ixp4xx_crypto.c 40 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * Intel IXP4xx NPE-C crypto driver
 *
 * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
 */

#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/crypto.h>
#include <linux/kernel.h>
#include <linux/rtnetlink.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
16
#include <linux/gfp.h>
17
#include <linux/module.h>
18
#include <linux/of.h>
19 20

#include <crypto/ctr.h>
21
#include <crypto/internal/des.h>
22
#include <crypto/aes.h>
23
#include <crypto/hmac.h>
24
#include <crypto/sha1.h>
25
#include <crypto/algapi.h>
26
#include <crypto/internal/aead.h>
27
#include <crypto/internal/skcipher.h>
28 29 30
#include <crypto/authenc.h>
#include <crypto/scatterwalk.h>

31 32
#include <linux/soc/ixp4xx/npe.h>
#include <linux/soc/ixp4xx/qmgr.h>
33

34 35 36
/* Intermittent includes, delete this after v5.14-rc1 */
#include <linux/soc/ixp4xx/cpu.h>

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
#define MAX_KEYLEN 32

/* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
#define NPE_CTX_LEN 80
#define AES_BLOCK128 16

#define NPE_OP_HASH_VERIFY   0x01
#define NPE_OP_CCM_ENABLE    0x04
#define NPE_OP_CRYPT_ENABLE  0x08
#define NPE_OP_HASH_ENABLE   0x10
#define NPE_OP_NOT_IN_PLACE  0x20
#define NPE_OP_HMAC_DISABLE  0x40
#define NPE_OP_CRYPT_ENCRYPT 0x80

#define NPE_OP_CCM_GEN_MIC   0xcc
#define NPE_OP_HASH_GEN_ICV  0x50
#define NPE_OP_ENC_GEN_KEY   0xc9

#define MOD_ECB     0x0000
#define MOD_CTR     0x1000
#define MOD_CBC_ENC 0x2000
#define MOD_CBC_DEC 0x3000
#define MOD_CCM_ENC 0x4000
#define MOD_CCM_DEC 0x5000

#define KEYLEN_128  4
#define KEYLEN_192  6
#define KEYLEN_256  8

#define CIPH_DECR   0x0000
#define CIPH_ENCR   0x0400

#define MOD_DES     0x0000
#define MOD_TDEA2   0x0100
#define MOD_3DES   0x0200
#define MOD_AES     0x0800
#define MOD_AES128  (0x0800 | KEYLEN_128)
#define MOD_AES192  (0x0900 | KEYLEN_192)
#define MOD_AES256  (0x0a00 | KEYLEN_256)

#define MAX_IVLEN   16
#define NPE_QLEN    16
/* Space for registering when the first
 * NPE_QLEN crypt_ctl are busy */
#define NPE_QLEN_TOTAL 64

#define CTL_FLAG_UNUSED		0x0000
#define CTL_FLAG_USED		0x1000
#define CTL_FLAG_PERFORM_ABLK	0x0001
#define CTL_FLAG_GEN_ICV	0x0002
#define CTL_FLAG_GEN_REVAES	0x0004
#define CTL_FLAG_PERFORM_AEAD	0x0008
#define CTL_FLAG_MASK		0x000f

#define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE

#define MD5_DIGEST_SIZE   16

struct buffer_desc {
	u32 phys_next;
97
#ifdef __ARMEB__
98 99
	u16 buf_len;
	u16 pkt_len;
100 101 102 103
#else
	u16 pkt_len;
	u16 buf_len;
#endif
104
	dma_addr_t phys_addr;
105 106
	u32 __reserved[4];
	struct buffer_desc *next;
107
	enum dma_data_direction dir;
108 109 110
};

struct crypt_ctl {
111
#ifdef __ARMEB__
112 113 114
	u8 mode;		/* NPE_OP_*  operation mode */
	u8 init_len;
	u16 reserved;
115 116 117 118 119
#else
	u16 reserved;
	u8 init_len;
	u8 mode;		/* NPE_OP_*  operation mode */
#endif
120
	u8 iv[MAX_IVLEN];	/* IV for CBC mode or CTR IV for CTR mode */
121 122 123
	u32 icv_rev_aes;	/* icv or rev aes */
	u32 src_buf;
	u32 dst_buf;
124
#ifdef __ARMEB__
125 126 127 128
	u16 auth_offs;		/* Authentication start offset */
	u16 auth_len;		/* Authentication data length */
	u16 crypt_offs;		/* Cryption start offset */
	u16 crypt_len;		/* Cryption data length */
129 130 131 132 133 134
#else
	u16 auth_len;		/* Authentication data length */
	u16 auth_offs;		/* Authentication start offset */
	u16 crypt_len;		/* Cryption data length */
	u16 crypt_offs;		/* Cryption start offset */
#endif
135 136 137 138
	u32 aadAddr;		/* Additional Auth Data Addr for CCM mode */
	u32 crypto_ctx;		/* NPE Crypto Param structure address */

	/* Used by Host: 4*4 bytes*/
139
	unsigned int ctl_flags;
140
	union {
141
		struct skcipher_request *ablk_req;
142 143 144 145 146 147 148 149 150 151
		struct aead_request *aead_req;
		struct crypto_tfm *tfm;
	} data;
	struct buffer_desc *regist_buf;
	u8 *regist_ptr;
};

struct ablk_ctx {
	struct buffer_desc *src;
	struct buffer_desc *dst;
152 153
	u8 iv[MAX_IVLEN];
	bool encrypt;
154
	struct skcipher_request fallback_req;   // keep at the end
155 156 157
};

struct aead_ctx {
158 159
	struct buffer_desc *src;
	struct buffer_desc *dst;
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
	struct scatterlist ivlist;
	/* used when the hmac is not on one sg entry */
	u8 *hmac_virt;
	int encrypt;
};

struct ix_hash_algo {
	u32 cfgword;
	unsigned char *icv;
};

struct ix_sa_dir {
	unsigned char *npe_ctx;
	dma_addr_t npe_ctx_phys;
	int npe_ctx_idx;
	u8 npe_mode;
};

struct ixp_ctx {
	struct ix_sa_dir encrypt;
	struct ix_sa_dir decrypt;
	int authkey_len;
	u8 authkey[MAX_KEYLEN];
	int enckey_len;
	u8 enckey[MAX_KEYLEN];
	u8 salt[MAX_IVLEN];
	u8 nonce[CTR_RFC3686_NONCE_SIZE];
187
	unsigned int salted;
188 189
	atomic_t configuring;
	struct completion completion;
190
	struct crypto_skcipher *fallback_tfm;
191 192 193
};

struct ixp_alg {
194
	struct skcipher_alg crypto;
195 196 197 198 199 200 201
	const struct ix_hash_algo *hash;
	u32 cfg_enc;
	u32 cfg_dec;

	int registered;
};

