dm-writecache.c 69.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2018 Red Hat. All rights reserved.
 *
 * This file is released under the GPL.
 */

#include <linux/device-mapper.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/kthread.h>
#include <linux/dm-io.h>
#include <linux/dm-kcopyd.h>
#include <linux/dax.h>
#include <linux/pfn_t.h>
#include <linux/libnvdimm.h>
18 19
#include <linux/delay.h>
#include "dm-io-tracker.h"
20 21 22 23 24

#define DM_MSG_PREFIX "writecache"

#define HIGH_WATERMARK			50
#define LOW_WATERMARK			45
25
#define MAX_WRITEBACK_JOBS		min(0x10000000 / PAGE_SIZE, totalram_pages() / 16)
26 27 28 29 30
#define ENDIO_LATENCY			16
#define WRITEBACK_LATENCY		64
#define AUTOCOMMIT_BLOCKS_SSD		65536
#define AUTOCOMMIT_BLOCKS_PMEM		64
#define AUTOCOMMIT_MSEC			1000
31 32
#define MAX_AGE_DIV			16
#define MAX_AGE_UNSPECIFIED		-1UL
33
#define PAUSE_WRITEBACK			(HZ * 3)
34 35 36 37 38 39 40

#define BITMAP_GRANULARITY	65536
#if BITMAP_GRANULARITY < PAGE_SIZE
#undef BITMAP_GRANULARITY
#define BITMAP_GRANULARITY	PAGE_SIZE
#endif

41
#if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_FS_DAX)
42 43 44 45 46 47 48 49 50 51 52 53 54
#define DM_WRITECACHE_HAS_PMEM
#endif

#ifdef DM_WRITECACHE_HAS_PMEM
#define pmem_assign(dest, src)					\
do {								\
	typeof(dest) uniq = (src);				\
	memcpy_flushcache(&(dest), &uniq, sizeof(dest));	\
} while (0)
#else
#define pmem_assign(dest, src)	((dest) = (src))
#endif

55
#if IS_ENABLED(CONFIG_ARCH_HAS_COPY_MC) && defined(DM_WRITECACHE_HAS_PMEM)
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
#define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
#endif

#define MEMORY_SUPERBLOCK_MAGIC		0x23489321
#define MEMORY_SUPERBLOCK_VERSION	1

struct wc_memory_entry {
	__le64 original_sector;
	__le64 seq_count;
};

struct wc_memory_superblock {
	union {
		struct {
			__le32 magic;
			__le32 version;
			__le32 block_size;
			__le32 pad;
			__le64 n_blocks;
			__le64 seq_count;
		};
		__le64 padding[8];
	};
79
	struct wc_memory_entry entries[];
80 81 82 83 84 85 86 87
};

struct wc_entry {
	struct rb_node rb_node;
	struct list_head lru;
	unsigned short wc_list_contiguous;
	bool write_in_progress
#if BITS_PER_LONG == 64
88
		: 1
89 90 91 92
#endif
	;
	unsigned long index
#if BITS_PER_LONG == 64
93
		: 47
94 95
#endif
	;
96
	unsigned long age;
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
	uint64_t original_sector;
	uint64_t seq_count;
#endif
};

#ifdef DM_WRITECACHE_HAS_PMEM
#define WC_MODE_PMEM(wc)			((wc)->pmem_mode)
#define WC_MODE_FUA(wc)				((wc)->writeback_fua)
#else
#define WC_MODE_PMEM(wc)			false
#define WC_MODE_FUA(wc)				false
#endif
#define WC_MODE_SORT_FREELIST(wc)		(!WC_MODE_PMEM(wc))

struct dm_writecache {
	struct mutex lock;
	struct list_head lru;
	union {
		struct list_head freelist;
		struct {
			struct rb_root freetree;
			struct wc_entry *current_free;
		};
	};
	struct rb_root tree;

	size_t freelist_size;
	size_t writeback_size;
	size_t freelist_high_watermark;
	size_t freelist_low_watermark;
128
	unsigned long max_age;
129
	unsigned long pause;
130

131 132 133
	unsigned int uncommitted_blocks;
	unsigned int autocommit_blocks;
	unsigned int max_writeback_jobs;
134 135 136 137 138 139 140

	int error;

	unsigned long autocommit_jiffies;
	struct timer_list autocommit_timer;
	struct wait_queue_head freelist_wait;

141 142
	struct timer_list max_age_timer;

143 144 145 146 147 148
	atomic_t bio_in_progress[2];
	struct wait_queue_head bio_in_progress_wait[2];

	struct dm_target *ti;
	struct dm_dev *dev;
	struct dm_dev *ssd_dev;
149
	sector_t start_sector;
150 151 152 153 154
	void *memory_map;
	uint64_t memory_map_size;
	size_t metadata_sectors;
	size_t n_blocks;
	uint64_t seq_count;
155
	sector_t data_device_sectors;
156 157
	void *block_start;
	struct wc_entry *entries;
158
	unsigned int block_size;
159 160 161 162 163 164 165 166
	unsigned char block_size_bits;

	bool pmem_mode:1;
	bool writeback_fua:1;

	bool overwrote_committed:1;
	bool memory_vmapped:1;

167
	bool start_sector_set:1;
168 169 170 171 172
	bool high_wm_percent_set:1;
	bool low_wm_percent_set:1;
	bool max_writeback_jobs_set:1;
	bool autocommit_blocks_set:1;
	bool autocommit_time_set:1;
173
	bool max_age_set:1;
174 175
	bool writeback_fua_set:1;
	bool flush_on_suspend:1;
176
	bool cleaner:1;
177
	bool cleaner_set:1;
178
	bool metadata_only:1;
179
	bool pause_set:1;
180

181 182 183 184 185
	unsigned int high_wm_percent_value;
	unsigned int low_wm_percent_value;
	unsigned int autocommit_time_value;
	unsigned int max_age_value;
	unsigned int pause_value;
186

187
	unsigned int writeback_all;
188 189 190 191
	struct workqueue_struct *writeback_wq;
	struct work_struct writeback_work;
	struct work_struct flush_work;

192 193
	struct dm_io_tracker iot;

194 195 196 197 198 199 200 201 202 203 204
	struct dm_io_client *dm_io;

	raw_spinlock_t endio_list_lock;
	struct list_head endio_list;
	struct task_struct *endio_thread;

	struct task_struct *flush_thread;
	struct bio_list flush_list;

	struct dm_kcopyd_client *dm_kcopyd;
	unsigned long *dirty_bitmap;
205
	unsigned int dirty_bitmap_size;
206 207 208

	struct bio_set bio_set;
	mempool_t copy_pool;
209 210 211 212 213 214 215 216 217 218 219 220 221

	struct {
		unsigned long long reads;
		unsigned long long read_hits;
		unsigned long long writes;
		unsigned long long write_hits_uncommitted;
		unsigned long long write_hits_committed;
		unsigned long long writes_around;
		unsigned long long writes_allocate;
		unsigned long long writes_blocked_on_freelist;
		unsigned long long flushes;
		unsigned long long discards;
	} stats;
222 223 224 225 226 227 228 229
};

#define WB_LIST_INLINE		16

struct writeback_struct {
	struct list_head endio_entry;
	struct dm_writecache *wc;
	struct wc_entry **wc_list;
230
	unsigned int wc_list_n;
231 232 233 234 235 236 237 238
	struct wc_entry *wc_list_inline[WB_LIST_INLINE];
	struct bio bio;
};

struct copy_struct {
	struct list_head endio_entry;
	struct dm_writecache *wc;
	struct wc_entry *e;
239
	unsigned int n_entries;
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
	int error;
};

DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
					    "A percentage of time allocated for data copying");

static void wc_lock(struct dm_writecache *wc)
{
	mutex_lock(&wc->lock);
}

static void wc_unlock(struct dm_writecache *wc)
{
	mutex_unlock(&wc->lock);
}

#ifdef DM_WRITECACHE_HAS_PMEM
static int persistent_memory_claim(struct dm_writecache *wc)
{
	int r;
	loff_t s;
	long p, da;
	pfn_t pfn;
	int id;
	struct page **pages;
265
	sector_t offset;
266 267 268 269 270 271 272 273 274 275 276 277 278 279

	wc->memory_vmapped = false;

	s = wc->memory_map_size;
	p = s >> PAGE_SHIFT;
	if (!p) {
		r = -EINVAL;
		goto err1;
	}
	if (p != s >> PAGE_SHIFT) {
		r = -EOVERFLOW;
		goto err1;
	}

280 281 282 283 284 285 286
	offset = get_start_sect(wc->ssd_dev->bdev);
	if (offset & (PAGE_SIZE / 512 - 1)) {
		r = -EINVAL;
		goto err1;
	}
	offset >>= PAGE_SHIFT - 9;

287 288
	id = dax_read_lock();

289 290
	da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, DAX_ACCESS,
			&wc->memory_map, &pfn);
291 292 293 294 295 296 297 298 299 300 301 302 303
	if (da < 0) {
		wc->memory_map = NULL;
		r = da;
		goto err2;
	}
	if (!pfn_t_has_page(pfn)) {
		wc->memory_map = NULL;
		r = -EOPNOTSUPP;
		goto err2;
	}
	if (da != p) {
		long i;
		wc->memory_map = NULL;
304
		pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
305 306 307 308 309 310 311
		if (!pages) {
			r = -ENOMEM;
			goto err2;
		}
		i = 0;
		do {
			long daa;
312 313
			daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i,
					p - i, DAX_ACCESS, NULL, &pfn);
314 315 316 317 318 319 320 321 322 323 324
			if (daa <= 0) {
				r = daa ? daa : -EINVAL;
				goto err3;
			}
			if (!pfn_t_has_page(pfn)) {
				r = -EOPNOTSUPP;
				goto err3;
			}
			while (daa-- && i < p) {
				pages[i++] = pfn_t_to_page(pfn);
				pfn.val++;
325 326
				if (!(i & 15))
					cond_resched();
327 328 329 330 331 332 333 334 335 336 337 338
			}
		} while (i < p);
		wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
		if (!wc->memory_map) {
			r = -ENOMEM;
			goto err3;
		}
		kvfree(pages);
		wc->memory_vmapped = true;
	}

	dax_read_unlock(id);
339 340 341 342

	wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
	wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;

