- 02 Feb, 2023 18 commits
-
-
Monty authored
An assert/crash could happen if newtable.alias would be reallocated, (for example if newtable.alias.safe_c_ptr() was called) when doing *table= newtable. Fixed by ensuring that we keep the original state of the alias in 'table'.
-
Monty authored
MDEV-21633 Assertion `tmp >= 0' failed in best_access_path with rowid_filter=ON MDEV-20595 Assertion `0 < sel && sel <= 2.0' failed in table_cond_selectivity
-
Monty authored
records_out is the numbers of rows expected to be accepted from a table. records_read is in contrast the number of rows that the optimizer excepts to read from the engine. This patch causes not plan changes. The differences in test results comes from renaming "records" to "records_read" and printing of record_out in the optimizer trace. Other things: - Renamed table_cond_selectivity() to table_after_join_selectivity() to make the purpose of the function more clear.
-
Monty authored
This reduces the size of THD from 1128 to 1104 (24 bytes) Note much but will still save some memory accesses
-
Sergei Petrunia authored
-
Monty authored
Variables added: - optimizer_index_block_copy_cost - optimizer_key_copy_cost - optimizer_key_next_find_cost - optimizer_key_compare_cost - optimizer_row_copy_cost - optimizer_where_compare_cost Some rename of defines was done to make the internal defines similar to the visible ones: TIME_FOR_COMPARE -> WHERE_COST; WHERE_COST was also "inverted" to be a number between 0 and 1 that is multiply with accepted records (similar to other optimizer variables). TIME_FOR_COMPARE_IDX -> KEY_COMPARE_COST. This is also inverted, similar to TIME_FOR_COMPARE. TIME_FOR_COMPARE_ROWID -> ROWID_COMPARE_COST. This is also inverted, similar to TIME_FOR_COMPARE. All default costs are identical to what they where before this patch. Other things: - Compare factor in get_merge_buffers_cost() was inverted. - Changed namespace to static in filesort_utils.cc
-
Monty authored
Before this patch, when calculating the cost of fetching and using a row/key from the engine, we took into account the cost of finding a row or key from the engine, but did not consistently take into account index only accessed, clustered key or covered keys for all access paths. The cost of the WHERE clause (TIME_FOR_COMPARE) was not consistently considered in best_access_path(). TIME_FOR_COMPARE was used in calculation in other places, like greedy_search(), but was in some cases (like scans) done an a different number of rows than was accessed. The cost calculation of row and index scans didn't take into account the number of rows that where accessed, only the number of accepted rows. When using a filter, the cost of index_only_reads and cost of accessing and disregarding 'filtered rows' where not taken into account, which made filters cost less than there actually where. To remedy the above, the following key & row fetch related costs has been added: - The cost of fetching and using a row is now split into different costs: - key + Row fetch cost (as before) but multiplied with the variable 'optimizer_cache_cost' (default to 0.5). This allows the user to tell the optimizer the likehood of finding the key and row in the engine cache. - ROW_COPY_COST, The cost copying a row from the engine to the sql layer or creating a row from the join_cache to the record buffer. Mostly affects table scan costs. - ROW_LOOKUP_COST, the cost of fetching a row by rowid. - KEY_COPY_COST the cost of finding the next key and copying it from the engine to the SQL layer. This is used when we calculate the cost index only reads. It makes index scans more expensive than before if they cover a lot of rows. (main.index_merge_myisam) - KEY_LOOKUP_COST, the cost of finding the first key in a range. This replaces the old define IDX_LOOKUP_COST, but with a higher cost. - KEY_NEXT_FIND_COST, the cost of finding the next key (and rowid). when doing a index scan and comparing the rowid to the filter. Before this cost was assumed to be 0. All of the above constants/variables are now tuned to be somewhat in proportion of executing complexity to each other. There is tuning need for these in the future, but that can wait until the above are made user variables as that will make tuning much easier. To make the usage of the above easy, there are new (not virtual) cost calclation functions in handler: - ha_read_time(), like read_time(), but take optimizer_cache_cost into account. - ha_read_and_copy_time(), like ha_read_time() but take into account ROW_COPY_TIME - ha_read_and_compare_time(), like ha_read_and_copy_time() but take TIME_FOR_COMPARE into account. - ha_rnd_pos_time(). Read row with row id, taking ROW_COPY_COST into account. This is used with filesort where we don't need to execute the WHERE clause again. - ha_keyread_time(), like keyread_time() but take optimizer_cache_cost into account. - ha_keyread_and_copy_time(), like ha_keyread_time(), but add KEY_COPY_COST. - ha_key_scan_time(), like key_scan_time() but take optimizer_cache_cost nto account. - ha_key_scan_and_compare_time(), like ha_key_scan_time(), but add KEY_COPY_COST & TIME_FOR_COMPARE. I also added some setup costs for doing different types of scans and creating temporary tables (on disk and in memory). This encourages the optimizer to not use these for simple 'a few row' lookups if there are adequate key lookup strategies. - TABLE_SCAN_SETUP_COST, cost of starting a table scan. - INDEX_SCAN_SETUP_COST, cost of starting an index scan. - HEAP_TEMPTABLE_CREATE_COST, cost of creating in memory temporary table. - DISK_TEMPTABLE_CREATE_COST, cost of creating an on disk temporary table. When calculating cost of fetching ranges, we had a cost of IDX_LOOKUP_COST (0.125) for doing a key div for a new range. This is now replaced with 'io_cost * KEY_LOOKUP_COST (1.0) * optimizer_cache_cost', which matches the cost we use for 'ref' and other key lookups. The effect is that the cost is now a bit higher when we have many ranges for a key. Allmost all calculation with TIME_FOR_COMPARE is now done in best_access_path(). 'JOIN::read_time' now includes the full cost for finding the rows in the table. In the result files, many of the changes are now again close to what they where before the "Update cost for hash and cached joins" commit, as that commit didn't fix the filter cost (too complex to do everything in one commit). The above changes showed a lot of a lot of inconsistencies in optimizer cost calculation. The main objective with the other changes was to do calculation as similar (and accurate) as possible and to make different plans more comparable. Detailed list of changes: - Calculate index_only_cost consistently and correctly for all scan and ref accesses. The row fetch_cost and index_only_cost now takes into account clustered keys, covered keys and index only accesses. - cost_for_index_read now returns both full cost and index_only_cost - Fixed cost calculation of get_sweep_read_cost() to match other similar costs. This is bases on the assumption that data is more often stored on SSD than a hard disk. - Replaced constant 2.0 with new define TABLE_SCAN_SETUP_COST. - Some scan cost estimates did not take into account TIME_FOR_COMPARE. Now all scan costs takes this into account. (main.show_explain) - Added session variable optimizer_cache_hit_ratio (default 50%). By adjusting this on can reduce or increase the cost of index or direct record lookups. The effect of the default is that key lookups is now a bit cheaper than before. See usage of 'optimizer_cache_cost' in handler.h. - JOIN_TAB::scan_time() did not take into account index only scans, which produced a wrong cost when index scan was used. Changed JOIN_TAB:::scan_time() to take into consideration clustered and covered keys. The values are now cached and we only have to call this function once. Other calls are changed to use the cached values. Function renamed to JOIN_TAB::estimate_scan_time(). - Fixed that most index cost calculations are done the same way and more close to 'range' calculations. The cost is now lower than before for small data sets and higher for large data sets as we take into account how many keys are read (main.opt_trace_selectivity, main.limit_rows_examined). - Ensured that index_scan_cost() == range(scan_of_all_rows_in_table_using_one_range) + MULTI_RANGE_READ_INFO_CONST. One effect of this is that if there is choice of doing a full index scan and a range-index scan over almost the whole table then index scan will be preferred (no range-read setup cost). (innodb.innodb, main.show_explain, main.range) - Fixed the EQ_REF and REF takes into account clustered and covered keys. This changes some plans to use covered or clustered indexes as these are much cheaper. (main.subselect_mat_cost, main.state_tables_innodb, main.limit_rows_examined) - Rowid filter setup cost and filter compare cost now takes into account fetching and checking the rowid (KEY_NEXT_FIND_COST). (main.partition_pruning heap.heap_btree main.log_state) - Added KEY_NEXT_FIND_COST to Range_rowid_filter_cost_info::lookup_cost