hw.c 68.6 KB
Newer Older
1 2
/******************************************************************************
 *
3
 * Copyright(c) 2009-2012  Realtek Corporation.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of version 2 of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
 *
 * The full GNU General Public License is included in this distribution in the
 * file called LICENSE.
 *
 * Contact Information:
 * wlanfae <wlanfae@realtek.com>
 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
 * Hsinchu 300, Taiwan.
 *
 * Larry Finger <Larry.Finger@lwfinger.net>
 *
 *****************************************************************************/

#include "../wifi.h"
#include "../efuse.h"
#include "../base.h"
#include "../regd.h"
#include "../cam.h"
#include "../ps.h"
#include "../pci.h"
#include "reg.h"
#include "def.h"
#include "phy.h"
#include "dm.h"
#include "fw.h"
#include "led.h"
#include "sw.h"
#include "hw.h"

u32 rtl92de_read_dword_dbi(struct ieee80211_hw *hw, u16 offset, u8 direct)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u32 value;

	rtl_write_word(rtlpriv, REG_DBI_CTRL, (offset & 0xFFC));
	rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(1) | direct);
	udelay(10);
	value = rtl_read_dword(rtlpriv, REG_DBI_RDATA);
	return value;
}

void rtl92de_write_dword_dbi(struct ieee80211_hw *hw,
			     u16 offset, u32 value, u8 direct)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);

	rtl_write_word(rtlpriv, REG_DBI_CTRL, ((offset & 0xFFC) | 0xF000));
	rtl_write_dword(rtlpriv, REG_DBI_WDATA, value);
	rtl_write_byte(rtlpriv, REG_DBI_FLAG, BIT(0) | direct);
}

static void _rtl92de_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
				      u8 set_bits, u8 clear_bits)
{
	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
	struct rtl_priv *rtlpriv = rtl_priv(hw);

	rtlpci->reg_bcn_ctrl_val |= set_bits;
	rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
	rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
}

static void _rtl92de_stop_tx_beacon(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u8 tmp1byte;

	tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
	rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
	rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xff);
	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
	tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
	tmp1byte &= ~(BIT(0));
	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
}

static void _rtl92de_resume_tx_beacon(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u8 tmp1byte;

	tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
	rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
	rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
	tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
	tmp1byte |= BIT(0);
	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
}

static void _rtl92de_enable_bcn_sub_func(struct ieee80211_hw *hw)
{
	_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(1));
}

static void _rtl92de_disable_bcn_sub_func(struct ieee80211_hw *hw)
{
	_rtl92de_set_bcn_ctrl_reg(hw, BIT(1), 0);
}

void rtl92de_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));

	switch (variable) {
	case HW_VAR_RCR:
		*((u32 *) (val)) = rtlpci->receive_config;
		break;
	case HW_VAR_RF_STATE:
		*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
		break;
	case HW_VAR_FWLPS_RF_ON:{
		enum rf_pwrstate rfState;
		u32 val_rcr;

		rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
					      (u8 *) (&rfState));
		if (rfState == ERFOFF) {
			*((bool *) (val)) = true;
		} else {
			val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
			val_rcr &= 0x00070000;
			if (val_rcr)
				*((bool *) (val)) = false;
			else
				*((bool *) (val)) = true;
		}
		break;
	}
	case HW_VAR_FW_PSMODE_STATUS:
		*((bool *) (val)) = ppsc->fw_current_inpsmode;
		break;
	case HW_VAR_CORRECT_TSF:{
		u64 tsf;
		u32 *ptsf_low = (u32 *)&tsf;
		u32 *ptsf_high = ((u32 *)&tsf) + 1;

		*ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
		*ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
		*((u64 *) (val)) = tsf;
		break;
	}
	case HW_VAR_INT_MIGRATION:
		*((bool *)(val)) = rtlpriv->dm.interrupt_migration;
		break;
	case HW_VAR_INT_AC:
		*((bool *)(val)) = rtlpriv->dm.disable_tx_int;
		break;
	default:
		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
169
			 "switch case not processed\n");
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
		break;
	}
}

void rtl92de_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
	u8 idx;

	switch (variable) {
	case HW_VAR_ETHER_ADDR:
		for (idx = 0; idx < ETH_ALEN; idx++) {
			rtl_write_byte(rtlpriv, (REG_MACID + idx),
				       val[idx]);
		}
		break;
	case HW_VAR_BASIC_RATE: {
		u16 rate_cfg = ((u16 *) val)[0];
		u8 rate_index = 0;

		rate_cfg = rate_cfg & 0x15f;
		if (mac->vendor == PEER_CISCO &&
		    ((rate_cfg & 0x150) == 0))
			rate_cfg |= 0x01;
		rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
		rtl_write_byte(rtlpriv, REG_RRSR + 1,
			       (rate_cfg >> 8) & 0xff);
		while (rate_cfg > 0x1) {
			rate_cfg = (rate_cfg >> 1);
			rate_index++;
		}
		if (rtlhal->fw_version > 0xe)
			rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
				       rate_index);
		break;
	}
	case HW_VAR_BSSID:
		for (idx = 0; idx < ETH_ALEN; idx++) {
			rtl_write_byte(rtlpriv, (REG_BSSID + idx),
				       val[idx]);
		}
		break;
	case HW_VAR_SIFS:
		rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
		rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
		rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
		rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
		if (!mac->ht_enable)
			rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
				       0x0e0e);
		else
			rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
				       *((u16 *) val));
		break;
	case HW_VAR_SLOT_TIME: {
		u8 e_aci;

		RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
233
			 "HW_VAR_SLOT_TIME %x\n", val[0]);
234 235 236 237
		rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
		for (e_aci = 0; e_aci < AC_MAX; e_aci++)
			rtlpriv->cfg->ops->set_hw_reg(hw,
						      HW_VAR_AC_PARAM,
238
						      (&e_aci));
239 240 241 242
		break;
	}
	case HW_VAR_ACK_PREAMBLE: {
		u8 reg_tmp;
243
		u8 short_preamble = (bool) (*val);
244 245 246 247 248 249 250 251 252 253 254

		reg_tmp = (mac->cur_40_prime_sc) << 5;
		if (short_preamble)
			reg_tmp |= 0x80;
		rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
		break;
	}
	case HW_VAR_AMPDU_MIN_SPACE: {
		u8 min_spacing_to_set;
		u8 sec_min_space;

255
		min_spacing_to_set = *val;
256 257 258 259 260 261 262 263
		if (min_spacing_to_set <= 7) {
			sec_min_space = 0;
			if (min_spacing_to_set < sec_min_space)
				min_spacing_to_set = sec_min_space;
			mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) |
					      min_spacing_to_set);
			*val = min_spacing_to_set;
			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
264 265
				 "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
				 mac->min_space_cfg);
266 267 268 269 270 271 272 273
			rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
				       mac->min_space_cfg);
		}
		break;
	}
	case HW_VAR_SHORTGI_DENSITY: {
		u8 density_to_set;

274
		density_to_set = *val;
275 276 277
		mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
		mac->min_space_cfg |= (density_to_set << 3);
		RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
278 279
			 "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
			 mac->min_space_cfg);
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
		rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
			       mac->min_space_cfg);
		break;
	}
	case HW_VAR_AMPDU_FACTOR: {
		u8 factor_toset;
		u32 regtoSet;
		u8 *ptmp_byte = NULL;
		u8 index;

		if (rtlhal->macphymode == DUALMAC_DUALPHY)
			regtoSet = 0xb9726641;
		else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
			regtoSet = 0x66626641;
		else
			regtoSet = 0xb972a841;
296
		factor_toset = *val;
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
		if (factor_toset <= 3) {
			factor_toset = (1 << (factor_toset + 2));
			if (factor_toset > 0xf)
				factor_toset = 0xf;
			for (index = 0; index < 4; index++) {
				ptmp_byte = (u8 *) (&regtoSet) + index;
				if ((*ptmp_byte & 0xf0) >
				    (factor_toset << 4))
					*ptmp_byte = (*ptmp_byte & 0x0f)
						 | (factor_toset << 4);
				if ((*ptmp_byte & 0x0f) > factor_toset)
					*ptmp_byte = (*ptmp_byte & 0xf0)
						     | (factor_toset);
			}
			rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, regtoSet);
			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
313 314
				 "Set HW_VAR_AMPDU_FACTOR: %#x\n",
				 factor_toset);
315 316 317 318
		}
		break;
	}
	case HW_VAR_AC_PARAM: {
319
		u8 e_aci = *val;
320
		rtl92d_dm_init_edca_turbo(hw);
321
		if (rtlpci->acm_method != EACMWAY2_SW)
322
			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL,
323
						      &e_aci);
324 325 326
		break;
	}
	case HW_VAR_ACM_CTRL: {
327
		u8 e_aci = *val;
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
		union aci_aifsn *p_aci_aifsn =
		    (union aci_aifsn *)(&(mac->ac[0].aifs));
		u8 acm = p_aci_aifsn->f.acm;
		u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);

		acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?  0x0 : 0x1);
		if (acm) {
			switch (e_aci) {
			case AC0_BE:
				acm_ctrl |= ACMHW_BEQEN;
				break;
			case AC2_VI:
				acm_ctrl |= ACMHW_VIQEN;
				break;
			case AC3_VO:
				acm_ctrl |= ACMHW_VOQEN;
				break;
			default:
				RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
347 348
					 "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
					 acm);
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
				break;
			}
		} else {
			switch (e_aci) {
			case AC0_BE:
				acm_ctrl &= (~ACMHW_BEQEN);
				break;
			case AC2_VI:
				acm_ctrl &= (~ACMHW_VIQEN);
				break;
			case AC3_VO:
				acm_ctrl &= (~ACMHW_VOQEN);
				break;
			default:
				RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
364
					 "switch case not processed\n");
365 366 367 368
				break;
			}
		}
		RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
369 370
			 "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
			 acm_ctrl);
371 372 373 374 375 376 377 378
		rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
		break;
	}
	case HW_VAR_RCR:
		rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
		rtlpci->receive_config = ((u32 *) (val))[0];
		break;
	case HW_VAR_RETRY_LIMIT: {
379
		u8 retry_limit = val[0];
380 381 382 383 384 385 386 387 388 389 390 391 392