343 344 345 346 347 348 349 350 351 352 353
	return 0;
err3:
	kvfree(pages);
err2:
	dax_read_unlock(id);
err1:
	return r;
}
#else
static int persistent_memory_claim(struct dm_writecache *wc)
{
354
	return -EOPNOTSUPP;
355 356 357 358 359 360
}
#endif

static void persistent_memory_release(struct dm_writecache *wc)
{
	if (wc->memory_vmapped)
361
		vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
362 363 364 365 366 367 368 369 370 371
}

static struct page *persistent_memory_page(void *addr)
{
	if (is_vmalloc_addr(addr))
		return vmalloc_to_page(addr);
	else
		return virt_to_page(addr);
}

372
static unsigned int persistent_memory_page_offset(void *addr)
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
{
	return (unsigned long)addr & (PAGE_SIZE - 1);
}

static void persistent_memory_flush_cache(void *ptr, size_t size)
{
	if (is_vmalloc_addr(ptr))
		flush_kernel_vmap_range(ptr, size);
}

static void persistent_memory_invalidate_cache(void *ptr, size_t size)
{
	if (is_vmalloc_addr(ptr))
		invalidate_kernel_vmap_range(ptr, size);
}

static struct wc_memory_superblock *sb(struct dm_writecache *wc)
{
	return wc->memory_map;
}

static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
{
396
	return &sb(wc)->entries[e->index];
397 398 399 400 401 402 403 404 405
}

static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
{
	return (char *)wc->block_start + (e->index << wc->block_size_bits);
}

static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
{
406
	return wc->start_sector + wc->metadata_sectors +
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
		((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
}

static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
{
#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
	return e->original_sector;
#else
	return le64_to_cpu(memory_entry(wc, e)->original_sector);
#endif
}

static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
{
#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
	return e->seq_count;
#else
	return le64_to_cpu(memory_entry(wc, e)->seq_count);
#endif
}

static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
{
#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
	e->seq_count = -1;
#endif
	pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
}

static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
					    uint64_t original_sector, uint64_t seq_count)
{
	struct wc_memory_entry me;
#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
	e->original_sector = original_sector;
	e->seq_count = seq_count;
#endif
	me.original_sector = cpu_to_le64(original_sector);
	me.seq_count = cpu_to_le64(seq_count);
	pmem_assign(*memory_entry(wc, e), me);
}

#define writecache_error(wc, err, msg, arg...)				\
do {									\
	if (!cmpxchg(&(wc)->error, 0, err))				\
		DMERR(msg, ##arg);					\
	wake_up(&(wc)->freelist_wait);					\
} while (0)

#define writecache_has_error(wc)	(unlikely(READ_ONCE((wc)->error)))

static void writecache_flush_all_metadata(struct dm_writecache *wc)
{
	if (!WC_MODE_PMEM(wc))
		memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
}

static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
{
	if (!WC_MODE_PMEM(wc))
		__set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
			  wc->dirty_bitmap);
}

static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);

struct io_notify {
	struct dm_writecache *wc;
	struct completion c;
	atomic_t count;
};

static void writecache_notify_io(unsigned long error, void *context)
{
	struct io_notify *endio = context;

	if (unlikely(error != 0))
		writecache_error(endio->wc, -EIO, "error writing metadata");
	BUG_ON(atomic_read(&endio->count) <= 0);
	if (atomic_dec_and_test(&endio->count))
		complete(&endio->c);
}

490 491 492 493 494 495 496
static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
{
	wait_event(wc->bio_in_progress_wait[direction],
		   !atomic_read(&wc->bio_in_progress[direction]));
}

static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
497 498 499 500 501 502 503 504
{
	struct dm_io_region region;
	struct dm_io_request req;
	struct io_notify endio = {
		wc,
		COMPLETION_INITIALIZER_ONSTACK(endio.c),
		ATOMIC_INIT(1),
	};
505 506
	unsigned int bitmap_bits = wc->dirty_bitmap_size * 8;
	unsigned int i = 0;
507 508

	while (1) {
509
		unsigned int j;
510 511 512 513 514 515 516 517 518 519 520 521 522 523
		i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
		if (unlikely(i == bitmap_bits))
			break;
		j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);

		region.bdev = wc->ssd_dev->bdev;
		region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
		region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);

		if (unlikely(region.sector >= wc->metadata_sectors))
			break;
		if (unlikely(region.sector + region.count > wc->metadata_sectors))
			region.count = wc->metadata_sectors - region.sector;

524
		region.sector += wc->start_sector;
525
		atomic_inc(&endio.count);
526
		req.bi_opf = REQ_OP_WRITE | REQ_SYNC;
527 528 529 530 531 532 533
		req.mem.type = DM_IO_VMA;
		req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
		req.client = wc->dm_io;
		req.notify.fn = writecache_notify_io;
		req.notify.context = &endio;

		/* writing via async dm-io (implied by notify.fn above) won't return an error */
534
		(void) dm_io(&req, 1, &region, NULL);
535 536 537 538 539 540
		i = j;
	}

	writecache_notify_io(0, &endio);
	wait_for_completion_io(&endio.c);

541 542 543
	if (wait_for_ios)
		writecache_wait_for_ios(wc, WRITE);

544 545 546 547 548
	writecache_disk_flush(wc, wc->ssd_dev);

	memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
}

549 550 551 552 553 554 555 556
static void ssd_commit_superblock(struct dm_writecache *wc)
{
	int r;
	struct dm_io_region region;
	struct dm_io_request req;

	region.bdev = wc->ssd_dev->bdev;
	region.sector = 0;
557 558 559 560 561
	region.count = max(4096U, wc->block_size) >> SECTOR_SHIFT;

	if (unlikely(region.sector + region.count > wc->metadata_sectors))
		region.count = wc->metadata_sectors - region.sector;

562 563
	region.sector += wc->start_sector;

564
	req.bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_FUA;
565 566 567 568 569 570 571 572 573 574 575
	req.mem.type = DM_IO_VMA;
	req.mem.ptr.vma = (char *)wc->memory_map;
	req.client = wc->dm_io;
	req.notify.fn = NULL;
	req.notify.context = NULL;

	r = dm_io(&req, 1, &region, NULL);
	if (unlikely(r))
		writecache_error(wc, r, "error writing superblock");
}

576
static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
577 578
{
	if (WC_MODE_PMEM(wc))
579
		pmem_wmb();
580
	else
581
		ssd_commit_flushed(wc, wait_for_ios);
582 583 584 585 586 587 588 589 590 591 592
}

static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
{
	int r;
	struct dm_io_region region;
	struct dm_io_request req;

	region.bdev = dev->bdev;
	region.sector = 0;
	region.count = 0;
593
	req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
	req.mem.type = DM_IO_KMEM;
	req.mem.ptr.addr = NULL;
	req.client = wc->dm_io;
	req.notify.fn = NULL;

	r = dm_io(&req, 1, &region, NULL);
	if (unlikely(r))
		writecache_error(wc, r, "error flushing metadata: %d", r);
}

#define WFE_RETURN_FOLLOWING	1
#define WFE_LOWEST_SEQ		2

static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
					      uint64_t block, int flags)
{
	struct wc_entry *e;
	struct rb_node *node = wc->tree.rb_node;

	if (unlikely(!node))
		return NULL;

	while (1) {
		e = container_of(node, struct wc_entry, rb_node);
		if (read_original_sector(wc, e) == block)
			break;
620

621 622 623
		node = (read_original_sector(wc, e) >= block ?
			e->rb_node.rb_left : e->rb_node.rb_right);
		if (unlikely(!node)) {
624
			if (!(flags & WFE_RETURN_FOLLOWING))
625 626
				return NULL;
			if (read_original_sector(wc, e) >= block) {
627
				return e;
628 629
			} else {
				node = rb_next(&e->rb_node);
630
				if (unlikely(!node))
631 632
					return NULL;
				e = container_of(node, struct wc_entry, rb_node);
633
				return e;
634 635 636 637 638 639 640 641 642 643
			}
		}
	}

	while (1) {
		struct wc_entry *e2;
		if (flags & WFE_LOWEST_SEQ)
			node = rb_prev(&e->rb_node);
		else
			node = rb_next(&e->rb_node);
644
		if (unlikely(!node))
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
			return e;
		e2 = container_of(node, struct wc_entry, rb_node);
		if (read_original_sector(wc, e2) != block)
			return e;
		e = e2;
	}
}

static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
{
	struct wc_entry *e;
	struct rb_node **node = &wc->tree.rb_node, *parent = NULL;

	while (*node) {
		e = container_of(*node, struct wc_entry, rb_node);
		parent = &e->rb_node;
		if (read_original_sector(wc, e) > read_original_sector(wc, ins))
			node = &parent->rb_left;
		else
			node = &parent->rb_right;
	}
	rb_link_node(&ins->rb_node, parent, node);
	rb_insert_color(&ins->rb_node, &wc->tree);
	list_add(&ins->lru, &wc->lru);
669
	ins->age = jiffies;
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
}

static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
{
	list_del(&e->lru);
	rb_erase(&e->rb_node, &wc->tree);
}

static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
{
	if (WC_MODE_SORT_FREELIST(wc)) {
		struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
		if (unlikely(!*node))
			wc->current_free = e;
		while (*node) {
			parent = *node;
			if (&e->rb_node < *node)
				node = &parent->rb_left;
			else
				node = &parent->rb_right;
		}
		rb_link_node(&e->rb_node, parent, node);
		rb_insert_color(&e->rb_node, &wc->freetree);
	} else {
		list_add_tail(&e->lru, &wc->freelist);
	}
	wc->freelist_size++;
}

699 700 701 702 703 704
static inline void writecache_verify_watermark(struct dm_writecache *wc)
{
	if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
		queue_work(wc->writeback_wq, &wc->writeback_work);
}

705 706 707 708 709 710 711 712 713 714
static void writecache_max_age_timer(struct timer_list *t)
{
	struct dm_writecache *wc = from_timer(wc, t, max_age_timer);

	if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) {
		queue_work(wc->writeback_wq, &wc->writeback_work);
		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
	}
}

