lib.rs 11.5 KB
Newer Older
Miguel Ojeda's avatar
Miguel Ojeda committed
1 2 3 4
// SPDX-License-Identifier: GPL-2.0

//! Crate for all kernel procedural macros.

5 6
#[macro_use]
mod quote;
7
mod concat_idents;
Miguel Ojeda's avatar
Miguel Ojeda committed
8 9
mod helpers;
mod module;
10
mod paste;
11
mod pin_data;
12
mod pinned_drop;
13
mod vtable;
14
mod zeroable;
Miguel Ojeda's avatar
Miguel Ojeda committed
15 16 17 18 19 20 21 22

use proc_macro::TokenStream;

/// Declares a kernel module.
///
/// The `type` argument should be a type which implements the [`Module`]
/// trait. Also accepts various forms of kernel metadata.
///
23
/// C header: [`include/linux/moduleparam.h`](srctree/include/linux/moduleparam.h)
Miguel Ojeda's avatar
Miguel Ojeda committed
24 25 26 27 28 29 30 31 32 33
///
/// [`Module`]: ../kernel/trait.Module.html
///
/// # Examples
///
/// ```ignore
/// use kernel::prelude::*;
///
/// module!{
///     type: MyModule,
34 35 36 37
///     name: "my_kernel_module",
///     author: "Rust for Linux Contributors",
///     description: "My very own kernel module!",
///     license: "GPL",
38
///     alias: ["alternate_module_name"],
Miguel Ojeda's avatar
Miguel Ojeda committed
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
/// }
///
/// struct MyModule;
///
/// impl kernel::Module for MyModule {
///     fn init() -> Result<Self> {
///         // If the parameter is writeable, then the kparam lock must be
///         // taken to read the parameter:
///         {
///             let lock = THIS_MODULE.kernel_param_lock();
///             pr_info!("i32 param is:  {}\n", writeable_i32.read(&lock));
///         }
///         // If the parameter is read only, it can be read without locking
///         // the kernel parameters:
///         pr_info!("i32 param is:  {}\n", my_i32.read());
///         Ok(Self)
///     }
/// }
/// ```
///
/// # Supported argument types
///   - `type`: type which implements the [`Module`] trait (required).
61 62 63 64 65
///   - `name`: ASCII string literal of the name of the kernel module (required).
///   - `author`: string literal of the author of the kernel module.
///   - `description`: string literal of the description of the kernel module.
///   - `license`: ASCII string literal of the license of the kernel module (required).
///   - `alias`: array of ASCII string literals of the alias names of the kernel module.
Miguel Ojeda's avatar
Miguel Ojeda committed
66 67 68 69
#[proc_macro]
pub fn module(ts: TokenStream) -> TokenStream {
    module::module(ts)
}
70