		rtl_write_word(rtlpriv, REG_RL,
			       retry_limit << RETRY_LIMIT_SHORT_SHIFT |
			       retry_limit << RETRY_LIMIT_LONG_SHIFT);
		break;
	}
	case HW_VAR_DUAL_TSF_RST:
		rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
		break;
	case HW_VAR_EFUSE_BYTES:
		rtlefuse->efuse_usedbytes = *((u16 *) val);
		break;
	case HW_VAR_EFUSE_USAGE:
393
		rtlefuse->efuse_usedpercentage = *val;
394 395 396 397 398
		break;
	case HW_VAR_IO_CMD:
		rtl92d_phy_set_io_cmd(hw, (*(enum io_type *)val));
		break;
	case HW_VAR_WPA_CONFIG:
399
		rtl_write_byte(rtlpriv, REG_SECCFG, *val);
400 401
		break;
	case HW_VAR_SET_RPWM:
402
		rtl92d_fill_h2c_cmd(hw, H2C_PWRM, 1, (val));
403 404 405 406 407 408 409
		break;
	case HW_VAR_H2C_FW_PWRMODE:
		break;
	case HW_VAR_FW_PSMODE_STATUS:
		ppsc->fw_current_inpsmode = *((bool *) val);
		break;
	case HW_VAR_H2C_FW_JOINBSSRPT: {
410
		u8 mstatus = (*val);
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
		u8 tmp_regcr, tmp_reg422;
		bool recover = false;

		if (mstatus == RT_MEDIA_CONNECT) {
			rtlpriv->cfg->ops->set_hw_reg(hw,
						      HW_VAR_AID, NULL);
			tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
			rtl_write_byte(rtlpriv, REG_CR + 1,
				       (tmp_regcr | BIT(0)));
			_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
			_rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
			tmp_reg422 = rtl_read_byte(rtlpriv,
						 REG_FWHW_TXQ_CTRL + 2);
			if (tmp_reg422 & BIT(6))
				recover = true;
			rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
				       tmp_reg422 & (~BIT(6)));
			rtl92d_set_fw_rsvdpagepkt(hw, 0);
			_rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
			_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
			if (recover)
				rtl_write_byte(rtlpriv,
					       REG_FWHW_TXQ_CTRL + 2,
					       tmp_reg422);
			rtl_write_byte(rtlpriv, REG_CR + 1,
				       (tmp_regcr & ~(BIT(0))));
		}
438
		rtl92d_set_fw_joinbss_report_cmd(hw, (*val));
439 440 441 442 443 444 445 446 447 448 449
		break;
	}
	case HW_VAR_AID: {
		u16 u2btmp;
		u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
		u2btmp &= 0xC000;
		rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp |
			       mac->assoc_id));
		break;
	}
	case HW_VAR_CORRECT_TSF: {
450
		u8 btype_ibss = val[0];
451

452
		if (btype_ibss)
453 454 455 456 457 458 459
			_rtl92de_stop_tx_beacon(hw);
		_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(3));
		rtl_write_dword(rtlpriv, REG_TSFTR,
				(u32) (mac->tsf & 0xffffffff));
		rtl_write_dword(rtlpriv, REG_TSFTR + 4,
				(u32) ((mac->tsf >> 32) & 0xffffffff));
		_rtl92de_set_bcn_ctrl_reg(hw, BIT(3), 0);
460
		if (btype_ibss)
461 462 463 464 465 466 467 468
			_rtl92de_resume_tx_beacon(hw);

		break;
	}
	case HW_VAR_INT_MIGRATION: {
		bool int_migration = *(bool *) (val);

		if (int_migration) {
469 470
			/* Set interrupt migration timer and
			 * corresponding Tx/Rx counter.
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
			 * timer 25ns*0xfa0=100us for 0xf packets.
			 * 0x306:Rx, 0x307:Tx */
			rtl_write_dword(rtlpriv, REG_INT_MIG, 0xfe000fa0);
			rtlpriv->dm.interrupt_migration = int_migration;
		} else {
			/* Reset all interrupt migration settings. */
			rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
			rtlpriv->dm.interrupt_migration = int_migration;
		}
		break;
	}
	case HW_VAR_INT_AC: {
		bool disable_ac_int = *((bool *) val);

		/* Disable four ACs interrupts. */
		if (disable_ac_int) {
			/* Disable VO, VI, BE and BK four AC interrupts
			 * to gain more efficient CPU utilization.
			 * When extremely highly Rx OK occurs,
			 * we will disable Tx interrupts.
			 */
			rtlpriv->cfg->ops->update_interrupt_mask(hw, 0,
						 RT_AC_INT_MASKS);
			rtlpriv->dm.disable_tx_int = disable_ac_int;
		/* Enable four ACs interrupts. */
		} else {
			rtlpriv->cfg->ops->update_interrupt_mask(hw,
						 RT_AC_INT_MASKS, 0);
			rtlpriv->dm.disable_tx_int = disable_ac_int;
		}
		break;
	}
	default:
		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
505
			 "switch case not processed\n");
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
		break;
	}
}

static bool _rtl92de_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	bool status = true;
	long count = 0;
	u32 value = _LLT_INIT_ADDR(address) |
	    _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);

	rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
	do {
		value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
		if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
			break;
		if (count > POLLING_LLT_THRESHOLD) {
			RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
525 526
				 "Failed to polling write LLT done at address %d!\n",
				 address);
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
			status = false;
			break;
		}
	} while (++count);
	return status;
}

static bool _rtl92de_llt_table_init(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	unsigned short i;
	u8 txpktbuf_bndy;
	u8 maxPage;
	bool status;
	u32 value32; /* High+low page number */
	u8 value8;	 /* normal page number */

	if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) {
		maxPage = 255;
		txpktbuf_bndy = 246;
		value8 = 0;
		value32 = 0x80bf0d29;
	} else if (rtlpriv->rtlhal.macphymode != SINGLEMAC_SINGLEPHY) {
		maxPage = 127;
		txpktbuf_bndy = 123;
		value8 = 0;
		value32 = 0x80750005;
	}

	/* Set reserved page for each queue */
	/* 11.  RQPN 0x200[31:0] = 0x80BD1C1C */
	/* load RQPN */
	rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
	rtl_write_dword(rtlpriv, REG_RQPN, value32);

	/* 12.  TXRKTBUG_PG_BNDY 0x114[31:0] = 0x27FF00F6 */
	/* TXRKTBUG_PG_BNDY */
	rtl_write_dword(rtlpriv, REG_TRXFF_BNDY,
			(rtl_read_word(rtlpriv, REG_TRXFF_BNDY + 2) << 16 |
			txpktbuf_bndy));

	/* 13.  TDECTRL[15:8] 0x209[7:0] = 0xF6 */
	/* Beacon Head for TXDMA */
	rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);

	/* 14.  BCNQ_PGBNDY 0x424[7:0] =  0xF6 */
	/* BCNQ_PGBNDY */
	rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
	rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);

	/* 15.  WMAC_LBK_BF_HD 0x45D[7:0] =  0xF6 */
	/* WMAC_LBK_BF_HD */
	rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);

	/* Set Tx/Rx page size (Tx must be 128 Bytes, */
	/* Rx can be 64,128,256,512,1024 bytes) */
	/* 16.  PBP [7:0] = 0x11 */
	/* TRX page size */
	rtl_write_byte(rtlpriv, REG_PBP, 0x11);

	/* 17.  DRV_INFO_SZ = 0x04 */
	rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);

	/* 18.  LLT_table_init(Adapter);  */
	for (i = 0; i < (txpktbuf_bndy - 1); i++) {
		status = _rtl92de_llt_write(hw, i, i + 1);
		if (true != status)
			return status;
	}

	/* end of list */
	status = _rtl92de_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
	if (true != status)
		return status;

	/* Make the other pages as ring buffer */
	/* This ring buffer is used as beacon buffer if we */
	/* config this MAC as two MAC transfer. */
	/* Otherwise used as local loopback buffer.  */
	for (i = txpktbuf_bndy; i < maxPage; i++) {
		status = _rtl92de_llt_write(hw, i, (i + 1));
		if (true != status)
			return status;
	}

	/* Let last entry point to the start entry of ring buffer */
	status = _rtl92de_llt_write(hw, maxPage, txpktbuf_bndy);
	if (true != status)
		return status;

	return true;
}

static void _rtl92de_gen_refresh_led_state(struct ieee80211_hw *hw)
{
	struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
	struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);

	if (rtlpci->up_first_time)
		return;
	if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
630
		rtl92de_sw_led_on(hw, pLed0);
631
	else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
632
		rtl92de_sw_led_on(hw, pLed0);
633
	else
634
		rtl92de_sw_led_off(hw, pLed0);
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
}

static bool _rtl92de_init_mac(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
	unsigned char bytetmp;
	unsigned short wordtmp;
	u16 retry;

	rtl92d_phy_set_poweron(hw);
	/* Add for resume sequence of power domain according
	 * to power document V11. Chapter V.11....  */
	/* 0.   RSV_CTRL 0x1C[7:0] = 0x00  */
	/* unlock ISO/CLK/Power control register */
	rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
	rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x05);