715
static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector)
716 717 718 719 720 721 722 723
{
	struct wc_entry *e;

	if (WC_MODE_SORT_FREELIST(wc)) {
		struct rb_node *next;
		if (unlikely(!wc->current_free))
			return NULL;
		e = wc->current_free;
724 725
		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
			return NULL;
726 727 728 729 730 731 732 733 734
		next = rb_next(&e->rb_node);
		rb_erase(&e->rb_node, &wc->freetree);
		if (unlikely(!next))
			next = rb_first(&wc->freetree);
		wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
	} else {
		if (unlikely(list_empty(&wc->freelist)))
			return NULL;
		e = container_of(wc->freelist.next, struct wc_entry, lru);
735 736
		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
			return NULL;
737 738 739
		list_del(&e->lru);
	}
	wc->freelist_size--;
740 741

	writecache_verify_watermark(wc);
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820

	return e;
}

static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
{
	writecache_unlink(wc, e);
	writecache_add_to_freelist(wc, e);
	clear_seq_count(wc, e);
	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
	if (unlikely(waitqueue_active(&wc->freelist_wait)))
		wake_up(&wc->freelist_wait);
}

static void writecache_wait_on_freelist(struct dm_writecache *wc)
{
	DEFINE_WAIT(wait);

	prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
	wc_unlock(wc);
	io_schedule();
	finish_wait(&wc->freelist_wait, &wait);
	wc_lock(wc);
}

static void writecache_poison_lists(struct dm_writecache *wc)
{
	/*
	 * Catch incorrect access to these values while the device is suspended.
	 */
	memset(&wc->tree, -1, sizeof wc->tree);
	wc->lru.next = LIST_POISON1;
	wc->lru.prev = LIST_POISON2;
	wc->freelist.next = LIST_POISON1;
	wc->freelist.prev = LIST_POISON2;
}

static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
{
	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
	if (WC_MODE_PMEM(wc))
		writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
}

static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
{
	return read_seq_count(wc, e) < wc->seq_count;
}

static void writecache_flush(struct dm_writecache *wc)
{
	struct wc_entry *e, *e2;
	bool need_flush_after_free;

	wc->uncommitted_blocks = 0;
	del_timer(&wc->autocommit_timer);

	if (list_empty(&wc->lru))
		return;

	e = container_of(wc->lru.next, struct wc_entry, lru);
	if (writecache_entry_is_committed(wc, e)) {
		if (wc->overwrote_committed) {
			writecache_wait_for_ios(wc, WRITE);
			writecache_disk_flush(wc, wc->ssd_dev);
			wc->overwrote_committed = false;
		}
		return;
	}
	while (1) {
		writecache_flush_entry(wc, e);
		if (unlikely(e->lru.next == &wc->lru))
			break;
		e2 = container_of(e->lru.next, struct wc_entry, lru);
		if (writecache_entry_is_committed(wc, e2))
			break;
		e = e2;
		cond_resched();
	}
821
	writecache_commit_flushed(wc, true);
822 823 824

	wc->seq_count++;
	pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
825 826 827 828
	if (WC_MODE_PMEM(wc))
		writecache_commit_flushed(wc, false);
	else
		ssd_commit_superblock(wc);
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851

	wc->overwrote_committed = false;

	need_flush_after_free = false;
	while (1) {
		/* Free another committed entry with lower seq-count */
		struct rb_node *rb_node = rb_prev(&e->rb_node);

		if (rb_node) {
			e2 = container_of(rb_node, struct wc_entry, rb_node);
			if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
			    likely(!e2->write_in_progress)) {
				writecache_free_entry(wc, e2);
				need_flush_after_free = true;
			}
		}
		if (unlikely(e->lru.prev == &wc->lru))
			break;
		e = container_of(e->lru.prev, struct wc_entry, lru);
		cond_resched();
	}

	if (need_flush_after_free)
852
		writecache_commit_flushed(wc, false);
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
}

static void writecache_flush_work(struct work_struct *work)
{
	struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);

	wc_lock(wc);
	writecache_flush(wc);
	wc_unlock(wc);
}

static void writecache_autocommit_timer(struct timer_list *t)
{
	struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
	if (!writecache_has_error(wc))
		queue_work(wc->writeback_wq, &wc->flush_work);
}

static void writecache_schedule_autocommit(struct dm_writecache *wc)
{
	if (!timer_pending(&wc->autocommit_timer))
		mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
}

static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
{
	struct wc_entry *e;
	bool discarded_something = false;

	e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
	if (unlikely(!e))
		return;

	while (read_original_sector(wc, e) < end) {
		struct rb_node *node = rb_next(&e->rb_node);

		if (likely(!e->write_in_progress)) {
			if (!discarded_something) {
891 892 893 894
				if (!WC_MODE_PMEM(wc)) {
					writecache_wait_for_ios(wc, READ);
					writecache_wait_for_ios(wc, WRITE);
				}
895 896
				discarded_something = true;
			}
897 898
			if (!writecache_entry_is_committed(wc, e))
				wc->uncommitted_blocks--;
899 900 901
			writecache_free_entry(wc, e);
		}

902
		if (unlikely(!node))
903 904 905 906 907 908
			break;

		e = container_of(node, struct wc_entry, rb_node);
	}

	if (discarded_something)
909
		writecache_commit_flushed(wc, false);
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
}

static bool writecache_wait_for_writeback(struct dm_writecache *wc)
{
	if (wc->writeback_size) {
		writecache_wait_on_freelist(wc);
		return true;
	}
	return false;
}

static void writecache_suspend(struct dm_target *ti)
{
	struct dm_writecache *wc = ti->private;
	bool flush_on_suspend;

	del_timer_sync(&wc->autocommit_timer);
927
	del_timer_sync(&wc->max_age_timer);
928 929 930 931 932 933 934 935 936 937 938

	wc_lock(wc);
	writecache_flush(wc);
	flush_on_suspend = wc->flush_on_suspend;
	if (flush_on_suspend) {
		wc->flush_on_suspend = false;
		wc->writeback_all++;
		queue_work(wc->writeback_wq, &wc->writeback_work);
	}
	wc_unlock(wc);

939
	drain_workqueue(wc->writeback_wq);
940 941 942 943

	wc_lock(wc);
	if (flush_on_suspend)
		wc->writeback_all--;
944 945
	while (writecache_wait_for_writeback(wc))
		;
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960

	if (WC_MODE_PMEM(wc))
		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);

	writecache_poison_lists(wc);

	wc_unlock(wc);
}

static int writecache_alloc_entries(struct dm_writecache *wc)
{
	size_t b;

	if (wc->entries)
		return 0;
961
	wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
962 963 964 965 966 967
	if (!wc->entries)
		return -ENOMEM;
	for (b = 0; b < wc->n_blocks; b++) {
		struct wc_entry *e = &wc->entries[b];
		e->index = b;
		e->write_in_progress = false;
968
		cond_resched();
969 970 971 972 973
	}

	return 0;
}

974 975 976 977 978 979 980 981
static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors)
{
	struct dm_io_region region;
	struct dm_io_request req;

	region.bdev = wc->ssd_dev->bdev;
	region.sector = wc->start_sector;
	region.count = n_sectors;
982
	req.bi_opf = REQ_OP_READ | REQ_SYNC;
983 984 985 986 987 988 989 990
	req.mem.type = DM_IO_VMA;
	req.mem.ptr.vma = (char *)wc->memory_map;
	req.client = wc->dm_io;
	req.notify.fn = NULL;

	return dm_io(&req, 1, &region, NULL);
}

991 992 993 994 995 996 997 998 999 1000
static void writecache_resume(struct dm_target *ti)
{
	struct dm_writecache *wc = ti->private;
	size_t b;
	bool need_flush = false;
	__le64 sb_seq_count;
	int r;

	wc_lock(wc);

1001
	wc->data_device_sectors = bdev_nr_sectors(wc->dev->bdev);
1002

1003
	if (WC_MODE_PMEM(wc)) {
1004
		persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	} else {
		r = writecache_read_metadata(wc, wc->metadata_sectors);
		if (r) {
			size_t sb_entries_offset;
			writecache_error(wc, r, "unable to read metadata: %d", r);
			sb_entries_offset = offsetof(struct wc_memory_superblock, entries);
			memset((char *)wc->memory_map + sb_entries_offset, -1,
			       (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset);
		}
	}
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025

	wc->tree = RB_ROOT;
	INIT_LIST_HEAD(&wc->lru);
	if (WC_MODE_SORT_FREELIST(wc)) {
		wc->freetree = RB_ROOT;
		wc->current_free = NULL;
	} else {
		INIT_LIST_HEAD(&wc->freelist);
	}
	wc->freelist_size = 0;

1026 1027
	r = copy_mc_to_kernel(&sb_seq_count, &sb(wc)->seq_count,
			      sizeof(uint64_t));
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	if (r) {
		writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
		sb_seq_count = cpu_to_le64(0);
	}
	wc->seq_count = le64_to_cpu(sb_seq_count);

#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
	for (b = 0; b < wc->n_blocks; b++) {
		struct wc_entry *e = &wc->entries[b];
		struct wc_memory_entry wme;
		if (writecache_has_error(wc)) {
			e->original_sector = -1;
			e->seq_count = -1;
			continue;
		}
1043 1044
		r = copy_mc_to_kernel(&wme, memory_entry(wc, e),
				      sizeof(struct wc_memory_entry));
1045 1046 1047 1048 1049 1050 1051 1052 1053
		if (r) {
			writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
					 (unsigned long)b, r);
			e->original_sector = -1;
			e->seq_count = -1;
		} else {
			e->original_sector = le64_to_cpu(wme.original_sector);
			e->seq_count = le64_to_cpu(wme.seq_count);
		}
1054
		cond_resched();
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	}
#endif
	for (b = 0; b < wc->n_blocks; b++) {
		struct wc_entry *e = &wc->entries[b];
		if (!writecache_entry_is_committed(wc, e)) {
			if (read_seq_count(wc, e) != -1) {
erase_this:
				clear_seq_count(wc, e);
				need_flush = true;
			}
			writecache_add_to_freelist(wc, e);
		} else {
			struct wc_entry *old;

			old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
			if (!old) {
				writecache_insert_entry(wc, e);
			} else {
				if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
					writecache_error(wc, -EINVAL,
						 "two identical entries, position %llu, sector %llu, sequence %llu",
						 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
						 (unsigned long long)read_seq_count(wc, e));
				}
				if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
					goto erase_this;
				} else {
					writecache_free_entry(wc, old);
					writecache_insert_entry(wc, e);
					need_flush = true;
				}
			}
		}
		cond_resched();
	}

	if (need_flush) {
		writecache_flush_all_metadata(wc);
1093
		writecache_commit_flushed(wc, false);
1094 1095
	}

1096 1097
	writecache_verify_watermark(wc);

1098 1099 1100
	if (wc->max_age != MAX_AGE_UNSPECIFIED)
		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);