202 203 204 205 206 207 208 209 210
struct ixp_aead_alg {
	struct aead_alg crypto;
	const struct ix_hash_algo *hash;
	u32 cfg_enc;
	u32 cfg_dec;

	int registered;
};

211 212 213 214 215
static const struct ix_hash_algo hash_alg_md5 = {
	.cfgword	= 0xAA010004,
	.icv		= "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
			  "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
};
216

217 218 219 220 221 222 223
static const struct ix_hash_algo hash_alg_sha1 = {
	.cfgword	= 0x00000005,
	.icv		= "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
			  "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
};

static struct npe *npe_c;
224 225 226

static unsigned int send_qid;
static unsigned int recv_qid;
227 228
static struct dma_pool *buffer_pool;
static struct dma_pool *ctx_pool;
229

230
static struct crypt_ctl *crypt_virt;
231 232 233 234
static dma_addr_t crypt_phys;

static int support_aes = 1;

235
static struct platform_device *pdev;
236 237 238 239 240 241 242 243 244 245 246 247 248

static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
{
	return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
}

static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
{
	return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
}

static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
{
249
	return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->cfg_enc;
250 251 252 253
}

static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
{
254
	return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->cfg_dec;
255 256 257 258
}

static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
{
259
	return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->hash;
260 261 262 263
}

static int setup_crypt_desc(void)
{
264
	struct device *dev = &pdev->dev;
265

266 267
	BUILD_BUG_ON(!(IS_ENABLED(CONFIG_COMPILE_TEST) &&
		       IS_ENABLED(CONFIG_64BIT)) &&
268
		     sizeof(struct crypt_ctl) != 64);
269 270 271
	crypt_virt = dma_alloc_coherent(dev,
					NPE_QLEN * sizeof(struct crypt_ctl),
					&crypt_phys, GFP_ATOMIC);
272 273 274 275 276
	if (!crypt_virt)
		return -ENOMEM;
	return 0;
}

277
static DEFINE_SPINLOCK(desc_lock);
278 279 280
static struct crypt_ctl *get_crypt_desc(void)
{
	int i;
281
	static int idx;
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
	unsigned long flags;

	spin_lock_irqsave(&desc_lock, flags);

	if (unlikely(!crypt_virt))
		setup_crypt_desc();
	if (unlikely(!crypt_virt)) {
		spin_unlock_irqrestore(&desc_lock, flags);
		return NULL;
	}
	i = idx;
	if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
		if (++idx >= NPE_QLEN)
			idx = 0;
		crypt_virt[i].ctl_flags = CTL_FLAG_USED;
		spin_unlock_irqrestore(&desc_lock, flags);
298
		return crypt_virt + i;
299 300 301 302 303 304
	} else {
		spin_unlock_irqrestore(&desc_lock, flags);
		return NULL;
	}
}

305
static DEFINE_SPINLOCK(emerg_lock);
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
static struct crypt_ctl *get_crypt_desc_emerg(void)
{
	int i;
	static int idx = NPE_QLEN;
	struct crypt_ctl *desc;
	unsigned long flags;

	desc = get_crypt_desc();
	if (desc)
		return desc;
	if (unlikely(!crypt_virt))
		return NULL;

	spin_lock_irqsave(&emerg_lock, flags);
	i = idx;
	if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
		if (++idx >= NPE_QLEN_TOTAL)
			idx = NPE_QLEN;
		crypt_virt[i].ctl_flags = CTL_FLAG_USED;
		spin_unlock_irqrestore(&emerg_lock, flags);
326
		return crypt_virt + i;
327 328 329 330 331 332
	} else {
		spin_unlock_irqrestore(&emerg_lock, flags);
		return NULL;
	}
}

333 334
static void free_buf_chain(struct device *dev, struct buffer_desc *buf,
			   dma_addr_t phys)
335 336 337 338 339 340 341
{
	while (buf) {
		struct buffer_desc *buf1;
		u32 phys1;

		buf1 = buf->next;
		phys1 = buf->phys_next;
342
		dma_unmap_single(dev, buf->phys_addr, buf->buf_len, buf->dir);
343 344 345 346 347 348 349 350 351 352 353 354 355 356
		dma_pool_free(buffer_pool, buf, phys);
		buf = buf1;
		phys = phys1;
	}
}

static struct tasklet_struct crypto_done_tasklet;

static void finish_scattered_hmac(struct crypt_ctl *crypt)
{
	struct aead_request *req = crypt->data.aead_req;
	struct aead_ctx *req_ctx = aead_request_ctx(req);
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	int authsize = crypto_aead_authsize(tfm);
357
	int decryptlen = req->assoclen + req->cryptlen - authsize;
358 359

	if (req_ctx->encrypt) {
360 361
		scatterwalk_map_and_copy(req_ctx->hmac_virt, req->dst,
					 decryptlen, authsize, 1);
362 363 364 365 366 367
	}
	dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
}

static void one_packet(dma_addr_t phys)
{
368
	struct device *dev = &pdev->dev;
369 370 371 372 373 374 375 376 377 378 379 380 381
	struct crypt_ctl *crypt;
	struct ixp_ctx *ctx;
	int failed;

	failed = phys & 0x1 ? -EBADMSG : 0;
	phys &= ~0x3;
	crypt = crypt_phys2virt(phys);

	switch (crypt->ctl_flags & CTL_FLAG_MASK) {
	case CTL_FLAG_PERFORM_AEAD: {
		struct aead_request *req = crypt->data.aead_req;
		struct aead_ctx *req_ctx = aead_request_ctx(req);

382 383
		free_buf_chain(dev, req_ctx->src, crypt->src_buf);
		free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
384
		if (req_ctx->hmac_virt)
385
			finish_scattered_hmac(crypt);
386

387
		aead_request_complete(req, failed);
388 389 390
		break;
	}
	case CTL_FLAG_PERFORM_ABLK: {
391 392
		struct skcipher_request *req = crypt->data.ablk_req;
		struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
393 394 395 396 397 398 399 400 401 402 403 404 405 406
		struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
		unsigned int ivsize = crypto_skcipher_ivsize(tfm);
		unsigned int offset;

		if (ivsize > 0) {
			offset = req->cryptlen - ivsize;
			if (req_ctx->encrypt) {
				scatterwalk_map_and_copy(req->iv, req->dst,
							 offset, ivsize, 0);
			} else {
				memcpy(req->iv, req_ctx->iv, ivsize);
				memzero_explicit(req_ctx->iv, ivsize);
			}
		}
407

408
		if (req_ctx->dst)
409
			free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
410