	/* 1.   AFE_XTAL_CTRL [7:0] = 0x0F  enable XTAL */
	/* 2.   SPS0_CTRL 0x11[7:0] = 0x2b  enable SPS into PWM mode  */
	/* 3.   delay (1ms) this is not necessary when initially power on */

	/* C.   Resume Sequence */
	/* a.   SPS0_CTRL 0x11[7:0] = 0x2b */
	rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);

	/* b.   AFE_XTAL_CTRL [7:0] = 0x0F */
	rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0F);

	/* c.   DRV runs power on init flow */

	/* auto enable WLAN */
	/* 4.   APS_FSMCO 0x04[8] = 1; wait till 0x04[8] = 0   */
	/* Power On Reset for MAC Block */
	bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) | BIT(0);
	udelay(2);
	rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
	udelay(2);

	/* 5.   Wait while 0x04[8] == 0 goto 2, otherwise goto 1 */
	bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
	udelay(50);
	retry = 0;
	while ((bytetmp & BIT(0)) && retry < 1000) {
		retry++;
		bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
		udelay(50);
	}

	/* Enable Radio off, GPIO, and LED function */
	/* 6.   APS_FSMCO 0x04[15:0] = 0x0012  when enable HWPDN */
	rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x1012);

	/* release RF digital isolation  */
	/* 7.  SYS_ISO_CTRL 0x01[1]    = 0x0;  */
	/*Set REG_SYS_ISO_CTRL 0x1=0x82 to prevent wake# problem. */
	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x82);
	udelay(2);

	/* make sure that BB reset OK. */
	/* rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3); */

	/* Disable REG_CR before enable it to assure reset */
	rtl_write_word(rtlpriv, REG_CR, 0x0);

	/* Release MAC IO register reset */
	rtl_write_word(rtlpriv, REG_CR, 0x2ff);

	/* clear stopping tx/rx dma   */
	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0x0);

	/* rtl_write_word(rtlpriv,REG_CR+2, 0x2); */

	/* System init */
	/* 18.  LLT_table_init(Adapter);  */
710
	if (!_rtl92de_llt_table_init(hw))
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
		return false;

	/* Clear interrupt and enable interrupt */
	/* 19.  HISR 0x124[31:0] = 0xffffffff;  */
	/*      HISRE 0x12C[7:0] = 0xFF */
	rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
	rtl_write_byte(rtlpriv, REG_HISRE, 0xff);

	/* 20.  HIMR 0x120[31:0] |= [enable INT mask bit map];  */
	/* 21.  HIMRE 0x128[7:0] = [enable INT mask bit map] */
	/* The IMR should be enabled later after all init sequence
	 * is finished. */

	/* 22.  PCIE configuration space configuration */
	/* 23.  Ensure PCIe Device 0x80[15:0] = 0x0143 (ASPM+CLKREQ),  */
	/*      and PCIe gated clock function is enabled.    */
	/* PCIE configuration space will be written after
	 * all init sequence.(Or by BIOS) */

	rtl92d_phy_config_maccoexist_rfpage(hw);

	/* THe below section is not related to power document Vxx . */
	/* This is only useful for driver and OS setting. */
	/* -------------------Software Relative Setting---------------------- */
	wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
	wordtmp &= 0xf;
	wordtmp |= 0xF771;
	rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);

	/* Reported Tx status from HW for rate adaptive. */
	/* This should be realtive to power on step 14. But in document V11  */
	/* still not contain the description.!!! */
	rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F);

	/* Set Tx/Rx page size (Tx must be 128 Bytes,
	 * Rx can be 64,128,256,512,1024 bytes) */
	/* rtl_write_byte(rtlpriv,REG_PBP, 0x11); */

	/* Set RCR register */
	rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
	/* rtl_write_byte(rtlpriv,REG_RX_DRVINFO_SZ, 4); */

	/*  Set TCR register */
	rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);

	/* disable earlymode */
	rtl_write_byte(rtlpriv, 0x4d0, 0x0);

	/* Set TX/RX descriptor physical address(from OS API). */
	rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
			rtlpci->tx_ring[BEACON_QUEUE].dma);
	rtl_write_dword(rtlpriv, REG_MGQ_DESA, rtlpci->tx_ring[MGNT_QUEUE].dma);
	rtl_write_dword(rtlpriv, REG_VOQ_DESA, rtlpci->tx_ring[VO_QUEUE].dma);
	rtl_write_dword(rtlpriv, REG_VIQ_DESA, rtlpci->tx_ring[VI_QUEUE].dma);
	rtl_write_dword(rtlpriv, REG_BEQ_DESA, rtlpci->tx_ring[BE_QUEUE].dma);
	rtl_write_dword(rtlpriv, REG_BKQ_DESA, rtlpci->tx_ring[BK_QUEUE].dma);
	rtl_write_dword(rtlpriv, REG_HQ_DESA, rtlpci->tx_ring[HIGH_QUEUE].dma);
	/* Set RX Desc Address */
	rtl_write_dword(rtlpriv, REG_RX_DESA,
			rtlpci->rx_ring[RX_MPDU_QUEUE].dma);

	/* if we want to support 64 bit DMA, we should set it here,
	 * but now we do not support 64 bit DMA*/

	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, 0x33);

	/* Reset interrupt migration setting when initialization */
	rtl_write_dword(rtlpriv, REG_INT_MIG, 0);

	/* Reconsider when to do this operation after asking HWSD. */
	bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
	rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6));
	do {
		retry++;
		bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
	} while ((retry < 200) && !(bytetmp & BIT(7)));

	/* After MACIO reset,we must refresh LED state. */
	_rtl92de_gen_refresh_led_state(hw);

	/* Reset H2C protection register */
	rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);

	return true;
}

static void _rtl92de_hw_configure(struct ieee80211_hw *hw)
{
	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	u8 reg_bw_opmode = BW_OPMODE_20MHZ;
	u32 reg_rrsr;

	reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
	rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, 0x8);
	rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
	rtl_write_dword(rtlpriv, REG_RRSR, reg_rrsr);
	rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
	rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, 0x0);
	rtl_write_word(rtlpriv, REG_FWHW_TXQ_CTRL, 0x1F80);
	rtl_write_word(rtlpriv, REG_RL, 0x0707);
	rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x02012802);
	rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
	rtl_write_dword(rtlpriv, REG_DARFRC, 0x01000000);
	rtl_write_dword(rtlpriv, REG_DARFRC + 4, 0x07060504);
	rtl_write_dword(rtlpriv, REG_RARFRC, 0x01000000);
	rtl_write_dword(rtlpriv, REG_RARFRC + 4, 0x07060504);
	/* Aggregation threshold */
	if (rtlhal->macphymode == DUALMAC_DUALPHY)
		rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb9726641);
	else if (rtlhal->macphymode == DUALMAC_SINGLEPHY)
		rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x66626641);
	else
		rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0xb972a841);
	rtl_write_byte(rtlpriv, REG_ATIMWND, 0x2);
	rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0x0a);
	rtlpci->reg_bcn_ctrl_val = 0x1f;
	rtl_write_byte(rtlpriv, REG_BCN_CTRL, rtlpci->reg_bcn_ctrl_val);
	rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
	rtl_write_byte(rtlpriv, REG_PIFS, 0x1C);
	rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
	rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0020);
	/* For throughput */
	rtl_write_word(rtlpriv, REG_FAST_EDCA_CTRL, 0x6666);
	/* ACKTO for IOT issue. */
	rtl_write_byte(rtlpriv, REG_ACKTO, 0x40);
	/* Set Spec SIFS (used in NAV) */
	rtl_write_word(rtlpriv, REG_SPEC_SIFS, 0x1010);
	rtl_write_word(rtlpriv, REG_MAC_SPEC_SIFS, 0x1010);
	/* Set SIFS for CCK */
	rtl_write_word(rtlpriv, REG_SIFS_CTX, 0x1010);
	/* Set SIFS for OFDM */
	rtl_write_word(rtlpriv, REG_SIFS_TRX, 0x1010);
	/* Set Multicast Address. */
	rtl_write_dword(rtlpriv, REG_MAR, 0xffffffff);
	rtl_write_dword(rtlpriv, REG_MAR + 4, 0xffffffff);
	switch (rtlpriv->phy.rf_type) {
	case RF_1T2R:
	case RF_1T1R:
		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
		break;
	case RF_2T2R:
	case RF_2T2R_GREEN:
		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
		break;
	}
}

static void _rtl92de_enable_aspm_back_door(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));

	rtl_write_byte(rtlpriv, 0x34b, 0x93);
	rtl_write_word(rtlpriv, 0x350, 0x870c);
	rtl_write_byte(rtlpriv, 0x352, 0x1);
	if (ppsc->support_backdoor)
		rtl_write_byte(rtlpriv, 0x349, 0x1b);
	else
		rtl_write_byte(rtlpriv, 0x349, 0x03);
	rtl_write_word(rtlpriv, 0x350, 0x2718);
	rtl_write_byte(rtlpriv, 0x352, 0x1);
}

void rtl92de_enable_hw_security_config(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u8 sec_reg_value;