1101 1102 1103
	wc_unlock(wc);
}

1104
static int process_flush_mesg(unsigned int argc, char **argv, struct dm_writecache *wc)
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
{
	if (argc != 1)
		return -EINVAL;

	wc_lock(wc);
	if (dm_suspended(wc->ti)) {
		wc_unlock(wc);
		return -EBUSY;
	}
	if (writecache_has_error(wc)) {
		wc_unlock(wc);
		return -EIO;
	}

	writecache_flush(wc);
	wc->writeback_all++;
	queue_work(wc->writeback_wq, &wc->writeback_work);
	wc_unlock(wc);

	flush_workqueue(wc->writeback_wq);

	wc_lock(wc);
	wc->writeback_all--;
	if (writecache_has_error(wc)) {
		wc_unlock(wc);
		return -EIO;
	}
	wc_unlock(wc);

	return 0;
}

1137
static int process_flush_on_suspend_mesg(unsigned int argc, char **argv, struct dm_writecache *wc)
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
{
	if (argc != 1)
		return -EINVAL;

	wc_lock(wc);
	wc->flush_on_suspend = true;
	wc_unlock(wc);

	return 0;
}

1149 1150 1151 1152 1153 1154 1155 1156
static void activate_cleaner(struct dm_writecache *wc)
{
	wc->flush_on_suspend = true;
	wc->cleaner = true;
	wc->freelist_high_watermark = wc->n_blocks;
	wc->freelist_low_watermark = wc->n_blocks;
}

1157
static int process_cleaner_mesg(unsigned int argc, char **argv, struct dm_writecache *wc)
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
{
	if (argc != 1)
		return -EINVAL;

	wc_lock(wc);
	activate_cleaner(wc);
	if (!dm_suspended(wc->ti))
		writecache_verify_watermark(wc);
	wc_unlock(wc);

	return 0;
}

1171
static int process_clear_stats_mesg(unsigned int argc, char **argv, struct dm_writecache *wc)
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
{
	if (argc != 1)
		return -EINVAL;

	wc_lock(wc);
	memset(&wc->stats, 0, sizeof wc->stats);
	wc_unlock(wc);

	return 0;
}

1183 1184
static int writecache_message(struct dm_target *ti, unsigned int argc, char **argv,
			      char *result, unsigned int maxlen)
1185 1186 1187 1188 1189 1190 1191 1192
{
	int r = -EINVAL;
	struct dm_writecache *wc = ti->private;

	if (!strcasecmp(argv[0], "flush"))
		r = process_flush_mesg(argc, argv, wc);
	else if (!strcasecmp(argv[0], "flush_on_suspend"))
		r = process_flush_on_suspend_mesg(argc, argv, wc);
1193 1194
	else if (!strcasecmp(argv[0], "cleaner"))
		r = process_cleaner_mesg(argc, argv, wc);
1195 1196
	else if (!strcasecmp(argv[0], "clear_stats"))
		r = process_clear_stats_mesg(argc, argv, wc);
1197 1198 1199 1200 1201 1202
	else
		DMERR("unrecognised message received: %s", argv[0]);

	return r;
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
static void memcpy_flushcache_optimized(void *dest, void *source, size_t size)
{
	/*
	 * clflushopt performs better with block size 1024, 2048, 4096
	 * non-temporal stores perform better with block size 512
	 *
	 * block size   512             1024            2048            4096
	 * movnti       496 MB/s        642 MB/s        725 MB/s        744 MB/s
	 * clflushopt   373 MB/s        688 MB/s        1.1 GB/s        1.2 GB/s
	 *
	 * We see that movnti performs better for 512-byte blocks, and
	 * clflushopt performs better for 1024-byte and larger blocks. So, we
	 * prefer clflushopt for sizes >= 768.
	 *
	 * NOTE: this happens to be the case now (with dm-writecache's single
	 * threaded model) but re-evaluate this once memcpy_flushcache() is
	 * enabled to use movdir64b which might invalidate this performance
	 * advantage seen with cache-allocating-writes plus flushing.
	 */
#ifdef CONFIG_X86
	if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) &&
	    likely(boot_cpu_data.x86_clflush_size == 64) &&
	    likely(size >= 768)) {
		do {
			memcpy((void *)dest, (void *)source, 64);
			clflushopt((void *)dest);
			dest += 64;
			source += 64;
			size -= 64;
		} while (size >= 64);
		return;
	}
#endif
	memcpy_flushcache(dest, source, size);
}

1239 1240 1241
static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
{
	void *buf;
1242
	unsigned int size;
1243
	int rw = bio_data_dir(bio);
1244
	unsigned int remaining_size = wc->block_size;
1245 1246 1247

	do {
		struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1248
		buf = bvec_kmap_local(&bv);
1249 1250 1251 1252 1253 1254
		size = bv.bv_len;
		if (unlikely(size > remaining_size))
			size = remaining_size;

		if (rw == READ) {
			int r;
1255
			r = copy_mc_to_kernel(buf, data, size);
1256 1257 1258 1259 1260 1261 1262
			flush_dcache_page(bio_page(bio));
			if (unlikely(r)) {
				writecache_error(wc, r, "hardware memory error when reading data: %d", r);
				bio->bi_status = BLK_STS_IOERR;
			}
		} else {
			flush_dcache_page(bio_page(bio));
1263
			memcpy_flushcache_optimized(data, buf, size);
1264 1265
		}

1266
		kunmap_local(buf);
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300

		data = (char *)data + size;
		remaining_size -= size;
		bio_advance(bio, size);
	} while (unlikely(remaining_size));
}

static int writecache_flush_thread(void *data)
{
	struct dm_writecache *wc = data;

	while (1) {
		struct bio *bio;

		wc_lock(wc);
		bio = bio_list_pop(&wc->flush_list);
		if (!bio) {
			set_current_state(TASK_INTERRUPTIBLE);
			wc_unlock(wc);

			if (unlikely(kthread_should_stop())) {
				set_current_state(TASK_RUNNING);
				break;
			}

			schedule();
			continue;
		}

		if (bio_op(bio) == REQ_OP_DISCARD) {
			writecache_discard(wc, bio->bi_iter.bi_sector,
					   bio_end_sector(bio));
			wc_unlock(wc);
			bio_set_dev(bio, wc->dev->bdev);
1301
			submit_bio_noacct(bio);
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
		} else {
			writecache_flush(wc);
			wc_unlock(wc);
			if (writecache_has_error(wc))
				bio->bi_status = BLK_STS_IOERR;
			bio_endio(bio);
		}
	}

	return 0;
}

static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
{
	if (bio_list_empty(&wc->flush_list))
		wake_up_process(wc->flush_thread);
	bio_list_add(&wc->flush_list, bio);
}

1321 1322 1323 1324 1325 1326 1327 1328
enum wc_map_op {
	WC_MAP_SUBMIT,
	WC_MAP_REMAP,
	WC_MAP_REMAP_ORIGIN,
	WC_MAP_RETURN,
	WC_MAP_ERROR,
};

1329 1330
static void writecache_map_remap_origin(struct dm_writecache *wc, struct bio *bio,
					struct wc_entry *e)
1331 1332 1333 1334 1335 1336 1337 1338 1339
{
	if (e) {
		sector_t next_boundary =
			read_original_sector(wc, e) - bio->bi_iter.bi_sector;
		if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT)
			dm_accept_partial_bio(bio, next_boundary);
	}
}

1340
static enum wc_map_op writecache_map_read(struct dm_writecache *wc, struct bio *bio)
1341
{
1342
	enum wc_map_op map_op;
1343
	struct wc_entry *e;
1344 1345

read_next_block:
1346
	wc->stats.reads++;
1347 1348
	e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
	if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1349
		wc->stats.read_hits++;
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
		if (WC_MODE_PMEM(wc)) {
			bio_copy_block(wc, bio, memory_data(wc, e));
			if (bio->bi_iter.bi_size)
				goto read_next_block;
			map_op = WC_MAP_SUBMIT;
		} else {
			dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
			bio_set_dev(bio, wc->ssd_dev->bdev);
			bio->bi_iter.bi_sector = cache_sector(wc, e);
			if (!writecache_entry_is_committed(wc, e))
				writecache_wait_for_ios(wc, WRITE);
			map_op = WC_MAP_REMAP;
		}
	} else {
1364
		writecache_map_remap_origin(wc, bio, e);
1365
		wc->stats.reads += (bio->bi_iter.bi_size - wc->block_size) >> wc->block_size_bits;
1366
		map_op = WC_MAP_REMAP_ORIGIN;
1367 1368 1369 1370 1371
	}

	return map_op;
}

1372 1373
static void writecache_bio_copy_ssd(struct dm_writecache *wc, struct bio *bio,
				    struct wc_entry *e, bool search_used)
1374
{
1375
	unsigned int bio_size = wc->block_size;
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	sector_t start_cache_sec = cache_sector(wc, e);
	sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT);

	while (bio_size < bio->bi_iter.bi_size) {
		if (!search_used) {
			struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec);
			if (!f)
				break;
			write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector +
							(bio_size >> SECTOR_SHIFT), wc->seq_count);
			writecache_insert_entry(wc, f);
			wc->uncommitted_blocks++;
		} else {
			struct wc_entry *f;
			struct rb_node *next = rb_next(&e->rb_node);
			if (!next)
				break;
			f = container_of(next, struct wc_entry, rb_node);
			if (f != e + 1)
				break;
			if (read_original_sector(wc, f) !=
			    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
				break;
			if (unlikely(f->write_in_progress))
				break;
			if (writecache_entry_is_committed(wc, f))
				wc->overwrote_committed = true;
			e = f;
		}
		bio_size += wc->block_size;
		current_cache_sec += wc->block_size >> SECTOR_SHIFT;
	}

	bio_set_dev(bio, wc->ssd_dev->bdev);
	bio->bi_iter.bi_sector = start_cache_sec;
	dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT);

1413 1414 1415
	wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
	wc->stats.writes_allocate += (bio->bi_iter.bi_size - wc->block_size) >> wc->block_size_bits;