71 72 73 74 75 76 77 78
/// Declares or implements a vtable trait.
///
/// Linux's use of pure vtables is very close to Rust traits, but they differ
/// in how unimplemented functions are represented. In Rust, traits can provide
/// default implementation for all non-required methods (and the default
/// implementation could just return `Error::EINVAL`); Linux typically use C
/// `NULL` pointers to represent these functions.
///
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/// This attribute closes that gap. A trait can be annotated with the
/// `#[vtable]` attribute. Implementers of the trait will then also have to
/// annotate the trait with `#[vtable]`. This attribute generates a `HAS_*`
/// associated constant bool for each method in the trait that is set to true if
/// the implementer has overridden the associated method.
///
/// For a trait method to be optional, it must have a default implementation.
/// This is also the case for traits annotated with `#[vtable]`, but in this
/// case the default implementation will never be executed. The reason for this
/// is that the functions will be called through function pointers installed in
/// C side vtables. When an optional method is not implemented on a `#[vtable]`
/// trait, a NULL entry is installed in the vtable. Thus the default
/// implementation is never called. Since these traits are not designed to be
/// used on the Rust side, it should not be possible to call the default
/// implementation. This is done to ensure that we call the vtable methods
/// through the C vtable, and not through the Rust vtable. Therefore, the
/// default implementation should call `kernel::build_error`, which prevents
/// calls to this function at compile time:
///
/// ```compile_fail
/// # use kernel::error::VTABLE_DEFAULT_ERROR;
/// kernel::build_error(VTABLE_DEFAULT_ERROR)
/// ```
///
/// Note that you might need to import [`kernel::error::VTABLE_DEFAULT_ERROR`].
104
///
105
/// This macro should not be used when all functions are required.
106 107 108 109
///
/// # Examples
///
/// ```ignore
110
/// use kernel::error::VTABLE_DEFAULT_ERROR;
111 112 113 114 115 116
/// use kernel::prelude::*;
///
/// // Declares a `#[vtable]` trait
/// #[vtable]
/// pub trait Operations: Send + Sync + Sized {
///     fn foo(&self) -> Result<()> {
117
///         kernel::build_error(VTABLE_DEFAULT_ERROR)
118 119 120
///     }
///
///     fn bar(&self) -> Result<()> {
121
///         kernel::build_error(VTABLE_DEFAULT_ERROR)
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
///     }
/// }
///
/// struct Foo;
///
/// // Implements the `#[vtable]` trait
/// #[vtable]
/// impl Operations for Foo {
///     fn foo(&self) -> Result<()> {
/// #        Err(EINVAL)
///         // ...
///     }
/// }
///
/// assert_eq!(<Foo as Operations>::HAS_FOO, true);
/// assert_eq!(<Foo as Operations>::HAS_BAR, false);
/// ```
139 140
///
/// [`kernel::error::VTABLE_DEFAULT_ERROR`]: ../kernel/error/constant.VTABLE_DEFAULT_ERROR.html
141 142 143 144 145
#[proc_macro_attribute]
pub fn vtable(attr: TokenStream, ts: TokenStream) -> TokenStream {
    vtable::vtable(attr, ts)
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
/// Concatenate two identifiers.
///
/// This is useful in macros that need to declare or reference items with names
/// starting with a fixed prefix and ending in a user specified name. The resulting
/// identifier has the span of the second argument.
///
/// # Examples
///
/// ```ignore
/// use kernel::macro::concat_idents;
///
/// macro_rules! pub_no_prefix {
///     ($prefix:ident, $($newname:ident),+) => {
///         $(pub(crate) const $newname: u32 = kernel::macros::concat_idents!($prefix, $newname);)+
///     };
/// }
///
/// pub_no_prefix!(
///     binder_driver_return_protocol_,
///     BR_OK,
///     BR_ERROR,
///     BR_TRANSACTION,
///     BR_REPLY,
///     BR_DEAD_REPLY,
///     BR_TRANSACTION_COMPLETE,
///     BR_INCREFS,
///     BR_ACQUIRE,
///     BR_RELEASE,
///     BR_DECREFS,
///     BR_NOOP,
///     BR_SPAWN_LOOPER,
///     BR_DEAD_BINDER,
///     BR_CLEAR_DEATH_NOTIFICATION_DONE,
///     BR_FAILED_REPLY
/// );
///
/// assert_eq!(BR_OK, binder_driver_return_protocol_BR_OK);
/// ```
#[proc_macro]
pub fn concat_idents(ts: TokenStream) -> TokenStream {
    concat_idents::concat_idents(ts)
}
188 189 190 191 192 193 194 195 196 197 198

/// Used to specify the pinning information of the fields of a struct.
///
/// This is somewhat similar in purpose as
/// [pin-project-lite](https://crates.io/crates/pin-project-lite).
/// Place this macro on a struct definition and then `#[pin]` in front of the attributes of each
/// field you want to structurally pin.
///
/// This macro enables the use of the [`pin_init!`] macro. When pin-initializing a `struct`,
/// then `#[pin]` directs the type of initializer that is required.
///
199 200 201 202
/// If your `struct` implements `Drop`, then you need to add `PinnedDrop` as arguments to this
/// macro, and change your `Drop` implementation to `PinnedDrop` annotated with
/// `#[`[`macro@pinned_drop`]`]`, since dropping pinned values requires extra care.
///
203 204 205 206 207 208 209 210 211 212 213
/// # Examples
///
/// ```rust,ignore
/// #[pin_data]
/// struct DriverData {
///     #[pin]
///     queue: Mutex<Vec<Command>>,
///     buf: Box<[u8; 1024 * 1024]>,
/// }
/// ```
///
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
/// ```rust,ignore
/// #[pin_data(PinnedDrop)]
/// struct DriverData {
///     #[pin]
///     queue: Mutex<Vec<Command>>,
///     buf: Box<[u8; 1024 * 1024]>,
///     raw_info: *mut Info,
/// }
///
/// #[pinned_drop]
/// impl PinnedDrop for DriverData {
///     fn drop(self: Pin<&mut Self>) {
///         unsafe { bindings::destroy_info(self.raw_info) };
///     }
/// }
/// ```
///
231 232 233 234 235 236
/// [`pin_init!`]: ../kernel/macro.pin_init.html
//  ^ cannot use direct link, since `kernel` is not a dependency of `macros`.
#[proc_macro_attribute]
pub fn pin_data(inner: TokenStream, item: TokenStream) -> TokenStream {
    pin_data::pin_data(inner, item)
}
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263

