blk-settings.c 25.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9
/*
 * Functions related to setting various queue properties from drivers
 */
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
10
#include <linux/memblock.h>	/* for max_pfn/max_low_pfn */
11
#include <linux/gcd.h>
12
#include <linux/lcm.h>
Randy Dunlap's avatar
Randy Dunlap committed
13
#include <linux/jiffies.h>
14
#include <linux/gfp.h>
15
#include <linux/dma-mapping.h>
16 17

#include "blk.h"
18
#include "blk-wbt.h"
19

20
unsigned long blk_max_low_pfn;
21
EXPORT_SYMBOL(blk_max_low_pfn);
22 23

unsigned long blk_max_pfn;
24

25 26 27 28 29 30
void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
{
	q->rq_timeout = timeout;
}
EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);

31 32
/**
 * blk_set_default_limits - reset limits to default values
33
 * @lim:  the queue_limits structure to reset
34 35
 *
 * Description:
36
 *   Returns a queue_limit struct to its default state.
37 38 39
 */
void blk_set_default_limits(struct queue_limits *lim)
{
40
	lim->max_segments = BLK_MAX_SEGMENTS;
41
	lim->max_discard_segments = 1;
42
	lim->max_integrity_segments = 0;
43
	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
44
	lim->virt_boundary_mask = 0;
45
	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
46 47
	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
	lim->max_dev_sectors = 0;
48
	lim->chunk_sectors = 0;
49
	lim->max_write_same_sectors = 0;
50
	lim->max_write_zeroes_sectors = 0;
51
	lim->max_discard_sectors = 0;
52
	lim->max_hw_discard_sectors = 0;
53 54 55
	lim->discard_granularity = 0;
	lim->discard_alignment = 0;
	lim->discard_misaligned = 0;
56
	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
57
	lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
58 59 60
	lim->alignment_offset = 0;
	lim->io_opt = 0;
	lim->misaligned = 0;
61
	lim->zoned = BLK_ZONED_NONE;
62 63 64
}
EXPORT_SYMBOL(blk_set_default_limits);

65 66 67 68 69 70 71 72 73 74 75 76 77 78
/**
 * blk_set_stacking_limits - set default limits for stacking devices
 * @lim:  the queue_limits structure to reset
 *
 * Description:
 *   Returns a queue_limit struct to its default state. Should be used
 *   by stacking drivers like DM that have no internal limits.
 */
void blk_set_stacking_limits(struct queue_limits *lim)
{
	blk_set_default_limits(lim);

	/* Inherit limits from component devices */
	lim->max_segments = USHRT_MAX;
79
	lim->max_discard_segments = USHRT_MAX;
80
	lim->max_hw_sectors = UINT_MAX;
81
	lim->max_segment_size = UINT_MAX;
82
	lim->max_sectors = UINT_MAX;
83
	lim->max_dev_sectors = UINT_MAX;
84
	lim->max_write_same_sectors = UINT_MAX;
85
	lim->max_write_zeroes_sectors = UINT_MAX;
86 87 88
}
EXPORT_SYMBOL(blk_set_stacking_limits);

89 90
/**
 * blk_queue_bounce_limit - set bounce buffer limit for queue
91
 * @q: the request queue for the device
92
 * @max_addr: the maximum address the device can handle
93 94 95 96 97
 *
 * Description:
 *    Different hardware can have different requirements as to what pages
 *    it can do I/O directly to. A low level driver can call
 *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
98
 *    buffers for doing I/O to pages residing above @max_addr.
99
 **/
100
void blk_queue_bounce_limit(struct request_queue *q, u64 max_addr)
101
{
102
	unsigned long b_pfn = max_addr >> PAGE_SHIFT;
103 104 105 106
	int dma = 0;