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
		wc->uncommitted_blocks = 0;
		queue_work(wc->writeback_wq, &wc->flush_work);
	} else {
		writecache_schedule_autocommit(wc);
	}
}

static enum wc_map_op writecache_map_write(struct dm_writecache *wc, struct bio *bio)
{
	struct wc_entry *e;

	do {
		bool found_entry = false;
		bool search_used = false;
1431 1432
		if (writecache_has_error(wc)) {
			wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1433
			return WC_MAP_ERROR;
1434
		}
1435 1436 1437
		e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
		if (e) {
			if (!writecache_entry_is_committed(wc, e)) {
1438
				wc->stats.write_hits_uncommitted++;
1439 1440 1441
				search_used = true;
				goto bio_copy;
			}
1442
			wc->stats.write_hits_committed++;
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
			if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
				wc->overwrote_committed = true;
				search_used = true;
				goto bio_copy;
			}
			found_entry = true;
		} else {
			if (unlikely(wc->cleaner) ||
			    (wc->metadata_only && !(bio->bi_opf & REQ_META)))
				goto direct_write;
		}
		e = writecache_pop_from_freelist(wc, (sector_t)-1);
		if (unlikely(!e)) {
			if (!WC_MODE_PMEM(wc) && !found_entry) {
direct_write:
				e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1459
				writecache_map_remap_origin(wc, bio, e);
1460 1461
				wc->stats.writes_around += bio->bi_iter.bi_size >> wc->block_size_bits;
				wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1462
				return WC_MAP_REMAP_ORIGIN;
1463
			}
1464
			wc->stats.writes_blocked_on_freelist++;
1465 1466 1467 1468 1469 1470
			writecache_wait_on_freelist(wc);
			continue;
		}
		write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
		writecache_insert_entry(wc, e);
		wc->uncommitted_blocks++;
1471
		wc->stats.writes_allocate++;
1472
bio_copy:
1473
		if (WC_MODE_PMEM(wc)) {
1474
			bio_copy_block(wc, bio, memory_data(wc, e));
1475
			wc->stats.writes++;
1476 1477 1478 1479
		} else {
			writecache_bio_copy_ssd(wc, bio, e, search_used);
			return WC_MAP_REMAP;
		}
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
	} while (bio->bi_iter.bi_size);

	if (unlikely(bio->bi_opf & REQ_FUA || wc->uncommitted_blocks >= wc->autocommit_blocks))
		writecache_flush(wc);
	else
		writecache_schedule_autocommit(wc);

	return WC_MAP_SUBMIT;
}

1490 1491 1492 1493 1494 1495
static enum wc_map_op writecache_map_flush(struct dm_writecache *wc, struct bio *bio)
{
	if (writecache_has_error(wc))
		return WC_MAP_ERROR;

	if (WC_MODE_PMEM(wc)) {
1496
		wc->stats.flushes++;
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
		writecache_flush(wc);
		if (writecache_has_error(wc))
			return WC_MAP_ERROR;
		else if (unlikely(wc->cleaner) || unlikely(wc->metadata_only))
			return WC_MAP_REMAP_ORIGIN;
		return WC_MAP_SUBMIT;
	}
	/* SSD: */
	if (dm_bio_get_target_bio_nr(bio))
		return WC_MAP_REMAP_ORIGIN;
1507
	wc->stats.flushes++;
1508 1509 1510 1511 1512 1513
	writecache_offload_bio(wc, bio);
	return WC_MAP_RETURN;
}

static enum wc_map_op writecache_map_discard(struct dm_writecache *wc, struct bio *bio)
{
1514
	wc->stats.discards += bio->bi_iter.bi_size >> wc->block_size_bits;
1515

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
	if (writecache_has_error(wc))
		return WC_MAP_ERROR;

	if (WC_MODE_PMEM(wc)) {
		writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
		return WC_MAP_REMAP_ORIGIN;
	}
	/* SSD: */
	writecache_offload_bio(wc, bio);
	return WC_MAP_RETURN;
}

1528 1529
static int writecache_map(struct dm_target *ti, struct bio *bio)
{
1530
	struct dm_writecache *wc = ti->private;
1531
	enum wc_map_op map_op;
1532 1533 1534 1535 1536 1537

	bio->bi_private = NULL;

	wc_lock(wc);

	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1538 1539
		map_op = writecache_map_flush(wc, bio);
		goto done;
1540 1541 1542 1543
	}

	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);

1544
	if (unlikely((((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1545 1546 1547 1548
				(wc->block_size / 512 - 1)) != 0)) {
		DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
		      (unsigned long long)bio->bi_iter.bi_sector,
		      bio->bi_iter.bi_size, wc->block_size);
1549 1550
		map_op = WC_MAP_ERROR;
		goto done;
1551 1552 1553
	}

	if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1554 1555
		map_op = writecache_map_discard(wc, bio);
		goto done;
1556 1557
	}

1558 1559 1560 1561
	if (bio_data_dir(bio) == READ)
		map_op = writecache_map_read(wc, bio);
	else
		map_op = writecache_map_write(wc, bio);
1562
done:
1563 1564 1565 1566 1567 1568 1569
	switch (map_op) {
	case WC_MAP_REMAP_ORIGIN:
		if (likely(wc->pause != 0)) {
			if (bio_op(bio) == REQ_OP_WRITE) {
				dm_iot_io_begin(&wc->iot, 1);
				bio->bi_private = (void *)2;
			}
1570
		}
1571 1572 1573
		bio_set_dev(bio, wc->dev->bdev);
		wc_unlock(wc);
		return DM_MAPIO_REMAPPED;
1574

1575 1576 1577 1578 1579 1580
	case WC_MAP_REMAP:
		/* make sure that writecache_end_io decrements bio_in_progress: */
		bio->bi_private = (void *)1;
		atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
		wc_unlock(wc);
		return DM_MAPIO_REMAPPED;
1581

1582 1583 1584 1585
	case WC_MAP_SUBMIT:
		wc_unlock(wc);
		bio_endio(bio);
		return DM_MAPIO_SUBMITTED;
1586

1587 1588 1589
	case WC_MAP_RETURN:
		wc_unlock(wc);
		return DM_MAPIO_SUBMITTED;
1590

1591 1592 1593 1594
	case WC_MAP_ERROR:
		wc_unlock(wc);
		bio_io_error(bio);
		return DM_MAPIO_SUBMITTED;
1595 1596 1597

	default:
		BUG();
1598 1599
		wc_unlock(wc);
		return DM_MAPIO_KILL;
1600
	}
1601 1602 1603 1604 1605 1606
}

static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
{
	struct dm_writecache *wc = ti->private;

1607
	if (bio->bi_private == (void *)1) {
1608 1609 1610 1611
		int dir = bio_data_dir(bio);
		if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
			if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
				wake_up(&wc->bio_in_progress_wait[dir]);
1612 1613
	} else if (bio->bi_private == (void *)2) {
		dm_iot_io_end(&wc->iot, 1);
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	}
	return 0;
}

static int writecache_iterate_devices(struct dm_target *ti,
				      iterate_devices_callout_fn fn, void *data)
{
	struct dm_writecache *wc = ti->private;

	return fn(ti, wc->dev, 0, ti->len, data);
}

static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
{
	struct dm_writecache *wc = ti->private;

	if (limits->logical_block_size < wc->block_size)
		limits->logical_block_size = wc->block_size;

	if (limits->physical_block_size < wc->block_size)
		limits->physical_block_size = wc->block_size;

	if (limits->io_min < wc->block_size)
		limits->io_min = wc->block_size;
}


static void writecache_writeback_endio(struct bio *bio)
{
	struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
	struct dm_writecache *wc = wb->wc;
	unsigned long flags;

	raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
	if (unlikely(list_empty(&wc->endio_list)))
		wake_up_process(wc->endio_thread);
	list_add_tail(&wb->endio_entry, &wc->endio_list);
	raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
}

static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
{
	struct copy_struct *c = ptr;
	struct dm_writecache *wc = c->wc;

	c->error = likely(!(read_err | write_err)) ? 0 : -EIO;

	raw_spin_lock_irq(&wc->endio_list_lock);
	if (unlikely(list_empty(&wc->endio_list)))
		wake_up_process(wc->endio_thread);
	list_add_tail(&c->endio_entry, &wc->endio_list);
	raw_spin_unlock_irq(&wc->endio_list_lock);
}

static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
{
1670
	unsigned int i;
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
	struct writeback_struct *wb;
	struct wc_entry *e;
	unsigned long n_walked = 0;

	do {
		wb = list_entry(list->next, struct writeback_struct, endio_entry);
		list_del(&wb->endio_entry);

		if (unlikely(wb->bio.bi_status != BLK_STS_OK))
			writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
					"write error %d", wb->bio.bi_status);
		i = 0;
		do {
			e = wb->wc_list[i];
			BUG_ON(!e->write_in_progress);
			e->write_in_progress = false;
			INIT_LIST_HEAD(&e->lru);
			if (!writecache_has_error(wc))
				writecache_free_entry(wc, e);
			BUG_ON(!wc->writeback_size);
			wc->writeback_size--;
			n_walked++;
			if (unlikely(n_walked >= ENDIO_LATENCY)) {
1694
				writecache_commit_flushed(wc, false);
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
				wc_unlock(wc);
				wc_lock(wc);
				n_walked = 0;
			}
		} while (++i < wb->wc_list_n);

		if (wb->wc_list != wb->wc_list_inline)
			kfree(wb->wc_list);
		bio_put(&wb->bio);
	} while (!list_empty(list));
}

static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
{
	struct copy_struct *c;
	struct wc_entry *e;

	do {
		c = list_entry(list->next, struct copy_struct, endio_entry);
		list_del(&c->endio_entry);

		if (unlikely(c->error))
			writecache_error(wc, c->error, "copy error");

		e = c->e;
		do {
			BUG_ON(!e->write_in_progress);
			e->write_in_progress = false;
			INIT_LIST_HEAD(&e->lru);
			if (!writecache_has_error(wc))
				writecache_free_entry(wc, e);

			BUG_ON(!wc->writeback_size);
			wc->writeback_size--;
			e++;
		} while (--c->n_entries);
		mempool_free(c, &wc->copy_pool);
	} while (!list_empty(list));
}

static int writecache_endio_thread(void *data)
{
	struct dm_writecache *wc = data;

	while (1) {
		struct list_head list;

		raw_spin_lock_irq(&wc->endio_list_lock);
		if (!list_empty(&wc->endio_list))
			goto pop_from_list;
		set_current_state(TASK_INTERRUPTIBLE);
		raw_spin_unlock_irq(&wc->endio_list_lock);

		if (unlikely(kthread_should_stop())) {
			set_current_state(TASK_RUNNING);
			break;
		}

		schedule();

		continue;

pop_from_list:
		list = wc->endio_list;
		list.next->prev = list.prev->next = &list;
		INIT_LIST_HEAD(&wc->endio_list);
		raw_spin_unlock_irq(&wc->endio_list_lock);

		if (!WC_MODE_FUA(wc))
			writecache_disk_flush(wc, wc->dev);

		wc_lock(wc);

		if (WC_MODE_PMEM(wc)) {
			__writecache_endio_pmem(wc, &list);
		} else {
			__writecache_endio_ssd(wc, &list);
			writecache_wait_for_ios(wc, READ);
		}