411
		free_buf_chain(dev, req_ctx->src, crypt->src_buf);
412
		skcipher_request_complete(req, failed);
413 414 415 416 417
		break;
	}
	case CTL_FLAG_GEN_ICV:
		ctx = crypto_tfm_ctx(crypt->data.tfm);
		dma_pool_free(ctx_pool, crypt->regist_ptr,
418
			      crypt->regist_buf->phys_addr);
419 420 421 422 423 424
		dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
		if (atomic_dec_and_test(&ctx->configuring))
			complete(&ctx->completion);
		break;
	case CTL_FLAG_GEN_REVAES:
		ctx = crypto_tfm_ctx(crypt->data.tfm);
425
		*(__be32 *)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
		if (atomic_dec_and_test(&ctx->configuring))
			complete(&ctx->completion);
		break;
	default:
		BUG();
	}
	crypt->ctl_flags = CTL_FLAG_UNUSED;
}

static void irqhandler(void *_unused)
{
	tasklet_schedule(&crypto_done_tasklet);
}

static void crypto_done_action(unsigned long arg)
{
	int i;

444
	for (i = 0; i < 4; i++) {
445
		dma_addr_t phys = qmgr_get_entry(recv_qid);
446 447 448 449 450 451 452
		if (!phys)
			return;
		one_packet(phys);
	}
	tasklet_schedule(&crypto_done_tasklet);
}

453
static int init_ixp_crypto(struct device *dev)
454
{
455
	struct device_node *np = dev->of_node;
456
	u32 msg[2] = { 0, 0 };
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
	int ret = -ENODEV;
	u32 npe_id;

	dev_info(dev, "probing...\n");

	/* Locate the NPE and queue manager to use from device tree */
	if (IS_ENABLED(CONFIG_OF) && np) {
		struct of_phandle_args queue_spec;
		struct of_phandle_args npe_spec;

		ret = of_parse_phandle_with_fixed_args(np, "intel,npe-handle",
						       1, 0, &npe_spec);
		if (ret) {
			dev_err(dev, "no NPE engine specified\n");
			return -ENODEV;
		}
		npe_id = npe_spec.args[0];
474

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
		ret = of_parse_phandle_with_fixed_args(np, "queue-rx", 1, 0,
						       &queue_spec);
		if (ret) {
			dev_err(dev, "no rx queue phandle\n");
			return -ENODEV;
		}
		recv_qid = queue_spec.args[0];

		ret = of_parse_phandle_with_fixed_args(np, "queue-txready", 1, 0,
						       &queue_spec);
		if (ret) {
			dev_err(dev, "no txready queue phandle\n");
			return -ENODEV;
		}
		send_qid = queue_spec.args[0];
	} else {
		/*
		 * Hardcoded engine when using platform data, this goes away
		 * when we switch to using DT only.
		 */
		npe_id = 2;
		send_qid = 29;
		recv_qid = 30;
	}

	npe_c = npe_request(npe_id);
501 502 503 504
	if (!npe_c)
		return ret;

	if (!npe_running(npe_c)) {
505
		ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
506
		if (ret)
507
			goto npe_release;
508 509 510 511 512 513 514 515
		if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
			goto npe_error;
	} else {
		if (npe_send_message(npe_c, msg, "STATUS_MSG"))
			goto npe_error;

		if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
			goto npe_error;
516 517
	}

518
	switch ((msg[1] >> 16) & 0xff) {
519
	case 3:
520
		dev_warn(dev, "Firmware of %s lacks AES support\n", npe_name(npe_c));
521 522 523 524 525 526 527
		support_aes = 0;
		break;
	case 4:
	case 5:
		support_aes = 1;
		break;
	default:
528
		dev_err(dev, "Firmware of %s lacks crypto support\n", npe_name(npe_c));
529 530
		ret = -ENODEV;
		goto npe_release;
531
	}
532 533 534 535
	/* buffer_pool will also be used to sometimes store the hmac,
	 * so assure it is large enough
	 */
	BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
536 537
	buffer_pool = dma_pool_create("buffer", dev, sizeof(struct buffer_desc),
				      32, 0);
538
	ret = -ENOMEM;
539
	if (!buffer_pool)
540
		goto err;
541

542
	ctx_pool = dma_pool_create("context", dev, NPE_CTX_LEN, 16, 0);
543
	if (!ctx_pool)
544
		goto err;
545

546
	ret = qmgr_request_queue(send_qid, NPE_QLEN_TOTAL, 0, 0,
547
				 "ixp_crypto:out", NULL);
548 549
	if (ret)
		goto err;
550
	ret = qmgr_request_queue(recv_qid, NPE_QLEN, 0, 0,
551
				 "ixp_crypto:in", NULL);
552
	if (ret) {
553
		qmgr_release_queue(send_qid);
554 555
		goto err;
	}
556
	qmgr_set_irq(recv_qid, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
557 558
	tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);

559
	qmgr_enable_irq(recv_qid);
560
	return 0;
561 562

npe_error:
563
	dev_err(dev, "%s not responding\n", npe_name(npe_c));
564
	ret = -EIO;
565
err:
566 567
	dma_pool_destroy(ctx_pool);
	dma_pool_destroy(buffer_pool);
568
npe_release:
569 570 571 572
	npe_release(npe_c);
	return ret;
}

573
static void release_ixp_crypto(struct device *dev)
574
{
575
	qmgr_disable_irq(recv_qid);
576 577
	tasklet_kill(&crypto_done_tasklet);

578 579
	qmgr_release_queue(send_qid);
	qmgr_release_queue(recv_qid);
580 581 582 583 584 585

	dma_pool_destroy(ctx_pool);
	dma_pool_destroy(buffer_pool);

	npe_release(npe_c);

586
	if (crypt_virt)
587 588
		dma_free_coherent(dev, NPE_QLEN * sizeof(struct crypt_ctl),
				  crypt_virt, crypt_phys);
589 590 591 592 593 594 595 596 597 598 599 600
}

static void reset_sa_dir(struct ix_sa_dir *dir)
{
	memset(dir->npe_ctx, 0, NPE_CTX_LEN);
	dir->npe_ctx_idx = 0;
	dir->npe_mode = 0;
}

static int init_sa_dir(struct ix_sa_dir *dir)
{
	dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
601
	if (!dir->npe_ctx)
602
		return -ENOMEM;
603

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
	reset_sa_dir(dir);
	return 0;
}

static void free_sa_dir(struct ix_sa_dir *dir)
{
	memset(dir->npe_ctx, 0, NPE_CTX_LEN);
	dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
}

static int init_tfm(struct crypto_tfm *tfm)
{
	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
	int ret;

	atomic_set(&ctx->configuring, 0);
	ret = init_sa_dir(&ctx->encrypt);
	if (ret)
		return ret;
	ret = init_sa_dir(&ctx->decrypt);
624
	if (ret)
625
		free_sa_dir(&ctx->encrypt);
626