	q->bounce_gfp = GFP_NOIO;
#if BITS_PER_LONG == 64
107 108 109 110 111 112
	/*
	 * Assume anything <= 4GB can be handled by IOMMU.  Actually
	 * some IOMMUs can handle everything, but I don't know of a
	 * way to test this here.
	 */
	if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
113
		dma = 1;
114
	q->limits.bounce_pfn = max(max_low_pfn, b_pfn);
115
#else
116
	if (b_pfn < blk_max_low_pfn)
117
		dma = 1;
118
	q->limits.bounce_pfn = b_pfn;
119
#endif
120 121 122
	if (dma) {
		init_emergency_isa_pool();
		q->bounce_gfp = GFP_NOIO | GFP_DMA;
123
		q->limits.bounce_pfn = b_pfn;
124 125 126 127 128
	}
}
EXPORT_SYMBOL(blk_queue_bounce_limit);

/**
129 130
 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
 * @q:  the request queue for the device
131
 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
132 133
 *
 * Description:
134 135
 *    Enables a low level driver to set a hard upper limit,
 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
136 137
 *    the device driver based upon the capabilities of the I/O
 *    controller.
138
 *
139 140 141
 *    max_dev_sectors is a hard limit imposed by the storage device for
 *    READ/WRITE requests. It is set by the disk driver.
 *
142 143 144 145
 *    max_sectors is a soft limit imposed by the block layer for
 *    filesystem type requests.  This value can be overridden on a
 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
 *    The soft limit can not exceed max_hw_sectors.
146
 **/
147
void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
148
{
149 150 151
	struct queue_limits *limits = &q->limits;
	unsigned int max_sectors;

152 153
	if ((max_hw_sectors << 9) < PAGE_SIZE) {
		max_hw_sectors = 1 << (PAGE_SHIFT - 9);
154
		printk(KERN_INFO "%s: set to minimum %d\n",
155
		       __func__, max_hw_sectors);
156 157
	}

158
	limits->max_hw_sectors = max_hw_sectors;
159 160 161
	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
	max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
	limits->max_sectors = max_sectors;
162
	q->backing_dev_info->io_pages = max_sectors >> (PAGE_SHIFT - 9);
163
}
164
EXPORT_SYMBOL(blk_queue_max_hw_sectors);
165

166 167 168 169 170 171 172 173
/**
 * blk_queue_chunk_sectors - set size of the chunk for this queue
 * @q:  the request queue for the device
 * @chunk_sectors:  chunk sectors in the usual 512b unit
 *
 * Description:
 *    If a driver doesn't want IOs to cross a given chunk size, it can set
 *    this limit and prevent merging across chunks. Note that the chunk size
174 175 176 177
 *    must currently be a power-of-2 in sectors. Also note that the block
 *    layer must accept a page worth of data at any offset. So if the
 *    crossing of chunks is a hard limitation in the driver, it must still be
 *    prepared to split single page bios.
178 179 180 181 182 183 184 185
 **/
void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
{
	BUG_ON(!is_power_of_2(chunk_sectors));
	q->limits.chunk_sectors = chunk_sectors;
}
EXPORT_SYMBOL(blk_queue_chunk_sectors);

186 187 188
/**
 * blk_queue_max_discard_sectors - set max sectors for a single discard
 * @q:  the request queue for the device
189
 * @max_discard_sectors: maximum number of sectors to discard
190 191 192 193
 **/
void blk_queue_max_discard_sectors(struct request_queue *q,
		unsigned int max_discard_sectors)
{
194
	q->limits.max_hw_discard_sectors = max_discard_sectors;
195 196 197 198
	q->limits.max_discard_sectors = max_discard_sectors;
}
EXPORT_SYMBOL(blk_queue_max_discard_sectors);

199 200 201 202 203 204 205 206 207 208 209 210
/**
 * blk_queue_max_write_same_sectors - set max sectors for a single write same
 * @q:  the request queue for the device
 * @max_write_same_sectors: maximum number of sectors to write per command
 **/
void blk_queue_max_write_same_sectors(struct request_queue *q,
				      unsigned int max_write_same_sectors)
{
	q->limits.max_write_same_sectors = max_write_same_sectors;
}
EXPORT_SYMBOL(blk_queue_max_write_same_sectors);