1775
		writecache_commit_flushed(wc, false);
1776 1777 1778 1779 1780 1781 1782

		wc_unlock(wc);
	}

	return 0;
}

1783
static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e)
1784 1785
{
	struct dm_writecache *wc = wb->wc;
1786
	unsigned int block_size = wc->block_size;
1787 1788 1789
	void *address = memory_data(wc, e);

	persistent_memory_flush_cache(address, block_size);
1790 1791 1792 1793

	if (unlikely(bio_end_sector(&wb->bio) >= wc->data_device_sectors))
		return true;

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	return bio_add_page(&wb->bio, persistent_memory_page(address),
			    block_size, persistent_memory_page_offset(address)) != 0;
}

struct writeback_list {
	struct list_head list;
	size_t size;
};

static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
{
	if (unlikely(wc->max_writeback_jobs)) {
		if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
			wc_lock(wc);
			while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
				writecache_wait_on_freelist(wc);
			wc_unlock(wc);
		}
	}
	cond_resched();
}

static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
{
	struct wc_entry *e, *f;
	struct bio *bio;
	struct writeback_struct *wb;
1821
	unsigned int max_pages;
1822 1823 1824 1825 1826 1827 1828 1829

	while (wbl->size) {
		wbl->size--;
		e = container_of(wbl->list.prev, struct wc_entry, lru);
		list_del(&e->lru);

		max_pages = e->wc_list_contiguous;

1830 1831
		bio = bio_alloc_bioset(wc->dev->bdev, max_pages, REQ_OP_WRITE,
				       GFP_NOIO, &wc->bio_set);
1832 1833
		wb = container_of(bio, struct writeback_struct, bio);
		wb->wc = wc;
1834 1835
		bio->bi_end_io = writecache_writeback_endio;
		bio->bi_iter.bi_sector = read_original_sector(wc, e);
1836 1837 1838 1839 1840 1841 1842

		if (unlikely(max_pages > WB_LIST_INLINE))
			wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
						    GFP_NOIO | __GFP_NORETRY |
						    __GFP_NOMEMALLOC | __GFP_NOWARN);

		if (likely(max_pages <= WB_LIST_INLINE) || unlikely(!wb->wc_list)) {
1843 1844 1845 1846
			wb->wc_list = wb->wc_list_inline;
			max_pages = WB_LIST_INLINE;
		}

1847
		BUG_ON(!wc_add_block(wb, e));
1848 1849 1850 1851 1852 1853 1854 1855 1856

		wb->wc_list[0] = e;
		wb->wc_list_n = 1;

		while (wbl->size && wb->wc_list_n < max_pages) {
			f = container_of(wbl->list.prev, struct wc_entry, lru);
			if (read_original_sector(wc, f) !=
			    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
				break;
1857
			if (!wc_add_block(wb, f))
1858 1859 1860 1861 1862 1863
				break;
			wbl->size--;
			list_del(&f->lru);
			wb->wc_list[wb->wc_list_n++] = f;
			e = f;
		}
1864 1865
		if (WC_MODE_FUA(wc))
			bio->bi_opf |= REQ_FUA;
1866 1867
		if (writecache_has_error(wc)) {
			bio->bi_status = BLK_STS_IOERR;
1868
			bio_endio(bio);
1869 1870 1871
		} else if (unlikely(!bio_sectors(bio))) {
			bio->bi_status = BLK_STS_OK;
			bio_endio(bio);
1872
		} else {
1873
			submit_bio(bio);
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
		}

		__writeback_throttle(wc, wbl);
	}
}

static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
{
	struct wc_entry *e, *f;
	struct dm_io_region from, to;
	struct copy_struct *c;

	while (wbl->size) {
1887
		unsigned int n_sectors;
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914

		wbl->size--;
		e = container_of(wbl->list.prev, struct wc_entry, lru);
		list_del(&e->lru);

		n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);

		from.bdev = wc->ssd_dev->bdev;
		from.sector = cache_sector(wc, e);
		from.count = n_sectors;
		to.bdev = wc->dev->bdev;
		to.sector = read_original_sector(wc, e);
		to.count = n_sectors;

		c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
		c->wc = wc;
		c->e = e;
		c->n_entries = e->wc_list_contiguous;

		while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
			wbl->size--;
			f = container_of(wbl->list.prev, struct wc_entry, lru);
			BUG_ON(f != e + 1);
			list_del(&f->lru);
			e = f;
		}

1915 1916 1917 1918 1919 1920 1921 1922
		if (unlikely(to.sector + to.count > wc->data_device_sectors)) {
			if (to.sector >= wc->data_device_sectors) {
				writecache_copy_endio(0, 0, c);
				continue;
			}
			from.count = to.count = wc->data_device_sectors - to.sector;
		}

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
		dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);

		__writeback_throttle(wc, wbl);
	}
}

static void writecache_writeback(struct work_struct *work)
{
	struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
	struct blk_plug plug;
1933
	struct wc_entry *f, *g, *e = NULL;
1934 1935 1936 1937 1938
	struct rb_node *node, *next_node;
	struct list_head skipped;
	struct writeback_list wbl;
	unsigned long n_walked;

1939 1940 1941 1942 1943
	if (!WC_MODE_PMEM(wc)) {
		/* Wait for any active kcopyd work on behalf of ssd writeback */
		dm_kcopyd_client_flush(wc->dm_kcopyd);
	}

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
	if (likely(wc->pause != 0)) {
		while (1) {
			unsigned long idle;
			if (unlikely(wc->cleaner) || unlikely(wc->writeback_all) ||
			    unlikely(dm_suspended(wc->ti)))
				break;
			idle = dm_iot_idle_time(&wc->iot);
			if (idle >= wc->pause)
				break;
			idle = wc->pause - idle;
			if (idle > HZ)
				idle = HZ;
			schedule_timeout_idle(idle);
1957 1958 1959
		}
	}

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
	wc_lock(wc);
restart:
	if (writecache_has_error(wc)) {
		wc_unlock(wc);
		return;
	}

	if (unlikely(wc->writeback_all)) {
		if (writecache_wait_for_writeback(wc))
			goto restart;
	}

	if (wc->overwrote_committed) {
		writecache_wait_for_ios(wc, WRITE);
	}

	n_walked = 0;
	INIT_LIST_HEAD(&skipped);
	INIT_LIST_HEAD(&wbl.list);
	wbl.size = 0;
	while (!list_empty(&wc->lru) &&
	       (wc->writeback_all ||
1982 1983 1984
		wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark ||
		(jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >=
		 wc->max_age - wc->max_age / MAX_AGE_DIV))) {
1985 1986 1987

		n_walked++;
		if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1988 1989 1990
		    likely(!wc->writeback_all)) {
			if (likely(!dm_suspended(wc->ti)))
				queue_work(wc->writeback_wq, &wc->writeback_work);
1991 1992 1993
			break;
		}

1994 1995 1996 1997 1998 1999 2000 2001
		if (unlikely(wc->writeback_all)) {
			if (unlikely(!e)) {
				writecache_flush(wc);
				e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
			} else
				e = g;
		} else
			e = container_of(wc->lru.prev, struct wc_entry, lru);
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
		BUG_ON(e->write_in_progress);
		if (unlikely(!writecache_entry_is_committed(wc, e))) {
			writecache_flush(wc);
		}
		node = rb_prev(&e->rb_node);
		if (node) {
			f = container_of(node, struct wc_entry, rb_node);
			if (unlikely(read_original_sector(wc, f) ==
				     read_original_sector(wc, e))) {
				BUG_ON(!f->write_in_progress);
2012
				list_move(&e->lru, &skipped);
2013 2014 2015 2016 2017
				cond_resched();
				continue;
			}
		}
		wc->writeback_size++;
2018
		list_move(&e->lru, &wbl.list);
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
		wbl.size++;
		e->write_in_progress = true;
		e->wc_list_contiguous = 1;

		f = e;

		while (1) {
			next_node = rb_next(&f->rb_node);
			if (unlikely(!next_node))
				break;
			g = container_of(next_node, struct wc_entry, rb_node);
2030 2031
			if (unlikely(read_original_sector(wc, g) ==
			    read_original_sector(wc, f))) {
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
				f = g;
				continue;
			}
			if (read_original_sector(wc, g) !=
			    read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
				break;
			if (unlikely(g->write_in_progress))
				break;
			if (unlikely(!writecache_entry_is_committed(wc, g)))
				break;

			if (!WC_MODE_PMEM(wc)) {
				if (g != f + 1)
					break;
			}

			n_walked++;
			//if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
			//	break;

			wc->writeback_size++;
2053
			list_move(&g->lru, &wbl.list);
2054 2055
			wbl.size++;
			g->write_in_progress = true;
2056
			g->wc_list_contiguous = BIO_MAX_VECS;
2057 2058
			f = g;
			e->wc_list_contiguous++;
2059
			if (unlikely(e->wc_list_contiguous == BIO_MAX_VECS)) {
2060 2061 2062 2063 2064
				if (unlikely(wc->writeback_all)) {
					next_node = rb_next(&f->rb_node);
					if (likely(next_node))
						g = container_of(next_node, struct wc_entry, rb_node);
				}
2065
				break;
2066
			}
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
		}
		cond_resched();
	}

	if (!list_empty(&skipped)) {
		list_splice_tail(&skipped, &wc->lru);
		/*
		 * If we didn't do any progress, we must wait until some
		 * writeback finishes to avoid burning CPU in a loop
		 */
		if (unlikely(!wbl.size))
			writecache_wait_for_writeback(wc);
	}

	wc_unlock(wc);

	blk_start_plug(&plug);

	if (WC_MODE_PMEM(wc))
		__writecache_writeback_pmem(wc, &wbl);
	else
		__writecache_writeback_ssd(wc, &wbl);

	blk_finish_plug(&plug);

	if (unlikely(wc->writeback_all)) {
		wc_lock(wc);
2094 2095
		while (writecache_wait_for_writeback(wc))
			;
2096 2097 2098 2099
		wc_unlock(wc);
	}
}