	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
882 883 884
		 "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
		 rtlpriv->sec.pairwise_enc_algorithm,
		 rtlpriv->sec.group_enc_algorithm);
885 886
	if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
887
			 "not open hw encryption\n");
888 889 890 891 892 893 894 895 896 897
		return;
	}
	sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
	if (rtlpriv->sec.use_defaultkey) {
		sec_reg_value |= SCR_TXUSEDK;
		sec_reg_value |= SCR_RXUSEDK;
	}
	sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
	rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
	RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
898
		 "The SECR-value %x\n", sec_reg_value);
899 900 901 902 903 904 905 906 907 908 909 910
	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
}

int rtl92de_hw_init(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
	bool rtstatus = true;
911 912
	u8 tmp_u1b;
	int i;
913 914 915 916 917 918 919 920 921 922
	int err;
	unsigned long flags;

	rtlpci->being_init_adapter = true;
	rtlpci->init_ready = false;
	spin_lock_irqsave(&globalmutex_for_power_and_efuse, flags);
	/* we should do iqk after disable/enable */
	rtl92d_phy_reset_iqk_result(hw);
	/* rtlpriv->intf_ops->disable_aspm(hw); */
	rtstatus = _rtl92de_init_mac(hw);
923
	if (!rtstatus) {
924
		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Init MAC failed\n");
925 926 927 928 929 930 931 932
		err = 1;
		spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
		return err;
	}
	err = rtl92d_download_fw(hw);
	spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
	if (err) {
		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
933
			 "Failed to download FW. Init HW without FW..\n");
934
		return 1;
935 936 937 938 939 940 941 942 943 944
	}
	rtlhal->last_hmeboxnum = 0;
	rtlpriv->psc.fw_current_inpsmode = false;

	tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
	tmp_u1b = tmp_u1b | 0x30;
	rtl_write_byte(rtlpriv, 0x605, tmp_u1b);

	if (rtlhal->earlymode_enable) {
		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
945
			 "EarlyMode Enabled!!!\n");
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987

		tmp_u1b = rtl_read_byte(rtlpriv, 0x4d0);
		tmp_u1b = tmp_u1b | 0x1f;
		rtl_write_byte(rtlpriv, 0x4d0, tmp_u1b);

		rtl_write_byte(rtlpriv, 0x4d3, 0x80);

		tmp_u1b = rtl_read_byte(rtlpriv, 0x605);
		tmp_u1b = tmp_u1b | 0x40;
		rtl_write_byte(rtlpriv, 0x605, tmp_u1b);
	}

	if (mac->rdg_en) {
		rtl_write_byte(rtlpriv, REG_RD_CTRL, 0xff);
		rtl_write_word(rtlpriv, REG_RD_NAV_NXT, 0x200);
		rtl_write_byte(rtlpriv, REG_RD_RESP_PKT_TH, 0x05);
	}

	rtl92d_phy_mac_config(hw);
	/* because last function modify RCR, so we update
	 * rcr var here, or TP will unstable for receive_config
	 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
	 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252*/
	rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR);
	rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);

	rtl92d_phy_bb_config(hw);

	rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
	/* set before initialize RF */
	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);

	/* config RF */
	rtl92d_phy_rf_config(hw);

	/* After read predefined TXT, we must set BB/MAC/RF
	 * register as our requirement */
	/* After load BB,RF params,we need do more for 92D. */
	rtl92d_update_bbrf_configuration(hw);
	/* set default value after initialize RF,  */
	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0);
	rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
988
			RF_CHNLBW, RFREG_OFFSET_MASK);
989
	rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
990
			RF_CHNLBW, RFREG_OFFSET_MASK);
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

	/*---- Set CCK and OFDM Block "ON"----*/
	if (rtlhal->current_bandtype == BAND_ON_2_4G)
		rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
	rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
	if (rtlhal->interfaceindex == 0) {
		/* RFPGA0_ANALOGPARAMETER2: cck clock select,
		 *  set to 20MHz by default */
		rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
			      BIT(11), 3);
	} else {
		/* Mac1 */
		rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(11) |
			      BIT(10), 3);
	}

	_rtl92de_hw_configure(hw);

	/* reset hw sec */
	rtl_cam_reset_all_entry(hw);
	rtl92de_enable_hw_security_config(hw);

	/* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
	/* TX power index for different rate set. */
	rtl92d_phy_get_hw_reg_originalvalue(hw);
	rtl92d_phy_set_txpower_level(hw, rtlphy->current_channel);

	ppsc->rfpwr_state = ERFON;

	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);

	_rtl92de_enable_aspm_back_door(hw);
	/* rtlpriv->intf_ops->enable_aspm(hw); */

	rtl92d_dm_init(hw);
	rtlpci->being_init_adapter = false;

	if (ppsc->rfpwr_state == ERFON) {
		rtl92d_phy_lc_calibrate(hw);
		/* 5G and 2.4G must wait sometime to let RF LO ready */
		if (rtlhal->macphymode == DUALMAC_DUALPHY) {
			u32 tmp_rega;
			for (i = 0; i < 10000; i++) {
				udelay(MAX_STALL_TIME);

				tmp_rega = rtl_get_rfreg(hw,
						  (enum radio_path)RF90_PATH_A,
1038
						  0x2a, MASKDWORD);
1039 1040 1041 1042

				if (((tmp_rega & BIT(11)) == BIT(11)))
					break;
			}
1043 1044 1045 1046 1047
			/* check that loop was successful. If not, exit now */
			if (i == 10000) {
				rtlpci->init_ready = false;
				return 1;
			}
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
		}
	}
	rtlpci->init_ready = true;
	return err;
}

static enum version_8192d _rtl92de_read_chip_version(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	enum version_8192d version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
	u32 value32;

	value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
	if (!(value32 & 0x000f0000)) {
		version = VERSION_TEST_CHIP_92D_SINGLEPHY;
1063
		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "TEST CHIP!!!\n");
1064 1065
	} else {
		version = VERSION_NORMAL_CHIP_92D_SINGLEPHY;
1066
		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Normal CHIP!!!\n");
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	}
	return version;
}

static int _rtl92de_set_media_status(struct ieee80211_hw *hw,
				     enum nl80211_iftype type)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
	enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
	u8 bcnfunc_enable;

	bt_msr &= 0xfc;

	if (type == NL80211_IFTYPE_UNSPECIFIED ||
	    type == NL80211_IFTYPE_STATION) {
		_rtl92de_stop_tx_beacon(hw);
		_rtl92de_enable_bcn_sub_func(hw);
	} else if (type == NL80211_IFTYPE_ADHOC ||
		type == NL80211_IFTYPE_AP) {
		_rtl92de_resume_tx_beacon(hw);
		_rtl92de_disable_bcn_sub_func(hw);
	} else {
		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1091 1092
			 "Set HW_VAR_MEDIA_STATUS: No such media status(%x)\n",
			 type);
1093 1094 1095 1096 1097 1098 1099 1100
	}
	bcnfunc_enable = rtl_read_byte(rtlpriv, REG_BCN_CTRL);
	switch (type) {
	case NL80211_IFTYPE_UNSPECIFIED:
		bt_msr |= MSR_NOLINK;
		ledaction = LED_CTL_LINK;
		bcnfunc_enable &= 0xF7;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1101
			 "Set Network type to NO LINK!\n");
1102 1103 1104 1105 1106
		break;
	case NL80211_IFTYPE_ADHOC:
		bt_msr |= MSR_ADHOC;
		bcnfunc_enable |= 0x08;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1107
			 "Set Network type to Ad Hoc!\n");
1108 1109 1110 1111 1112 1113
		break;
	case NL80211_IFTYPE_STATION:
		bt_msr |= MSR_INFRA;
		ledaction = LED_CTL_LINK;
		bcnfunc_enable &= 0xF7;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1114
			 "Set Network type to STA!\n");
1115 1116 1117 1118 1119
		break;
	case NL80211_IFTYPE_AP:
		bt_msr |= MSR_AP;
		bcnfunc_enable |= 0x08;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1120
			 "Set Network type to AP!\n");
1121 1122 1123
		break;
	default:
		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1124
			 "Network type %d not supported!\n", type);
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
		return 1;
		break;

	}
	rtl_write_byte(rtlpriv, REG_CR + 2, bt_msr);
	rtlpriv->cfg->ops->led_control(hw, ledaction);
	if ((bt_msr & 0xfc) == MSR_AP)
		rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
	else
		rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
	return 0;
}

void rtl92de_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
1141
	u32 reg_rcr;
1142 1143 1144

	if (rtlpriv->psc.rfpwr_state != ERFON)
		return;
1145 1146 1147

	rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));

1148
	if (check_bssid) {
1149 1150 1151
		reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
		_rtl92de_set_bcn_ctrl_reg(hw, 0, BIT(4));
1152
	} else if (!check_bssid) {
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
		reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
		_rtl92de_set_bcn_ctrl_reg(hw, BIT(4), 0);
		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
	}
}

int rtl92de_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);

	if (_rtl92de_set_media_status(hw, type))
		return -EOPNOTSUPP;

	/* check bssid */
	if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
		if (type != NL80211_IFTYPE_AP)
			rtl92de_set_check_bssid(hw, true);
	} else {
		rtl92de_set_check_bssid(hw, false);
	}
	return 0;
}

/* do iqk or reload iqk */
/* windows just rtl92d_phy_reload_iqk_setting in set channel,
 * but it's very strict for time sequence so we add
 * rtl92d_phy_reload_iqk_setting here */
void rtl92d_linked_set_reg(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	u8 indexforchannel;
	u8 channel = rtlphy->current_channel;

	indexforchannel = rtl92d_get_rightchnlplace_for_iqk(channel);
1188
	if (!rtlphy->iqk_matrix[indexforchannel].iqk_done) {
1189
		RT_TRACE(rtlpriv, COMP_SCAN | COMP_INIT, DBG_DMESG,
1190
			 "Do IQK for channel:%d\n", channel);
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
		rtl92d_phy_iq_calibrate(hw);
	}
}