to account of the time to find and check the next key value against the container - Introduced ha_keyread_time(rows) that takes into account finding the next row and copying the key value to 'record' (KEY_COPY_COST). - Introduced ha_key_scan_time() for calculating an index scan over all rows. - Added IDX_LOOKUP_COST to keyread_time() as a startup cost. - Added index_only_fetch_cost() as a convenience function to OPT_RANGE. - keyread_time() cost is slightly reduced to prefer shorter keys. (main.index_merge_myisam) - All of the above caused some index_merge combinations to be rejected because of cost (main.index_intersect). In some cases 'ref' where replaced with index_merge because of the low cost calculation of get_sweep_read_cost(). - Some index usage moved from PRIMARY to a covering index. (main.subselect_innodb) - Changed cost calculation of filter to take KEY_LOOKUP_COST and TIME_FOR_COMPARE into account. See sql_select.cc::apply_filter(). filter parameters and costs are now written to optimizer_trace. - Don't use matchings_records_in_range() to try to estimate the number of filtered rows for ranges. The reason is that we want to ensure that 'range' is calculated similar to 'ref'. There is also more work needed to calculate the selectivity when using ranges and ranges and filtering. This causes filtering column in EXPLAIN EXTENDED to be 100.00 for some cases where range cannot use filtering. (main.rowid_filter) - Introduced ha_scan_time() that takes into account the CPU cost of finding the next row and copying the row from the engine to 'record'. This causes costs of table scan to slightly increase and some test to changed their plan from ALL to RANGE or ALL to ref. (innodb.innodb_mysql, main.select_pkeycache) In a few cases where scan time of very small tables have lower cost than a ref or range, things changed from ref/range to ALL. (main.myisam, main.func_group, main.limit_rows_examined, main.subselect2) - Introduced ha_scan_and_compare_time() which is like ha_scan_time() but also adds the cost of the where clause (TIME_FOR_COMPARE). - Added small cost for creating temporary table for materialization. This causes some very small tables to use scan instead of materialization. - Added checking of the WHERE clause (TIME_FOR_COMPARE) of the accepted rows to ROR costs in get_best_ror_intersect() - Removed '- 0.001' from 'join->best_read' and optimize_straight_join() to ensure that the 'Last_query_cost' status variable contains the same value as the one that was calculated by the optimizer. - Take avg_io_cost() into account in handler::keyread_time() and handler::read_time(). This should have no effect as it's 1.0 by default, except for heap that overrides these functions. - Some 'ref_or_null' accesses changed to 'range' because of cost adjustments (main.order_by) - Added scan type "scan_with_join_cache" for optimizer_trace. This is just to show in the trace what kind of scan was used. - When using 'scan_with_join_cache' take into account number of preceding tables (as have to restore all fields for all previous table combination when checking the where clause) The new cost added is: (row_combinations * ROW_COPY_COST * number_of_cached_tables). This increases the cost of join buffering in proportion of the number of tables in the join buffer. One effect is that full scans are now done earlier as the cost is then smaller. (main.join_outer_innodb, main.greedy_optimizer) - Removed the usage of 'worst_seeks' in cost_for_index_read as it caused wrong plans to be created; It prefered JT_EQ_REF even if it would be much more expensive than a full table scan. A related issue was that worst_seeks only applied to full lookup, not to clustered or index only lookups, which is not consistent. This caused some plans to use index scan instead of eq_ref (main.union) - Changed federated block size from 4096 to 1500, which is the typical size of an IO packet. - Added costs for reading rows to Federated. Needed as there is no caching of rows in the federated engine. - Added ha_innobase::rnd_pos_time() cost function. - A lot of extra things added to optimizer trace - More costs, especially for materialization and index_merge. - Make lables more uniform - Fixed a lot of minor bugs - Added 'trace_started()' around a lot of trace blocks. - When calculating ORDER BY with LIMIT cost for using an index the cost did not take into account the number of row retrivals that has to be done or the cost of comparing the rows with the WHERE clause. The cost calculated would be just a fraction