2100
static int calculate_memory_size(uint64_t device_size, unsigned int block_size,
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
				 size_t *n_blocks_p, size_t *n_metadata_blocks_p)
{
	uint64_t n_blocks, offset;
	struct wc_entry e;

	n_blocks = device_size;
	do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));

	while (1) {
		if (!n_blocks)
			return -ENOSPC;
		/* Verify the following entries[n_blocks] won't overflow */
		if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
				 sizeof(struct wc_memory_entry)))
			return -EFBIG;
		offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
		offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
		if (offset + n_blocks * block_size <= device_size)
			break;
		n_blocks--;
	}

	/* check if the bit field overflows */
	e.index = n_blocks;
	if (e.index != n_blocks)
		return -EFBIG;

	if (n_blocks_p)
		*n_blocks_p = n_blocks;
	if (n_metadata_blocks_p)
		*n_metadata_blocks_p = offset >> __ffs(block_size);
	return 0;
}

static int init_memory(struct dm_writecache *wc)
{
	size_t b;
	int r;

	r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
	if (r)
		return r;

	r = writecache_alloc_entries(wc);
	if (r)
		return r;

	for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
		pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
	pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
	pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
	pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
	pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));

2155
	for (b = 0; b < wc->n_blocks; b++) {
2156
		write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
2157 2158
		cond_resched();
	}
2159 2160

	writecache_flush_all_metadata(wc);
2161
	writecache_commit_flushed(wc, false);
2162 2163
	pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
	writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
2164
	writecache_commit_flushed(wc, false);
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194

	return 0;
}

static void writecache_dtr(struct dm_target *ti)
{
	struct dm_writecache *wc = ti->private;

	if (!wc)
		return;

	if (wc->endio_thread)
		kthread_stop(wc->endio_thread);

	if (wc->flush_thread)
		kthread_stop(wc->flush_thread);

	bioset_exit(&wc->bio_set);

	mempool_exit(&wc->copy_pool);

	if (wc->writeback_wq)
		destroy_workqueue(wc->writeback_wq);

	if (wc->dev)
		dm_put_device(ti, wc->dev);

	if (wc->ssd_dev)
		dm_put_device(ti, wc->ssd_dev);

2195
	vfree(wc->entries);
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209

	if (wc->memory_map) {
		if (WC_MODE_PMEM(wc))
			persistent_memory_release(wc);
		else
			vfree(wc->memory_map);
	}

	if (wc->dm_kcopyd)
		dm_kcopyd_client_destroy(wc->dm_kcopyd);

	if (wc->dm_io)
		dm_io_client_destroy(wc->dm_io);

2210
	vfree(wc->dirty_bitmap);
2211 2212 2213 2214

	kfree(wc);
}

2215
static int writecache_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2216 2217 2218 2219
{
	struct dm_writecache *wc;
	struct dm_arg_set as;
	const char *string;
2220
	unsigned int opt_params;
2221 2222 2223 2224 2225 2226 2227 2228 2229
	size_t offset, data_size;
	int i, r;
	char dummy;
	int high_wm_percent = HIGH_WATERMARK;
	int low_wm_percent = LOW_WATERMARK;
	uint64_t x;
	struct wc_memory_superblock s;

	static struct dm_arg _args[] = {
2230
		{0, 18, "Invalid number of feature args"},
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
	};

	as.argc = argc;
	as.argv = argv;

	wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
	if (!wc) {
		ti->error = "Cannot allocate writecache structure";
		r = -ENOMEM;
		goto bad;
	}
	ti->private = wc;
	wc->ti = ti;

	mutex_init(&wc->lock);
2246
	wc->max_age = MAX_AGE_UNSPECIFIED;
2247 2248 2249
	writecache_poison_lists(wc);
	init_waitqueue_head(&wc->freelist_wait);
	timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
2250
	timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0);
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264

	for (i = 0; i < 2; i++) {
		atomic_set(&wc->bio_in_progress[i], 0);
		init_waitqueue_head(&wc->bio_in_progress_wait[i]);
	}

	wc->dm_io = dm_io_client_create();
	if (IS_ERR(wc->dm_io)) {
		r = PTR_ERR(wc->dm_io);
		ti->error = "Unable to allocate dm-io client";
		wc->dm_io = NULL;
		goto bad;
	}

2265
	wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
2266 2267 2268 2269 2270 2271 2272 2273
	if (!wc->writeback_wq) {
		r = -ENOMEM;
		ti->error = "Could not allocate writeback workqueue";
		goto bad;
	}
	INIT_WORK(&wc->writeback_work, writecache_writeback);
	INIT_WORK(&wc->flush_work, writecache_flush_work);

2274 2275
	dm_iot_init(&wc->iot);

2276 2277
	raw_spin_lock_init(&wc->endio_list_lock);
	INIT_LIST_HEAD(&wc->endio_list);
2278
	wc->endio_thread = kthread_run(writecache_endio_thread, wc, "writecache_endio");
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
	if (IS_ERR(wc->endio_thread)) {
		r = PTR_ERR(wc->endio_thread);
		wc->endio_thread = NULL;
		ti->error = "Couldn't spawn endio thread";
		goto bad;
	}

	/*
	 * Parse the mode (pmem or ssd)
	 */
	string = dm_shift_arg(&as);
	if (!string)
		goto bad_arguments;

	if (!strcasecmp(string, "s")) {
		wc->pmem_mode = false;
	} else if (!strcasecmp(string, "p")) {
#ifdef DM_WRITECACHE_HAS_PMEM
		wc->pmem_mode = true;
		wc->writeback_fua = true;
#else
		/*
		 * If the architecture doesn't support persistent memory or
		 * the kernel doesn't support any DAX drivers, this driver can
		 * only be used in SSD-only mode.
		 */
		r = -EOPNOTSUPP;
		ti->error = "Persistent memory or DAX not supported on this system";
		goto bad;
#endif
	} else {
		goto bad_arguments;
	}

	if (WC_MODE_PMEM(wc)) {
		r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
				offsetof(struct writeback_struct, bio),
				BIOSET_NEED_BVECS);
		if (r) {
			ti->error = "Could not allocate bio set";
			goto bad;
		}
	} else {
2322
		wc->pause = PAUSE_WRITEBACK;
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
		r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
		if (r) {
			ti->error = "Could not allocate mempool";
			goto bad;
		}
	}

	/*
	 * Parse the origin data device
	 */
	string = dm_shift_arg(&as);
	if (!string)
		goto bad_arguments;
	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
	if (r) {
		ti->error = "Origin data device lookup failed";
		goto bad;
	}

	/*
	 * Parse cache data device (be it pmem or ssd)
	 */
	string = dm_shift_arg(&as);
	if (!string)
		goto bad_arguments;

	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
	if (r) {
		ti->error = "Cache data device lookup failed";
		goto bad;
	}
2354
	wc->memory_map_size = bdev_nr_bytes(wc->ssd_dev->bdev);
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368

	/*
	 * Parse the cache block size
	 */
	string = dm_shift_arg(&as);
	if (!string)
		goto bad_arguments;
	if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
	    wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
	    (wc->block_size & (wc->block_size - 1))) {
		r = -EINVAL;
		ti->error = "Invalid block size";
		goto bad;
	}
2369 2370 2371 2372 2373 2374
	if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) ||
	    wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) {
		r = -EINVAL;
		ti->error = "Block size is smaller than device logical block size";
		goto bad;
	}
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
	wc->block_size_bits = __ffs(wc->block_size);

	wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
	wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
	wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);

	/*
	 * Parse optional arguments
	 */
	r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
	if (r)
		goto bad;

	while (opt_params) {
		string = dm_shift_arg(&as), opt_params--;
2390 2391 2392 2393 2394 2395
		if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
			unsigned long long start_sector;
			string = dm_shift_arg(&as), opt_params--;
			if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
				goto invalid_optional;
			wc->start_sector = start_sector;
2396
			wc->start_sector_set = true;
2397 2398 2399 2400
			if (wc->start_sector != start_sector ||
			    wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
				goto invalid_optional;
		} else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
2401 2402 2403 2404 2405
			string = dm_shift_arg(&as), opt_params--;
			if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
				goto invalid_optional;
			if (high_wm_percent < 0 || high_wm_percent > 100)
				goto invalid_optional;
2406
			wc->high_wm_percent_value = high_wm_percent;
2407 2408 2409 2410 2411 2412 2413
			wc->high_wm_percent_set = true;
		} else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
			string = dm_shift_arg(&as), opt_params--;
			if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
				goto invalid_optional;
			if (low_wm_percent < 0 || low_wm_percent > 100)
				goto invalid_optional;
2414
			wc->low_wm_percent_value = low_wm_percent;
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
			wc->low_wm_percent_set = true;
		} else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
			string = dm_shift_arg(&as), opt_params--;
			if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
				goto invalid_optional;
			wc->max_writeback_jobs_set = true;
		} else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
			string = dm_shift_arg(&as), opt_params--;
			if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
				goto invalid_optional;
			wc->autocommit_blocks_set = true;
		} else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2427
			unsigned int autocommit_msecs;
2428 2429 2430 2431 2432 2433
			string = dm_shift_arg(&as), opt_params--;
			if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
				goto invalid_optional;
			if (autocommit_msecs > 3600000)
				goto invalid_optional;
			wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2434
			wc->autocommit_time_value = autocommit_msecs;
2435
			wc->autocommit_time_set = true;
2436
		} else if (!strcasecmp(string, "max_age") && opt_params >= 1) {
2437
			unsigned int max_age_msecs;
2438 2439 2440 2441 2442 2443
			string = dm_shift_arg(&as), opt_params--;
			if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1)
				goto invalid_optional;
			if (max_age_msecs > 86400000)
				goto invalid_optional;
			wc->max_age = msecs_to_jiffies(max_age_msecs);
2444 2445
			wc->max_age_set = true;
			wc->max_age_value = max_age_msecs;
2446
		} else if (!strcasecmp(string, "cleaner")) {
2447
			wc->cleaner_set = true;
2448
			wc->cleaner = true;
2449 2450 2451 2452
		} else if (!strcasecmp(string, "fua")) {
			if (WC_MODE_PMEM(wc)) {
				wc->writeback_fua = true;
				wc->writeback_fua_set = true;
2453 2454
			} else
				goto invalid_optional;
2455 2456 2457 2458
		} else if (!strcasecmp(string, "nofua")) {
			if (WC_MODE_PMEM(wc)) {
				wc->writeback_fua = false;
				wc->writeback_fua_set = true;
2459 2460
			} else
				goto invalid_optional;
2461 2462
		} else if (!strcasecmp(string, "metadata_only")) {
			wc->metadata_only = true;
2463
		} else if (!strcasecmp(string, "pause_writeback") && opt_params >= 1) {
2464
			unsigned int pause_msecs;
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
			if (WC_MODE_PMEM(wc))
				goto invalid_optional;
			string = dm_shift_arg(&as), opt_params--;
			if (sscanf(string, "%u%c", &pause_msecs, &dummy) != 1)
				goto invalid_optional;
			if (pause_msecs > 60000)
				goto invalid_optional;
			wc->pause = msecs_to_jiffies(pause_msecs);
			wc->pause_set = true;
			wc->pause_value = pause_msecs;
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
		} else {
invalid_optional:
			r = -EINVAL;
			ti->error = "Invalid optional argument";
			goto bad;
		}
	}

	if (high_wm_percent < low_wm_percent) {
		r = -EINVAL;
		ti->error = "High watermark must be greater than or equal to low watermark";
		goto bad;
	}