627 628 629
	return ret;
}

630
static int init_tfm_ablk(struct crypto_skcipher *tfm)
631
{
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
	struct crypto_tfm *ctfm = crypto_skcipher_tfm(tfm);
	struct ixp_ctx *ctx = crypto_tfm_ctx(ctfm);
	const char *name = crypto_tfm_alg_name(ctfm);

	ctx->fallback_tfm = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
	if (IS_ERR(ctx->fallback_tfm)) {
		pr_err("ERROR: Cannot allocate fallback for %s %ld\n",
			name, PTR_ERR(ctx->fallback_tfm));
		return PTR_ERR(ctx->fallback_tfm);
	}

	pr_info("Fallback for %s is %s\n",
		 crypto_tfm_alg_driver_name(&tfm->base),
		 crypto_tfm_alg_driver_name(crypto_skcipher_tfm(ctx->fallback_tfm))
		 );

	crypto_skcipher_set_reqsize(tfm, sizeof(struct ablk_ctx) + crypto_skcipher_reqsize(ctx->fallback_tfm));
649
	return init_tfm(crypto_skcipher_tfm(tfm));
650 651
}

652
static int init_tfm_aead(struct crypto_aead *tfm)
653
{
654 655
	crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx));
	return init_tfm(crypto_aead_tfm(tfm));
656 657 658 659 660
}

static void exit_tfm(struct crypto_tfm *tfm)
{
	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
661

662 663 664 665
	free_sa_dir(&ctx->encrypt);
	free_sa_dir(&ctx->decrypt);
}

666 667
static void exit_tfm_ablk(struct crypto_skcipher *tfm)
{
668 669 670 671
	struct crypto_tfm *ctfm = crypto_skcipher_tfm(tfm);
	struct ixp_ctx *ctx = crypto_tfm_ctx(ctfm);

	crypto_free_skcipher(ctx->fallback_tfm);
672 673 674
	exit_tfm(crypto_skcipher_tfm(tfm));
}

675 676 677 678 679
static void exit_tfm_aead(struct crypto_aead *tfm)
{
	exit_tfm(crypto_aead_tfm(tfm));
}

680
static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
681 682
			      int init_len, u32 ctx_addr, const u8 *key,
			      int key_len)
683 684 685 686 687 688
{
	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
	struct crypt_ctl *crypt;
	struct buffer_desc *buf;
	int i;
	u8 *pad;
689
	dma_addr_t pad_phys, buf_phys;
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708

	BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
	pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
	if (!pad)
		return -ENOMEM;
	buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
	if (!buf) {
		dma_pool_free(ctx_pool, pad, pad_phys);
		return -ENOMEM;
	}
	crypt = get_crypt_desc_emerg();
	if (!crypt) {
		dma_pool_free(ctx_pool, pad, pad_phys);
		dma_pool_free(buffer_pool, buf, buf_phys);
		return -EAGAIN;
	}

	memcpy(pad, key, key_len);
	memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
709
	for (i = 0; i < HMAC_PAD_BLOCKLEN; i++)
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
		pad[i] ^= xpad;

	crypt->data.tfm = tfm;
	crypt->regist_ptr = pad;
	crypt->regist_buf = buf;

	crypt->auth_offs = 0;
	crypt->auth_len = HMAC_PAD_BLOCKLEN;
	crypt->crypto_ctx = ctx_addr;
	crypt->src_buf = buf_phys;
	crypt->icv_rev_aes = target;
	crypt->mode = NPE_OP_HASH_GEN_ICV;
	crypt->init_len = init_len;
	crypt->ctl_flags |= CTL_FLAG_GEN_ICV;

725
	buf->next = NULL;
726 727 728 729 730
	buf->buf_len = HMAC_PAD_BLOCKLEN;
	buf->pkt_len = 0;
	buf->phys_addr = pad_phys;

	atomic_inc(&ctx->configuring);
731 732
	qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
	BUG_ON(qmgr_stat_overflow(send_qid));
733 734 735
	return 0;
}

736 737
static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned int authsize,
		      const u8 *key, int key_len, unsigned int digest_len)
738 739 740 741 742 743 744 745 746 747 748 749 750 751
{
	u32 itarget, otarget, npe_ctx_addr;
	unsigned char *cinfo;
	int init_len, ret = 0;
	u32 cfgword;
	struct ix_sa_dir *dir;
	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
	const struct ix_hash_algo *algo;

	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
	cinfo = dir->npe_ctx + dir->npe_ctx_idx;
	algo = ix_hash(tfm);

	/* write cfg word to cryptinfo */
752
	cfgword = algo->cfgword | (authsize << 6); /* (authsize/4) << 8 */
753 754 755
#ifndef __ARMEB__
	cfgword ^= 0xAA000000; /* change the "byte swap" flags */
#endif
756
	*(__be32 *)cinfo = cpu_to_be32(cfgword);
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
	cinfo += sizeof(cfgword);

	/* write ICV to cryptinfo */
	memcpy(cinfo, algo->icv, digest_len);
	cinfo += digest_len;

	itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
				+ sizeof(algo->cfgword);
	otarget = itarget + digest_len;
	init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
	npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;

	dir->npe_ctx_idx += init_len;
	dir->npe_mode |= NPE_OP_HASH_ENABLE;

	if (!encrypt)
		dir->npe_mode |= NPE_OP_HASH_VERIFY;

	ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
776
				 init_len, npe_ctx_addr, key, key_len);
777 778 779
	if (ret)
		return ret;
	return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
780
				  init_len, npe_ctx_addr, key, key_len);
781 782 783 784 785 786 787 788 789
}

static int gen_rev_aes_key(struct crypto_tfm *tfm)
{
	struct crypt_ctl *crypt;
	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
	struct ix_sa_dir *dir = &ctx->decrypt;

	crypt = get_crypt_desc_emerg();
790
	if (!crypt)
791
		return -EAGAIN;
792

793
	*(__be32 *)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
794 795 796 797 798 799 800 801 802 803 804 805

	crypt->data.tfm = tfm;
	crypt->crypt_offs = 0;
	crypt->crypt_len = AES_BLOCK128;
	crypt->src_buf = 0;
	crypt->crypto_ctx = dir->npe_ctx_phys;
	crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
	crypt->mode = NPE_OP_ENC_GEN_KEY;
	crypt->init_len = dir->npe_ctx_idx;
	crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;

	atomic_inc(&ctx->configuring);
806 807
	qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
	BUG_ON(qmgr_stat_overflow(send_qid));
808 809 810
	return 0;
}

811 812
static int setup_cipher(struct crypto_tfm *tfm, int encrypt, const u8 *key,
			int key_len)
813 814 815 816 817 818
{
	u8 *cinfo;
	u32 cipher_cfg;
	u32 keylen_cfg = 0;
	struct ix_sa_dir *dir;
	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
819
	int err;
820 821 822 823 824 825 826 827 828 829 830 831