of the real cost. Now we calculate the cost as we do for ranges and 'ref'. - 'Using index for group-by' is used a bit more than before as now take into account the WHERE clause cost when comparing with 'ref' and prefer the method with fewer row combinations. (main.group_min_max). Bugs fixed: - Fixed that we don't calculate TIME_FOR_COMPARE twice for some plans, like in optimize_straight_join() and greedy_search() - Fixed bug in save_explain_data where we could test for the wrong index when displaying 'Using index'. This caused some old plans to show 'Using index'. (main.subselect_innodb, main.subselect2) - Fixed bug in get_best_ror_intersect() where 'min_cost' was not updated, and the cost we compared with was not the one that was used. - Fixed very wrong cost calculation for priority queues in check_if_pq_applicable(). (main.order_by now correctly uses priority queue) - When calculating cost of EQ_REF or REF, we added the cost of comparing the WHERE clause with the found rows, not all row combinations. This made ref and eq_ref to be regarded way to cheap compared to other access methods. - FORCE INDEX cost calculation didn't take into account clustered or covered indexes. - JT_EQ_REF cost was estimated as avg_io_cost(), which is half the cost of a JT_REF key. This may be true for InnoDB primary key, but not for other unique keys or other engines. Now we use handler function to calculate the cost, which allows us to handle consistently clustered, covered keys and not covered keys. - ha_start_keyread() didn't call extra_opt() if keyread was already enabled but still changed the 'keyread' variable (which is wrong). Fixed by not doing anything if keyread is already enabled. - multi_range_read_info_cost() didn't take into account io_cost when calculating the cost of ranges. - fix_semijoin_strategies_for_picked_join_order() used the wrong record_count when calling best_access_path() for SJ_OPT_FIRST_MATCH and SJ_OPT_LOOSE_SCAN. - Hash joins didn't provide correct best_cost to the upper level, which means that the cost for hash_joins more expensive than calculated in best_access_path (a difference of 10x * TIME_OF_COMPARE). This is fixed in the new code thanks to that we now include TIME_OF_COMPARE cost in 'read_time'. Other things: - Added some 'if (thd->trace_started())' to speed up code - Removed not used function Cost_estimate::is_zero() - Simplified testing of HA_POS_ERROR in get_best_ror_intersect(). (No cost changes) - Moved ha_start_keyread() from join_read_const_table() to join_read_const() to enable keyread for all types of JT_CONST tables. - Made a few very short functions inline in handler.h Notes: - In main.rowid_filter the join order of order and lineitem is swapped. This is because the cost of doing a range fetch of lineitem(98 rows) is almost as big as the whole join of order,lineitem. The filtering will also ensure that we only have to do very small key fetches of the rows in lineitem. - main.index_merge_myisam had a few changes where we are now using less keys for index_merge. This is because index scans are now more expensive than before. - handler->optimizer_cache_cost is updated in ha_external_lock(). This ensures that it is up to date per statements. Not an optimal solution (for locked tables), but should be ok for now. - 'DELETE FROM t1 WHERE t1.a > 0 ORDER BY t1.a' does not take cost of filesort into consideration when table scan is chosen. (main.myisam_explain_non_select_all) - perfschema.table_aggregate_global_* has changed because an update on a table with 1 row will now use table scan instead of key lookup. TODO in upcomming commits: - Fix selectivity calculation for ranges with and without filtering and when there is a ref access but scan is chosen. For this we have to store the lowest known value for 'accepted_records' in the OPT_RANGE structure. - Change that records_read does not include filtered rows. - test_if_cheaper_ordering() needs to be updated to properly calculate costs. This will fix tests like main.order_by_innodb, main.single_delete_update - Extend get_range_limit_read_cost() to take into considering cost_for_index_read() if there where no quick keys. This will reduce the computed cost for ORDER BY with LIMIT in some cases. (main.innodb_ext_key) - Fix that we take into account selectivity when counting the number of rows we have to read when considering using a index table scan to resolve ORDER BY. - Add new calculation for rnd_pos_time() where we take into account the benefit of reading multiple rows from the same page.