/* don't set REG_EDCA_BE_PARAM here because
 * mac80211 will send pkt when scan */
void rtl92de_set_qos(struct ieee80211_hw *hw, int aci)
{
	rtl92d_dm_init_edca_turbo(hw);
}

void rtl92de_enable_interrupt(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));

	rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
	rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
}

void rtl92de_disable_interrupt(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));

	rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED);
	rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED);
	synchronize_irq(rtlpci->pdev->irq);
}

static void _rtl92de_poweroff_adapter(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	u8 u1b_tmp;
	unsigned long flags;

	rtlpriv->intf_ops->enable_aspm(hw);
	rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
	rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(3), 0);
	rtl_set_bbreg(hw, RFPGA0_XCD_RFPARAMETER, BIT(15), 0);

	/* 0x20:value 05-->04 */
	rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x04);

	/*  ==== Reset digital sequence   ====== */
	rtl92d_firmware_selfreset(hw);

	/* f.   SYS_FUNC_EN 0x03[7:0]=0x51 reset MCU, MAC register, DCORE */
	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x51);

	/* g.   MCUFWDL 0x80[1:0]=0 reset MCU ready status */
	rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);

	/*  ==== Pull GPIO PIN to balance level and LED control ====== */

	/* h.     GPIO_PIN_CTRL 0x44[31:0]=0x000  */
	rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, 0x00000000);

	/* i.    Value = GPIO_PIN_CTRL[7:0] */
	u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL);

	/* j.    GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); */
	/* write external PIN level  */
	rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL,
			0x00FF0000 | (u1b_tmp << 8));

	/* k.   GPIO_MUXCFG 0x42 [15:0] = 0x0780 */
	rtl_write_word(rtlpriv, REG_GPIO_IO_SEL, 0x0790);

	/* l.   LEDCFG 0x4C[15:0] = 0x8080 */
	rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);

	/*  ==== Disable analog sequence === */

	/* m.   AFE_PLL_CTRL[7:0] = 0x80  disable PLL */
	rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);

	/* n.   SPS0_CTRL 0x11[7:0] = 0x22  enter PFM mode */
	rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);

	/* o.   AFE_XTAL_CTRL 0x24[7:0] = 0x0E  disable XTAL, if No BT COEX */
	rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL, 0x0e);

	/* p.   RSV_CTRL 0x1C[7:0] = 0x0E lock ISO/CLK/Power control register */
	rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e);

	/*  ==== interface into suspend === */

	/* q.   APS_FSMCO[15:8] = 0x58 PCIe suspend mode */
	/* According to power document V11, we need to set this */
	/* value as 0x18. Otherwise, we may not L0s sometimes. */
	/* This indluences power consumption. Bases on SD1's test, */
	/* set as 0x00 do not affect power current. And if it */
	/* is set as 0x18, they had ever met auto load fail problem. */
	rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, 0x10);

	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1288 1289
		 "In PowerOff,reg0x%x=%X\n",
		 REG_SPS0_CTRL, rtl_read_byte(rtlpriv, REG_SPS0_CTRL));
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
	/* r.   Note: for PCIe interface, PON will not turn */
	/* off m-bias and BandGap in PCIe suspend mode.  */

	/* 0x17[7] 1b': power off in process  0b' : power off over */
	if (rtlpriv->rtlhal.macphymode != SINGLEMAC_SINGLEPHY) {
		spin_lock_irqsave(&globalmutex_power, flags);
		u1b_tmp = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
		u1b_tmp &= (~BIT(7));
		rtl_write_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS, u1b_tmp);
		spin_unlock_irqrestore(&globalmutex_power, flags);
	}

1302
	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<=======\n");
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
}

void rtl92de_card_disable(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
	enum nl80211_iftype opmode;

	mac->link_state = MAC80211_NOLINK;
	opmode = NL80211_IFTYPE_UNSPECIFIED;
	_rtl92de_set_media_status(hw, opmode);

	if (rtlpci->driver_is_goingto_unload ||
	    ppsc->rfoff_reason > RF_CHANGE_BY_PS)
		rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
	RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
	/* Power sequence for each MAC. */
	/* a. stop tx DMA  */
	/* b. close RF */
	/* c. clear rx buf */
	/* d. stop rx DMA */
	/* e.  reset MAC */

	/* a. stop tx DMA */
	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xFE);
	udelay(50);

	/* b. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */

	/* c. ========RF OFF sequence==========  */
	/* 0x88c[23:20] = 0xf. */
	rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
1337
	rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
1338 1339 1340 1341 1342

	/* APSD_CTRL 0x600[7:0] = 0x40 */
	rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);

	/* Close antenna 0,0xc04,0xd04 */
1343
	rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, MASKBYTE0, 0);
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0);

	/*  SYS_FUNC_EN 0x02[7:0] = 0xE2   reset BB state machine */
	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);

	/* Mac0 can not do Global reset. Mac1 can do. */
	/* SYS_FUNC_EN 0x02[7:0] = 0xE0  reset BB state machine  */
	if (rtlpriv->rtlhal.interfaceindex == 1)
		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE0);
	udelay(50);

	/* d.  stop tx/rx dma before disable REG_CR (0x100) to fix */
	/* dma hang issue when disable/enable device.  */
	rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 1, 0xff);
	udelay(50);
	rtl_write_byte(rtlpriv, REG_CR, 0x0);
1360
	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==> Do power off.......\n");
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
	if (rtl92d_phy_check_poweroff(hw))
		_rtl92de_poweroff_adapter(hw);
	return;
}

void rtl92de_interrupt_recognized(struct ieee80211_hw *hw,
				  u32 *p_inta, u32 *p_intb)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));

	*p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
	rtl_write_dword(rtlpriv, ISR, *p_inta);

	/*
	 * *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1];
	 * rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
	 */
}

void rtl92de_set_beacon_related_registers(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
	u16 bcn_interval, atim_window;

	bcn_interval = mac->beacon_interval;
	atim_window = 2;
	/*rtl92de_disable_interrupt(hw);  */
	rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
	rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
	rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
	rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x20);
	if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G)
		rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x30);
	else
		rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x20);
	rtl_write_byte(rtlpriv, 0x606, 0x30);
}

void rtl92de_set_beacon_interval(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
	u16 bcn_interval = mac->beacon_interval;

	RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
1408
		 "beacon_interval:%d\n", bcn_interval);
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
	/* rtl92de_disable_interrupt(hw); */
	rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
	/* rtl92de_enable_interrupt(hw); */
}

void rtl92de_update_interrupt_mask(struct ieee80211_hw *hw,
				   u32 add_msr, u32 rm_msr)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));

1420 1421
	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
		 add_msr, rm_msr);
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
	if (add_msr)
		rtlpci->irq_mask[0] |= add_msr;
	if (rm_msr)
		rtlpci->irq_mask[0] &= (~rm_msr);
	rtl92de_disable_interrupt(hw);
	rtl92de_enable_interrupt(hw);
}

static void _rtl92de_readpowervalue_fromprom(struct txpower_info *pwrinfo,
				 u8 *rom_content, bool autoLoadfail)
{
	u32 rfpath, eeaddr, group, offset1, offset2;
	u8 i;

	memset(pwrinfo, 0, sizeof(struct txpower_info));
	if (autoLoadfail) {
		for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
			for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
				if (group < CHANNEL_GROUP_MAX_2G) {
					pwrinfo->cck_index[rfpath][group] =
					    EEPROM_DEFAULT_TXPOWERLEVEL_2G;
					pwrinfo->ht40_1sindex[rfpath][group] =
					    EEPROM_DEFAULT_TXPOWERLEVEL_2G;
				} else {
					pwrinfo->ht40_1sindex[rfpath][group] =
					    EEPROM_DEFAULT_TXPOWERLEVEL_5G;
				}
				pwrinfo->ht40_2sindexdiff[rfpath][group] =
				    EEPROM_DEFAULT_HT40_2SDIFF;
				pwrinfo->ht20indexdiff[rfpath][group] =
				    EEPROM_DEFAULT_HT20_DIFF;
				pwrinfo->ofdmindexdiff[rfpath][group] =
				    EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
				pwrinfo->ht40maxoffset[rfpath][group] =
				    EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
				pwrinfo->ht20maxoffset[rfpath][group] =
				    EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
			}
		}
		for (i = 0; i < 3; i++) {
			pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
			pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
		}
		return;
	}