211 212 213 214 215 216 217 218 219 220 221 222 223
/**
 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
 *                                      write zeroes
 * @q:  the request queue for the device
 * @max_write_zeroes_sectors: maximum number of sectors to write per command
 **/
void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
		unsigned int max_write_zeroes_sectors)
{
	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
}
EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);

224
/**
225
 * blk_queue_max_segments - set max hw segments for a request for this queue
226 227 228 229 230
 * @q:  the request queue for the device
 * @max_segments:  max number of segments
 *
 * Description:
 *    Enables a low level driver to set an upper limit on the number of
231
 *    hw data segments in a request.
232
 **/
233
void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
234 235 236
{
	if (!max_segments) {
		max_segments = 1;
237 238
		printk(KERN_INFO "%s: set to minimum %d\n",
		       __func__, max_segments);
239 240
	}

241
	q->limits.max_segments = max_segments;
242
}
243
EXPORT_SYMBOL(blk_queue_max_segments);
244

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
/**
 * blk_queue_max_discard_segments - set max segments for discard requests
 * @q:  the request queue for the device
 * @max_segments:  max number of segments
 *
 * Description:
 *    Enables a low level driver to set an upper limit on the number of
 *    segments in a discard request.
 **/
void blk_queue_max_discard_segments(struct request_queue *q,
		unsigned short max_segments)
{
	q->limits.max_discard_segments = max_segments;
}
EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);

261 262 263 264 265 266 267 268 269 270 271
/**
 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
 * @q:  the request queue for the device
 * @max_size:  max size of segment in bytes
 *
 * Description:
 *    Enables a low level driver to set an upper limit on the size of a
 *    coalesced segment
 **/
void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
{
272 273
	if (max_size < PAGE_SIZE) {
		max_size = PAGE_SIZE;
274 275
		printk(KERN_INFO "%s: set to minimum %d\n",
		       __func__, max_size);
276 277
	}

278 279 280
	/* see blk_queue_virt_boundary() for the explanation */
	WARN_ON_ONCE(q->limits.virt_boundary_mask);

281
	q->limits.max_segment_size = max_size;
282 283 284 285
}
EXPORT_SYMBOL(blk_queue_max_segment_size);

/**
286
 * blk_queue_logical_block_size - set logical block size for the queue
287
 * @q:  the request queue for the device
288
 * @size:  the logical block size, in bytes
289 290
 *
 * Description:
291 292 293
 *   This should be set to the lowest possible block size that the
 *   storage device can address.  The default of 512 covers most
 *   hardware.
294
 **/
295
void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
296
{
297
	q->limits.logical_block_size = size;
298 299 300 301 302 303

	if (q->limits.physical_block_size < size)
		q->limits.physical_block_size = size;

	if (q->limits.io_min < q->limits.physical_block_size)
		q->limits.io_min = q->limits.physical_block_size;
304
}
305
EXPORT_SYMBOL(blk_queue_logical_block_size);
306

307 308 309 310 311 312 313 314 315 316
/**
 * blk_queue_physical_block_size - set physical block size for the queue
 * @q:  the request queue for the device
 * @size:  the physical block size, in bytes
 *
 * Description:
 *   This should be set to the lowest possible sector size that the
 *   hardware can operate on without reverting to read-modify-write
 *   operations.
 */
317
void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
318 319 320 321 322 323 324 325 326 327 328 329 330 331
{
	q->limits.physical_block_size = size;

	if (q->limits.physical_block_size < q->limits.logical_block_size)
		q->limits.physical_block_size = q->limits.logical_block_size;

	if (q->limits.io_min < q->limits.physical_block_size)
		q->limits.io_min = q->limits.physical_block_size;
}
EXPORT_SYMBOL(blk_queue_physical_block_size);