-
Michael Widenius authored
This makes it easier to see how costs changes over commits
-
Monty authored
This patch causes no changes in costs or result files. Changes: - Store row compare cost separately in Cost_estimate::comp_cost - Store cost of fetching rows separately in OPT_RANGE - Use range->fetch_cost instead of adjust_quick_cost(total_cost) This was done to simplify cost calculation in sql_select.cc: - We can use range->fetch_cost directly without having to call adjust_quick_cost(). adjust_quick_cost() is now removed. Other things: - Removed some not used functions in Cost_estimate
-
Monty authored
- Before any multiple add() calls, always use (if trace_started()). - Add unlikely() around all tests of trace_started(). - Change trace.add(); trace.add(); to trace.add().add(); - When trace.add() goes over several line, use the following formating: trace. add(xxx). add(yyy). add(zzz); This format was choosen after a discussion between Sergei Petrunia and me as it looks similar indepedent if 'trace' is an object or a pointer. It also more suitable for an editors auto-indentation. Other things: Added DBUG_ASSERT(thd->trace_started()) to a few functions that should only be called if trace is enabled. "use_roworder_index_merge: true" changed to "use_sort_index_merge: false" As the original output was often not correct. Also fixed the related 'cause' to be correct. In best_access_path() print the cost (and number of rows) before checking if it the plan should be used. This removes the need to print the cost in two places. Changed a few "read_time" tags to "cost".
-
Sergei Petrunia authored
-
Sergei Petrunia authored
-
Sergei Petrunia authored
-
Monty authored
The old code did not't correctly add TIME_FOR_COMPARE to rows that are part of the scan that will be compared with the attached where clause. Now the cost calculation for hash join and full join cache join are identical except for HASH_FANOUT (10%) The cost for a join with keys is now also uniform. The total cost for a using a key for lookup is calculated in one place as: (cost_of_finding_rows_through_key(records) + records/TIME_FOR_COMPARE)* record_count_of_previous_row_combinations + startup_cost startup_cost is the cost of a creating a temporary table (if needed) Best_cost now includes the cost of comparing all WHERE clauses and also cost of joining with previous row combinations. Other things: - Optimizer trace is now printing the total costs, including testing the WHERE clause (TIME_FOR_COMPARE) and comparing with all previous rows. - In optimizer trace, include also total cost of query together with the final join order. This makes it easier to find out where the cost was calculated. - Old code used filter even if the cost for it was higher than not using a filter. This is not corrected. - When rebasing on 10.11, I noticed some changes to access_cost_factor calculation. These changes was not picked as the coming changes to filtering will make that code obsolete.
-
Monty authored
The idea is that when doing a tree dive (once per group), we need to compare key values, which is fast. For each new group, we have to compare the full where clause for the row. Compared to original code, the cost of group_min_max() has slightly increased which affects some test with only a few rows. main.group_min_max and main.distinct have been modified to show the effect of the change. The patch also adjust the number of groups in case of quick selects: - For simple WHERE clauses, ensure that we have at least as many groups as we have conditions on the used group-by key parts. The assumption is that each condition will create at least one group. - Ensure that there are no more groups than rows found by quick_select Test changes: - For some small tables there has been a change of Using index for group-by -> Using index for group-by (scanning) Range -> Index and Using index for group-by -> Using index
-
Monty authored
Having rows >= 1.0 helps ensure that when we calculate total rows of joins the number of resulting rows will not be less after the join. Changes in test cases: - Join order change for some tables with few records - 'Filtered' is much higher for tables with few rows, as 1 row is a high procent of a table with few rows.
-
Monty authored
Fixed also that the 'with_found_constraint parameter' to matching_candidates_in_table() is as documented: It is now true only if there is a reference to a previous table in the WHERE condition for the current examined table (as it was originally documented) Changes in test results: - Filtered was 25% smaller for some queries (expected). - Some join order changed (probably because the tables had very few rows). - Some more table scans, probably because there would be fewer returned rows. - Some tests exposes a bug that if there is more filtered rows, then the cost for table scan will be higher. This will be fixed in a later commit.