	/* Maybe autoload OK,buf the tx power index value is not filled.
	 * If we find it, we set it to default value. */
	for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
		for (group = 0; group < CHANNEL_GROUP_MAX_2G; group++) {
			eeaddr = EEPROM_CCK_TX_PWR_INX_2G + (rfpath * 3)
				 + group;
			pwrinfo->cck_index[rfpath][group] =
					(rom_content[eeaddr] == 0xFF) ?
					     (eeaddr > 0x7B ?
					     EEPROM_DEFAULT_TXPOWERLEVEL_5G :
					     EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
					     rom_content[eeaddr];
		}
	}
	for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
		for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
			offset1 = group / 3;
			offset2 = group % 3;
			eeaddr = EEPROM_HT40_1S_TX_PWR_INX_2G + (rfpath * 3) +
			    offset2 + offset1 * 21;
			pwrinfo->ht40_1sindex[rfpath][group] =
			    (rom_content[eeaddr] == 0xFF) ? (eeaddr > 0x7B ?
					     EEPROM_DEFAULT_TXPOWERLEVEL_5G :
					     EEPROM_DEFAULT_TXPOWERLEVEL_2G) :
						 rom_content[eeaddr];
		}
	}
	/* These just for 92D efuse offset. */
	for (group = 0; group < CHANNEL_GROUP_MAX; group++) {
		for (rfpath = 0; rfpath < RF6052_MAX_PATH; rfpath++) {
			int base1 = EEPROM_HT40_2S_TX_PWR_INX_DIFF_2G;

			offset1 = group / 3;
			offset2 = group % 3;

			if (rom_content[base1 + offset2 + offset1 * 21] != 0xFF)
				pwrinfo->ht40_2sindexdiff[rfpath][group] =
				    (rom_content[base1 +
				     offset2 + offset1 * 21] >> (rfpath * 4))
				     & 0xF;
			else
				pwrinfo->ht40_2sindexdiff[rfpath][group] =
				    EEPROM_DEFAULT_HT40_2SDIFF;
			if (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G + offset2
			    + offset1 * 21] != 0xFF)
				pwrinfo->ht20indexdiff[rfpath][group] =
				    (rom_content[EEPROM_HT20_TX_PWR_INX_DIFF_2G
				    + offset2 + offset1 * 21] >> (rfpath * 4))
				    & 0xF;
			else
				pwrinfo->ht20indexdiff[rfpath][group] =
				    EEPROM_DEFAULT_HT20_DIFF;
			if (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G + offset2
			    + offset1 * 21] != 0xFF)
				pwrinfo->ofdmindexdiff[rfpath][group] =
				    (rom_content[EEPROM_OFDM_TX_PWR_INX_DIFF_2G
				     + offset2 + offset1 * 21] >> (rfpath * 4))
				     & 0xF;
			else
				pwrinfo->ofdmindexdiff[rfpath][group] =
				    EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
			if (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G + offset2
			    + offset1 * 21] != 0xFF)
				pwrinfo->ht40maxoffset[rfpath][group] =
				    (rom_content[EEPROM_HT40_MAX_PWR_OFFSET_2G
				    + offset2 + offset1 * 21] >> (rfpath * 4))
				    & 0xF;
			else
				pwrinfo->ht40maxoffset[rfpath][group] =
				    EEPROM_DEFAULT_HT40_PWRMAXOFFSET;
			if (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G + offset2
			    + offset1 * 21] != 0xFF)
				pwrinfo->ht20maxoffset[rfpath][group] =
				    (rom_content[EEPROM_HT20_MAX_PWR_OFFSET_2G +
				     offset2 + offset1 * 21] >> (rfpath * 4)) &
				     0xF;
			else
				pwrinfo->ht20maxoffset[rfpath][group] =
				    EEPROM_DEFAULT_HT20_PWRMAXOFFSET;
		}
	}
	if (rom_content[EEPROM_TSSI_A_5G] != 0xFF) {
		/* 5GL */
		pwrinfo->tssi_a[0] = rom_content[EEPROM_TSSI_A_5G] & 0x3F;
		pwrinfo->tssi_b[0] = rom_content[EEPROM_TSSI_B_5G] & 0x3F;
		/* 5GM */
		pwrinfo->tssi_a[1] = rom_content[EEPROM_TSSI_AB_5G] & 0x3F;
		pwrinfo->tssi_b[1] =
		    (rom_content[EEPROM_TSSI_AB_5G] & 0xC0) >> 6 |
		    (rom_content[EEPROM_TSSI_AB_5G + 1] & 0x0F) << 2;
		/* 5GH */
		pwrinfo->tssi_a[2] = (rom_content[EEPROM_TSSI_AB_5G + 1] &
				      0xF0) >> 4 |
		    (rom_content[EEPROM_TSSI_AB_5G + 2] & 0x03) << 4;
		pwrinfo->tssi_b[2] = (rom_content[EEPROM_TSSI_AB_5G + 2] &
				      0xFC) >> 2;
	} else {
		for (i = 0; i < 3; i++) {
			pwrinfo->tssi_a[i] = EEPROM_DEFAULT_TSSI;
			pwrinfo->tssi_b[i] = EEPROM_DEFAULT_TSSI;
		}
	}
}

static void _rtl92de_read_txpower_info(struct ieee80211_hw *hw,
				       bool autoload_fail, u8 *hwinfo)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
	struct txpower_info pwrinfo;
	u8 tempval[2], i, pwr, diff;
	u32 ch, rfPath, group;

	_rtl92de_readpowervalue_fromprom(&pwrinfo, hwinfo, autoload_fail);
	if (!autoload_fail) {
		/* bit0~2 */
		rtlefuse->eeprom_regulatory = (hwinfo[EEPROM_RF_OPT1] & 0x7);
		rtlefuse->eeprom_thermalmeter =
			 hwinfo[EEPROM_THERMAL_METER] & 0x1f;
		rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_K];
		tempval[0] = hwinfo[EEPROM_IQK_DELTA] & 0x03;
		tempval[1] = (hwinfo[EEPROM_LCK_DELTA] & 0x0C) >> 2;
		rtlefuse->txpwr_fromeprom = true;
1591 1592
		if (IS_92D_D_CUT(rtlpriv->rtlhal.version) ||
		    IS_92D_E_CUT(rtlpriv->rtlhal.version)) {
1593
			rtlefuse->internal_pa_5g[0] =
1594
				!((hwinfo[EEPROM_TSSI_A_5G] & BIT(6)) >> 6);
1595
			rtlefuse->internal_pa_5g[1] =
1596 1597
				!((hwinfo[EEPROM_TSSI_B_5G] & BIT(6)) >> 6);
			RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
1598
				 "Is D cut,Internal PA0 %d Internal PA1 %d\n",
1599
				 rtlefuse->internal_pa_5g[0],
1600
				 rtlefuse->internal_pa_5g[1]);
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
		}
		rtlefuse->eeprom_c9 = hwinfo[EEPROM_RF_OPT6];
		rtlefuse->eeprom_cc = hwinfo[EEPROM_RF_OPT7];
	} else {
		rtlefuse->eeprom_regulatory = 0;
		rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
		rtlefuse->crystalcap = EEPROM_DEFAULT_CRYSTALCAP;
		tempval[0] = tempval[1] = 3;
	}

	/* Use default value to fill parameters if
	 * efuse is not filled on some place. */

	/* ThermalMeter from EEPROM */
	if (rtlefuse->eeprom_thermalmeter < 0x06 ||
	    rtlefuse->eeprom_thermalmeter > 0x1c)
		rtlefuse->eeprom_thermalmeter = 0x12;
	rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;

	/* check XTAL_K */
	if (rtlefuse->crystalcap == 0xFF)
		rtlefuse->crystalcap = 0;
	if (rtlefuse->eeprom_regulatory > 3)
		rtlefuse->eeprom_regulatory = 0;

	for (i = 0; i < 2; i++) {
		switch (tempval[i]) {
		case 0:
			tempval[i] = 5;
			break;
		case 1:
			tempval[i] = 4;
			break;
		case 2:
			tempval[i] = 3;
			break;
		case 3:
		default:
			tempval[i] = 0;
			break;
		}
	}

	rtlefuse->delta_iqk = tempval[0];
	if (tempval[1] > 0)
		rtlefuse->delta_lck = tempval[1] - 1;
	if (rtlefuse->eeprom_c9 == 0xFF)
		rtlefuse->eeprom_c9 = 0x00;
	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1650
		 "EEPROMRegulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
1651
	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1652
		 "ThermalMeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
1653
	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1654
		 "CrystalCap = 0x%x\n", rtlefuse->crystalcap);
1655
	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
1656 1657
		 "Delta_IQK = 0x%x Delta_LCK = 0x%x\n",
		 rtlefuse->delta_iqk, rtlefuse->delta_lck);
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692

	for (rfPath = 0; rfPath < RF6052_MAX_PATH; rfPath++) {
		for (ch = 0; ch < CHANNEL_MAX_NUMBER; ch++) {
			group = rtl92d_get_chnlgroup_fromarray((u8) ch);
			if (ch < CHANNEL_MAX_NUMBER_2G)
				rtlefuse->txpwrlevel_cck[rfPath][ch] =
				    pwrinfo.cck_index[rfPath][group];
			rtlefuse->txpwrlevel_ht40_1s[rfPath][ch] =
				    pwrinfo.ht40_1sindex[rfPath][group];
			rtlefuse->txpwr_ht20diff[rfPath][ch] =
				    pwrinfo.ht20indexdiff[rfPath][group];
			rtlefuse->txpwr_legacyhtdiff[rfPath][ch] =
				    pwrinfo.ofdmindexdiff[rfPath][group];
			rtlefuse->pwrgroup_ht20[rfPath][ch] =
				    pwrinfo.ht20maxoffset[rfPath][group];
			rtlefuse->pwrgroup_ht40[rfPath][ch] =
				    pwrinfo.ht40maxoffset[rfPath][group];
			pwr = pwrinfo.ht40_1sindex[rfPath][group];
			diff = pwrinfo.ht40_2sindexdiff[rfPath][group];
			rtlefuse->txpwrlevel_ht40_2s[rfPath][ch] =
				    (pwr > diff) ? (pwr - diff) : 0;
		}
	}
}

static void _rtl92de_read_macphymode_from_prom(struct ieee80211_hw *hw,
					       u8 *content)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	u8 macphy_crvalue = content[EEPROM_MAC_FUNCTION];

	if (macphy_crvalue & BIT(3)) {
		rtlhal->macphymode = SINGLEMAC_SINGLEPHY;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1693
			 "MacPhyMode SINGLEMAC_SINGLEPHY\n");
1694 1695 1696
	} else {
		rtlhal->macphymode = DUALMAC_DUALPHY;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1697
			 "MacPhyMode DUALMAC_DUALPHY\n");
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	}
}

static void _rtl92de_read_macphymode_and_bandtype(struct ieee80211_hw *hw,
						  u8 *content)
{
	_rtl92de_read_macphymode_from_prom(hw, content);
	rtl92d_phy_config_macphymode(hw);
	rtl92d_phy_config_macphymode_info(hw);
}