/**
 * blk_queue_alignment_offset - set physical block alignment offset
 * @q:	the request queue for the device
332
 * @offset: alignment offset in bytes
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
 *
 * Description:
 *   Some devices are naturally misaligned to compensate for things like
 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
 *   should call this function for devices whose first sector is not
 *   naturally aligned.
 */
void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
{
	q->limits.alignment_offset =
		offset & (q->limits.physical_block_size - 1);
	q->limits.misaligned = 0;
}
EXPORT_SYMBOL(blk_queue_alignment_offset);

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
/**
 * blk_limits_io_min - set minimum request size for a device
 * @limits: the queue limits
 * @min:  smallest I/O size in bytes
 *
 * Description:
 *   Some devices have an internal block size bigger than the reported
 *   hardware sector size.  This function can be used to signal the
 *   smallest I/O the device can perform without incurring a performance
 *   penalty.
 */
void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
{
	limits->io_min = min;

	if (limits->io_min < limits->logical_block_size)
		limits->io_min = limits->logical_block_size;

	if (limits->io_min < limits->physical_block_size)
		limits->io_min = limits->physical_block_size;
}
EXPORT_SYMBOL(blk_limits_io_min);

371 372 373
/**
 * blk_queue_io_min - set minimum request size for the queue
 * @q:	the request queue for the device
374
 * @min:  smallest I/O size in bytes
375 376
 *
 * Description:
377 378 379 380 381 382 383
 *   Storage devices may report a granularity or preferred minimum I/O
 *   size which is the smallest request the device can perform without
 *   incurring a performance penalty.  For disk drives this is often the
 *   physical block size.  For RAID arrays it is often the stripe chunk
 *   size.  A properly aligned multiple of minimum_io_size is the
 *   preferred request size for workloads where a high number of I/O
 *   operations is desired.
384 385 386
 */
void blk_queue_io_min(struct request_queue *q, unsigned int min)
{
387
	blk_limits_io_min(&q->limits, min);
388 389 390
}
EXPORT_SYMBOL(blk_queue_io_min);

391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
/**
 * blk_limits_io_opt - set optimal request size for a device
 * @limits: the queue limits
 * @opt:  smallest I/O size in bytes
 *
 * Description:
 *   Storage devices may report an optimal I/O size, which is the
 *   device's preferred unit for sustained I/O.  This is rarely reported
 *   for disk drives.  For RAID arrays it is usually the stripe width or
 *   the internal track size.  A properly aligned multiple of
 *   optimal_io_size is the preferred request size for workloads where
 *   sustained throughput is desired.
 */
void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
{
	limits->io_opt = opt;
}
EXPORT_SYMBOL(blk_limits_io_opt);

410 411 412
/**
 * blk_queue_io_opt - set optimal request size for the queue
 * @q:	the request queue for the device
413
 * @opt:  optimal request size in bytes
414 415
 *
 * Description:
416 417 418 419 420 421
 *   Storage devices may report an optimal I/O size, which is the
 *   device's preferred unit for sustained I/O.  This is rarely reported
 *   for disk drives.  For RAID arrays it is usually the stripe width or
 *   the internal track size.  A properly aligned multiple of
 *   optimal_io_size is the preferred request size for workloads where
 *   sustained throughput is desired.
422 423 424
 */
void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
{
425
	blk_limits_io_opt(&q->limits, opt);
426 427 428
}
EXPORT_SYMBOL(blk_queue_io_opt);

429 430 431 432 433 434 435
/**
 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
 * @t:	the stacking driver (top)
 * @b:  the underlying device (bottom)
 **/
void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
{
436
	blk_stack_limits(&t->limits, &b->limits, 0);
437 438 439
}
EXPORT_SYMBOL(blk_queue_stack_limits);