	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
	cinfo = dir->npe_ctx;

	if (encrypt) {
		cipher_cfg = cipher_cfg_enc(tfm);
		dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
	} else {
		cipher_cfg = cipher_cfg_dec(tfm);
	}
	if (cipher_cfg & MOD_AES) {
		switch (key_len) {
832 833 834 835 836 837 838 839 840
		case 16:
			keylen_cfg = MOD_AES128;
			break;
		case 24:
			keylen_cfg = MOD_AES192;
			break;
		case 32:
			keylen_cfg = MOD_AES256;
			break;
841 842
		default:
			return -EINVAL;
843 844 845
		}
		cipher_cfg |= keylen_cfg;
	} else {
846 847 848
		err = crypto_des_verify_key(tfm, key);
		if (err)
			return err;
849 850
	}
	/* write cfg word to cryptinfo */
851
	*(__be32 *)cinfo = cpu_to_be32(cipher_cfg);
852 853 854 855 856 857
	cinfo += sizeof(cipher_cfg);

	/* write cipher key to cryptinfo */
	memcpy(cinfo, key, key_len);
	/* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
	if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
858
		memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE - key_len);
859 860 861 862
		key_len = DES3_EDE_KEY_SIZE;
	}
	dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
	dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
863
	if ((cipher_cfg & MOD_AES) && !encrypt)
864
		return gen_rev_aes_key(tfm);
865

866 867 868
	return 0;
}

869
static struct buffer_desc *chainup_buffers(struct device *dev,
870
		struct scatterlist *sg,	unsigned int nbytes,
871 872
		struct buffer_desc *buf, gfp_t flags,
		enum dma_data_direction dir)
873
{
874
	for (; nbytes > 0; sg = sg_next(sg)) {
875
		unsigned int len = min(nbytes, sg->length);
876
		struct buffer_desc *next_buf;
877
		dma_addr_t next_buf_phys;
878
		void *ptr;
879 880

		nbytes -= len;
881
		ptr = sg_virt(sg);
882
		next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
883 884 885 886 887
		if (!next_buf) {
			buf = NULL;
			break;
		}
		sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
888 889 890
		buf->next = next_buf;
		buf->phys_next = next_buf_phys;
		buf = next_buf;
891

892 893
		buf->phys_addr = sg_dma_address(sg);
		buf->buf_len = len;
894
		buf->dir = dir;
895
	}
896 897
	buf->next = NULL;
	buf->phys_next = 0;
898 899 900
	return buf;
}

901
static int ablk_setkey(struct crypto_skcipher *tfm, const u8 *key,
902
		       unsigned int key_len)
903
{
904
	struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
	int ret;

	init_completion(&ctx->completion);
	atomic_inc(&ctx->configuring);

	reset_sa_dir(&ctx->encrypt);
	reset_sa_dir(&ctx->decrypt);

	ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
	ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;

	ret = setup_cipher(&tfm->base, 0, key, key_len);
	if (ret)
		goto out;
	ret = setup_cipher(&tfm->base, 1, key, key_len);
out:
	if (!atomic_dec_and_test(&ctx->configuring))
		wait_for_completion(&ctx->completion);
923 924 925 926 927 928
	if (ret)
		return ret;
	crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
	crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);

	return crypto_skcipher_setkey(ctx->fallback_tfm, key, key_len);
929 930
}

931
static int ablk_des3_setkey(struct crypto_skcipher *tfm, const u8 *key,
932 933
			    unsigned int key_len)
{
934
	return verify_skcipher_des3_key(tfm, key) ?:
935
	       ablk_setkey(tfm, key, key_len);
936 937
}

938
static int ablk_rfc3686_setkey(struct crypto_skcipher *tfm, const u8 *key,
939
			       unsigned int key_len)
940
{
941
	struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
942 943 944 945 946 947

	/* the nonce is stored in bytes at end of key */
	if (key_len < CTR_RFC3686_NONCE_SIZE)
		return -EINVAL;

	memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
948
	       CTR_RFC3686_NONCE_SIZE);
949 950 951 952 953

	key_len -= CTR_RFC3686_NONCE_SIZE;
	return ablk_setkey(tfm, key, key_len);
}

954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
static int ixp4xx_cipher_fallback(struct skcipher_request *areq, int encrypt)
{
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
	struct ixp_ctx *op = crypto_skcipher_ctx(tfm);
	struct ablk_ctx *rctx = skcipher_request_ctx(areq);
	int err;

	skcipher_request_set_tfm(&rctx->fallback_req, op->fallback_tfm);
	skcipher_request_set_callback(&rctx->fallback_req, areq->base.flags,
				      areq->base.complete, areq->base.data);
	skcipher_request_set_crypt(&rctx->fallback_req, areq->src, areq->dst,
				   areq->cryptlen, areq->iv);
	if (encrypt)
		err = crypto_skcipher_encrypt(&rctx->fallback_req);
	else
		err = crypto_skcipher_decrypt(&rctx->fallback_req);
	return err;
}

973
static int ablk_perform(struct skcipher_request *req, int encrypt)
974
{
975 976
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
977
	unsigned int ivsize = crypto_skcipher_ivsize(tfm);
978 979
	struct ix_sa_dir *dir;
	struct crypt_ctl *crypt;
980
	unsigned int nbytes = req->cryptlen;
981
	enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
982
	struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
983
	struct buffer_desc src_hook;
984
	struct device *dev = &pdev->dev;
985
	unsigned int offset;
986 987 988
	gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
				GFP_KERNEL : GFP_ATOMIC;

989 990 991
	if (sg_nents(req->src) > 1 || sg_nents(req->dst) > 1)
		return ixp4xx_cipher_fallback(req, encrypt);

992
	if (qmgr_stat_full(send_qid))
993 994 995 996 997
		return -EAGAIN;
	if (atomic_read(&ctx->configuring))
		return -EAGAIN;

	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
998
	req_ctx->encrypt = encrypt;
999 1000 1001

	crypt = get_crypt_desc();
	if (!crypt)
1002
		return -ENOMEM;
1003 1004 1005 1006 1007 1008 1009 1010 1011

	crypt->data.ablk_req = req;
	crypt->crypto_ctx = dir->npe_ctx_phys;
	crypt->mode = dir->npe_mode;
	crypt->init_len = dir->npe_ctx_idx;

	crypt->crypt_offs = 0;
	crypt->crypt_len = nbytes;

1012 1013
	BUG_ON(ivsize && !req->iv);
	memcpy(crypt->iv, req->iv, ivsize);
1014 1015 1016 1017
	if (ivsize > 0 && !encrypt) {
		offset = req->cryptlen - ivsize;
		scatterwalk_map_and_copy(req_ctx->iv, req->src, offset, ivsize, 0);
	}
1018
	if (req->src != req->dst) {
1019
		struct buffer_desc dst_hook;
1020