static void _rtl92de_efuse_update_chip_version(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	enum version_8192d chipver = rtlpriv->rtlhal.version;
	u8 cutvalue[2];
	u16 chipvalue;

	rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_H,
					   &cutvalue[1]);
	rtlpriv->intf_ops->read_efuse_byte(hw, EEPROME_CHIP_VERSION_L,
					   &cutvalue[0]);
	chipvalue = (cutvalue[1] << 8) | cutvalue[0];
	switch (chipvalue) {
	case 0xAA55:
		chipver |= CHIP_92D_C_CUT;
1724
		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "C-CUT!!!\n");
1725 1726 1727
		break;
	case 0x9966:
		chipver |= CHIP_92D_D_CUT;
1728
		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "D-CUT!!!\n");
1729
		break;
1730 1731 1732 1733
	case 0xCC33:
		chipver |= CHIP_92D_E_CUT;
		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "E-CUT!!!\n");
		break;
1734 1735
	default:
		chipver |= CHIP_92D_D_CUT;
1736
		RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "Unknown CUT!\n");
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
		break;
	}
	rtlpriv->rtlhal.version = chipver;
}

static void _rtl92de_read_adapter_info(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	u16 i, usvalue;
	u8 hwinfo[HWSET_MAX_SIZE];
	u16 eeprom_id;
	unsigned long flags;

	if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
		spin_lock_irqsave(&globalmutex_for_power_and_efuse, flags);
		rtl_efuse_shadow_map_update(hw);
		_rtl92de_efuse_update_chip_version(hw);
		spin_unlock_irqrestore(&globalmutex_for_power_and_efuse, flags);
		memcpy((void *)hwinfo, (void *)&rtlefuse->efuse_map
		       [EFUSE_INIT_MAP][0],
		       HWSET_MAX_SIZE);
	} else if (rtlefuse->epromtype == EEPROM_93C46) {
		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1762
			 "RTL819X Not boot from eeprom, check it !!\n");
1763
	}
1764
	RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1765 1766 1767 1768 1769
		      hwinfo, HWSET_MAX_SIZE);

	eeprom_id = *((u16 *)&hwinfo[0]);
	if (eeprom_id != RTL8190_EEPROM_ID) {
		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1770
			 "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1771 1772
		rtlefuse->autoload_failflag = true;
	} else {
1773
		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1774 1775
		rtlefuse->autoload_failflag = false;
	}
1776
	if (rtlefuse->autoload_failflag) {
1777
		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1778
			 "RTL819X Not boot from eeprom, check it !!\n");
1779 1780
		return;
	}
1781
	rtlefuse->eeprom_oemid = hwinfo[EEPROM_CUSTOMER_ID];
1782 1783 1784 1785 1786 1787 1788
	_rtl92de_read_macphymode_and_bandtype(hw, hwinfo);

	/* VID, DID  SE     0xA-D */
	rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
	rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
	rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
	rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
1789
	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROMId = 0x%4x\n", eeprom_id);
1790
	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1791
		 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1792
	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1793
		 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1794
	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1795
		 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1796
	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1797
		 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812

	/* Read Permanent MAC address */
	if (rtlhal->interfaceindex == 0) {
		for (i = 0; i < 6; i += 2) {
			usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR_MAC0_92D + i];
			*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
		}
	} else {
		for (i = 0; i < 6; i += 2) {
			usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR_MAC1_92D + i];
			*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
		}
	}
	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR,
				      rtlefuse->dev_addr);
1813
	RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
	_rtl92de_read_txpower_info(hw, rtlefuse->autoload_failflag, hwinfo);

	/* Read Channel Plan */
	switch (rtlhal->bandset) {
	case BAND_ON_2_4G:
		rtlefuse->channel_plan = COUNTRY_CODE_TELEC;
		break;
	case BAND_ON_5G:
		rtlefuse->channel_plan = COUNTRY_CODE_FCC;
		break;
	case BAND_ON_BOTH:
		rtlefuse->channel_plan = COUNTRY_CODE_FCC;
		break;
	default:
		rtlefuse->channel_plan = COUNTRY_CODE_FCC;
		break;
	}
	rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
	rtlefuse->txpwr_fromeprom = true;
	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1834
		 "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
}

void rtl92de_read_eeprom_info(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	u8 tmp_u1b;

	rtlhal->version = _rtl92de_read_chip_version(hw);
	tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
	rtlefuse->autoload_status = tmp_u1b;
	if (tmp_u1b & BIT(4)) {
1848
		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
1849 1850
		rtlefuse->epromtype = EEPROM_93C46;
	} else {
1851
		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
1852 1853 1854
		rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
	}
	if (tmp_u1b & BIT(5)) {
1855
		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1856 1857 1858 1859

		rtlefuse->autoload_failflag = false;
		_rtl92de_read_adapter_info(hw);
	} else {
1860
		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
	}
	return;
}

static void rtl92de_update_hal_rate_table(struct ieee80211_hw *hw,
					  struct ieee80211_sta *sta)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	u32 ratr_value;
	u8 ratr_index = 0;
	u8 nmode = mac->ht_enable;
	u8 mimo_ps = IEEE80211_SMPS_OFF;
	u16 shortgi_rate;
	u32 tmp_ratr_value;
	u8 curtxbw_40mhz = mac->bw_40;
	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
							1 : 0;
	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
							1 : 0;
	enum wireless_mode wirelessmode = mac->mode;

	if (rtlhal->current_bandtype == BAND_ON_5G)
		ratr_value = sta->supp_rates[1] << 4;
	else
		ratr_value = sta->supp_rates[0];
	ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
		       sta->ht_cap.mcs.rx_mask[0] << 12);
	switch (wirelessmode) {
	case WIRELESS_MODE_A:
		ratr_value &= 0x00000FF0;
		break;
	case WIRELESS_MODE_B:
		if (ratr_value & 0x0000000c)
			ratr_value &= 0x0000000d;
		else
			ratr_value &= 0x0000000f;
		break;
	case WIRELESS_MODE_G:
		ratr_value &= 0x00000FF5;
		break;
	case WIRELESS_MODE_N_24G:
	case WIRELESS_MODE_N_5G:
		nmode = 1;
		if (mimo_ps == IEEE80211_SMPS_STATIC) {
			ratr_value &= 0x0007F005;
		} else {
			u32 ratr_mask;

			if (get_rf_type(rtlphy) == RF_1T2R ||
			    get_rf_type(rtlphy) == RF_1T1R) {
				ratr_mask = 0x000ff005;
			} else {
				ratr_mask = 0x0f0ff005;
			}

			ratr_value &= ratr_mask;
		}
		break;
	default:
		if (rtlphy->rf_type == RF_1T2R)
			ratr_value &= 0x000ff0ff;
		else
			ratr_value &= 0x0f0ff0ff;

		break;
	}
	ratr_value &= 0x0FFFFFFF;
	if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) ||
	    (!curtxbw_40mhz && curshortgi_20mhz))) {
		ratr_value |= 0x10000000;
		tmp_ratr_value = (ratr_value >> 12);
		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
			if ((1 << shortgi_rate) & tmp_ratr_value)
				break;
		}
		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
		    (shortgi_rate << 4) | (shortgi_rate);
	}
	rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
1943 1944
	RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
		 rtl_read_dword(rtlpriv, REG_ARFR0));
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
}

static void rtl92de_update_hal_rate_mask(struct ieee80211_hw *hw,
		struct ieee80211_sta *sta, u8 rssi_level)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_phy *rtlphy = &(rtlpriv->phy);
	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
	struct rtl_sta_info *sta_entry = NULL;
	u32 ratr_bitmap;
	u8 ratr_index;
1957
	u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
							1 : 0;
	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
							1 : 0;
	enum wireless_mode wirelessmode = 0;
	bool shortgi = false;
	u32 value[2];
	u8 macid = 0;
	u8 mimo_ps = IEEE80211_SMPS_OFF;

	sta_entry = (struct rtl_sta_info *) sta->drv_priv;
	mimo_ps = sta_entry->mimo_ps;
	wirelessmode = sta_entry->wireless_mode;
	if (mac->opmode == NL80211_IFTYPE_STATION)
		curtxbw_40mhz = mac->bw_40;
	else if (mac->opmode == NL80211_IFTYPE_AP ||
		mac->opmode == NL80211_IFTYPE_ADHOC)
		macid = sta->aid + 1;

	if (rtlhal->current_bandtype == BAND_ON_5G)
		ratr_bitmap = sta->supp_rates[1] << 4;
	else
		ratr_bitmap = sta->supp_rates[0];
	ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
			sta->ht_cap.mcs.rx_mask[0] << 12);
	switch (wirelessmode) {
	case WIRELESS_MODE_B:
		ratr_index = RATR_INX_WIRELESS_B;
		if (ratr_bitmap & 0x0000000c)
			ratr_bitmap &= 0x0000000d;
		else
			ratr_bitmap &= 0x0000000f;
		break;
	case WIRELESS_MODE_G:
		ratr_index = RATR_INX_WIRELESS_GB;