2489
	if (WC_MODE_PMEM(wc)) {
2490 2491 2492 2493 2494 2495
		if (!dax_synchronous(wc->ssd_dev->dax_dev)) {
			r = -EOPNOTSUPP;
			ti->error = "Asynchronous persistent memory not supported as pmem cache";
			goto bad;
		}

2496 2497 2498 2499 2500 2501
		r = persistent_memory_claim(wc);
		if (r) {
			ti->error = "Unable to map persistent memory for cache";
			goto bad;
		}
	} else {
2502 2503 2504
		size_t n_blocks, n_metadata_blocks;
		uint64_t n_bitmap_bits;

2505 2506
		wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;

2507
		bio_list_init(&wc->flush_list);
2508
		wc->flush_thread = kthread_run(writecache_flush_thread, wc, "dm_writecache_flush");
2509 2510 2511
		if (IS_ERR(wc->flush_thread)) {
			r = PTR_ERR(wc->flush_thread);
			wc->flush_thread = NULL;
2512
			ti->error = "Couldn't spawn flush thread";
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
			goto bad;
		}

		r = calculate_memory_size(wc->memory_map_size, wc->block_size,
					  &n_blocks, &n_metadata_blocks);
		if (r) {
			ti->error = "Invalid device size";
			goto bad;
		}

		n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
				 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
		/* this is limitation of test_bit functions */
		if (n_bitmap_bits > 1U << 31) {
			r = -EFBIG;
			ti->error = "Invalid device size";
			goto bad;
		}

		wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
		if (!wc->memory_map) {
			r = -ENOMEM;
			ti->error = "Unable to allocate memory for metadata";
			goto bad;
		}

		wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
		if (IS_ERR(wc->dm_kcopyd)) {
			r = PTR_ERR(wc->dm_kcopyd);
			ti->error = "Unable to allocate dm-kcopyd client";
			wc->dm_kcopyd = NULL;
			goto bad;
		}

		wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
		wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
			BITS_PER_LONG * sizeof(unsigned long);
		wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
		if (!wc->dirty_bitmap) {
			r = -ENOMEM;
			ti->error = "Unable to allocate dirty bitmap";
			goto bad;
		}

2557
		r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT);
2558
		if (r) {
2559
			ti->error = "Unable to read first block of metadata";
2560 2561 2562 2563
			goto bad;
		}
	}

2564
	r = copy_mc_to_kernel(&s, sb(wc), sizeof(struct wc_memory_superblock));
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
	if (r) {
		ti->error = "Hardware memory error when reading superblock";
		goto bad;
	}
	if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
		r = init_memory(wc);
		if (r) {
			ti->error = "Unable to initialize device";
			goto bad;
		}
2575 2576
		r = copy_mc_to_kernel(&s, sb(wc),
				      sizeof(struct wc_memory_superblock));
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
		if (r) {
			ti->error = "Hardware memory error when reading superblock";
			goto bad;
		}
	}

	if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
		ti->error = "Invalid magic in the superblock";
		r = -EINVAL;
		goto bad;
	}

	if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
		ti->error = "Invalid version in the superblock";
		r = -EINVAL;
		goto bad;
	}

	if (le32_to_cpu(s.block_size) != wc->block_size) {
		ti->error = "Block size does not match superblock";
		r = -EINVAL;
		goto bad;
	}

	wc->n_blocks = le64_to_cpu(s.n_blocks);

	offset = wc->n_blocks * sizeof(struct wc_memory_entry);
	if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
overflow:
		ti->error = "Overflow in size calculation";
		r = -EINVAL;
		goto bad;
	}
	offset += sizeof(struct wc_memory_superblock);
	if (offset < sizeof(struct wc_memory_superblock))
		goto overflow;
	offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
	data_size = wc->n_blocks * (size_t)wc->block_size;
	if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
	    (offset + data_size < offset))
		goto overflow;
	if (offset + data_size > wc->memory_map_size) {
		ti->error = "Memory area is too small";
		r = -EINVAL;
		goto bad;
	}

	wc->metadata_sectors = offset >> SECTOR_SHIFT;
	wc->block_start = (char *)sb(wc) + offset;

	x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
	x += 50;
	do_div(x, 100);
	wc->freelist_high_watermark = x;
	x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
	x += 50;
	do_div(x, 100);
	wc->freelist_low_watermark = x;

2636 2637 2638
	if (wc->cleaner)
		activate_cleaner(wc);

2639 2640 2641 2642 2643 2644
	r = writecache_alloc_entries(wc);
	if (r) {
		ti->error = "Cannot allocate memory";
		goto bad;
	}

2645
	ti->num_flush_bios = WC_MODE_PMEM(wc) ? 1 : 2;
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
	ti->flush_supported = true;
	ti->num_discard_bios = 1;

	if (WC_MODE_PMEM(wc))
		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);

	return 0;

bad_arguments:
	r = -EINVAL;
	ti->error = "Bad arguments";
bad:
	writecache_dtr(ti);
	return r;
}

static void writecache_status(struct dm_target *ti, status_type_t type,
2663
			      unsigned int status_flags, char *result, unsigned int maxlen)
2664 2665
{
	struct dm_writecache *wc = ti->private;
2666 2667
	unsigned int extra_args;
	unsigned int sz = 0;
2668 2669 2670

	switch (type) {
	case STATUSTYPE_INFO:
2671 2672
		DMEMIT("%ld %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu",
		       writecache_has_error(wc),
2673
		       (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
		       (unsigned long long)wc->writeback_size,
		       wc->stats.reads,
		       wc->stats.read_hits,
		       wc->stats.writes,
		       wc->stats.write_hits_uncommitted,
		       wc->stats.write_hits_committed,
		       wc->stats.writes_around,
		       wc->stats.writes_allocate,
		       wc->stats.writes_blocked_on_freelist,
		       wc->stats.flushes,
		       wc->stats.discards);
2685 2686 2687 2688 2689
		break;
	case STATUSTYPE_TABLE:
		DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
				wc->dev->name, wc->ssd_dev->name, wc->block_size);
		extra_args = 0;
2690
		if (wc->start_sector_set)
2691
			extra_args += 2;
2692
		if (wc->high_wm_percent_set)
2693
			extra_args += 2;
2694
		if (wc->low_wm_percent_set)
2695 2696 2697 2698 2699 2700 2701
			extra_args += 2;
		if (wc->max_writeback_jobs_set)
			extra_args += 2;
		if (wc->autocommit_blocks_set)
			extra_args += 2;
		if (wc->autocommit_time_set)
			extra_args += 2;
2702
		if (wc->max_age_set)
2703
			extra_args += 2;
2704
		if (wc->cleaner_set)
2705
			extra_args++;
2706 2707
		if (wc->writeback_fua_set)
			extra_args++;
2708 2709
		if (wc->metadata_only)
			extra_args++;
2710 2711
		if (wc->pause_set)
			extra_args += 2;
2712 2713

		DMEMIT("%u", extra_args);
2714
		if (wc->start_sector_set)
2715
			DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2716 2717 2718 2719
		if (wc->high_wm_percent_set)
			DMEMIT(" high_watermark %u", wc->high_wm_percent_value);
		if (wc->low_wm_percent_set)
			DMEMIT(" low_watermark %u", wc->low_wm_percent_value);
2720 2721 2722 2723 2724
		if (wc->max_writeback_jobs_set)
			DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
		if (wc->autocommit_blocks_set)
			DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
		if (wc->autocommit_time_set)
2725 2726 2727 2728
			DMEMIT(" autocommit_time %u", wc->autocommit_time_value);
		if (wc->max_age_set)
			DMEMIT(" max_age %u", wc->max_age_value);
		if (wc->cleaner_set)
2729
			DMEMIT(" cleaner");
2730 2731
		if (wc->writeback_fua_set)
			DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2732 2733
		if (wc->metadata_only)
			DMEMIT(" metadata_only");
2734 2735
		if (wc->pause_set)
			DMEMIT(" pause_writeback %u", wc->pause_value);
2736
		break;
2737 2738 2739
	case STATUSTYPE_IMA:
		*result = '\0';
		break;
2740 2741 2742 2743 2744
	}
}

static struct target_type writecache_target = {
	.name			= "writecache",
2745
	.version		= {1, 6, 0},
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
	.module			= THIS_MODULE,
	.ctr			= writecache_ctr,
	.dtr			= writecache_dtr,
	.status			= writecache_status,
	.postsuspend		= writecache_suspend,
	.resume			= writecache_resume,
	.message		= writecache_message,
	.map			= writecache_map,
	.end_io			= writecache_end_io,
	.iterate_devices	= writecache_iterate_devices,
	.io_hints		= writecache_io_hints,
};

static int __init dm_writecache_init(void)
{
	int r;

	r = dm_register_target(&writecache_target);
	if (r < 0) {
		DMERR("register failed %d", r);
		return r;
	}

	return 0;
}

static void __exit dm_writecache_exit(void)
{
	dm_unregister_target(&writecache_target);
}

module_init(dm_writecache_init);
module_exit(dm_writecache_exit);

MODULE_DESCRIPTION(DM_NAME " writecache target");
MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
MODULE_LICENSE("GPL");