440 441
/**
 * blk_stack_limits - adjust queue_limits for stacked devices
442 443
 * @t:	the stacking driver limits (top device)
 * @b:  the underlying queue limits (bottom, component device)
444
 * @start:  first data sector within component device
445 446
 *
 * Description:
447 448 449 450 451 452 453 454 455 456 457 458 459
 *    This function is used by stacking drivers like MD and DM to ensure
 *    that all component devices have compatible block sizes and
 *    alignments.  The stacking driver must provide a queue_limits
 *    struct (top) and then iteratively call the stacking function for
 *    all component (bottom) devices.  The stacking function will
 *    attempt to combine the values and ensure proper alignment.
 *
 *    Returns 0 if the top and bottom queue_limits are compatible.  The
 *    top device's block sizes and alignment offsets may be adjusted to
 *    ensure alignment with the bottom device. If no compatible sizes
 *    and alignments exist, -1 is returned and the resulting top
 *    queue_limits will have the misaligned flag set to indicate that
 *    the alignment_offset is undefined.
460 461
 */
int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
462
		     sector_t start)
463
{
464
	unsigned int top, bottom, alignment, ret = 0;
465

466 467
	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
468
	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
469 470
	t->max_write_same_sectors = min(t->max_write_same_sectors,
					b->max_write_same_sectors);
471 472
	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
					b->max_write_zeroes_sectors);
473
	t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
474 475 476

	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
					    b->seg_boundary_mask);
477 478
	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
					    b->virt_boundary_mask);
479

480
	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
481 482
	t->max_discard_segments = min_not_zero(t->max_discard_segments,
					       b->max_discard_segments);
483 484
	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
						 b->max_integrity_segments);
485 486 487 488

	t->max_segment_size = min_not_zero(t->max_segment_size,
					   b->max_segment_size);

489 490
	t->misaligned |= b->misaligned;

491
	alignment = queue_limit_alignment_offset(b, start);
492

493 494 495
	/* Bottom device has different alignment.  Check that it is
	 * compatible with the current top alignment.
	 */
496 497 498 499
	if (t->alignment_offset != alignment) {

		top = max(t->physical_block_size, t->io_min)
			+ t->alignment_offset;
500
		bottom = max(b->physical_block_size, b->io_min) + alignment;
501

502
		/* Verify that top and bottom intervals line up */
503
		if (max(top, bottom) % min(top, bottom)) {
504
			t->misaligned = 1;
505 506
			ret = -1;
		}
507 508
	}

509 510 511 512 513 514 515
	t->logical_block_size = max(t->logical_block_size,
				    b->logical_block_size);

	t->physical_block_size = max(t->physical_block_size,
				     b->physical_block_size);

	t->io_min = max(t->io_min, b->io_min);
516
	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
517

518
	/* Physical block size a multiple of the logical block size? */
519 520
	if (t->physical_block_size & (t->logical_block_size - 1)) {
		t->physical_block_size = t->logical_block_size;
521
		t->misaligned = 1;
522
		ret = -1;
523 524
	}

525
	/* Minimum I/O a multiple of the physical block size? */
526 527 528
	if (t->io_min & (t->physical_block_size - 1)) {
		t->io_min = t->physical_block_size;
		t->misaligned = 1;
529
		ret = -1;
530 531
	}

532
	/* Optimal I/O a multiple of the physical block size? */
533 534 535
	if (t->io_opt & (t->physical_block_size - 1)) {
		t->io_opt = 0;
		t->misaligned = 1;
536
		ret = -1;
537
	}
538

539 540 541 542
	t->raid_partial_stripes_expensive =
		max(t->raid_partial_stripes_expensive,
		    b->raid_partial_stripes_expensive);

543
	/* Find lowest common alignment_offset */
544
	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
545
		% max(t->physical_block_size, t->io_min);
546

547
	/* Verify that new alignment_offset is on a logical block boundary */
548
	if (t->alignment_offset & (t->logical_block_size - 1)) {
549
		t->misaligned = 1;
550 551
		ret = -1;
	}
552

553 554
	/* Discard alignment and granularity */
	if (b->discard_granularity) {
555
		alignment = queue_limit_discard_alignment(b, start);
556 557 558 559 560

		if (t->discard_granularity != 0 &&
		    t->discard_alignment != alignment) {
			top = t->discard_granularity + t->discard_alignment;
			bottom = b->discard_granularity + alignment;
561