		if (rssi_level == 1)
			ratr_bitmap &= 0x00000f00;
		else if (rssi_level == 2)
			ratr_bitmap &= 0x00000ff0;
		else
			ratr_bitmap &= 0x00000ff5;
		break;
	case WIRELESS_MODE_A:
		ratr_index = RATR_INX_WIRELESS_G;
		ratr_bitmap &= 0x00000ff0;
		break;
	case WIRELESS_MODE_N_24G:
	case WIRELESS_MODE_N_5G:
		if (wirelessmode == WIRELESS_MODE_N_24G)
			ratr_index = RATR_INX_WIRELESS_NGB;
		else
			ratr_index = RATR_INX_WIRELESS_NG;
		if (mimo_ps == IEEE80211_SMPS_STATIC) {
			if (rssi_level == 1)
				ratr_bitmap &= 0x00070000;
			else if (rssi_level == 2)
				ratr_bitmap &= 0x0007f000;
			else
				ratr_bitmap &= 0x0007f005;
		} else {
			if (rtlphy->rf_type == RF_1T2R ||
			    rtlphy->rf_type == RF_1T1R) {
				if (curtxbw_40mhz) {
					if (rssi_level == 1)
						ratr_bitmap &= 0x000f0000;
					else if (rssi_level == 2)
						ratr_bitmap &= 0x000ff000;
					else
						ratr_bitmap &= 0x000ff015;
				} else {
					if (rssi_level == 1)
						ratr_bitmap &= 0x000f0000;
					else if (rssi_level == 2)
						ratr_bitmap &= 0x000ff000;
					else
						ratr_bitmap &= 0x000ff005;
				}
			} else {
				if (curtxbw_40mhz) {
					if (rssi_level == 1)
						ratr_bitmap &= 0x0f0f0000;
					else if (rssi_level == 2)
						ratr_bitmap &= 0x0f0ff000;
					else
						ratr_bitmap &= 0x0f0ff015;
				} else {
					if (rssi_level == 1)
						ratr_bitmap &= 0x0f0f0000;
					else if (rssi_level == 2)
						ratr_bitmap &= 0x0f0ff000;
					else
						ratr_bitmap &= 0x0f0ff005;
				}
			}
		}
		if ((curtxbw_40mhz && curshortgi_40mhz) ||
		    (!curtxbw_40mhz && curshortgi_20mhz)) {

			if (macid == 0)
				shortgi = true;
			else if (macid == 1)
				shortgi = false;
		}
		break;
	default:
		ratr_index = RATR_INX_WIRELESS_NGB;

		if (rtlphy->rf_type == RF_1T2R)
			ratr_bitmap &= 0x000ff0ff;
		else
			ratr_bitmap &= 0x0f0ff0ff;
		break;
	}

	value[0] = (ratr_bitmap & 0x0fffffff) | (ratr_index << 28);
	value[1] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
	RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
2076 2077
		 "ratr_bitmap :%x value0:%x value1:%x\n",
		 ratr_bitmap, value[0], value[1]);
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
	rtl92d_fill_h2c_cmd(hw, H2C_RA_MASK, 5, (u8 *) value);
	if (macid != 0)
		sta_entry->ratr_index = ratr_index;
}

void rtl92de_update_hal_rate_tbl(struct ieee80211_hw *hw,
		struct ieee80211_sta *sta, u8 rssi_level)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);

	if (rtlpriv->dm.useramask)
		rtl92de_update_hal_rate_mask(hw, sta, rssi_level);
	else
		rtl92de_update_hal_rate_table(hw, sta);
}

void rtl92de_update_channel_access_setting(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
	u16 sifs_timer;

	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2101
				      &mac->slot_time);
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
	if (!mac->ht_enable)
		sifs_timer = 0x0a0a;
	else
		sifs_timer = 0x1010;
	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
}

bool rtl92de_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
	enum rf_pwrstate e_rfpowerstate_toset;
	u8 u1tmp;
	bool actuallyset = false;
	unsigned long flag;

	if (rtlpci->being_init_adapter)
		return false;
	if (ppsc->swrf_processing)
		return false;
	spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
	if (ppsc->rfchange_inprogress) {
		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
		return false;
	} else {
		ppsc->rfchange_inprogress = true;
		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
	}
	rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG, rtl_read_byte(rtlpriv,
			  REG_MAC_PINMUX_CFG) & ~(BIT(3)));
	u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
	e_rfpowerstate_toset = (u1tmp & BIT(3)) ? ERFON : ERFOFF;
2135
	if (ppsc->hwradiooff && (e_rfpowerstate_toset == ERFON)) {
2136
		RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2137
			 "GPIOChangeRF  - HW Radio ON, RF ON\n");
2138 2139 2140
		e_rfpowerstate_toset = ERFON;
		ppsc->hwradiooff = false;
		actuallyset = true;
2141
	} else if (!ppsc->hwradiooff && (e_rfpowerstate_toset == ERFOFF)) {
2142
		RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2143
			 "GPIOChangeRF  - HW Radio OFF, RF OFF\n");
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
		e_rfpowerstate_toset = ERFOFF;
		ppsc->hwradiooff = true;
		actuallyset = true;
	}
	if (actuallyset) {
		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
		ppsc->rfchange_inprogress = false;
		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
	} else {
		if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
			RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
		ppsc->rfchange_inprogress = false;
		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
	}
	*valid = 1;
	return !ppsc->hwradiooff;
}

void rtl92de_set_key(struct ieee80211_hw *hw, u32 key_index,
		     u8 *p_macaddr, bool is_group, u8 enc_algo,
		     bool is_wepkey, bool clear_all)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);
	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
	u8 *macaddr = p_macaddr;
	u32 entry_id;
	bool is_pairwise = false;
	static u8 cam_const_addr[4][6] = {
		{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
		{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
		{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
		{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
	};
	static u8 cam_const_broad[] = {
		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
	};

	if (clear_all) {
		u8 idx;
		u8 cam_offset = 0;
		u8 clear_number = 5;
2187
		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
		for (idx = 0; idx < clear_number; idx++) {
			rtl_cam_mark_invalid(hw, cam_offset + idx);
			rtl_cam_empty_entry(hw, cam_offset + idx);

			if (idx < 5) {
				memset(rtlpriv->sec.key_buf[idx], 0,
				       MAX_KEY_LEN);
				rtlpriv->sec.key_len[idx] = 0;
			}
		}
	} else {
		switch (enc_algo) {
		case WEP40_ENCRYPTION:
			enc_algo = CAM_WEP40;
			break;
		case WEP104_ENCRYPTION:
			enc_algo = CAM_WEP104;
			break;
		case TKIP_ENCRYPTION:
			enc_algo = CAM_TKIP;
			break;
		case AESCCMP_ENCRYPTION:
			enc_algo = CAM_AES;
			break;
		default:
2213 2214
			RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
				 "switch case not processed\n");
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
			enc_algo = CAM_TKIP;
			break;
		}
		if (is_wepkey || rtlpriv->sec.use_defaultkey) {
			macaddr = cam_const_addr[key_index];
			entry_id = key_index;
		} else {
			if (is_group) {
				macaddr = cam_const_broad;
				entry_id = key_index;
			} else {
				if (mac->opmode == NL80211_IFTYPE_AP) {
					entry_id = rtl_cam_get_free_entry(hw,
								 p_macaddr);
					if (entry_id >=  TOTAL_CAM_ENTRY) {
						RT_TRACE(rtlpriv, COMP_SEC,
2231 2232
							 DBG_EMERG,
							 "Can not find free hw security cam entry\n");
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
						return;
					}
				} else {
					entry_id = CAM_PAIRWISE_KEY_POSITION;
				}
				key_index = PAIRWISE_KEYIDX;
				is_pairwise = true;
			}
		}
		if (rtlpriv->sec.key_len[key_index] == 0) {
			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2244 2245
				 "delete one entry, entry_id is %d\n",
				 entry_id);
2246 2247 2248 2249 2250
			if (mac->opmode == NL80211_IFTYPE_AP)
				rtl_cam_del_entry(hw, p_macaddr);
			rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
		} else {
			RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
2251 2252
				 "The insert KEY length is %d\n",
				 rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
2253
			RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
2254 2255 2256
				 "The insert KEY is %x %x\n",
				 rtlpriv->sec.key_buf[0][0],
				 rtlpriv->sec.key_buf[0][1]);
2257
			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2258
				 "add one entry\n");
2259 2260
			if (is_pairwise) {
				RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
2261
					      "Pairwise Key content",
2262 2263 2264 2265
					      rtlpriv->sec.pairwise_key,
					      rtlpriv->
					      sec.key_len[PAIRWISE_KEYIDX]);
				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2266
					 "set Pairwise key\n");
2267 2268 2269 2270 2271 2272 2273
				rtl_cam_add_one_entry(hw, macaddr, key_index,
						      entry_id, enc_algo,
						      CAM_CONFIG_NO_USEDK,
						      rtlpriv->
						      sec.key_buf[key_index]);
			} else {
				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2274
					 "set group key\n");
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
				if (mac->opmode == NL80211_IFTYPE_ADHOC) {
					rtl_cam_add_one_entry(hw,
						rtlefuse->dev_addr,
						PAIRWISE_KEYIDX,
						CAM_PAIRWISE_KEY_POSITION,
						enc_algo, CAM_CONFIG_NO_USEDK,
						rtlpriv->sec.key_buf[entry_id]);
				}
				rtl_cam_add_one_entry(hw, macaddr, key_index,
						entry_id, enc_algo,
						CAM_CONFIG_NO_USEDK,
						rtlpriv->sec.key_buf
						[entry_id]);
			}
		}
	}
}

void rtl92de_suspend(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);

	rtlpriv->rtlhal.macphyctl_reg = rtl_read_byte(rtlpriv,
		REG_MAC_PHY_CTRL_NORMAL);
}

void rtl92de_resume(struct ieee80211_hw *hw)
{
	struct rtl_priv *rtlpriv = rtl_priv(hw);

	rtl_write_byte(rtlpriv, REG_MAC_PHY_CTRL_NORMAL,
		       rtlpriv->rtlhal.macphyctl_reg);
}