-
Monty authored
calculate_cond_selectivity_for_table() is largely rewritten: - Process keys in the order of rows found, smaller ranges first. If two ranges has equal number of rows, use the one with more key parts. This helps us to mark more used fields to not be used for further selectivity calculations. See cmp_quick_ranges(). - Ignore keys with fields that where used by previous keys - Don't use rec_per_key[] to calculate selectivity for smaller secondary key parts. This does not work as rec_per_key[] value is calculated in the context of the previous key parts, not for the key part itself. The one exception is if the previous key parts are all constants. Other things: - Ensure that select->cond_selectivity is always between 0 and 1. - Ensure that select->opt_range_condition_rows is never updated to a higher value. It is initially set to the number of rows in table. - We now store in table->opt_range_condition_rows the lowest number of rows that any row-read-method has found so far. Before it was only done for QUICK_SELECT_I::QS_TYPE_ROR_UNION and QUICK_SELECT_I::QS_TYPE_INDEX_MERGE. Now it is done for a lot more methods. See calculate_cond_selectivity_for_table() for details. - Calculate and use selectivity for the first key part of a multiple key part if the first key part is a constant. WHERE key1_part1=5 and key2_part1=5. IF key1 is used, then we can still use selectivity for key2 Changes in test results: - 'filtered' is slightly changed, usually to something slightly smaller. - A few cases where for group by queries the table order changed. This was because the number of resulting rows from a group by query with MIN/MAX is now set to be smaller. - A few index was changed as we now prefer index with more key parts if the number of resulting rows is the same.
-
- 30 Jan, 2023 11 commits
-
-
Monty authored
We where comparing costs when we should be comparing number of rows that will be examined
-
Monty authored
- Avoid checking for has_transactions if killed flag is not checked - Simplify code (Have checked with gcc -O3 that there is improvements) - Added handler::fast_increment_statstics() to be used when a handler functions wants to increase two statistics for one row access. - Made check_limit_rows_examened() inline (even if it didn't make any difference for gcc 7.5.0), still the right thing to do
-
Monty authored
If the array size would be 1, the cost would be 0 which is wrong. Fixed by adding a small (0.001) base value to the lookup cost. This causes not changes in any result files.
-
Vicențiu Ciorbaru authored
-
Monty authored
No code logic changes was done a -> gain b -> cost_of_building_range_filter a_adj -> gain_adj r -> row_combinations Other things: - Optimized the layout of class Range_rowid_filter_cost_info. One effect was that I moved key_no to the private section to get better alignment and had to introduce a get_key_no() function. - Indentation changes in rowid_filter.cc to avoid long rows.
-
Monty authored
-
Monty authored
- Updated comments - Added some extra DEBUG - Indentation changes and break long lines - Trivial code changes like: - Combining 2 statements in one - Reorder DBUG lines - Use a variable to store a pointer that is used multiple times - Moved declaration of variables to start of loop/function - Removed dead or commented code - Removed wrong DBUG_EXECUTE code in best_extension_by_limited_search()
-
Monty authored
The result file changes are mainly that number of rows is one smaller for some queries with DISTINCT or GROUP BY
-
Monty authored
Other changes: - In test_quick_select(), assume that if table->used_stats_records is 0 then the table has 0 rows. - Fixed prepare_simple_select() to populate table->used_stat_records - Enusre that set_statistics_for_tables() doesn't cause used_stats_records to be 0 when using stat_tables. - To get blackhole to work with replication, set stats.records to 2 so that test_quick_select() doesn't assume the table is empty.
-
Monty authored
This is a minor cleanup of the original commit
-
Monty authored
-
- 25 Jan, 2023 3 commits
-
-
Sergei Golubchik authored
no longer needed, MySQL replication was fixed meanwhile. client code still can recognize and strip the prefix though.
-
Marko Mäkelä authored
The Boolean flag mlog_init_t::init::created was only needed by mark_ibuf_exist(), which commit f27e9c89 removed. We only need to store the page initialization LSN in the map.