/// Used to implement `PinnedDrop` safely.
///
/// Only works on structs that are annotated via `#[`[`macro@pin_data`]`]`.
///
/// # Examples
///
/// ```rust,ignore
/// #[pin_data(PinnedDrop)]
/// struct DriverData {
///     #[pin]
///     queue: Mutex<Vec<Command>>,
///     buf: Box<[u8; 1024 * 1024]>,
///     raw_info: *mut Info,
/// }
///
/// #[pinned_drop]
/// impl PinnedDrop for DriverData {
///     fn drop(self: Pin<&mut Self>) {
///         unsafe { bindings::destroy_info(self.raw_info) };
///     }
/// }
/// ```
#[proc_macro_attribute]
pub fn pinned_drop(args: TokenStream, input: TokenStream) -> TokenStream {
    pinned_drop::pinned_drop(args, input)
}
264 265 266 267 268 269

/// Paste identifiers together.
///
/// Within the `paste!` macro, identifiers inside `[<` and `>]` are concatenated together to form a
/// single identifier.
///
270 271
/// This is similar to the [`paste`] crate, but with pasting feature limited to identifiers and
/// literals (lifetimes and documentation strings are not supported). There is a difference in
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
/// supported modifiers as well.
///
/// # Example
///
/// ```ignore
/// use kernel::macro::paste;
///
/// macro_rules! pub_no_prefix {
///     ($prefix:ident, $($newname:ident),+) => {
///         paste! {
///             $(pub(crate) const $newname: u32 = [<$prefix $newname>];)+
///         }
///     };
/// }
///
/// pub_no_prefix!(
///     binder_driver_return_protocol_,
///     BR_OK,
///     BR_ERROR,
///     BR_TRANSACTION,
///     BR_REPLY,
///     BR_DEAD_REPLY,
///     BR_TRANSACTION_COMPLETE,
///     BR_INCREFS,
///     BR_ACQUIRE,
///     BR_RELEASE,
///     BR_DECREFS,
///     BR_NOOP,
///     BR_SPAWN_LOOPER,
///     BR_DEAD_BINDER,
///     BR_CLEAR_DEATH_NOTIFICATION_DONE,
///     BR_FAILED_REPLY
/// );
///
/// assert_eq!(BR_OK, binder_driver_return_protocol_BR_OK);
/// ```
///
/// # Modifiers
///
/// For each identifier, it is possible to attach one or multiple modifiers to
/// it.
///
/// Currently supported modifiers are:
/// * `span`: change the span of concatenated identifier to the span of the specified token. By
/// default the span of the `[< >]` group is used.
/// * `lower`: change the identifier to lower case.
/// * `upper`: change the identifier to upper case.
///
/// ```ignore
/// use kernel::macro::paste;
///
/// macro_rules! pub_no_prefix {
///     ($prefix:ident, $($newname:ident),+) => {
///         kernel::macros::paste! {
///             $(pub(crate) const fn [<$newname:lower:span>]: u32 = [<$prefix $newname:span>];)+
///         }
///     };
/// }
///
/// pub_no_prefix!(
///     binder_driver_return_protocol_,
///     BR_OK,
///     BR_ERROR,
///     BR_TRANSACTION,
///     BR_REPLY,
///     BR_DEAD_REPLY,
///     BR_TRANSACTION_COMPLETE,
///     BR_INCREFS,
///     BR_ACQUIRE,
///     BR_RELEASE,
///     BR_DECREFS,
///     BR_NOOP,
///     BR_SPAWN_LOOPER,
///     BR_DEAD_BINDER,
///     BR_CLEAR_DEATH_NOTIFICATION_DONE,
///     BR_FAILED_REPLY
/// );
///
/// assert_eq!(br_ok(), binder_driver_return_protocol_BR_OK);
/// ```
///
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
/// # Literals
///
/// Literals can also be concatenated with other identifiers:
///
/// ```ignore
/// macro_rules! create_numbered_fn {
///     ($name:literal, $val:literal) => {
///         kernel::macros::paste! {
///             fn [<some_ $name _fn $val>]() -> u32 { $val }
///         }
///     };
/// }
///
/// create_numbered_fn!("foo", 100);
///
/// assert_eq!(some_foo_fn100(), 100)
/// ```
///
371 372 373 374 375 376 377
/// [`paste`]: https://docs.rs/paste/
#[proc_macro]
pub fn paste(input: TokenStream) -> TokenStream {
    let mut tokens = input.into_iter().collect();
    paste::expand(&mut tokens);
    tokens.into_iter().collect()
}
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396

/// Derives the [`Zeroable`] trait for the given struct.
///
/// This can only be used for structs where every field implements the [`Zeroable`] trait.
///
/// # Examples
///
/// ```rust,ignore
/// #[derive(Zeroable)]
/// pub struct DriverData {
///     id: i64,
///     buf_ptr: *mut u8,
///     len: usize,
/// }
/// ```
#[proc_macro_derive(Zeroable)]
pub fn derive_zeroable(input: TokenStream) -> TokenStream {
    zeroable::derive(input)
}