1021 1022 1023
		crypt->mode |= NPE_OP_NOT_IN_PLACE;
		/* This was never tested by Intel
		 * for more than one dst buffer, I think. */
1024 1025
		req_ctx->dst = NULL;
		if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
1026
				     flags, DMA_FROM_DEVICE))
1027 1028
			goto free_buf_dest;
		src_direction = DMA_TO_DEVICE;
1029 1030
		req_ctx->dst = dst_hook.next;
		crypt->dst_buf = dst_hook.phys_next;
1031 1032 1033
	} else {
		req_ctx->dst = NULL;
	}
1034
	req_ctx->src = NULL;
1035 1036
	if (!chainup_buffers(dev, req->src, nbytes, &src_hook, flags,
			     src_direction))
1037 1038
		goto free_buf_src;

1039 1040
	req_ctx->src = src_hook.next;
	crypt->src_buf = src_hook.phys_next;
1041
	crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
1042 1043
	qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
	BUG_ON(qmgr_stat_overflow(send_qid));
1044 1045 1046
	return -EINPROGRESS;

free_buf_src:
1047
	free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1048
free_buf_dest:
1049
	if (req->src != req->dst)
1050
		free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1051

1052
	crypt->ctl_flags = CTL_FLAG_UNUSED;
1053
	return -ENOMEM;
1054 1055
}

1056
static int ablk_encrypt(struct skcipher_request *req)
1057 1058 1059 1060
{
	return ablk_perform(req, 1);
}

1061
static int ablk_decrypt(struct skcipher_request *req)
1062 1063 1064 1065
{
	return ablk_perform(req, 0);
}

1066
static int ablk_rfc3686_crypt(struct skcipher_request *req)
1067
{
1068 1069
	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
	struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
1070
	u8 iv[CTR_RFC3686_BLOCK_SIZE];
1071
	u8 *info = req->iv;
1072 1073 1074
	int ret;

	/* set up counter block */
1075
	memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
1076 1077 1078 1079 1080 1081
	memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);

	/* initialize counter portion of counter block */
	*(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
		cpu_to_be32(1);

1082
	req->iv = iv;
1083
	ret = ablk_perform(req, 1);
1084
	req->iv = info;
1085 1086 1087 1088
	return ret;
}

static int aead_perform(struct aead_request *req, int encrypt,
1089
			int cryptoffset, int eff_cryptlen, u8 *iv)
1090 1091 1092
{
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1093 1094
	unsigned int ivsize = crypto_aead_ivsize(tfm);
	unsigned int authsize = crypto_aead_authsize(tfm);
1095 1096
	struct ix_sa_dir *dir;
	struct crypt_ctl *crypt;
1097 1098
	unsigned int cryptlen;
	struct buffer_desc *buf, src_hook;
1099
	struct aead_ctx *req_ctx = aead_request_ctx(req);
1100
	struct device *dev = &pdev->dev;
1101 1102
	gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
				GFP_KERNEL : GFP_ATOMIC;
1103 1104
	enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
	unsigned int lastlen;
1105

1106
	if (qmgr_stat_full(send_qid))
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
		return -EAGAIN;
	if (atomic_read(&ctx->configuring))
		return -EAGAIN;

	if (encrypt) {
		dir = &ctx->encrypt;
		cryptlen = req->cryptlen;
	} else {
		dir = &ctx->decrypt;
		/* req->cryptlen includes the authsize when decrypting */
1117
		cryptlen = req->cryptlen - authsize;
1118 1119 1120 1121
		eff_cryptlen -= authsize;
	}
	crypt = get_crypt_desc();
	if (!crypt)
1122
		return -ENOMEM;
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

	crypt->data.aead_req = req;
	crypt->crypto_ctx = dir->npe_ctx_phys;
	crypt->mode = dir->npe_mode;
	crypt->init_len = dir->npe_ctx_idx;

	crypt->crypt_offs = cryptoffset;
	crypt->crypt_len = eff_cryptlen;

	crypt->auth_offs = 0;
1133
	crypt->auth_len = req->assoclen + cryptlen;
1134 1135 1136
	BUG_ON(ivsize && !req->iv);
	memcpy(crypt->iv, req->iv, ivsize);

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
	buf = chainup_buffers(dev, req->src, crypt->auth_len,
			      &src_hook, flags, src_direction);
	req_ctx->src = src_hook.next;
	crypt->src_buf = src_hook.phys_next;
	if (!buf)
		goto free_buf_src;

	lastlen = buf->buf_len;
	if (lastlen >= authsize)
		crypt->icv_rev_aes = buf->phys_addr +
				     buf->buf_len - authsize;

1149 1150
	req_ctx->dst = NULL;

1151
	if (req->src != req->dst) {
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
		struct buffer_desc dst_hook;

		crypt->mode |= NPE_OP_NOT_IN_PLACE;
		src_direction = DMA_TO_DEVICE;

		buf = chainup_buffers(dev, req->dst, crypt->auth_len,
				      &dst_hook, flags, DMA_FROM_DEVICE);
		req_ctx->dst = dst_hook.next;
		crypt->dst_buf = dst_hook.phys_next;

		if (!buf)
			goto free_buf_dst;

		if (encrypt) {
			lastlen = buf->buf_len;
			if (lastlen >= authsize)
				crypt->icv_rev_aes = buf->phys_addr +
						     buf->buf_len - authsize;
		}
1171 1172
	}

1173
	if (unlikely(lastlen < authsize)) {
1174
		dma_addr_t dma;
1175 1176
		/* The 12 hmac bytes are scattered,
		 * we need to copy them into a safe buffer */
1177 1178
		req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags, &dma);
		crypt->icv_rev_aes = dma;
1179
		if (unlikely(!req_ctx->hmac_virt))
1180
			goto free_buf_dst;
1181 1182
		if (!encrypt) {
			scatterwalk_map_and_copy(req_ctx->hmac_virt,
1183
						 req->src, cryptlen, authsize, 0);
1184 1185 1186 1187 1188
		}
		req_ctx->encrypt = encrypt;
	} else {
		req_ctx->hmac_virt = NULL;
	}
1189

1190
	crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1191 1192
	qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
	BUG_ON(qmgr_stat_overflow(send_qid));
1193
	return -EINPROGRESS;
1194 1195 1196

free_buf_dst:
	free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1197 1198
free_buf_src:
	free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1199
	crypt->ctl_flags = CTL_FLAG_UNUSED;
1200
	return -ENOMEM;
1201 1202 1203 1204 1205
}

static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
{
	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1206
	unsigned int digest_len = crypto_aead_maxauthsize(tfm);
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	int ret;

	if (!ctx->enckey_len && !ctx->authkey_len)
		return 0;
	init_completion(&ctx->completion);
	atomic_inc(&ctx->configuring);

	reset_sa_dir(&ctx->encrypt);
	reset_sa_dir(&ctx->decrypt);

	ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
	if (ret)
		goto out;
	ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
	if (ret)
		goto out;
	ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1224
			 ctx->authkey_len, digest_len);
1225 1226 1227
	if (ret)
		goto out;
	ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1228
			 ctx->authkey_len, digest_len);
1229 1230 1231 1232 1233 1234 1235 1236
out:
	if (!atomic_dec_and_test(&ctx->configuring))
		wait_for_completion(&ctx->completion);
	return ret;
}

static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
1237
	int max = crypto_aead_maxauthsize(tfm) >> 2;
1238

1239
	if ((authsize >> 2) < 1 || (authsize >> 2) > max || (authsize & 3))
1240 1241 1242 1243 1244
		return -EINVAL;
	return aead_setup(tfm, authsize);
}

static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1245
		       unsigned int keylen)
1246 1247
{
	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1248
	struct crypto_authenc_keys keys;
1249

1250
	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1251 1252
		goto badkey;

1253 1254
	if (keys.authkeylen > sizeof(ctx->authkey))
		goto badkey;
1255

1256
	if (keys.enckeylen > sizeof(ctx->enckey))
1257 1258
		goto badkey;

1259 1260 1261 1262
	memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
	memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
	ctx->authkey_len = keys.authkeylen;
	ctx->enckey_len = keys.enckeylen;
1263

1264
	memzero_explicit(&keys, sizeof(keys));
1265 1266
	return aead_setup(tfm, crypto_aead_authsize(tfm));
badkey:
1267
	memzero_explicit(&keys, sizeof(keys));
1268 1269 1270
	return -EINVAL;
}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
static int des3_aead_setkey(struct crypto_aead *tfm, const u8 *key,
			    unsigned int keylen)
{
	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
	struct crypto_authenc_keys keys;
	int err;

	err = crypto_authenc_extractkeys(&keys, key, keylen);
	if (unlikely(err))
		goto badkey;

	err = -EINVAL;
	if (keys.authkeylen > sizeof(ctx->authkey))
		goto badkey;

1286 1287
	err = verify_aead_des3_key(tfm, keys.enckey, keys.enckeylen);
	if (err)
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
		goto badkey;

	memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
	memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
	ctx->authkey_len = keys.authkeylen;
	ctx->enckey_len = keys.enckeylen;

	memzero_explicit(&keys, sizeof(keys));
	return aead_setup(tfm, crypto_aead_authsize(tfm));
badkey:
	memzero_explicit(&keys, sizeof(keys));
	return err;
}

1302 1303
static int aead_encrypt(struct aead_request *req)
{
1304
	return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv);
1305 1306 1307 1308
}

static int aead_decrypt(struct aead_request *req)
{
1309
	return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv);
1310 1311 1312 1313 1314
}

static struct ixp_alg ixp4xx_algos[] = {
{
	.crypto	= {
1315 1316 1317 1318 1319 1320
		.base.cra_name		= "cbc(des)",
		.base.cra_blocksize	= DES_BLOCK_SIZE,

		.min_keysize		= DES_KEY_SIZE,
		.max_keysize		= DES_KEY_SIZE,
		.ivsize			= DES_BLOCK_SIZE,
1321 1322 1323 1324 1325 1326
	},
	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,

}, {
	.crypto	= {
1327 1328 1329 1330
		.base.cra_name		= "ecb(des)",
		.base.cra_blocksize	= DES_BLOCK_SIZE,
		.min_keysize		= DES_KEY_SIZE,
		.max_keysize		= DES_KEY_SIZE,
1331 1332 1333 1334 1335
	},
	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
	.cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
}, {
	.crypto	= {
1336 1337 1338 1339 1340 1341 1342
		.base.cra_name		= "cbc(des3_ede)",
		.base.cra_blocksize	= DES3_EDE_BLOCK_SIZE,

		.min_keysize		= DES3_EDE_KEY_SIZE,
		.max_keysize		= DES3_EDE_KEY_SIZE,
		.ivsize			= DES3_EDE_BLOCK_SIZE,
		.setkey			= ablk_des3_setkey,
1343 1344 1345 1346 1347
	},
	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
}, {
	.crypto	= {
1348 1349 1350 1351 1352 1353
		.base.cra_name		= "ecb(des3_ede)",
		.base.cra_blocksize	= DES3_EDE_BLOCK_SIZE,

		.min_keysize		= DES3_EDE_KEY_SIZE,
		.max_keysize		= DES3_EDE_KEY_SIZE,
		.setkey			= ablk_des3_setkey,
1354 1355 1356 1357 1358
	},
	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
}, {
	.crypto	= {
1359 1360 1361 1362 1363 1364
		.base.cra_name		= "cbc(aes)",
		.base.cra_blocksize	= AES_BLOCK_SIZE,

		.min_keysize		= AES_MIN_KEY_SIZE,
		.max_keysize		= AES_MAX_KEY_SIZE,
		.ivsize			= AES_BLOCK_SIZE,
1365 1366 1367 1368 1369
	},
	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
}, {
	.crypto	= {
1370 1371 1372 1373 1374
		.base.cra_name		= "ecb(aes)",
		.base.cra_blocksize	= AES_BLOCK_SIZE,

		.min_keysize		= AES_MIN_KEY_SIZE,
		.max_keysize		= AES_MAX_KEY_SIZE,
1375 1376 1377 1378 1379
	},
	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
	.cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
}, {
	.crypto	= {
1380 1381 1382 1383 1384 1385
		.base.cra_name		= "ctr(aes)",
		.base.cra_blocksize	= 1,

		.min_keysize		= AES_MIN_KEY_SIZE,
		.max_keysize		= AES_MAX_KEY_SIZE,
		.ivsize			= AES_BLOCK_SIZE,
1386 1387 1388 1389 1390
	},
	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
	.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
}, {
	.crypto	= {
1391 1392 1393 1394 1395 1396 1397 1398 1399
		.base.cra_name		= "rfc3686(ctr(aes))",
		.base.cra_blocksize	= 1,