-
Marko Mäkelä authored
-
- 24 Jan, 2023 8 commits
-
-
Marko Mäkelä authored
buf_LRU_get_free_block(): Replace the Boolean parameter with a ternary parameter, so that have_no_mutex_soft can be specified reduce the chances of initiating page eviction flushing in read-ahead. buf_read_acquire(): Invoke buf_LRU_get_free_block(have_no_mutex_soft) and check in each caller for a nullptr return value.
-
Marko Mäkelä authored
buf_pool_t::page_hash_contains(): Check if a page is cached. buf_read_ahead_random(), buf_read_page_background(), buf_read_ahead_linear(): Before invoking buf_read_page_low(), preallocate a buffer page for the read request. buf_read_page(), buf_page_init_for_read(), buf_read_page_low(): Add a parameter for the buf_pool.page_hash chain, to avoid duplicated computations. buf_page_t::read_complete(): Only attempt recovery if an uncompressed page frame has been allocated. buf_page_init_for_read(): Before trying to acquire buf_pool.mutex, acquire an exclusive buf_pool.page_hash latch and check if the page is already located in the buffer pool. If the buf_pool.mutex is not immediately available, release both latches and acquire them in the correct order, and then recheck if the page is already in the buffer pool. This should hopefully reduce some contention on buf_pool.mutex. buf_page_init_for_read(), buf_read_page_low(): Input the "recovery needed" flag in the least significant bit of zip_size. buf_read_acquire(), buf_read_release(): Interface for allocating and freeing buffer pages for reading. buf_read_recv_pages(): Set the flag that recovery is needed. Other ROW_FORMAT=COMPRESSED reads during recovery will not need any recovery.
-
Marko Mäkelä authored
-
Marko Mäkelä authored
-
Marko Mäkelä authored
-
Marko Mäkelä authored
-
Marko Mäkelä authored
-
Marko Mäkelä authored
This also fixes part of MDEV-29835 Partial server freeze which is caused by violations of the latching order that was defined in https://dev.mysql.com/worklog/task/?id=6326 (WL#6326: InnoDB: fix index->lock contention). Unless the current thread is holding an exclusive dict_index_t::lock, it must acquire page latches in a strict parent-to-child, left-to-right order. Not all cases of MDEV-29835 are fixed yet. Failure to follow the correct latching order will cause deadlocks of threads due to lock order inversion. As part of these changes, the BTR_MODIFY_TREE mode is modified so that an Update latch (U a.k.a. SX) will be acquired on the root page, and eXclusive latches (X) will be acquired on all pages leading to the leaf page, as well as any left and right siblings of the pages along the path. The DEBUG_SYNC test innodb.innodb_wl6326 will be removed, because at the time the DEBUG_SYNC point is hit, the thread is actually holding several page latches that will be blocking a concurrent SELECT statement. We also remove double bookkeeping that was caused due to excessive information hiding in mtr_t::m_memo. We simply let mtr_t::m_memo store information of latched pages, and ensure that mtr_memo_slot_t::object is never a null pointer. The tree_blocks[] and tree_savepoints[] were redundant. buf_page_get_low(): If innodb_change_buffering_debug=1, to avoid a hang, do not try to evict blocks if we are holding a latch on a modified page. The test innodb.innodb-change-buffer-recovery will be removed, because change buffering may no longer be forced by debug injection when the change buffer comprises multiple pages. Remove a debug assertion that could fail when innodb_change_buffering_debug=1 fails to evict a page. For other cases, the assertion is redundant, because we already checked that right after the got_block: label. The test innodb.innodb-change-buffering-recovery will be removed, because due to this change, we will be unable to evict the desired page. mtr_t::lock_register(): Register a change of a page latch on an unmodified buffer-fixed block. mtr_t::x_latch_at_savepoint(), mtr_t::sx_latch_at_savepoint(): Replaced