399 1400 1401 1402 1403 1404 1405
	ut_a(sync_initialized == FALSE);

	sync_initialized = TRUE;

	/* Create the primary system wait array which is protected by an OS
	mutex */

	sync_primary_wait_array = sync_array_create(OS_THREAD_MAX_N,
1406
						    SYNC_ARRAY_OS_MUTEX);
1407
#ifdef UNIV_SYNC_DEBUG
osku's avatar
osku committed
1408 1409 1410 1411
	/* Create the thread latch level array where the latch levels
	are stored for each OS thread */

	sync_thread_level_arrays = ut_malloc(OS_THREAD_MAX_N
1412
					     * sizeof(sync_thread_t));
osku's avatar
osku committed
1413 1414 1415 1416 1417
	for (i = 0; i < OS_THREAD_MAX_N; i++) {

		thread_slot = sync_thread_level_arrays_get_nth(i);
		thread_slot->levels = NULL;
	}
1418
#endif /* UNIV_SYNC_DEBUG */
1419
	/* Init the mutex list and create the mutex to protect it. */
osku's avatar
osku committed
1420 1421

	UT_LIST_INIT(mutex_list);
1422 1423
	mutex_create(mutex_list_mutex_key, &mutex_list_mutex,
		     SYNC_NO_ORDER_CHECK);
1424
#ifdef UNIV_SYNC_DEBUG
1425 1426
	mutex_create(sync_thread_mutex_key, &sync_thread_mutex,
		     SYNC_NO_ORDER_CHECK);
1427
#endif /* UNIV_SYNC_DEBUG */
osku's avatar
osku committed
1428 1429 1430 1431

	/* Init the rw-lock list and create the mutex to protect it. */

	UT_LIST_INIT(rw_lock_list);
1432 1433
	mutex_create(rw_lock_list_mutex_key, &rw_lock_list_mutex,
		     SYNC_NO_ORDER_CHECK);
osku's avatar
osku committed
1434 1435

#ifdef UNIV_SYNC_DEBUG
1436 1437
	mutex_create(rw_lock_debug_mutex_key, &rw_lock_debug_mutex,
		     SYNC_NO_ORDER_CHECK);
osku's avatar
osku committed
1438 1439 1440 1441 1442 1443

	rw_lock_debug_event = os_event_create(NULL);
	rw_lock_debug_waiters = FALSE;
#endif /* UNIV_SYNC_DEBUG */
}

1444
/******************************************************************//**
osku's avatar
osku committed
1445 1446
Frees the resources in InnoDB's own synchronization data structures. Use
os_sync_free() after calling this. */
1447
UNIV_INTERN
osku's avatar
osku committed
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
void
sync_close(void)
/*===========*/
{
	mutex_t*	mutex;

	sync_array_free(sync_primary_wait_array);

	mutex = UT_LIST_GET_FIRST(mutex_list);

	while (mutex) {
1459 1460 1461 1462 1463 1464
#ifdef UNIV_MEM_DEBUG
		if (mutex == &mem_hash_mutex) {
			mutex = UT_LIST_GET_NEXT(list, mutex);
			continue;
		}
#endif /* UNIV_MEM_DEBUG */
1465
		mutex_free(mutex);
osku's avatar
osku committed
1466 1467 1468 1469
		mutex = UT_LIST_GET_FIRST(mutex_list);
	}

	mutex_free(&mutex_list_mutex);
1470
#ifdef UNIV_SYNC_DEBUG
1471
	mutex_free(&sync_thread_mutex);
1472 1473 1474

	/* Switch latching order checks on in sync0sync.c */
	sync_order_checks_on = FALSE;
1475
#endif /* UNIV_SYNC_DEBUG */
1476 1477

	sync_initialized = FALSE;	
osku's avatar
osku committed
1478 1479
}

1480
/*******************************************************************//**
osku's avatar
osku committed
1481
Prints wait info of the sync system. */
1482
UNIV_INTERN
osku's avatar
osku committed
1483 1484 1485
void
sync_print_wait_info(
/*=================*/
1486
	FILE*	file)		/*!< in: file where to print */
osku's avatar
osku committed
1487 1488
{
#ifdef UNIV_SYNC_DEBUG
1489
	fprintf(file, "Mutex exits %llu, rws exits %llu, rwx exits %llu\n",
osku's avatar
osku committed
1490 1491 1492 1493
		mutex_exit_count, rw_s_exit_count, rw_x_exit_count);
#endif

	fprintf(file,
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
		"Mutex spin waits %llu, rounds %llu, OS waits %llu\n"
		"RW-shared spins %llu, OS waits %llu;"
		" RW-excl spins %llu, OS waits %llu\n",
		mutex_spin_wait_count,
		mutex_spin_round_count,
		mutex_os_wait_count,
		rw_s_spin_wait_count,
		rw_s_os_wait_count,
		rw_x_spin_wait_count,
		rw_x_os_wait_count);

	fprintf(file,
		"Spin rounds per wait: %.2f mutex, %.2f RW-shared, "
		"%.2f RW-excl\n",
		(double) mutex_spin_round_count /
		(mutex_spin_wait_count ? mutex_spin_wait_count : 1),
		(double) rw_s_spin_round_count /
		(rw_s_spin_wait_count ? rw_s_spin_wait_count : 1),
		(double) rw_x_spin_round_count /
		(rw_x_spin_wait_count ? rw_x_spin_wait_count : 1));
osku's avatar
osku committed
1514 1515
}

1516
/*******************************************************************//**
osku's avatar
osku committed
1517
Prints info of the sync system. */
1518
UNIV_INTERN
osku's avatar
osku committed
1519 1520 1521
void
sync_print(
/*=======*/
1522
	FILE*	file)		/*!< in: file where to print */
osku's avatar
osku committed
1523 1524
{
#ifdef UNIV_SYNC_DEBUG
1525
	mutex_list_print_info(file);
osku's avatar
osku committed
1526

1527
	rw_lock_list_print_info(file);
osku's avatar
osku committed
1528 1529 1530 1531 1532 1533
#endif /* UNIV_SYNC_DEBUG */

	sync_array_print_info(file, sync_primary_wait_array);

	sync_print_wait_info(file);
}