562
			/* Verify that top and bottom intervals line up */
563
			if ((max(top, bottom) % min(top, bottom)) != 0)
564 565 566
				t->discard_misaligned = 1;
		}

567 568
		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
						      b->max_discard_sectors);
569 570
		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
							 b->max_hw_discard_sectors);
571 572
		t->discard_granularity = max(t->discard_granularity,
					     b->discard_granularity);
573
		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
574
			t->discard_granularity;
575
	}
576

577 578 579 580
	if (b->chunk_sectors)
		t->chunk_sectors = min_not_zero(t->chunk_sectors,
						b->chunk_sectors);

581
	return ret;
582
}
583
EXPORT_SYMBOL(blk_stack_limits);
584

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
/**
 * bdev_stack_limits - adjust queue limits for stacked drivers
 * @t:	the stacking driver limits (top device)
 * @bdev:  the component block_device (bottom)
 * @start:  first data sector within component device
 *
 * Description:
 *    Merges queue limits for a top device and a block_device.  Returns
 *    0 if alignment didn't change.  Returns -1 if adding the bottom
 *    device caused misalignment.
 */
int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
		      sector_t start)
{
	struct request_queue *bq = bdev_get_queue(bdev);

	start += get_start_sect(bdev);

603
	return blk_stack_limits(t, &bq->limits, start);
604 605 606
}
EXPORT_SYMBOL(bdev_stack_limits);

607 608
/**
 * disk_stack_limits - adjust queue limits for stacked drivers
609
 * @disk:  MD/DM gendisk (top)
610 611 612 613
 * @bdev:  the underlying block device (bottom)
 * @offset:  offset to beginning of data within component device
 *
 * Description:
614 615
 *    Merges the limits for a top level gendisk and a bottom level
 *    block_device.
616 617 618 619 620 621
 */
void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
		       sector_t offset)
{
	struct request_queue *t = disk->queue;

622
	if (bdev_stack_limits(&t->limits, bdev, offset >> 9) < 0) {
623 624 625 626 627 628 629 630
		char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];

		disk_name(disk, 0, top);
		bdevname(bdev, bottom);

		printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
		       top, bottom);
	}
631 632 633

	t->backing_dev_info->io_pages =
		t->limits.max_sectors >> (PAGE_SHIFT - 9);
634 635 636
}
EXPORT_SYMBOL(disk_stack_limits);

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
/**
 * blk_queue_update_dma_pad - update pad mask
 * @q:     the request queue for the device
 * @mask:  pad mask
 *
 * Update dma pad mask.
 *
 * Appending pad buffer to a request modifies the last entry of a
 * scatter list such that it includes the pad buffer.
 **/
void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
{
	if (mask > q->dma_pad_mask)
		q->dma_pad_mask = mask;
}
EXPORT_SYMBOL(blk_queue_update_dma_pad);

654 655 656 657 658 659 660
/**
 * blk_queue_segment_boundary - set boundary rules for segment merging
 * @q:  the request queue for the device
 * @mask:  the memory boundary mask
 **/
void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
{
661 662
	if (mask < PAGE_SIZE - 1) {
		mask = PAGE_SIZE - 1;
663 664
		printk(KERN_INFO "%s: set to minimum %lx\n",
		       __func__, mask);
665 666
	}

667
	q->limits.seg_boundary_mask = mask;
668 669 670
}
EXPORT_SYMBOL(blk_queue_segment_boundary);

671 672 673 674 675 676 677 678
/**
 * blk_queue_virt_boundary - set boundary rules for bio merging
 * @q:  the request queue for the device
 * @mask:  the memory boundary mask
 **/
void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
{
	q->limits.virt_boundary_mask = mask;
679 680 681 682 683 684 685

	/*
	 * Devices that require a virtual boundary do not support scatter/gather
	 * I/O natively, but instead require a descriptor list entry for each
	 * page (which might not be idential to the Linux PAGE_SIZE).  Because
	 * of that they are not limited by our notion of "segment size".
	 */
686 687
	if (mask)
		q->limits.max_segment_size = UINT_MAX;
688 689 690
}
EXPORT_SYMBOL(blk_queue_virt_boundary);