by the use of mtr_t::upgrade_buffer_fix(), which now also handles RW_S_LATCH. mtr_t::set_modified(): For temporary tables, invoke buf_page_t::set_modified() here and not in mtr_t::commit(). We will never set the MTR_MEMO_MODIFY flag on other than persistent data pages, nor set mtr_t::m_modifications when temporary data pages are modified. mtr_t::commit(): Only invoke the buf_flush_note_modification() loop if persistent data pages were modified. mtr_t::get_already_latched(): Look up a latched page in mtr_t::m_memo. This avoids many redundant entries in mtr_t::m_memo, as well as redundant calls to buf_page_get_gen() for blocks that had already been looked up in a mini-transaction. btr_get_latched_root(): Return a pointer to an already latched root page. This replaces btr_root_block_get() in cases where the mini-transaction has already latched the root page. btr_page_get_parent(): Fetch a parent page that was already latched in BTR_MODIFY_TREE, by invoking mtr_t::get_already_latched(). If needed, upgrade the root page U latch to X. This avoids bloating mtr_t::m_memo as well as performing redundant buf_pool.page_hash lookups. For non-QUICK CHECK TABLE as well as for B-tree defragmentation, we will invoke btr_cur_search_to_nth_level(). btr_cur_search_to_nth_level(): This will only be used for non-leaf (level>0) B-tree searches that were formerly named BTR_CONT_SEARCH_TREE or BTR_CONT_MODIFY_TREE. In MDEV-29835, this function could be removed altogether, or retained for the case of CHECK TABLE without QUICK. btr_cur_t::left_block: Remove. btr_pcur_move_backward_from_page() can retrieve the left sibling from the end of mtr_t::m_memo. btr_cur_t::open_leaf(): Some clean-up. btr_cur_t::search_leaf(): Replaces btr_cur_search_to_nth_level() for searches to level=0 (the leaf level). We will never release parent page latches before acquiring leaf page latches. If we need to temporarily release the level=1 page latch in the BTR_SEARCH_PREV or BTR_MODIFY_PREV latch_mode, we will reposition the cursor on the child node pointer so that we will land on the correct leaf page. btr_cur_t::pessimistic_search_leaf(): Implement new BTR_MODIFY_TREE latching logic in the case that page splits or merges will be needed. The parent pages (and their siblings) should already be latched on the first dive to the leaf and be present in mtr_t::m_memo; there should be no need for BTR_CONT_MODIFY_TREE. This pre-latching almost suffices; it must be revised in MDEV-29835 and work-arounds removed for cases where mtr_t::get_already_latched() fails to find a block. rtr_search_to_nth_level(): A SPATIAL INDEX version of btr_search_to_nth_level() that can search to any level (including the leaf level). rtr_search_leaf(), rtr_insert_leaf(): Wrappers for rtr_search_to_nth_level(). rtr_search(): Replaces rtr_pcur_open(). rtr_latch_leaves(): Replaces btr_cur_latch_leaves(). Note that unlike in the B-tree code, there is no error handling in case the sibling pages are corrupted. rtr_cur_restore_position(): Remove an unused constant parameter. btr_pcur_open_on_user_rec(): Remove the constant parameter mode=PAGE_CUR_GE. row_ins_clust_index_entry_low(): Use a new mode=BTR_MODIFY_ROOT_AND_LEAF to gain access to the root page when mode!=BTR_MODIFY_TREE, to write the PAGE_ROOT_AUTO_INC. BTR_SEARCH_TREE, BTR_CONT_SEARCH_TREE: Remove. BTR_CONT_MODIFY_TREE: Note that this is only used by rtr_search_to_nth_level(). btr_pcur_optimistic_latch_leaves(): Replaces btr_cur_optimistic_latch_leaves(). ibuf_delete_rec(): Acquire exclusive ibuf.index->lock in order to avoid a deadlock with ibuf_insert_low(BTR_MODIFY_PREV). btr_blob_log_check_t(): Acquire a U latch on the root page, so that btr_page_alloc() in btr_store_big_rec_extern_fields() will avoid a deadlock. btr_store_big_rec_extern_fields(): Assert that the root page latch is being held. Tested by: Matthias Leich Reviewed by: Vladislav Lesin
-