		.min_keysize		= AES_MIN_KEY_SIZE,
		.max_keysize		= AES_MAX_KEY_SIZE,
		.ivsize			= AES_BLOCK_SIZE,
		.setkey			= ablk_rfc3686_setkey,
		.encrypt		= ablk_rfc3686_crypt,
		.decrypt		= ablk_rfc3686_crypt,
1400 1401 1402
	},
	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
	.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1403 1404 1405 1406
} };

static struct ixp_aead_alg ixp4xx_aeads[] = {
{
1407
	.crypto	= {
1408 1409 1410 1411 1412 1413
		.base = {
			.cra_name	= "authenc(hmac(md5),cbc(des))",
			.cra_blocksize	= DES_BLOCK_SIZE,
		},
		.ivsize		= DES_BLOCK_SIZE,
		.maxauthsize	= MD5_DIGEST_SIZE,
1414 1415 1416 1417 1418 1419
	},
	.hash = &hash_alg_md5,
	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
}, {
	.crypto	= {
1420 1421 1422 1423 1424 1425
		.base = {
			.cra_name	= "authenc(hmac(md5),cbc(des3_ede))",
			.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
		},
		.ivsize		= DES3_EDE_BLOCK_SIZE,
		.maxauthsize	= MD5_DIGEST_SIZE,
1426
		.setkey		= des3_aead_setkey,
1427 1428 1429 1430 1431 1432
	},
	.hash = &hash_alg_md5,
	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
}, {
	.crypto	= {
1433 1434 1435 1436
		.base = {
			.cra_name	= "authenc(hmac(sha1),cbc(des))",
			.cra_blocksize	= DES_BLOCK_SIZE,
		},
1437 1438 1439 1440 1441 1442 1443 1444
			.ivsize		= DES_BLOCK_SIZE,
			.maxauthsize	= SHA1_DIGEST_SIZE,
	},
	.hash = &hash_alg_sha1,
	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
}, {
	.crypto	= {
1445 1446 1447 1448 1449 1450
		.base = {
			.cra_name	= "authenc(hmac(sha1),cbc(des3_ede))",
			.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
		},
		.ivsize		= DES3_EDE_BLOCK_SIZE,
		.maxauthsize	= SHA1_DIGEST_SIZE,
1451
		.setkey		= des3_aead_setkey,
1452 1453 1454 1455 1456 1457
	},
	.hash = &hash_alg_sha1,
	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
}, {
	.crypto	= {
1458 1459 1460 1461 1462 1463
		.base = {
			.cra_name	= "authenc(hmac(md5),cbc(aes))",
			.cra_blocksize	= AES_BLOCK_SIZE,
		},
		.ivsize		= AES_BLOCK_SIZE,
		.maxauthsize	= MD5_DIGEST_SIZE,
1464 1465 1466 1467 1468 1469
	},
	.hash = &hash_alg_md5,
	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
}, {
	.crypto	= {
1470 1471 1472 1473 1474 1475
		.base = {
			.cra_name	= "authenc(hmac(sha1),cbc(aes))",
			.cra_blocksize	= AES_BLOCK_SIZE,
		},
		.ivsize		= AES_BLOCK_SIZE,
		.maxauthsize	= SHA1_DIGEST_SIZE,
1476 1477 1478 1479 1480 1481 1482
	},
	.hash = &hash_alg_sha1,
	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
} };

#define IXP_POSTFIX "-ixp4xx"
1483

1484
static int ixp_crypto_probe(struct platform_device *_pdev)
1485
{
1486
	struct device *dev = &_pdev->dev;
1487
	int num = ARRAY_SIZE(ixp4xx_algos);
1488
	int i, err;
1489

1490
	pdev = _pdev;
1491

1492
	err = init_ixp_crypto(dev);
1493
	if (err)
1494
		return err;
1495

1496
	for (i = 0; i < num; i++) {
1497
		struct skcipher_alg *cra = &ixp4xx_algos[i].crypto;
1498

1499
		if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1500 1501
			     "%s"IXP_POSTFIX, cra->base.cra_name) >=
			     CRYPTO_MAX_ALG_NAME)
1502
			continue;
1503
		if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1504
			continue;
1505 1506

		/* block ciphers */
1507
		cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1508
				      CRYPTO_ALG_ASYNC |
1509 1510
				      CRYPTO_ALG_ALLOCATES_MEMORY |
				      CRYPTO_ALG_NEED_FALLBACK;
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
		if (!cra->setkey)
			cra->setkey = ablk_setkey;
		if (!cra->encrypt)
			cra->encrypt = ablk_encrypt;
		if (!cra->decrypt)
			cra->decrypt = ablk_decrypt;
		cra->init = init_tfm_ablk;
		cra->exit = exit_tfm_ablk;

		cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
		cra->base.cra_module = THIS_MODULE;
		cra->base.cra_alignmask = 3;
		cra->base.cra_priority = 300;
		if (crypto_register_skcipher(cra))
1525
			dev_err(&pdev->dev, "Failed to register '%s'\n",
1526
				cra->base.cra_name);
1527 1528 1529
		else
			ixp4xx_algos[i].registered = 1;
	}
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542

	for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
		struct aead_alg *cra = &ixp4xx_aeads[i].crypto;

		if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
			     "%s"IXP_POSTFIX, cra->base.cra_name) >=
		    CRYPTO_MAX_ALG_NAME)
			continue;
		if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
			continue;

		/* authenc */
		cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1543 1544
				      CRYPTO_ALG_ASYNC |
				      CRYPTO_ALG_ALLOCATES_MEMORY;
1545
		cra->setkey = cra->setkey ?: aead_setkey;
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
		cra->setauthsize = aead_setauthsize;
		cra->encrypt = aead_encrypt;
		cra->decrypt = aead_decrypt;
		cra->init = init_tfm_aead;
		cra->exit = exit_tfm_aead;

		cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
		cra->base.cra_module = THIS_MODULE;
		cra->base.cra_alignmask = 3;
		cra->base.cra_priority = 300;

		if (crypto_register_aead(cra))
1558
			dev_err(&pdev->dev, "Failed to register '%s'\n",
1559 1560 1561 1562
				cra->base.cra_driver_name);
		else
			ixp4xx_aeads[i].registered = 1;
	}
1563 1564 1565
	return 0;
}

1566
static int ixp_crypto_remove(struct platform_device *pdev)
1567 1568 1569 1570
{
	int num = ARRAY_SIZE(ixp4xx_algos);
	int i;

1571 1572 1573 1574 1575
	for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
		if (ixp4xx_aeads[i].registered)
			crypto_unregister_aead(&ixp4xx_aeads[i].crypto);
	}

1576
	for (i = 0; i < num; i++) {
1577
		if (ixp4xx_algos[i].registered)
1578
			crypto_unregister_skcipher(&ixp4xx_algos[i].crypto);
1579
	}
1580
	release_ixp_crypto(&pdev->dev);
1581 1582

	return 0;
1583
}
1584 1585 1586 1587 1588 1589
static const struct of_device_id ixp4xx_crypto_of_match[] = {
	{
		.compatible = "intel,ixp4xx-crypto",
	},
	{},
};
1590

1591 1592 1593
static struct platform_driver ixp_crypto_driver = {
	.probe = ixp_crypto_probe,
	.remove = ixp_crypto_remove,
1594 1595 1596 1597
	.driver = {
		.name = "ixp4xx_crypto",
		.of_match_table = ixp4xx_crypto_of_match,
	},
1598 1599
};
module_platform_driver(ixp_crypto_driver);
1600 1601 1602 1603 1604

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
MODULE_DESCRIPTION("IXP4xx hardware crypto");