691 692 693 694 695 696
/**
 * blk_queue_dma_alignment - set dma length and memory alignment
 * @q:     the request queue for the device
 * @mask:  alignment mask
 *
 * description:
697
 *    set required memory and length alignment for direct dma transactions.
Alan Cox's avatar
Alan Cox committed
698
 *    this is used when building direct io requests for the queue.
699 700 701 702 703 704 705 706 707 708 709 710 711 712
 *
 **/
void blk_queue_dma_alignment(struct request_queue *q, int mask)
{
	q->dma_alignment = mask;
}
EXPORT_SYMBOL(blk_queue_dma_alignment);

/**
 * blk_queue_update_dma_alignment - update dma length and memory alignment
 * @q:     the request queue for the device
 * @mask:  alignment mask
 *
 * description:
713
 *    update required memory and length alignment for direct dma transactions.
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
 *    If the requested alignment is larger than the current alignment, then
 *    the current queue alignment is updated to the new value, otherwise it
 *    is left alone.  The design of this is to allow multiple objects
 *    (driver, device, transport etc) to set their respective
 *    alignments without having them interfere.
 *
 **/
void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
{
	BUG_ON(mask > PAGE_SIZE);

	if (mask > q->dma_alignment)
		q->dma_alignment = mask;
}
EXPORT_SYMBOL(blk_queue_update_dma_alignment);

730 731 732 733 734 735 736 737 738
/**
 * blk_set_queue_depth - tell the block layer about the device queue depth
 * @q:		the request queue for the device
 * @depth:		queue depth
 *
 */
void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
{
	q->queue_depth = depth;
739
	rq_qos_queue_depth_changed(q);
740 741 742
}
EXPORT_SYMBOL(blk_set_queue_depth);

743 744 745 746 747 748 749 750 751 752
/**
 * blk_queue_write_cache - configure queue's write cache
 * @q:		the request queue for the device
 * @wc:		write back cache on or off
 * @fua:	device supports FUA writes, if true
 *
 * Tell the block layer about the write cache of @q.
 */
void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
{
Jens Axboe's avatar
Jens Axboe committed
753
	if (wc)
754
		blk_queue_flag_set(QUEUE_FLAG_WC, q);
Jens Axboe's avatar
Jens Axboe committed
755
	else
756
		blk_queue_flag_clear(QUEUE_FLAG_WC, q);
Jens Axboe's avatar
Jens Axboe committed
757
	if (fua)
758
		blk_queue_flag_set(QUEUE_FLAG_FUA, q);
Jens Axboe's avatar
Jens Axboe committed
759
	else
760
		blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
761

762
	wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
763 764 765
}
EXPORT_SYMBOL_GPL(blk_queue_write_cache);

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
/**
 * blk_queue_required_elevator_features - Set a queue required elevator features
 * @q:		the request queue for the target device
 * @features:	Required elevator features OR'ed together
 *
 * Tell the block layer that for the device controlled through @q, only the
 * only elevators that can be used are those that implement at least the set of
 * features specified by @features.
 */
void blk_queue_required_elevator_features(struct request_queue *q,
					  unsigned int features)
{
	q->required_elevator_features = features;
}
EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
/**
 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
 * @q:		the request queue for the device
 * @dev:	the device pointer for dma
 *
 * Tell the block layer about merging the segments by dma map of @q.
 */
bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
				       struct device *dev)
{
	unsigned long boundary = dma_get_merge_boundary(dev);

	if (!boundary)
		return false;

	/* No need to update max_segment_size. see blk_queue_virt_boundary() */
	blk_queue_virt_boundary(q, boundary);

	return true;
}
EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);

804
static int __init blk_settings_init(void)
805 806 807 808 809 810
{
	blk_max_low_pfn = max_low_pfn - 1;
	blk_max_pfn = max_pfn - 1;
	return 0;
}
subsys_initcall(blk_settings_init);